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SUMMARY

Lipid droplets (LDs) are organelles of cellular lipid storage with fundamental roles in energy 

metabolism and cell membrane homeostasis. There has been an explosion of research into the 

biology of LDs, in part due to their relevance in diseases of lipid storage, such as atherosclerosis, 

obesity, type 2 diabetes, and hepatic steatosis. Consequently, there is an increasing need for 

a resource that combines datasets from systematic analyses of LD biology. Here we integrate 

high-confidence, systematically generated human, mouse and fly data from on studies of LDs 

in the framework of an online platform named the Lipid Droplet Knowledge Portal (https://

lipiddroplet.org/). This scalable and interactive portal includes comprehensive datasets, across a 

variety of cell types, for LD biology, including transcriptional profiles of induced lipid storage, 

organellar proteomics, genome-wide screen phenotypes, and ties to human genetics. This resource 

is a powerful platform that can be utilized to identify determinants of lipid storage.

Keywords

inflammation; triacylglycerol; sterol ester; proteasome; C16orf54; MSRB3; proximity labeling; 
protein targeting

INTRODUCTION

Lipid droplets (LDs) are phospholipid monolayer–bound organelles found in most 

eukaryotes and some prokaryotes. These organelles store neutral lipids, such as 

triacylglycerols (TGs) and cholesterol esters (CE), that can be used to generate metabolic 

energy or cell membranes. Specific proteins, including many important lipid metabolism 

enzymes (e.g., TG synthesis and degradation enzymes) bind to LD surfaces. Due to their 

important function in metabolism, alterations in LD biology are causal or implicated in 

diseases, such as lipodystrophy, atherosclerosis, obesity and related disorders (e.g., type 

2 diabetes mellitus (T2D), non-alcoholic fatty liver disease (NAFLD), and nonalcoholic 

steatohepatitis (NASH)). Moreover, alterations in LD metabolism are implicated in cancer, 

neurodegeneration, and immune function (Cruz et al., 2020; Gluchowski et al., 2017; 

Pereira-Dutra et al., 2019; Seebacher et al., 2020; Walther and Farese, 2012).

Despite the relevance of LDs to metabolic diseases, many aspects of their biology remain 

unclear, which has led to a recent surge of research into the biology of this organelle. 

In particular, systematic, unbiased approaches to studying LDs, including genome-wide 

screens to identify genes governing LD biology (Beller et al., 2008; Guo et al., 2008; 

Mejhert et al., 2020; Scott et al., 2015), and LD proteomics in different cells and tissues 

(Bersuker et al., 2018; Krahmer et al., 2013; Krahmer et al., 2018; Mejhert et al., 2020), 

have been instrumental to progress in our understanding of LDs. However, the results from 

these various large-scale experiments are currently fragmented, limiting the integration and 

interrogation of data from various experiments. Specifically, unlike for other organelles, 
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such as mitochondria (Rath et al., 2021), there is no comprehensive and scalable repository 

for integrating large data sets relevant to LD biology.

To address this deficiency and provide a resource for investigators of LD biology, we have 

created the Lipid Droplet Knowledge Portal (LD-Portal, https://lipiddroplet.org), an online 

resource that includes data from systematic research in LD biology. In this resource paper, 

we describe the initial version of the LD-Portal and, by highlighting several genes with 

phenotypes in these datasets that were previously not linked to LDs, we provide examples of 

how the LD-Portal can be used for discovering new facets of LD biology.

RESULTS

Overview of the Lipid Droplet Knowledge Portal

A conceptual content map and detailed overview of the available data in the initial version of 

the LD-Portal are shown in Figure 1 and Figure S1. The initial datasets integrated in the LD-

Portal include a comprehensive dataset for RNA expression in human THP-1 macrophages 

(without and with lipid (Mejhert et al., 2020), LD proteomics for a variety of cell types 

(Bersuker et al., 2018; Krahmer et al., 2018; Mejhert et al., 2020) and high-content imaging 

screens of genes governing LD biology in human THP-1 macrophages and Drosophila 
S2 R+ cells (Mejhert et al., 2020; Song et al., 2021). In addition, the LD-Portal includes 

datasets for LD proteomics and phosphoproteomics of murine liver from mice fed chow or 

high-fat diets (Krahmer et al., 2018). To enable efficient data mining of LD biology relevant 

to human physiology and disease, we integrated the LD-Portal data with human genetics 

data from the Common Metabolic Diseases Knowledge Portal (https://HuGeAMP.org/). The 

LD-Portal resource allows both gene and phenotype-centric (“Gene Finder”) queries.

Transcriptional Response to Increased Lipid Storage in Macrophages

Cells store excess lipids, such as fatty acids or sterols, as neutral lipids in LDs, a process that 

we named the “lipid storage response” (LSR, (Mejhert et al., 2020)). One component of the 

LSR is a rewiring of transcription to facilitate LD formation and lipid storage and utilization. 

To enable discovery of LSR mechanisms and integration with other aspects of LD biology, 

the LD-Portal includes information on gene expression changes in differentiated human 

THP-1 macrophages, under conditions promoting lipid storage, in this case by incubation of 

cells with lipoproteins that induce the formation of LDs. Cells were cultured with acetylated 

low-density lipoproteins (ac-Lipo) (Mejhert et al., 2020) that contain both CEs and TGs 

(4.82 mg/dL total cholesterol and 4.12 mg/dL triglyceride). As also shown in Mejhert et 
al. (Mejhert et al., 2020), the uptake and degradation of ac-Lipo in the endo-lysosomal 

pathway resulted in LD storage of both CEs and TGs (Figure 2A). Formation of CE- and 

TG-containing LDs enabled us to probe pathways for the intracellular storage of either 

neutral lipid; in contrast, incubation with oleic acid resulted primarily in TG accumulation in 

LDs (Figure 2A).

