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Abstract 
 

The Community Ecology of Ants (Formicidae) in Indonesian Grasslands with Special Focus on 
the Tropical Fire Ant, Solenopsis geminata. 

 
 

by 
 

Rebecca L. Sandidge 
 

Doctor of Philosophy in Environmental Science Policy and Management, Berkeley 
 

Professor Neil Tsutsui, Chair 
 
 

Invasive species and habitat destruction are considered to be the leading causes of 
biodiversity decline, signaling declining ecosystem health on a global scale. Ants (Formicidae) 
include some on the most widespread and impactful invasive species capable of establishing in 
high numbers in new habitats. The tropical grasslands of Indonesia are home to several invasive 
species of ants. Invasive ants are transported in shipped goods, causing many species to be of 
global concern. My dissertation explores ant communities in the grasslands of southeastern 
Indonesia. Communities are described for the first time with a special focus on the Tropical Fire 
Ant, Solenopsis geminata, which consumes grass seeds and can have negative ecological impacts 
in invaded areas. The first chapter describes grassland ant communities in both disturbed and 
undisturbed grasslands. The second chapter narrows in focus to describe the utilization of grass 
seeds as a food resource for S. geminata and the potential for spread of this invasive ant given an 
unlimited food supply. The third, and final, chapter describes competition between ant species at 
food resources. Solenopsis geminata competes with several native and introduced ant species. 
These interactions are analyzed and I report on the ability of invasive ants to dominate invaded 
habitats. 

Chapter 1 includes a large-scale diversity survey across eight islands in and around 
Komodo National Park, Nusa Tenggara Timur, Indonesia. Invasive ants are able to disrupt native 
habitats and the communities of ants found in them. Land use plays a role in invasion as human-
mediated disturbances facilitate the introduction of non-native species. Biogeography, land use, 
climate, and habitat structure help to shape local communities. We surveyed eight islands using 
pitfall trap transects. Transects were placed in undisturbed and disturbed grasslands. Data on ant 
species counts and identification was used to test four hypotheses related to species distribution 
and abundance. 1. Introduced species will have broader distributions than native species across 
space, habitat, and seasons. 2. Habitat structure (grass and trees) influences ground-dwelling ant 
species abundance, diversity, and composition. 3. Grassland disturbance is associated with an 
increase in introduced species richness and abundance. 4. Development (human-made landscape 
elements) and distance from a port (measures of connectivity) have a greater influence on 
diversity than island size. We found that introduced species are generally more numerous than 
native species, but that some introduced species present in the region were fairly restricted both 
spatially and numerically. Season and vegetation structure were related and influenced by land 
use. Differences are linked to differences in ant community compositions. In addition to 
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differences related to habitat structure, species richness and diversity was influenced by the 
distance between the site and the port of Labuan Bajo. 

The second chapter of my dissertation focuses on fire ant diets. The Tropical Fire Ant 
consumes large quantities of grass seeds. We described the diet of S. geminata in populations 
that inhabit grasslands and villages with comparisons to other ant species. Omnivorous ants are 
able to utilize a wide range of food resources, and this can enable invasion and even dominance 
in novel landscapes. Dietary specialization has evolved numerous times and can confer 
competitive advantages, optimal nutrition, and reduced cognitive needs in foraging. The Tropical 
Fire Ant, Solenopsis geminata, is a globally distributed invasive species. Solenopsis geminata 
has evolved a major worker caste for seed milling and granivory while the species is largely a 
dietary generalist. Here we used stable isotope analyses and behavioral assays to describe dietary 
shifts in S. geminata during range expansion from villages into disturbed grassland. These 
methods were used to question the benefits and draw-backs of dietary specialization in range 
expansion across habitat types with seemingly unlimited seed resources. We analyzed δ13C and 
δ15N in four ant species in adjacent village, disturbed grassland, and undisturbed grassland 
habitats on one island in Nusa Tenggara Timur, Indonesia.  Isotope analysis was coupled with 
behavioral assays that delineated preferences for some grasses over others. Seed-size was 
manipulated to assess the influence of a worker’s ability to move a seed relative to its 
attractiveness. Solenopsis geminata shifts from a diet of animal-based foods and C3 plants in 
villages to a largely C4 grass seed-based diet in grasslands. Co-occurring ant species are within 
the same trophic level but show lower utilization of C4 plants in savannas. Solenopsis geminata 
collects seeds from exotic grasses common in disturbed Indonesian grasslands at higher rates 
than larger seeds of native grasses.  When the larger native seeds are cut to smaller sizes, they are 
collected at a higher rate. Foraging assays show that large seed size in native grasses may pose a 
barrier to seed consumption and expansion into undisturbed grasslands with otherwise similar 
structure and environmental conditions.   

In chapter 3 I look at competition between ant species at food resources. Competition for 
food resources within a community of native and invasive ant species was investigated in 
disturbed and undisturbed grassland ecosystems on islands in Komodo National Park. Several 
species of invasive ants have established populations across the region, threatening endangered 
ground-nesting wildlife. Invasive ants are generally very abundant and may have negative 
impacts on local flora and fauna. Competition with dominant native ant species may limit access 
to resources for introduced ants offering some level of biotic resistance to the impacts of 
invasion. We examine intraspecific competition between ants at food resources in disturbed and 
undisturbed grasslands. Our approach examines forager abundance, temporal resource 
partitioning, and dominance-discovery tradeoffs, three concepts related to foraging behavior and 
access to resources that sustain ant colonies. We test the following hypotheses to describe 
competitive interactions. 1. Introduced species will be more abundant and widespread than native 
species. 2. Common and widespread species partition resources by foraging at different times of 
day. 3. Dominance-discovery tradeoffs exist between dominant species and weaker competitors. 
Tuna baits were observed at five sites on three islands in Nusa Tenggara Timur, Indonesia. 
Observations were made during morning, mid-day, and evening hours of the wet and dry 
seasons. A total of 81,188 ants were observed. Ants were collected at the end of each observation 
period for identification. Two invasive ant species, Solenopsis geminata and Trichomyrmex 
destructor, dominated baits in all disturbed habitat types. In undisturbed grassland, native ants 
were as common as invasive ants, though they did not exclude invasive ants from baits. We did 
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not find evidence of temporal partitioning of the food resource within a 24-hour period, but 
results suggest that there may be seasonal partitioning between the top competitors. Solenopsis 
geminata was able to outcompete T. destructor but could be resisted by a native species, 
Iridomyrmex sp 2. No evidence of a discovery-dominance tradeoff was found between top 
competitors though Nylanderia vaga and, to a lesser extent, Paratrechina longicornis may 
benefit from earlier arrival and departure when dominant species arrive. Interspecific 
competition between a network of dominant species may prevent any one species from becoming 
overly abundant and excluding less successful competitors. Complex interactions between 
dominant species and asymmetric foraging behaviors most likely create opportunities for weak 
competitors to access resources and may further limit resource access for invaders. 
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Chapter 1    The ant communities in grassland 
habitats on islands in southeastern Indonesia 
 
1.1  Introduction 
 

Ants account for 10 to 15 percent of terrestrial animal biomass and include some of the 
most pervasive and damaging invasive species (Hölldobler and Wilson 1990). In addition to 
providing a wide range of ecosystem services (Hölldobler and Wilson, 1990; Parr et al., 2016), 
ants are abundant, ubiquitous, extremely diverse, easily collected, and have a wide range of 
habitat and dietary needs. Studies of ant communities can signal climactic shifts and quantify 
land use impacts, providing a powerful tool in monitoring ecosystem health (Arcoverde et al., 
2017; Agosti et al., 2000; Costa, 2010; Hoffman, 2010). The impacts of ant invasions are well 
documented in developed, economically important, and affluent regions (Daane et al., 2007; 
Hölldobler and Wilson 1990; Parr et al., 2016; King et al., 2008) and have proven to be very 
costly. The imported fire ant, Solenopsis invicta, is estimated to cause $1 billion to $6 billion in 
damages in the United States each year (Pimentel et al., 2005; Lard et al., 2006). The primary 
causes of species invasion are disturbance of native ecosystems and increased connectivity 
through global shipping routes (McGlynn, 1999; Holway et al., 2002; Suarez et al., 2001). 
Islands in the Indonesian Archipelago have been exposed to global trade since the early 1600’s 
(Bertelsmeier et al., 2017; McGlynn, 1999; Rizali et al., 2010; Rizali et al., 2011). The Strait of 
Malacca lies between Indonesia, Singapore and Malaysia connecting Africa, Europe, Southeast 
Asia, and East Asia as the second busiest global shipping route (Rusli, 2010). Indonesia is 
considered a biodiversity hotspot within the “biological realm”, referred to later as “region”, of 
Indomalaya. There is a total of 8 “biological realms” or regions. Indomalaya encompasses India 
to Southern China and south through Indonesia. Itis the  is adjacent to the Afrotropic (Africa and 
Arabian Peninsula), Palearctic (Europe to China and south to Northern Africa), and Australasian 
(Papua, Australia and south through New Zealand) regions. Despite its importance in global 
shipping (Rusli, 2010) and potential as a source population for economically important pest 
species, the influence of the Indonesian Archipelago on global species migration is not well 
understood and most islands have not been surveyed. 

Land use plays a major role in determining a habitat’s susceptibility to invasion (King 
and Tschinkel, 2008). As invasive species eliminate native species, they create opportunities for 
introduced species to establish (Stachowicz and Tilman, 2005). Depletion of vegetation, soil 
compaction, and erosion promote invasion by changing local conditions (Leopold and Hess, 
2017), leading to changes in community composition (Milchunas and Lauenroth, 1993). It is 
common for invasive ants to co-occur with disturbances in plant communities (O’Loughlin, 
2016) even benefitting invasive plant species (Loch et al., 2010). Grasslands are expanding 
(Bourliere and Hadley, 1970; White et al., 2000), receive little protection (Hoekstra et al., 2005), 
and can be heavily invaded (D’Antonio and Vitousek, 1992). Grasslands store carbon (Jones and 
Donnelly, 2004), harbor highly diverse plant communities (Wilson et al., 2012), and provide a 
majority of food consumed by humans (White, 2000). Human-mediated habitat destruction 
causes grassland expansion and threatens native grasslands (White et al., 2000). Grazing impacts 
an estimated 40 percent of the Earth (Havstad, 2008; White et. al., 2000) and often replaces fire 
in providing the required regular disturbance. Impacts of disturbance in grasslands is mixed, 
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highlighting the importance of locally conducted research in management decisions. Studies 
show that disturbances impact ant abundance and diversity less than species composition, 
typically favoring generalist species (Bestelmyer and Weins, 1996; Hoffman and Andersen, 
2003; Hoffman, 2010). Often the degree and direction of impact is dependent on disturbance 
intensity (Bestelmyer and Weins, 1996). An underlying theme is that ant species composition is 
correlated with habitat structure, vegetation type, and soil characteristics, creating interactions 
with activities such as grazing and fire (Hoffman, 2010). Savanna trees may play an important 
role in insect invasion by increasing habitat heterogeneity and acting as refuges that can buffer 
the effects of exposure in open grasslands (Dunn, 2000).  

Understanding how a large number of factors influences island communities is complex. 
Groups of numerous islands with geographic and climactic similarity reduce environmental 
variation allowing research to highlight anthropogenic impacts in comparable closed systems. 
GENERALIZED MYRMECINE and DOMINANT DOLICHODERINE functional groups make 
up a large proportion of the ant communities found in Indonesian tropical savanna grasslands. 
These groups along with the CRYPTIC and OPPORTUNIST groups, are the source of all tramp 
species (McGlynn, 1999) which are a large component of both the native and introduced ant 
communities on oceanic islands (Wilson and Taylor, 1967). Examining the invasion process in 
island ecosystems often utilizes key concepts of biogeography. At a regional scale, colonization 
of a closed island system is influenced by its proximity to source populations and the size of the 
island (Jonsson et al., 2009; Badano, 2005), and the diversity of habitat on the island (Hubbel, 
1997). In addition to environmental factors, development and disturbance can alter communities 
(Nakamura et al., 2009; Rizali et al., 2010). These concepts can be applied at larger scales, as 
well. At the global scale, research in the Lesser Sunda Islands fills a gap in knowledge of global 
ant distribution, native or introduced affiliations, and migration. 

We provide an in-depth analysis of the ant community on eight islands in southeastern 
Indonesian grasslands across seasons and land-use types. Pitfall data is used to address four 
global themes that produce varied findings across savanna grasslands to describe local 
conditions. 1. Introduced species will have broader distributions than native species across space, 
habitat, and seasons. 2. Habitat structure (grass and trees) influences ground-dwelling ant species 
abundance, diversity, and composition. 3. Grassland disturbance is associated with an increase in 
introduced species richness and abundance. 4. Development and distance from a port (measures 
of connectivity) have a greater influence on diversity than island size. This study addresses a lack 
of biogeographical knowledge in the Indomalayan-Australasian transition zone using species 
records, known native ranges, and local distribution patterns. Records of introduced and native 
tramp species provide useful information for developing local research projects specific to 
understanding invasiveness at a localized, rather than regional, scale. The impact of grassland 
disturbance as a potential promoter for introduced ant populations is evaluated. Local study of 
grassland dynamics is necessary to development of effective local management practices given 
the variability and wide global distribution of the grassland biome. Analyses highlight 
seasonally-driven structural changes in vegetation under differing disturbance levels. Analysis of 
ant communities in savanna tree understories versus open grassland is included for a robust 
assessment of  how vegetation structure can influence ant species composition and diversity. For 
regions with limited economic resources available to control invasion, preventitive actions 
focusing on land management are an inexpensive and effective approach. The goal of this work 
is to provide baseline data and correlative analyses to support further research in biogeography, 
invasion biology, natural history and land management. 
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1.2  Methods  
 
Site description 

Study sites were located on eight islands at the western edge of the Manggarai Barat 
Regency in the Indonesian province of Nusa Tenggara Timur located in southeastern Indonesia. 
The study area includes the island of Komodo and other islands within and adjacent to Komodo 
National Park, a World Heritage Site. The southeastern region of Indonesia supports large areas 
of tropical savanna grasslands. The West Manggarai Regency is climactically similar to Northern 
Australia and most likely represents a transition zone for the two major diversity regions (Trainor 
et al., 2010).  

 Nusa Tenggara Timur has a seasonally dry climate with a monsoonal rainfall pattern. On 
average, the region receives 200-1,500mm of rainfall during the wettest months lasting from 
November to March (Pet, 2000). Islands receive an average of 15mm of rainfall in September, 
the driest month. The wettest month is January when rainfall on Papagarang and Komodo 
averages 269mm. Labuan Bajo, Flores receives a more even distribution of rainfall throughout 
the year with an average of 75mm of rain in October, the driest month, and 118mm in June, the 
wettest month. 

 Soils in the region are complex and consist of andesite, tuff, clay, and others (Pet, 
2000).  The terrain is rugged and typical of a topography formed by recent and ongoing volcanic 
activity.  The islands in the study area were probably connected by land as recently as 18,000 
years ago when sea levels were low, allowing species to move freely where deep water and 
strong currents now separate islands (Pet, 2000). Chrysopogon subtilis, Heteropogon contortus, 
and Agrostris infirma are native species that co-occur with large patches of Brachiaria reptans, 
Dactyloctenium sp., and Panicum delicatulum, the most common exotic grass species.  Forbs and 
Lantana sp. are common under tree canopies in disturbed areas and can also be found in some 
undisturbed sites. Native savanna grasslands occur in two main forms; tallgrass savanna is the 
most common native grassland type in the region.  These grasslands are dominated by C. subtilis 
and H. contortus growing in thick, continuous mats.  Low densities of small legumes, forbs, 
sedges, and other grasses are typical in these habitats and plant diversity can be fairly high 
though a small number of species dominate the landscape. The second local savanna type is 
steppe. Steppe habitat tends to be found on hilltops and areas with high wind exposure. Grasses 
and forbs are shorter with exposed soil and rocks. Trees are rare or absent in these grasslands and 
though the dominant grasses are the same species, they are often stunted. Often the two forms do 
not have clearly defined boundaries and intermediate types can be found. Coastal savanna 
grasslands are found adjacent to beaches and a small number of species are unique to this 
savanna type. Spinifex littorues, Themeda frondosa, Chloris barbata, and various sedges 
(Cyperaceae) are characteristic of costal grasslands. Patches of coastal savanna are generally 
small or narrow making them less common than tallgrass and steppe savanna habitats. 

 
Human populations 

Eight islands were selected for study based on the presence of both disturbed and 
undisturbed grassland habitat and a combination of permanently inhabited and uninhabited 
islands. Islands have varying combinations of the following criteria: size, presence of human 
settlement, grazed savanna, and undisturbed/native savanna (Table 1.1, Fig. 1.1).   
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Sampling   
Sampling was conducted on five islands at the end of the dry season (August-October 

2011) and on eight islands following the wet season (March-May 2012). Passive sampling 
techniques were employed using pitfall trap transects placed in open savanna grasslands and 
under single savanna trees for 48 hours. Pitfall trap containers were 50ml conical centrifuge 
tubes with tapered bottoms and an opening diameter of 27mm, buried in the soil with the lip of 
the tube flush with the soil surface. Traps were each filled with 20ml of a 95% water, 5% ethanol 
solution with a small amount of scent-free soap added to reduce surface tension.  

An open-grassland transect consisted of 5 traps placed 10 meters apart in a straight line 
(Fig. 1.2A).  Transect locations were selected in such a way that the natural variation in 
grassland and land use types was represented and included sites on slopes, on flat ground, in 
areas with sparse vegetation, on hilltops, and near human settlements.  Where a tree was present 
within 30 meters of a transect, an additional two traps were placed 2.5 meters from the center 
trap, perpendicular to the main transect (Fig. 1.2B).  This 3-trap line in the center of the open 
grassland transect was paired with a 3-trap transect located directly under the nearest tree (Fig. 
1.2C).  Traps under trees were separated by 2.5 meters; this distance ensured that all traps were 
under the tree canopy during some or all parts of the day. Tree transects and paired open 
grassland traps allowed for comparisons of ant communities experiencing different levels of 
exposure, insolation, and vegetation structure. The closely spaced traps under trees and their 
paired grassland traps could not be considered independent samples and were pooled in all 
analyses.  

Vegetation and ground cover variables were recorded within a one-meter square area 
centered on each trap.  Vegetation cover was defined as any standing vegetation live or dead, 
bare soil and rock cover were combined for a bare ground value, and leaf litter was defined as 
any area covered by fallen vegetation including woody plant materials.  Maximum vegetation 
height was recorded as the tallest point of vegetation and minimum vegetation height as the 
shortest point located at the top of vegetation within the square meter quadrat at each trap. 
Distance from settlement and distance from a major port were measured as a straight line using 
the ruler tool in Google Earth. 

 
Sampling effort and rarefaction 

In total, 67 transects and 710 individual traps were recovered. Dry season sampling 
recovered 218 traps and wet season sampling recovered 492 traps. Sampling efforts differed 
seasonally as Komodo, Padar, and Tetawa could only be sampled during the wet season. Species 
accumulation curves were constructed for each island in the EstimateS 9.0.1 (Colwell, 2014) 
software and extrapolated to 125 samples. Analysis was performed using wet season data, as 
numerous studies show ants are most abundant in the wet season and sampling covered more 
sites and islands during the wet season. Accumulation curves included all open grassland and 
under-tree samples in both disturbed and undisturbed sites. Abundance based and incidence- 
based coverage estimators (ACE and ICE respectively) were computed in EstimateS 9.0.1 
(Colwell, 2014) as estimations of the total number of species present. ACE best estimated 
richness in communities with rare species.  The number of species collected on each island was 
divided by the number predicted by each estimator to calculate the estimated percentage of total 
diversity captured. Maximum richness was predicted for each island in EstimateS software using 
all available data. Islands were analyzed separately and then rarefied to 40 samples for 
comparison.  



