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ABSTRACT OF THE DISSERTATION 

 

Physical drivers of spatiotemporal genetic patterns 

and evolutionary processes among and within species of the 

North American southwest 

 

by 

 

Greer Andersen Dolby 

Doctor of Philosophy in Biology 

University of California, Los Angeles, 2015 

Professor David K. Jacobs, Chair 

 

Over 150 years of investigation has yielded knowledge of the patterns and mechanisms of 

biological evolution. Yet rarely do such studies integrate the physical mechanisms that 

drive this evolution on a timescale that is biologically meaningful. Without integrating 

physical and biological processes, we risk overlooking the co-evolutionary nature of 

Earth and life. This thesis presents first a broad synthesis of how geologic, climatic, and 

environmental mechanisms drive patterns of evolution on long (> 5 Myr), medium (1–2 

Myr), and short (10s–100s kyr) timescales. It secondly presents a detailed assessment of 

how estuaries and their inhabitants co-evolve through time and space in response to 

changing sea levels and the physical landscape. Chapter 1 is a meta-analysis and review 

of the biological and geological histories of the Sonoran Desert and Gulf of California 
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(Gulf) from 15 Ma to present. We suggest a middle-Miocene marine embayment could 

explain the deposition of reworked marine microfossils and speciation ages and 

distributions of Gulf endemics. Assessment of the Pleistocene-age mid-peninsular seaway 

hypothesis reveals that the uplift age of the Baja peninsula and strong genetic discordance 

of highly dispersive taxa render this hypothesis unlikely. Finally, we document the 

distribution patterns of 527 plants disjunct between the mainland and Baja California 

peninsula and suggest postglacial responses that underlie these patterns. In Chapters 2 

and 3 I develop a paleohabitat modeling technique that estimates the size and distribution 

of estuarine habitat from 20 kya to present on a near-millennial timescale using physical 

parameters. I apply this model to ~4,600 km of coastal distance from San Francisco, USA 

to Sinaloa, MX. Independent of this is an assessment of the genetic history of 524 

individuals of three co-distributed fishes using mtDNA and large microsatellite datasets. 

Together, there is statistically significant agreement from these findings; lowstand greatly 

reduced estuarine habitat and individuals evolved independently in these isolated refugia. 

Tectonic and oceanographic processes have shaped the regional geomorphology of 

coastlines and thus the degree to which these refugia and refugial populations are 

isolated. This isolation-recolonization pattern is likely global, and is not restricted to 

glacier-adjacent coastlines at high latitudes. 

 

 

 

 

 



 iv 

The dissertation of Greer Andersen Dolby is approved. 

Michael Alfaro  

Paul Barber 

Kyle Cavanaugh 

David K. Jacobs, Committee Chair 

 

University of California, Los Angeles 

2015 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 v 

TABLE OF CONTENTS 

ABSTRACT OF DISSERTATION ii 

LIST OF TABLES vi 

LIST OF FIGURES vii 

ACKNOWLEDGEMENTS vii 

VITA x 

CHAPTER 1: ASSESSING THE GEOLOGICAL AND CLIMATIC FORCING OF 
BIODIVERSITY AND EVOLUTION SURROUNDING THE GULF OF CALIFORNIA   1 

INTRODUCTION 1 
METHODS  6 
FIRST-ORDER IPROCESSES—PENNINSULAR RIFTING FROM MAINLAND MEXICO  8 
SECOND-ORDER PROCESSES—LAND-SEA INTERACTIONS  22 
THIRD-ORDER PROCESSES—100-KYR GLACIAL-INTERGLACIAL CYCLES  31 
CONCLUSIONS  41 
REFERENCES 45 
APPENDIX 1: SUPPLEMENTARY FIGURES, TABLES, REFERENCES 66 

CHAPTER 2: PALEOHABITAT AND GENETIC MODELING REVEAL REFUGIA AND 
POSTGLACIAL MIXING OF ESTUARINE FISHES 101 

ABSTRACT 102 
INTRODUCTION 102 
MATERIAL AND METHODS 105 
RESULTS 107 
DISCUSSION 109 
CONCLUSIONS 114 
APPENDIX 2-1: GENETICS METHODS 116 
APPENDIX 2-2: MODELING METHODS 123 
REFERENCES 147 

CHAPTER 3: GLACIALLY DRIVEN SEA-LEVEL CHANGE GENERATES REFUGIA 
ON SUBTROPICAL COASTS 156 

ABSTRACT 157 
INTRODUCTION 158 
MATERIALS AND METHODS 160 
RESULTS 168 
DISCUSSION 173 
CONCLUSIONS 187 
REFERENCES 218 



 vi 

LIST OF TABLES 

TABLE 1 5 
TABLE 2 44 
TABLE S1 69 
TABLE S2 74 
TABLE 2-S1 141 
TABLE 2-S2 142 
TABLE 2-S3 143 
TABLE 2-S4 144 
TABLE 2-S5 145 
TABLE 2-S6 146 
TABLE 3-S1 204 
TABLE 3-S2 205 
TABLE 3-S3 206 
TABLE 3-S4 207 
TABLE 3-S5 208 
TABLE 3-S6 209 
TABLE 3-S7 212 
TABLE 3-S8 215 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vii 

LIST OF FIGURES 

FIGURE 1 2 
FIGURE 2 4 
FIGURE 3 9 
FIGURE 4 14 
FIGURE 5 24 
FIGURE 6 25 
FIGURE 7 26 
FIGURE 8 26 
FIGURE 9 30 
FIGURE 10 38 
FIGURE S1 66 
FIGURE S2 67 
FIGURE S3 68 
FIGURE 2-1 129  
FIGURE 2-2 130 
FIGURE 2-3 131 
FIGURE 2-4 132 
FIGURE 2-S1 133 
FIGURE 2-S2 134 
FIGURE 2-S3 135  
FIGURE 2-S4 136 
FIGURE 2-S5 137 
FIGURE 2-S6 138 
FIGURE 2-S7 139 
FIGURE 2-S8 140 
FIGURE 3-1 188 
FIGURE 3-2 189 
FIGURE 3-3 190 
FIGURE 3-4 191 
FIGURE 3-5 192 
FIGURE 3-6 193 
FIGURE 3-S1 194 
FIGURE 3-S2 195 
FIGURE 3-S3 196 
FIGURE 3-S4 197 
FIGURE 3-S5 198 
FIGURE 3-S6 199 
FIGURE 3-S7 200 
FIGURE 3-S8 201 
FIGURE 3-S9 202  
FIGURE 3-S10 203  



 viii 

ACKNOWLEDGEMENTS 

 I owe much to the intellectual enthusiasm and independent thinking of my 

advisor, David Jacobs. In a world where there is too much for one to know, I believe his 

academic curiosity and openness to ideas are unsurpassed. I hold these traits in highest 

esteem and hope I have learned them well and will carry them forward too. I want to 

thank Clifford Brunk for championing me, offering much-needed guidance, and all his 

wonderful stories. Deborah Bird indulged my flights of scientific fancy with enthusiasm 

and she has been a great motivator. Ryan Ellingson and David Gold came before, showed 

me the ropes, and proved ‘this’ could be done, for which I am quite grateful. Ryan 

Hechinger, Lloyd Findley, Mike Alfaro, Kyle Cavenaugh, Ed Rhodes, Axel Schmitt, 

Kirk Lohmueller, Brant Faircloth, and Olaff Thalman each contributed to my 

professional development and without them any successes would not have been possible. 

I would also like to thank Jocelyn Yamadera and Jonathan Rodgers, who always went 

above with logistical and administrative support that I would have been lost without. And 

thank you to Nancy Williams who started me on this track long ago by teaching me that 

being the smartest person in the room was not a requisite for having this dream. 

 I met the coauthors of my first chapter at the inaugural meeting of the Next 

Generation Sonoran Desert Researchers (NGen) in 2012, wherein I found a group of 

enthusiastic, wildly capable and creative young scientists. I had imagined writing a 

synthetic, bi-disciplinary history of Baja California; this serendipitous encounter provided 

a venue for this dream and I am immensely proud of our work together and excited for 

what is to come. Scott Bennett, Andrés Lira-Noriega, Benjamin Wilder and Adrian 

Munguía-Vega contributed immensely and co-wrote the Journal of the Southwest article 



 ix 

that became my first chapter. I would like to thank them and thank the Journal of the 

Southwest for allowing me to include it here. I must also thank Ryan Hechinger, Ryan 

Ellingson, Lloyd Findley, and Julio Lorda for contributing collections, analyses, 

expertise, and text to my second chapter. 

 Towards the home front—I have called my parents almost every Sunday for 11 

years. They have heard the good, the bad, and the mundane over this time and have been 

persistently supportive, and loving, and proud. Thank you mom; thank you dad. My 

brother, Sam, who manages to always be right on matters of life, has grounded me 

through this journey. John and Faye offered me respite, fun, and family whenever I 

needed it on the West coast; I cherished this time and thoroughly miss him. Friends new 

and old made these years more fun and rewarding than I ever imagined: S. Cimino, A. 

Cummings, K. Henning, J. Antico, V. Chegar, L. White, S. McCree, M. Dolby-Shriver, 

L. Taylor, A. Garraffa, L Stuivenvolt-Allen, B. DeSalvo, J.C.E. Therrien, L. Wang, the 

‘game-nighters,’ and my cohort members. Finally, I am immensely grateful to Nathaniel, 

whose presence in my life I am still convinced is too good to be true. Thanks to him, I 

have learned what it is to be part of a team and he has kept me laughing throughout. 

 

 

 

 

 

 

 



 x 

VITA 

2008 B.A., Earth Sciences; Biology w/ spec. in Cons. & Ecol. 
 Boston University 
 Boston, Massachusetts 
 
2013 M.S., Biology                                                                                
 University of California, Los Angeles 
 Los Angeles, CA 
  

AWARDS 

2006 Research Experience for Undergraduates, NSF 
 Columbia University 
 New York, NY 
  
2009-2010; 2011-2013 GAANN Fellowship, US Dept of Education  
 University of California 
  Los Angeles, CA  
 
2011-2013 Doctoral Dissertation Improvement Grant, NSF 
 University of California 
  Los Angeles, CA  
 
2014-2015 Dissertation Year Fellowship, Graduate Division  
 University of California 
  Los Angeles, CA  
 
2014 Lerner Gray Memorial Grant, AMNH 
 University of California 
  Los Angeles, CA  
 

 

PUBLICATIONS 

Dolby GA, Bennett SE, Lira-Noriega A, Wilder BT, Munguía-Vega A (2015) Assessing 
the Geological and Climatic Forcing of Biodiversity and Evolution Surrounding 
the Gulf of California. Journal of the Southwest, 57, 391–455. 

 
 
 



Assessing the Geological and Climatic 
Forcing of Biodiversity and Evolution 
Surrounding the Gulf of California

GREER A. DOLBY, SCOTT E. K. BENNETT, ANDRÉS LIRA-NORIEGA, 
BENJAMIN T. WILDER, AND ADRIAN MUNGUÍA-VEGA

The biota of the lands has had a restless place and has endured 
displacements, inundations, extinctions, and has been forced 
into migrations with the coming and going of the sea, with 
the submergence or emergence of mountains, and with the 
concomitant changes of local climate. Close study of the plant 
and animal life, when directed by a correlating intelligence, 
should reveal a course of evolution, expressed jointly by plant 
and rock, hardly equaled in plant geography.

—Howard Scott Gentry (1949:82)

INTRODUCTION

 For almost a century the Baja California peninsula (Peninsula), Gulf 
of California (Gulf), and broader Sonoran Desert region (figure 1) have 
drawn geologists and biologists alike to study its unique physical and 
evolutionary processes (e.g., Wittich 1920; Darton 1921; Nelson 1921; 
Johnston 1924; Beal 1948; Durham and Allison 1960). The challenge 
remains to untangle the long, intricate, and at times enigmatic geological 
and climatological histories that have shaped the high levels of endemism 
and biodiversity observed in the region today (Van Devender 1990; 
Grismer 2000; Riddle et al. 2000). 

Evolutionary theory argues that areas of endemism are generated 
through increased speciation rates or an unusual capacity to sustain 
species whose populations go extinct elsewhere. Areas with such high 
levels of unique biodiversity also demand conservation effort to preserve 
the underlying evolutionary processes and mitigate the extinction risk 
posed to species with limited ranges (Myers et al. 2000). Endemism rates 

Journal of the Southwest 57, 2–3 (Summer–Autumn 2015) : 391–456

1



392  ✜  JOURNAL OF THE SOUTHWEST

Figure 1: Physiographic map of the Gulf of California–Salton Trough–
Sonoran Desert regions of western North America. Outline of Sonora Desert 
in white. Towns: E-Ensenada, SF-San Felipe, G-Guaymas, SR-Santa 
Rosalía, SI-San Ignacio, A-Alamos, L-Loreto, LP-La Paz, LC-Los Cabos. 
Places: SGP-San Gorgonio Pass, SS-Salton Sea, BC-Ballenas Channel, 
PE-Punta Eugenia, TV-Las Tres Virgenes volcanoes, RC-La Reforma 
Caldera, PM-Punta Mita. Islands: IAG-Isla Ángel de la Guarda, IT-Isla 
Tiburón, ITM-Islas Tres Marías. Marine Basins: UTB-Upper Tiburón 
basin, GB-Guaymas basin, EGB-East Guaymas basin, AB-Alarcon basin. 
All geographic analyses and maps use base map elevation data from the 
Shuttle Radar Topography Mission (SRTM) [http://srtm.usgs.gov/].
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for reptiles and plants reach 54% and 30%, respectively, along the Peninsula 
(Grismer 2002; Brusca et al. 2005; Riemann and Ezcurra 2005; Munguía-
Vega 2011; Rebman and Roberts 2012), and the Gulf is one of the 
world’s marine diversity hotspots (Roberts et al. 2002). Yet, after almost 
a century of investigation into the geology, climate, and biology of this 
region, questions of timing and causality between these perspectives 
remain. In this article we attempt to unite the wealth of knowledge that 
remains divided along disciplinary lines, bridge their perspectives, and 
guide future study. To do so we include examples from the emerging 
field of geogenomics, in which large-scale genetic data inform geological 
hypotheses (Baker et al. 2014). The interdisciplinary nature of this effort 
is founded on the belief that through a synthetic approach incorporating 
plate tectonics, fossils, climate, ecology, and genetics we can better answer 
the long-standing questions about the physical history and origins and 
patterns of biodiversity surrounding the Gulf of California.

Reviews with varying scopes and emphases have summarized previous 
geological and biological work (Case and Cody 1983; Atwater and Stock 
1998; Helenes and Carreño 1999; Case et al. 2002; Oskin and Stock 
2003a; Riddle et al. 2000; Hafner and Riddle 2005; Lindell et al. 2006; 
Riddle and Hafner 2006). This contribution presents geological and 
climatological processes with the biological patterns they are hypothesized 
to create, under an explicit discussion of the timescales on which these 
phenomena occur. Geological processes are organized into three tiers 
(figure 2, table 1) based on the typical duration of the process. First-
order processes fundamentally shape the landscape and take the longest 
to occur (>5 million years [Myr]). These processes involve plate tectonics, 
such as continental rifting of the Peninsula away from Mainland Mexico 
(Mainland). Second-order processes are physical land-sea interactions 
with local effects that occur on the timescale of 3–1 Myr, such as seaways 
that may have flooded low passes across the Peninsula. Third-order 
processes are predominantly climatic phenomena that occur on the 
shortest timescales of tens to hundreds of thousands of years (kyr). In 
theory, impacts of third-order events are only observable during or 
relatively soon after the event ends as the resulting biological signal may 
be temporary. By contrast, first-order events such as tectonic rifting may 
isolate a population, which becomes a separate species observable long 
after the process ends, yet may be difficult to observe over a short period 
during the event. These three categories are not absolute nor should be 
interpreted as such, but will prove useful in organizing the variables at 
play when correlating the histories of this region (table 1).