Our RNA sequencing studies of the LSR in THP-1 cells showed pronounced changes 

in gene expression for 2414 genes (1289 up-regulated, and 1125 down-regulated, adj. 

p-value<0.01) after culturing cells in the presence of ac-Lipo (Mejhert et al., 2020). Re-
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analysis of these data with gene set enrichment showed expected changes, such as the 

downregulation of cholesterol homeostasis genes and the induction of expression of the 

unfolded protein response and inflammatory genes (Figure 2B). However, genes in many 

other categories were also significantly altered during the LSR of this cell type. For many 

of these genes, the relationship between changes in their expression and ac-Lipo treatment 

is currently unknown. Further analyses of this dataset revealed that SREBP2 target genes 

were predominantly downregulated, explaining the changes in cholesterol homeostasis gene 

expression, and NF-kB target genes were upregulated, explaining increased expression 

of inflammation-related genes (Figure 2C–D). This dataset, accessible on the LD-portal 

interface, therefore provides a rich resource for probing the cellular response to ac-Lipo 

loading in macrophages.

Lipid Droplet Proteomes of Human Cells and Murine Liver

The LD-Portal also includes data on the subcellular localization of proteins and particularly 

highlights the propensity of proteins to localize to LDs under different conditions. To collect 

comprehensive information on the LD proteome of several model systems, we integrated 

data from the proteomic analyses of LDs from human THP-1 macrophages (Mejhert et al., 

2020), human SUM159 triple-negative breast cancer cells (Mejhert et al., 2020)), human 

hepatoma Huh7 and human osteosarcoma U2OS cells (Bersuker et al., 2018), and a large-

scale in vivo murine liver proteomic and phosphoproteomic organellar-localization atlas 

(Krahmer et al., 2018). These protein localization data are now collectively available for 

analysis on the LD-Portal.

For Huh7 and U2OS cells, LD proteins were identified using a proximity-labeling strategy 

(Bersuker et al., 2018). In this approach, the LD proteins ATGL or PLIN2 were tagged 

with the promiscuous biotinylating enzyme APEX2. Upon addition of APEX2 substrates, 

proteins in the immediate vicinity of either LD protein were modified with a biotin, isolated, 

and identified by proteomics (Bersuker et al., 2018). For each cell type, proteins that 

displayed a normalized confidence score >1 were identified as LD proteins, resulting in 77 

and 152 LD proteins in Huh7 and U2OS cells, respectively (Bersuker et al., 2018).

For the SUM159 and THP-1 cultured cell lines, we measured the enrichment of proteins in 

the LD fraction compared with the total input fraction to identify proteins enriched on LDs. 

Based on the enrichment of bona fide LD proteins identified in Bersuker et al. (Bersuker and 

Olzmann, 2019), we calculated enrichment scores and used these as cut-offs for classifying 

protein localization. For THP-1 cells, a total of 5801 proteins were detected in the whole-cell 

lysate, with 1412 proteins in the LD fraction, of which 75 were enriched therein (enrichment 

score threshold, 3.07). For SUM159 cells, 5708 proteins were detected in the whole-cell 

lysate, with 629 proteins in the LD fraction, and 64 enriched in this fraction (enrichment 

score threshold, 2.02). To assess the robustness of the THP-1 and SUM159 proteomes, 

we compared the protein intensities in the LD fraction of THP-1 macrophages to that of 

SUM159 cells and found that these datasets were well correlated (R2=0.76, p<0.0001), with 

35 specific LD proteins in common, including MLX, VPS13C, RAB18, FAF2, RAB4A, and 

DHDDS (Figure 2E). Of the 35 LD proteins common to both cells, 28 were also reported in 
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U2OS or HuH7 cells (Bersuker et al., 2018). A list of the LD-enriched proteins found in the 

four cell types is provided in Table S1.

The LD-Portal also includes data on subcellular protein localization based on protein 

correlation profiling for the majority of proteins across organelles in C57BL/6J murine 

liver (Krahmer et al., 2018). These studies were performed in mice fed chow or high-fat 

diets (HFD), and by examining proteins across different cell fractions, they revealed 

how nutrient overload leads to organellar reorganization (Krahmer et al., 2018). Of the 

6163 proteins quantified across cellular fractions, 5878 gave reproducible profiles for 

organelle assignment. Diet-dependent re-localization was found for 901 proteins, and protein 

expression changes for 258. The reproducibility of this dataset was assessed by calculating 

Pearson correlation of profiles, derived from the same biological conditions and between 

different diets, and this revealed Pearson’s coefficients of 0.86 and 0.78 for protein levels 

and re-localization patterns, respectively (Figure S2A). For the murine liver samples, 787 

protein profiles showed a characteristic peak in the top fraction after organelle separation by 

density centrifugation, indicating localization on the LDs or in LD-associated membranes. 

Most of these proteins localized to multiple organelles, and only 94 had a unique LD 

localization (Figure S2B). Of the 787 LD proteins, 308 showed a significant profile shift 

under HFD feeding. For instance, the proteins RAB7A, HSD17B11, DHRS1 and RAB1A 

undergo HFD-induced relocalization to LDs (Figure 2F).

We also utilized the LD-portal data to compare the LD proteins detected in cells (THP-1, 

SUM159, U2OS and Huh7) and murine liver. Based on these data, we identified 12 LD 

proteins that were common to all datasets (Table S1). These include well-known LD proteins 

(e.g., AUP1, ACSL3, and RAB18) but also several for which data on LD localization was 

previously sparse (e.g., NSDHL and LSS, two proteins regulating cholesterol biosynthesis). 

