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The importance of long-distance dispersal (LDD) in shaping geographical distri-

butions has been debated since the nineteenth century. In terrestrial vertebrates,

LDD events across large water bodies are considered highly improbable, but

organismal traits affecting dispersal capacity are generally not taken into

account. Here, we focus on a recent lizard radiation and combine a summary-

coalescent species tree based on 1225 exons with a probabilistic model that

links dispersal capacity to an evolving trait, to investigate whether ecological

specialization has influenced the probability of trans-oceanic dispersal. Crypto-
blepharus species that occur in coastal habitats have on average dispersed 13 to 14

times more frequently than non-coastal species and coastal specialization has,

therefore, led to an extraordinarily widespread distribution that includes mul-

tiple continents and distant island archipelagoes. Furthermore, their presence

across the Pacific substantially predates the age of human colonization and we

can explicitly reject the possibility that these patterns are solely shaped by

human-mediated dispersal. Overall, by combining new analytical methods

with a comprehensive phylogenomic dataset, we use a quantitative framework

to show how coastal specialization can influence dispersal capacity and

eventually shape geographical distributions at a macroevolutionary scale.
1. Introduction
From the outset of evolutionary biology, biologists have recognized the importance

of long-distance dispersal (LDD) in shaping the geographical distributions of con-

temporary clades [1]. LDD refers to rare events that differ from instances of ‘regular’

dispersal by covering geographical distances that are well outside a species’
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traditional range [2]. While LDD is plausible for flying or wind-

dispersed organisms [2], it has been considered less so for

others, in particular as an explanation for the presence of similar

terrestrial vertebrates across large water bodies [3]. Instead, in

the wake of the general acceptance of plate tectonics, vicar-

iance-based hypotheses have frequently been proposed to

explain the widespread distribution of closely related taxa.

Yet, a growing number of phylogenetic studies suggest that con-

tinental break-up often predates the divergence times of

widespread clades and have concluded that, in such instances,

past LDD or human-mediated translocations are more parsimo-

nious explanations for broad contemporary distributions [4–9].

Recent debates about LDD have largely focused on dating

results and less so on organismal traits or environmental cir-

cumstances that could mediate the probability of LDD events.

To move beyond the practice of merely reporting a dated phylo-

geny, the major challenge is now to integrate ecology in

biogeographic models and understand why some taxa are

widely dispersed while others are not [2,10].

The idea that the probability of LDD can depend on a

specific ecological trait or a species’ habitat affinity is long-

standing [10–12]. In plants, dispersal mechanisms that

promote LDD have been studied extensively and the func-

tional importance of seed morphology is now generally

acknowledged [13–15]. Some plant families have spread

across vast distances solely owing to their occurrence in a

specific habitat (e.g. coastal environment [16]) or because

they are more frequently exposed to long-distance migrants

(e.g. birds [15]). Unfortunately, similar empirical evidence

remains scarce for most terrestrial animals, vertebrates in par-

ticular, even though trait-dependent variation in dispersal

propensity could lead to substantial differences in species

proliferation because geographical expansion and diversifica-

tion are often intimately linked [17]. Thus, quantifying how

ecological traits can modulate range evolution across the

tree of life will shed further light on both the prevalence

and eventual macroevolutionary implications of LDD.

Recent advances in the field of historical biogeography

will greatly benefit the study of trait-dependent dispersal

owing to the now widespread adoption of explicit, probabil-

istic models of biogeographic processes [18–23]. These

models provide a statistical framework in which the mechan-

isms that mediate LDD can be studied, by comparing model

fit using standard model choice procedures [24]. Here, we

employ a recently introduced model variant that allows the

probability of LDD to depend on a discrete trait which

itself can evolve on a phylogeny [25,26] and use this model

to ask whether habitat preference has influenced the rate of

LDD in a recent lizard radiation with an exceptionally

broad geographical distribution.

Lizards of the genus Cryptoblepharus are found on multiple

continents and island archipelagoes across the Pacific and

Indian Ocean; some over 10 000 km apart. The genus

(approx. 62 species) is part of the Eugongylus skink radiation

that diversified long after the break-up of Gondwana [27],

suggesting that processes other than vicariance have played

an important role in shaping their current distribution.

