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Abstract

The properties of crystalline materials tend to be strongly correlated with their
structures, and the prediction of crystal structure from only the composition is a cov-
eted goal in the field of inorganic materials. However, even for the simplest composi-
tions, such prediction relies on a complex network of interactions, including atomic or
ionic radii, ionicity, electronegativity, position in the periodic table, and magnetism, to
name only a few important parameters. We focus here on the ABsXg (AB20g and
AByFg) composition space with the specific goal of finding new oxide compounds
in the trirutile family, which is known for unusual 1D antiferromagnetic behavior.
Through machine learning methods, we develop an understanding of how geomet-
ric and bonding constraints determine the crystallization of compounds in the trirutile
structure as opposed to other other ternary structures in this space. In combination
with density functional theory (DFT) calculations, we predict 18 candidate, previously
unreported trirutile oxides. We successfully prepare one of these and show it forms in

the disordered rutile structure, under the preparation conditions adopted here.

Introduction

Machine learning is an emerging method in materials science which has been used to
predict properties of materials such as hardness, 2 band gap,® and drive the search for new
materials with desirable properties such as high performing transparent conductors.* For
these predictive applications, machine learning models can outperform ab initio methods
such as density functional theory (DFT) because the low computational cost of running a
machine learning algorithm allows for fast screening of thousands of compounds. Machine
learning is consequently a promising method for filtering an initial large pool of candidates
into a sample size on which it is feasible to perform DFT or other computationally intensive
simulations.® Machine learning has also been used to build on fundamental understanding

of well known materials; for example, determination of factors which drive crystallization



in the Heusler as opposed to the inverse Heusler and related structures.®

The prediction of crystal structure from composition has been a longstanding goal in in-
organic materials science hearkening back to 1929, when Linus Pauling published the now
eponymous rules to predict the coordination environment and bonding of many families
of inorganic materials.” These deceptively simple rules, which take into account relative
atomic radii, valence, and mixed-cation behavior, explain many of the fundamental inter-
actions that determine crystal structure formation. This work was extended by Slater,® and
later Shannon,? in the determination of atomic and ionic radii for atoms in crystals. For
valence precise binary semiconductors, Phillips and Van Vechten!® formulated the more
specific and sophisticated rules for the separation of rock-salt, zinc blende, and wurtzite
crystal structures. Since these early developments, the understanding of crystal structure
has been explored for several structural motifs. !:12 A resurgence of interest in the topic oc-
curred with the development of high-throughput DFT-based modeling in conjunction with

improvements in computing capabilities, >-1°

and crystal structure prediction (or perhaps
more accurately, screening) studies have since been performed on both specific families as
well as general classes of materials. The relationship between a physical property and its
descriptive parameters has also been studied in an attempt to determine how to choose
a meaningful descriptor.'® Completely unbiased (by any knowledge of crystal structures)
approaches, such as the use of genetic algorithms,!” and particle swarm optimization, '&1°
have also become available, but these methods, while very successful in specific instances,
tend to be computationally exceedingly expensive. Therefore, we chose a machine learn-
ing method over genetic algorithm alternatives because machine learning allows us to gain
chemical understanding about the ternary composition space.

In this work, we use machine learning and DFT to study crystal structure formation
in AB, X oxides and fluorides composition space, which is a complex space containing

many material families. In particular, we explore the underlying factors which determine

whether an AB,Xs compound will crystallize in the trirutile structure with the goal of



predicting new tirutile oxides. The trirutile family of materials with formula AB,X; are
known for unusual low dimensional magnetism,?° typically in the form of 1D antiferro-

21-23 which is the closest metal-metal distance

magnetic chains along the [110] direction,
in the structure. The trirutile structure is an ordered supercell of the rutile unit cell with
A-B-B ordering in the c-direction. Because of the similarity to the rutile family, which
hosts various canonical insulator-to-metal transition materials such as VO,,2* it is possi-
ble that some trirutiles could have a similar structural instability to the one which leads
to the insulator-to-metal in rutile materials.?> However, even in the high symmetry ideal
trirutile structure and in the absence of dimerization, all known oxide trirutiles appear to
be insulators, possibly due to the disruption of conduction pathways along the edge shar-
ing octahedra from electron localization or charge disproportionation on A and B ions.
Many trirutile compounds with unpaired d-electrons such as CuSb,Og4 and NiTa;Og have
been suggested as exhibiting Mott or charge-transfer insulating properties.2® Through ma-
chine learning methods we find that, consistent with factors determining crystallization
in other structural families, geometric and bonding constraints are the most important
features determining the formation of a trirutile structure. In particular, the trirutile struc-
ture is preferred over others when both the A and B atoms are relatively small, and less
electronegative.