Notably, the function in this organelle is unclear for many of the proteins that were 

reproducibly and robustly identified in at least one of the LD fractions. Similarly, the 

LD-portal allows for comparison of LD proteins identified in murine liver and human Huh7 

hepatoma cells, which yielded 30 proteins in common, including a number of proteins not 

well characterized as LD proteins (e.g., the autophagy receptor SQSTM1 and the putative 

methyltransferases METTL7A and METTL7B). We anticipate that these proteomic datasets 

will open numerous lines of investigation.

To facilitate integrative analyses of genes and proteins that were identified for example as 

LD proteins, as part of the transcriptional LSR, or required for normal LDs in cells, the 

LD-portal includes a “Gene Finder” module. This tool allows for the easy analysis of queries 

for hits identified in multiple assays, and also enables definition of custom criteria, such as 

adjusting the cut-off values for significance in a particular assay.

LD Proteins of Murine Liver That Are Phosphorylated

The LD-Portal also includes comprehensive data on the localization of phosphorylated forms 

of proteins within murine liver (Krahmer et al., 2018). From 24,524 phosphosites detected, 

11,712 gave reproducible profiles, and 1676 phosphorylation levels changed with HFD after 

normalization to protein levels. Analyzing specifically the LD proteins, 3037 had partial 

and 229 had unique LD localization, as assigned by support vector machine-based organelle 
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assignments. Among all proteins targeted from other compartments to LDs under HFD, 

almost half of the re-localizations (133) were accompanied with phosphorylation changes, 

indicating that this might be an important regulatory mechanism for targeting of many 

proteins to LDs.

Overlaying the protein and phosphosite profiles enabled identification of localization-

specific phosphosites and phosphorylation events that are independent of protein 

localization. For example, the profile for AUP1, a protein identified as an LD protein 

(Klemm et al., 2011) shows dual LD and ER localization (Figure 2G). Yet, the same 

protein had phosphosites (S287/S290) that appeared only in the LD part of the profile, 

indicating that this site is phosphorylated only in the LD fraction and not the ER pool of 

the protein. Similarly, S33 of HSD17B13, S180/S187 of TPD52l2, and S435/S439 of LPIN1 

had LD-specific phospho-signatures (Figure 2G). These examples illustrate how the portal 

can be used in future studies to identify phosphosites that might regulate protein localization 

to LDs.

Genome-Perturbation Screens for Lipid Droplet Phenotypes

The LD-Portal additionally features large datasets from high-content, imaging-based 

genome perturbation screens (Mejhert et al., 2020). In one of these screens, LDs were 

induced by ac-Lipo and stained with BODIPY, and LD information was collected using 

automated imaging and extraction of multiple image parameters at the single-cell level by 

image segmentation (Mejhert et al., 2020) (Figure 3A). With this pipeline, we disrupted 

expression of essentially all genes one-by-one in triplicate experiments and analyzed the 

effects on LDs in THP-1 macrophages. This dataset was utilized, for example, to discover 

that the MLX family of transcription factors (e.g., MLX, MLXIP, MLXIPL/ChREBP) bind 

LDs and modulate their transcriptional activity (Mejhert et al., 2020).

Our analyses of the data from this screen yielded 21 non-redundant image parameters that 

describe LD size, number, dispersion, shape, and intensity in the screen images (Mejhert 

et al., 2020). Using tools from the LD-Portal, we performed additional analyses of these 

screen data. When we clustered genes with similar effects on LD parameters, we identified 

clusters containing genes with similar biological functions (Figure 3B, Table S2). For 

example, cluster 1 (c1) contains 17 genes involved with proteasome function (Table S2). 

The similarity of phenotype associated with different proteasomal (PSM) subunit genes 

is also apparent in a network plot that shows the genes with the most similar phenotype 

for each proteasome subunit in c1 (Figure 3C). By this analysis, each of the PSM genes, 

except PSMB4, are interconnected. Finding LD phenotypes for disruptions of PSM genes 

is consistent with our previous RNAi screen in Drosophila S2 R+ cells (Guo et al., 2008). 

In addition, 12 more genes are part of this proteasome network. Among these, several 

genes (e.g., DDI1) have been directly implicated in the ubiquitin-proteasome system (Yip 

et al., 2020). In addition, TMEM61, which encodes an unknown ER protein, was reported 

in human genetic datasets as being highly associated with cholesterol metabolism and has 

limited homology to scavenger receptors (HHPRED, (Söding et al., 2005)).

For the four other clusters (c2, c3, c4, and c5) highlighted in Figure 3B, the biological 

underpinnings for similar LD phenotypes are unknown and not readily apparent. 
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Nonetheless, these clusters are likely to be informative for LD biology. For instance, 

independent replicates of BSCL2, encoding the protein seipin—a key factor in LD formation 

(Chung et al., 2019; Fei et al., 2008; Sui et al., 2018; Szymanski et al., 2007; Wang et 

al., 2016)—clustered tightly, validating the approach, and this phenotype (found in c5) 

identified several genes whose depletion phenotypes were highly similar (Figure 3D). The 

phenotype for BSCL2/seipin depletion was also similar to that of LDAF1 knockdown (not 

classified as a “hit” by stringent criteria, but shown in Figure S3A), and the proteins 

encoded by these two genes function together in an LD formation complex (Chung et al., 

2019). Another hit tightly correlated with BSCL2/seipin is the uncharacterized C16orf54 
(Figure 3D, upper panel). This open-reading frame is predicted to encode a protein with one 

transmembrane domain and is expressed highly in hematopoietic cells (Figure 3D, lower 

panels). Thus, the encoded protein may be functionally related to BSCL2/seipin, possibly 

with a functional role in blood cells. Representative RNAi screen images and image analysis 

results of cells depleted of BSCL2 and C16orf54 are displayed in Figure 3E. As seipin 

regulates LD formation induced by fatty acid supplementation, we tested if knockdown of 

C16orf54 in THP-1 macrophages changed LD morphology when incubating the cells with 

oleic acid. Our results show that C16orf54 depletion resulted in larger LDs with lower 

eccentricity compared to control cells (Figure S3B-C). Furthermore, our initial analyses 

of these screen data reveal groups of genes with similar LD depletion phenotypes and 

suggest that further mining of correlated genes may yield many mechanistic discoveries of 

machinery or pathways affecting LD biology. A tool to identify highly correlated genes for 

RNAi depletion studies in macrophages is included in the LD-portal.