 5 

 
Sorting and identification  

Ants were stored in 70% ethanol in the field then sorted by morphospecies and identified 
to species where possible at Lembaga Illmu Pengetahuan (LIPI), Cibinong, Java, Indonesia. 
Pinned voucher collections are located at LIPI, Cibinong, Indonesia and in the Essig Museum of 
Entomology at the University of California, Berkeley. Thirty of the 46 species were identified to 
species level according to Bolton 1994 and use of the collection at CSIRO, Darwin, Australia. 
Identifications were confirmed by Dr. Eli Sarnat at the California Academy of Sciences, San 
Francisco, California.   

Status as a native or introduced ant species was primarily determined by distribution data, 
literature review, and AntWeb records (AntWeb, 2013) along with recommendations of Dr. Alan 
Andersen of CSIRO, Darwin, Australia. The study area represents a unique climactic region 
within the Indomalaya region with seasonally dry forests and grasslands similar to those found in 
Australasia. Ants considered native to both the Indomalayan and Australasian regions were 
always considered native to the study region as both geographic location and climate type of the 
study area are characteristics of their native ranges. This applies to Nylanderia vaga, and 
Monomorium floricola which are considered globally invasive tramp species but are 
geographically and climactically within their native ranges (AntWeb, 2013; McGlynn, 1999). 
Anoplolepis gracilipes is considered native to the Indomalaya region, however, it is considered 
to be introduced in Indonesia (ISSIG, 2011), particularly when found east of Wallace’s line 
(Wetterer, 2005), as well as being invasive in climactically similar areas of Australasia. 
Brachyponera sp. is considered native based upon the geographical native range of the genus 
being Asia and the Indomalaya regions. The genus also includes a prominent widespread 
invasive species, Brachyponera chinensis. Our designation as a native species is with some 
hesitation as it is not native in the climactically similar Australasian region and can have high 
localized abundances in the study area.  
 
Abundance and spatial distributions  

Introduced ants often have large colony sizes and we hypothesized that native species 
would have lower abundances than introduced species when present at the same frequency. 
Pitfall data was used and each sample represented an abundance or density at a point in space (n 
= 718). Samples were a minimum of ten meters apart and treated independently to highlight 
potential differences in the relationship between abundance and range with trap frequency being 
an indicator of range. Species were grouped as native or introduced and the three species with 
unknown designation, Monomorium sp. 1, Pheidole sp. 1 and Tapinoma sp., were excluded. 
Distribution was measured as a response to the total abundance and designation of each species 
as native or introduced. Spatial distribution was represented by the number of traps each species 
appeared in. The full model tested frequency as a response to total abundance and status as 
native or introduced along with the interaction term for status and total abundance. Linear 
regressions were performed for pooled data (Fig. 1.5) followed by Breuch-Pagan tests of linear 
fit and heteroskedasticity of the data. The ANCOVA function of the ‘vegan’ package in R was 
applied to nested regression models to confirm difference in slope between native and introduced 
populations. The relative importance of each main effect and their interaction was assessed using 
the ‘relaimpo’ package in R which produces a decomposition of the full model as non-negative 
contributions for each term. 
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Habitat and seasonal specialization in ant species 
Differences in median values of abundance between seasons, land use types, and habitat 

types were tested for each species using paired, Wilcoxon signed-rank tests in the ‘exact ranks’ 
package in R (Table 1.4). Data from traps in each transect were pooled for each of the three 
comparisons and n = 1 represents one complete transect. Complete transects were those without 
missing data, i.e. a lost trap. 

Seasonal data included complete paired wet season/dry season transects. Komodo, Padar, 
and Tetawa are absent from the analysis because they were only sampled in the wet season. 
Analysis was limited to transects that were successfully recovered in both wet and dry seasons. 
An open grass transect included traps 1-5 (Fig. 1.2); each separated by ten meters for a total 
length of 40 meters. A tree transect included traps 8, 9, and 10, placed under the tree canopy and 
separated by 2.5 meters.  In the seasonal analysis, traps 1through 5 were used as a grass transect, 
rather than traps 6,7, and 11 as in the land use analysis, to include transects that were not located 
near a tree. Shorter grassland transects pair specifically with beneath tree transects of the same 
length and sampling effort and were used for habitat preference analyses.  

Land use comparisons used data only from complete transects on islands that had both 
disturbed and undisturbed/native grassland sites. Islands matching the criteria were: Flores, 
Komodo, Papagarang, and Seraya Kecil. Disturbed and undisturbed/native transects were 
randomly paired within islands, and not across islands, to minimize the effect of island distance 
from port and species absences not associated with local habitat characteristics but by migration 
patterns and distance between islands. Grass transects included traps 1 through 5 and tree 
transects included traps 8, 9 and 10. Transects in land use comparisons were always paired 
within habitat (tree compared to tree) but across land use (disturbed compared to 
undisturbed/native).  

Habitat preference by species for grasslands under tree canopies versus open grasslands 
was calculated using paired Wilcoxon method testing differences in median abundances at trees 
compared with median abundances in open grassland. Habitat comparisons used paired data 
from open grassland traps 6, 7, 11 (Fig. 1.2) and data from transects placed beneath the nearest 
tree not more than 30 meters away, traps 8,9, and 10.   
 
Vegetation differences in open grasslands 

Density plots were used to show the distribution of frequencies of measured vegetation 
characteristics in samples within and across season and land use. Analysis was done in R. 
Boxplots were used to display the distribution of  vegetation data for each land use and season 
combination (dry, disturbed; wet disturbed; dry undisturbed; wet, undisturbed). Statistical 
analysis was performed only on pooled samples from the five islands sampled in both seasons, 
allowing for seasonal comparisons to be made. Komodo and Padar were only sampled in the wet 
season and had few disturbed areas making sample sizes for land use types exceedingly uneven. 
Tetawa was only sampled in the wet season and had no disturbed sites. Transects were excluded 
by random selection where sample sizes were uneven or data was missing and traps were treated 
as independent samples. Vegetation data from each season/land use group were compared using 
standard t-tests with a Bonferroni correction applied for multiple tests. Percent vegetation cover, 
minimum vegetation height, and maximum vegetation height were selected for analysis to 
describe both coverage and structure. Bare soil and litter were excluded to simplify the 
comparison and because these measures were correlated to percent vegetation cover. 
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Vegetation structure and ant communities 
We hypothesized that sites with greater similarity in vegetation structure would also have 

greater similarity in ant community composition. Jaccard’s, and Bray-Curtis indices of 
community dissimilarity were calculated using the ‘vegdist’ function with binary standardization 
in the Vegan package in R. For ant species composition, the Jaccard method was used to analyze 
presence/absence data and Bray-Curtis was used as the method applied to abundance data. 
Vegetation data was analyzed using the Bray-Curtis method. Abundance data included all 
species found in the study.  Vegetation dissimilarity included percent cover of live vegetation, 
leaf litter, bare soil and rock, vegetation height maximum and vegetation height minimum. 
Transects were randomly selected for inclusion in the analysis where sampling between seasons 
and land use was uneven. The resulting data set included sites used in seasonal and land use 
comparisons of distance from port, island size, and human structures with additional data from 
Sebayur Besar and Bajo which were sampled in both seasons but had only native/undisturbed 
grassland. 

An ant community dissimilarity value and a vegetative structure dissimilarity value was 
calculated for every combination of two sites within land use type and island using species 
abundance (Bray-Curtis) or presence/absence (Jaccard) data and vegetation data. Islands were 
analyzed separately to avoid including any potential island effects on species composition. Land 
use types were analyzed separately to focus on physical vegetation structure and ant 
communities. Linear regression was then applied to each island-land use data set allowing us to 
examine the relationship between ant communities and vegetation structure. 
 
bray djk = P i P |xij−xik| i (xij+xik) binary: A+B−2J A+B 
Jaccard index is computed as 2B/(1 + B), where B is Bray–Curtis dissimilarity 
 
 Non-metric multidimensional scaling (NMDS) was applied to species abundance data to 
draw out any associations between individual species and land use as well as visually identifiable 
patterns in the grouping of transect-based ant communities. NMDS analyses were performed on 
seasonally paired data from islands with both undisturbed habitat and disturbed habitat. NMDS 
was performed using a maximum of 100 iterations and selecting the resulting plot with the 
lowest run stress at the final iteration out of 5 tests. Solutions were reached for each test and 
stress was between 0.04 and 0.14. ANOSIM was applied to the same data set using the ‘Vegan’ 
package in R to compare ant community similarities between land uses. Paired t-tests were used 
to compare ant communities in open grasslands to communities found beneath savanna tree 
canopies by pooling below-tree pitfalls and open grassland pitfalls in each five-meter transect. 
Analysis was repeated excluding data for P. longicornis in order to assess the degree to which P. 
longicornis drove observed patterns.   
 
Seasonal and land use influences on ant community characteristics  

Differences in mean total abundance, introduced proportion of abundance, and Shannon-
Weiner diversity were assessed using Wilcoxon signed-rank tests for nonparametric samples 
with ties. Analysis was performed using sites on Flores, Papagarang, and Seraya Kecil, all of 
which had native and disturbed habitat and were sampled in both wet and dry seasons. Seasonal 
and land use excluded samples with missing seasonal pairs and, in the case of uneven sampling 
effort, transects were randomly selected using a random number generator to obtain even sample 
sizes. Paired tests were used to compare wet season and dry season samples. Native and 
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disturbed land use treatments were analyzed using even sample numbers, but were not treated as 
paired samples.  

 
Island size, distance, and human settlement 

Mean richness and Shannon-Weiner diversity indices from rarefied results in EstimateS 
were used in linear regression analyses to determine the influence of distance from the mainland 
port, size of the island, and measures of human settlement on species diversity and richness. As 
in accumulation analyses, regressions were run for wet season data only to include islands only 
sampled once and exclude resampling at sites surveyed twice. Tapinoma sp. was the only ant 
occuring only during the dry season and in low abundance and therefore was assumed not to 
impact overall results.  

Mean species richness and Shannon-Weiner diversity were analyzed separately with each 
of the explanatory variables after multiple regression analysis revealed no interactions between 
the model terms. Three explanatory variables were included: the minimum distance between the 
island and the port of Labuan Bajo, island size, and the number of types of human structures 
present on the island. The port of Labuan Bajo is the primary destination or origin for inter island 
travel and there are no other ports along the local coast of Flores. Island size was log transformed 
due to the large difference in size between Flores, the “mainland”, and the other islands. Human 
structures were categorized in one of three groups: docks, village residences, and hotels.  

The first set of analyses were performed using rarefied data for open grass samples (20 
samples per island) and excluded samples taken beneath trees. A second set of analyses were 
preformed in the same manner on a rarefied data set (40 samples per island) that included open 
grass samples as well as samples collected under trees. All analyses were Bonferroni corrected 
for multiple comparisons of three variables.  

 
1.3  Results 
 
Sampling effort and rarefaction 

Pooled wet season survey data from all islands estimated total regional richness to be 
61.41 species (ACE) and 59.42 species (ICE). The total species estimates include open 
grasslands and grassland habitat under tree canopies. According to coverage estimators, we 
captured 73.3% (ACE) and 75.6% (ICE) of the total savanna grassland ant diversity present in 
the region. Rarefied data shows that Flores is the most diverse island with 19.82 observed 
species and a maximum estimated 24.87 species (Table 1.2). Bajo and Seraya Kecil are the 
closest islands to the port of Labuan Bajo, Flores and had 18.41 and 16.79 observed species, 
respectively and estimated maximum richness of 22.05 and 22.49 species.  
 
Description of species diversity            

In total, 25,548 individual ants from 46 species and 6 subfamilies were collected from 
transects in open grassland and vegetation directly below tree canopies (Table 1.3). Thirty-seven 
native species comprised 80.4% of the total richness and 54.6% of the total abundance. Six 
introduced species made up 13.0% of species richness and 44.1% of the total abundance of 
individuals. Two species, Pheidole sp.1 and Tapinoma sp., do not have known native ranges and, 
combined, made up 1.5% of the total abundance. The subfamily Myrmicinae was the most 
speciose with 20 species, followed by Formicinae with 13 species and Dolichoderinae with seven 
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species. Together, these three subfamilies comprise 97 percent of the total abundance of ants 
collected in our study. 

We were able to confirm the native range for 34 species. The majority of species with 
known origin (KO), 82.4%, were native to the Indomalaya region. Almost half of the KO 
species, 41.2%, were native to both the Indomalaya and Australasia regions. No recorded KO 
species were native to Australasia but not Indomalaya. The Palearctic and Oceania regions were 
included in the native ranges of 14.7% and 2.9% of KO species respectively. The native ranges 
of 13 species of the 46 recorded species were unknown, however, ants in the genera 
Brachyponera, Camponotus, Crematogaster, and Iridomyrmex were assumed to be native to at 
least the Indomalaya region based on genus origin and likelihood of successful migration.   

Six species occurred on all eight islands sampled. Of these cosmopolitan species, four are 
considered global tramp ants. Three native ants, Nylanderia vaga, Iridomyrmex sp.1, and 
Iridomyrmex sp.2 had widespread distributions and were found on all islands sampled. 
Iridomyrmex sp.2 was the most common species, followed by Paratrechina longicornis and 
Trichomyrmex destructor (formerly Monomorium destructor). In addition to Iridomyrmex (4 
species), the most speciose genera were Camponotus (4 morphospecies), Polyrhachis (5 species), 
Monomorium (4 species), and Tetramorium (6 species).  Tetramorium sp.1 is an undescribed 
species that may be endemic to the study region.  
 
Abundance and spatial distributions  

Native and introduced populations tended to be more widely distributed as abundance 
increased. Introduced species were more densely populated; abundance per sample was higher 
than that of native ants (Fig. 1.5). Breuch-Pagan heteroscedasticity tests conducted for 
introduced and native ant data indicated that a linear-shaped model was appropriate for our data 
sets (BP = 0.74313, df = 1, p-value = 0.3887; BP = 1.6738, df = 1, p-value = 0.1957). The 
resulting linear relationships showed strong correlation between frequency (the number of 
samples the species was found in) and total abundance with R-squared for introduced species = 
0.64 and for native species = 0.77. When status as introduced or native was included as an 
explanatory term, status alone was not correlated with frequency but showed a significant 
interaction with total abundance (adj. R-squared = 0.7742, F = 47.85, DF = 3,  p-value = 5.593e-
13) indicating that introduced species are associated with higher abundances and thus, wider 
distributions. Total abundance, status as “native”, and the interaction between total abundance 
and native status were ranked in their contributions to the model fit (0.876, 0.070, and 0.054 
respectively) using the ‘relaimpo’ package in R. Nested models were compared using ANCOVA 
confirming that relationships between frequency and total abundance (slopes) were significantly 
different between native and introduced ant populations (F = 4.0952, p-value =  0.0243).  

Model 1 : frequency ~ total abundance + status 
Model 2 : frequency ~ total abundance * status 

In addition to difference in slope, the y-intercept of the introduced ant community was higher 
(38.07) than the intercept value for the native community (11.62).   
 
Habitat and seasonal specialization in ant species 

We found no evidence of seasonality in species abundances. There was no significant 
community-level difference between wet season (mean = 185 ants per trap) and dry season 
(mean = 446 ants per traps) abundance (t = -1.5666, df = 57.926, p-value = 0.1226). Species-
level abundances did not fluctuate significantly between seasons for 44 of 46 species recorded. 
Crematogaster sp. 1 (p-value = 0.0458) and Pheidole sp. 1 (p-value = 0.0049) were exceptions. 
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Crematogaster sp. 1 increased in the wet season and Pheidole sp. 1 was more abundant in the 
dry season, but both occurred in low numbers and frequencies throughout the entire study (Table 
1.1). Fourteen species were recorded only during the wet season, but in fairly low abundances or 
as singletons, therefore, these results are not considered to be indicative of seasonal 
specialization (Table 1.3). 

Ant species varied with habitat type and land use. Brachyponera sp. were more common 
at undisturbed grassland sites, along with two additional native species, Iridomyrmex angusticeps 
and Iridomyrmex sp.4. Solenopsis geminata was the only species more common in disturbed 
grasslands than in undisturbed grasslands (p-value = 0.0464). Differences were more marked in 
habitat choice; several species occurred more often under a tree canopy or in open grassland. All 
four species of Iridomyrmex favored open grasslands (Table 1.4) along with the single species 
collected in the genus Brachyponera. Iridomyrmex sp.2, the dominant native species, was found 
in 11% of all samples collected at trees and 57% of all open grassland samples, occurring across 
land uses. In Wilcoxon signed-rank comparisons of paired samples, median values of 
Iridomyrmex sp.2 abundance was higher in open grasslands than near trees (p-value = 
0.0000)(Table. 1.2). Paratrechina longicornis was the dominant introduced species and its 
overall abundance was similar to Iridomyrmex sp. 2, however, the two species prefer different 
habitat types with P. longicornis being far more common under trees (p-value = 0.0000)(Table 
1.4) . Paratrechina longicornis was found in 51% of all tree samples and 12% of all open 
grassland samples. Additionally, Tetramorium simillimum, an introduced ant, had a strong 
preference for grasses below tree canopies (p = 0.0002) and Pheidole sp. 1 was also more 
common at trees (p = 0.0156). 
 
Vegetation differences in open grasslands 

Percent vegetation cover did not differ between native and disturbed sites in the wet 
season (df = 60.551, p-value = 0.6765)(Fig. 1.6) with undisturbed and disturbed sites having 
averages of 71% and 69%, respectively. In the dry season cover at disturbed sites was 
significantly lower than cover in undisturbed/native sites (df = 86.222, p-value = 3.761e-07). Dry 
season, undisturbed sites averaged 55% vegetation cover compared to disturbed sites in the same 
season which averaged 30% cover. Seasonal differences in vegetation cover within land use type 
differed significantly for both native and disturbed grassland sites (disturbed, df = 75.83, p-value 
= 1.791e-11; undisturbed, df = 136.17, p-value = 0.0001) with both land use types having more 
coverage in the wet season. Seasonal differences are less pronounced in undisturbed habitats 
with a mean dry season coverage of 55% and mean wet season coverage of 71%. In disturbed 
grasslands, seasonal differences were more pronounced with mean dry season coverage of 30% 
and mean wet season coverage of 69%.  

Maximum vegetation height across five islands sampled in both seasons followed a 
similar pattern as percent vegetation cover. Maximum height did not differ between land uses in 
the wet season. Maximum height was significantly higher in undisturbed sites when compared to 
disturbed sites in the dry season (df = 114.29, p-value = 3.323e-09). Wet season undisturbed 
grasslands were taller than dry season undisturbed grasslands (df = 141.55, p-value = 0.0047) 
and this difference was larger between seasons in disturbed grasslands (df = 59.547, p-value = 
5.773e-12). Minimum vegetation height was on average 4.37cm in disturbed sites and 6.96cm in 
undisturbed sites in the dry season (df = 115, p-value = 1.108e-05). Minimum vegetation height 
was lower in disturbed sites than in undisturbed sites in the wet season, with averages being 
16.48cm and 30.23cm, respectively (df = 100.78, p-value = 0.0001). Differences were also 
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significant across seasons in both disturbed sites (df = 40.34, p-value = 1.583e-05) and 
undisturbed sites (df = 82.982, p-value = 2.59e-15). 
 