Starting from 461 novel AB,0¢ compositions, we predict 53 new candidate trirutile
materials via machine learning. From DFT calculations, we find 18 of the 53 have a for-
mation energy in the trirutile structure that is less than 50 meV/atom above the formation
energy of the constituent binary oxides. From these 18 compounds, we prepared two novel
AB,0¢ compounds, TiTa;Og and CrSb,Og and find that they form, but in a disordered rutile
(A /3,B5/3)04 under the conditions employed, rather than in an ordered trirutile structure.
Under the appropriate preparative conditions, it is possible that ordered compounds would
indeed be accessible. The work points to the importance of accounting for synthesizabil-

ity beyond simple stability calculations, in the prediction new compounds. None of the



predicted AB>,0O¢ compounds we attempted formed non-rutile ternary structure types, in-
dicating the relative success of the machine learning model in predicting preferred local
coordination environments based only on composition. This suggests the model has iden-
tified the most important chemical features which drive the selection of the trirutile crystal

structure.

Methods

Computational Methods

Data on existing AB;X¢ oxide and fluoride compounds was collected from the Inorganic
Crystal Structure Database (ICSD).2” The data was filtered to remove disordered materials
and duplicate entries. For polymorphic structures the stable room temperature structure
was chosen, and in cases where multiple stable room temperature structures had been
reported, the structure belonging to a known structure type was selected. The data was
annotated with binary targets (1 = trirutile, O = other) in order to set up a classifier al-
gorithm. The cleaned data contained 293 compounds of which 36 were trirutiles, so the
dataset was imbalanced with only approximately 12% positives.

A brief summary is presented here, and full details of the model, hyperparameters,
feature selection, and data scaling and cleaning can be found in in the Supplementary In-
formation, as well as comparison of our model with other models from the SCIKIT-LEARN
package.?® Featurization of the starting materials was performed in MATMINER?’ using
composition-based features such as atomic radius and electronegativity, as well as features
based on the guessed oxidation states from the chemical formula, such as the number of
valence electrons. The featurized matrix was cleaned, removing features for which data
was missing for more than 3% of samples, using the AUTOMATMINER pipeline.3° The fea-
tures were downselected for the most important features in multiple steps. First, features

which were correlated >95% were removed. Then features which sum to <1% impor-



tance by weight within a random forest algorithm were removed. This brought the initial
>600 features down to 46. The starting matrix with 46 features was input into a genetic
algorithm for further preprocessing and machine learning optimization, as an alternative
to grid-based cross validation methods.3%3! Within the algorithm, half of the 46 features
were removed with recursive feature elimination via an extra trees classifier. Tree-based
feature reduction methods provide an advantage over principal component analysis (PCA)
because they allow retention of the feature names which provide insight into the most
important features for predicting within the machine learning model. Polynomial features
up to order 2 were implemented, so a “feature” in the model could be a multiplication of
two features or a single feature squared. We chose the F) score, a combination of recall
and precision, as an optimization metric due to the imbalanced nature of the dataset. Ad-
ditionally, we focused on the recall capabilities of the model, because with more negatives
than positives, models tend to predict false negatives and still perform relatively well. The
machine learning algorithm was trained on 75% of the data in a stratified manner to ob-
tain a similar number of positives in the training and test set. Selection of the machine
learning model and hyperparameters was performed in AUTOMATMINER using nested cross
validation to obtain the model with the best and most reproducible F} score. The best
model was an extra trees classifier with a F; score on both training and test data of 82%,
indicating the model was not over-fitting the data.

For the prediction of new oxide trirutile candidates, common valences of the elements
(excluding rare earth elements) were tabulated and combinations of A + 2x B which
combined to 12(=6x2) were input in a matrix. Compounds which existed already were
removed and the model was implemented on 461 new AB,Og4 formulas. 53 were predicted
as possible trirutile candidates, similar to the ratio of positives in known materials.

For the 53 predicted candidates, density functional theory (DFT) calculations were
used to calculate the energy of the ternary compounds in the trirutile structure com-

pared with the energy of their reported binaries. All electronic structure calculations



were performed using the Vienna Ab-Initio Simulation Package (VASP )32 with projector-
augmented-waves333* within the Perdew-Burke-Ernzerhof generalized gradient approxi-
mation.®® All calculations used an automatically generated I'-centered k—point grid with
a density of 50 and an energy cutoff of 550 eV with a ferromagnetic initialization on non
d’ transition metals. In binary compounds where the magnetism is known, the nearest
collinear magnetic configuration was used to initialize the calculations. Structural relax-
ations with symmetry on were performed for all materials in a 3 step process in which
the unit cell and ion positions were allowed to relax until convergence, then just the ion
positions, and then a static energy calculation. Gaussian smearing with a sigma of 0.1
was used for the structural relaxations, and the Blochl tetrahedron method was used for
the final static energy calculations to obtain the most accurate total energy. We used the