A recent evolutionary analysis of Australian Cryptoblepharus
demonstrated that continental species have repeatedly shifted

between saxicolous (rock) and arboreal (tree) environments

and the associated changes in adaptive traits emphasize the

overall importance of habitat preference within this group

[28,29]. However, while inland species have repeatedly
adapted to specific substrates, a second axis of specialization

can be detected at a broader geographical scale: inland

versus coastal species. Within Australia, two species

exclusively occur in close proximity to the coast and are

sometimes even found on rocks in the intertidal zone, where

they hide in crevices and hunt for small crustaceans [30].

Species with similar ecological profiles have been reported

outside Australia as well [31], which raises the question of

whether major range expansions might have been enabled

by the evolution of a coastal habit.

To evaluate whether habitat preference can modulate the

probability of LDD, we assembled, to our knowledge the first

comprehensive phylogenomic dataset for all Cryptoblepharus.

We sampled 135 representatives from all described and pro-

posed taxa across their global distribution, used a custom

exon-capture system to sequence thousands of loci and

employed a coalescent-based method to infer relationships

among taxa. The resulting phylogeny serves as the basis for

a detailed evaluation of geographical range evolution, the

probability of natural trans-oceanic dispersal and the role of

habitat preference in expediting such rare events.
2. Material and methods
(a) Sampling, library preparation and exon capture
Previous studies [32] have shown that the current taxonomy of

Cryptoblepharus is probably an underestimation of the true species

diversity. We, therefore, took an opportunistic approach, sampled

as many Cryptoblepharus populations as possible—across their

global distribution—and used a mitochondrial marker to identify

the main lineages (see the electronic supplementary material,

Methods for a detailed description of taxon sampling strategy).

In addition to 37 individuals previously sequenced [29], we

selected 98 other individuals and generated individually barcoded

genomic libraries, suitable for exon-capture and subsequent Illu-

mina sequencing. We used a modified version of our original

Eugongylus group skink exon-capture kit [33], which targeted

exon sequences identified in the transcriptomes of Carlia rubrigu-
laris, Lampropholis coggeri and Saproscincus basiliscus [34]. In the

modified version, we removed target exons that failed in earlier

captures, and expanded the taxonomic coverage of the target set.

To do this, we added exonic targets based on transcriptomes for

Cryptoblepharus ruber, Bassiana duperreyi and Pseudemoia entrecas-
teauxii. We also removed targets for S. basiliscus (to reduce the

total target size), which is quite closely related to L. coggeri.
We targeted a total of 2457 exons and our improved capture

probe set was synthesized by Roche NimbleGen in a SeqCap EZ

Developer Library.

Genomic libraries were prepared with approximately

1400 ng input DNA per sample and according to the protocol

of Meyer & Kircher [35], using modifications of Bi et al. [36].

A detailed description of the library preparation protocol can

be found in [29,33,37]. Barcoded libraries were pooled in equi-

molar ratios prior to hybridization and the exon-capture

hybridization was performed following the SeqCap EZ Develo-

per Library user guide (Roche Nimblegen). We assessed the

quality of the hybridization as specified in [29] and genomic

libraries were sequenced (100 bp paired end) on a single Illumina

HiSeq 2500 lane (see the electronic supplementary material,

table S1 for coverage statistics).

(b) Bioinformatic processing for phylogenetic inference
Each library was processed and assembled using an in-house

developed and publically available workflow (archived in the
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Dryad Digital Repository: https://doi.org/10.5061/dryad.

v1d32). Once contigs were assembled, they were used as a refer-

ence to map cleaned reads back for each individual. Mapping

was performed using BOWTIE2 (v. 2.2 [38]) and resulting SAM

files processed with SAMTOOLS (v. 0.1.19 [39]). We employed

GATK (v. 3.6 [40]) to identify heterozygous sites, masked sites

with a low-quality genotype call (GQ , 20) and used read-

backed phasing to generate pseudo-phased haplotypes. We

then calculated a range of summary statistics that characterize

sequencing and assembly success for each individual, and

enforced strict limits on library quality (see the electronic sup-

plementary material, Methods for further details). The contigs

for all remaining individuals were aligned and filtered using

the EAPHY (v. 1.0 [41]) workflow to ensure alignment quality.
Proc.R.Soc.B
286:20182575
(c) Phylogenetic inference
We evaluated the major phylogenetic lineages across all

Cryptoblepharus with a maximum-likelihood (ML) inference of our

concatenated dataset (1196 loci; 537 674 bp). We used RAXML

(v. 8.1 [42]) to estimate the most likely tree out of 10 tree search repli-

cates, using a GTR þ G substitution model, and subsequently

generated 100 bootstrap replicates to quantify bipartition support.