LD processes and consequently LD phenotypes are determined in part by proteins on the 

LD surface. Therefore, datasets that address protein targeting to LDs are useful aspects to 

include in the LD-portal. One such example is a genome-wide screen for LD morphology 

and protein targeting phenotypes in Drosophila S2 R+ cells, using the metabolic enzyme 

GPAT4 as a model cargo for ER-to-LD targeting (Figure S1) (Song et al., 2021). For each 

human or Drosophila gene page, the LD-portal contains a link to the homologous protein(s), 

facilitating comparisons of phenotypes in both systems. As an example of such an analysis, 

RAB1A (homologous to Rab1 in Drosophila) was identified as an LD associated protein 

(present in all proteomic datasets included in the portal) required for GPAT4 targeting to 

LDs in Drosophila S2 R+ cells (Song et al., 2021).

Importantly, the LD-portal is scalable and as more genetic perturbation screens become 

available, they will be incorporated for analysis (see https://lipiddroplet.org/about for the 

data submission process).

Data Mining of the LD-Portal Identifies MSRB3 as a Determinant of Cholesterol Ester 
Storage

As an example of how the LD-Portal can be mined for new insights to LD biology, we 

performed a secondary screen in which we compared LD phenotypes in response to gene 

knockdowns when LD formation was driven by cholesterol (via culture with ac-LDL) and 

fatty acids (via culture with oleic acid). As displayed in Figure 4A, we selected 19 genes 

with different depletion effects on LD size, and our focused re-screen revealed that some 
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genes, such as BCSL2, exhibited robust phenotypes for either culture condition. Other 

genes, such as C9orf16, were more important for storage of one of the excess lipids, in this 

case TG that was induced by oleic acid.

This secondary screen identified MSRB3 as a gene with a striking depletion phenotype 

characterized by small and dispersed LDs (Figure 4B). In the LD-Portal (see below), 

MSRB3 was associated with the diagnosis of type 2 diabetes (T2D) (p=3.8e-5) and 

adiponectin levels (p=7.7e-5), among other traits. MSRB3 encodes an ER methionine 

sulfoxide reductase of unclear function. Mutations in human MSRB3 lead to deafness, and 

it has been associated with progression of renal clear cell carcinoma, gastric cancer, and 

Alzheimer disease (Ahmed et al., 2011; Conner et al., 2019; Kwon et al., 2014; Ma et al., 

2019; Ye et al., 2020) Most often, sulfoxide reductases are thought to help to maintain 

protein folding, structure, and activity. To determine the biochemical basis of the LD 

phenotype, we investigated synthesis of cholesterol esters in cells and lysates depleted for 

MSRB3 (Figure S3D). Cholesterol ester synthesis was significantly increased when MSRB3 
was absent (Figure 4C). Increased levels of the main cholesterol ester synthesis enzyme in 

THP-1 macrophages, ACAT1 (encoded by SOAT1), were also found (Figure 4D). However, 

SOAT1 mRNA levels were not affected by MSR3B3 silencing (Figure S3E). These findings 

suggest that the methionine sulfoxide reducatase MSRB3 is required to control ACAT1 

protein turnover or activity, a hypothesis that can now be investigated in mechanistic detail.

Integration of Lipid Droplet Biology Datasets with Human Genetics

The LD-Portal also contains human genetic gene and gene-set association analyses for 

many complex traits, calculated using the Multi-Marker Analysis of GenoMic Annotation 
(MAGMA) algorithm (de Leeuw et al., 2015). To explore these connections, we determined 

if our datasets of LD proteins or gene hits associated with an LD-phenotype had 

preferential association scores in the MAGMA dataset. We defined a subset of MAGMA 

traits as metabolically associated, including BMI, coronary artery disease, child obesity, 

inflammatory bowel disease, T2D, waist circumference, visceral adipose tissue volume, 

and total cholesterol, ALT, adiponectin, oleic acid, palmitic acid, palmitoleic acid, fasting 

glucose, fasting insulin, HDL-cholesterol, LDL-cholesterol, and TGs.

We examined MAGMA metabolic association scores for RNAi THP-1 screen hits, genes 

whose RNA expression levels were modulated by ac-Lipo, and LD-localized proteins. We 

found a number of expected associations in each set of genes (Figure 5A). For example, 

we detected strong associations of APOB and APOE with cholesterol and LDL phenotypes; 

scavenger receptor class B type 1 (SCARB1) with HDL cholesterol; insulin growth factor 

1 (IGF1) with fasting insulin, and FTO with BMI (Dina et al., 2007; Frayling et al., 

2007; Scuteri et al., 2007). Within each of these datasets, we detected significantly more 

associations with metabolic traits than expected for a random sample of genes (Figure 5B) 

(p-values=0.025, 6.72e-5, and 3.09e-5, respectively).