3
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New contributions presented here address well-documented 
hypotheses. First, a topographical analysis evaluates the feasibility of 
proposed midpeninsular seaways, both middle Miocene and Plio-
Pleistocene in age, by estimating the vertical tectonic uplift rates required 
for topographic passes to host seaways at these times, and comparing 
these rates to those documented along the Baja California peninsula.  
Second, a novel mapping technique visually summarizes previous 
terrestrial genetic patterns for peninsular taxa to assess regions of high 
and low biodiversity. Third, the first full listing of plant species shared 

Figure 2: Schematic depictions of geologic/climatic processes evaluated in 
this study. (A) Rifting of the Baja Peninsula and formation of the Gulf. 
(B) Formation of transpeninsular seaways. (C) Sea-level lowstand 
associated with glaciations.

4
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between the Mainland and Peninsula is presented with preliminary 
analysis of geographic patterns. Fourth, distribution and speciation of 
marine species are presented as new, independent lines of evidence to 
assess the proto-Gulf embayment and midpeninsular seaway hypotheses. 
Finally, we offer a discussion of sampling schemes, biological study 
systems, datasets, and analyses most informative for future work. 

Table 1. Geological processes organized by tier (first order, second order, 
third order) with duration of each and corresponding biological hypotheses 
for the events given. Biological patterns for Evolutionary Significant Units 
(ESUs) are specific to marine (M), terrestrial (T), terrestrial non-volant 
(T-nv), or terrestrial volant (T-v) species. Hypothesis numbers (e.g., 2a) 
are used throughout the text.

5
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METHODS

Geology

To analyze the feasibility of a midpeninsular seaway in the geologic 
past, we constructed topographic profiles for the two lowest topographic 
passes in the midpeninsular region (section 1.1.3). The pass elevation 
(maximum elevation of each transect) reflects the minimum amount of 
uplift (positive vertical movement) required for the region to have flooded 
in the past. We calculated the rate of tectonic uplift necessary to achieve 
this change and compared it to uplift rates documented around the Gulf 
of California rift. 

Phylogenetic Diversity

Using 85 studies of terrestrial taxa along the Peninsula (table S1), we 
created a GIS database with the geographic coordinates of sampling 
locations corresponding to each Evolutionary Significant Unit (ESU), 
which describes deep or significant genetic divergence for haploid (i.e., 
mitochondrial DNA in animals, chloroplast DNA in plants) and/or 
diploid markers (i.e., nuclear DNA). An ESU is a group of individuals 
that has been isolated from other individuals (conspecifics) for long 
enough to exhibit meaningful genetic divergence (Ryder et al. 1988), 
and contribute substantially to the ecological or genetic diversity of a 
taxon as a whole. Following Moritz (1994), ESUs must be reciprocally 
monophyletic for mtDNA (mitochondrial DNA) supported by bootstrap/
posterior probability values (e.g., a phylogroup with > 0.80 statistical 
support) and/or exhibit significant divergence of allele frequencies at 
nuclear loci (e.g., Fst > 0.2), or be statistically supported by Bayesian 
assignment tests. 

We generated a convex polygon for each ESU with more than one 
sampling locality to represent the spatial extent of each group. The 
density, or overlap, of ESUs was measured over a 10-km x 10-km grid. 
We generated maps by taxonomic group, marker ploidy, and dispersal 
ability. Species that barely enter the northern part of the Peninsula and 
show phylogeographic structure north of the 33o00’N associated with 
the Transverse Range discontinuity in California (e.g., Chatzimanolis 
and Caterino 2007) were excluded unless their southern distribution 
reached the 30o00’N latitude on the Peninsula. 

6
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We constructed a frequency distribution from the geographical location 
of the genetic discontinuities in the Peninsula for a subset of 52 taxa, as 
described in detail in Munguía-Vega (2011). Genetic discontinuities are 
areas along the Peninsula separating two distinct ESUs. Given the shape 
and orientation of the Peninsula, we divided the analysis by latitude. A 
first analysis included discontinuities covering < 1o20’00’’ latitude (narrow 
discontinuities) that could be confidently assigned to a single degree of 
latitude. With a chi-square goodness-of-fit test, the resulting distribution 
was compared against a null hypothesis of uniformly distributed genetic 
discontinuities (X2 = 20.22, df = 10, P = 0.027). Since only a fraction 
of discontinuities adhered to the definition of narrow discontinuities (N 
= 19 taxa), the geographic location of all observed genetic discontinuities 
< 3o00’00’’ latitude (broad discontinuities) was also estimated for the 
52 taxa and superimposed to further explore the regions that showed a 
higher density of genetic discontinuities. 

Plant Distribution Patterns

We assembled several lists to identify plant species co-occurring 
between the Peninsula and state of Sonora, Mexico. The list of Sonoran 
plants was assembled from the following regional floras: the Midriff 
Islands (Wilder 2014), Isla Ángel de la Guarda (Moran 1983a; Wilder 
2014), the Guaymas region (unpublished checklist last edited in February 
2014 from Dr. Richard Felger), and Río Chuchujaqui for the Alamos 
region (Van Devender et al. 2000). We cross-referenced this list against 
peninsular species documented in Sierra Libertad (Wehncke et al. 2012), 
the central Gulf coast of the Peninsula (Cody et al. 1983; Turner et al. 
1995), and the Cape region of Baja California Sur (Lenz 1992).

The cross listing yielded 526 plant taxa present on the Mainland and 
Peninsula (table S2). All available herbarium records for these taxa  
were downloaded from the SEINet herbarium database (Southwest 
Environmental Information Network [SEINet] 2014), resulting in ca. 
165,000 georeferenced herbarium records that matched the taxonomic 
name in addition to all known synonyms of the input list (table S2). 
These distribution records were merged with the input table in the R 
programming environment and multiple shape files were created. We 
used GIS to determine distributions throughout the Sonoran Desert 
and mapped species exhibiting one of four patterns from the high number 
of records (>165,000) and shared species (526). Baja California plant 

7
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distributions are underrepresented due to incomplete digitization pojects 
and restricted data sets during the period of the development of this 
paper.

1. FIRST-ORDER PROCESSES—PENINSULAR RIFTING 
FROM MAINLAND MEXICO

1.1. Geological Processes

1.1.1. Formation of the Modern Gulf of California

Rifting apart a previously contiguous continent fundamentally alters 
the landscape. Stretching and thinning Earth’s crust, lowering its surface, 
and forming alternating valleys and ridgelines (e.g., Basin and Range) 
can cause climate heterogeneity and fragment existing populations. 
Prolonged rifting can lower Earth’s surface below sea level, enabling 
flooding of marine waters that may serve as barriers to gene flow in 
terrestrial organisms, and as dispersal corridors for marine species. A 
notable example of this process is the rifting of the African and South 
American continents to form the proto-Atlantic Ocean (Wegener 1912). 
This rifting event isolated species on both rift margins of the Atlantic 
Ocean (Africa and South America) in the Mesozoic era (ca. 130 Ma), 
forming separate species. Similar geological processes have recently 
initiated in the Gulf (figure 3) and may be controlling intra- or inter-
specific genetic patterns, widespread speciation events, and changing 
species distributions between the Mainland and Peninsula.

Rifting began in northwestern Mexico as early as ca. 30 Ma (Ferrari 
et al. 2013), stretching Earth’s crust and forming small Basin and Range-
style valleys in eastern Sonora, Sinaloa, and Nayarit. The location of 
active rifting gradually migrated westward and concentrated in the Gulf 
sometime after ca. 12.3 Ma (Atwater and Stock 1998). At this time, the 
Pacific plate began sliding northwest along the San Andreas Fault system 
away from the Mainland. Unlike in California where Pacific–North 
America relative plate motion is parallel to the plate boundary (the San 
Andreas Fault), relative plate motion in the Gulf is oblique to the plate 
boundary. As a result, the Gulf consists of a stepped pattern of short 

8
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spreading centers connected by transform (strike-slip) faults (figure 2A).
The modern Gulf gradually flooded northward, as recorded in 

sedimentary rocks containing marine fossils from near the southern 
mouth of the Gulf up to near San Gorgonio Pass in southern California. 
In the southern Gulf, evidence for marine conditions exists as early as 
10 Ma at Punta Mita near Puerto Vallarta (Gastil and Krummenacher 
1978), ca. 8–7 Ma on Islas Tres Marías (Carreño 1985; McCloy et al. 
1988), and ~7.5–7 Ma near Los Cabos (Carreño 1992; Molina-Cruz 
1994), which may represent a local embayment of the Pacific Ocean 

Figure 3: Plate tectonic reconstruction maps back to Miocene time (upper 
row) reconstruct motion on faults to restore the past positions of fault 
blocks around the Gulf of California. Polygons are areas of continental 
crust, colored by relative amounts of extension and thinning due to 
continental rifting (yellow, unextended; gray, moderately extended; blue, 
highly extended). Baja California microplate is colored orange for 
clarity. See Bennett et al. (2013b) for more details and animations of 
this plate tectonic reconstruction. Lower row schematically shows where 
an 11-Ma hypothetical ancestral biodiversity center (purple) would be 
today due to plate tectonics.

9
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instead of a full-fledged Gulf at that time. Farther north, correlative 
marine salt deposits near Santa Rosalía (Holt et al. 2000) and in the 
offshore East Guaymas basin (Miller and Lizarralde 2013) provide 
evidence for inundation at a slightly later time, ca. 7 Ma. 

During the same period that the southern Gulf flooded (ca. 10–7 
Ma), the northern Gulf and Salton Trough regions show no evidence 
for marine conditions, as rift valleys were filling with nonmarine sediments 
in coastal Sonora (Darin 2011; Bennett et al. 2013a), northeastern Baja 
California (Lewis 1996; Seiler et al. 2010), and in the Salton Trough 
area (Dorsey et al. 2011) at that time. A stack of unique volcanic ash 
deposits, now located in coastal Sonora, on  Isla Tiburón, and in 
northeastern Baja California, correlate across the northern Gulf (Oskin 
et al. 2001) and are not associated with marine conditions. Correlation 
of these ash deposits is based on several similarities, including their ages, 
lithology, geochemistry, thickness, and unique paleomagnetic direction 
(see Bennett 2013 for detailed summary). Restoring outcrops of these 
ash deposits to their locations ca. 6 Ma requires moving Baja California 
back to the southeast ~250 km (figure 3), a similar distance to what 
extrapolation of modern-day plate tectonic rates would predict (Oskin 
and Stock 2003b).

At ca. 6.3 Ma, fossil-rich marine sediments first record flooding at 
several locations in the northern Gulf and Salton Trough (summaries in 
Oskin and Stock 2003a; Bennett 2013). This flooding event is exceptional, 
with the northernmost 400–500 km of the Gulf flooding synchronously, 
6.3 ± 0.1 Ma, from southwestern Isla Tiburón to San Gorgonio Pass in 
southern California. With this event the modern Gulf took form and 
was quite distinctive in shape, only ~50 km wide and up to ~1,400 km 
long (figures 1 and 3). Flooding of the northern Gulf coincides with, 
and is attributed to, the full development of the Pacific–North America 
plate boundary in both time and space. These tectonic events provided 
a mechanism for the subsidence (lowering of Earth’s surface) required 
for marine flooding (figure 2A; Oskin and Stock 2003b). Rifting and 
subsidence continued and the Colorado River began draining into the 
Gulf by 4.1 Ma (Dorsey et al. 2007; House et al. 2008; McDougall and 
Miranda-Martinez 2014). A detailed plate tectonic reconstruction (figure 
3) is the most up-to-date paleotectonic view of how the Peninsula, Gulf 
islands, and shoreline evolved through time (Bennett et al. 2013b), 
which provides visual-spatial context for discussions of how geological 
and climatic processes may impact biodiversity in the region (Bennett et 
al. 2013b).

10
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1.1.2. Proto-Gulf Hypothesis

Although the inundation of the modern Gulf is well documented, 
the presence, extent, timing, and cause of an older proto-Gulf embayment 
are debated. If an earlier incarnation of the Gulf existed (i.e., the proto-
Gulf embayment), it could have initiated biological processes, such as 
speciation, much earlier than effects imparted by the modern Gulf (section 
1.2.3). The geological and biological interpretations of the proto-Gulf 
hypothesis differ, and will be treated separately (for biological evidence 
see section 1.2.2). In the geological literature, Moore and Buffington 
(1968) first hypothesized a late Miocene proto-Gulf of California marine 
basin to explain an area of anomalously old oceanic crust offshore Puerto 
Vallarta at the entrance (mouth) of the Gulf. The proto-Gulf concept 
was later expanded to include faulting related to continental rifting and 
evidence of marine sedimentary rocks from the northern and central parts 
of the Gulf ca. 15–5 Ma (e.g., Karig and Jensky 1972; Gastil et al. 1979) 
and was envisioned as a Gulf of varying sizes, as large as the distance from 
Puerta Vallarta to the Lower Colorado River (e.g., Moore 1973). With 
increased knowledge of plate tectonic (e.g., Atwater 1970) and subduction 
zone history (e.g., Hausback 1984) in northwestern Mexico, the proto-
Gulf term was used differently (e.g., Stock and Hodges 1989; Gans 1997; 
Fletcher et al. 2007). The proto-Gulf began to specifically refer to the 
tectonic period beginning ca. 12.5 Ma with the transition from subduction 
to oblique rifting, and ending at ca. 6 Ma, when the Pacific–North America 
plate boundary became localized in the Gulf. Thus, conceptions of a 
proto-Gulf have evolved in the geological literature.

Evidence for a middle Miocene embayment in the northern Gulf has 
been reported, which calls upon an older (pre-11-Ma) incarnation of 
the Gulf of California. One group of studies documented marine 
conditions ca. 13–11 Ma on southwest Isla Tiburón (Smith et al. 1985; 
Gastil et al. 1999), which marks the only terrestrial exposure of marine 
strata of supposed proto-Gulf age. However, recent reexamination of 
these marine strata indicates that the oldest marine deposits on Isla 
Tiburón are actually 6.4 to 6.1 Ma (Bennett 2013), consistent with the 
regional flooding event ca. 6.3 Ma (Oskin and Stock 2003a). Another 
group of studies documented middle Miocene marine microfossils in 
cuttings from deep oil exploration wells throughout the Salton Trough 
and northern Gulf (Helenes et al. 2009) and interpreted the specimens 
to be in situ (in the original place of deposition). Helenes et al. (2009) 
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suggest these specimens are evidence for a pre-11-Ma proto-Gulf 
embayment and that marine waters might have fed this proto-Gulf from 
the Pacific Ocean across what is now the Baja California peninsula near 
the towns of Santa Rosalía and San Ignacio (Helenes and Carreno 1999) 
through a midpeninsular seaway (see section 1.1.3). However, the 
sediments hosting these microfossils are chemically and mineralogically 
similar to the diagnostic, quartz-rich rocks of the Colorado Plateau 
(Jiménez 2013) that are eroded and transported by the Colorado River, 
which first reached the Gulf of California between 5.7 and 4.1 Ma (Dorsey 
et al. 2007; House et al. 2008). This suggests that these middle Miocene 
(pre-11-Ma) microfossils were eroded from older middle Miocene marine 
sediments elsewhere and included in these younger, late Miocene 
sediments.