This exploratory analysis confirmed our prior conjecture—based

on only a mitochondrial marker—that the current taxonomy is

probably incomplete. We, therefore, chose two representatives

from each species and/or major well-supported monophyletic line-

age (i.e. divergence time judged to be greater than 1 Ma between

terminal branches; electronic supplementary material, figure S1)

for subsequent analyses. Future studies should examine whether

these taxa indeed represent unique species or phylogeographic

lineages (which is often a challenging question for island represen-

tatives), but here we mainly focus on the biogeographic patterns

between these distinct units. We repeated the alignment and align-

ment filtering process as described before, for the reduced dataset

that only included two representatives for each major lineage

(electronic supplementary material, table S1).

To generate a time-calibrated phylogeny, we first inferred the

species tree topology using a summary-coalescent approach and

then fitted branch lengths a posteriori using a concatenated align-

ment [28]. Instead of a two-step approach as presented here, the

joint estimation of topology and time-scaled branch lengths

would be preferred [43], but is currently intractable in a coalesc-

ent framework with high-throughput sequencing datasets that

include this many taxa and loci. We used ASTRAL II (v. 4.8 [44]

– multiind branch Github) to infer the summary-coalescent

species tree, where we assigned two representatives of each

major lineage as members of the same taxa. We then used JMO-

DELTEST (v. 2.1.0 [45]) to identify the substitution model with

the best fit for each locus and used RAXML to infer the most

likely gene tree out of 10 replicates. To minimize the probability

of erroneous inference owing to missing data, we only used

alignments without missing individuals. We subsequently

characterized differences in gene tree resolution between loci,

by calculating the tree certainty value (TC; [46]) for each locus

using the gene tree with the highest likelihood score and 100

bootstrap replicates. After having verified the robustness of our

phylogenetic estimate with a sensitivity analysis based on TC

scores [29], we used the complete dataset (i.e. 1225 loci—no miss-

ing taxa) and employed multi-locus bootstrapping [47] to

quantify bootstrap support for each bipartition of the species

tree topology. Lastly, we used BEAST (v. 2.5.1 [48]) to fit

branch lengths using a concatenated alignment that used a

single representative for each taxon. In the absence of Cryptoble-
pharus-specific fossils, we constrained the species tree topology

and scaled the phylogeny using the relaxed clock log normal

model that allows the clock rates to vary between branches. We

used an empirically informed distribution (0.00075–0.00125
substitutions site21 Myr21) of clock rates as a prior, which was

based on calibrations for nuclear loci in another group of lizards

within the same family (Scincidae [49]). Furthermore, we set a

prior on the crown age of all Cryptoblepharus based on an inferred

crown age of all Eugongylus skinks around approximately 25 Ma

[50] and a most recent common ancestor for the C. nigropunctatus,
C. novocaledonicus and C. boutonii sub-clade around 7 Ma [51].

Given our current understanding of the Eugongylus radiation, it

is likely that the crown age of all Cryptoblepharus should be some-

where between 10 and 15 Ma. We, therefore, placed a broad prior

on the crown age, range 10–30 Ma, and sampled from a lognor-

mal distribution with a sampling peak before 15 Ma (95%

quantile between 10 and 28 Ma). We ran BEAST in duplicate

for 20 million generations, each run with a different starting

seed, and sampled the Markov chain Monte Carlo (MCMC)

run each 2000 generations. Convergence was verified using

TRACER (v. 1.6 [52]), the first 20% of the MCMC discarded, and

we merged independent runs with LOGCOMBINER (v. 2.4 [48]). A

full description, the scripts used and output files for all phylo-

genetic analyses can be found in the electronic supplementary

material, Data (see the Dryad Digital Repository: https://doi.