Vegetation structure and ant communities in open grasslands 

Dissimilarity in vegetation characteristics (percent bare ground, percent litter cover, 
percent vegetation cover, and maximum vegetation height) was related to dissimilarity in ant 
community composition in undisturbed habitats, but not disturbed habitats, on each of the five 
islands sampled in both the wet and dry season. Flores, Papagarang, and Seraya Kecil had both 
native and disturbed savanna grasslands. Sebayur Besar and Bajo did not have disturbed 
grassland. The observed pattern holds in both the Bray-Curtis dissimilarity index and the Jaccard 
dissimilarity index (Table 1.5), though r-squared values indicating model fit were fairly low (Fig. 
1.7).  

NMDS was applied to paired wet and dry season, open grassland data for species 
abundances at disturbed and undisturbed sites (Fig. 1.8). There were no clear species associations 
with a particular land use type, but sites (pooled transects) with more similar ant community 
compositions grouped together based on undisturbed or disturbed habitat designations (Fig. 1.8). 
ANOSIM analyses supported these findings. Ant communities differed between disturbed and 
undisturbed grassland in both the dry and wet seasons on Papagarang (r = 0.226, p-value = 
0.007; r = 0.282, p-value = 0.002) and Seraya Kecil (r = 0.16, p = 0.006; r = 0.196, p-value = 
0.005). 
 Total abundances of native and introduced ants varied significantly between samples 
from under tree canopies (referred to as “tree” samples) and paired samples from open grassland 
in both undisturbed and disturbed sites during the wet season but not in the dry season. At 
disturbed sites, native species were more abundant in open grassland than under trees (p-value = 
0.0464). At undisturbed sites, introduced species were far more abundant at trees, averaging 
161.34 ants per tree compared to 34.41 ants per open grass sample (p-value = 0.0082). During 
the dry season, total abundance of native versus introduced species was not significantly 
different in either disturbed or undisturbed grasslands. 

Trees had proportionally higher abundances of introduced species (proportion I) than 
open grasslands (Table 1.6). At dry, undisturbed sites, 62% of ants collected at trees were 
introduced species, but they were only 12% of all ants in the open grassland (p = 0.0001).  At 
wet, undisturbed sites, 64% of ants collected under trees were introduced species and 23% of 
ants collected in open grass were introduced species (p = 0.0000). At wet, disturbed sites, 64% 
were introduced species at trees but were 26% percent of all ants in open grassland (p = 0.0053). 
Removal of Paratrechina longicornis from the analysis (proportion I nP) reduced the statistical 
significance of a greater proportion I in all conditions except wet, undisturbed habitat, though 
raw measurements of proportion I were still higher at trees. Shannon-Weiner diversity was 
similar between paired tree and grass samples across islands.  
 
Seasonal and land use influences on abundance and diversity  

Total abundance of ants was strongly influenced by both land use and season in open 
grasslands (Fig. 1.9). Mean abundance was significantly higher in undisturbed grasslands than in 
disturbed grasslands in three of the six cases; no cases of disturbed sites having greater 
abundance than undisturbed sites were found. On Flores (Z = -2.7399, p-value = 0.0021, dry 
season), Papagarang (Z = -2.9262, p-value = 0.0013, wet season), and Seraya Kecil (Z = -2.5323, 
p-value = 0.0051, dry season), undisturbed site total abundance was higher than disturbed site 
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total abundance within season. When comparing abundances within land use and across seasons, 
Wilcoxon signed-rank analysis results showed significant seasonal differences in undisturbed 
grasslands. Total abundance at undisturbed sites was higher in the wet season than in the dry 
season on Flores (Z = -2.1198, p-value = 0.0167) and Papagarang (Z = -2.78, p-value = 0.0022). 
Disturbed grasslands did not differ in total abundance between seasons.  

When comparing land use types within seasons, PROPINT was higher in undisturbed 
grassland sites on Papagarang (Z = -2.3182, p-value = 0.0102) and Flores (Z = -1.7005, p-value 
= 0.0465). After applying a Bonferroni correction for eight tests these results were not 
significant. No significant seasonal comparisons of PROPINT within land use type were found.  

Comparisons of overall Shannon-Weiner diversity between land management types 
within season suggested higher diversity in undisturbed grassland habitats in the dry season on 
Flores (Z = -2.3072, p-value = 0.0102) which did not meet the critical alpha level of 0.008. 
Within land use type, undisturbed, wet season grasslands on Papagarang were significantly more 
diverse than dry season grasslands (Z = -2.1861, p-value = 0.0140). No seasonal difference was 
seen within each land use type at disturbed sites.       
 When native and introduced ant diversities were analyzed separately, rather than looking 
at overall diversity, mean diversity of native and introduced ants differed between land uses in 
open grasslands, but not under tree canopies. On Flores, native ant diversity in open grasslands 
was higher at undisturbed sites in the dry season (t = -2.7438, df = 9, p-value = 0.0227) but no 
significant differences were found between land uses under tree canopies. On Papagarang, native 
ant diversity was statistically similar between land uses in both open grasslands and under tree 
canopies. Introduced ant diversity was higher in disturbed open grasslands than undisturbed open 
grasslands in the wet season (t = 2.4327, df = 14, p-value = 0.0300) and no differences were 
found under tree canopies. 
  
Island size, distance from port, and human settlement 

Island size and number of structure types had no significant relationship to mean species 
richness or Shannon-Weiner diversity whether samples from beneath trees were excluded or 
included. Both Shannon-Weiner diversity and mean species richness had the strongest 
relationship with distance between the port of Labuan Bajo (DP) and the island sampled in both 
open grassland and in grasses beneath tree canopies. The general trend was a decreasing 
diversity and richness with increasing distance from the port of Labuan Bajo, though not all 
results were significant. In rarefied analysis of open grassland samples (20 samples per island) 
Shannon-Weiner diversity and DP had the strongest linear relationship of the three explanatory 
variables tested (r-squared = 0.6284, p-value =  0.0116). Linear regression results for mean 
species richness and DP yielded an r-squared value of 0.5224 and a p-value of 0.0259, but this 
result was not significant after applying a Bonferroni correction. When samples taken from 
beneath trees were included in linear regressions of rarefied data (40 samples per island), none of 
the explanatory variables were significantly related to diversity.  
 
1.4  Discussion 
 

Grassland ant species richness in the Komodo region, with 46 species, is similar to 
diversity measures in savanna focused literature from around the globe and to a study conducted 
on the nearby island of Timor (Trainor et al., 2010). South African grasslands in the southern 
region of Rietvlei Nature Reserve supported 36 ant species in one recent study (Jamison et al., 
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2016). In another study, Kunai grasslands in Papua had 39 ground-foraging ant species (Room, 
1975). Ant communities shared broad community characteristics with communities on the 
climactically similar island of Timor, approximately 430km from the port of Labuan Bajo and 
890km from the norther tip of Australia. The relatively high number of species and high 
abundances in the subfamily Dolichoderinae diverge from global patterns and reflect a distinctly 
Australasian component of the local ant community (Andersen, 2000). Dolichoderines dominate 
savanna biomes (Andersen, 1995) and, often times, the communities they are introduced to, as in 
the case of the Argentine ant (Linepithema humile; Holway, 1999). In Indonesia, the dominance 
of Dolichoderines most likely extends through the entirety of the Lesser Sunda Islands, including 
Sumbawa (Sandidge, unpublished data) where seasonal grasslands are commonplace.  

The majority of the species in Komodo grasslands can be found across broad 
geographical ranges. One species, Tetramorium sp. 1, may be endemic to the region. An 
apparent lack of regional endemism suggests that the islands have either been colonized by 
native ants relatively recently or that the prevalence of introduced species has led to the 
extirpation and replacement of rarer native species. Many islands are entirely or mostly 
uninhabited, fisherpeople making regular stops to these islands are the most likely source of 
introductions. A large majority, over 82% of species with known origin, were native to the 
Indomalaya region, with over 41% being native to both Indomalaya and Australasia. Relatively 
few species, 14.7%, had origins including the Palearctic region. Notably, no species were 
introduced migrants from Australasia or the Palearctic region, suggesting that migration happens 
primarily from west to east. Further analysis of species found in Australasia and the Palearctic 
would be helpful in determining the frequency of movement from Indomalaya to the east.  

Six species were collected on all eight islands. Paratrechina longicornis (Formicinae), 
Solenopsis geminata (Myrmicinae, and Trichomyrmex destructor (Myrmicinae) were introduced 
cosmopolitan species and all fall under the tramp species designation. Iridomyrmex sp. 1 
(Dolicoderinae), Iridomymrex sp. 2 (Dolichoderinae), and Nylanderia vaga (Formicinae) were 
native cosmopolitan species with N. vaga being considered a tramp species. Myrmecines and 
Formicines were the most speciose subfamilies in our study, reflecting global patterns in 
speciation (Fig. 1.4). Tramp species arise from the CRYPTIC, DOMINANT 
DOLICHODERINE, GENERALIZED MYRMICINE, and OPPORTUNISTIC functional groups 
as defined by Andersen in a study of Australian ant communities (McGlynn, 1999; Andersen, 
1995). Monomorium floricola, Nylanderia vaga and Tetramorium walshi are native tramp 
species. The Komodo region offers an opportunity to look at behaviors and impacts of tramps on 
variable closed island systems where the species evolved. Research on global invaders within 
their native ranges can provide insight into the conditions that must arise for these ants to 
become invasive. Nylanderia vaga was very common and may behave in a way that could be 
considered locally invasive. This study did not address this question directly and closer study of 
N. vaga in comparison to species such as Iridomyrmex sp. 2 would be helpful in understanding 
what characteristics give rise to global success. 

Survey results showed that the six introduced species (including 4 tramp species) 
collected make up 13.0% of total richness and 44% of the total abundance of ants. Global 
success as an invader is linked to large colony size and high abundance, hallmarks of introduced 
species. While introduced species did not have an impact on overall richness or diversity, their 
high proportional abundances may have significant ecological impacts. In our findings, two of 
the three most abundant ants were the invasive species, Trichomyrmex destructor and 
Paratrechina longicornis. These two species are known to dominate ant communities (Wetterer 
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et al., 1999), impacting other groups of insects (Koch et al., 2011) and plant communities. 
Trichomyrmex destructor has previously been considered a small component of ant communities 
outside of urban areas (Harris et al., 2005) but is very abundant in both disturbed and undisturbed 
grasslands in the Komodo region. 

As expected, when the abundance of a species increased, its distribution became broader 
(Fig. 1.5). But differences were seen in the density of introduced populations versus native 
populations. Higher densities of invasive ants may give them a competitive advantage over less 
dense species with similar spatial distributions. Denser occupation of habitats may increase the 
likelihood of introduced species crowding out native species even if no direct aggression is 
present. 

The influence of season and land use on abundance, PROPINT, and diversity were mixed 
across the three islands analyzed. Total ant abundance in Indonesian grasslands increased in the 
wet season, as is common in myrmecological surveys, but only at undisturbed sites (Fig. 1.9). In 
two of three cases, abundances were higher at undisturbed sites when compared to disturbed sites 
in the same season. Diversity was seasonally higher in one case, also in undisturbed grasslands. 
NMDS and ANOSIM community analyses indicate that individual species are not associated 
with one another or clearly associated with a land use type, despite community level differences 
between land use types (Fig. 1.8). A third analysis of dissimilarity measures linked ant 
community dissimilarity and vegetative community dissimilarity in undisturbed grasslands but 
not in disturbed grasslands (Table 1.5, Fig. 1.7). Community-wide differences were able to take 
uncommon species into account. As is common for grassland ant communities (Hoffman, 2010), 
59% of recorded species in our study, had an abundance and too low for species-level, statistical 
analysis of seasonal, land use, and/or habitat type preference. This trend results in exclusion of 
low-abundance specialists, thus potentially underreporting specialization overall. 

The seasonal increased abundances and diversity are most likely correlated with higher 
abundances of prey, availability of seeds, greater vegetation cover (Fig. 1.6), and softer soils. 
The most visually striking difference between seasons in Nusa Tenggara Timor grasslands is 
grass height. Grasses grow quickly during the wet season, produce an enormous quantity of seed, 
and then go dormant after rains subside. Grazing may dampen the seasonal effect on abundances 
at disturbed sites by compacting soils and directly reducing vegetation (Fig. 1.6) and seed 
availability. The impact of grazing on vegetation structure (height) is more pronounced outside 
of the growing season and this might be enough to exclude more sensitive species all together. 
Additionally, seasonal changes may have varying effects on native and introduced grass species 
(Wainwright et al., 2012) and preferential grazing (Ash and Corfield, 1998) could further 
contribute to measured seasonal variation in disturbed plant communities. Despite larger 
seasonal differences in vegetative structure at disturbed sites (Fig. 1.6), these sites had a lower 
community response to vegetative differences (Table 1.5, Fig 1.7). Interestingly, all undisturbed 
grassland sites showed a significant linear relationship between vegetation change and ant 
community changes. Species living in disturbed habitats are generally known to be better 
adapted to change (Holway et al., 2002; Sakai, 2001), which might allow them to maintain a 
more even distribution across seasonal and vegetative conditions.  

Past work in grasslands points to vegetation and land systems being more impactful on 
community structures than grazing intensity (Arcoverde, 2017; Hoffman, 2010). Disturbance-
adapted native species in would naturally occur in grasslands; the habitat type is created and 
maintained by regular disturbance. Our findings fit well with other grassland studies and bring 
up important questions regarding the relationship between faunal communities and vegetative 
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communities. Our results imply that seasonal vegetative shifts related to grazing disturbance may 
homogenize ant communities. A more heterogeneous ant community may be able to exist in 
undisturbed grasslands where seasonal shifts in vegetative structure are less pronounced. The 
rarity of many species, particularly environmentally sensitive ones, makes it difficult to 
statistically analyze their populations. Additionally, absence of a species altogether at some sites 
may not reflect land use-related affinities, but rather immigration patterns, confounding the 
results when data are pooled across ecologically or physically distant sites. Many times, as is the 
case here, these species are left out of analysis of individual species. As a result, their changes 
are sensed at the community level but have little impact on abundance and diversity. We 
expected a large proportion of native species to respond negatively to disturbance. Three of eight 
native species common enough to be statistically analyzed were less common with disturbance 
and none were more common with disturbance (Table 1.4), however, eight species accounted for 
less than 23 percent of native richness. 

The numerical dominance of Iridomyrmex sp.2 on Papagarang had a strong effect in 
grouping sites dominated by that species (Fig. 1.8). NMDS results suggested that despite mean 
abundance per trap of Iridomyrmex sp.2 being lower at disturbed sites than at undisturbed sites 
(Table. 1.4), they were frequently the only species or the dominant species at disturbed open 
grassland sites on Papagarang due to generally low diversity. This pattern was not seen across 
islands, but exemplifies the impact a small number of dominant species can have on mapping 
communities, particularly when pooling “native” and “introduced” species in the analysis. 

When assessing habitat preference across the ant community, three species were found to 
significantly prefer habitat beneath trees, Paratrechina longicornis, Tetramorium simillimum, 
and Pheidole sp.1. Trees harbor high diversity in open landscapes (Dunn, 2000; Majer and 
Delabie, 1999) and have been considered important diversity refuges. Our findings suggest that 
trees may also provide a refuge for introduced species. Introduced ants were collected in every 
pitfall trap set below a tree canopy. Pitfall from under tree canopies contained one (46.7%), two 
(43.7%) or three (9.6%) introduced species. The pattern of high abundances and proportions of 
total abundances of introduced ants near trees was driven in part, but not entirely, by high 
frequencies of Paratrechina longicornis combined with a relative scarcity of Paratrechina 
longicornis in open grassland (Table. 1.2). Tetramorium simillimum contributes to the 
heightened introduced proportion, but its less pervasive than P. longicornis and T. destructor. 
The impact of introduced ant colonization of trees on the arboreal ant community was not 
assessed but it is an important area of ecological study. High numbers of introduced species at 
trees may reduce their efficacy as a refuge from insolation for native species. These comparisons 
could not be made in our study as all trees had been invaded. 

Competitive exclusion and inter species aggression may explain the proportionally high 
incidence of introduced species at trees. Paratrechina longicornis and Iridomyrmex sp.2 had a 
notably inverse relationship in habitat preference and frequency in traps. Both species were 
found in over half of the samples collected in their respectively favored habitats and 
Paratrechina longicornis was found in every sample collected below tree canopies. Like 
Paratrechina longicornis, Iridomyrmex diets are primarily sugar based and they collect large 
amounts of honeydew from aphids and other insects (Wetterer et al., 1999). Iridomyrmex sp.2 is 
an aggressive ant that may be competitively or physically excluding other species from open 
habitat, even dominant invasive ants.  

A dominant, ubiquitous ant such as Iridomyrmex sp. 2 can aid in preventing invasion by 
fully occupying a niche (Kennedy et al., 2002; Wilson and Taylor, 1967). Protecting undisturbed 
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habitat that favors these species may provide some level of protection in adjacent disturbed 
habitats. Less common or more highly sensitive native ants are useful in monitoring programs. 
We identified Iridomyrmex sp. 1 as a good candidate for monitoring programs. It occurred in 
relatively high abundance on all surveyed islands and shows a clear preference for undisturbed 
habitat. Solenopsis geminata, the only introduced species with land use preference, preferred 
disturbed sites, a pattern well documented across their range (Carroll and Risch, 1984; Way, 
1998). S. geminata is unique, utilizing seeds of introduced grasses as a major food source where 
other introduced species may be associated with diverse food sources, such as insect prey and 
honeydew, that are not necessarily dependent on disturbance. Native grasses form dense mats in 
undisturbed grassland with very little open space for establishment of new grass species and 
other introduced species that may co-occur with them. Specialized dietary characteristics, such as 
seeds in S. geminata diets, make it another useful species in monitoring habitat with its presence 
being an indicator of damage to native grass ecosystems.  

Oceanic islands commonly support large numbers of invasive ants in part because they 
have ports hosting vessels from around the globe. Labuan Bajo on the island of Flores acts as the 
major port connecting the islands offshore. Island biogeography concepts explain diversity as a 
function of patch or island size, connectivity to other patches, distance to a main source, and 
extiction/colonization rates (Badano et al., 2005; Hubbel, 1997; MacArthur and Wilson, 1967). 
On nearby Java, human-built structures and distance from the major port of Jakarta most strongly 
predicted the abundance of introduced species (Rizali et al., 2010), overshadowing island size. 
Our findings show distance between the island of focus and the main port having the greatest 
influence on diversity and species richness. If we assume that closer islands are visited more 
frequently, this pattern indicates that frequency of visits to islands plays a larger role in 
introductions than infrastructure development and island size, though other factors contribute. 
Often, ecological studies focus on connectivity as a necessary component of managing land that 
allows species to migrate, sharing genes and repopulating patches. The potential for repeated 
introduction of invasive species is a function of connectivity that relies on human modes of 
transportation. Fishing, travel to Labuan Bajo for goods, and tourism activity provide frequent 
opportunities for introduced species to leave a major port and establish on outer islands. 