Though uncontested in situ middle Miocene marine strata within the 
Gulf region have not been found, the mere presence of reworked middle 
Miocene marine microfossils (e.g., McDougall 2008; Helenes et al. 
2009) requires that marine conditions existed somewhere nearby during 
middle Miocene time and deposits from this unidentified source 
contributed the reworked fossils into late Miocene marine basins. Three 
hypothesized origins of middle Miocene strata exist (for a detailed review, 
see Bennett 2013). The first is from deposits related to a middle Miocene 
proto-Gulf embayment, similar to what Helenes and Carreño (1999) 
proposed, where marine waters were fed eastward from the Pacific Ocean, 
because southern (Gulf entrance) and northern (Los Angeles basin) 
connections to the Pacific are doubtful (Helenes and Carreño 1999). 
The second hypothesized source is a shallow embayment northeast of 
and parallel to the modern-day Gulf, within Sonora and Sinaloa, behind 
a NW-SE oriented chain of middle Miocene volcanic centers (Fenby and 
Gastil 1991; Smith 1991; Helenes and Carreño 1999; Bennett 2013). 
However, no outcrops of middle Miocene marine strata have been 
observed here; only nonmarine strata of this age have been documented 
in this region (Herman and Gans 2006; Darin 2011; Bennett et al. 
2013a). Also, the regionally extensive ash deposit outcrops of the 12.5-
Ma tuff of San Felipe and the 6.4-Ma tuffs of Mesa Cuadrada (Bennett 
and Oskin 2014) never overlie marine sediments, which suggests 
nonmarine conditions throughout northwestern Mexico when these 
volcanoes erupted. A third hypothetical source is from the continental 
shelf on the Pacific side of the southernmost Peninsula, where middle 
Miocene marine strata were exposed to wave-base erosion during late 
Miocene time (Brothers et al. 2012) and could have contributed middle 
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Miocene specimens into the northern Gulf of California. Each of these 
scenarios requires further exploration (see section 1.3).

1.1.3. Geological Assessment of Middle Miocene Midpeninsular  
 Seaways

The existence of a middle Miocene proto-Gulf embayment in the 
general region of the modern-day northern Gulf requires a sea-level 
connection to the Pacific Ocean. Because a southern (via Gulf mouth) 
or northern (via L.A. basin) connection to the Pacific Ocean is unlikely, 
some other low-lying region is required to feed marine water from the 
Pacific into a hypothesized proto-Gulf embayment. Helenes and Carreño 
(1999) proposed a middle Miocene midpeninsular seaway (referred here 
as San Ignacio) located through the San Ignacio area. We identify an 
additional low topographic pass (Agua Armada) as another candidate 
that may have hosted a middle Miocene midpeninsular seaway. Due to 
the absence of a middle Miocene marine sedimentary rock record in the 
two proposed midpeninsular seaway paths, we evaluate the feasibility of 
these two hypothetical midpeninsular seaways through analysis of 
topographic data (figure 4) and comparison to published tectonic uplift 
histories. 

Vertical topographic changes to the midpeninsular region since middle 
Miocene time include faulting, local inflation from magma chambers, 
deposition of volcanic rocks, and differential erosion. The rates of these 
processes vary over short distances and render determination of high-
resolution paleo-topography difficult. The process of regional-scale rift 
flank uplift (uplift of the margins surrounding a rift) can affect larger 
regions (e.g., Mueller et al. 2009) and is likely to be the main driving 
cause of the 400 ± 200 m of vertical tectonic uplift observed along the 
crest of the central Peninsula (Mark et al. 2014). This rift flank uplift is 
attributed to intense crustal extension and localized oceanic spreading 
in the rift axis to the east (Mueller et al. 2009) and constrained to have 
occurred between ~6 and 3 Ma (Mark et al. 2014).

The more frequently cited potential pass (San Ignacio) is located 
through the town of San Ignacio and branches in the east around Las 
Tres Virgenes volcanoes and La Reforma caldera, connecting to the Gulf 
near Punta Santa Ana in the north and/or Santa Rosalía in the south 
(figure 4C). These branches may have been a single path as the intervening 
area may have been much lower prior to the 1.2-Ma and younger 
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Figure 4: Topographic analysis of seaways across the Baja California 
peninsula. Modern shoreline in white. (A) Regional topography of the 
Peninsula with 300-m elevation contour (black line). (B) A broad 
topographic pass with a pass (maximum) elevation just over 300 m exists 
in the Agua Armada region. The northern branch (red) is lower than 
the southern branch (blue), which has a secondary, eastern pass over 350 
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m. BLA, Bahía de Los Angeles. (C) A broad topographic pass also exists 
in the San Ignacio region. The northern branch (red) has a pass 
elevation near 400 m. The southern branch (blue) has a pass elevation 
just over 550 m. The northern branch appears to be more feasible than 
the southern branch, as it is ~150 m lower than the southern branch.
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eruptions that built the volcanic hills of Las Tres Virgenes and La Reforma 
(Garduño-Monroy et al. 1993; Schmitt et al. 2006). The northern branch 
of this San Ignacio path has a pass elevation near ~400 meters above sea 
level (masl) and the southern is ~550 masl (figure 4C). The southern 
path appears to cross a NW-SE oriented normal fault with possibly ~100 
m of down-to-the-northeast fault motion during Quaternary time, which 
may contribute to its relatively higher modern elevation. If these branches 
of the San Ignacio pass were at sea level during latest middle Miocene 
time (~12 Ma) and were uplifted ~6–3 Ma (e.g., Mark et al. 2014) uplift 
rates of ~0.1–0.2 mm/yr are required over that ~3-Myr period to uplift 
this pass to its modern-day elevation. 

We identify a second SW-NE oriented potential pass (Agua Armada) 
through the Agua Armada region, with a pass elevation just over 300 
masl (figure 4B). This pass may be more feasible for flooding than the 
more frequently cited San Ignacio pass because of its relatively lower 
elevation. About 25 km south of the Agua Armada pass (figure 4B), 
Wittich (1920) observed fossil-rich dune deposits at ~400-m elevation 
near Misión San Francisco Borja (San Borja). If these dunes were 
deposited as part of a middle Miocene shoreline and are now at ~400 
m, then the nearby 300-m-high Agua Armada pass could have been 
flooded in middle Miocene time. If this pass (~300 m) was at sea level 
during latest middle Miocene time and was also uplifted ~6–3 Ma, uplift 
rates of ~0.1 mm/yr during that time are required to uplift this pass to 
its modern-day elevation. If uplift occurred over a longer period of time 
(e.g., ~12–3 Ma), slower rates of uplift would be required to bring both 
the San Ignacio and Agua Armada passes to their modern-day elevations.

The uplift rates required for the San Ignacio and Agua Armada passes 
to have hosted a middle Miocene seaway are within the uplift rates (0 
to 0.3 mm/yr) observed along the northwestern Baja coastline (Mueller 
et al. 2009). Thus, these uplift rate estimates suggest that a middle 
Miocene seaway through Agua Armada is plausible. This is further 
supported by 400 ± 200 m of modeled uplift at the peninsular drainage 
divide (Mark et al. 2014). However, importantly, Mueller et al. (2009) 
observed that uplift rates along the western Peninsula coastline decrease 
from ~0.1 mm/yr to near 0 mm/yr just north of Isla Ángel de la Guarda, 
signifying that the magnitude of rift flank uplift may have been smaller 
at the latitudes of San Ignacio and Agua Armada. From these geological 
observations, topographic analysis, and comparison to the timing and 
rates of vertical tectonic uplift, it is feasible that these passes could have 
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hosted transpeninsular seaways that connected a middle Miocene proto-
Gulf embayment to the Pacific Ocean. However, direct geological 
evidence, such as marine sedimentary rocks of middle Miocene age, is 
required to confirm any transpeninsular hypothesis. Additionally, this 
evidence does not speak to the location and size of a middle Miocene 
embayment, only that transpeninsular seaways in this region were possible 
at this time.

1.1.4. Midriff Islands

The Midriff Islands are an archipelago stretching across the central 
Gulf, comprising islands with heterogeneous and distinct geologies. 
Some are fragments of continental crust similar to the Peninsula and 
Mainland that originated from the rifting of the Peninsula and flooding 
of the Gulf (Ángel de la Guarda, San Lorenzo, Tiburón, San Pedro 
Nolasco). Other islands are volcanic (e.g., San Esteban, San Pedro Mártir, 
Tortuga) and formed from accumulation of volcanic deposits that 
breached sea level after the modern Gulf formed. Their physical size 
ranges across four orders of magnitude from the largest island (Isla 
Tiburón, ~1,200 km2) to small rocky outcrops.

In the northern Gulf, evidence from volcanic rocks (Oskin et al. 2001; 
Oskin and Stock 2003b) and submerged continental shelves on both 
rift margins (offshore Sonora/Tiburón and northeastern Baja California) 
suggest the modern shorelines were separated by ~30 km until 6.4–6.1 
Ma (Bennett 2013). Such narrow gaps were likely devoid of marine water 
until the 6.3-Ma flooding event, which would have then isolated island 
species (section 1.2.2). From plate tectonic restorations of the Baja 
California peninsula back to the southeast (Bennett et al. 2013b), the 
lateral extent of marine deposits interpreted to be middle Miocene by 
Helenes et al. (2009) appears too extensive in offshore geophysical data 
(e.g., Mar-Hernández et al. 2012) for the space available (~30 km) 
during middle Miocene time. Geological and geophysical observations 
from offshore basins (e.g., Aragón-Arreola and Martín-Barajas 2007; 
Mar-Hernández et al. 2012) indicate marine conditions have continuously 
existed in the Lower Tiburón and Upper Tiburón basins between Isla 
Tiburón and the Puertecitos area of Baja California since at least ca. 6 
Ma. Similar observations from the Lower Delfín basin suggest that the 
short, northwestern shoreline of Isla Ángel de la Guarda disconnected 
from Baja California slightly later, ca. 3.3–2 Ma (Aragón-Arreola and 
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Martín-Barajas 2007). The timing of formation for the narrow Ballenas 
Channel, which separates Ángel de la Guarda from Baja California, is 
less well known, but the development of a major strike-slip fault in the 
Channel likely occurred ca. 3.3–2 Ma (Nagy and Stock 2000; Stock 
2000). Finally, isolation of Isla Tiburón from coastal Sonora has likely 
been transient, with the island connected to the Mainland by land bridges 
during periods of low sea level (Lambeck and Chappell 2001; Davis 
2006; Felger and Wilder 2012; section 3).

1.2. Biological Patterns

1.2.1.  Speciation between the Mainland and Peninsula and   
 Endemism (Hypotheses 1a–1d)

Given enough time, a vicariant event that physically divides and isolates 
a population so the daughter populations no longer interbreed will 
produce two distinct species as those new populations drift independently 
and adapt to different environments (Wiley 1988). Given the age of Gulf 
flooding (8–7 Ma in the south, ca. 6.3 Ma in the north), species with 
low dispersal potential that cannot interbreed across the Gulf are expected 
to have started speciating in late Miocene time (hypothesis 1a; see table 
1 for hypotheses). Species-level designations of disjunct or widely 
separated sister lineages have been proposed for several taxa, including 
gopher, bull, and pine snakes (Rodriguez-Robles and De Jesus-Escobar 
2000), crotaphytid lizards (McGuire et al. 2007), desert rodents (Riddle 
et al. 2000), and spiders (Crews and Hedin 2006), to name a few. The 
iconic Baja Californian succulent plant, cirio (boojum, Fouquieria 
columnaris), is sister to all other members of Fouquieriaceae, likely due 
to its isolated evolution on the Peninsula (Schultheis and Baldwin 1999). 
These studies hint at a widespread pattern of vicariant speciation between 
the Mainland and Peninsula, which contributes to higher biodiversity. 
Additional genetic and morphological studies are needed to reveal 
whether Mainland-Peninsula rifting instigated speciation in species with 
higher dispersal potential such as plants and birds (hypothesis 1c). 

Following rift-related speciation (or at least vicariance), new species 
are narrowly distributed on an isolated peninsula, which is ideal for 
generating high levels of endemism, as documented to a stronger effect 
on islands (Kier et al. 2009). By conservative estimates, over 6,000 species 
of plants and animals exist on the Peninsula, 30% of which are endemic 
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(Riemann and Ezcurra 2005; Rebman and Roberts 2012). Of 856 
invertebrate species, only tenebrionid beetles, bees, ants, scorpions, and 
butterflies have been well studied and 30.7% of those studied are endemic. 
Mammals have 42 species (19% endemic) and reptiles have 96 species 
(33.3% endemic; see Munguía-Vega 2011 for summary). 

The Pacific and Gulf islands host 115 species of reptiles, of which 
almost half (42.6%) are endemic. Forty-five species of mammals are 
present on Gulf islands (excluding bats) with a 48.8% endemism rate. 
Endemism levels are far lower in volant (able to fly or glide) species such 
as birds and plants, which can likely disperse between islands (Case and 
Cody 1987; Wilder 2014, and see Rebman 2002 for review of island 
plants) (the most isolated island, San Pedro Mártir, is only ~50 km from 
either coast). In Gulf waters, there are 766 documented invertebrate 
taxa endemic to the Gulf (Brusca et al., 2005). The Gulf is also host to 
the world’s smallest cetacean, the vaquita (Phocoena sinus), which is near 
extinction, and the region provides important spawning and nursery 
habitat for many fishes and marine mammals.

Ancestral levels of biodiversity that existed before rifting and northward 
translation of the Peninsula should be considered (for a reconstructed 
example, see figure 3). For instance, if the region already hosted high 
levels of biodiversity, then rifting of that region and isolation of the 
Peninsula and islands would have led to much higher levels than if the 
region had been species poor prior to rifting. Additionally, movement 
of the Peninsula northwest over the past few million years could have 
shifted temperature and rainfall gradients, and should be considered 
when evaluating modern species distributions and historical barriers. 
Moreover, while vicariance models of speciation are most commonly 
applied in this region due to its tectonic and topographic complexity, 
we must also note the potential for sympatric speciation. For example, 
adaptation of individuals toward different traits (e.g., food type) may 
divide a population over time as individuals segregate by those traits and 
hybrids formed between them are selected against (Maynard Smith 
1966). Therefore, even in scenarios where vicariance is likely, similar 
ecological or sympatric speciation processes may also be occurring.

1.2.2. Biological Evaluation of a Proto-Gulf (Hypothesis 1d)

For geologists, the precise details of how, when, and where a proto-
Gulf embayment might have formed are contentious and still under 
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investigation. For biologists, however, these details are less important 
than the biological patterns they would affect regarding speciation and 
geographic distributions. The concept of a middle Miocene proto-Gulf 
embayment is relatively new to biological work (e.g., Hurtado et al. 2010; 
Dolby et al. 2012); it could have isolated individuals of marine species 
from their ancestral ranges, potentially leading to vicariant speciation in 
many taxa. Recent work indicates that speciation ages between Gulf-
endemic and non-endemic sister species within the east Pacific bay gobies 
(estuarine-nearshore marine fishes) cluster between 16 and 10 Ma 
(Ellingson 2012; Ellingson et al. 2014). This timing coincides with the 
proto-Gulf embayment hypothesized by Helenes et al. (2009); however, 
this genetic analysis cannot provide geographic information for where 
the potential embayment would have existed. Such a biological scenario 
requires an embayment that continuously persisted from the middle 
Miocene until the modern northern Gulf flooded ~6.3 Ma, and requires 
it then physically connected with the modern Gulf to account for modern 
geographic distributions of these fishes. No evidence presently exists for 
marine deposits between 11 Ma and ~6.3 Ma, but this theoretical 
embayment could have produced the middle Miocene marine sediments 
discussed in section 1.1.2. A middle Miocene—or proto-Gulf—
embayment is the most parsimonious explanation for these speciation 
data. Alternatively, the onset of middle Miocene upwelling in the east 
Pacific could have played a role, but how this would cause synchronous 
speciation among Gulf endemics is unclear (Jacobs et al. 2004). Replication 
of these phylogenetic results with other Gulf endemics and integration 
with the existing geological framework are needed. 

1.2.3. Modern Gulf Influence on Marine Biodiversity  
 (Hypothesis 1e)

Flooding of the modern Gulf 8–6 Ma expanded available marine 
habitat in the eastern Pacific. Although paleo-oceanographic details of 
this region since late Miocene time are not well constrained, many have 
argued that the modern Gulf exerts unique selection pressures on its 
inhabitants relative to the Pacific for several reasons. First, the Gulf is 
sheltered from the strong waves driven by the fetch of the Pacific Ocean. 
Second, tides in the Gulf are notoriously high, reaching 7 m in the north 
(Roden 1964). Third, sea surface temperatures fluctuate annually up to 
16°C in the Gulf compared with <2°C in the Pacific (Ellingson 2012). 
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Fourth, islands in the Gulf mark localized regions of seasonal upwelling 
(Zeitzshel 1969). Finally, since the Colorado River first drained into the 
Gulf ca. 4.1 Ma until twentieth-century damming, it discharged significant 
volumes of freshwater and sediment into the northern Gulf. When the 
large Colorado Delta ecosystem formed it offered unique habitat to 
which delta endemics adapted (Swift et al. 2011). Many species also 
thrived in the new, extensive riparian habitat (Leopold 1949). Therefore, 
the abiotic conditions in the Gulf are more seasonally and annually 
variable than those in the Pacific, and combine to form a unique habitat 
likely to impart divergent selection pressures. Over time these factors 
may cause differentiation, and perhaps ecological speciation between 
Gulf and Pacific marine populations (e.g., Littler and Littler 1981).