org/10.5061/dryad.hf027dp [53]).
(d) Modelling trait-dependent dispersal
To investigate whether habitat preference is a good predictor of

geographical range evolution, we first classified each lineage as

being coastal or non-coastal and identified 17 biogeographic

regions based on connectivity and geological history (see the

electronic supplementary material, Methods for a detailed

description). We then estimated model fit using maximum likeli-

hood for the six basic biogeographic models (DEC, DIVALIKE,

BAYAREALIKE; basic models þ J ) that make assumptions tra-

ditionally popular in historical biogeography. We subsequently

modified each of these models with an additional parameter.

First, a ‘þx’ variant modifies dispersal probability as a function

of relative distance between areas [23] to account for a possible

relationship between distance and dispersal rate. Second, a

trait-dependent dispersal model variant [25,26] modifies disper-

sal rate by multiplying it with ‘mcoastal’; a multiplier on dispersal

rate that is applied if a lineage occupies state 2 of a binary char-

acter. Here, the binary character is habitat preference in

Cryptoblepharus. Because ancestral habitat preference is not

known exactly, it must be inferred jointly with the biogeographi-

cal history. We do this using a 2-rate Markov-k model (Mk [54]),

where parameter tnc-c specifies the rate of moving from state 1

(non-coastal; nc) to state 2 (coastal; c), and tc-nc specifies the

reverse rate. When mcoastal is fixed to the value 1, dispersal prob-

ability is not linked to the value of the binary trait, and the

likelihood of the data is just the likelihood of the geographical

range data (under a traditional biogeography model) plus the

likelihood of the trait data (under the 2-rate Mk model). When

mcoastal is estimated as a free parameter, the data consist of the

combination of species trait states and their geographical

ranges. If the likelihood of these data, when mcoastal is a free par-

ameter, increases substantially over the likelihood when mcoastal

is fixed to the value 1, this is evidence of improved model fit,

and the value of mcoastal indicates the size of the effect of being

coastal on dispersal probability. Furthermore, to characterize

the approximate uncertainty around the ML estimate of mcoastal,

we also constructed likelihood profiles of mcoastal by taking the

ML solution and then varying mcoastal between 0 and 50 at inter-

vals of 0.1 (which also includes the most optimal value for

mcoastal as inferred when the parameter was free to vary). Overall,

models ranged in complexity from two free parameters (d and e,

as in standard DEC) to seven (d, e, j, x, tnc-c, tc-nc, mcoastal) and we

used standard tools for statistical model comparison [55] as

incorporated in BIOGEOBEARS (v. 1.1; available at https://

https://doi.org/10.5061/dryad.v1d32
https://doi.org/10.5061/dryad.v1d32
https://doi.org/10.5061/dryad.hf027dp
https://doi.org/10.5061/dryad.hf027dp
https://github.com/nmatzke/BioGeoBEARS
https://github.com/nmatzke/BioGeoBEARS


royalsocietypu

4
github.com/nmatzke/BioGeoBEARS). A full description, input

files and results for biogeographic modelling in BIOGEOBEARS

can be found in the electronic supplementary material, Data on

Dryad. Simulation-inference tests of the trait-dependent disper-

sal model, descriptions of code unit-tests, and additional

advice for researchers using the model can be found in [25,26].
blishing.org/journal/rspb
Proc.R.Soc.B

286:20182575
3. Results
Targeted sequencing of orthologous loci yielded an average

of 2429 loci for each individual (electronic supplementary

material, table S1) and allowed a time-calibrated species

tree analysis based on 1225 nucleotide alignments (no miss-

ing individuals) that confirmed the recent origin of the

genus (figure 1). Cryptoblepharus lizards emerged in the

mid-Miocene (approx. 12 Ma) and subsequently diversified

during the Plio-Pleistocene. The current taxonomy is prob-

ably an underestimation of the actual species diversity

(electronic supplementary material, figure S1) and we, there-

fore, replicated each analysis using two alternative datasets;

(I) either following the current taxonomy or (II) also includ-

ing deep phylogenetic lineages that probably represent

discrete species. Because there are no qualitative differences

in inference across datasets, we focus on the latter dataset

that is a more realistic reflection of the underlying species

diversity (but see the electronic supplementary material,

table S2 for all modelling results based on current taxonomy).