Analyzing the hits of the genome-perturbation screen in THP-1 cells, we detected many 

highly significant associations with human metabolic traits. For instance, we identified 

ABHD16A associated with five different metabolic traits, including BMI, cholesterol 

levels, T2D, TGs, and ulcerative colitis. We plotted the MAGMA score percentile 
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for each gene, highlighting ABHD16A for nine total traits (Figure S4). Eight traits 

had significant associations, indicating a p-value less than 2.5 E-6 (6.4 on a log10 

scale). The function of ABHD16A is not well-understood, but molecularly it encodes 

a phosphatidylserine hydrolase of the ER (Kamat et al., 2015). Our data suggest that 

modulating phosphatidylserine levels is important to maintain normal LDs, and interference 

with normal phosphatidylserine levels can lead to metabolic complications.

DISCUSSION

The LD-Portal provides a rich open-source platform for mining biological databases related 

to LD biology. The current version of the LD-Portal provides several searchable databases 

that can be mined to query genes or phenotypes and discover connections for further 

mechanistic exploration. Additionally, integration of LD-Portal data with other platforms, 

such as human genetic MAGMA data from the Common Metabolic Diseases Knowledge 
Portal, allows filtering of queries to discern connections with human disease. In this 

description of the LD-Portal resource, we highlighted several examples, based on our 

initial analysis of the data sets, illustrating how mining of the LD-Portal resources will 

undoubtedly advance discoveries in LD biology.

Limitations of the study

The current version of the LD-Portal contains only selected datasets. However, the portal 

is scalable, allowing for integration of data from various sources, including genome 

perturbation screens, proteomic studies, and gene expression analyses. In the future, 

lipidomics, metabolomics, or other types of datasets from important tissues, such as adipose 

tissue can be integrated. We expect that over time, the LD-portal will contain many more 

systematically generated datasets from the scientific community. A simple process for data 

submission is outlined on the LD-portal page (https://lipiddroplet.org/about). The LD-Portal 

will enable insights into the basic biology of important genetic risk factors for diseases 

associated with prevalent public health problems, such as obesity, hepatic steatosis and 

NAFLD/NASH, and cardiovascular disease.

STAR METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contacts, Robert V. Farese Jr. 

(rfarese@hsph.harvard.edu) and Tobias C. Walther (twalther@hsph.harvard.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability—Transcriptomic and proteomic data have been deposited at 

GEO/PRIDE, respectively, and are publicly available as of the date of publication. Accession 

numbers are listed in the key resources table. Microscopy data reported in this paper will be 

shared by the lead contact upon request.

This paper does not report original code.
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Any additional information required to reanalyze the data reported in this paper is available 

from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell studies—THP-1 monocyte/macrophage and SUM159 cell-culture conditions are 

described in Mejhert et al. (Mejhert et al., 2020). For induction of lipid storage, cells 

were incubated in the presence of ac-Lipo (A6961, PanReac Applichem), ac-LDL (BT-906, 

Alfa Aesar), or OA (O1383, Sigma-Aldrich). Human ac-Lipo was acetylated as described 

(Basu et al., 1976) and OA was complexed with essentially fatty acid–free BSA (A6003, 

Sigma-Aldrich) at a fatty acid/albumin molar ratio of 3:1.

Animal studies—Mice were handled as described in Krahmer et al. (Krahmer et 

al., 2018). In brief, 4-week-old male C57BL/6J mice were fed either a low-fat 

(D12331, Research Diets) or high-fat diet (D12329, Research Diets) for 12 weeks. In 

accordance with an approved protocol (Animal Protection Institute of Upper Bavaria 

55.2-1-54-2532-164-2015), mice were sacrificed in an ad-libitum-fed state, and the livers 

dissected for proteomic analyses. Ethical approval was received for all animal work.

METHOD DETAILS

RNA isolation and sequencing

Total RNA isolation and sequencing procedures are described in Mejhert et al. (Mejhert et 

al., 2020). In brief, total RNA was isolated from THP-1 macrophages using the QIAshredder 

and RNeasy Mini kits (79656 and 74106, QIAGEN). Samples were submitted to the 

Genomics Core at Tufts University for RNA sequencing. After quality controls and library 

preparation, samples were sequenced on a HiSeq 2500 using V4 chemistry (Illumina). Data 

analyses are described under “Processing of RNA sequencing data” below.

Lipid extraction and thin layer chromatography

Details on lipid extraction and thin layer chromatography are described in Mejhert et al. 
(Mejhert et al., 2020). In brief, lipids were extracted from THP-1 macrophages incubated 

with ac-Lipo or OA using Folch’s extraction (Folch et al., 1957). Lipids were subsequently 

separated by thin layer chromatography using a neutral lipid solvent (heptane/isopropyl 

ether/acetic acid, 60:40:4, v/v/v) as described (Lehner and Vance, 1999) and detected by 

cerium molybdate staining. Quantifications were performed in Fiji (Schindelin et al., 2012). 

For cholesterol ester quantifications, lipids were collected from lower organic phase and 

separated by TLC using a hexane:diethyl ether:acetic acid (80:20:1) solvent system. TLC 

plates were exposed to a phosphor-imaging cassette overnight and revealed by Typhoon FLA 

7000 phosphor imager. Band intensities were quantified using Fiji.

Organellar proteomics

Mouse liver protein correlation profiles were generated as described in Krahmer et al. 
(Krahmer et al., 2018). THP-1 and SUM159 LD proteomes were generated and described as 

in Mejhert et al. (Mejhert et al., 2020).
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Genome-wide and secondary RNAi screens

The THP-1 macrophage RNAi screen was completed and described in Mejhert et al. 
(Mejhert et al., 2020). In brief, the screen was run with samples in triplicate using an 

siRNA library comprising 18,119 target genes with 4 oligos per target gene. THP-1 cells 

were plated and differentiated for 1 day in RPMI medium containing phorbol 12-myristate 

13-acetate, then transfected using Lipofectamine RNAiMAX. Subsequently, cells were 

grown in serum-free RPMI medium for 3 days, followed by incubations with 25 μg/mL 

of ac-Lipo for 2 days except for controls not containing lipids. To stain LDs and nuclei, 

cells were fixed with 4% paraformaldehyde and then incubated with Hoechst and BODIPY 

stains. 7 images per well were acquired for each channel using an Opera High Content 

microscope (PerkinElmer). To extend the genome-wide RNAi screen, a secondary screen 

was performed. Genes were randomly selected and re-screened using pools of 4 siRNAs. 

