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Abstract

Soft corals (Cnidaria, Anthozoa, Octocorallia, Alcyonacea) produce internal sclerites of calcium 

carbonate previously shown to be composed of calcite, the most stable calcium carbonate 

polymorph. Here we apply multiple imaging and physical chemistry analyses to extracted and 

in-vivo sclerites of the abundant Red Sea soft coral, Ovabunda macrospiculata, to detail their 

mineralogy. We show that this species’ sclerites are comprised predominantly of the less stable 

calcium carbonate polymorph vaterite (>95%), with much smaller components of aragonite and 

calcite. Use of this mineral, which is typically considered to be metastable, by these soft corals 

has implications for how it is formed as well as how it will persist during the anticipated 

anthropogenic climate change in the coming decades. This first documentation of vaterite 

dominating the mineral composition of O. macrospiculata sclerites is likely just the beginning 

of establishing its presence in other soft corals.
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1 Introduction

Cnidarians produce a wide variety of calcium-based biominerals [1], with the dominant 

type of calcification producing calcium carbonate in one of its polymorphs (i.e., one of 

several crystal structures of the same chemical formula). Some benthic hydrozoans such 

as lace corals produce relatively large aragonite or calcite structures [e.g., 2]. Within 

modern anthozoans, stony/scleractinian corals (Hexacorallia) and blue corals (Octocorallia) 

can produce large aragonite skeletons [3, reviewed by 4], while other octocorals including 

soft corals, gorgonians, precious corals, and sea pens produce calcite, Mg-calcite, and/or 

aragonite sclerites [5–8], with some hexacorals and octocorals also forming amorphous 

calcium carbonate (ACC) likely as a mineral precursor [5, 9]. As the negative effects of 

Drake et al. Page 2

Acta Biomater. Author manuscript; available in PMC 2021 November 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



ocean acidification on calcifying marine organisms become more evident in the coming 

decades [reviewed by 10], some, though clearly not all, calcifying anthozoans may find it 

harder to produce their calcium carbonate structures [e.g., 11, 12–14].

From a phylogenetic perspective, calcium carbonate polymorph presence (or lack of such 

structures) is not restricted to specific orders, growth forms, or photosymbiotic status within 

Anthozoa, and the ability to calcify appears to have arisen multiple times [15]. Further, 

several orders contain taxa that produce multiple minerals, much of which has only been 

revealed in recent years. For instance, among the calcifying hexacorals, stony corals have 

been shown to form amorphous calcium carbonate which dehydrates to aragonite on the 

order of minutes to hours [9], detected vaterite in the predominantly aragonite skeleton has 

been proposed as a precursor mineral [16], and an Antarctic stony coral presents a high-Mg

calcite inner skeleton surrounded by a thicker aragonitic outer skeleton [17]. Among the 

octocorals, soft corals produce a wide variety of minerals including Mg-calcite sclerites 

[18] and Mg-calcite, aragonite, and amorphous calcium cementing materials [5]. That these 

findings of polymineralogy are recent suggests that there is likely more variability in the 

mineral composition within the calcifying anthozoans than previously realized.

The various calcium carbonate polymorphs, whether produced by organisms or abiotically, 

display a range of thermodynamic stabilities under natural conditions [e.g., 19]. In contrast 

to calcite - the most stable calcium carbonate polymorph - and aragonite which both can 

persist unaltered for hundreds of millions of years in the fossil record [e.g., 20, 21], vaterite 

is highly unstable at ambient conditions and is more soluble than calcite or aragonite [22, 

23], although it has been observed to naturally precipitate inorganically under extreme 

conditions (e.g., cold, dry, and highly alkaline [24]) and is more stable than amorphous 

calcium carbonate. Biological vaterite deposits tend to have a spherical shape with a porous 

inner structure, can have a rough outer surface, and range in size from 0.05 to 5 μm [25, 26]. 

Abiotically, it can precipitate in solutions with relatively high pHs of from 8.5 to 9.9 [27, 

28]. Once exposed to distilled water or water containing salts, vaterite transforms to calcite 

(elevated temperature) or aragonite (ambient and elevated temperatures) [29 and references 

therein, 30]. It is therefore found in nature in relatively small amounts and often as part 

of a mixture of different phases [e.g., 31, 32]. Despite its metastability, so far vaterite has 

been identified in various biominerals such as fish otoliths, freshwater pearls, healed scars 

of some mollusk shells, gallstones, ascidians, and terrestrial plants, and associated with 

microbial mats among others [33–38].