1.3. Tectonic Rifting-Associated Hypotheses: Future Work

To test whether rifting of the Peninsula caused speciation in more 
highly dispersive lineages, such as plants (hypotheses 1a, 1c), additional 
plant phylogenies are needed at the inter-specific level. The null 
expectation is that speciation events are distributed evenly throughout 
a phylogenetic tree between the base and tips. If speciation events within 
the phylogeny cluster in age and significantly deviate from the null evenly 
distributed model, then one may infer an external mechanism (i.e., rifting) 
contributed to that pattern. Phylogenies for plant families Anacardiaceae, 
Cactaceae, and Fabaceae, with Mainland-Peninsula sister species, would 
be appropriate for such an analysis. Additionally, trans-Gulf species pairs 
would provide an opportunity to calibrate the rate of evolution for genes 
used in other work where time calibration is elusive and reveal interspecific 
differences in diversification times.

If a proto-Gulf embayment existed and caused the observed 
diversification of east Pacific bay gobies between 16 and 10 Ma, then 
one would expect to observe similar synchronous speciation in other 
taxonomic groups between Gulf-endemic and non-endemic sister species 
(assuming similar levels of dispersal and population differentiation). 
Constructing age-calibrated phylogenies of groups with Gulf-endemic 
and non-endemic taxa is the most direct way to address this question 
(Magallón 2004; Rutschmann 2006). If similar patterns of parallel 
speciation and timing are observed in other groups (fish, mollusks, 
arthropods) with different ecological affinities it would support vicariant 
speciation via a marine embayment because ecological or environmental 
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mechanisms would be expected to affect such taxa differently. Also, applying 
different rate-based reconstruction methods is needed (e.g., Drummond 
et al. 2006; Drummond and Suchard 2010) to determine how robust the 
east Pacific bay gobies diversification ages are to the assumptions of different 
evolutionary models. Also, because the existence of a middle Miocene 
proto-Gulf embayment relies upon a connection to the Pacific Ocean, 
geologists should locate direct geological evidence of middle Miocene 
deposits in the San Ignacio or Agua Armada passes to evaluate whether 
conditions at this time in these regions were marine or nonmarine.

One could evaluate whether ecological speciation is occurring in marine 
taxa between the modern Gulf and Pacific by focusing on specific traits 
thought to be under divergent selection pressures between the two habitats, 
such as body size, and larval or metabolic characteristics that might associate 
with different salinity or temperature regimes. Differences in gene expression 
levels across environments can be assessed using RNAseq (transcriptomics), 
which sequences the messenger RNA produced from the genome to infer 
how highly expressed a set of genes is with the assumption that genes will 
be expressed at different levels in different environments (Wang et al. 
2009). This method has been used to study hypoxia tolerance in the goby 
Gillichthys mirabilis (Gracey et al. 2001). Additional “common garden” 
experiments using RNAseq could be used to determine whether any 
observed physiological differences in expression levels are fixed differences 
between the populations or plastic, meaning the expression patterns of a 
population can change in response to the environment.

2. SECOND-ORDER PROCESSES— 
LAND-SEA INTERACTIONS

2.1. Geological Processes

2.1.1. Geological Assessment of Plio-Pleistocene Midpeninsular  
 Seaways

Over a decade of phylogeographic study has revealed repeated patterns 
of genetic discordance in topographically low regions along the Peninsula 
(Riddle et al. 2000; Murphy and Aguirre-León 2002; Hafner and Riddle 
2011), but any geological evidence to explain such isolation remains 
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elusive (Lindell et al. 2006; Brusca 2015). Biologists have attributed this 
vicariance to transient Plio-Pleistocene age transpeninsular seaways that 
connected the Gulf to the Pacific Ocean through these narrow passes 
(figure 2B), temporarily isolating northern and southern terrestrial 
populations. For seaways to have existed through passes now hundreds 
of meters above sea level requires that the pass was at sea level when the 
isolation occurred and has since uplifted, possibly due to its proximity 
to the rift zone (e.g., Mueller et al. 2009; Mark et al., 2014). Two 
commonly cited locations for these seaways are (1) the Isthmus of La 
Paz and (2) the midpeninsular region near the towns of San Ignacio and 
Santa Rosalía. The proposed midpeninsular seaway locations are similar 
to that suggested by Helenes et al. (2009) for a ca. 12-Ma seaway that 
would have connected to a proto-Gulf embayment (see sections 1.1.2 
and 1.1.3).

No obvious modern barriers to gene flow exist at these locales, and 
due to a paucity of alternative explanations (but see Gottscho 2014), 
seaways remain the favored explanation for the genetic discontinuities 
observed (Hafner and Riddle 2011). The La Paz seaway is thought to 
have ended ca. 3 Ma, and would not have significantly affected dispersal 
of marine species because of its proximity to the entrance of the Gulf, 
but would have isolated terrestrial taxa.  For a review of the La Paz seaway 
see Gentry (1949) and Murphy and Aguirre-Léon (2002).

The midpeninsular seaway is thought to have flooded ca. 2–1 Ma 
based on the amount of genetic divergence between northern and 
southern populations and assumed strict molecular clock mutation rates. 
A Plio-Pleistocene midpeninsular seaway explanation has gained favor 
in the biological literature because it accounts for dozens of genetic 
discordance patterns between northern and southern peninsular 
populations in one explanation. In the Santa Rosalía area the marine 
Plio-Pleistocene Santa Rosalía formation and rocks of similar age extend 
inland, reported at elevations as high as 340 masl (Ortlieb 1978). If this 
observation is accurate, it could support a midpeninsular seaway 
hypothesis, suggesting that this region was ~340 m lower during 
Pleistocene time. Alternatively, marine rocks at these coastal sites could 
be explained by a local inundation of the Gulf during a sea-level highstand, 
and therefore do not necessitate, though are consistent with, a 
midpeninsular seaway. 

The principal challenge to the Plio-Pleistocene hypothesis arises from 
the lack of physical or geological evidence (Lindell et al. 2006); no 2- to 
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1-Ma sedimentary deposits have been discovered in the purported regions 
despite reconnaissance missions (e.g., Darton 1921; Beal 1948; Wilson 
1948). Lack of sedimentary evidence indicates either that the seaway did 
not exist, or the sediments were deposited and subsequently eroded. 
Another major challenge to the Plio-Pleistocene midpeninsular seaway 
hypothesis comes from geologic data that constrain the timing of uplift 
that formed the high, east-facing topographic escarpment along the spine 

Figure 5: Latitudinal distribution of genetic discontinuities (regions 
separating two distinct ESUs) along the Baja California peninsula for a 
subset of 52 taxa analyzed by Munguía-Vega (2011). (A) Frequency of 
narrow discontinuities (spanning less than 1°20’ latitude) in 19 taxa;  
(B) frequency of narrow and broad (spanning less than 3°0’ latitude) 
discontinuities in 52 taxa, plotted with a resolution of 0°10’ latitude;  
(C) phytogeographic regions on the Peninsula (following Shreve and 
Wiggins 1964; Wiggins 1980) and approximate location of the 
discontinuities suggesting the seaways as depicted by different authors. 
References for the location of proposed seaways: (1) Upton and Murphy 
1997, (2) Nason et al. 2002, (3) Alvarez-Castañeda and Patton 2004, 
(4) Lindell et al. 2005, (5) Crews and Hedin 2006, (6) Lindell et al. 
2008. Asterisk indicates area between 27°20’ and 27°30’N with 14 
genetic discontinuities, the largest value observed in the Peninsula.
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Figure 6: Phylogenetic diversity data illustrating spatial overlap of ESUs 
from genetic markers (both haploid and diploid) for different taxa: (A) 
amphibians, N = 4 taxa; (B) reptiles, N = 32 taxa; (C) birds, N = 8 
taxa; (D) mammals, N = 14 taxa; (E) invertebrates, N = 21 taxa; (F) 
plants, N = 6 taxa.
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Figure 8: Phylogenetic diversity data illustrating spatial overlap of ESUs 
from genetic markers (both haploid and diploid) for (A) volant animals, 
N = 22 taxa, and (B) non-volant animals, N = 57 taxa. 

Figure 7: (A) Sampled localities for genetic markers across all taxa with 
haploid (open circles) and diploid (closed circles) data (N = 85 taxa). 
(B) Phylogenetic diversity data illustrating spatial overlap of ESUs from 
genetic markers (both haploid and diploid) for all taxa (N = 85 taxa). 
See tables S1 and S2 for details on taxa.
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of the Peninsula. Near Loreto, ~15- to 6-Ma lava flows west of the 
Peninsula’s topographic spine have been uplifted and incised, recording 
a history of vertical tectonic uplift (Mark et al., 2014). Younger lava 
flows (~3 Ma to recent) have subsequently flowed into these uplift-related 
canyons. These findings indicate that the majority of vertical tectonic 
uplift occurred ~6–3 Ma and preclude the possibility that a younger 
(~2- to 1-Ma) seaway flowed across the central Baja California peninsula 
since the region had already reached significant elevation. Thus, it is 
challenging to explain the observed Plio-Pleistocene genetic discordance 
with a midpeninsular seaway hypothesis.  

2.2. Biological Patterns

2.2.1. Genetic Evidence for Midpeninsular Vicariance  
 (Hypotheses 2a, 2b, 2c)

While the geological uplift history makes a 2- to 1-Ma transpeninsular 
seaway unlikely, this seaway hypothesis motivated much of the terrestrial 
phylogeographic research in the region. We will review the results of this 
work generally and formalize the seaway-associated hypotheses. 

The meta-analysis presented here of phylogeographic studies along 
the Peninsula confirms previous work that species exhibit a high degree 
of geographical structure concentrated in this area (Riddle et al. 2000; 
Hafner and Riddle 2005; Lindell et al. 2006; Riddle and Hafner 2006; 
Leache et al. 2007, Munguía-Vega 2011). The frequency of narrow 
genetic discontinuities departs significantly from a null expectation of 
uniform geographic distribution over the Peninsula (figure 5A; Munguía-
Vega 2011), but the spatial overlap of ESUs is not consistent across 
organismal groups (figure 6). 

Analyses incorporating all previous genetic studies (both haploid and 
diploid markers) reveal the area of largest phylogenetic diversity in the 
entire Sonoran Desert is the high-elevation peninsular region between 
28°N and 30°N latitude (figure 7B). The northern boundary of this diverse 
area (30ºN) has been previously identified as a region with a high density 
of genetic discontinuities spanning less than 3o latitude (observed in 52 
taxa here; Munguía-Vega 2011; figure 5B). At 30°N, the desert transitions 
to Mediterranean climate and marks a dramatic change in modern vegetation 
(Vanderplank et al. 2014). Conservation principles and the Coriolis effect 
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limit the southward migration of the jet stream to ~30ºN regardless of the 
climate state (Minnich et al. 2014), and might explain the northern extent 
of the diversity center seen in these analyses. The area of highest phylogenetic 
overlap (and thus likely highest genetic diversity) for non-volant animals 
is located around 30ºN latitude (figure 8B). The area of highest overlap 
for volant animals is between 28ºN and 29ºN (figure 8A). Whether this 
difference is random or indicates that different mechanisms limit the 
northern limit of diversity for these two groups is unclear. 

The number of ESUs observed within taxonomic groups negatively 
correlates with the ability of individual species to disperse, as expected 
(Dawson 2001; Soltis et al. 2006; but see Patarnello et al. 2007). Among 
taxa, reptiles show the largest average number of ESUs per group for 
haploid markers (3.32; table S1, figure S1C), whereas the lowest was 
observed within birds (1.57). For diploid markers, largest values were 
observed for invertebrates (2.75) and lowest for birds (1) (table S2, 
figure S2G). Within animals, volant animals showed lower levels of 
genetic structure (average 2 ESUs per taxa for haploid markers) compared 
to non-volant animals (2.98) (figure S3), but this pattern was not 
observed for diploid markers (table 2). 

Genetic discontinuities in this midpeninsular region in our meta-
analysis are broader than authors previously suggested, and vary 
latitudinally by taxonomic group (figure 6). Both San Ignacio and Agua 
Armada passes, which were suggested sites of Plio-Pleistocene 
transpeninsular seaways, are narrow (35–40 km between the northern 
and southern 400-m contours). The expectation from flooding of these 
passes is that low-dispersal species (e.g., rodents, reptiles) would be 
genetically discordant (different) on either side of the barrier (hypothesis 
2a), and that high-dispersal species (birds, wind-dispersed plants) would 
disperse over the barrier and exhibit no genetic discordance (hypothesis 
2b). In contrast to this expectation, plants exhibit the greatest genetic 
discordance in this region (figure 6F). Additionally, both volant (figure 
8A) and non-volant animals (figure 8B) exhibit discordance in the middle 
of the Peninsula. 

Importantly, these spatial analyses are only as robust as the sampling 
density on which they are based, and it is likely many of these studies 
have sampling schemes that preclude fine-scale geographic interpretation. 
The average number of sampled localities included in each study is 20, 
but ranges from 8 (birds) to 40 (reptiles) (table 2). Because the length 
of the Peninsula is ~1,200 km, 10 sampling locations distributed evenly 
along a longitudinal transect yield only 1 sample per 120 km. For 
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comparison, the distance between the Agua Armada and San Ignacio 
seaway passes is only ~65 km. This lack of spatial resolution should be 
considered when drawing inferences from such data and should guide 
sampling efforts for future studies.

2.2.2. Marine Patterns and the Midpeninsular Seaway  
 (Hypotheses 2d, 2e)

Riginos (2005) uncovered a north-south genetic discontinuity to 
varying degrees in five nearshore fishes in the western Gulf, and other 
studies revealed similar patterns (Stepien et al. 2001; Hurtado et al. 2013). 
North-south genetic discordance was interpreted as consistent with a 
midpeninsular seaway, which would have produced a break in otherwise 
contiguous habitat for nearshore inhabitants. However, fishes with pelagic 
larval phases can often disperse well. For instance, given a 30-day larval 
duration, strong Gulf currents can transport larvae up to hundreds of 
kilometers from the source (Munguía-Vega et al. 2014; Soria et al. 2014), 
suggesting that even in the presence of a seaway, larvae should likely have 
maintained genetic connectivity. Also, the precise geographic site of 
discordance differs between species, which might be expected given 
species-specific factors governing post-barrier gene flow. Alternatively, 
the midpeninsular region marks a zone of ecological transition that may 
better explain these results. The midpeninsular seaway passes (Agua 
Armada and San Ignacio) are located between present-day northern and 
southern seasonally driven gyres in the Gulf (Lavin et al. 1997; Marinone 
2003) and are currently characterized by cooler temperatures at least 
half the year (Lluch-Cota et al. 2007). The site of discordance is also near 
the Midriff Islands where seasonal upwelling occurs (Zeitzshel 1969), 
and roughly coincides with the northern extent of mangrove habitat in 
the western Gulf (Whitmore et al. 2005; Aburto-Oropeza et al. 2008). 
Therefore, any of these ecological factors could produce or contribute 
to a north-south genetic discordance in the absence of a seaway. 

2.3. Land-Sea Interactions: Future Work

More detailed reconstructions of past topography in the midpeninsular 
region would improve our understanding of land-sea interactions and 
enable biological interpretations to progress in a geologically feasible 
framework. Additionally, geologists can use available volcanic dates in 
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the region to evaluate candidate regions where Plio-Pleistocene strata 
may be exposed in these passes, which would provide more direct evidence 
regarding any seaway or regional flooding at this time.   