Ancestral range estimation suggests that the genus is of

Indonesian or Sahul shelf (Indo-Australian) origin and then

spread across the Pacific and Indian Ocean (figure 1; elec-

tronic supplementary material, figure S2). Initial range

expansions were probably confined to the Indo-Australian

area, with a species radiation across the region (including

taxa on New Guinea and Micronesia), and the Australian

continent was colonized in distinct waves with extant sister

populations on the Lesser-Sundas and Christmas Island.

The Australian continental radiation is, therefore, paraphy-

letic overall, with one large monophyletic group and a

second group that includes many foreign representatives.

Australian coastal species such as C. litoralis litoralis and C.
gurrmul are for example more closely related to foreign

coastal lineages than to inland congenerics (figure 1).

Major geographical range expansions, away from Indo-

Australia, only commenced around 3–5 Ma (figures 1

and 2). The phylogenetic reconstruction indicates that the

Pacific and Indian Ocean taxa are placed within one of the

Indo-Australian clades but do not form a monophyletic

group. The Indian Ocean taxa are most closely related

to species that occur in northern Australia (C. gurrmul),
the Lesser Sundas (C. burdeni) and Sulawesi (C. cursor). The

Pacific taxa are more closely related to C. litoralis vicinus,

which is a species that is distributed along the southern

coast of New Guinea. In combination with the ancestral

range estimation (figure 1; electronic supplementary material,

figure S2), these results support a model where the oceanic

populations have an Indo-Australian origin and spread out-

wards, possibly via a stepping stone process, in both

directions. While the exact order of establishment remains

unclear, populations that occur on islands closer to Indo-

Australia are sister to the more distant populations for both

the Pacific and Indian Ocean expansion (figure 1).

To investigate the biogeographic processes that have

shaped the contemporary distribution of Cryptoblepharus
lizards, we first considered six models that have been fre-

quently used in historical biogeography (DEC, DIVALIKE,

BAYAREALIKE; basic models þ J ). Among the six models,

DEC þ J was the best-supported model (table 1), with a

considerable difference in the log-likelihood (LnL) bet-

ween DEC þ J (2117.5 LnL) and the worst performing

model (BAYAREALIKE; 2161.2 LnL), and a marginal

difference between DEC þ J and the second-best model

(DIVALIKE þ J; 2119.3 LnL). While the comparison of tra-

ditional biogeographic models provides insight on the

relative importance of dispersal in explaining contemporary

distributions, it does not identify nor quantify predictors

that can influence the frequency of LDD events. To investi-

gate the latter, we modified the six traditional models and

included two additional parameters; distance dependent

dispersal probability (x) and trait dependent dispersal rate

(mcoastal). Even though the trait-based models have two

additional free parameters, ML estimates suggest that the

increase in model fit is substantial and that the trait-based

models significantly outperform all others (table 1; electronic

supplementary material, table S2). Likelihood ratio tests also

present significant support for the most complex models

(electronic supplementary material, table S2) and, across all

24 possible models, the sample size corrected Akaike infor-

mation criterion (AICc) model weights strongly support the

DEC þ J þ x þ mcoastal model as the overall model that best

explains the data (table 1; 90.5%).

The trait-based models are not only substantially favoured

over others; individual parameter estimates measure how dis-

tance and the coastal preference modulate the probability of

LDD (table 1). For the ‘þx’ models, where the dispersal prob-

ability is multiplied by (relative distance)^x, the value for x
ranges from 21.038 to 21.261 (x; table 1), suggesting that dis-