Cells were incubated with OA or ac-LDL to induce storage of TGs or CEs, respectively. 

Results were generated as described above, and results were compared among the genome-

wide RNAi screen and the validation studies by performing pair-wise correlations using the 

set of selected image features. Data analyses are described under “Image analyses” below.

Structure predictions

To predict transmembrane helices potentially present in C16orf54, the TMHMM Server v. 

2.0 was used with default settings (Krogh et al., 2001). The FASTA sequence of C16orf54 

was obtained from UniProt database (2021).

Cholesterol esterification assays

Cholesterol ester formation was measured in cells and lysates. For both assays, samples 

from RISC-free control or siMSRB3 transfected macrophages were included, and 

pharmacological inhibition of cholesterol ester formation was used as an assay control 

(S9318, Sigma-Aldrich). The assay performed in cells was originally described in (Goldstein 

et al., 1983). In brief, cells were starved from serum for 3 days. 16 hours prior to 

performing the assay, compactin and mevalonate were added to the cell-culture media to 

inhibit endogenous cholesterol biosynthesis. Cells were subsequently incubated with the 

indicated amount of ac-LDL for 7 hours. To determine cholesterol esterification levels, 

[14C]oleate was added to the media for the last 2 hours. After thorough washes with cold 

PBS, lipids were extracted and quantified as described under “Lipid extraction and thin 

layer chromatography”. The in vitro acyl CoA:cholesterol acyltransferase (ACAT) activity 

in cell lysates was measured as described (Meiner et al., 1996) with some modifications. 

In brief, THP-1 cells were lysed in lysis buffer (50 mM Tris Cl, pH 7.4, 250 mM sucrose, 

with protease inhibitors (11873580001, Roche)). Cell pellets were resuspended in ice-cold 

lysis buffer and sonicated using ultrasonic homogenizer (Biologics, Inc., model 3000MP) 

for 10 sec with 30% amplitude. Cell homogenate was centrifuged at 3000 × g at 4°C for 

5 min and supernatant was used as enzyme source. Total ACAT was measured at Vmax 

substrate concentrations. Assay mixture contained 20 μg of proteins, 200 μM of cholesterol 

(dissolved in ethanol), 25 μM of oleoyl-CoA, which contained [14C] oleoyl-CoA as tracer, 

and 1 mM MgCl2 in an assay in buffer containing 100 mM Tris-HCl (pH 7.4) and protease 

inhibitors. Total reaction volume was 200 μl, and the reaction was performed in 2 ml tubes. 
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The reaction was carried out for 30 min at 37°C in a water bath with shaking. Reaction 

was stopped by adding 1 ml chloroform and methanol (2:1) and acidified water (2% 

orthophosphoric acid). After stopping the reaction, tubes were vortexed well and centrifuged 

10,000 × g at room temperature for 10 min. Quantifications were performed as described 

under “Lipid extraction and thin layer chromatography”.

SDS page and western blot

Details on SDS page and western blotting, are described in Mejhert et al. (Mejhert 

et al., 2020). Primary antibodies targeting calnexin (sc-46669, Santa Cruz Biotechn.), 

MSRB3 (ab180584, Abcam), C16orf54 (HPA060546, Sigma-Aldrich), GAPDH (2118S, 

Cell Signaling Techn.) and ACAT1 (kindly provided by Drs. Ta-Yuan and Catherine Chung-

Yao Chang, Department of Biochemistry, Dartmouth Medical School) were used.

cDNA synthesis and qPCR

Total RNA was isolated as described under “RNA isolation and sequencing”, cDNA was 

synthesized using iScript cDNA Synthesis Kit (1708891, Bio-Rad) and real-time qPCR 

was performed with Power SYBR Green PCR Master Mix (4367659, Applied Biosystems). 

Forward and reverse primers were as follows: MSRB3 (Fw 5′-AAC TGA GGA AGC GGC 

TAA CA-3′, Rv 5′-ACA AGG CAG CCG AAT TTA TG-3′), C16orf54 (Fw 5′-CTT ACT 

TAT AAT GCT CCA CCC TAC-3′, Rv 5′-AGG GAA ATG GAA ACT ACA TCT G-3′), 
SOAT1 (Fw 5′-CTC TCT CTT AGA TGA ACT GCT TG-3′, Rv 5′-CTA CAA GTG 

TGC TGA GGA TAA A-3′) and GAPDH (Fw 5′-ACA GTT GCC ATG TAG ACC-3′, 
Rv 5′-TTT TTG GTT GAG CAC AGG-3′). Results were normalized to the reference gene 

GAPDH and evaluated using the delta-delta Ct method.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistics

Visualizations and statistical analyses of results were performed using appropriate packages 

in RStudio (version 1.0.143) as described under each subheading.

Processing of RNA sequencing data

Raw sequencing data were analyzed as described in Mejhert et al. (Mejhert et al., 2020). 