Members of the octocoral family Xeniidae form a major component of shallow coral-reef 

communities in the tropical Indo-West-Pacific region [39]. In the Red Sea in particular, a 

remarkably high number of species of this family have been recorded [e.g., 40, 41], many of 

which were originally described there, and some are considered to be endemic to the region 

[41]. The xeniids form, for the most part, small and soft colonies, which are often slippery 

due to their secretion of large amounts of mucus [42]. Previous investigations indicate that 

they are ephemeral pioneer organisms, with rapid growth rates, high fecundity, and extensive 

vegetative reproductive capabilities [43]. Ecologically, they are important early colonizers 

of reefs after major disturbance and consequently take over degraded reef substrata [e.g., 

44, 45]. For instance, following crown of thorns starfish outbreaks, cyclones, and coral 
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bleaching on the Great Barrier Reef (Australia), increased soft coral abundance was noted 

with Xeniidae as the most common family (http://www.aims.gov.au/index.html). Similarly, 

reef deterioration in Sabah (East Malaysia) was associated with increased abundance of 

xeniids, which act there as barriers to recruitment of stony corals [46]. It is evident, 

therefore, that Xeniidae have become highly relevant to tropical and sub-tropical shallow 

reef ecology.

Despite being the second most abundant benthic group of organisms on coral reefs, 

octocorals are not usually considered as reef-builders, although a few taxa do produce 

massive aragonite skeletons [e.g., 42, 47]. Instead, octocorals feature a high density of 

internal calcium carbonate sclerites in all parts of the colony [e.g., 40, 41, 42]. Studies 

have shown the significance of the integration of classical taxonomy, including sclerite 

morphology, along with molecular phylogenetic analyses in order to delineate species 

boundaries [e.g., 48, 49, 50]. The sclerites of a number of xeniid genera are relatively 

simple, being shaped as small round platelets or spheroids with a smooth surface as 

observed by light microscopy [42]. Scanning electron microscopy (SEM) has further 

revealed microstructural features of sclerites of some xeniids in which their surfaces are 

actually formed of corpuscular aggregations of microscleres, the first such observations 

among octocorals [39, 51]. In fact, the taxonomic establishment of the genus Ovabunda 
was based on this microstructural novelty and later genetically confirmed [52, 53]. This 

genus is now known to be highly abundant in the Gulf of Aqaba (northern Red Sea) with 

O. macrospiculata (formerly named Xenia macrospiculata) being the most common species 

there [40, 48, 54, 55].

Because O. macrospiculata is such an abundant and ecologically important benthic 

inhabitant in Red Sea coral reefs and it displays an interesting apparent microsclere surface 

composition of its sclerites, we carefully examined its sclerites by multiple techniques to 

more firmly establish their elemental content and mineralogy. Here, we show by SEM, 

Raman spectroscopy, and X-ray diffraction that O. macrospiculata sclerites are composed 

primarily of vaterite. This has implications for the persistence of O. macrospiculata and its 

ability to continue to form what is typically considered to be a metastable calcium carbonate 

in the face of ocean acidification, as well as for the presence of this calcium carbonate 

polymorph in other related taxa. It is also a crucial first step in establishing if the function of 

vaterite sclerites differs from that of the more commonly detected calcite sclerites.

2 Materials and methods

2.1 Sample collection

O. macrospiculata, a branching soft coral with multiple polyps at the ends of each branch, 

is capable of both branch fission and subsequent colony migration, yielding colonies of 

varying sizes and ages [43 and references therein]. Colonies of O. macrospiculata were 

collected under a permit issued by the Israel Nature and Parks Authority from the reef 

adjacent to the Interuniversity Institute for Marine Sciences (Eilat, northern Gulf of Aqaba) 

at depths of 5-6 m (July 2016) and preserved in 70% ethanol. Polyps were removed from the 

colonies, placed in separate Eppendorf tubes, and 10% sodium hypochlorite was added to 

dissolve the tissues. After 20–30 min, the supernatant and organic debris were discarded and 
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the sclerites were carefully and gently rinsed 4–5 times in distilled water to remove excess 

bleach and debris [39]. Following all analyses described below, the sclerites were deposited 

in the Steinhardt Museum of Natural History at Tel Aviv University under catalog number 

SMNHTAU Co 36488 (https://smnh.tau.ac.il/en/research/collections-database/, registration 

required for access).