Phonopy package with unit-cell structures for calculation of the phonon spectrum at I".3¢

Experimental Methods

TiTa;Os powder was obtained by solid state reaction of TiO and Ta;,Os; powders, and
CrSb,0O4 was obtained by reaction of Cr,O3, Sb,O3, and Sb,O5. Stoichiometric amounts
totaling around 500 mg of the starting materials were ground with an agate mortar and
pestle and pressed into a 6 mm pellet under 950 MPa of pressure. The pellets were placed
in Al,O3 crucibles capped with Ta foil to prevent reaction with the fused silica tubes. The
samples were sealed in silica ampoules under vacuum with a 0.25atm Ar to suppress
volatilization. Both samples were slowly ramped to 1100°C over 3 days, reacted for 5 to
7 days, and allowed to cool in the furnace. Laboratory Cu-Ka X-ray diffraction (XRD) was
acquired on a PANalytical Empyrean diffractometer. CrSb,O¢ formed a phase-pure disor-
dered rutile structure, while TiTa;Oq formed the same but with a small Ta,O5 impurity.
Slow cooling and re-annealing at lower temperatures was performed in an attempt to or-
der the cations into a trirutile structure but a tripling of the unit cell was never observed

within lab resolution. X-ray fluorescence measurements were performed on a Rigaku



ZSF Primus IV spectrometer on pressed pellets of the powder material to confirm com-
position in TiTa;Og. To measure temperature—-dependent and field—-dependent magnetiza-
tion in TiTa,Og, a Quantum Design Superconducting Quantum Interface Device (SQUID)
Magnetic Property Measurement System (MPMS) with a vibrating sample magnetometer
(VSM) was used. 7.4 mg of sample power was packed into a plastic sample holder and
loaded into a brass sample holder rod. Temperature— dependent magnetization data were
acquired between 2K and 380K under a field of H# =200 Oe under zero-field cooled and
field-cooled conditions, and under a field of H = 2000 Oe under field-cooled conditions.
A magnetization vs. field hysteresis loop was acquired at 2K in a field between 5T and
—5T. The sample was measured using a Thermo Fisher Escalab Xi+ XPS equipped with
a monochromatic Al anode (E = 1486.7 eV). A survey scan was measured at 100 eV pass
energy and high-resolution scans were measured in the Ti 2p and Ta 4d regions at 20 eV
pass energy. The spectra were referenced to adventitious carbon at 284.8 eV. CasaXPS was
used to fit the data using Shirley backgrounds and SGL peak shapes. High resolution scans

of Ti and Ta were fit using appropriate spin-orbit splitting and peak area ratios.

Results

The composition space AB;Xg oxides and fluorides, with approximately 293 known com-
pounds, is distributed over a variety of structure types. Figure 1 highlights some represen-
tative structure types in this space. While the trirutile family is the most common, with 36
members representing approximately 12% of AB;Xs compounds, no one type is preferred
within this composition region. There is varying coordination of the A and B cations
although octahedra are a common motif. Two types that appear similar to the trirutile
structure are the Na,SiFs and the columbite structure, in which both A and B atoms are
octahedrally coordinated in alternating fashion in 3 dimensions.

Starting from the 293 known A B, X oxide and fluoride compounds from the ICSD, we
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Figure 1: The most common structure types in AB>X¢ oxide and fluoride composition
space. No one structure type dominates the landscape in this region. Most structures
are characterized by octahedral coordination of the A or B sites, and layered compounds
feature prominently both in the common structure types and in the “Other” class.

trained a machine learning model to classify the compounds into trirutile or not trirutile.
The process flow is shown in figure 2. Details of the machine learning process and model
can be found in the methods and the SI. The best performing model was an extra trees clas-
sifier, a form of decision tree, with a cross validation F; score on the training data of 82%
and on the test data of 82%. The F score, a combination of precision and recall, is a good
metric for unbalanced datasets where negatives outweigh positives (in our data only 12%
are positives). The model was used to classify 461 unknown AB,Og materials and pre-
dicted 53 should be trirutiles, similar to the percentage of trirutiles in known compounds.
Because the machine learning model has no thermodynamic information, we used DFT to
evaluate whether the trirutile candidates could feasibly be synthesized. A simple proxy for
stability is the formation energy of the product relative to the starting materials. For all
53 candidates, the energy of the reactant binary oxides were compared to the energy of
the product trirutile using density functional theory (DFT) calculations, and a conservative
threshold of 50 meV atom ™! above the binary energy was set as the limit of possible stabil-

ity. When these compounds were additionally screened for inconvenient starting materials
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Training
36 trirutiles/293 AB,(O/F),
Composition-based features using
AUTOMATMINER