For biological interpretations, it is necessary to learn whether the 
differences observed between patterns of haploid and diploid markers 
(figures S1, S2; see section 4.2) are due to mutation rate or marker 
characteristics (e.g., effective population size). If differences were due 
to mutation rate it would mean the isolating event was biologically 
relevant and nuclear (diploid) markers generally evolve too slowly to 
record the event. If, however, discordance in the mtDNA (mitochondrial 
DNA) lineages results from the fact that mtDNA records events more 
readily due to its haploidy and single-parent inheritance, it might indicate 
that the event, though widespread taxonomically, may not have been as 
significant as previously thought. Developing robust nuclear datasets 
with resolution similar to mtDNA could clarify whether this signal is 
observable in diploid markers. Single Nucleotide Polymorphisms (SNPs) 

Figure 9. (A) Map of the Baja California coastal marine populations 
with each population’s genetic identity denoted by color (red to violet 
Hypothesized topologies are presented under two different dispersal 
scenarios: (B) a null isolation by distance model and (C) topology 
expected with addition of gene flow through a midpeninsular seaway. 
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or sequence data through targeted approaches, such as the quickly 
evolving flanking regions of ultraconserved elements (Faircloth et al. 
2013), restriction associated DNA (Miller et al. 2007), or introns, may 
give comparable nuclear data. Using taxa for these studies that previously 
exhibited mtDNA discordance provides a natural comparison. 
Additionally, genetically underrepresented groups (e.g., amphibians, 
birds) should be prioritized in future studies.

It is possible to use marine taxa to further test the midpeninsular 
seaway hypothesis. Rather than preventing gene flow along the western 
coastline of the Gulf as previously studied, for some marine species a 
transpeninsular seaway would have facilitated gene flow and/or dispersal 
between the Pacific and Gulf, which today is limited or entirely inhibited 
for many species by prohibitively warmer southern waters (Bernardi et 
al. 2003). Under a null hypothesis with no seaway, isolation by distance 
around the Peninsula is expected, where genetic relatedness between 
populations is primarily a function of coastal distance between them 
(figure 9B). The alternative hypothesis includes dispersal facilitated 
between the Gulf and Pacific Ocean through a midpeninsular seaway. 
Under this experimental hypothesis, individuals adjacent to the seaway 
region along the Gulf and Pacific coasts are more closely related than 
under the null hypothesis (figure 9B compared to 9C). The relatedness 
of seaway-adjacent populations can be assessed topologically in tree 
reconstructions, through assignment tests, or via metrics such as Fst 
(fixation index). If the alternative hypothesis is supported, it would 
provide independent support for the midpeninsular seaway hypothesis 
that is less confounded by terrestrial ecological factors (see section 3.2).

3. THIRD-ORDER PROCESSES— 
100-KYR GLACIAL-INTERGLACIAL CYCLES

3.1. Climatic Phenomena

3.1.1. Climate History

The middle Miocene climate transition (14.2–13.8 Ma) is observed 
in isotope records from deep-sea sediments, which record a dramatic 
cooling episode of 6–7°C (Shevenell et al. 2004), marking the onset of 

31



422  ✜  JOURNAL OF THE SOUTHWEST

long-term cooling during which Antarctica’s ice volume dramatically 
grew (Zachos et al. 2001). During the middle Miocene, coastal upwelling 
intensified along California (White et al. 1992), which imparted a 
tempering effect on regional climate, delivering cool, nutrient-rich waters 
that promote primary production and summer fog (for review of 
biological responses, see Jacobs et al. 2004). Upwelling intensification 
also led to a general aridification of the western coast, permitting more 
arid-adapted species over time and the precursor community to the 
Sonoran Desert (Axelrod 1979), which existed by 8–5 Ma. In late 
Miocene (11.6–5.3 Ma), offshore sea surface temperatures increased 
substantially from a winter minimum of 10°C to 17°C by the earliest 
Pliocene (Barron 1973). Sea surface temperatures off the California coast 
were still several degrees warmer than today during the early Pliocene 
warm period (Dekens et al. 2007), beginning 4.6 Ma and ending ~3 Ma 
with the onset of northern hemisphere glaciations, driven primarily by 
cyclical changes in Earth’s axis and orbit around the sun. Between ca. 3 
and 0.8 Ma northern hemisphere glaciations occurred with a 41-kyr 
periodicity, after which the periodicity increased to 100 kyr, yielding 
larger temperature and sea-level fluctuations (Mudelsee and Schulz 
1997). During these later glaciations, sea levels lowered 100–150 meters 
below sea level (mbsl), dramatically changing island footprints and 
forming some land bridges (figure 2C). Since the last glacial maximum 
(LGM) ca. 20 ka (thousand years ago), temperatures have increased, 
with slightly higher than present temperatures at the start of the Holocene 
(ca. 10 ka). Temperatures decreased during the middle Holocene Climate 
Optimum, which also brought drier conditions in some places (Steig 
1999), but the Mexican monsoon climate continued.

3.1.2. Future Climate Change Predictions

Climate change research predicts globally increased temperatures, 
regional aridification, and increased frequency and/or magnitude of 
extreme weather events (e.g., droughts, floods, storms) and a rise in 
mean sea level by 2100 (IPCC 2012). Although the details of how these 
effects will manifest on the Peninsula and the Sonoran Desert are 
uncertain, trends are suggested. Some (though not all) Complex General 
Circulation Models predict El Niño Southern Oscillation (ENSO) activity 
will increase in strength or become more frequent (Collins et al. 2010). 
Bakun (1990) proposed that if climate change increased the strength of 
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alongshore winds, then coastal upwelling would intensify along the 
California coast, increasing both nutrient availability for primary producers 
and coastal summer fog, which is an additional water source for coastal 
vegetation in rain-limited climates. The Gulf of California, however, 
might limit the offshore-onshore temperature disparity by moderating 
the land-sea temperature disparity and thereby limit or prevent such an 
increase in summer fog. Lower annual precipitation, primarily through 
decreased winter rainfall, is predicted, along with lower snowpack volume 
in high-altitude regions that will melt earlier in the year (Seager and 
Vecchi 2010). Under increased temperature and decreased precipitation 
expectations, Ecological Niche Modeling predicted extensive turnover 
(>30% of species modeled) for those species living on the Peninsula 
(Peterson et al. 2002). If accurate, the ecosystem constituents observed 
today might be different in the future, which is of particular concern for 
endemic species that would have to migrate or face extinction. High-
altitude chaparral communities, by contrast, are suggested to be relatively 
impervious to future climate change (Minnich et al. 2014). Finally, 
damming and diversion of river waters has already had a marked impact, 
particularly in the Colorado River delta, which has lost most if not all of 
the freshwater and sediment discharge it previously had (Brusca 2015), 
with significant impacts on biology (Kowalewski et al. 2000). Any future 
regional aridification will further perturb this highly modified hydrographic 
state, the consequences of which are difficult to predict, but will be 
challenging for the artisanal fishermen and coastal towns that depend 
on the Gulf’s productivity. 

3.2. Biological Patterns

3.2.1. Glacial-Interglacial Vegetation Changes

Significant differences exist between the vegetation during glaciations 
and what we observe today. Desert scrub, the dominant Sonoran Desert 
vegetation type today, probably existed for only 10% to 20% of the 
Pleistocene, unlike open woodland vegetation, which was widespread 
for ca. 80% to 90% of glacial periods (Van Devender 2002). Fossil packrat 
middens (Neotoma sp.) document expansion of temperate and mesic or 
moderate moisture-adapted trees and shrubs into desert elevations since 
the last glacial maximum (LGM) ca. 20 ka (Betancourt et al. 1990), 
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though midden data may be biased toward mesic-adapted species in 
rocky areas, thus overestimating climate-associated change (Minnich et 
al. 2014). In the Arizona Upland subdivision of the Sonoran Desert 
(300–1,550 masl), single-leaf pinyon-juniper woodlands with shrub live 
oak and Joshua tree dominated during the LGM. Desert trees and scrub 
plants fully established by 9 ka, when the summer rainfall climate regime 
was established. More subtropical associated desert plants (e.g., paloverde, 
saguaro) didn’t arrive until 4.5 ka (Van Devender 1990; Metcalfe 2006), 
and the Sonoran Desert established its present-day boundaries ca. 6 ka 
(Thompson and Anderson 2000).

On the Peninsula, pinyon-juniper and chaparral species probably 
extended about 400 km south of their current distributions ca. 10 ka, 
while the mid-Peninsula may have experienced the Mediterranean climate 
of southern California and northern Baja California today (Metcalfe 
2006) with almost no areas of pure desert vegetation north of 27ºN 
(Holmgren et al. 2011). Lake sediment cores from Laguna Chapala and 
Laguna Seca in the northern Peninsula support a change from wetter to 
drier conditions during the early to middle Holocene (Davis 2003; 
Metcalfe 2006; Roy et al. 2010). Packrat middens from Sierra San Pedro 
Mártir 650–900 masl record the expansion downslope of chaparral species 
during the latest Pleistocene followed by their rapid replacement by 
Sonoran Desert species during the early Holocene (Holmgren et al. 
2011). Cataviña (640–680 masl) and San Fernando middens suggest  
a pinyon-juniper woodland/chaparral in the LGM was replaced by 
mesquite, and then cactus by middle Holocene ca 5 ka (Van Devender 
2002; Metcalfe 2006). In the mid-Peninsula (Sierra San Francisco) a 
10.2-ka midden preserves Juniperus californica and other chaparral 
species (laurel sumac, Malosma laurina; Baja manzanita, Arctostaphylos 
peninsularis; American wild carrot, Daucus pusillus) at 780 masl, 
suggesting a mild Mediterranean climate 5ºC to 6ºC cooler with at least 
twice the winter precipitation of today (Rhode 2002). These cooler 
conditions in the southern Peninsula are further supported by chaparral 
communities isolated on high mountain peaks south of 28ºN (Moran 
1983b).

While desert scrub expanded and the chaparral/woodland vegetation 
contracted to higher elevations and latitudes toward their current 
distributions ca. 11 ka, small, isolated areas of mesic environments 
remained in sheltered canyon oases (Arriaga and Rodriguez-Estrella 
1997) and montane habitat above 800 masl throughout the Peninsula 
(Moran 1983b; Minnich et al. 2014).
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3.2.2. Climate, Refugia, and Genetic Discontinuities  
 (Hypotheses 3a–3e)

Glacial refugia are populations that survive glaciations and harbor the 
majority of the modern genetic diversity within a species (Hewitt 2000, 
but see Petit et al. 2003). The location, nature, and expansion from 
refugia on the Peninsula remain unclear.

Northern (Nason et al. 2002) and southern (Garrick et al. 2009) 
expansion from refugia has been observed along the Peninsula in arid-
adapted succulent plant taxa, though the southern expansion results may 
instead result from differential pollination rates. Instead of unidirectional 
postglacial migration, topographic relief along the Peninsula may have 
provided an array of microclimates that hosted refugia during the LGM 
(Garrick 2010; hypothesis 3c). This view is supported by our analyses 
showing that areas of highest genetic (phylogroup) overlap correspond 
to high-elevation ranges in the Peninsula, Sonora, and southern Arizona 
(hypothesis 3e; figures 7B, S1B, S2B). If the concentration of phylogroups 
corresponds with historical refugia, then volant animals were located 
farther south than non-volant animals, both on the Mainland and on 
the Peninsula. The locations, however, are different for each animal 
taxonomic group (figure 6); reptile diversity centers between 28°N and 
30°N in high elevations of the Peninsula. In contrast, maximum diversity 
overlap for birds is north of 30°N at higher elevations, and in the lowlands 
of the lower Colorado Valley east of the mountains. For mammals, the 
highest diversity centers between 28°N and 30°N at lower elevations 
west of the mountains, and in the Magdalena plains north of La Paz. 
Invertebrates and plant patterns were more similar than any other groups 
and included higher elevations around 28°N latitude and in Baja California 
Sur (hypothesis 3b). This observation supports ecological co-associations, 
which are constraints imposed by biotic interactions between insects, 
herbivores, parasites, and their host plants where one group cannot thrive 
without the other and vice versa (Garrick et al. 2013). It is therefore 
expected that distributions (and thus diversity patterns) of such groups 
are similar. In summary, if individuals retreated to mountainous regions 
during glaciations, it could create areas of low ESU overlap in the 
topographically low regions between mountains that could resemble a 
historical barrier, like a seaway.

Discontinuities for some peninsular species have been explained by 
regions of poor habitat quality and low density of individuals (e.g., Leache 

35



426  ✜  JOURNAL OF THE SOUTHWEST

and Mulcahy 2007; Garrick et al. 2009). When species encounter 
ecological gradients or abrupt changes in climate individuals may adapt 
to local environments (Grismer 2002), as suggested elsewhere (Lapointe 
and Rissler 2005; Davis et al. 2008). The strong 30ºN non-volant genetic 
discontinuity (northern diversity limit) corresponds with the transition 
between the cool, mesic California coastal scrub and chaparral vegetation, 
and the arid, temperate Vizcaíno region at the start of the Sonoran Desert 
(figure 5C). This climatic transition is the southern extent of the jet 
stream, which was likely stable throughout Pleistocene glacial-interglacial 
cycles (section 2.2.1; Minnich et al. 2014). Climatic stability may have 
contributed to the high levels of endemism in the California Floristic 
Province–Sonoran Desert transition zone (Vanderplank et al. 2014) as 
seen in other Mediterranean regions (Cowling et al. 2014). In other 
areas, such as California, transition zones between animals and plants 
known or suspected to hybridize are also located across such climatic 
gradients (Remington 1968). Another example of regional climate 
anomalies is the Vizcaíno peninsula (Punta Eugenia), which diverts cold 
upwelling Pacific waters offshore and marks the transition to increased 
summer rainfall in the south (Minnich et al. 2014). This transition zone 
coincides geographically with the midpeninsular discontinuity. Depending 
on when this phenomenon began, it may have contributed to the 
midpeninsular genetic discontinuity, or to differential selection pressures 
across this transition zone that could produce a discontinuity over time. 
Another alternative, more recently posited hypothesis attributes such 
biological transition zones to Pacific fracture zones (Gottscho 2014).

Climate-driven ecological gradients may have limited the migration 
of individuals at intermediate elevations such as mountain passes. 
Distributions of well-adapted animal subspecies contracted and expanded 
with different vegetation types during glacial fluctuations (Van Devender 
2002). Some desert scrub inhabitants from the Sonoran Desert, such as 
reptiles (Sauromalus obesus, Uta stansburiana, Aspidoscelis [Cnemidophorus] 
tigris, Trimorphodon biscutatus, Hypsiglena torquata, Lichanura 
trivirgata), an amphibian (Bufo punctatus), and mammals (Dipodomys 
merriami, Neotoma lepida, Chaetodipus baileyi, Thomomys bottae, 
Peromyscus sp., Ammospermophilus sp.), were found in LGM–early 
Holocene woodland packrat middens from California and Arizona (Mead 
et al. 1983; Van Devender 1990). Such occurrences indicate many desert 
animals were not restricted to southern refuges during glacial periods but 
remained in situ. These observations suggest the phylogeographic patterns 
observed for some desert reptiles and mammals may not have arisen from 
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extinction and recolonization from southern refugia, but by adaptation 
to different areas with divergent selection pressures (Davis et al. 2008). 
A packrat midden from the Lower Colorado River basin (>55 ka) showed 
a mixture of woodland and desert species that might have survived in 
small, separate populations within dry patches of woodlands, opposing 
the traditional concept of desert refugia (Holmgren et al. 2014). 

The absence of a desert refugium in the rain shadow of the Sierra San 
Pedro Mártir (one of the most arid regions of the Sonoran Desert) and the 
individualistic nature of species’ responses to climatic change (Whittaker 
1953; Van Devender 1977; Huntley 1991) suggest the concept of a desert 
refugium should be reconsidered. It seems unlikely that a community of 
arid-adapted taxa resembling modern Sonoran Desert communities existed 
during glacial periods. Instead, arid-adapted taxa may have segregated by 
niche and assembled at the onset of modern climatic conditions ca. 6 ka to 
form the communities we now term the Sonoran Desert. 