2.2 SEM with EDS and sample preparation

A subsample of washed sclerites resuspended in 100% ethanol was pipetted onto a silicon 

wafer, allowed to dry, and coated in gold. The sclerites were examined using a scanning 

electron microscope (ZEISS SigmaTM SEM Germany) coupled with energy-dispersive 

X-ray spectrometry (EDS, Quantax, Bruker), with an in-lens detector (2 kV, WD = 3.5–5 

mm). Elemental analyses by EDS were performed in locations of interest that were chosen 

after secondary electron imaging in the SEM (20 kV, WD = 7-8 mm). Two to four replicate 

regions of interest on five sclerites were spot-analyzed for element quantification, with 20 

second live times. Several other sclerites were analyzed for whole-sclerite element mapping 

with live times of 49 seconds each. Elemental relative abundance quantification and element 

distribution map production were conducted using AZtec software (Oxford Instruments).

2.3 Raman measurements on isolated and in vivo sclerites

Raman is a non-destructive inelastic spectroscopy which produces vibrational spectra to 

unequivocally identify minerals and their polymorphs. All Raman measurements were 

carried out using a Horiba (France) LabRAM HR Evolution instrument equipped with four 

laser lines (325 nm, 532 nm, 633 nm, and 785 nm). We use several excitation lines to 

avoid fluorescence and obtain the highest signal to noise ratio possible. It is also possible 

to choose a diffraction grating in order to achieve a suitable spectral resolution with the 800 

mm focal length of the spectrograph. The instrument uses a modular microscope Olympus 

BX-FM and we chose a suitable objective for each sample and analysis type as described 

below. Signals were detected by an open electrode, front illuminated, cooled CCD detector 

Horiba Syncerity (USA), and signal intensity at each wavenumber step was normalized to 

the highest measured intensity of each measured spectrum for graphing purposes. As the 

spot size of the laser beam under the objective is smaller than 1 micrometer it is hard 

to determine all components of a heterogenous system and minor compounds may not 

be detected unless long measurement schemes are utilized. Therefore, it is reasonable to 

assume that not all minor components of the corals were detected by Raman.

2.3.1 In-vitro Raman and sample preparation—Isolated sclerites were resuspended 

in 100% ethanol. A subsample was then pipetted onto a glass slide and left to dry; no sea 

salt was observed crystallized on the prepared slides. The samples were measured with a 0.9 

numerical aperture MPlanFL N 100x objective (Olympus) in ambient air.

2.3.2 In-vivo Raman and sample preparation—A colony of O. macrospiculata was 

transferred from Eilat, alive in seawater, to the Weizmann Institute in Rehovot, Israel 

without any pretreatment. One polyp was excised from the colony and measurements 

were conducted on various places along the stem of its body with a water immersion 

1.0 numerical aperture LUMPlanFL N 60x objective (Olympus) in the original seawater in 
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which the colony was collected, as described previously by [56], without anesthetization 

by MgCl2 addition. Initially, spot analyses were conducted on the polyp so as to stress 

the animal as little as possible. Spot measurements were repeated after 24 hours on the 

same colony, including on tissue locations in which no sclerites were observed in order 

to determine the background signal. At that time, we also conducted an in-vivo Raman 

mapping of mineral distribution. Map pixels were smoothed in ImageJ.

2.4 High-resolution synchrotron powder X-ray diffraction

High-resolution powder X-ray diffraction (HRPXRD) was performed on isolated sclerites 

using synchrotron radiation (wavelength 0.457890Å) at the 11-BM-B beamline of the 

Advanced Photon Source, Argonne National Laboratory, USA. The samples were loaded 

into 0.9-mm glass capillaries and scanned while being rotated. The Rietveld refinement 

method in GSAS-II software was used for data analysis and also allowed for relative 

quantification of all polymorphs present [57].

3 Results

After isolating the sclerites from several O. macrospiculata polyps (Figure 1A), we 

examined them by SEM. Aggregates of sclerites (Figure 1B) were observed at higher 

magnifications to be composed of smaller rounded corpuscular-shaped microscleres 0.5-1 

μm in diameter with a nanogranular surface pattern (Figure 1C, D). EDS analysis finds 

abundant magnesium and calcium both by spot analyses (Figure 1E, F) as well as across the 

entirety of the aggregate (Figure 1G–J, same location as B, Table S1). The abundance of 

magnesium was confirmed in other sclerite aggregates as well (e.g., Figure S1).