Briefly, transcript abundance was quantified using Salmon (Patro et al., 2017), results were 

imported into RStudio using tximport (Soneson et al., 2015), and differentially expressed 

genes were identified using DESeq2 (Love et al., 2014). Gene set–enrichment analysis was 

performed to identify gene sets regulated by lipid storage. For this, the Hallmark track was 

used from the Molecular Signatures Database. As a proxy for SREBP2 and NFκB activity, 

pathways were created based on target genes identified in published studies (Horton et al., 

2003; Lim et al., 2007)

Processing of proteomic data

Details on the processing of proteomic data are described in Mejhert et al. (Mejhert 

et al., 2020) and Krahmer et al. (Krahmer et al., 2018). In brief, correlation profiling 
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was applied to map the cellular localization of proteins and phosphopeptides in mouse 

liver. Cellular localizations are assigned by support-vector machine-based learning on the 

generated profiles. For THP-1 and SUM159 data, fold changes comparing LD fractions 

with total cell lysates were based on label-free quantification. To calculate 99% confidence 

intervals for canonical LD proteins, the top 50 high-confidence proteins targeting to LDs 

were extracted (Bersuker et al., 2018) and overlapped with the results presented in this study. 

From this analysis, the lower boundary of the confidence interval was used as a cut-off for 

our classification.

Image analyses

Details on the image analyses were described in Mejhert et al. (Mejhert et al., 2020). 

In brief, CellProfiler was used to extract features from the images. For each extracted 

image feature, the median rz-score was calculated per gene. Image feature replicates were 

compared pairwise across the screen, and non-reproducible parameters were excluded. After 

this, a correlation matrix was generated by correlating all included image features with each 

other, and the dimensionality of the matrix was tested using hierarchical clustering. Features 

were excluded if they covaried, and genes were classified as hits if they were distributed top/

bottom 15 for one image parameter and/or top/bottom 50 for more than one of the remaining 

high-confidence image parameters. The RNAi screen hits were pairwise correlated, based on 

the filtered image features, and the resulting matrix containing Spearman’s rho values was 

clustered using the pheatmap package (with default clustering methods and cutree_rows/cols 

set to five). All steps downstream of the CellProfiler analysis were performed in RStudio. 

The top-three and top-10 neighbors for proteasome subunits and BSCL2 were extracted and 

highlighted using Cytoscape or the pheatmap package, respectively. For images from THP-1 

macrophages transfected with control or C16orf54-targeting siRNAs, the filtered features 

from the RNAi screen were extracted, z-scored and clustered using the pheatmap package.

Expression analyses of FANTOM CAT browser data

C16orf54 expression levels across 571 human cells and tissues were extracted from the 

FANTOM CAT browser (Hon et al., 2017). Samples were ranked from high to low 

abundance of C16orf54 expression levels.

Human genetic association analysis

Genetic association results in the LD-Portal are derived from the Common Metabolic 

Diseases Knowledge Portal (CMDKP; cmdkp.org), a public resource that aggregates 

genetic association results for >300 metabolic diseases and traits. In the CMDKP, genetic 

association results are meta-analyzed using the METAL algorithm, accounting for sample 

overlap between datasets, to generate “bottom-line” single-variant associations for each 

disease and trait. These are then analyzed with the MAGMA method (using default 

parameters) to generate gene-level association scores for each trait and each gene (de Leeuw 

et al., 2015). MAGMA gene-level association, scores are calculated based on the average 

association Z-scores for SNPs within a fixed window of the gene, after correcting for 

correlations among single-nucleotide polymorphism.
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ADDITIONAL RESOURCES

Lipid droplet knowledge portal: https://lipiddroplet.org/

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Overview of the Lipid Droplet Knowledge Portal
Content of the LD-Portal. Original publications that contributed data to the initial version of 

the LD-Portal are listed (upper panel) and a graphical summary of the LD-Portal interface 

with key to the data modules is displayed (lower panel).
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Figure 2: Lipid storage induction regulates metabolic and inflammatory pathways and protein 
localization to LDs
(A) Incubation with ac-Lipo induces TG and CE storage in THP-1 macrophages. Cellular 

lipid storage was induced by incubating differentiated THP-1 macrophages in the absence/

presence of ac-Lipo (100 μg/mL) or OA (0.5 mM) for 1 day, followed by determination of 

lipid composition by thin layer chromatography. Results from one representative experiment 

are shown.

(B-D) Metabolic and inflammatory pathways are regulated by macrophage lipid storage. 

Transcriptional profiles of THP-1 macrophages incubated in the presence/absence of ac-

Lipo (50 μg/mL) for 2 days were determined using RNA sequencing. (B) Pathways 

regulated by lipid storage were identified using gene set enrichment analysis based on 

the hallmark gene set. (C) As a proxy for transcriptional activities, validated SREBP2 and 

NFκB target genes were ranked across the RNA sequencing results and enrichment scores 

calculated. (D) Top 10 regulated SREBP2/NFκB target genes from panel C are displayed. 

Results are based on two replicates per condition, and in panels (B) and (D), the size of each 

circle is scaled to match the absolute value of the respective x-axes.

(E) Multiple proteins are localized to LDs in both SUM159 and THP-1 cells. The log2 

fold-change of the LD fraction/total input was plotted for proteins common to the LD 

fraction of both SUM159 and THP-1 cells. Intensity cutoffs of 3.066 and 2.02 were used 

for THP-1 and SUM159 cells, respectively. Proteins that were over the threshold in both cell 
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types are labeled in yellow, and proteins that fulfilled the criteria in only one of the cell types 

are highlighted in purple (SUM159) and blue (THP-1).

(F) High-fat diet induced protein relocalization. PCP profiles of RAB7A, HSD17B11, 

DHRS1, and RAB1A show strong signals in the LD fraction, indicating a relocalization 

of the protein to LDs under HFD conditions.

(G) Specific phosphosites of proteins are associated with increased LD targeting. Protein 

profiles of LPIN1, HSD17B13, AUP1, and TPD52l2 overlaid with profiles of an LD 

localization-specific phosphorylation event.