Grasslands are a major part of landscapes around the world, providing humans with most 
of their food and sequestering large amounts of carbon. Designation of a portion of the area 
between Flores and Sumbawa as a World Heritage Site and National Park has limited 
development and protected large areas of grassland from invasion by non-native grasses and 
insects. Few studies have focused on local flora and fauna other than large macro fauna, mainly 
ground-nesting Veranus komodoensis, the Komodo dragon. Ant communities in southeastern 
Indonesia should be incorporated into monitoring the degradation and recovery of native 
grassland systems. Localized research is critical to development of management plans as 
grassland communities across the world have varied ecological responses. Furthermore, 
ecological patterns can be over-generalized, particularly in public forums for people with no 
scientific training. For example, the belief that disturbance leads to habitat destruction and 
diversity decline is common. Cultural practices around grazing may seem under attack if 
discouraged when, in fact, practices can be developed that enable grazing and grassland 
protection. Local surveys, such as this one, provide distribution information on invasive ants. 
Solenopsis geminata, can impact ground-nesting species (Plentovich et al., 2009) such as the 
Komodo Dragon . Understanding how land use and development influence species distributions 
is critical to species preservation and preventing further invasion. Many invasive and tramp 
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species originate in Asia (McGlynn, 1999) and are considered native to Indonesia based on 
regional affiliation. However, little is known about the impacts and invasiveness of tramp 
species, such as Nylanderia vaga, when they are introduced to new areas within their native 
range (Tilman, 2004). The Komodo region of Nusa Tenggara Timur in the Lesser Sunda Islands 
is currently under great development pressure from tourism and investment industries. The 
variable development and environmental factors present on each island make this an excellent 
system for investigating invasion. Local management would be improved by a larger body of 
local research. Preliminary results show that disturbance to grasslands will alter species 
composition and enable the spread of introduced species, however, the direct impacts of these 
species on local flora and fauna have not yet been studied.  
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1.6 Figures 
 

 
Fig. 1.1. Map of the study region. Black arrows point to islands included in survey. 
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Fig. 1.2.  Pitfall transect layout. A. Open grassland long transect, 40m total length. B. Open 
grassland short transect, 5m total length, paired with tree transect beneath nearby tree. C. Tree 
transect, 5m total length, placed in ground beneath tree canopy. 
 
 

 
 
Fig 1.3. Species accumulation curves utilized all samples from each island and were extrapolated 
to 125 samples. Extrapolation is represented by the dashed portion of each line. 
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                           A.                                                               B. 
 

 
 
Fig. 1.4. A. Proportion of total abundance (25,548 ants) and proportion of total number of 
species (46 species) by subfamily. Results for the proportion of total number of species by 
subfamily found in Trainor et al. 2010 are included for comparison. B. The global number of 
described species in each subfamily found in regional surveys. 
 
 
            A.                                                                                           B.                

 
 
Fig. 1.5. A. Linear regressions for introduced and native species looking at number of 
individuals of each species collected and the number of traps in which it was found. B. Enlarged 
image of area marked by red box in A. 
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A.          B.                                                       C. 

 
 
Fig. 1.6. Density plots of the frequency of vegetation coverage and height measurements. 
Averages are presented as colored circles. A. percent vegetation cover, B. minimum vegetation 
height, and C. maximum vegetation height by habitat and by season in grassland sites. Pooled 
data includes islands sampled in wet and dry seasons (Bajo; Flores; Papagarang; Sebayur Besar; 
Seraya Kecil). ddg = dry, disturbed grassland, n = 38; wdg = wet, disturbed grassland, n = 40; 
dng = dry, undisturbed/native grassland, n = 79; wng = wet, undisturbed/native grassland, n = 78 
where n = number of samples (individual traps) per season and land use group.  
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Fig. 1.7. Linear regression of Bray-Curtis vegetative dissimilarity and ant community 
composition dissimilarity between all pairs of samples within land use type on islands surveyed 
in both the dry and wet seasons.  
 
 

 
 
Fig. 1.8.  Non-metric multidimensional scaling (NMDS) plots of ant communities on three 
islands. Undisturbed grassland samples are marked as blue open circles and disturbed grassland 
samples are marked as green open circles.  Circle size is proportional to the total abundance of 
ants collected in that sample.  Species are denoted by three-letter codes.  
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Fig 1.9.  Total abundance of ants, proportion of abundance that are introduced species, and 
Shannon-Weiner diversity in open grasslands.  Flores n = 40; Papagarang n = 60; Seraya Kecil n 
= 60. Significance level after Bonferroni correction, a < 0.025. ddg = dry, disturbed; dng = dry, 
undisturbed/native; wdg = wet, disturbed; wng = wet, undisturbed/native. 
 
 
A. Wet season, open grassland rarefied to 20 samples per island.       
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 B.  Wet season open grassland and trees, rarefied to 40 samples per island.  

 
 
Fig. 1.10. Linear regression scatter plots for analysis of wet season samples collected in A. open 
grassland samples only and B. open grassland and beneath tree canopy samples. Points represent 
rarefied results from each of eight islands sampled. Distance(m) is distance between the port of 
Labuan Bajo and each island. Log-area (km square) is island size with log transformation. 
Number of structure types is the presence of docks, village residences, and hotels. 
 
1.7 Tables 
 
Island Name            Size (km2)   Port (km)   Human Pop   Development       Structures    Disturbed    Undisturbed     native spp : intro spp 
Seraya Kecil       < 1               9.5                400          village and hotel             3                heavy                yes            16 : 6 
Bajo                          < 1    0.66                20           few small houses             1                light                 yes            14 : 4            
Tatawa                      < 1     18.6                  0                     none                       0                  no                   yes              9 : 4             
Sebayur Besar          2.4      11               10-50                 hotel              2                   no                  yes            15 : 5 
Papagarang            2.1               7.5               >1500               village                     2                heavy                yes            14 : 4  
Padar                            13.5               24                   0                     none                      2                   no                   yes            12 : 5  
Komodo                        325               25               >1500               village                     3                heavy                yes            12 : 5 
Flores                          14,300             0                 many                 cities                      3                heavy                yes            20 : 6 
  
Table 1.1.  Islands used in diversity survey and conditions at sites.  Size = island size; Port = 
distance to Labuan Bajo; Structures = docks, hotels, villages. Disturbed = diturbed grassland; 
Undisturbed = undisturbed grassland; native spp : into spp = native species richness and 
introduced species richness. 
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Island            ACE% ICE%  n      Individuals Richness    max     SD 
Bajo            0.7915 0.9412 40       2022.86    18.41    22.05  1.86 
Flores            0.7155 0.8279 40       1903.5    19.82     24.87  2.58 
Komodo            0.6869 0.7501 40       1217.54    15.25     18.61  1.72 
Padar            0.8026 0.7713 40       1390.32    13.42     18.04  2.36 
Papagarang       0.9487 0.7845 40       3181.88    16.27     18.41  1.09 
Sebayur Besar 0.5647 0.6464 40       718.22    16.2       21.17  2.54 
Seraya Kecil 0.8974 0.7546 40       747.25    16.79     22.49  2.91 
Tetawa Besar 0.9441 0.6796 40       1118    13    16.39  1.73 
 
Table 1.2.  Rarefied wet season collection data (40 samples) with area-based coverage estimator 
(ACE) and incidence-based coverage estimator (ICE).  Richness is equal to the number of unique 
species collected on each island. 
 
 
Subfamily/Species                    (Native)(Distributed)  Status  Islands  Habitat  Season   Abundance   Frequency 
Dolichoderinae (7) 
Dolichoderus thoracicus           (I)(T,I)   N 1 T W 1 1 
Iridomyrmex anceps               (A,I,O)(A,I,O,P) N 1 G  * 236 9 
Iridomyrmex angusticeps          (A,I) N 4 *  * 227 68  
Iridomyrmex sp. 1  N 8 *  * 1100 59 
Iridomyrmex sp. 2                           N            8 *            * 5267 317 
Philidris cordata protensa_nr  (A,I) N 1 T  W 5 2 
Tapinoma sp.  U 3 G  D 10 6 
Dorylinae (1)  
Cerapachys rufithorax_nr         (I)(T,A,I,N,O,P) N 1 G  W 2 1  
Formicinae (13)  
Anoplolepis gracilipes              (I)(A,I,M,N,O,P)              I (Tr)  3 *   * 908 48 
Camponotus sp.1   N 1 T  W 1 1 
Camponotus sp.2  N 6 *   * 38 12 
Camponotus sp.3  N 6 *   * 16 10 
Camponotus sp.4                         N  4 *  W 18 14 
Nylanderia vaga_cf               (I,A)(A,I,N,O) N (Tr) 8 *   * 1124 191 
Oecophylla smaragdina            (A,I,P) N 1 T   * 5 2 
Paratrechina longicornis          (T)(T,A,M,C,N,O,P) I (Tr) 8 *   * 4267 167 
Polyrhachis sp.1  N 3 *  W 3 3 
Polyrhachis arcuata_cf            (A,I) N 1 T  W 1 1 
Polyrhachis dives               (A,I,P) N 2 T   * 3 2 
Polyrhachis inconspicua_nr     (A,I) N 4 G  W 13 10 
Polyrhachis zopyra               (I) N 1 G  W 1 1 
Myrmicinae (20)  
Cardiocondyla kagutsuchi        (I)(A,I,M,O) N  5 *   * 69 22 
Carebara diversa               (A,I)(I,P) N 1 *  W 1592 14  
Crematogaster rothneyi_nr      (I,P) N 5 *   * 317 70 
Crematogaster simoni_nr         (I ) N 2 T  W 5 3 
Crematogaster sp. 1  N 5 *   * 59 27 
Meranoplus bicolor               (I,P) N 1 *   * 94 15 
Monomorium sp.1   U 1 T  W 8 2  
Monomorium floricola             (A,I)(T,A,I,M,C,N,O,P) N (Tr) 2 *   * 13 3  
Monomorium intrudens            (I,P)(A,I,O,P) N 5 *   * 14 12 
Monomorium pharoanis           (T)(T,A,I,M,C,N,O,P) I 1 *   * 10 6 
Pheidole sp.1  U 4 *   * 283 35 
Pheidole parva               (I)(I,M,O,P) N 5 *   * 545 26 
Solenopsis geminata               (C,N)(T,A,I,M,C,N,O,P) I 4 *   * 173 16 
Tetramorium sp.1   N 4 G   * 21 14 
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Tetramorium bicarinatum         (I)(T,A,I,M,C,N,O,P) N 1 T  W 1 1 
Tetramorium insolens               (A,I)(A,I,M,C,O,P) N 1 T  W 1 1 
Tetramorium lanuginosum       (A,I)(A,I,M,C,N,O,P) N (Tr) 4 *   * 22 8 
Tetramorium simillimum          (T)(T,A,I,M,C,N,O,P) I  (Tr) 8 *   * 780 153 
Tetramorium walshi               (I,P) N 5 *   * 2419 127 
Trichomyrmex destructor         (T)(T,A,I,M,C,N,O,P) I (Tr) 8 *   * 5121 200 
Ponerinae (4)  
Brachyponera sp.  N 3 *   * 437 45 
Diacamma sp.1               (A,I) N 1 *   * 43 24 
Diacamma rugosum               (A,I)(A,I) N 4 *   * 254 81 
Odontomachus floresensis_cf   (I) N 2 *   * 17 7 
Pseudomyrmecinae (1)   
Tetraponera sp.  N 1 T   * 1 1 
 
Table 1.3. List of recorded species, native and recorded ranges, local status, number of islands 
with records and the habitats they were found in. T = Afrotropical, A = Australasian, I = 
Indomalayaa, M = Malagasy, C = Nearctic, N = Neotropical, O = Oceania, P = Palearctic. 
Recorded distribution regional codes are italicized. I = introduced, N = native, Tr = tramp, U = 
unknown.  For habitat occurrences, T = under tree only, G = in open grassland only, * = found in 
both habitats. For seasonal data, W = wet season only, D = dry season only, * indicates species 
was recorded in both seasons.  
 
 
    Season                                 Land Use                                      Habitat          
      Species                                    (wet)(dry)    p value              (dist.)(und.)   p value              (grass)(tree) p value 
Dolichoderinae 

Iridomyrmex sp. 1                 (0)(5.4) 0.02771              (7.2)(0.1) 0.01796 
Iridomyrmex sp. 2  (24.1)(19.1)  0.516              (13.3)(33.4) 0.05955              (24.6)(6.31)    9.10E-07  
Iridomyrmex angusticeps (2.3)(0.2)    0.5071              (0.1)(2.5) 0.01131                  (0.9)(0.3)   0.009694   

Formicinae 
Anoplolepis gracilipes * (15.6)(0.8)    0.07474              (0.3)(2.8)      0.05149  
Camponotus sp.4                    (0.05)(0.1) 0.2714  

 Paratrechina longicornis * (41.2)(30.6)  0.4778              (20.2)(49.7) 0.2527              (2.2)(52.9) 1.65E-07 
Nylanderia vaga_cf  (6.4)(5.3)    0.3634              (1.9)(4.7) 0.1642              (2.8)(3.5) 0.665 

Myrmicinae 
Cardiocondyla kagutsuchi (0.5)(0.4)    0.7781              (0.5)(0.7) 0.7532              (0.2)(0.2) 1.0 
Crematogaster sp. 1  (0.3)(0.6)    0.0458                 (0.3)(0.09) 0.09661   
Crematogaster rothneyi (1.5)(2.2)    1                 (1.0)(1.5) 0.5052  

 Pheidole sp. 1  (3.8)(0.3)    0.004855             (4.9)(0.8) 0.1958              (0.6)(3.3) 0.01561 
 Pheidole parva  (6.5)(3.8)    1              (8.1)(1.1) 0.4002              (1.3)(6.8) 0.05035 

Pheidologeton diversus                   (0.6)(22.5) 0.3517 
Solenopsis geminata *                (3.8)(0) 0.0464    

 Tetramorium simillimum * (5)(3)    0.0769              (2.7)(4.7) 0.1053                (1.8)(7.0)        0.0002276 
Tetramorium walshi  (16.2)(22.8)  0.3647              (16)(40.6) 0.1004              (13.0)(9.5) 0.9886 
Trichomyrmex destructor *          (55.6)(15.7)  0.4489              (24.6)(7.9) 0.3244              (13.9)(49.3) 0.1135 

Ponerinae  
Brachyponera sp.  (1.9)(0.2)    0.0854              (0.1)(2.5) 0.04776              (0.66)(0.58)  0.02066  

 Diacamma rugosum  (0.6)(1.7)    0.4959                 (2.5)(0.4) 0.1601              (0.9)(0.7) 0.2961 
 
Table 1.4.  Wilcoxon signed-rank test of median values of abundances between: wet and dry 
seasons, disturbed and undisturbed grasslands, and open grass or beneath tree habitats. Species 
with abundances too low to achieve a 95% confidence interval in seasonal comparison tests are 
excluded.  * indicates an introduced species. 
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Island          land use Bray p     Jaccard p     
Flores  U          *0.001113  *0.001707    
Flores  D            0.7023        0.9557   
Seraya Kecil U          *0.0002858  *1.201e-06   
Seraya Kecil D            0.8806     0.7409  
Papagarang U          *0.001244  *0.003513 
Papagarang D            0.6986       0.05743 
Sebayur Besar U          *7.617e-07  *2.951e-09 
Bajo  U          *0.0002449  *0.001514 
 
Table 1.5. Linear regression results of Bray-Curtis and Jaccard vegetative dissimilarity and ant 
community composition dissimilarity. With Bonferroni correction for 8 tests, level of 
significance is a = 0.00625. U = undisturbed grassland, D = disturbed grassland.  
 
 
                            Grass        Tree                                                                              Grass    Tree 
Season   Land Use   n   Measure        p              Average    Average           Season   Land Use   n   Measure          p             Average    Average 
dry        disturbed    6   total I         0.2255      14.50       105.83                wet         disturbed  12   total I      0.3636      30.67         63.58 
     total N         0.1846      16.00       82.83      total N        *0.0464      73.00         22.75 
     prop. I            0.9367       0.57       0.55      prop. I        *0.0053       0.26     0.64 
     prop. I nP       0.933         0.47       0.44      prop. I nP     0.1671      0.25     0.46 
     Shannon         0.9356       0.68        0.70      Shannon       0.7685      0.93     0.89 
            (absolute value) richness I                         5        5          (absolute value) richness I                        6     6     
            (absolute value) richness N                        3        7          (absolute value) richness N                      10     12 
           
dry   undisturbed   13  total I         0.1129      12.92        86.54                  wet   undisturbed    32  total I           *0.0082      34.41     161.34 
     total N         0.2164      95.62        27.46      total N       0.9994      73.47     73.50 
     prop. I          *0.0001       0.12        0.62      prop. I         *0.0000       0.23     0.64 
     prop. I nP       0.0251      0.09        0.43      prop. I nP    *0.0001       0.22     0.56 
     Shannon         0.9860      0.83        0.83      Shannon        0.0353       0.71     0.90 
            (absolute value) richness I                         5        5          (absolute value) richness I                        6     5     
            (absolute value) richness N                       12        18          (absolute value) richness N                      20     25 
   
Table 1.6. Differences (paired t-test) in diversity between open grassland sites and paired, below 
tree canopy samples by season and land use. n = number of below tree/open grassland transect 
pairs. Critical p-value a = 0.0125. 
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Chapter 2    Isotopic and behavioral analysis of 
Solenopsis geminata diets 
 
2.1 Introduction  
 

Invasion biology emerged as a field of study in the 1950’s to address the relationship 
between the uniqueness of plant and animal communities by location and increased globalization 
as a driver of the deteriorating barriers on exotic species establishment (Hayden and White, 
2003). Dietary requirements of species are a critical determinant in their ability to move into 
novel habitats. Theories about dietary specialization and generalism often posit contradictory 
views of the benefits of certain diets and the evolution of diet as it relates to resource 
competition. Existing tradeoffs between generalism and specialization become particularly 
relevant in the broad framework of invasion biology as both offer mechanisms to avoid 
competition and successfully establish within a preexisting community of organisms. Co-
invasion of multiple invasive species has led to the ‘invasion meltdown’ concept made famous by 
a study conducted on Christmas Island revealing a mutualistic relationship between invading 
land snails and invading, predatory Yellow Crazy Ants (O’dowd et al., 2003). The Tropical Fire 
Ant (TFA), a ubiquitous and invasive species, possesses characteristics of both a dietary 
generalist and a dietary specialist. The TFA can consume tremendous amounts of grass seeds in 
addition to a wide range of other foods. The combined impact of TFA invasion and invasive 
grass species is not well studied despite a global prevalence of both. Focused study of dietary 
shifts in the TFA during range expansion into new habitat types may provide insight into how 
diet and co-invasion are related within the field of invasion biology. 

Dietary flexibility and dietary specialization have evolved countless times in organisms 
as a mechanism for increasing competitive ability or altogether avoiding competition for food 
resources. Dietary specialization may co-occur with morphological adaptations that enhance 
consumption of the focal food (Brown and Wilson, 1956; Svanbäck and Bolnick, 2007). 
Specialization is linked to increased competitive ability (Ehinger et al., 2014; Marvier, 2004) 
and, in ants, food resource competition is a driver of worker caste polymorphism (Wills et al., 
2018; Traniello, 1989). Diet is not just an external force driving phenotypic heterogeneity seen in 
ants. Manipulation of larval diet, along with genetic and hormonal components, actually 
determines adult worker caste (Amor et al., 2016; Wills et al. 2018). Species with access to a 
wide range of resources are provided increased opportunity for specialization which has been 
shown to occur at higher rates in these diverse, resource-rich systems (Araújo et al., 2011; 
Roughgarden, 1974). It seems, however, that generalism rather than specialization is promoted 
when a species is mobile between habitats with major differences in the resources it must utilize 
(Marklund, 2018). Dietary flexibility, or dietary generalism, is often considered a defining 
characteristic of invasive species and a critical trait in determining the ease by which a species 
can establish itself beyond its native range (Marvier, 2004; McGlynn, 1999). Omnivorous 
species that feed on a wide range of foods are considered ‘dietary generalists’ and include most 
invasive organisms. Species that are able to occupy a wide range of habitat types and tolerate 
variable environmental conditions are considered ‘habitat generalists’. Highly invasive ants are 
often both habitat and dietary generalists, allowing them to utilize a wide range of resources in 
novel environments, particularly in disturbed habitats (Marvier, 2004; McGlynn, 1999; 
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Romanuk, 2009). Dietary generalism provides opportunities to attain nutritionally balanced diets 
that are minimally impacted by environmental changes and variability in food resources (Funk 
and Bernays, 2001; Nurkse et al., 2009). Similarly, omnivores are more likely to show dietary 
shifts in response to environmental changes than relatively inflexible specialist species (Gibb et 
al., 2003).  