In-vitro micro-Raman spectroscopy of isolated sclerites shows peak positions characteristic 

of vaterite (120 cm-1, 206 cm-1, 265 cm-1, 300 cm-1, 739 cm-1, 749 cm-1, a main peak 

at 1090cm-1 with a shoulder at 1071cm-1 [58, 59] (Figure 2A, black line). In-vivo Raman 

yielded the above peaks for vaterite as well as for aragonite (155 cm-1, 205 cm-1, 701 

cm-1, 704 cm-1, 1437 cm-1 and the main peak at 1086 cm-1, out of the 30 active Raman 

modes) [60] (Figure 2A, red line). To confirm that the presence of vaterite, the least stable 

of the non-hydrated calcium carbonate common biogenic polymorphs, did not result from 

the isolated sclerite preparation process, we analyzed sclerites in living xeniid tissue by 

in-vivo micro-Raman spectroscopy. This analysis showed the presence of both vaterite 

and aragonite in sclerite aggregates (Figure 2A, red and green lines, respectively). The 

measurement of the Raman spectra of the sclerites was repeated in-vivo one day later to 

verify that the presence of vaterite in the living tissue, although the major component of the 

sclerites, did not dramatically decline as vaterite is normally considered to be a metastable 

polymorph. Both spot analysis and mapping across two polyps confirmed that the vaterite in 

the sclerites remained after 24 hours, as did aragonite (Figure 2B, red line; 2C-E). It should 

be noted that the positions of both the lattice-mode peak and that of the carbonate ion v 

1 mode (symmetric stretching mode) of the in-vivo Raman analysis are shifted to higher 

wavenumbers as compared to that of pure vaterite; it has been shown that incorporation of 

magnesium into the lattice of Mg-calcium carbonates, and specifically vaterite, can cause 

such a shift [61, 62]. There is also a good correlation between the amount of magnesium 
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detected via EDS and the corresponding shift in wavenumber (η Mg = Mg/(Ca + Mg) ~ 6.4 

atom %, Table S1).

To quantify mineralogical fractions, as well as to estimate the amount of incorporated 

magnesium in the vaterite lattice, we conducted high-resolution synchrotron X-ray powder 

diffraction (HRPXRD) on isolated sclerites. Following Reitveld analysis, we could 

determine that vaterite appears to be the major mineral phase at 98-99%, with much 

smaller amounts of calcite and aragonite (Figure 3). Because diffraction was acquired 

from the whole volume of the isolated sclerites and due to the low detection limit of 

synchrotron X-rays, the calcite phase could be identified in the composition of the sclerites 

even though its fraction was as low as ~1 wt. %, as could the similarly low-abundance 

aragonite which was detected by micro-Raman. We also note several diffraction peaks that 

match the dominant reflections of sodium chloride; this most likely could be due to the 

cleaning solution, sodium hypochlorite, used to dissolve organic tissues around the sclerites, 

remaining between microsclerites that was not removed during the rinsing process. In order 

to calculate the amount of magnesium in the vaterite lattice based on the diffraction data we 

obtained the lattice parameters from the Reitveld analysis: a = 4.0985 ± 3 Å, c = 8.4120 ± 

2 Å. Comparing this data to that of [61] we find that these lattice parameters correspond to 

a range of 4.4 atom % Mg (based on the a lattice parameter), a value quite close to the 6.4 

atom % determined by EDS as noted above.

4 Discussion

Cnidarian calcium carbonate hard components, such as external skeletons and internal 

sclerites, serve important functions, from protecting against predation to supporting 

mechanics of colony movement to scattering light for enhanced photosynthesis by 

endosymbionts [e.g., 63, 64, 65]. Cnidarians produce predominantly aragonitic or calcitic 

hard structures within or outside their tissues, which has been well-documented across a 

variety of taxa [reviewed by 66]. Here, we report for the first time, the occurrence of vaterite 

in soft coral sclerites.