persal probability declines roughly linearly with increasing

distance (e.g. x ¼21 means that dispersal probability drops

by half when the relative distance doubles [23]). Furthermore,

for models where dispersal probability changes with habitat

preference, the rate of dispersal increases 13- to 14-fold

(model averaged mean; table 1; electronic supplementary

material, table S2) when comparing coastal to non-coastal

species (mcoastal; table 1). Finally, the LnL profiles (electronic

supplementary material, figure S6), produced by taking the

ML model and only varying mcoastal, show that the spread of

mcoastal values with similar likelihood scores is relatively

large but that the likelihood curve drops precipitously as it

approaches mcoastal ¼ 1. Altogether, these results strongly

suggest that jump-dispersal has played an important role in

geographical range evolution and that, most notably, the prob-

ability of LDD substantially increases for species that occur in

coastal habitats.
4. Discussion
Range evolution has undoubtedly shaped the macroevolu-

tionary history of many taxa across the tree of life, but it

has been challenging to study the frequency and determi-

nants of LDD in a quantitative framework. Here, we

combine new analytical methods with a comprehensive phy-

logenomic dataset to estimate how species-specific ecological

features can influence the probability of trans-oceanic dispersal

in a group of terrestrial vertebrates. Akin to habitat-dependent

dispersal dynamics in plants, our results suggest that

https://github.com/nmatzke/BioGeoBEARS
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Figure 1. Time-calibrated phylogeny for the major Cryptoblepharus lineages based on a summary-coalescent species tree analysis of 1225 loci. Confidence intervals
for the node ages are highlighted in grey. The geographical region of origin has been annotated for each species using coloured orbs (see legend). Moreover, internal
nodes have been annotated with the most probable ancestral regions as inferred using ancestral range estimation (see the electronic supplementary material, figure
S2 for further details) and the colour scheme corresponds with figure 2. All nodes with multi-locus bootstrap support below 90 have been annotated and the blue
arrow highlights the inferred branch where species switched from a non-coastal to coastal habitat (also see the electronic supplementary material, figure S3).
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preference for coastal habitats has substantially increased the

probability of natural trans-oceanic dispersal in Cryptoble-
pharus lizards and illustrate that such highly improbable

occurrences should not be seen as mere random events.

Instead, the evolution of novel traits or other ecological
features can increase or decrease the likelihood of LDD and

ultimately lead to major differences in geographical range

evolution across clades.

While trait-dependent dispersal models provide a statisti-

cal framework to study the mechanistic processes that
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biogeographical models).
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regulate LDD, accurate estimates of phylogenetic history are

still required to appropriately model biogeographic history.

We specifically employed a genomic approach and used a

large sample of the genome (.1000 loci) to optimize the esti-

mation of topology and branch lengths. The resulting

coalescent-based species tree represents, to our knowledge,

the first species-level phylogeny for all Cryptoblepharus, with

most nodes fully resolved, and is largely congruent with pre-

vious phylogenetic estimates for the Malagasy and Australian

clades alone [29,56]. The fossil record for skinks is unfortu-

nately very scant and we, therefore, relied on an empirical

clock rate calibration and our genomic dataset. The inferred

node ages are relatively consistent with more broad scale

studies that focus on all squamates [57] or Eugongylus
skinks [50] alone, suggesting that the major timeline of the

Eugongylus radiation is relatively well understood. Moreover,

a comparison between the inferred node ages and the geo-

logical ages of landforms inhabited by Cryptoblepharus
provides further support that our branch lengths are realistic.

For example, Cryptoblepharus lizards are endemic to a number

of young Pacific islands that are of volcanic origin and none

of the associated divergence dates in the phylogeny substan-

tially surpass island age [58]. A similar comparison between

node ages (figure 1) and the known history of anthropogenic

expansion across the Pacific also excludes the possibility that

the observed dispersal patterns have been solely shaped by

human intervention. Remote Pacific islands were among the

last regions on Earth to be colonized by humans and many

Polynesian islands have only been settled within the last

3000 years [59]. In this respect, Cryptoblepharus differs from

other lizard taxa that are widely distributed across oceanic

islands and for which genetic data supports a more recent

expansion model [60–62].
Traditional models estimate biogeographic history, but

the inclusion of additional parameters that account for vari-

ation in dispersal rates can provide explicit insights into the

determinants that mediate LDD. First, model fit considerably

improved when the rate of dispersal was not fixed but could

vary with distance between regions (table 1). The geographi-

cal distance between Indo-Australia and the African

mainland is close to 10 000 km and, even though Cryptoble-
pharus seems to disperse frequently at a macroevolutionary