3.2.3. Plant Distribution Patterns (Hypothesis 3f)

To define the biogeographic patterns and links between the Peninsula 
and Mainland we identified plant species co-distributed between them. 
Through assembly of trans-Gulf floristic listings, georeferenced herbarium 
patterns for 526 disjunct taxa (table S2) were mapped and four 
biogeographic patterns were identified.

Widespread taxa (N = 346; table S2): The majority of species shared 
between the Peninsula and Mainland are widely distributed throughout 
the Sonoran Desert, and generally extend far beyond the boundaries of 
the desert. Most have long-range dispersal syndromes and produce a 
widespread biogeographic pattern.

Northern taxa (N = 20; figure 10A; table S2): A group of predominantly 
temperate species wraps around the northern head of the Gulf. They are 
lowland desert species (e.g., Ephedra aspera and Peucephyllum shottii) or 
occur primarily at higher elevations (e.g., Crossosoma bigelovii, Rhus 
kearnyi, and Sideroxylon leucophyllum).

These species may have been distributed above 32ºN and dispersed 
southward to the Peninsula and Sonora. Many of these species are on 
the Peninsula and Midriff Islands across the Gulf, but remain confined 
to the northwest corner of Sonora. The horseshoe distribution pattern 
resembles that of ring species complexes, which is a unique form of 
speciation in which the terminal populations (those most distant) are 
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Figure 10: Three distribution patterns are shown, including (A) 
northern taxa, distributed in a horseshoe pattern around the head of the 
Gulf, (B) Baja migrants, widely distributed throughout the Peninsula, 
Midriff Islands, and very limited in Sonora, and (C) tropical taxa, 
which have southerly distributions with varying northern limits. Sample 
dots are color-coded according to species (bottom right panel).
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reproductively isolated, but remain genetically connected through the 
intervening populations (Irwin et al. 2001, 2005). For example, Baja 
California and Arizona/Sonora populations of the Agave deserti complex 
(Navarro-Quezada et al. 2003) are reciprocally monophyletic and the 
Gulf is a reproductive barrier (Gentry 1978). If such trans-Gulf gene 
flow at the southern range of such a species is absent, studies into whether 
ring speciation is occurring and its prevalence among species with this 
distribution pattern might be of interest.

Baja migrants (N = 48; figure 10B; table S2): First identified by Cody 
et al. (1983), a sizable group of plants is broadly distributed over the 
Peninsula, across the Midriff Islands, and narrowly on the Sonoran coast. 
Unlike the northern taxa group, these species are not distributed north, 
or around the head, of the Gulf.

A hypothesis for the origin of this pattern is that species migrated 
from the Peninsula to the Mainland via the Midriff Islands. Previous 
work shows that the Mainland clades, when present, often nest within 
peninsular ones (Clark-Tapia and Molina-Freaner 2003; Garrick et al. 
2009, but see Fehlberg and Ranker 2009). Sea-level lowstands associated 
with glaciations would have increased island footprints and could have 
facilitated this gene flow.

Tropical taxa (N = 112; figure 10C; table S2): Species with tropical 
affinities are clustered to the south on either side of the Gulf in Sonora 
near Guaymas/Alamos and the Cape region of Baja California Sur. These 
taxa have varying northern limits as they follow the foothills of the Sierra 
Madre Occidental on the Mainland or the peninsular range in Baja 
California.

The southern boundaries of the Sonoran Desert are near Guaymas, 
Sonora (27º55’N), and farther south at the Cape region in Baja California 
Sur (23º32’N). These areas have mean annual precipitation of 200–400 
mm, of which more than half arrives as summer rain (Cody et al. 1983), 
and might account for the large number of tropically affiliated plants 
shared across the Gulf. 

3.3. Climatic Patterns: Future Work

Future work should test whether the absence of genetic overlap of 
species in the topographically low midpeninsular region is due to montane 
glacial refugia or abiotic clines with north-south differential local 
adaptation, among other hypotheses. If the northern and southern 
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mountains hosted glacial refugia, then within-species genetic diversity 
should be highest in those regions and decrease toward low-lying regions, 
and display a strong spatial pattern. Analyses using haplotype networks, 
or new spatially explicit genetic software programs such as BioGeoBEARS 
(Matzke 2013), may offer insight given enough data and proper spatial 
sampling. Such programs can model or test different historical 
biogeographic scenarios and, given the genetic data, indicate a most 
probable history. Performing such analyses comparatively on previously 
studied species would reveal whether this history is shared. The role of 
local adaptation to abiotic clines could be tested through gene expression 
or genome methylation studies, which would reveal genes that are 
differentially expressed between northern and southern populations 
across numerous taxa. This information would provide specific genes 
and physiological pathways that are facilitating local adaptation to abiotic 
factors such as temperature and precipitation.  

Our analysis shows strong geographic, taxonomic, and genetic marker 
biases in previous phylogeographic work that should be improved in 
future studies (table S1). Sonora is the least sampled area in the Sonoran 
Desert, particularly for diploid markers (figure S2A). More studies of 
birds, plants, and amphibians should be included as they compose 9%, 
7%, and 5% of the total studies, respectively. Studies using nuclear markers 
are lacking (only 25.8%), and genetic overlap of distinct ESUs is most 
commonly observed in studies using haploid markers (compare figures 
S1 and S2). Even microsatellite data are largely absent, and it is a widely 
used approach to assess postglacial expansion patterns (e.g., Heuertz et 
al. 2004). Studies in the Sonoran Desert region have yet to incorporate 
next-generation sequencing technologies and genomic analyses (e.g., 
O’Neill et al. 2013). Such methodologies (McCormack et al. 2013) 
should be applied to desert-woodland/chaparral transition zones such 
as the La Rumerosa or Magdalena-Cucurpe to infer the histories of 
modern desert edge communities. Exemplar taxa in the sky island relictual 
habitats could also be investigated to see if these regions are, in fact, 
stable over Pleistocene time. Finally, ancient DNA from packrat middens 
would provide an ancient analogue to modern conditions, perhaps with 
the ability to assess historical biogeographical patterns as a comparison 
to today. 
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4. CONCLUSIONS

4.1. Summary of Findings

Rifting of the Baja California peninsula from Mainland Mexico and 
formation of the Gulf of California produced speciation of terrestrial 
taxa (e.g., reptiles, amphibians, arachnids) that do not disperse around 
or across the Gulf. More species-level genetic work is needed to address 
whether similar divergence occurred frequently in highly dispersive groups 
(e.g., plants and birds). The high degrees of insular, peninsular, and Gulf 
endemism stem from this rifting combined with subsequent isolation. 
Flooding of the modern Gulf (ca. 6 Ma) created new marine habitat that 
likely exerts different selection pressures on its marine inhabitants 
compared to the Pacific Ocean, and may be a source of ecological 
speciation, though explicit testing is required. The proto-Gulf hypothesis 
of an old (ca. 15- to 12-Ma) marine embayment differs in detail between 
biology and geology. Geological evidence for its location and cause is 
lacking, but reworked middle Miocene marine microfossils and 
synchronous speciation of Gulf endemic and non-endemic sister species 
of east Pacific bay gobies may suggest the presence of a middle Miocene 
marine embayment somewhere in northwestern Mexico. The precise 
location, size, and shape of such an embayment remain unknown.

Physical evidence for midpeninsular seaways is absent and recent uplift 
estimates indicate these passes may have been floodable during middle 
Miocene time, but are unlikely to have flooded during the Plio-
Pleistocene. Additional support against Plio-Pleistocene seaways comes 
from our analyses showing that north-south midpeninsular genetic breaks 
are also observed in highly dispersive taxa, which would probably have 
been able to disperse over such a barrier. We offer alternative explanations 
for the ubiquitous north-south discordance pattern observed: (1) Stability 
and range of microhabitats afforded in montane regions to the north 
and south may have afforded glacial refuges so populations were repeatedly 
isolated, or (2) there was differential north-south adaptation to 
temperature and precipitation gradients; each of these explanations would 
explain why midpeninsular valleys exhibit low ESU overlap. 

Four plant species distribution patterns are uncovered that may 
originate from rifting and/or postglacial migration. Future genetic studies 
should focus on these species to understand connections between the 
Mainland and peninsular portions of the Sonoran Desert. Packrat midden 
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data indicate that glacial refuges probably did not resemble modern 
Sonoran Desert communities. Instead, response to climatic events may 
be much more individualistic and less community oriented (except for 
obligate or co-associated species). We suggest the opportunities to 
advance this knowledge are in application of large nuclear and ancient 
DNA data. 

Finally, the analyses performed herein reveal a major bias toward 
taxonomic group (reptiles and mammals) and mtDNA (table 2). We 
suggest that, to differentiate between competing hypotheses and eliminate 
confounding variables, these patterns be reevaluated with nuclear data, 
for which several methods are suggested (section 2.3). Additionally, 
alternative approaches using topographical analysis and marine species 
would provide novel, independent perspectives on long-debated 
hypotheses.

4.2. Caveats and Concerns of Mitochondrial Genetics

Genetic discontinuities decrease quickly, independent of a population’s 
size, after gene flow is restored between temporarily isolated populations 
(Irwin 2002). However, the non-recombining (i.e., it acts as a single 
gene) nature and single-parent inheritance pattern of the mitochondrion 
can make this discontinuity observable much longer in mitochondrial 
than nuclear DNA (Rubinoff et al. 2006). Therefore, the lasting 
discordance observed among many taxa along the Peninsula may be 
biased by a heavy reliance on mtDNA. 

Another caveat is that since the mitochondrion does not recombine, 
mtDNA-based interpretations may reflect a gene lineage and not 
necessarily the true history of the populations. In the absence of several 
independent markers, stochastic coalescence processes may drive patterns 
and interpretations in the absence of a “real” biological signal. Munguía-
Vega (2011) demonstrated that mtDNA discontinuities can arise 
spontaneously if the migration rate is only one successful migrant per 
generation between populations. As an example, reciprocal mitochondrial 
monophyly could arise (assuming one generation per year) in just 20,000 
years (e.g., since the LGM, Andrews and Barry 1978), with a census size 
of 400,000 individuals (e.g., Ne = 20,000, 5% of census size), without 
any physical barrier. These findings signify that continuously distributed 
species with restricted dispersal can form genetic discontinuities in regions 

42



Gulf of California  ✜  433

where migration has never been completely impeded, and therefore an 
impassable physical barrier is not always required.

Another process that may be occurring in some species is reinforcement, 
in which permanent biological barriers such as low hybrid fitness, 
incompatibility of alleles, and postzygotic isolation mechanisms limit 
interbreeding between previously isolated populations (Crews and Hedin 
2006). The hybrids form in the zone of secondary contact (i.e., purported 
seaway region), the width of which is proportional to fitness of the 
hybrids. In this case, strong selection pressure against hybrids would be 
required to explain the narrow north-south genetic discontinuity, but 
this could be aided by ecological gradients imparting divergent selection 
regimes during isolation (Barton and Hewitt 1985; Phillips et al. 2004; 
Macholan et al. 2007). Whether selection against hybrids in the secondary 
contact zone would affect so many taxa similarly is uncertain, and the 
general absence of morphological diversification has termed this “cryptic” 
divergence. 

4.3. The Assumption of Parsimony

Parsimony, the assumption that the simplest explanation is most likely, 
is among the most widely used assumptions in biology, yet its veracity 
and appropriateness are rarely testable. To date, researchers have favored 
parsimonious explanations where a single event (i.e., a seaway) is used to 
explain dozens of intra-specific patterns of diversity and discordance among 
co-distributed species (as theory advises). However, this review suggests 
that a single discrete explanation is sometimes insufficient to account for 
the patterns observed, many species with complex histories may not be 
shaped by a single barrier, and that barrier or event may not affect all species 
similarly. The actual biodiversity patterns can result from different underlying 
factors operating at different times and locations that result in similar 
phylogenetic patterns (i.e., pseudocongruence) (Lapointe and Rissler 2005; 
Feldman and Spicer 2006; Riddle and Hafner 2006; Soltis et al. 2006; 
Chatzimanolis and Caterino 2007). This vicariance explanation also 
highlights what may have been a reluctance to call on ecological factors as 
primary agents in isolation and diversity patterns along the Peninsula.

As a region with complicated tectonic and climatic histories, the Gulf 
of California and broader Sonoran Desert constitute a setting where the 
assumption of parsimony in interpreting evolutionary patterns should 
be reconsidered.
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4.4. An Interdisciplinary Future

Significant debates have persisted in geology regarding existence and 
nature of a proto-Gulf of California, timing and details of modern Gulf 
formation, and translation and structure of the Peninsula through time. 
Similar debates within biology regarding presence of a midpeninsular 
seaway, the role of abiotic gradients, and Pleistocene refugia have 
continued as well. Widespread biological patterns, however, are usually 
the genuine result of physical or climatic processes (e.g., seaways, rifting, 
glacial-interglacial oscillations), and can thus be used to inform the nature 
of such underlying events even in the absence of physical evidence or 
reason to search. Biological patterns, however, can also arise from random 

Table 2. Average number of ESUs, sample size (number of taxa, N) and 
standard deviation (SD) for taxonomic groups, haploid and diploid markers, 
and average number of sampled localities per taxon.
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or biotic factors, in which case geological evidence can rule out competing 
external mechanisms, and remains the only source for absolute dating. 
Each discipline provides an opportunity for independent knowledge and 
evaluation that should be used to advance the understanding within each 
field, particularly when faced with conflicting evidence within a discipline. 
In light of the emerging field of geogenomics and a broad emphasis on 
interdisciplinary research, our review suggests that to move such debates 
forward and construct a holistic understanding, synthetic, cross-
disciplinary research is not just innovative, but necessary.  ✜
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Figure S1: Maps showing sampled localities for genetic markers in all 
taxa (A: N = 85 taxa), and spatial overlap of Evolutionary Significant 
Units (ESUs) from haploid (i.e., mitochondrial and chloroplast DNA) 
genetic markers in all taxa (B: N = 72 taxa), reptiles (C: N = 28 taxa), 
mammals (D: N = 14 taxa), amphibians (E: N = 4 taxa), invertebrates 
(F: N = 17 taxa), birds (G: N = 7 taxa), and plants (H: N = 2 taxa).
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Figure S2: Maps showing sampled localities for genetic markers in all 
taxa (A: N = 85 taxa), and spatial overlap of Evolutionary Significant 
Units (ESUs) for diploid (i.e., nuclear) genetic markers in all taxa  
(B: N =20 taxa), reptiles (C: N = 4 taxa), mammals (D: N = 3 taxa), 
amphibians (E: N = 2 taxa), invertebrates (F: N = 4 taxa), birds (G:  
N = 2 taxa), and plants (H: N = 5 taxa).
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Figure S3: Map showing spatial overlap of Evolutionary Significant 
Units (ESUs) from haploid genetic markers in volant animals  
(A: N = 16 taxa) and non-volant animals (B: N = 54 taxa).
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Abstract  

Using a novel combination of paleohabitat modeling and genetic mixture 

analyses, we identify and assess a sea-level driven recolonization process following the 

Last Glacial Maximum (LGM). Our paleohabitat modeling reveals dramatic changes in 

estuarine habitat distribution on the coast of California (USA) and Baja California 

(Mexico). When sea level was ~130 m lower during the LGM (~20 kya), tidal estuarine 

habitat was absent from regions where it is currently most abundant because the LGM 

paleo-shoreline was too steep for tidal estuarine habitat formation. Steepness reduced 

estuarine habitat to two refugia separated by 1,000 km. Through examining the 

distribution of refugium-associated alleles in three species of estuarine fishes, we assess 

recolonization of estuaries formed during post-LGM sea-level rise. Recolonized 

populations were sources from both refugia, consistent with our inference of rapid, 

extensive habitat formation during sea-level rise ~15–10 kya. Habitat area decreased once 

sea level stabilized ~7 kya, likely from sediment infill of large estuaries. Our habitat 

modeling and allele identification approaches reveal a previously undocumented dynamic 

and integrated relationship between sea-level change, coastal processes, and population 

genetics. These results extend glacial refugial dynamics to unglaciated subtropical coasts, 

and have significant implications for biotic response to predicted sea-level rise.    