The Tropical Fire Ant, Solenopsis geminata, is an omnivorous fire ant with a specialized, 
seed-milling major worker caste. The TFA is found in tropical regions around the world and 
considered an invasive pest (McGlynn, 1999; Wetterer, 2011) native to Central America, parts of 
South America, and Florida in the United States. Major workers possess large, muscular 
mandibles and large heads, which are adaptations for milling grass seeds that are collected by 
minor workers. The behavioral repertoire of major workers in S. geminata is reduced in 
comparison to smaller worker castes and major workers of closely related species, with S. 
geminata majors performing only two tasks, self-grooming and seed milling (Wilson, 1978). In 
related species of Solenopsis, seeds are consumed by the colony, however, the major worker 
caste performs additional duties as foragers and soldiers. The well-documented correlation 
between worker size and size of seeds they are able to collect (Davidson, 1978; Kaspari, 1996, 
Shutner and Mullie, 1991) would logically suggest that foraging by S. geminata majors would 
increase dietary breadth. These additional tasks performed by the major worker caste in other 
species are sacrificed in S. geminata, but their specialized adaptations for granivory may offer a 
competitive advantage that outweighs the costs.  

Competition manifests in three main forms within ant communities: interference, 
exploitation, and apparent (Parr and Gibb, ch. 5 Ant Ecology). The effects of interference and 
exploitation competition are decreased when food resources are not overlapping (Davidson, 
1978; May and MacArthur, 1972), potentially bringing about competitive release for the TFA in 
grasslands. Furthermore, despite the advantages afforded by dietary generalism, studies have 
found inefficiencies in cognitive processes involved in decision-making around food resources 
(Egan and Funk, 2006) and superior nutrition afforded by host specificity (Bernays and 
Minkenberg, 1997).  

Stable isotope techniques are useful in conducting dietary analyses for individual species 
and constructing community trophic webs (Peterson and Fry, 1987; Post, 2002). The most 
commonly used isotopes in constructing terrestrial community food-webs are 13C and  15N 
Dietary carbon sources, specifically utilization of C3 versus C4 plants, can be inferred by 
analyzing the difference between collected samples and a standard with known isotopic values, 
indicated as the difference between measured 13C of the standard used and the 13C  value of the 
sample (Peterson and Fry, 1987). Values are measured in parts per thousand (‰) and differences 
are expressed using the “δ” symbol, for example δ13C = -14‰. Accumulation of the 15N isotope 
increases with higher trophic position and is expressed as a shift from the 15N value of the 
standard used, or δ15N. The trophic value range within a system is generally defined at the lower 
bound by plants and the upper bound by top predators. Analyzing and comparing δ15N values of 
focal species with co-occurring species across the trophic range will situate focal species on the 
spectrum from herbivory to top predator in the sampled area (Perkins et al., 2014; Peterson and 
Fry, 1987). If vegetation and/or soils are collected across sites to provide a lower bound for local 
isotopic input, inferences can be made about the environmental contributions to community-wide 
isotopic patterns found amongst organisms at higher trophic levels (Post, 2002). Without this 
baseline, only relative positions of species experiencing the same conditions can be inferred but 
not their positions relative to the base of the food-chain, i.e. their trophic level compared to the 



 29 

trophic level of organisms collected in separate conditions. Stable isotope techniques have been 
used to study trophic ecology and diet in prominent invasive species such as the Argentine ant, 
Linepithema humile (Tillberg et al., 2007), the red imported fire ant, Solenopsis invicta (Wilder 
et al., 2011), and the Asian needle ant, Brachyponera chinensis (Suehiro et al., 2017).   

The topics of invasion biology and habitat susceptibility are becoming increasingly 
important as the impacts of human populations on the environment increase in rapidity and area 
affected. Global changes in climate and increasing demand for foods such as agricultural 
products that are shipped great distances (Aklesso et al., 2015) facilitate the spread of invasive 
ants, in particular (Wetterer, 2011). Many ant (Bertelsmeier et al., 2015) and grass species are 
among the most invasive and widespread pest groups. Ants reside in all but the frozen, polar 
regions (Guénard et al., 2011). Grasslands cover approximately 40% of the Earth’s land surface 
area (White and Rohweder, 2000). The competitive abilities of resident species are important in 
determining the invasibility of a site. In the grasslands of southeastern Indonesia, S. geminata has 
established populations across village borders into disturbed grasslands but is not found in intact, 
native grasslands. The TFA is of concern in southeastern Indonesia where grasslands potentially 
provide unlimited food resources for the ant in a region where ground-nesting, vertebrate species 
are common. Nest destruction through direct predation is a conservation concern for protected 
species (Erickson and Baccaro 2016; Wetterer et al., 2016) such as Komodo veranus, the 
Komodo dragon.  

Our study addresses a lack of knowledge regarding the behavior and dietary attributes of 
a widespread invasive ant, Solenopsis geminata, at an invasion front in native tropical grasslands. 
Resource use and relationships between the TFA and grasses, their primary food source, were 
investigated via manipulative field assays and stable isotope analysis of the ant community. We 
address three main aims in this study: (i) describing TFA dietary characteristics and seed 
utilization, (ii) seed species preference and foraging behavior, and (iii) the relationship between 
foraging behavior and species distribution with special focus on the apparent resistance to TFA 
invasion in native grasslands. We consider the limitations of specializing on seeds as a food 
resource in the context of optimal foraging theory (MacArthur and Pianka, 1966), which would 
explain seed selection as being influenced by nutritional value of the resource, availability of a 
resource, and handling time during foraging (Araújo et al., 2011; Sinervo, 1997). Our primary 
focus is on the relationship between handling time and grass seed preference in explaining 
habitat selection based on availability of preferred species. Here, the importance of seed handling 
time is suggested as a barrier to habitat invasion; a conclusion that is buttressed by the higher 
availability of seeds that were not preferentially collected. 
 
Study area 

Field studies were conducted in southeastern Indonesia in the province of Nusa Tenggara 
Timur. Savanna grasslands are the dominant vegetation type in the region. Development of 
villages and hotels has introduced goats into grassland systems and, where goats are present, 
exotic grasses coexist with native grass species. Study sites were located in the village and in 
adjacent disturbed and undisturbed grasslands on the island of Seraya Kecil at altitudes ranging 
from 0m to 15m above sea level. Rainfall follows a monsoonal pattern with the driest conditions 
from May through November and wettest from December through April. These islands receive 
approximately 800mm of rainfall each year. Seraya Kecil Village is located approximately 9 km 
from Labuan Bajo, Flores, where a local port serves the large island of Flores and nearby small 
islands. Multiple trips are made by residents each day between the port at Labuan Bajo and 
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Seraya Kecil Village, on the very small island of Seraya Kecil, causing great potential for the 
transportation of exotic species and providing an ideal location for isotopic study of a community 
with high native and exotic plant and ant diversity. 

Open, grassland savannas cover 70% of the area inside Komodo National Park. Grassland 
coverage is similar throughout the study area outside of the park. Undisturbed grasslands are 
dominated by two grasses, Heteropogon contortis and Chrysopogon subtilis and their presence 
characterizes native grasslands in the region. In disturbed areas, native grasses and exotic grasses 
occur in mixed stands. In the disturbed areas, C. subtilis and H. contortus coexists with exotic 
species including Dactyloctenium aegyptium and Panicum delicatulum along with native grasses 
common to disturbed habitat. Several tree species are found in open grasslands and in gallery 
forests. In addition to large expanses of grassland habitat, islands usually have forested patches 
and areas of thick riparian vegetation dominated by mangrove species. 

An in-depth analysis of seed foraging behaviors and dietary comparisons with five 
species was conducted on one island that contained all habitat types in close proximity. In order 
to achieve the depth of the study, incorporating foraging assays and isotopic analysis of six ant 
species, the study was not replicated across islands. This is not uncommon in trophic studies of a 
site or habitat type. The site on Seraya Kecil was the only site with such a diverse grass 
community in the disturbed grassland, having all of the most common native and introduced 
species seen in the broader Komodo region. Furthermore, transporting seeds of exotic grasses 
between islands to conduct foraging assays carried the potential for accidental introductions. 
Seraya Kecil also supported an especially diverse ant community, enabling the collection of 
enough material from several species to make between-species comparisons within habitat types. 
Few S. geminata colonies were found beyond village boarders on Papagarang and Komodo and 
these grass communities were not as diverse. Searches did not reveal sufficient colony numbers 
to conduct similar experiments. With these conditions in mind, I focused on going in depth at 
one site, collecting all species with sufficient abundances for isotopic analysis. 
 
2.2 Methods 
 
Sample collection and field assays 

The vegetation and plant community data used in this study to describe grasslands were 
collected in a separate study. Vegetation cover and species composition were assessed by placing 
a one-meter square quadrat and calculating total coverage and presence/absence of the six 
selected grasses. Samples were collected along randomly placed transects consisting of five 
quadrat samples, spaced 10m apart in a line. Vegetation transects were not spatially associated 
with seed-preference trial locations but were distributed to assess the overall vegetative 
community characteristics of each habitat on the island.  

Dietary incorporation of C4 grass material and relative trophic position of ant 
communities was measured using stable isotope methods to determine δ13C and δ15N values in 
dried samples. Workers were collected from colonies found within three habitat types: (i) 
villages and (ii) disturbed (goat-grazed) grasslands adjacent to villages and (iii) undisturbed 
grasslands. Workers were collected from 5 sites in each habitat in which they occur. 
Trichomyrmex destructor, previously Monomorium destructor, exists in disturbed savanna but 
only two sites were found in the study area. Sites were at least 30 m away from one another and 
assumed to be separate colonies. Village samples were collected from within a two square meter 
area on the ground and from one support beam of a house with the beam at the center of the 
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ground quadrat. Grassland samples were collected from within a two square meter area on the 
ground and a single tree trunk that marked the center of the quadrat.  

Six abundant and widespread ant species were used in isotope analysis. Two species, 
Diacamma sp. and Tetramorium walshi, are considered native to the region. Brachyponera sp. is 
considered native, as it is native to Southeast Asia, but may be locally invasive. Paratrechina 
longicornis, Solenopsis geminata, and Trichomyrmex destructor are widespread invasive, tramp 
species, common throughout Indonesia. Species identification was based on available literature, 
AntWeb information, and confirmation by Dr. Alan Andersen of CSRIO, Darwin, Australia and 
by Dr. Eli Sarnat at the California Academy of Sciences, San Francisco, California. Current 
knowledge of native versus introduced ranges is lacking for many species. Native or introduced 
status was assigned based on information available in literature and on AntWeb (Ant Web, 
2013). 

Samples were collected by aspirating ants or hand collecting and ants were collected in a 
50ml conical tube. Samples were dried in the field by placing 50ml sample tubes partially 
submerged in hot sand and left in the sun for approximately 6 hours. Tubes had a large hole cut 
in the top that was covered by mesh to allow moisture to escape. After 6 hours, Delta Adsorbents 
blue-indicating, 3-5mm silica beads were added to each sample tube, an airtight cap was placed 
on each tube, and samples were stored overnight. The following day, samples were placed in hot 
sand and exposed to sun for the duration of daylight. Fresh silica was put into tubes and airtight 
caps were placed on each tube before transporting samples. Dried samples and silica beads were 
transferred to small vials or into whirl packs for long-term storage and placed in a freezer. 
Isotopic analysis was conducted at the Center for Stable Isotope Biochemistry at the University 
of California, Berkeley. Samples were analyzed using a CHNOS Elemental Analyzer in 
combination with an IsoPrime100 mass spectrometer. Pee Dee Belemnite (PDB) was used as a 
standard for comparison. Simultaneous analysis of δ13C and δ15N values were performed by 
continuous flow (CF) dual isotope analysis. Precision for C isotope measures was ± 0.10‰ and 
for N isotope measures, ± 0.20‰. 

 
Seed preference experiment 

The six most abundant grass species were selected for behavioral assays of S. geminata 
foraging in the field. Grasses were divided into three groups, disturbed-exotic (DE), disturbed-
native (DN), and undisturbed native (UN). Disturbed-exotic grasses and disturbed-native grasses 
were only found in disturbed grasslands. Undisturbed-native grasses were found in both 
disturbed and undisturbed grassland, dominating both, and comprising the large majority of 
vegetation in the former. Each group contained two species of grasses. After determining that 
seeds belonging to undisturbed-native grasses, C. subtilis and H. contortus, were larger than 
seeds of grasses adapted to disturbed habitat and we sought to explore seed size as an underlying 
reason for the absence of S. geminata in undisturbed grasslands. Seed preference studies were 
conducted over a three-week period at the end of the wet season in April and May of 2013. Grass 
samples were collected fresh while flowering. Seeds were collected fresh for seed preference 
studies. Intact grasses were packed in herbarium collection presses for identification. 
Identification was conducted by botanists at Lembaga Illmu Pengetahuan, Cibinong, Indonesia.  

I first performed seed preference experiments using whole, intact grass seeds. Solenopsis 
geminata workers were offered five seeds of each grass species (30 seeds total) which were 
placed on a 5cm2 plastic card.  Six cards, each with 30 seeds, were placed 20cm from a nest 
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entrance. Foraging was observed for one hour and the number of seeds taken for each grass 
species was recorded during four, consecutive 15-minute periods.  

Later, treatment assays with cut seeds were performed as in whole-seed trials, but with 
individual large seeds of Chrysopogon subtilis and Heteropogon contortis cut in halves and 
thirds, respectively.  One cut piece of seed was then treated as a single seed. 

To provide a measure of interest versus difficulty or ease in collecting seeds, foraging 
activity by individual ants was recorded as three separate behaviors. ‘Antennating’ was defined 
by an ant approaching a seed, contacting the seed with their antennae, and leaving the seed 
unmoved. ‘Carrying’ behavior was defined by an ant approaching a seed, attempting to carry the 
seed off the depot card, and then dropping the seed and abandoning it before leaving the card 
area. ‘Collecting’ was defined by an ant successfully removing a seed from the card. “Carrying” 
and “Collecting” behaviors were typically preceded by antennation, but antennation in these 
contexts was not included in the “Antennating” score. Thus, “Antennating” includes only 
instances in which ants antennated a seed, but did not move or remove the seed. Behaviors were 
recorded for each ant-seed interaction over the one-hour observation period. 

 
Data analysis 
 The first part of our study aimed to determine if S. geminata utilizes seeds as a food 
resource in Indonesian grasslands and if this differentiates S. geminata diets from that of other 
ant species. Comparison of δ13C determinations was used to assess the relative importance of C3 
and C4 plants in ant species diets within habitat types. Non-parametric, Wilcoxon signed-rank 
tests were used to make statistical comparisons between samples pooled by species and general 
community-level comparisons between habitats. Comparison of δ15N determinations were used 
to described relative differences in trophic positions of ant species within habitats and general 
community-level comparisons between habitats. Statistical tests were run in the base package 
‘stats’ in R version 3.4.1 ‘Single Candle’. Samples sizes for each species in each habitat were n = 
5, representing five separate colonies within the designated habitat. Samples size for T. 
destructor in disturbed grassland was n = 2 and these data were excluded from group 
comparisons. Results were supported by post-hoc Tukey’s honest significant difference (Tukey’s 
HSD) tests. Multiple tests were Bonferroni corrected. 
 The second part of this study focused on explaining the absence of S. geminata in 
undisturbed grassland. Differences in average seed size were based on the average length of 20 
seeds of each of the six, selected species. The lengths of dried seeds were measured to the 
nearest 100th of a millimeter under a dissecting microscope fitted with a micrometer in one 
eyepiece. 

Seed depots with zero ant-seed interactions were considered to be undiscovered and were 
removed before analysis. To test for normality, Shapiro-Wilks tests were applied to seed 
collection data grouped by habitat and treatment. In most cases, data were not normally 
distributed and Wilcoxon signed-rank tests were used to compare seed collection between habitat 
and treatment groups. Foraging assays, as described previously, produced sample sizes sufficient 
for non-parametric tests, despite non-normality, however the more conservative test was chosen. 
Statistical tests focused on determining the influence of seed size on collection rates. Pairwise 
Wilcoxon signed-rank comparisons were made between seed groups within habitat and 
treatment, specifically noting the change in collection of UN seeds after size-standardizing 
treatments. Where multiple tests were implemented, Bonferroni corrections were applied to 
resulting p-values to reduce the likelihood of a type I error. 
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Finally, the collection of seeds relative to the abandonment of carried seeds was 
calculated as (difference = collected – carried) for each grass species within the control and 
treatment groups. Mean values for the differences between treatment and control groups were 
compared for each habitat using one-tailed, Welch’s independent two sample t-tests with no 
assumption of equal variance (Welch, 1947) and analyses were conducted the R base package 
‘stats’. The Welch’s t-test was chosen over a non-parametric test in order to apply a one-tailed 
test in which the alternative hypothesis was that the difference between collected and carried 
seeds was not only different, but greater for the treatment group. Data did not fit a normal 
distribution; however, sample sizes were similar for groups, sufficiently large (n > 15) for each 
group, and variances were somewhat similar. When these conditions are met, parametric tests 
perform better than non-parametric tests (Pearson, 1931; Bartlett, 1935; Geary, 1947). A 
Bonferroni correction applied to t-test results for 12 tests resulting in a critical alpha value of p < 
0.004167. 
 
2.3 Results  
 
Seed utilization and habitat 
Isotopic analysis of δ13C and δ15N  

Solenopsis geminata, the focal species, were found in village and disturbed habitat but 
not undisturbed grassland, following the overarching distribution pattern across islands 
(Sandidge, Chapter 1). It was the second most abundant species collected on Seraya Kecil during 
the wet season, comprising 30.4% of total ant abundance. Dry season abundance was much 
lower, making up only 1.6% of total abundance (Sandidge, unpublished). Trichomyrmex 
destructor, previously Monomorium destructor, is a competitor species found in disturbed 
savanna and villages, however only two locations in disturbed grassland were found in the study 
area for this study. Paratrechina longicornis was the only species found in undisturbed 
grassland, disturbed grassland, and village habitat. Native species, Diacamma sp. and 
Brachyponera sp., were not found in the village habitat but were common in both grassland 
types. 

In disturbed savannas, seeds from six grass species, labeled as “SED” (Fig. 2.2),  
predictably fell within δ 13C values for C4 plants with values being between -14‰ and -10‰. As 
expected, δ13C in S. geminata was closer to the range of C4 plants and significantly differed from 
other ant δ13C values, with the exception of Brachyponera sp. (Fig. 2.2). After applying a 
Bonferroni correction to Wilcoxon signed-rank tests, statistical results were as follows: 
Brachyponera sp. (W = 24, p-value = 0.0159), Diacamma sp. (W = 25, p-value = 0.0079), P. 
longicornis (W = 25, p-value = 0.0079), seeds (W = 0, p-value = 0.0043), T. walshi (W = 25, p-
value = 0.0079) (Fig. 2.2). Post-hoc, Tukeys HSD comparisons confirmed these differences with 
p-value = 0.0018 for Brachyponera sp. and p < 0.0001 for remaining ant species and seeds. All 
four species collected in villages had similar isotopic profiles ranging from approximately -20‰ 
to -22‰. In the village habitat, where grasses are not readily available, δ13C values for S. 
geminata were not distinguishable from T. destructor, P. longicornis, or T. walshi, nor were 
differences found between any other species pairs.  