Trained Model
75 % total samples
ExtraTreesClassifier
(SCIKITLEARN)
Cross-validation F, score: 82 %

Performance
testing: 25 % total samples
F, score: 82 %; recall: 78 %

Prediction
461 new AB,Oq
53 candidate trirutiles

Energetics
DFT (VASP)

Output
18 candidates
[threshold 50 meV/atom
above binaries]

\ 4

Figure 2: The process flow for predicting new trirutile materials. Using only composition-
based features through automatminer, we trained a machine learning model to classify
compounds into trirutile or not trirutile. The model was then used to classify 461 novel
AB,0¢ compositions and 53 were potential trirutile candidates. Density functional theory
was employed to calculate the energy of the ternary trirutile relative to the oxide binaries
as a proxy for stability, and 18 compounds emerged as promising new trirutile oxides.
These candidates are further screened for OK dynamical stability and against competing
structure types.
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(such as 0sO,), 18 materials emerged as promising novel trirutile candidates.
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Figure 3: Plotting the ionic radius of the B-site vs the atomic radius of the A-site performs
reasonably well at clustering families in both the AB,Ogs and AByF¢ space. The machine
learning model is able to correctly predict even overlapping compositions on these axes,
indicating it includes more complex factors. From the model, both Na-containing fluoride
trirutiles are predicted as false negatives, likely due to the scarcity of Na trirutiles. In
the oxide trirutiles, one outlying Bi compound and two Rh-containing trirutiles are false
negatives.

In addition to using the model to predict new trirutile materials, we aim to understand
the chemistry that governs crystallization in the AB, X4 composition space. A common
method for clustering structure types in ternary composition space is to plot the ionic radii
of the A and B atoms.?” In figure 3, we plot the ionic radius of the B-site against the ionic
radius of the A-site for all common structure types in the AB;X¢ space. This performs
reasonably well at clustering structural families, but there is still significant overlap, no-
tably between the trirutiles and the columbite and rosiaite families, indicating more com-
plex features are necessary to understand crystallization in these materials. However, the
machine learning model is able to correctly predict overlapping compounds in this view,
indicating chemical features used by the model are able to differentiate trirutile composi-
tions from others with similar ionic radii. The clearest flaw in the machine learning model
is its inability to predict Na-containing fluoride trirutiles. This is likely because only two
Na trirutiles have been reported while there are several ANa,Fs compounds not in the

trirutile structure. The only false positive in the fluorides is MnLiyFg which is chemically
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similar to known trirutiles CrLiyFg and VLiyFg. In the oxides, two Rh-containing trirutiles
are predicted incorrectly, likely because there are only two Rh-containing oxides reported
in the training data. Interestingly, both oxides falsely predicted to be trirutiles, MnTa,Oq

and MnSb,0g, have reported metastable trirutile phases. 3837
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Figure 4: The 10 most important features for classification of a trirutile composition in this
model

From the model, we extract the 10 most important features, denoted by their weights
in the model, that are used to decide whether the composition is a trirutile, as shown in
figure 4(a). The most important feature (feature 1) includes both geometric and bonding
factors — the maximum atomic radius present in the composition and the band center,
which is related to the mean electronegativity of the elements of the compound. In order to
determine the most relevant features for further study, a correlation matrix was generated
for the top 10 features, shown in the Supplementary Information. The most important
feature is strongly correlated with 7 others of the top 10. This indicates that a combination

of geometry and bonding is by far the most important determinant of whether the trirutile
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Figure 5: A plot of feature 9 vs feature 1 shows how these two features start to cluster the
trirutiles. The size of the points is proportional to feature 7, which also helps to distinguish
the trirutiles from neighboring compounds. Interestingly, these features appear to cluster
other structure types such as vacancy-ordered double perovskites and the (NH,),SiFg com-
pounds. This indicates that similar features may govern crystal structure formation across
many families.

structure will form. Feature 7, which is not as correlated with the others, is the square
of the band center, again showing the importance of bonding. Feature 9, which is the
other unique feature, is a combination of the average deviation of the electronegativity
of the atoms and the average deviation of the number of valence electrons. Figure 4(b)
shows feature 9 plotted versus feature 1. The trirutiles cluster at the less negative end of
the z-axis and the medium-to-high end of the y-axis. The z-axis trend indicates that the
trirutile structure is formed preferentially when the band center is less negative (closer to
0, indicating the A and B atoms have lower electronegativity) and when the maximum
atomic radius in the compound is relatively small. The y-axis trend shows that once these
criteria are met, A and B atoms with a larger difference in valence electrons or a larger
difference in electronegativity are preferred. Interestingly, these features also seem to
cluster the perovskites, (NH,)SiFs compounds, and columbites, indicating similar features
may govern crystal structure formation across this composition space.