In biomineralization there are few known occurrences of biogenic vaterite. It has historically 

been observed as a minor component of a larger hard structure, suggested as a precursor 

phase for a more stable form of calcium carbonate [e.g., 16], or as the result of a defective 

biological process. Some examples can be found in green turtle eggshells [67], coho salmon 

otoliths [59], freshwater lackluster pearls [68], and the abnormal growth of mollusk shells 

repaired after fracture [69]. It can also result from induced mineralization, i.e., as an 

unintended biproduct of biological processes [1], such as vaterite precipitation by soil 

bacteria leading to their encapsulation and fossilization [26]. A rare and unique example 

where vaterite is deposited as the only mineral component of an organism’s endoskeleton 

and clearly as the result of controlled biomineralization, where production of the mineral 

occurs in a delineated space containing a preformed and purposeful organic matrix [1], is 

the body and tunic spicules of the ascidian Herdmania momus [35, 70, 71]. In snails, its 

presence in egg capsules may serve as a calcium store benefited by its metastability [72]. 

Within Cnidaria, vaterite has been suggested as an aragonite precursor in stony corals [16], 

although high-resolution analysis has found that coral skeleton is >99% aragonite [73]. As 
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vaterite is not the most stable form of biogenic calcium carbonate mineral it may serve as a 

metastable precursor for a more stable polymorph, or have a specific role fitting its chemical 

and mechanical properties. Another option which should be examined is whether it is the 

product of a less stable precursor such as amorphous calcium carbonate (ACC).

The nanogranular surface of O. macrospiculata microscleres is suggestive of formation by 

particle attachment [74]. This has been observed in newly formed aragonite of stony corals 

that results from a particle-by-particle process that uses amorphous calcium carbonate, 

which like vaterite also exhibits low stability, as the mineral precursor [9]. Biogenic vaterite 

formation via particle attachment has also been observed in tunicate spicules [75]. Inorganic 

precipitation experiments have shown that microcrystals of vaterite aggregate in an oriented 

process to yield products with a granular surface at the sub-micron scale [76]. However, 

vaterite formation by living organisms is not simply an inorganic process. The highly acidic 

stony coral skeletal protein, coral acid rich protein 3 (CARP3) as well as extracted stony 

coral skeletal organic matrix protein complexes, can direct calcium carbonate formation 

toward vaterite in-vitro [77, 78]. Differing peptides have been detected in vaterite versus 

aragonite in mussel shells and fish otoconia [79, 80], which could further reinforce the 

nanocrystalline appearance of the mineral surface as has been observed in stony corals [81, 

82]. Further, bacterially-mediated formation of vaterite also yields oriented nanocrystals 

within the spheroids [26]. Additionally, the presence of organic matter [reviewed by 83] 

or high concentrations of phosphate [37] can serve to stabilize vaterite and prevent its 

transformation to calcite or aragonite. While the organic matter composition and chemistry 

of the calcifying precursor solution of the O. macrospiculata sclerites is currently unknown, 

there appears to be a core set of sclerite proteins conserved across other soft coral taxa, 

including scleritin, carbonic anhydrase, and acidic proteins [84].

Anthropogenic increases in atmospheric pCO2 lead to ocean acidification, which may be 

detrimental to calcifying marine organisms [10]. Production of what is typically considered 

a less-stable polymorph of calcium carbonate could therefore prove problematic for soft 

corals that deposit vaterite sclerites. However, no difference was observed in the ratio of 

sclerite to polyp tissue mass or sclerite microstructure for O. macrospiculata reared under 

increased pCO2 conditions, suggesting that the animal tissue provides protection from the 

possible negative effects of lower pH [14, 85], despite what we now show to be a CaCO3 

polymorph, typically considered to be metastable, comprising the sclerites. That the vaterite 

of the sclerites did not recrystallize over a 24-hour period suggests that, in the living tissue, 

it is not, in fact, metastable. This has profound implications for our understanding of how 

xeniid taxa, which can rapidly colonize newly available reef substrate [44], will interact with 

the more prominent reef-building corals [43, 86], whose skeleton is external, as reef-building 

corals face anthropogenic climate change including ocean acidification. Further, as the 

present work is the first description of vaterite in soft coral sclerites, it is currently unknown 

if production and maintenance of this vaterite has changed in recent years as the corals have 

experienced increased acidified ocean conditions due to increased input of anthropogenic 

CO2 [87] or faster warming of the surface ocean in the Red Sea compared to the global 

average [88]. A recent study in juvenile sturgeon showed that otoliths of fish reared at either 

increased pCO2 or increased pCO2 plus increased temperature did not exhibit significant 
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decreases in the abundance of vaterite [89], an observation previously reported for increased 

pCO2 for other fish taxa [e.g., 90].