Ants within each habitat occupied similar trophic positions, as measured by differences in 
δ15N determinations, with maximum differences being approximately 2.5‰ between P. 
longicornis and Brachyponera sp. in undisturbed grassland. The difference between P. 
longicornis and Brachyponera sp. was not significant in pairwise Wilcoxon signed-rank tests 



 34 

after a Bonferroni correction was applied making the critical p value = 0.0167 (W = 23, p-value 
= 0.0318). Post-hoc Tukey’s HSD tests were applied and P. longicornis and Brachyponera sp. 
were then found to have significantly different means (adjusted p-value = 0.018). Measures of 
δ15N in C4 grass seeds were compared to that of ant species in disturbed grassland and all 
seed/ant pairs did not differed significantly after Bonferroni corrections were applied; p-value = 
0.065 for seeds and each ant species and p > 0.119 for paired ant species comparisons. In 
disturbed grassland the average δ15N value for ants was 8.65‰. The average δ15N value for seeds 
was 4.48‰ less, indicating that ants are one to two trophic levels above the seed food resource.  

When ant species were pooled within habitats, the δ13C values in undisturbed habitat 
were higher than both disturbed savanna and village habitats (p-value = 0.0001, p-value = 
0.0000) (Fig. 2.2). Average community-level isotopic nitrogen values for pooled ant species 
declined across habitats, from village (12.87‰), to disturbed grassland (8.65‰), to native 
grassland (4.74‰). Without analysis of abiotic factors, the isotopic separation of communities by 
habitat cannot be attributed to dietary differences and is described in greater detail in the 
discussion.   
 
Seed availability and preference 

Disturbed grasslands averaged 59.6% vegetation cover and native grasslands averaged 
75.7% vegetation cover near the end of the wet season when preference assays were conducted 
(Sandidge, unpublished). In surveys, the six selected grass species were all found in disturbed 
grassland. Two of the six selected species were found in undisturbed grassland. Chrysopogon 
subtilis was the most common grass found in both disturbed (72% of samples) and undisturbed 
grasslands (88% of samples). Chrysopogon subtilis and Heteropogon contortus were the only 
grasses present at undisturbed sites. In disturbed areas, C. subtilis and H. contortus were found in 
mixed stands with exotic species and produced the largest seeds. Seed size was smallest in exotic 
species Dactyloctenium aegyptium and Panicum delicatulum, which were found in 20% and 
16%, respectively, of disturbed grassland samples and did not occur in undisturbed grassland 
(Table 1). Brachiaria reptans and Agrostis infirma were two native grasses found only in 
disturbed areas and produced larger seeds than the exotic species, D. aegyptium and P. 
delicatulum, but smaller seeds than C. subtilis and H. contortus.  

Anecdotal observations suggest that major workers of S. geminata rarely forage for seeds. 
Paratrechina logicornis, Diacamma sp., and T. destructor were occasionally observed 
approaching seeds, particularly in the village trials, however, they never carried a seed away 
from the seed depot. Seeds were intentionally placed nearby to S. geminata nest entrances, as this 
was the focal species, results most likely do not reflect the potential interest in seeds by other 
species. 
          Seeds of two small-seeded, exotic grasses (group DE), D. aegyptium and P. delicatulum 
(Table 2.1), were the preferred food seeds of S. geminata in both savanna and village trials when 
seed sizes were unaltered. When seed sizes were standardized, the seeds of two large-seeded, 
native species, C. subtilis and H. contortus were as attractive as the smaller-seeded species. In 
whole seed trials, S. geminata colonies in disturbed grassland collected small-seeded group DE 
at higher rates than groups DN and UN (S-DE/S-DN, p-value = 0.0026; DE/UN, p-value = 
0.0077; S-DN/S-UN, p-value = 0.6029) (Fig. 2.3). Colonies in the village habitat were similar 
with DE collection being higher than collection of the two other seed groups (S-DE/S-DN, p-
value = 0.0002; DE/UN, p-value = 0.0014; S-DN/S-UN, p-value = 0.5901). After standardization 
of seed size (cut seed trials), disturbed grassland colonies collected the three seed groups at 
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similar rates (S-DE/S-DN, p-value = 0.0418; DE/UN, p-value = 0.4834; S-DN/S-UN, p-value = 
0.1659). Seed standardization in the village habitat resulted in a significant increase in the 
collection of seed group UN indicating a preference for those seeds when available at a smaller 
size (S-DE/S-DN, p-value = 0.1864; DE/UN, p-value = 0.0839; S-DN/S-UN, p-value = 0.0025). 
Bonferroni adjustment for multiple tests reduced the critical alpha value to 0.017 for each set of 
three tests. 
 In village seed preference assays, the difference between seeds collected and seeds 
carried increased for seeds Brachiaria reptans (ND1: t = 3.5977, df = 46.305, p-value = 
0.000389), Chrysopogon subtilis (NU1: t = 3.5323, df = 56.979, p-value = 0.000412), and 
Heteropogon contortus (NU2: t = 2.8217, df = 41.324, p-value = 0.003656), meaning fewer size-
standardized seeds were abandoned before being removed from the seed depot. After applying a 
Bonferroni correction for 12 tests, differences between seeds collected and seeds carried were 
not higher for the treatment (seed-standardized) group for any seed species in disturbed grassland 
assays. Heteropogon contortus (NU2) just missed the cutoff p-value of 0.004167 for α=0.05 with 
the Bonferroni correction (t = 2.699, df = 49.406, p-value = 0.004747). 
 
2.4 Discussion  

 
We found that S. geminata commonly collects grass seeds, and that foragers display a 

marked preference for smaller seeds over larger seeds. Worker size was fairly consistent as 
foraging behavior was restricted to the minor worker caste. As result, our behavioral assays 
showed that removing large seeds for consumption was difficult and seeds were often 
abandoned. Major workers did not forage for seeds and this is most likely limiting the dietary 
niche width of the TFA. In this case, specialization was beneficial for moving into grasslands but 
detrimental in moving beyond disturbed areas. 

Nitrogen isotope enrichment distinguished ant communities, with village-living ants 
having the highest δ15N ratios and undisturbed savanna ants having the lowest (Fig. 2.2). 
Households primarily consume animal-based foods, which then become available to insects and 
other species via open waste piles under each home. Additionally, the absence of weeds and 
grasses in villages appears to limit access to C4 carbohydrates. Comparisons cannot be made 
across habitat types, meaning that regardless of observed potential food resources, we cannot 
conclude that village diets contain more animal protein than grassland diets. Though ant 
communities were separated between habitat types, all sampled species occupied the same 
trophic level within habitats. We concluded from this result that the major difference between the 
TFA diet and that of other species of ant is not variation in the animal-based food consumed but 
rather in the plant-based foods at the base of their diets. 

Solenopsis geminata was the only ant species to have a delta δ13C measure consistent 
with consumption of C4 plants which, in our study, were tropical grasses. The ability to take 
advantage of seeds as a food resource allows S. geminata to avoid direct competition for at least 
a major component of its diet. Ant species within each habitat had  similar enough δ15N to 
suggest all ants were at the same trophic level. Greater variation was seen in δ13C isotopic shifts. 
The variation in δ13C between species within a habitat suggests that food resource partitioning 
may be defined, to some extent, by the plant community that ants feed in and the plants their 
prey feed upon. Spatial partitioning of foraging areas is exemplified by a preference for arboreal 
feeding commonly seen in P. longicornis, and this behavior would lead to a diet with trees and 
shrubs, C3 plants, at the base of the food-chain. Indeed, in undisturbed grasslands, P. longicornis 
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showed greater utilization of C3 plants than Diacamma sp. and Brachyponera sp., both known to 
be epigaeic and, in this context, inhabiting C4 grass-dominated niches. Resource partitioning can 
also arise from specialization leading to consumption of a food that is not preferred by 
competitors. While it is known that other species do consume seeds, only S. geminata has 
specific adaptations for seed consumption, and was the only species in our study to show 
evidence of a significantly greater C4 grass dietary component.  

Trichomyrmex destructor is known to consume seeds and was viewed as a potential 
competitor for seed resources. During trials, T. destructor was rarely seen approaching seeds and 
never attempted to carry a seed away. Results indicate that T. destructor is not relying on seeds 
and C4 plants in the study area. In other assays conducted at the same site using tuna baits, T. 
destructor was the main competitor of S. geminata (Sandidge, Chapter 3). Its virtual absence 
from seed depots was interpreted as a genuine lack of interest or inability to utilize local seeds as 
a significant food resource, though proximity to S. geminata nest entrances could be a deterrent 
in addition to being a greater distance from T. destructor nests. 

Diacamma sp. and Brachyponera sp. are considered predatory scavengers, often 
specializing on a group of prey such as termites (Wheeler,1936; Bednar and Silverman, 2011). 
Two species are known to consume seeds however those species display a level of caste 
polymorphism not found in Brachyponera sp. sampled here. Our findings indicate that both 
Diacamma sp. and Brachyponera sp. have similar diets to that of other ant species in the area, 
most likely feeding on prey feeding on a mix of C3 and C4 plants. 

Paratrechina longicornis and Tetramorium walshi are species with generalized diets. 
Both species will feed on dead insects, plant material, honey dew, and other sugary or protein-
rich substances. Paratrechina longicornis is a prominent honey dew consumer, utilizing aphids 
and other honey dew producing insects as a source of food. We found that P. longicornis and T. 
walshi are most likely feeding on a mixture of C3 and C4 plant consumers and perhaps the nectar 
of these plants. Their diets and the diets of other species fell within one trophic level, suggesting 
they are not more or less predatory than co-occurring species.  

The aim of this study was to compare S. geminata diets to the diets of other ant species, 
particularly seed consumption, within the immediate area and habitat, i.e. their competitors. 
These data were used to highlight the δ13C split from other ant species in the direction of C4 
plant consumption within disturbed grassland conditions, where seeds are readily available. The 
δ13C separation between S. geminata and co-occurring species was not seen in the village where 
very few grasses reach maturity. This Measured differences between habitat types can only be 
attributed to dietary differences when an abiotic baseline is used to adjust for the effect of 
environmental conditions. Soil moisture can shift δ13C values (Palta and Gregory, 1997). 
Nitrogen inputs in soil may shift the baseline to show greater nitrogen enrichment throughout the 
system (Szpak, 2014) rather than the enriched community being more predatory. Goats are 
common in villages and are less common with greater distance from the village. Nutrients in goat 
feces may impact soil nutrient values. Additionally, the village may have greater soil moisture 
due to lower elevation and reduced plant cover. These abiotic differences would impact entire 
communities as they lie at the base of the food chain. Within habitat types, abiotic factors are 
assumed to be similar, allowing for dietary interpretation of differences between species. 

Our results suggest that seed consumption plays an important role in S. geminata’s ability 
to live in open grasslands by providing a food resource that does not overlap with that of 
competing ant species. Reliance on granivory would be expected of a species with physical traits 
that have evolved as adaptations for dietary specification, particularly in a group that otherwise 
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has a generalized, omnivorous diet characteristic of invasive species. The cost of producing a 
major worker caste with a severely limited behavioral repertoire is assumed to be high, and other 
studies have shown that increases in worker size occur as colony size increases, and concomitant 
increases in foraging (Porter and Tschinkel, 1985; Tschinkel, 1999). Given the high cost of 
major worker production, it follows that competitive advantages gained through granivory must 
be significant. The ability to consume such large quantities of seeds might allow the TFA to 
occupy any habitat with plentiful production of acceptable grass seeds. Yet, S. geminata is not 
found in undisturbed grasslands even when the habitat abuts invaded, disturbed areas. The 
notable absence of S. geminata in undisturbed, native grasslands likely is related to seed size of 
the available grasses and the added difficulty of transporting large seeds of the dominant grasses. 
Preference for small-seeded grasses was likely driven by the ability of small ants to carry seeds, 
rather than their attractiveness as a food source (Fig. 2.4, Fig. 2.5). Native grass species that 
undisturbed grasslands have large seeds that were difficult for S. geminata workers to transport, 
though size-standardized seeds were collected at similar or higher rates than the smaller seeds. 
Because seeds are a significant portion of S. geminata diets in grasslands (Fig. 2.2), access to 
preferred species most likely determines the potential range of the invasive ant, limiting it to 
disturbed habitats where small-seeded, exotic grasses are abundant. 

This study poses interesting questions about the benefits and drawbacks of specialization. 
Seed resources are strictly seasonal and, although S. geminata is apparently able to survive in 
between seed production events, total absence of seed access may be a limiting factor in their 
spread within natural grasslands. The TFA is prolific in villages where grasses are completely 
absent but human food waste is abundant, disturbance is high, and ant diversity is lower. Access 
to small-seeded grasses may be a critical factor that enables the TFA to move into disturbed 
grasslands. However, undisturbed grasslands are afforded protection from invasion when 
dominant grasses possess large seeds. Furthermore, our results suggest that grassland-living TFA 
learn to accept the smaller-seeded grasses and ignore the larger seeded grasses even when seed 
size is reduced (Fig. 2.3) unlike village-living TFA, which were presumably naïve to seed 
resources prior to our assays. Dietary specialization is fairly well-studied in other groups, 
particularly birds and fish. Our understanding of diet in invasive ant species is still superficial 
despite the economic and environmental consequences of these invasions (Gutrich, 2007; 
Holway, 2002). Clearly, diet plays an important role in colony maintenance and survival. Larval 
diets are important in determining caste (Amor et al., 2016; Wills et al., 2018). Access to 
palatable foods determines the potential range of a species. At least in the Komodo region, 
simply leaving large areas of grassland undisturbed may be sufficient to prevent the TFA from 
moving into habitats used by the charismatic ground-nesting fauna that, in many ways, define the 
region. 
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2.6 Figures 
 

                
 
Fig. 2.1. Map of Seraya Kecil with major study habitat types delineated. Source: Google Earth. 
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Fig. 2.2. Biplot of mean delta 15N and mean delta 13C across habitats and species. BRA = 
Brachyponera sp., DIA = Diacamma sp., PAL = Paratrechina longicornis, SED = grass seeds, 
SGM = Solenopsis geminata, TEW = Tetramorium walshi, TRO = Trichomyrmex destructor; s = 
disturbed savanna, u = undisturbed savanna, v = village. 
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Fig 2.3. Boxplot of seed collection by species in treatment and control groups. S = disturbed 
grassland; V = village; DE = disturbed grassland, exotic species; DN = disturbed grassland, 
native species; UN = undisturbed grassland, native species. 
 
  

 
 
Fig. 2.4. Bar-plot showing number of ant-seed interactions by seed species in village and 
disturbed grassland (savanna) habitats. NU2 = Heteropogon contortus, NU1 = Chrysopogon 
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subtilis, ND2 = Agrostis infirma, ND1 = Brachiaria reptans, ED2 = Dactyloctenium aegyptium, 
ED1 = Panicum delicatulum. 
 

 
 
Fig. 2.5. Bar-plot of differences in collection relative to carrying behaviors in whole seed and 
seed-standardized (cut) treatments. Differences were calculated for each sample as difference = 
collected-carried and means are plotted with 95% confidence interval, error bars. 
 
2.7 Tables 
 
         Whole        Cut          % of samples 
Code   Species                                   Status     (mm)                   (mm)       U        D 
DE1     Dactyloctenium aegyptium   Exotic     0.8              NA         0         20    
DE2 Panicum delicatulum Exotic 1.39     NA         0         16  
DN1 Brachiaria reptans Native 1.56     NA         0         8 
DN2 Agrostis infirma Native 2.95     NA         0         8 
UN1    Chrysopogon subtilis              Native    5.63               2.32        88       72 
UN2    Heteropogon contortus           Native    7.3          2.43        36       20 
 
Table 2.1. Whole (control) and cut (treatment) seed size in each selected grass species. DE = 
disturbed grassland, exotic grass; DN = disturbed grassland, native grass; UN = undisturbed 
grassland, native grass. 
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Chapter 3    The foraging behavior and competitive 
interactions of Indonesian grassland ants 
 
3.1 Introduction 
 

Ants are found in every ecosystem on Earth outside of frozen polar regions. An estimated 
25,000 species are thought to currently exist with approximately 14,000 described in literature. 
They provide a wide range of ecological functions and can have profound influence on both 
floral and faunal communities (Walsh et al., 2016). Ants may be seed dispersers (Carney et al., 
2003; Escobar-ramirez et al., 2011), seed predators (Retana et al., 2004), predators of other 
arthropods (Hölldobler and Wilson, 1990), predators or partners of plant pests (Way and Heong, 
2009), and ecosystem engineers, moving massive amounts of soil (Hölldobler and Wilson, 1990) 
and altering vegetation (Carlson and Whitford, 1991; Holbrook et al., 2015). Ants are well-
represented among the world’s 100 most invasive species (GISD, 2018). While native ants play 
critical roles in maintaining ecosystem health, invasive ants cause significant ecological damage 
by reducing populations of native species (Holway et al., 2002) and preying upon nesting species 
(Crossland, 2003; Plentovich et al., 2009). Habitat destruction and species invasion are the 
leading causes of declining ecological health (Vitousek, 1997). Shifting land uses toward 
increasingly intensive human activity cause disturbances to the physical environment which 
favor invasive species (Holway et al., 2002; MacDougall and Turkington, 2005). Much of the 
success of invasive ant species can be attributed to human-mediated dispersal (Holway et al., 
2001; McGlynn, 1999b; Wetterer, 2013) linked to development. Large colony sizes, omnivorous 
diets, and polygyny (Holway et al., 2002; Palmer, 2004; Tsutsui and Suarez, 2003) are defining 
characteristics of invasive ants species differentiating them from less abundant ants with more 
specific dietary and habitat needs. Parts of colonies, ‘buds’, can be moved great distances during 
the distribution of agricultural and construction materials (Holway et al., 2002; McGlynn, 
1999b). Mitigating the impacts of ant invasion generally involves implementing invasive species 
eradication programs which have low success rates and can cost billions of dollars (Hoffman et 
al., 2011; Lee et al., 2015; USDA-ARS 2010). Preventing invasion requires an accurate 
understanding of local ecosystems, the likely response by native communities faced with 
invasion, and knowledge of the biology of the invader.  

Indonesia lies at the center of a major trade route and centuries of long-distance shipping 
have brought introduced ant species to many of the 17,000 islands in the archipelago. Island 
clusters with exposure to trade and development, such as those found across Indonesia, provide 
opportunities for researchers to look at the behavior of invasive ants in communities with 
differing species compositions and land use practices. Several species of invasive ants have been 
introduced to grasslands in southeastern Indonesia. Among them are Solenopsis geminata, 
Trichomyrmex destructor, Paratrechina longicornis, and Anoplolepis gracilipes. These species 
have widespread distributions and cause significant damage where they are able to proliferate. 
Solenopsis geminata, the tropical fire ant, is known to alter arthropod communities (Porter and 
Savignano, 1990) and harm or kill the young of ground nesting animals (Crossland, 2003; 
Plentovich et al., 2009), which are common in the Komodo region and include the endangered 
Komodo dragon, Veranus komodoensis. Trichomyrmex destructor, the destroyer ant, damages 
infrastructure, food products, and other goods while attacking humans (Wetterer 2009). 
Paratrechina longicornis feeds extensively on honeydew producing insects that are often crop 
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and plant pests (Wetterer et al., 2008). It is capable of high population densities and may reduce 
or eliminate other arthropod species (Wetterer et al., 1999). Anoplolepis gracilipes can have 
devastating impacts on local communities through aggression, high population densities, and 
interference competition with other species (Drescher et al., 2010; Lester and Tavite, 2004; 
O’Dowd et al., 2003; Sarty et al., 2007). Robust native ant populations may impose barriers to 
establishment of exotic species (Kennedy et al., 2002; Walters and Mackay, 2005). In cases 
where propagule pressure from invasive ants is low and native species are aggressively 
competitive, invasion may at least be suppressed (Levine et al., 2004). Dominant and abundant 
native species present in grasslands may provide resistance to invasive ant proliferation 
(Henriksson, 2016). Four native ants in the genus Iridomyrmex and one native species of 
Nylanderia are common in Indonesian grassland (Sandidge, Chapter 1). Iridomyrmex ants are 
notoriously strong competitors (Walters and Mackay, 2005), dominating ecosystems in their 
native ranges (Andersen, 1997; Andersen, 2000). Ant in the genus Nylanderia, including N. 
vaga, can reach high abundances and cover large areas (Wilson and Taylor, 1967). In some 
cases, Nylanderia may even be a formidable opponent of Solenopsis (Horn et al., 2013). 
Behavior and biotic resistance exhibited by native species most likely influences the impact 
invasive species can have on an ecosystem. This may, in part, explain the varied results found 
across studies that look at invasive impacts of a particular species. 