By evaluating trends in the values of the most important features, it is possible to gen-

erate a simplified human-readable decision tree to determine whether a given composition
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Figure 6: A simplified decision tree for the formation of the trirutile structure. The trirutile
structure prefers small A and B-site atoms, likely due to the compact edge-sharing octa-
hedral network. Additionally, low electronegativity A and B atoms are preferred relative
to other compositions in the region (such as sulfates with the formula A(SO3),). Finally,
the trirutile structure is preferred in oxides when the number of valence electrons of the A
and B atoms are very different (i.e. 3d and 5d or 5p) and in fluorides when the bonding is
very ionic.
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will form in the trirutile structure, shown in figure 6. While this does not capture the full
complexity of the family, these features describe most of the known trirutiles and exclude
most other AByX¢ compounds. The first factor favoring trirutile formation is a maximum
atomic radius in the compound of < 150 pm, at least for the oxide trirutiles. This excludes
most of the alkali and alkaline earth elements, as well as rare earths, and lead or bismuth
compounds. Most compounds with very large atoms in this composition seem to prefer
the perovskite and (NH,),SiFs structure types. The preference for a low maximum atomic
radius can be explained by the compact nature of the trirutile structure, which is charac-
terized by alternating edge-sharing octahedra. There are no sites like the B site in the
double perovskite which can be occupied by a larger atom. Once the geometry has been
satisfied, a band center near O is desirable (this is related to a low mean electronegativity
of the elements). This bonding restriction excludes sulfates, and all compounds where the
A or B site is a halogen or chalcogen, as well as discourages late 4d and 5d elements.
The last conditions are more flexible and less immediately intuitive. For oxide trirutiles
a large difference in the number of valence electrons across the composition, as denoted
by the average deviation of the NValence feature from the Magpie database, is preferred.
This criterion is related to the way that the NValence feature is calculated. For 5d atoms,
the f electrons are counted in the valence electrons. Therefore, the preference for a large
deviation in NValence for oxide trirutiles highlights the predisposition for 3d (or 3s) and
5d or 5p combinations over 3d and 4d combinations, which are common in the columbites.
For fluoride trirutiles, a large deviation of electronegativity across the composition is pre-
ferred. Most fluoride trirutiles are characterized by extremely ionic bonding and include
small alkali metals like Li and Na. An understanding of the most important features al-
lows us to gain insight into the mechanisms governing crystal structure formation in the
trirutiles as well as other structure types within the region.

Now that we have established some guidelines related to trirutile formation, we turn to

the results of DFT calculations on predicted novel trirutile oxides. The energies of the most
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Table 1: DFT-based stability calculations for predicted trirutiles. AE refers to the energy
of the trirutile relative to its constituent binary oxides.

Composition AFE (meV/atom) | Composition AFE (meV/atom)
PtV206 —6.9 MnPt206 25.4
TiTayO¢ —5.3 GeSn,0Oq 25.4

ReMn;Ogq -3.1 GeMn;Ogq 26.8
IrCr,Oq 0.1 WAIL,O4 30.3
Cer206 1.9 RURQQO(j 31.5

IrV,04 2.2 ReFe,0q 41.1

II'MHQ 06 16.9 TiI]f'Q 06 46.0
BeSb, 0 18.0 MnSn,Oq 48.4
ReV,04 24.5 WNDb,Og 50.0

stable candidates relative to their constituent binary oxides are shown in Table 1. Among
the top candidates, we find many in which the AO, or BO, binaries are known to form
in the rutile structure. For example, the most stable predicted candidate relative to the
starting materials is PtV,QOg, and its binaries, PtO, and VO,, are both rutiles. Additionally,
we find many compounds which are chemically similar to the known trirutiles. TiTa;Og is
similar to many of the known Ta-based trirutiles such as FeTa;O4 or MgTa;Og. ReMn,Oq
is similar to ReCr,Qg, and CrSb,Og is similar to CrTa;Og. The similarity of predicted com-
pounds to known compounds suggests that the model is picking up on underlying chemical
trends in the trirutiles.