It is not easy to clearly conclude whether the vaterite in this system is formed 

via biologically induced versus biologically controlled biomineralization; however, the 

observation by HRPXRD that ~99 wt.% of the mineral is vaterite combined with the 

observations that the microscleres aggregate and demonstrate uniform sizes and architecture 

and are maintained for at least 24 hours in vivo are a strong indication that they were 

formed via a process controlled by the animal. This is a significant finding as, if indeed 

O. macrospiculata sclerites are formed via controlled biomineralization, it is only the 

second report of controlled biomineralization of vaterite with the first being from tunicates 

[35]. Moreover, the presence of significant amounts of magnesium in O. macrospiculata 
sclerites (Figure 1F, Table S1, Reitveld calculations), as well as Raman peak shifting 

to higher wavenumbers (Table S2) and symmetric stretching (Figure 3) strengthens the 

hypothesis that crystallization occurred via an amorphous precursor as previously reported 

for bioinspired synthetic vaterite shown to incorporate in its structure magnesium ions 

when crystallized via an amorphous precursor [61]. In the present species, this vaterite 

then appears stable as it persists as the predominant polymorph. Differential charges on 

molecules of a biochemical component of the sclerites, potentially including proteins similar 

to those recently sequenced from several octocoral species [91], could serve in nucleating 

and stabilizing initial nanoparticles of vaterite as proposed by [92].

5 Conclusions

Soft coral sclerites from various taxa have previously been reported as calcite with some 

cementing material as aragonite. Here we show that both preserved and in-vivo sclerites of 

O. macrospiculata are composed primarily of vaterite with a smaller fraction of aragonite 

and calcite. While their function and the biological mechanism underpinning their formation 

in the tissue remain to be studied, determining this novel mineralogy in this ecologically 

important octocoral is a crucial first step and we anticipate that it will be found in other soft 

coral taxa as well.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Statement of Significance

Vaterite is typically considered to be a metastable polymorph of calcium carbonate. 

While calcium carbonate structures formed within the tissues of octocorals (phylum 

Cnidaria), have previously been reported to be composed of the more stable polymorphs 

aragonite and calcite, we observed that vaterite dominates the mineralogy of sclerites 

of Ovabunda macrospiculata from the Red Sea. Based on electron microscopy, Raman 

spectroscopy, and X-ray diffraction analysis, vaterite appears to be the dominant 

polymorph in sclerites both in the tissue and after extraction and preservation. Although 

this is the first documentation of vaterite in soft coral sclerites, it likely will be found in 

sclerites of other related taxa as well.
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Figure 1. Ovabunda macrospiculata colony with extended polyps and tentacles
(A). SEM images of aggregated O. macrospiculata sclerites (B). Magnified image of 

microscleres at the surface of the sclerites (C is the inset orange box on B, D is the inset red 

box on C). EDS mapping of (B) showing the distribution of calcium, magnesium, oxygen, 

and carbon in the sclerite (G-J). Photo credit for (A): Ronen Liberman, Tel Aviv University.
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Figure 2. Micro-Raman spectroscopic mineral determination of isolated (A) and embedded (B) 
sclerites.
(A) Vaterite (black) was observed in a fixed sample of an O. macrospiculata sclerite isolated 

from the tissue. Vaterite (red) and aragonite (green) were observed in an in-vivo sclerite 

embedded in live tissue of O. macrospiculata. (B) The same colony was re-examined in-vivo 
after 24 hours, with vaterite (red) and aragonite (green) still detected. A small peak observed 

at ~980 cm-1 in all in-vivo measurements is likely sulfate from the surrounding seawater 

(panel B, gray spectrum). (C) Light micrograph with mapped locations of vaterite (red, D) 

and aragonite (green, E) within polyp tissue. D and E are the same locations in C noted by 
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the orange box. Arrows denote specific features of C observed by Raman spectroscopy to be 

vaterite (D) or aragonite (E).
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Figure 3. HRPXRD analysis of isolated sclerites reveals that they are predominantly vaterite 
(red), with much smaller amounts of calcite (pink), aragonite (green), and potentially halite 
(blue).
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