 

Introduction 

Quaternary glacial cycles have helped shape genetic variation throughout the 

geographic ranges of many taxa by changing temperatures and size of glaciers. For 

instance, cooling and increased ice cover during the Last Glacial Maximum (LGM), 
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about 20 thousand years ago (kya), isolated European populations of boreal species in 

southern refugia. Population expansion from these refugia, following glacial retreat, 

resulted in genetic mixing from multiple sources in newly colonized areas (Taberlet et al. 

1998; Hewitt 2000; 2004). Similarly, ice cover during the LGM also isolated high-

latitude coastal marine taxa in ice-free refugia, from which they also mixed following 

glacial retreat (Fraser et al. 2009; Ilves et al. 2010). By changing global sea levels, glacial 

cycles can also connect and isolate populations far from the ice sheets. For example, 

lower LGM sea level connected the terrestrial taxa of Asia to the islands of the Sunda 

Shelf, yielding Wallace’s Line (Mayr 1944). Here, we propose that glacially mediated 

sea-level changes can also strongly influence genetic mixing of marine species far from 

the poles. When sea-level change interacts with the variable topography of coastal 

margins, it can extirpate habitats over time. Altering the distribution of habitat through 

time affects the genetic structure of marine populations. 

The estuaries of southern California and northern Baja California (Figure 2-1) 

serve as an excellent system to examine how sea-level change can isolate and reconnect 

populations living in discontinuous coastal habitat. Estuaries in this region are situated 

along a tectonically steepened and heterogeneous continental shelf (Ingersoll & 

Rumelhart 1999; Plattner et al. 2009). Because estuaries only form in certain geomorphic 

contexts (Jacobs et al. 2011), sea-level change would likely have changed the distribution 

of estuarine habitat and estuarine inhabitants over glacial cycles. We therefore chose to 

examine the population genetic structure of three species of co-distributed, low-dispersal 

estuarine fish in which inference of population history is likely. Two of these species 

were previously studied to ascertain phylogeographic patterns and exhibited separate 
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clades corresponding to southern California and central Baja California (Bernardi & 

Talley 2000; Huang & Bernardi 2001). Sequence divergences and the absence of modern 

dispersal barriers led to suggestions of historical isolation (Bernardi & Talley 2000; 

Jacobs et al. 2004). Interpreting these genetic patterns in the context of our prediction of 

estuarine habitat changes through time, we hypothesize that these clades were caused by 

isolation in estuarine refugia during the LGM when the shoreline was ~130 m lower.  

  To estimate estuarine paleohabitat distributions from the LGM to present, we 

developed and employed habitat modeling with parameters trained on the modern estuary 

habitat in which these fishes live. To then predict historical estuarine distribution, the 

model used information on historical sea level and modern bathymetry of the continental 

margin. For our expanded population genetic work, we generated highly polymorphic 

microsatellite and larger mitochondrial DNA (mtDNA; see Appendix 2-1) datasets for 

the two previously studied fishes (Gillichthys mirabilis, Longjaw Mudsucker and 

Fundulus parvipinnis, California Killifish) and did the same for a third co-distributed fish 

(Quietula y-cauda, Shadow Goby). These data permitted analyses of genetic mixing 

through a novel application of Discriminant Function Analysis (DFA) and a commonly 

used Bayesian clustering algorithm (STRUCTURE). Based on previous genetic patterns 

(Bernardi & Talley 2000; Huang & Bernardi 2001) we predicted that there would be two 

primary refugia, one in southern California and one in central Baja California (Figure 2-

S1). We also predicted that microsatellite data would support two genetic groupings in 

accordance with the mitochondrial patterns previously observed, and that non-refugial 

populations would be genetically mixed from the two primary refugia.  
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Material and Methods 

Habitat modeling      To predict historical estuarine habitat areas, we used three criteria 

that are essential to estuary formation: shoreline slope, bathymetry through time, and 

watershed area. Slope values were parameterized from the 18 modern estuaries in which 

fish were sampled (Table 2-S3).  Slopes ranged between 0.0% and 1.3% (mean = 0.45%, 

median = 0.39%). In ArcGIS (ESRI, Redlands, CA), using a composite sea-level curve 

(Chaytor et al. 2008), we determined slope in a suite of 10-meter depth bins covering +5 

to 140 meters below present sea level (mbpsl) that correlate to sea level from modern to 

LGM lowstand (20 kya). To locate areas that met the slope criteria (0.0–1.3%) we 

queried a SRTM30_PLUS (Shuttle Radar Topography Mission; Becker et al. 2009) 30 

arc-second Digital Elevation Model (DEM) which yielded a sequence of depth-specific 

layers containing polygons of appropriate slope (Figures 2-2, 2-S7). The coastline was 

subdivided into crude regional areas corresponding to modern habitat regions (Figure 2-

S7). Seven characteristics of habitat polygons were determined (e.g., summed polygon 

size, mean polygon size) within each coastal region and for each depth bin. We then 

excluded habitats that did not meet a minimum watershed area requirement, which 

corresponded to the minimum upland area adjacent to a modern estuary (Catalina Island, 

190 km2). This parameterization is for tidal estuaries, not smaller lagoons, which 

typically lack the species studied here (Earl et al. 2010; Jacobs et al. 2011). 

We then refined and statistically assessed which, among these lowstand regions of 

appropriate slope, exhibited size attributes characteristic of modern habitat. To do so, we 

used the modern (0 kya, 0 ± 5 mbpsl) depth bin and species occurrences from this study 

to determine which polygon attribute(s) best predict modern species occurrences. We first 
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performed Discriminant Function Analysis (DFA) in JMP v11 (SAS, Cary, NC) on the 

seven polygon attributes grouped by: regions that meet slope requirements and support 

populations of these fishes (N = 6), and regions that meet slope requirements but do not 

support populations of these fishes (N = 2). Vizcaíno was excluded from this DFA after a 

Robust Fit Outliers analysis (using Huber and Quartile methods with the default K = 4) 

revealed bias due to anomalous coastal area size. A stepwise variable selection process 

(SVSP) in the DFA produced two predictive polygon attributes. We entered these into a 

Generalized Linear Model (GLM) with binomial distribution to determine which coastal 

region(s) were likely to have supported refugium populations within the 130–140 mbpsl 

(20 kya) LGM-associated depth bin. The GLMs were calculated with and without Firth’s 

Biased Adjustment estimates to account for small sample sizes and highly correlated 

variables. Statistically significant models were re-run using a False Discovery Rate (see 

Appendix 2-2). 

 

Genetic mixing  Microsatellite markers were developed via Roche-454 

sequencing (Appendix 2-1, Tables 2-S1, 2-S2).  Screening, genotyping, and quality 

control yielded the following number of loci, total number of alleles, and sample sizes: G. 

mirabilis (16, 80, 100), Q. y-cauda  (17, 148, 44), and F. parvipinnis (20, 199, 79). For 

general trends, full microsatellite datasets were analyzed in STRUCTURE (Pritchard et al. 

2000) using an admixture model with correlated allele frequencies. Each run included 1 

million burnin and 5 million post-burnin replications and was repeated three times each 

for Ks 2–5 for each species. Results were analyzed with STRUCTURE HARVESTER (Earl & 
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vonHoldt 2011) and grouped in CLUMPP (Jakobsson & Rosenberg 2007). Tree 

reconstruction details for mtDNA and microsatellite data are in Appendix 2-1. 

To address more explicitly and in greater detail the patterns of genetic 

recolonization between the inferred refugia at Vizcaíno and North Conception, we 

performed DFA on allelic data and regressions against coastal distance. Microsatellite 

genotypic data were converted to allele counts for all individuals. We performed DFA 

(without SVSP) on the allele count data amongst individuals of the two groups: the North 

Conception Refugium (N = 19, 12, 26) and the Vizcaíno Refugium (N = 14, 8, 18) for G. 

mirabilis, Q. y-cauda and F. parvipinnis, respectively. Significant alleles (α = 0.05) were 

chosen for subsequent analysis. Each significant allele was designated as ‘northern’ or 

‘southern’ based on its relative frequency within the two groups used in the DFA (Figure 

2-4B). Individuals with missing data for loci containing significant alleles were excluded 

from the analysis, as missing data would bias an individual towards lower allele counts. 

We summed the frequency of northern and southern alleles separately for each individual 

and graphed these sums against geographic coastal distance (Table 2-S1). Regressions 

were performed (Table 2-S5) to assess how the number of refugium-associated alleles 

changed with distance between the two purported refugia. All statistical analyses were 

performed in JMP v11 (SAS Institute Inc.). For further methodological details see 

Appendix 2-1. 

  

Results 

Habitat modeling Estimated estuarine habitat area changed dramatically across time 

and coastal location (Figures 2-2, 2-S7). Total estuarine habitat area (all sites) increased 
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almost six-fold, from 646 km2 to 3019 km2, between 20 kya and 13 kya, before 

decreasing to the present 892 km2; mean estuarine habitat area increased by 71 km2 to 

385 km2 to 241 km2, respectively (Figure 2-3B). Within southern California, most 

habitats peaked in size between 12–9 kya (Figure 2-3C). 

Estuarine habitat DFA produced two variables that significantly predicted the 

presence/absence of our three co-distributed fish taxa given the 7 polygon attributes. The 

significant variables were: maximum observed polygon size and summed habitat area. 

These variables had a combined p-value of 0.026 with zero misclassifications when 

predicting modern species distributions. We applied these predictive variables to 

lowstand (130–140 mbpsl) paleohabitat models and tested 11 different refugium 

scenarios. A series of Generalized Linear Models (GLMs) revealed 2 statistically 

supported, and 4 near-significant refugium scenarios. Applying Firth’s Bias-adjusted 

corrections and False Discovery Rate to these 6 refugium scenarios eliminated 5, leaving 

Vizcaíno + North Conception as the only statistically supported refugium scenario 20 kya 

(p-value = 0.02, AICc = 12.9). A Vizcaíno-only refugium scenario is not statistically 

supported (Table 2-S6). 

 

Genetic analyses STRUCTURE and STRUCTURE HARVESTER analyses of microsatellite 

data for G. mirabilis and Q. y-cauda favored two groups (K = 2) using likelihood scores. 

The two groups (north and south) are consistent with the two LGM refugia identified here 

in that inter-refugium individuals are genetically mixed from the two inferred refugium 

populations (Figure 2-4A). For F. parvipinnis, STRUCTURE favored three groups 
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(northern, central, southern), which could result from allele frequency changes associated 

with postglacial colonization or an additional factor.  

Discriminant Function Analysis extracted 14, 15, and 39 alleles, respectively, for 

G. mirabilis, Q. y-cauda, and F. parvipinnis, that discriminated (p < 0.05) between the 

North Conception refugium and the Vizcaíno refugium. The results from STRUCTURE and 

regressions of discriminant alleles for the three species supports bidirectional mixing 

from two sources, consistent with scenario A in Figure 2-S1. The northern and southern 

source (refugium) localities are genetically distinct and intervening populations are 

genetic mixtures of those two sources in both analyses (Figure 2-4). 

Bayesian phylogenetic tree reconstructions using mtDNA for G. mirabilis and Q. 

y-cauda reveal both southern and northern clades (Figures 2-S2A, 2-S3A). Intervening 

populations are mixed as expected under the bidirectional recolonization scenario. The 

mtDNA tree topology for F. parvipinnis reveals a northern clade and is otherwise 

unresolved (Figure 2-S4A). However, our microsatellite tree recovered northern and 

southern clades (Figure 2-S4B), consistent with the previous mtDNA work (Bernardi & 

Talley 2000). Our three microsatellite Neighbor-Joining tree topologies (Figures 2-S2B, 

2-S3B, 2-S4B) exhibit higher resolution and are generally consistent with the mtDNA 

trees, which reflect two refugial sources through support for two generally ‘northern’ and 

‘southern’ clades. 

 

Discussion 

Habitat through time  Our results reveal that coastal steepness reduced tidal 

estuarine habitat by more than half during the sea-level lowstand (130–140 mbpsl, ~20 
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kya) relative to present day. We find statistical support for two refugia (Vizcaíno 

refugium and N. Conception refugium, Figure 2-3) separated by ~1,000 km of 

uninhabited coast at lowstand (Figure 2-1). We find that, following lowstand, most 

modern estuarine habitats rapidly formed during the first major meltwater pulse (~15 

kya–12 kya, Figure 2-3A; Chaytor et al. 2008) and then decreased in area during the 

present sea level stasis (~7 kya, Figure 2-3C). The inferred ~15–12 kya estuarine habitat 

peak probably occurred as seawater rapidly flooded lower-gradient shelf and valley 

topography, forming large, open tidal estuaries (Upson 1949). The subsequent inferred 

Holocene estuarine habitat decline is consistent with coastal maturation where wave-

generated erosion causes coastal retreat, sediments infill estuaries (Sommerfield & Lee 

2004), and bar formation at the estuary mouth reduces tidal influence (Jacobs et al. 

2011). Such “bar-built” closed lagoons are intermittently non-tidal and support different 

faunal assemblages than tidal systems studied here (Swift et al. 1993). Therefore, the 

coastal maturation process reduces the abundance of larger systems where tidal estuarine 

fishes live (Jacobs et al. 2011). Our detection of end-Pleistocene abundance and 

Holocene decline of estuarine habitat is supported by previous archaeological and coastal 

process research that used kitchen-midden deposits and found a similar decline of large 

estuarine habitat over the Holocene (Masters 2006). 

 

Southern California Bight geomorphic history The coastal steepness of the 

Southern California Bight (SCB; defined here as Point Conception to San Quintín), 

which prevented estuary formation during sea-level lowstand, likely resulted from wave 

protection afforded by the angle of the SCB (Sunamura 1976) and by offshore islands, 
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which emerged in greater number and area during lowstand (Figure 2-1; Graham et al. 

2003; Kinlan & Graham 2005). These features absorb northwesterly wave energy, thus 

limiting the power of wave attack (Kirby & Dalrymple 1986). Without this buffer, wave 

action during successive lowstands would have eroded the paleo-coast (Benumof et al. 

2000), forming a lower-slope, more estuary-permissive shelf topography. Supporting this 

inference, areas more open to wave attack such as N. Conception and Vizcaíno have 

lower sloped shelf topography and are the sites of lowstand refugia indicated by our 

models. Ongoing uplift of this region (Niemi et al. 2008) has further reduced the ability 

of waves to erode the lowstand paleo-coast by continually exposing lower, steep 

(uneroded) regions of the shelf. Thus, we propose that regional uplift, the angle of the 

shoreline, and protective offshore islands maintained a steep coastal shelf that limited the 

formation of tidal estuaries on this section of Pacific coast during glacial lowstand. 

 

Phylogeography In contrast with refugia invoked a posteriori in phylogeographic 

work, here our paleohabitat modeling enabled us to form and test explicit hypotheses of 

northern and southern estuarine refugia (Figure 2-S1), which was justified by previous 

work (Bernardi & Talley 2000; Huang & Bernardi 2001). Our paleohabitat models 

statistically support only one scenario of two refugia (North Conception and Vizcaíno; 

Table 2-S6), which geographically coincide with the previously identified (Bernardi & 

Talley 2000; Huang & Bernardi 2001) southern California and central Baja phyletic 

clades of G. mirabilis and F. parvipinnis. We used greater sampling, an additional taxon 

(Q. y-cauda), and large microsatellite datasets to further evaluate this prediction 

genetically. These additional genetic data further support northern and southern clades, 
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and STRUCTURE analyses favored two north-south groups in G. mirabilis and Q. y-cauda, 

and northern, central, southern groups in F. parvipinnis. Assuming the microsatellite data 

reflect slightly different temporal influences than mtDNA data (see Appendix 2-1) and 

our interpretations are valid, the northern and southern mtDNA clades observed in both 

sets of topologies may have resulted from successive Pleistocene glaciations, suggesting 

these refugia have been geographically stable through more than one glacial cycle.  