To further evaluate the machine learning predictions, we used DFT to calculate both
dynamic stability via O K phonon dispersions and lattice stability relative to the four most
common structure types observed in the AB,Og4 space: rosiaite, NaySiFg, ThTi,Og, and
columbite. Figure7 compares the energies of the ideal trirutile structure to those of the
four alternative structures as well as to the distorted trirutile phases. Supporting the pre-
dictions of the machine learning model, our calculations predict that for 16 of the 18
chemistries examined, the trirutile phase (distorted or ideal) is competitive for the room
temperature equilibrium structure. More information about the distorted trirutile phases

is available in Figure 2 of the Supporting Information.
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Figure 7: DFT-based energy calculations for the most prevalent alternative 1-2-6 oxide
structures plotted relative to the ideal trirutile case. The vertical dashed line indicates the
threshold above which the ideal trirutile structure is within £7" for T' = 300 K. Two of the
18 candidate compounds (highlighted rows) are predicted to adopt alternate structures at
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Figure 8: (a) Laboratory Cu-Ka diffraction patterns on (b) TiTa;Og show that the structure
corresponds to a disordered (A, 3,B,/3) O, rutile structure. There is a slight Ta,O5 impurity
in (Ti;/3,Tas/3)O,. (b) Temperature-dependent magnetization of TiTa,O taken between T
= 1.8 and 380 K under a constant field of # = 200 Oe is shown. There is no ordering tran-
sition in this temperature range, suggesting a paramagnetic regime. (c) Field-dependent
magnetization of TiTa,O4 taken between H = —5 and 5T at a constant temperature of T’
= 2K shows paramagnetic behavior.
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With a candidate list of new trirutiles, we attempted synthesis via traditional solid state
methods. We found that compounds with noble metals (Pt and Ir) were difficult to re-
act because the low stability of the 4+ valence state limited the synthesis conditions to
low temperatures (typically < 700°C), where reactions proceeded slowly or not at all. We
did not, for this study, attempt any of the Re-based candidates. Although we attempted
synthesis of CrSb,O¢, X-ray fluorescence measurements revealed a 1:1 Cr:Sb ratio sug-
gesting that we were only able to make CrSbO,. TiTa;O¢ did react at high temperatures
(1100°C) to form a ternary compound. X-ray diffraction data can be fit to a (A4;/3,58/3)O2
rutile model [figure 8a]. While we were unable to refine occupancies on the transition
metal site reliably due to limits of the data resolution, X-ray fluorescence measurements
on (Ti, 3,Tas/3)O, indicate the product composition (32.8% Ti, 67.2% Ta) is close to the
nominal composition.

Figure 8b displays the raw and fitted field-cooled temperature-dependent magnetiza-
tion data of TiTa,O4 between 1.8 and 380K under an applied field of H = 200 Oe. This
data reveals that TiTa,O4 remains paramagnetic down to at least 1.8 K. A Curie-Weiss fit be-
tween 25K and 300K gave a small but significant y, correction of 0.002 emumol~! Oe~".
From fitting the linear region of the inverse susceptibility with the inverse Curie-Weiss
law, a Curie constant of 0.33 emumol~! Oe~! and a Oy of about —22 K were calculated.
While this O¢y is negative, it is very close 0K, as expected in a paramagnet. The field-
dependent magnetization taken at 7' = 2 K in Figure 8c does not saturate at high field and
is reminiscent of an ideal paramagnet that can be described with a Brillouin function.

An effective moment of Ti can be calculated using the approximation fi.;; = /8C.
Using the Curie constant obtained from the Curie-Weiss fit, .y = 1.62p5. An analysis of
spin-only and spin-orbit moments can reveal the oxidation state of the magnetic ion. The
spin-only moment for Ti**, calculated as p.;; = g/S(S+1), g ~# 2 and S = 1, so the
effective moment is 2.8 ;3. The spin-orbit moment is calculated as ji.;; = g*v/J(J + 1),

where ¢* = 1 + JUH)?}E}TB)_L(L_I) and J = |L — S| if the shell is less than half full, and
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J = L + S if the shell is more than half full. For Ti**, L = 3and S = 1, so J = 2 and
g = 2/3. This gives an effective spin-orbit moment of 1.63 up. If a similar analysis is
performed for Ti**, S = 1/2 and L = 2, giving a spin-only moment of 1.73 up and a spin-
orbit moment of 1.55 . From this, we conclude that the oxidation state of Ti in TiTa;Og
is iclose to +2.

The analysis of XPS spectra (presented in the supplementary information in figure S3)
in the 2p region for Ti and the 4d region for Ta confirms the 1:2 ratio of the cations.
However the 2p;/, and 2p; , spin orbit doublets for Ti are suggestive of an oxidation state
that is indistinguishable from the reported values for Ti**. We infer that there may be
some surface oxidation of the Ti that is being captured in the XPS, but is distinct from the
bulk d electron count represented in the magnetic measurement.