Despite detailed studies of ecological collapse (O’Dowd, 2003) and numerous examples 
of native species decline following invasion (Drescher, 2011; Human and Gordon, 1996; Porter 
and Sauvignano, 1990; Walker, 2006), the large-scale impacts of invasive ant species is poorly 
understood. Declining species diversity is a common measure linked to declining ecosystem 
health but diversity measures may be misleading when associated with invasion. Ant species 
diversity can be quite high in invaded communities (Forys and Allen, 2005; Sax and Gaines, 
2003) with co-domination by multiple invasive species being common (Lee, 2002; MacDougall 
and Turkington, 2005; Perfecto and Vandermeer, 2011). Though native ants can survive in 
invaded habitats (Arnan et al., 2011; Gotelli and Arnett, 2000; Sarty and Lester, 2007), invasive 
ants can drastically reduce their populations through competitive exclusion (Drescher, 2011; 
Human and Gordon, 1996; Porter and Sauvignano, 1990; Walker, 2006) shaping the 
communities in which they occur (Gotelli and Arnett, 2000). A more insightful approach to 
understanding negative consequences of invasion may be to examine the interactions within 
invaded communities and to describe the compositional changes and resource allocation. Great 
importance has been placed on describing competitive interactions as a driving force behind 
changes in community composition (see review by Tilman, 1982) along with the negative, 
trickle-down ecological effects resulting from removal of species with important ecological 
functions (O’Dowd, 2003; Carney et al., 2003; Beggs and Wardle, 2006). Competition includes 
territorial disputes over nesting space, aggressive contact related to resource acquisition, and 
superior foraging abilities (Rowles and O’Dowd, 2007). In simplified competition theory, a 
dominant species should eventually cause the extirpation of the poorer competitor where a 
limiting resource is shared (Bengtsson, 1989; Capitán et al. 2016). Ecosystems are often complex 
with multiple resources available and flexibility in invasive reduces the likelihood of resource 
exhaustion. 

Efficiency in acquisition of quality resources from outside the nest is critical to colony 
growth (Kay et al., 2010; McGlynn, 2006). Asymmetries in foraging behavior allow species to 
partition resources both spatially and temporally (Lessard et al., 2009) and are likely influenced 
by a number of factors beyond superiority in physical interactions. Colony size will influence a 
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competitor’s ability to establish a population (Kaspari and Vargo, 1995) and recruit large 
numbers of individuals (Holway and Case, 2001). Dietary flexibility or specialization offer 
additional ways to partition available resources (Ehinger et al., 2014; Funk and Bernays, 2001; 
Marvier, 2004; Nurkse et al., 2009). Environmental factors, such as temperature, cause 
physiological responses that can alter movement, and thereby affect interaction rates among 
individuals (Dell et al., 2014) as well as influence the time of day foraging activity will peak 
(Lee, 2002). Chemical defense compounds can be released into the air and may produce different 
results depending on interspecific pairings (Chen et al., 2013; Sorrells et al., 2011). Physical 
traits of each species play an additional role in determining how fast ants can run, how much 
they can carry, and how well they perform in combat. The ‘dominance-discovery tradeoff’ is a 
concept that explains coexistence through asymmetries in species rates of discovering resources 
and ability to defend them (Bertelsmeier et al., 2015; Perfecto and Vandermeer, 2011). A less-
dominant species would still have access to a resource if it could arrive or ‘discover’ the resource 
sooner than dominant species. Likewise, slower species could access resources if they are able to 
displace other species and ‘dominate’ that resource. Researchers have challenged the simplicity 
of this concept, arguing that many other factors, as described, determine the success of a species 
(Parr and Gibb, 2012; Riccardi et al., 2013; Stuble et al., 2017; Tilman, 2004; Yitbarek et al., 
2017).  

This study is a first effort to describe competition between ant species in Indonesian 
grasslands. The study area lies within and around Komodo National Park, a World Heritage Site 
and conservation area. To date, no studies have been conducted to determine the extent of 
invertebrate invasions, the causes of invasion, or the impacts they may have. Local studies, such 
as this one, provide detailed information on the behavior and distribution of invasive species in 
the area. We specifically documented the prevalence of invasive ants in competitive interactions 
and identified dominant native ants that might resist and suppress invasive competitors. We look 
for relationships between abundance, distribution, and dominance in ant communities at five 
sites. We test for temporal differences in foraging behavior over the period of a day and 
seasonally at three sites. Lastly, we look at arrival, recruitment, and departure to determine if a 
discovery-dominance tradeoff exists between competitors. Disturbance is taken into 
consideration as a factor that might influence the presence and abundance of invasive ants. 
Undisturbed grassland, disturbed grassland, and human-dominated environments (villages and 
hotels) are represented in our analysis as habitats with low, medium, and high levels of 
disturbance. Emphasis was placed on competitive inequalities  between invasive versus native 
species. We identify species that may offer biotic resistance as well as identifying the most 
prevalent and behaviorally dominant invasive species that may pose the greatest threat to 
conservation efforts.  
 
3.2 Methods 
 
Study sites   

The study region encompassed small islands inside or nearby to Komodo National Park, 
Nusa Tenggara Timur, Indonesia. This group of approximately 100 small islands lies between 
the larger islands of Sumbawa to the west and Flores to the east. Islands range in size from 325 
square kilometers to less than 1 square kilometer. Most islands in the study region are 
uninhabited and a small number have evidence of settlements and development projects that 
were abandoned. The region experiences highly seasonal rainfall patterns with a wet season 
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starting in November and ending around April, and a distinct dry season starting in May and 
lasting through October. The dominant habitat types are forest and tropical grassland. Our work 
focused on grassland ant communities. Grasslands consist of a mixture of grasses, less abundant 
forbs, and sporadically dispersed trees. Heteropogon contortus and Chrysopogon subtilis are the 
most common native grass species, representing the majority of vegetation in undisturbed areas. 
Disturbed grasslands are defined by the presence of introduced grass species. Brachiaria reptans, 
Dactyloctenium aegyptium, and Panicum delicatulum are common introduced grass species 
found where habitat has been disturbed through development and grazing. 

At the time of this study, permanent villages were located on five islands throughout the 
entire study region: Komodo, Mesa, Papagarang, Seraya Kecil and Seraya Besar. Resorts were 
located on the islands of Kenawa, Pungu, Seraya Kecil and Sebayur Besar. Five sites were 
selected across four islands based on the availability of grassland habitat adjacent to an area of 
development. Forested areas and development adjacent to forested areas were not included. 
Villages with adjacent disturbed grassland (n = 3) were located at three sites: Komodo, 
Papagarang, and Seraya Kecil. Disturbed grassland adjacent to undisturbed grassland (n = 1) was 
located at one site on Seraya Kecil. A resort adjacent to undisturbed grassland (n = 1) was 
located on Sebayur Besar. Observations were conducted in October and November 2011, at the 
end the dry season, and in March and April 2011, at the end of the following wet season. 
 
Sampling methods 

At each site, we placed three parallel, 70-meter transects centered on a habitat edge. 
Transects were laid 20 meters apart (Fig. 3.1). We placed a 1cm3 tuna bait (canned, in water) in 
the center of a 5cm x 5cm plastic card every 10 meters along each transect. We observed the 
baits four times during 2 hours sampling periods, at three separate times of day: morning (7am-
9am), midday (11am – 1pm), and afternoon (3pm-5pm). Each observation lasted 2 minutes and 
observations were made at 30-minute intervals. The approximate abundance of ants of each 
species was recorded during each observation. At the end of each sampling period, we collected 
the remaining ants for identification. Less common species were collected when possible, but we 
did not collect ants during the observation period to avoid disrupting recruitment. Morning and 
evening observations were conducted on the same day and midday observations were conducted 
either the day before or the day after morning and evening sampling to avoid observing lingering 
workers from the previous observation period. Species were identified in the entomology 
laboratory at Illmu Lembaga Pengetahuan (LIPI), in Cibinong, Indonesia. Dry season data from 
two sites on Seraya Kecil were excluded from the analysis due to insufficient ant collection 
which made it impossible to associate positive species identifications with observations. 
Analyses that include five sites only include wet season data from Seraya Kecil along with data 
from both seasons at the remaining three sites.  
 
Species abundance and distribution 

We predicted that invasive species would be more abundant and widespread than native 
species. Two analyses were conducted to describe community-wide distribution and abundance 
patterns and a third tested for differences between native and invasive ant species. First, we 
calculated relative abundances for each species recorded. We included notably seasonal 
differences and reported on the distribution of each species across the five sites and three habitat 
types (Table 3.1). Next, we modeled the relationship between spatial distribution and absolute 
abundance using linear regression. We identified outliers that may represent numerically and 
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spatially dominant species and obscure differences based on native or invasive status. A follow-
up regression excluded the outlying abundant species to confirm any disproportionate influence 
on the model fit (Fig. 3.2). Finally, we looked at relative abundances of native and invasive ants 
across pooled data and within habitat type. Abundance was calculated as the maximum 
abundance achieved by each species over the four time points (observations) throughout the 2-
hour observation period. Maximum abundances were summed for ‘native species’ and for 
‘invasive species’ recorded at each bait for each period of day. Maximum values recorded for 
‘native’ and ‘invasive’ groups were compared with paired t-tests. This analysis was conducted 
for pooled data and then separately by habitat types (Table 3.2) representing high disturbance 
(villages and hotels), medium disturbance (grazed grasslands near developments), and low 
disturbance (undisturbed grasslands dominated by native grass species).  

 
Interaction coding 

Competitive interactions were recorded when a bait was occupation of a bait changed, 
with one or more other species having been recorded during or within one observation point (30 
minutes) previous to the arrival of another species. A case where species 1 arrives and departs, 
leaving an empty bait in the next observation, is not a competitor of a species subsequently 
arriving to the empty bait. ‘Winning’ a bait was defined by sole occupation of a bait following 
the presence of an interspecific competitor. Aggression was not measured, nor was chemical 
attack and the species still occupying the bait was assumed to have caused the departed ‘loser(s)’ 
to leave. Simultaneous occupations were only recorded as competition when one species 
departed before the other. Multiple competitions per bait were possible when more than one 
species departed before the end of the observation period with one or more species remaining 
after abandonment by multiple ‘losers’. Dummy variables were assigned to each competition 
outcome as 0 = ‘lost’ and 1 = ‘won’. The number of wins and losses for each genus in a pair 
provided a numerical measure of success used in statistical analysis and modeling. 

Species occupying a bait with no other species present were not considered to be in 
competitive interactions but were recorded as the species being ‘occupational winners’ in 
dominance measures (Fig 3.3). ‘Competitive winners’ were winners of competitive interactions 
as described above. Both of these conditions are considered ‘dominance’ in analyses using 
measures of frequency of occurrence at baits (Fig. 3.3). 

Duration of contests (Fig. 3.6) were recorded as the time two competing species were 
both present plus 0.5 hours (the time in which the new species would have arrived prior to 
detection and/or the losing species left before no longer being observed). Duration of stay (DUR) 
was recorded as sum of 0.5 hours per observation for each species. For example, if a species was 
seen at 0.5 and 1 hours but not at 1.5 hours, the duration was coded as 1 hour. Estimated time of 
arrival (ETA) in the previous example, where a species was present during the first observation, 
would be less than 0.5 hours and entered as ‘0’. Time of departure would be recorded as 1.5 
hours, representing departure before the third observation. 

 
Dominance and interspecific competition 

Analyses conducted under the niche partitioning hypothesis and dominance-discovery 
hypothesis required that dominant species were identified prior to hypothesis testing. Individual 
species were pooled by genus for analyses of dominance in three parts: overall spatial 
distribution, in frequency of competitive interactions, and in competition outcome. Competitive 
outcomes between species were then statistically analyzed to acquire a fourth measure of 
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dominance. For some species, interspecific competition observation numbers were too low to 
conduct statistical analysis. Species were pooled by genus which enabled us to obtain more 
meaningful results. Where only one species represented a genus, we used the full species name 
though we refer to each as ‘genus’ regardless of the number of species included. 

‘Dominance’ was described with three measures. ‘Spatial dominance’ was defined as 
simply the number of baits the species was present at within the entire study area. This measure 
captureed the overall distribution of the species. Not all species were found across all sites. 
‘Occupational dominance’ reflected spatial dominance within the realized range of the species 
which is defined as all the sites that the species was found in. ‘Competitive dominance’ 
measured the proportion of all competitions that a species was involved in and the proportion of 
those contests that it won (Fig. 3.3).  

 Coded competitive outcomes for genus pairs were used to describe competitive 
relationships between genera and assess the heirarchical complexity of these competition 
networks. Multiple regression analysis was used to assess the influence of competitor genera on 
the competition outcome of the focal genus, treated as the response. Multiple regression was 
selected over logistic regression because it offers associated R-squared values and both test types 
produced identical results. Analyses were run in the ‘stats’ package in R. Multiple aggression 
analysis was attempted for all genera that competed at 10 or more baits. Less common genera are 
represented as competitors for the genera that could be further analyzed. Regression coefficients 
for competitor genera were interpreted as a likeliness to win (positive) or likeliness to lose 
(negative) against the focal genus. 

When we conducted field work for this study, Trichomyrmex destructor was included in 
the genus Monomorium (Monomorium destructor). In several instances, a fairly uncommon 
species, Monomorium salomonis, was collected at baits with T. destructor and the two could not 
be distinguished in written observations. Considering this difficulty due to phenotypic similarity 
and their previous taxonomic relatedness, we combined observations of these two species and 
call this the ‘TM complex’ which is treated as a genus.  
 
Temporal niche partitioning 

We hypothesized that common and widespread species would forage at different times of 
day, as a strategy for avoiding direct competition. Separate analyses were conducted for wet 
season and dry season data to describe seasonal differences along with daily differences in 
foraging activity. We selected three invasive species and two native species with wide 
distribution and high abundance for analysis. Iridomyrmex sp. 2, P. longicornis, and T. 
destructor were found at all sites and S. geminata and T. walshi were very abundant and fairly 
widespread. Data were pooled from 3 sites, Komodo, Papagarang, and Sebayur. Seraya was 
excluded from analysis because only wet season data were available for the two sites on the 
island and seasonality was a component of the analysis.  

‘Absolute abundance’ (AA) was calculated for each species across seasons (wet and dry) 
and the three time periods (morning, midday, and evening). AA was calculated as the sum of 
recorded abundances from individual baits within a season and a time period for a species. The 
measure was used to highlight fluctuations or stability in the number of individuals present 
between seasons and throughout the day and to compare one aspect of foraging behavior 
between species. ‘Proportional abundance’ (PA) was used to report the number of ants of each 
species within each season and time period relative to the number of ants of all species. The sum 
of all ants of all species, including those less common and not included in statistical analyses, 
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was calculated for each season and time period. The number of individuals of each species at 
every bait was divided by the total number of ants at all baits in that season and time period. This 
measure allowed us to look at fluctuating abundances of species relative to ant abundance in the 
entire community. Pairwise Wilcoxon tests were conducted for each species and season in the R 
package ‘stats’ using a Bonferroni correction for multiple tests between morning, midday, and 
evening. 
 
Dominance-discovery tradeoffs 

We assessed the relative influence of variables other than competitor identity on winning 
or losing a bait. Logistic regression was conducted using the ‘glm’ function in the ‘stats’ package 
within the program R. The full model included the variables: island, habitat type, season, period 
of day, estimated time of arrival, abundance during competition, maximum abundance over the 
observation period, duration of occupancy, and place in the order of arrival of species along with 
interaction terms for all variables.  The model was reduced by removing insignificant variables 
one by one, starting with interaction terms, until all remaining variables made significant 
contributions to the model fit. The final model included abundance during competition, 
maximum abundance over the observation period, estimated time of arrival, and duration of 
occupancy. ANOVA was used in combination with a chi-squared test to analyze final model fit 
and identify variables that contributed most to model improvement.  

The impact of recruitment rate on winning baits was determined by building a second 
logistic regression model (Table 3.4) run with a reduced data set. First, generalized linear models 
were fit for each bait to obtain slope and intercept values for abundance increase and decrease of 
each species at each bait observed (n = 388). All data for species with positive slopes (recruiting) 
were retained. Data was pooled across all sites sampled (n = 221) and included competitive 
interactions as well as dominance without competition, ‘occupational dominance’. Slope data 
were then added to the list of variables and run in full generalized linear model, reduced as 
previously described, and followed with chi-squared ANOVA. Recruitment rate (slope) was 
assessed for any relationship to winning/losing a bait over the entire observation period based on 
p-value, interactions with other variables, and contribution to model improvement. In a final 
analysis, recruitment rates were compared between species. Slope calculations for each 
observation for a species were compiled and compared between each species pair using pairwise 
Wilcoxon sum-rank tests in the program R.  
 
3.3 Results 
 
Species abundance and distribution 

Nineteen species were observed across five wet season sites and three dry season sites. 
Six introduced species, including five invasive ants of global concern, represented 73% of the 
82,188 ants recorded throughout the study. The high percentage of introduced species was driven 
by two particularly abundant species. Trichomyrmex destructor made up 35.4 % and Solenopsis 
geminata, 32.4 %, of the total number of ants. Iridomyrmex sp. 2 was the third most abundant ant 
species and made up 14.2 % of total abundance. Cosmopolitan species, those found on every 
island and in every habitat type, included Iridomyrmex sp. 2, Tapinoma sp. 1, Paratrechina 
longicornis, and Trichomyrmex destructor (Table 3.1).  

A total of 216 baits was analyzed in seasonal comparisons: 108 in each season. In total, 
27,951 ants of 10 species were recorded in dry season observations, with 73.6% of bait locations 
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being occupied in at least one observation period. Trichomyrmex destructor was the dominant 
species, found at 41.3% of all occupied baits. Trichomyrmex destructor accounted for 52.6% of 
total dry season abundance. Iridomyrmex sp. 2 was the second most abundant and spatially 
common species, accounting for 25% of all individuals collected and present at 28.4% of 
occupied baits. Solenopsis geminata, was present at two of three sites sampled in both seasons 
(Table 3.1), comprised 5.2% of total dry season abundance, and was found at 11.1% of occupied 
baits.  

Total wet season abundance was similar to dry season abundance, with 29,736 ants 
collected and 75% of baits being occupied. Trichomyrmex destructor dominated baits during the 
wet season, comprising 35.8% of total abundance, and was found at 25.9% of occupied baits. 
Solenopsis geminata was the second most abundant and common wet season species with 
numbers similar to T. destructor. Solenopsis geminata accounted for 29.6% of abundance and 
was present at 24.1% of occupied baits, but was present at fewer sites. Iridomyrmex sp. 2 
comprised 11.8% of wet season abundance and occurred at 17.3% of occupied baits.  