timescale, dispersal over long distances must be relatively

rare in absolute terms [56,63]. The inverse relationship

between distance and dispersal is congruent with expec-

tations based on island biogeography [64] and our results

generally support a model in which populations on nearby

islands are more closely related. If dispersal rate between

regions would be independent from geographical distance,

distant regions should be colonized as frequently as nearby

regions and result in a less structured phylogeographic distri-

bution (figure 1). Second, in addition to distance, we find

strong support for a model where dispersal rate is conditional

on habitat preference. The inference of ancestral ranges and

ecological states suggests that the distribution of Cryptoble-
pharus was largely confined to Indo-Australia until species

adapted to a coastal habitat (figure 1; electronic supplemen-

tary material, figure S2). Once a coastal specialist emerged

around 3–5 Ma, lineages dispersed in various directions

and across vast geographical distances. These coastal species

are on average 13 to 14 times more likely to disperse than

non-coastal species (table 1), but the 95% confidence interval

surrounding this estimate is relatively wide (electronic sup-

plementary material, figure S6). Nonetheless, the likelihood

curve drops substantially as it approaches mcoastal ¼ 1, and

is in line with the other statistical results (i.e. likelihood
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ratio test and AICc comparison), suggesting that models

where mcoastal is higher than mnon-coastal have a significantly

better fit to the data than models where they are equal. Stat-

istical model choice therefore unambiguously supports a

model in which habitat specialization has led to widespread

dispersal across both the Pacific and Indian Ocean.

While statistical model comparison strongly suggests that

habitat preference has led to a considerable change in LDD

dynamics, future studies should investigate which aspects

of being coastal might directly or indirectly enhance dispersal

capacity. In the case of Cryptoblepharus, this may not be a

straightforward question to address, because while there

are many coastal taxa, coastal specialization is a derived

state that only evolved once and these multiple dispersals

represent phylogenetic pseudo-replication [65,66]. Any trait

that is co-inherited with a coastal preference would show a

similar signal of trait dependence and we, therefore, refrain

from drawing any conclusions regarding the exact cause of

the relationship between coastal habit and dispersal rate.

Nonetheless, our results closely dovetail with the notion

that ecological traits such as habitat preference can indeed

shape the evolution of geographical ranges and suggests

that trait-dependent LDD might be more widespread than

previously thought. To date, much of this research has

focused on plants and seed dispersal, but a limited number

of studies have tried to identify coastal traits that increase

dispersal capacity in other organisms. For example, exper-

imental studies in lizards have focused on their ability to

float [67], evaporative water loss [68] and various aspects of

egg survival following exposure to seawater [69–71]. Similar

experiments in arthropods have shown that survival rate

between species exposed to seawater can vary [72],

suggesting that some species might be better able to persist

during long oceanic voyages. Unfortunately, experimental

evidence remains scant for most animal groups and is

much needed to be able to differentiate between a model in

which coastal specialists have specific traits that enhance dis-

persal capacity or are simply more frequently exposed to

dispersal enhancing circumstances. In the case of Cryptoble-
pharus, where it will be difficult to differentiate between

both hypotheses, we will view traits that correlate with habi-

tat preference as being part of a functional network [65] and

suggest that most of these traits are directly or indirectly

associated with coastal specialization. Similar collective

changes in phenotype have been reported previously in Cryp-
toblepharus and lends further support to the idea that a

change in environment can lead to a range of correlated

changes [28,30].

In summary, we have outlined a probabilistic modelling

framework in which the directionality, frequency and deter-

minants of LDD can be simultaneously quantified, and

investigated the role of ecology in shaping the contemporary

distribution of a diverse genus of terrestrial vertebrates. Natu-

ral LDD across oceans has been a recurring process during

the global radiation of Cryptoblepharus lizards, and the rate

of dispersal substantially differs between species that occur
in distinct habitats. These results demonstrate that LDD can

have substantial macroevolutionary implications and, while

rare, should not be merely seen as the outcome of a stochastic

process. Instead, they should motivate future studies to

further evaluate the prevalence of LDD across the tree of

life and focus on the ecological determinants that can

promote the evolution of geographical ranges.
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