We have so far been unable to find an annealing scheme that would order the A and
B cations to form the trirutile structure. The erroneous prediction of a stable ordered
trirutile phase for these compositions is likely due to the failure to account for disorder
in either the machine learning model or the DFT. A simple energy threshold relative to
the binaries as calculated by DFT is not a perfect metric for synthesizability,** and more
sophisticated means for determining stability could allow us to optimize the efficiency of
a computational pipeline to overcome synthesis challenges. Because of the difficulty of
modeling and understanding disordered materials, any disordered materials were thrown
out in our original data cleaning process for the machine learning training data, and dis-
ordered supercells were not calculated in the DFT screening. Despite the disorder, the
formation of a ternary rutile phase indicates the model has a consistent ability to predict

the local coordination environment in this composition space.
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Conclusion

Machine learning is a powerful tool for making connections in complex systems with many
variables. While the AB;X¢ composition space of oxides and fluorides is small compared
to many databases used in machine learning, it has a multitude of competing crystal struc-
tures. The most common crystal structure in this region, the trirutile family, makes up
only 12% of the members, competing with vacancy-ordered double perovskites, layered
compounds, columbites, and many others. We find that the trirutile structure is preferred
overall when A and B atoms are small and less electronegative, and that the oxide trirutiles
are typically a combination of a 3d or 3s atom with a 5d or 5p atom. The fluoride trirutiles
are typically Li with a 3d atom or Na with a 4d atom. We discover that similar geometric
and bonding features that are important for the trirutiles appear also to be important for
other families, such as the perovskites. In combination with DFT screening for stability,
we predict 18 novel trirutile oxides. Of those, we are able to synthesize ternary oxides of
2 and show that they form in a disordered rutile structure, highlighting the success of the
model in predicting local coordination environments. However, the energetics governing
disorder are challenging to understand and predict and require special consideration. Ad-
ditionally, the goal of accounting for synthesizability in inorganic materials, for example
by including Ellingham diagrams or other solid state chemistry benchmarks in a machine
learning model is crucial to accelerate the timeline for the design and realization of novel

functional materials.

Supporting Information Available

Detailed description of python packages and machine learning methods used, including
feature libraries and data processing tools. A correlation matrix for the top 10 features is
shown in Figure S1, Figure S2 displays the types of computed structural distortions of the

AB, trirutile, and Figure S3 displays XPS spectra for TiTa,Og.
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The composition space of AB;Xg oxide and fluoride compounds has been examined
using a combination of machine learning from known structures and density functional

theory-based electronic structure calculations with the specific goal of finding new com-
pounds in the trirutile family.
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The machine learning model relied heavily on automatminer pipeline attributes. Here is

specific information about the pipeline steps.

Featurizing the matrix:

"autofeaturizer": AutoFeaturizer(preset="all")

List of feature libraries:

AtomicOrbitals(),

ElementProperty.from\_preset(‘ ‘matminer") (these are from pymatgen),
ElementProperty.from\_preset (‘ ‘magpie"),
ElementProperty.from\_preset(‘‘deml"),
ElementFraction(),

Stoichiometry(),

TMetalFraction(),

BandCenter (),

ValenceOrbital(),

YangSolidSolution(),

CationProperty.from\_preset (preset\_name=’deml’),
OxidationStates.from\_preset(preset\_name=’deml’),
ElectronAffinity(),

ElectronegativityDiff(),

TonProperty(),

Miedema ()

pymatgen stats: ["minimum", "maximum", "range", "mean", "std\_dev"]



magpie stats: ["minimum", "maximum", "range", "mean", "avg\_dev", "mode"]

deml stats: ["minimum", "maximum", "range", "mean", "std\_dev"]

Cleaning the data:

“‘cleaner": DataCleaner()

If feature value missing (N/A) for >3% of samples (or <3% of features available for

sample), remove. Remove duplicates.

‘‘reducer": FeatureReducer(reducers=(’corr’, ’tree’),

tree\_importance\_percentile=0.99)

If features >95% correlated, remove. Also, use a random forest to remove features that
together sum to <1% of importance by weight. Together, these lead to a reduction of 629
intial features to 46.

Machine learning genetic algorithm parameters:

‘‘learner’’: TPOTAdaptor (max\_time\_mins=720, max\_eval\_time\_mins=20,

scoring=‘‘f1’’)



he genetic algorithm runs for 12 hours and is scored on an f; metric, as explained in
the methods.

The genetic algorithm continues feature selection, chooses recursive feature elimina-
tion (RFE) to remove half of the features with importances determined via extra trees

classifier and gini importance, resulting in 23 features, with parameters shown below.