The three most dominant species had a strong influence on the relationship between 
abundance and distribution of species across sites. There was a strong positive correlation 
between the number of baits a species was observed at (frequency) and the number of individuals 
observed overall (abundance)(adj. R-squared = 0.728, F = 54.53, DF = 1 and 19,  p-value = 
5.387e-07) (Fig. 3.2B). This relationship was driven primarily by three high-abundance, high-
frequency species, Iridomyrmex sp. 2, S. geminata, and T. destructor. When these species  were 
excluded, the relationship between abundance and distribution was no longer significant (adj. R-
squared = 0.132, F = 3.586, DF = 1 and 16, p-value = 0.07649) (Fig. 3.2A).  

Six introduced species were recorded across the study. Four introduced species were not 
more abundant than native species of ants. Anoplolepis gracilipes occurred at a single site and 
made up less than one percent of total abundance. Paratrechina longicornis made up less than 
one percent of total abundance. Monomorium salomonis and Tetramorium simillimum occurred 
at two sites and made up 2.7% and less than one percent of total abundance, respectively.  
 Invasive ant abundance was higher than native ant abundance at baits for all habitats 
combined, in village environments, and in disturbed grasslands. No difference in invasive versus 
native ant abundance was found in undisturbed grasslands. Data were Bonferroni corrected and 
the critical p-value was p <0.0125 with alpha = 0.05 (Table 3.2). 
 
Dominance and Interspecific competition 

Across sites, the TM complex was both numerically and spatially dominant (Fig. 3.2, Fig. 
3.3A). Solenopsis geminata was co-dominant, being most frequent competitor for TM. Within 
the realized range of each genus, dominance was represented by two measures: ‘occupied baits 
won’ included baits at which a species was present but had no competitor (Fig. 3.3B) and 
‘contested baits won’ included only baits at which a competitor was present and displaced (Fig. 
3.3C). TM were the most common ants at occupied baits. Their recorded distribution (realized-
range) included all sites. This group was successful in competition, winning 24.3% of all 
recorded competitions across sites (Fig 3.3B, yellow bar) and 69.4% of competitions it entered 
(Fig 3.3B, yellow bar divided by green bar). Solenopsis geminata were present at 4 of 5 study 
sites, winning 24.1% of all competitions recorded within its realized-range and 60.6% of those it 
entered.  
 Ant genera were often common within their realized ranges, where they may have been 
fairly successful competitors, but not common across sites and, in these cases, had low regional 
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dominance (Fig. 3.3A). Anoplolepis (represented by the invasive Anoplolepis gracilipes) was 
locally common at two sites, both on the island of Seraya Kecil. Anoplolepis  gracilipes was an 
aggressive competitor, entering 66.7% realized-range competitions. The competition win rate for 
A. gracilipes was 20.8% revealing a realized-range success rate (14% of competition baits) 
similar to the most dominant species, however, this invasive ant was not widespread. 
Brachyponera (Brachyponera sp. 1) was locally common at one site and present at 35.5% of 
occupied baits within its realized range. It dominated 25.8% of all occupied baits where it was 
observed. Despite a relatively high success rate in dominating baits, Brachyponera sp. 1 rarely 
had a direct competitor and had a low measured competition win rate being present for 14.8% of 
realized-range competitions and winning 0% of observed competitions.  

Solenopsis geminata, the TM complex, and Iridomyrmex spp. (Iridomyrmex sp. 1 and 
Iridomyrmex sp. 2) were frequent enough competitors to provide statistically significant results 
when placing them as the focal genera of their respective interspecific competition models (Fig. 
3.4). Solenopsis geminata was significantly less likely to win in competition with ants in the 
genus Iridomyrmex (Estimate = -1.000e+00, T = -2.195, p-value = 0.0395), however the model 
fit was low (F = 1.406, DF = 6 and 21, p-value = 0.2588, adj. R-squared = 0.0827). Ants in the 
TM complex were significantly worse at competing with S. geminata than other species 
(Estimate =  -0.5833, T = -3.397, p-value = 0.00164) and the model fit was good (F = 7.905, DF 
= 8 and 37, p-value = 3.871e-06, adj. R-squared = 0.5511). Paratrechina longicornis showed 
evidence of a negative relationship with the TM complex (Estimate = -0.6667, T = -2.812, p-
value = 0.0157) however model fit was low (F = 1.835, DF = 5 and 12, p-value = 0.1803, adj. R-
squared = 0.1972). Anoplolepis gracilipes (n = 23), Crematogaster sp. 1 (n = 11), and 
Nylanderia vaga (n = 14) had no significant positive or negative competition outcome 
relationships with focal genera and models were not a good predictive fit for outcomes. 
 
Temporal niche partitioning 

Although fluctuations by period of day and season were found within species, there was 
no evidence of niche partitioning between invasive species or between any of the most abundant 
and common species (Fig. 3.5). When fluctuations were found, absolute abundance (AA) tended 
to be lowest at midday for all species. Solenopsis geminata was less abundant at midday than in 
the evening (p-value = 0.0112) or the morning (p-value =  0.0253), during the wet season (Fig. 
3.3). Trichomyrmex destructor had a higher AA in the evening compared to midday (p = 0.0048) 
in the dry season. Iridomyrmex sp.2 had higher AA in the evening than in the morning (p = 
0.0139) and at midday (p = 0.0033) during the dry season. Tetramorium walshi was more 
abundant in the morning than at midday during the dry season (p-value = 0.0367). Paratrechina 
longicornis AA did not differ between periods of day. 

When comparing proportional abundances (PA), the proportion of total seasonal 
abundance of all species by period, S. geminata had a lower PA at midday than in the morning 
(p-value = 0.0220) during the wet season. No PA differences between morning, midday, and 
evening were found for any other species.  
 
Dominance-discovery tradeoffs 

Later estimated time of arrival (ETA) and longer duration of stay (DUR)  were associated 
with higher rates of winning in competition for a bait, with DUR being the best predictor of 
outcome. Abundance at time of competition, and maximum abundance achieved were not 
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statistically significant, but substantially improved overall model fit. Island, season, period of 
day, and order of arrival had little impact on model fit.  

Duration of stay (DUR) for each species produced the highest number of significant 
differences between species pairs (Fig. 3.6). Mean DUR for P. longicornis was lowest (0.95 
hours) and was significantly lower than DUR for Crematogaster sp. 1 (p-value = 0.0089), 
Iridomyrmex sp. 2 (p-value = 0.0084), T. destructor (p-value = 0.0012), and S. geminata (p = 
0.0001). Mean DUR for Tapinoma sp. and T. walshi were lower than DUR for S. geminata (p-
value = 0.0463, p-value = 0.0139). 

While DUR was indicative of dominance over extended periods of time, arrival and 
departure times were more useful in highlighting species that may occupy baits earlier and leave 
when more competitive species arrive. Mean estimated time of arrival (ETA) was lowest for 
Nylanderia vaga (0.61 hours) and highest for T. destructor (0.87 hours). Nylanderia vaga mean 
ETA was significantly lower than that of P. longicornis (p-value = 0.0271) and Tapinoma sp. (p-
value = 0.0374). Solenopsis geminata ETA was significantly higher than that of P. longicornis 
(p-value = 0.0290). Mean estimated time of departure (ETD) was lowest for N. vaga (1.47 hours) 
and highest for T. destructor (1.83 hours). Paratrechina longicornis departed significantly earlier 
than T. destructor (p-value = 0.0007) and S. geminata (p-value = 0.0215). Tetramorium walshi 
also departed significantly sooner than both T. destructor (p-value = 0.0002) and S. geminata (p-
value = 0.1399), the two co-dominant species (Fig. 3.5).  

 A generalized linear model using only baits for which slope of recruitment rate 
could be measured showed no significance for slope (recruitment rate) in influencing the 
likelihood of winning a competition (Table 3.4). Otherwise, the slope-calculated model, with 
reduced data points, was very similar to models run using all baits where competition occurred. 
Pairwise, Wilcoxon rank-sum tests comparing recruitment, measured as slope of abundance 
increase, were performed for species pairs (Table 3). Tetramorium walshi (TEW) was slower to 
recruit individuals (p-value < 0.0643) than Anoplolepis gracilipes (ANG), Iridomyrmex sp. 2 
(IR2), Monomorium salomonis (MOS), N. vaga (NYV), S. geminata (SGM), and Tapinoma sp. 
(TAP). T. destructor and S. geminata recruited at faster rates than P. longicornis with a cutoff of 
p-value < 0.1 for determining significance. 
 
3.4 Discussion 
 

Grassland ant communities on several small islands in Indonesia were found to have high 
abundances of two invasive ant species that were able to spatially and behaviorally dominate 
food resources at baits. Solenopsis geminata and Trichomyrmex destructor were dominant 
spatially, distributed widely across sites, numerically (Fig. 3.3B), comprising 67% of total ant 
abundance, and behaviorally, effectively taking control of baits when other species were present 
(Fig. 3.3C). Solenopsis geminata and T. destructor, were co-dominant with one native ant 
species, Iridomyrmex sp. 2. As in other studies (Andersen, 1997; Andersen, 2000; McGlynn, 
1999b; Perfecto, 1994; Perfecto and Vandermeer, 2011), dominant species came from the 
subfamilies Myrmicinae and Dolichoderinae. Populations of four additional invasive species 
have been established throughout grassland habitats but were present at relatively low 
abundances. High abundances of the three dominant ant species was related to their 
representation at a large number of baits (Fig 3.2B), linking dominance to abundance. When 
dominant ants were removed from the data set, no relationship was found between abundance 
and distribution. This suggests that non-dominant species not only have smaller colony sizes but 
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vary in the way they are distributed through space. Dominant invasive ants may diminish 
populations of native ant species and less common invasive ants, exaggerating the disparity in 
abundances (Drescher, 2011; Human and Gordon, 1996; Porter and Sauvignano, 1990; Walker, 
2006). However, native ant species may also decline when habitat is altered by human activity as 
a response to habitat destruction rather than pressure from introduced ants (King and Tschinkel, 
2006). Mean abundances of invasive species did not fluctuate greatly between undisturbed 
grassland, disturbed grassland, and villages while native ant abundances were significantly 
reduced in disturbed habitat types (Table 3.2). Maintenance of abundant native ant populations in 
undisturbed, but invaded, demonstrate that in the absence of disturbance, native ant species can 
be as abundant as invasive species. Though some sites had fewer invasive ant species present, all 
sites were invaded. Eradication of invasive ant species but not native ant species was not 
possible, however sites located further from development may have lower rates of invasion 
allowing for a better comparison of native ant species abundance in highly invaded versus mildly 
invaded grassland. 

Our work focused on describing interactions between ants at food resources and 
behavioral mechanisms that facilitate the coexistence of native and invasive ant species. We 
hypothesized that dominant ants would forage at different times of the day to avoid competing 
with one another, a strategy known as ‘temporal niche partitioning’. After determining which 
ants were dominant in the system we looked for evidence of temporal niche partitioning. An 
example of temporal partitioning would be a species with high heat tolerance, such as ants in the 
TM complex, foraging during the hottest parts of the day while competitor species remain in 
their nests. Ant foraging fluctuated throughout the day but no pattern was evident that would 
support our hypothesis (Fig. 3.5). Calculations of species abundances and frequency at baits 
suggested that S. geminata was more prevalent in the wet season and that Iridomyrmex sp. 2 was 
more prevalent in the dry season. This seasonal shift was not apparent in temporal niche 
partitioning analyses (Fig. 3.5).  

Dominance-discovery tradeoffs were hypothesized to exists with non-dominant species 
arriving at baits sooner than dominant species that were able to take control of baits. The 
dominance-discovery tradeoff concept has been a popular in describing how foraging 
asymmetries can lead to species coexistence (Bertelsmeier et al., 2015; Perfecto and 
Vandermeer, 2011). Quickly discovering a food resource would enable non-dominant ants to 
access food resources when faced with ubiquitous, aggressive species. Duration of stay and 
estimated time of arrival were related to likelihood of winning a bait. This is probably, at least in 
part, an artifact of our study design which defined the winner as a species remaining at the bait 
after the departure of another species. But interestingly, abundance at time of competition and 
maximum abundance reached improved the model fit, further supporting the idea that high 
abundances are related to dominance and that colony structure of species plays an important part 
in determining how that species acquires food. Still, some evidence supported the dominance-
discovery tradeoff hypothesis. Nylanderia vaga arrived sooner than some other species and both 
S. geminata and T. destructor arrived later than some other species. Paratrechina longicornis 
and Tetramorium walshi, two non-dominant species, departed sooner than dominant invasive 
species but not Iridomyrmex sp. 2, the dominant native species. It is notable that these 
differences did not separate invasive species from native species and non-dominant invasive 
species, such as P. longicornis, behaved similarly to non-dominant native ant species. Though 
invasive ant species share large colony sizes as a defining trait and high abundance was linked to 
competitive success, not all invasive species achieved numerical dominance. High abundance 
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was not related to a higher recruitment rate, leading us to further conclude that the biological trait 
of large colony sizes is more important in dominating resources than behavioral attributes such 
as speed or an elevated recruitment rate. 

No one species was apparently superior in competing directly at food resources, with the 
success of each dominant ant being diminished by another (Fig. 3.4). Iridomyrmex sp. 2 is a 
cosmopolitan, native species capable of defending baits against S. geminata and occurring at 
relatively high abundances across the study region. Trichomyrmex destructor was able to win 
control of baits when competing with S. geminata. Paratrechina longicornis had some success in 
taking control of baits occupied by T. destructor. In addition to biotic resistance, where native 
species eliminate or suppress invasive species, invasive ants seemed to have some limiting 
effects on one another. High species diversity is generally thought to deter invasion (Kennedy et 
al., 2002) and this concept may apply even when diversity is among invasive species.  

Invasive ants are of concern for the small island ecosystems in and around Komodo 
National Park. Many birds and reptiles living in the region are ground nesters, including the 
endangered Komodo dragon. These species are particularly vulnerable to predation by invasive 
ants such as Solenopsis geminata. Native ant populations appear to be fairly resilient to total 
exclusion but it is difficult to predict long-term changes in composition and ecosystem function. 
Explanations for species coexistence have struggled to prove broadly applicable (Chesson, 2000; 
Schoener, 1976; Tilman, 2004; Yitbarek et al., 2017). We believe that localized studies would be 
better for assessing threats to areas of conservation concern. Broadly, invasive ant species have 
serious negative consequences for native habitats. However, some ecosystems are more resilient 
than others and managing invasions may be enough to protect diversity and ecosystem function 
avoiding costly eradication programs. By conducting local research, preventative measures can 
be taken to avoid the expansion of invasive ant populations. Solutions can be developed in ways 
that prioritize the specific threats presented by invasive ants, identifying which are potentially the 
most problematic. Native species that offer resistance can be identified and management could 
focus on maintaining these species.  
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3.6 Figures 
 

 
Fig. 3.1. Example bait transect layout across village-grassland boundary. Each site was sampled 
across a habitat gradient.  
 
 

 
 
Fig. 3.2. A.  Linear regression of abundance (individuals) and frequency (baits) across 5 sites 
excluding three most abundant species. B. Linear regression for all species recorded across 5 
sites. Native species are in shades of green and blue. Introduced species are in shades of red, 
orange, and yellow. The unknown origin of TAP is represented by gray.  
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Fig. 3.3. Bar-plots of dominance and bait occupation measures by ant species. A. Numerical 
dominance = proportional abundance across all sites surveyed, spatial dominance = proportion of 
baits occupied across all sites surveyed; B. “o. pres.” = proportion of occupied baits at which 
species was present within the sites at which it was observed, “o. won” = proportion of occupied 
baits a species occupied last and alone within its realized-range; C. “c. pres.” = proportion of 
contested baits at which species was present within its realized-range, “c. won” = proportion of 
contested baits a species occupied last and alone within the sites at which it was observed. 
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Fig 3.4. Diagram showing competitive success between species. Arrows point to better 
competitor. Dashed arrows indicate significant coefficient values but poor model fit. 
Species/genera with no associated arrows did not influence competitive outcomes. 
 
 

 
 
Fig. 3.5. Boxplots representing abundance measures of common ant species found across sites 
during different period of day. Data is from sites used in seasonal and time period comparisons. 
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Fig. 3.6.  Boxplots of estimated time of arrival, estimated time of departure, and duration of stay 
for species present at more than 10 baits. Data includes all sites, seasons, and periods of day. 
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3.7 Tables 
 

 
 
Table 3.1. Table of abundance and presence or absence of all species collected on each island 
and habitat type. St = status as native, intorduced, or unknown. % = percent of total abundance. 
Islands: K = Komodo, P = Papagarang, B = Sebayur, Sh = Seraya Kecil Hotel, Sv = Seraya Kecil 
Village. Habitat types: U = undisturbed grassland, D = disturbed grassland, H = hotel, V= 
village. * indicates an introduced and/or invasive species. 
 
 
habitat type mean native mean invasive p-value 
all 112.44 341.7142857 0.00000287 
undisturbed 247.7714286 332.7428571 0.25735633 
disturbed 69.27868852 455.6721311 0.00002930 
village 85.81012658 257.6962025 0.00237858 

 
Table 3.2. Results of paired t-tests comparing pooled abundances of native ants versus invasive 
ants in habitats with differing levels of development and disturbance. Undisturbed grassland, n = 
35; disturbed grassland, n = 61; human settlements, n =  79. 
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Genus                                      Species                                    Code 
Anoplolepis   Anoplolepis gracilipes ANG 
Brachyponera   Brachyponera sp. 1  BRA 
Crematogaster  Crematogaster sp. 1  CRX 
Iridomyrmex   Iridomyrmex sp. 1  IRX 
    Iridomyrmex sp. 2  IRX 
Monomorium   Monomorium salomonis MOX / TM 
Nylanderia   Nylanderia vaga  NYV 
Paratrechina   Paratrechina longicornis PAL 
Polyrhachis   Polyrhachis sp. 1  POX 
    Polyrhachis sp. 2  POX 
Solenopsis   Solenopsis geminata  SGM 
Tapinoma   Tapinoma sp. 1  TAP 
Tetramorium   Tetramorium simillimum TEX 
    Tetramorium walshi  TEX 
Trichomyrmex   Trichomyrmex destructor MOX / TM 
 
Table 3.3. List of genus and species codes used in figures. 
 
 
            mean    n=8 
 slope  ANG    n=12  
ANG    9.4            BRA     n=9                                    
BRA   2.8       0.3121               CRA    n=31 
CRA    26.6      1.0000  0.7628               IR2       n=9 
IR2 19.4 1.0000  0.1053  1.0000               MOS     n=11 
MOS 19.0 1.0000  0.3675  1.0000  1.0000                NYV    n=6 
NYV 13.0 1.0000  1.0000  1.0000  1.0000  1.0000               PAL     n=40 
PAL  3.0 1.0000  1.0000  0.8373  0.5176  0.7676  0.8159               SGM     n=5 
SGM  25.3 1.0000  0.0058  1.0000  1.0000  1.0000  1.0000  0.0730                TAP    n=14 
TAP  30.2 1.0000  0.2484  1.0000  1.0000  1.0000  1.0000  0.5176  1.0000               TEW   
TEW  1.27    0.0184  1.0000  0.2134  0.0049  0.0127  0.0392  1.0000  1.8e-05  0.0643  
TRO 31.2 1.0000  0.0012  1.0000  1.0000  1.0000  1.0000  0.0700  1.0000   1.0000  n=69  
 
Table 3.4. Pairwise Wilcoxon rank-sum tests of mean slope representing recruitment rates to 
baits. Values are p-values. Bold values are p <0.05, black values are p < 0.1, and gray values are 
insignificant. A Holm correction was applied to all tests. 
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