Abbreviations: ac-Lipo, acetylated apolipoprotein B-containing lipoprotein; CE, cholesterol 

ester; LD, lipid droplet; OA, oleic acid; TG, triacylglycerol.
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Figure 3: Clustering of RNAi screen image results identifies classes of hits with similar LD 
morphologies
(A) Image analysis extracts LD information at the single-cell level. After lipid storage 

induction by ac-Lipo, nuclei and LDs of THP-1 macrophages were stained using Hoechst 

and BODIPY, respectively. Images were acquired using a high-throughput confocal 

microscope, and image analyses were performed using CellProfiler. Segmented nuclei, LDs 

and cells are shown in the output column.

(B) Five classes of macrophage lipid determinants. RNAi screen hits (n=558) were pair-wise 

correlated, based on image information, and the resulting matrix was classified (c1-5) by 

hierarchical clustering. c1 contains predominantly proteasome genes. c5 is the BSCL2/seipin 

cluster.
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(C) Knockdown of proteasomal subunits results in small and dispersed LDs. Network 

displaying the 17 proteasomal subunits and their closest neighbors identified in cluster 1. 

The three closest neighbors of each proteasomal gene in cluster 1 were extracted from the 

correlation matrix presented in panel (B) and added to the network. Genes are presented as 

nodes, and top three neighbors are connected by edges.

(D-E) Depleting C16orf54 and BSCL2 results in similar macrophage LD morphology. (D) 

In the upper panel, correlation scores for the 10 closest neighbors of BSCL2 in cluster 5 are 

displayed. BSCL2 occurs two times: once from the genome-wide library (library) and once 

as a median score of all BSCL2 control wells present on each plate (control). In the lower 

panel to the left, C16orf54 gene expression data across 571 human cells and tissues were 

extracted from the FANTOM5 database. C16orf54 transcript abundance was ranked from 

high to low, and samples from hematopoietic cells were highlighted. In the lower panel to 

the right, transmembrane helices in C16orf54 were predicted using TMHMM Server v. 2.0. 

(E) Representative confocal images and image analysis ouput for five features of RISC-free, 

siBSCL2, or siC16orf54 transfected macrophages from the original RNAi screen. Scale bar, 

5 μm.

Abbreviations: c1-5, cluster 1–5; nuc., nucleus; PSMs, proteasomal subunits; TPM, tags per 

million.
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Figure 4: Secondary screening identifies genetic determinants of cholesterol ester versus 
triacylglycerol storage and identifies MSRB3 as a regulator of cholesterol storage
(A) 19 genes were re-screened in THP-1 macrophages with ac-LDL or OA. The size and 

color of the circle are proportional to the effect on LD size in the original screen and 

reproducibility in the two secondary screens, respectively.

(B) Macrophage MSRB3 knockdown results in small and dispersed LDs. Representative 

confocal images of RISC-free or siMSRB3 transfected macrophages from the original RNAi 

screen. Scale bar, 5 μm.

(C) Cholesterol esterification is increased in MSRB3-depleted macrophages. THP-1 

macrophage cholesterol esterification assays were performed in live cells (left panel) or 

lysates (right panel) 3 days post-transfection with siRNAs targeting RISC-free or MSRB3. 

ACAT inhibition was used as a control for the assays, and levels of extracted radiolabeled 

CE were determined by thin layer chromatography. In the left panel, endogenous production 

and exogenous uptake of cholesterol were reduced in cells by culturing them with compactin 

and without FBS, respectively. Subsequently, ac-LDL was added to the media for 7 hours 

out of which the 2 last hours were in the presence of radiolabeled OA. One representative 

experiment is shown. In the right panel, radiolabeled cholesterol was added to cell lysates, 

and CE formation was allowed for the indicated reaction times. Results are based on four 

replicates and data are represented as mean ± SD.

(D) ACAT1 protein levels are increased in MSRB3-depleted macrophages. Protein levels 

of ACAT1 and calnexin were determined by western blotting in THP-1 macrophages 

3 days post-transfection of RISC-free or MSRB3 siRNAs. In addition to the ACAT1 

band (approximately 45 kDa), an unspecific band marked by an asterisk was detected 

(approximately 30 kDa). Results display three independent experiments and molecular 

weight markers are indicated on the left side of the membranes.

Abbreviations: ACATi, ACAT inhibition; ac-LDL, acetylated low-density lipoprotein; LD, 

lipid droplet; min, minute; nuc, nucleus; OA, oleic acid.
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Figure 5: The LD portal gene sets are associated with human genetic traits
(A) LD portal data sets contain hits associated with metabolic phenotypes. Metabolic 

associations (−log10 p values) of genes that were either RNAi screen hits, transcriptionally 

regulated by ac-Lipo (adj. p-value<0.05), or LD localized proteins (from SUM159, THP-1, 

U2OS, HuH7 and murine proteomes) were analyzed for 19 metabolic phenotypes. A 

significance threshold value of p = 2.5e-6 was used (dotted line).

(B) LD portal screen hits select for genes associated with metabolic disorders. Chi-squared 

results of RNAi screen hits, genes transcriptionally regulated by ac-Lipo, and LD localized 

proteins that have significant associations with metabolic phenotypes vs. random selection. 

Chi-squared statistics= 5.00, 15.89, and 17.36, respectively.

Mejhert et al. Page 24

Dev Cell. Author manuscript; available in PMC 2022 May 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Abbreviations: ALT, alanine transaminase; BMI, body mass index; CAD, coronary artery 

disease; CHOL, cholesterol; ChildObesity, child obesity; FA160, palmitic acid; FA180, 

palmitoleic acid; FA181n9, oleic acid; FG, fasting glucose; FI, fasting insulin; HDL, HDL 

cholesterol; IBD, inflammatory bowel disease; LDL, LDL cholesterol; T2D, type 2 diabetes; 

TG, triglyceride; VAT, visceral adipose tissue volume; WAIST, waist circumference
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