RFE(estimator=ExtraTreesClassifier (bootstrap=False, class\_weight = None,
criterion = ’gini’, max\_depth = None, max\_features = 0.35,

max\_leaf\_nodes = None, min\_impurity\_decrease = 0.0,

min\_impurity\_split = None, min\_samples\_leaf = 1, min\_samples\_split = 2,
min\_weight\_fraction\_leaf = 0.0, n\_estimators = 100, n\_jobs = None,
oob\_score = False, random\_state = None, verbose = 0, warm\_start = False),

n\_features\_to\_select = None, step = 0.35, verbose = 0)),

These are the RFE hyperparameters the genetic algorithm iterated over:

’sklearn.feature\_selection.RFE’: (
’step’: np.arange(0.05, 1.01, 0.05),
’estimator’: (
’sklearn.ensemble.ExtraTreesClassifier’: (
’n\_estimators’: [100],
’criterion’: [’gini’, ’entropy’],

‘max\_features’: tree\_max\_features



Preprocessing steps follow, such as scaling and normalizing the features. The genetic

algorithm finds polynomial features to order 2 is best, with the specific parameters as

follows.

(’polynomialfeatures’,

PolynomialFeatures(degree=2, include\_bias=False, interaction\_only=False)),

Finally, the genetic algorithm chooses the best machine learning model. For a clas-
sification problem, TPOT chooses between models like random forest, gradient boosting
classifier, linear SVC, and others. For this dataset, the best model was found to be an extra

trees classifier with the parameters shown below:

(’extratreesclassifier’,

ExtraTreesClassifier(bootstrap=False, class\_weight=None, criterion=’entropy’,
max\_depth=None, max\_features=0.95,
max\_leaf\_nodes=None, min\_impurity\_decrease=0.0,
min\_impurity\_split=None, min\_samples\_leaf=7,
min\_samples\_split=14, min\_weight\_fraction\_leaf=0.0,
n\_estimators=100, n\_jobs=None, oob\_score=False,

random\_state=None, verbose=0, warm\_start=False))

These are the hyperparameters TPOT iterates over and the acceptable ranges in the

nested CV:

tree\_estimators = [20, 100, 200, 500, 1000]

S5



tree\_max\_features = np.arange(0.05, 1.01, 0.1)

tree\_learning\_rates = [le-2, le-1, 0.5,

tree\_max\_depths = range(1l, 11, 2)

tree\_min\_samples\_split = range(2, 21, 3)

tree\_min\_samples\_leaf = range(1l, 21, 3)

tree\_ensemble\_subsample = np.arange(0.05, 1.01, 0.1)

We fit the same features and train/test split to other models using a grid search cross

validation with a 5-fold stratified split to benchmark our model. Other models included a

random forest, neural net, and support vector classifier (for the last two the features were

scaled), but the original extra trees classifier had the best f; score on both cross validation

and test.

The legend for Fig. 4 (in the main text) is shown below.

1. Maximum atomic radius * band center: The band center is related to the mean

electronegativity of the compound: when it’s closer to O, the A and B atoms are less elec-

tronegative.

2. Range atomic radius * band center: The range of the atomic radius is the difference

between the largest and smallest atom size in the compound.

3. Maximum covalent radius * band center
4, Maximum atomic radius

5. (Maximum atomic radius)?
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Figure S.1: A correlation matrix for the 10 most important features of the extra trees
classifier shows that 7 of the top 10 features are highly correlated with the most important
feature. This indicates a combination of geometry and bonding is the most important
factor in understanding which compositions form in the trirutile structure.

6. Maximum covalent radius * maximum ground state volume per atom: The ground
state volume per atom is the space that the atom takes up in its elemental ground state
crystal structure from density functional theory; strongly correlated with other atomic and
covalent radii for the atom.

7. (Band center)?

8. Range atomic radius

9. Average deviation electronegativity * average deviation number of valence electrons:
The average deviation of electronegativity is controlled mostly by the A and B atoms since
O and F are strongly electronegative. This is related to band structure. The average
deviation in number of valence electrons, as explained in more detail in the main text,
helps to differentiate 4d vs 5d atoms.

10. Maximum covalent radius * mean ground state volume per atom
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Figure S.2: Three types of lattice distortions are predicted among the 18 trirutile struc-
tures, which reduce the symmetry of the ideal trirutile phase. We observe distortion (a)
in BeSb,Og, distortion (b) in CrSb,0g, and distortion (c) in ReV,04, ReMnyOg, IrV,0g.
These distortions produce noncentrosymmetric space groups and indicate the possibility
of ferroelectricity and/or piezoactivity.
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Figure S.3: X-ray photoelectron spectra displaying the region of (a) Ti 2p spin-orbit dou-
blets 2p3/, and 2p; /» and (b) Ta 4d spin orbit doublets 4ds/, and 4ds/,.