 While postglacial northward expansion from a refugium is commonly observed in 

Northern Hemisphere taxa (Figure 2-S1B; reviewed in Hewitt 2000), here refugium-

associated allele frequencies decay bi-directionally with geographic distance (Figures 2-

4B, 2-S1A). As predicted, individuals in non-refugium populations appear genetically 

mixed from the northern and southern refugia in STRUCTURE and Discriminant Function 

Analysis (DFA) results. This bi-directional expansion generated populations that were 

mixed from genetically distinct sources to produce broadly similar levels of genetic 

diversity relative to the source refugia (see Appendix 2-1 and Figure 2-S5), not a 

decreased, subsampling of diversity as expected in dispersal from a single source (Petit 

2003). An alternative explanation of the discriminant allele patterns is an expansion from 

a single southern source (i.e. Vizcaíno Refugium) where alleles ‘surf’ on the northward 

expanding front and produce certain alleles at high frequencies in the northern 

populations most distant from the source (Excoffier & Ray 2008). However, such 

‘surfing’ may be less likely in taxa with marine larval dispersal and discontinuous habitat. 

Also, a Vizcaíno-only refugium scenario is not statistically supported, highlighting the 

power and complementarity of this independent genetic-habitat modeling approach. 
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 Some interspecific differences in the steepness and shape of the mixing curves 

(Figure 2-4B) and favored K in STRUCTURE analyses suggest that while habitat 

availability imparts a first-order control on genetic patterns, species-specific ecology and 

life-history traits are also influential (Bilton et al. 2002). Factors affecting offspring 

retention in estuaries may apply in particular (Bernardi & Talley 2000). For instance, F. 

parvipinnis eggs adhere to estuarine vegetation and their larvae have not been sampled in 

the nearshore plankton (Watson 1996). Such limited dispersal could account for the 

relatively low intrapopulation variance in the DFA discriminant allele scores for F. 

parvipinnis (Figure 2-4B). Differential population sizes, fecundities and body sizes may 

also be factors (Waples 1991), along with different abilities to persist in bar-built 

estuaries. Overall, however, the three taxa show less genetic differentiation than small 

bar-built estuary specialists such as Eucyclogobius newberryi (Dawson et al. 2001), and 

more differentiation than Clevelandia ios, which inhabits open, sandy flats in larger bays 

as well as estuaries (Dawson et al. 2002; Earl et al. 2010). 

 In the discriminant allele regressions (Figure 2-4B) for G. mirabilis and Q. y-

cauda, prevalence of southern alleles begins to decrease at Bahía San Quintín (BSQ), as 

expected since this is the first habitat north of the southern (Vizcaíno) refugium. 

However, BSQ individuals of F. parvipinnis are enriched in southern alleles. Since a 

large habitat area is predicted to have arisen early at BSQ (Figures 2-2, 2-3C), an early 

founder event and random drift may have increased the presence of southern alleles in 

this population (Allendorf 1986; Pardo et al. 2005). Alternatively, low salinity tolerance 

in this species (Griffith 1974) may have enabled it to persist upstream at BSQ through the 

LGM. Such upstream habitat would not be reflected in the tidal estuary models developed 
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here. However, BSQ is not as genetically differentiated in STRUCTURE results as would 

be expected if it were indeed a lowstand refugium. 

 

Environmental influences Postglacial recolonization of terrestrial species is thought to 

proceed through successive founder events along an expanding front, as in the case of 

incremental stepping-stone models or ‘allele surfing’ (Kimura & Weiss 1964; Excoffier 

& Ray 2008). Many studies have focused on changing temperature during glacial cycles 

as a control on this process (Waltari & Hickerson 2013), but see (Gaylord & Gaines 

2000). Several factors, however, mitigate the effect of temperature along the southern 

California coast. The cold California Current, upwelling, and upwelling-induced low 

clouds and fog along the Pacific coast limit seasonal and latitudinal temperature changes 

relative to, for instance, the Atlantic coast (Yamamoto 2009), and limit temperature 

excursions in coastal estuary settings. In addition, in the northern part of our study region, 

sea-surface temperatures appear to have increased by only 2.7 °C between LGM and 

present (Lyle et al. 2010), which is similar to or less than temperature changes produced 

by modern El Niño events (Thunell et al. 1999). Thus, limited temperature change and 

the results herein indicate sea-level change and coastal topography are more important 

than temperature limitations in controlling tidal estuarine habitat formation and estuarine 

species distributions through time along topographically complex coastlines (Appendix 

2-2).  

 

Conclusions 
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Our understanding of how glacial-interglacial cycles influenced recent evolution 

of modern biota is dominated by work on temperate and terrestrial species living on 

glaciated coastlines, and is often associated with northern range expansion. Such range 

shifts likely pertain to some coastal regions and species (Edmands 2001; Marko 2004), 

but see (Dawson 2001; Kelly & Palumbi 2010). However, our analysis of western North 

American estuarine fishes reveals that sea-level change and shelf topography interacted 

to form estuarine refugia separated by long stretches of unoccupied coast during the last 

glaciation. Postglacial habitat expansion via sea-level rise onto lower-sloping shelf area 

was dramatic in the 1,000-km wide inter-refugial coastline. This rapid expansion is 

associated with genetic mixing between distinct allele sets sourced from distinct refugia, 

and not expansion to the north of southern sourced alleles, as in the case of F. 

heteroclitus on the tectonically passive, low grade Atlantic Coast (Adams et al. 2006).  

These findings were possible through paleohabitat modeling using physical 

coastal attributes and larger DNA datasets with a new application to extract population-

specific alleles. These techniques should be tested and applied to other habitat types, 

geographic areas, and taxa. Here, they illuminate a previously undocumented process of 

refugial isolation followed by recolonization. Similar processes may be important in the 

evolution of the many coastal species that specialize on discontinuously distributed 

habitat. Distribution of such habitat is likely to be often controlled by changing sea level 

and requires more tailored modeling than is typically undertaken. Finally, given that both 

climate and sea level are likely to change significantly in the coming decades, it will be 

important to apply physical and genetic models in combination to predict the impacts of 

anthropogenic effects on coastal fauna. 
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Appendix 2-1: Additional genetics methods  

Age of genetic patterns  

Comparison of our microsatellite to mtDNA sequence data indicates that the 

microsatellite data are informative for timescales relevant to the glacial-interglacial 

processes of interest. North-south mitochondrial clades of Gillichthys mirabilis on the 

Pacific coast (Figure 2-S2A) diverged 0.63 Mya (95% CI 0.24–1.08 Ma; Ellingson 2012; 

Ellingson et al. 2014). The same mtDNA markers were used on Quietula y-cauda and 

reveal similar mtDNA patterns, likely reflecting a similar age of diversification as 

observed in G. mirabilis.  Microsatellite loci often mutate faster on average and reflect a 

range of mutation rates (Wan et al. 2004), and the microsatellite loci used here exhibit 

high degrees of polymorphism (average number of alleles per locus ranged 9.8-18.0 for 

individuals sampled across 1,000 km). Given the inferred higher mutation rates of 

microsatellites, our microsatellite data reflect a range of evolutionary processes and 

events younger than the 0.63 Myr mtDNA divergence age. Thus, a subset of the 

microsatellite data would correspond to the glacial-interglacial timescale of interest.  We 

therefore use the Discriminant Function Analysis (DFA) to obtain a refuge-associated 

partition of the data to examine LGM-present processes explicitly and to complement the 

full microsatellite data analyzed in STRUCTURE. 

 

Diversity metrics, mismatch distributions, FST  

There are competing expectations regarding patterns of traditional diversity 

metrics in refuge-recolonization scenarios. Refugia are usually centers of high genetic 
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diversity and recolonized sites are bottlenecked and exhibit lower diversity (reviewed in 

Hewitt 2000). However, recolonized sites that are admixed from two genetically distinct 

source populations (e.g., refugia) can instead lead to high diversity measures in those 

populations (Petit et al. 2003). Consistent with this latter scenario, populations inferred 

here to be recolonized show similar measures of allelic richness (Nei 1973) and gene 

diversity as the populations inferred to be the refugial sources (Figure 2-S5). In mean 

allelic richness, there is a very slight trend decreasing northward in F. parvipinnis, with a 

similar pattern for mean gene diversity in Q. y-cauda, however the northernmost 

population, Morro Bay, may also have been bottlenecked (see DFA training N. 

Conception Refugium by proxy). In addition, ranges of these taxa are extensive to the 

south of the study area (Pta. Eugenia), potentially providing an intermittent source of 

additional alleles from the south, which is beyond the scope of this study. 

Gillichthys mirabilis has sufficiently distinct northern and southern mitochondrial 

clades (Figure 2-S2A), and adequate populations and individuals sampled such that 

mismatch distributions may reflect the admixed or non-admixed nature of populations 

(Dawson et al. 2002). Broadly, the mismatch distributions reveal unimodal distributions 

for refuge populations, and bimodal or multimodal distributions for several intervening 

(inferred as recolonized) populations (Figure 2-S6). This pattern suggests that, for G. 

mirabilis, refuges are stable through time (single modes) and intervening sites experience 

contributions from genetically distinct sources (bimodal or multi-modal patterns). The 

inferred recolonized populations that show unimodal distributions (DEV, USB, MGU) 

are within the Southern California Bight, north of the offshore islands where eddy mixing 

may homogenize genetic signatures during the pelagic larval phase. This is also the 
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location where STRUCTURE results begin showing notable admixture (Figure 2-4A). 

Pairwise FST measures using microsatellite data for all three species indicate G. mirabilis 

may be more dispersive than F. parvipinnis (Table 2-S4). Sample limitations for Q. y-

cauda render inferences difficult due to low statistical power.  

Overall, factors such as sample size and local founder events confound traditional 

population genetic metrics, which is why in this study we relied primarily on STRUCTURE 

analyses and a novel DFA approach to evaluate genetic structure. Based on such results, 

DFA may be a tool for population-level inference when traditional metrics are 

problematic due to mixing of multiple sources, founder effects, and sample sizes. 

 

DFA training N. Conception Refugium by proxy  

Modern populations immediately north and south of the North Conception 

Refugium (NCR) were used as a proxy for the NCR in the DFA discriminant allele 

analysis. Morro Bay, immediately north of the NCR, was used for each species, as well 

as the first population immediately south of the NCR for each species (Devereaux, 

Goleta, Carpinteria populations for G. mirabilis, Q. y-cauda, and F. parvipinnis, 

respectively). Since they are immediately adjacent to the NCR (Morro Bay is ~30 km and 

the farthest site included to the south is ~100 km), and given the early post glacial 

formation of habitat in Morro Bay and the Santa Barbara Channel (Figure 2-S7), we 

assume they were founded from the NCR prior to any southern admixture. Using these 

proxy populations provided a similar number of individuals relative to the southern 

refuge for the discriminant analysis (N:S training sample sizes were 19:14, 12:8, 26:18 

for G. mirabilis, Q. y-cauda, F. parvipinnis, respectively) 
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This proxy was necessary because although the NCR identified in our habitat 

models is predicted to support tidal estuarine habitat between 140 mbpsl until about 5 

mbpsl, at present it does not have tidal habitat nor support populations of these three fish 

species. Conversion of this habitat likely resulted from natural infilling from wave action 

and with sediment supply from the easily eroded Transverse Ranges (Upson 1949; 

Masters 2006), and anthropogenic processes of leveeing and damming that promote 

conversion to a closed lagoon state (Jacobs et al. 2011). Historical maps indicate that in 

1895 the Arroyo Grande/Pismo Creek system in the NCR was larger and more open to 

the ocean than today (Gannet et al. 1895). Flood control measures now separate Arroyo 

Grande and Pismo Creek, precluding tidal behavior. We therefore used the two most 

geographically proximate populations of each species in the genetic DFA as the N. 

Conception training group. 

 

DFA assumptions 

 Discriminant Function Analysis (DFA) assumes that independent variables are 

normally distributed. While the nature (0s, 1s, 2s) of allelic count data is likely to violate 

this normality assumption, we use DFA to identify the alleles discriminating between the 

two refugia.  These alleles are then used in a separate exercise to analyze mixing along 

the coastline (Figure 2-4B).  Thus we are not using DFA to test the adequacy of different 

classification schemes, which makes the violation of normality less consequential. 

Discriminant Function Analysis also assumes equal variance among independent 

variables (alleles). We found that for total observations, per-allele variance ranged in F. 

parvipinnis from 0.01 to 0.25 (mean = 0.08, median = 0.06), for example. Unequal 
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covariance can be important because in the predictive phase of DFA samples are will 

more often be assigned to the group with the greater variance. This is not a concern for 

us, however, because we did not use DFA to assign populations in a predictive way.   

Another concern when using DFA is multicollinearity, in which variables are correlated. 

In this study, the multicollinearity of our variables is dependent on, and limited by, basic 

biological processes, such a random versus nonrandom mating and low recombination 

rates relative to the mutation rates of the microsatellite loci studied. Linkage 

disequilibrium and nonrandom mating could collinearize otherwise independent alleles, 

but this is not readily avoidable. The assumption of random sampling is satisfied to the 

extent possible given that individuals are components of interbreeding populations, and in 

that regard are not truly independent of other individuals. There may be batch effects 

from seine hauls if a genetic cohort was sampled, but several locales were surveyed per 

estuary to avoid this confounding issue.   

 

Sampling and marker development   

Individuals were collected via seining and preserved in 100% ethanol in the field 

(permit numbers DGOPA 14253.101005.6950 CASCP No. 2679). DNA extractions were 

performed using Qiagen DNeasy Blood and Tissue Kit according to manufacturer’s 

directions for muscle tissue. Microsatellite loci were developed using sequencing on the 

Roche-454 platform of one individual per species and processed with MSATCOMMANDER 

(Faircloth 2008) to generate primers; tetra-, tri-, and di-nucleotide repeats were favored, 

respectively. Genetic markers were screened using a subsample of individuals across 

populations and repeat number of selected homozygotes were verified by standard PCR 
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and Sanger sequencing methods using 1.0 µL of each microsatellite primers (10 mM) in 

separate reactions. Microsatellite genotyping plates were run on six to twelve individuals 

per estuary (where available) according to Ellingson (2012) and genotyped in GENEIOUS 

v5.6 (http://www.geneious.com; Kearse et al. 2012). Some estuaries are sample-limited 

(Table 2-S1). After discarding loci of substandard quality and individuals with significant 

missing data (not genotyped for > 2 loci), the number of loci, total number of alleles, and 

sample sizes are as follows: G. mirabilis (16, 80, 100), Q. y-cauda  (17, 148, 44), and F. 

parvipinnis (20, 199, 79).  

Worth noting, the DFA and STRUCTURE analyses are fundamentally different 

approaches to analyzing genetic data. We analyzed the STRUCTURE output from one run 

(K = 2) of F. parvipinnis (it is the best-sampled taxon in this study), and identified alleles 

that had an estimated per-cluster allele frequency greater than 0.7, which yielded 15 

alleles. Comparing the identity of these 15 alleles to the identities of the alleles found to 

the significant in the DFA (N = 39) yielded a match of 47%. Of the 199 total alleles, this 

result indicates that these approaches are drawing on some independent components of 

the overall genotypic dataset, analyzing them in different statistical or probabilistic 

frameworks, and producing nearly the same result. 

 

PCR protocols  and tree reconstruction  

Microsatellite PCR reactions used one hybrid primer combination: 2.0 µl Reverse 

primer (100 µM), 4.0 µl Forward M13 hybrid primer (2.5 µM), 4.0 µl M13 dye-labeled 

primer (2.5 µM), 90 µl H2O for a total of 100 µl. Thermocycler protocol is: 1) 95 °C for 

15 min, 2) 94 °C for 30 sec, 3) 55 °C for 90 sec, 4) 72 °C for 60 sec, 5) repeat steps 2-4 
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24x, 6) 94 °C for 30 sec, 7) 50 °C for 90 sec, 8) 72 °C for 60 sec, 9) repeat steps 6-8 24x, 

10) 60 °C for 30 min. PCR products were diluted to 5% (2.0 µl PCR product to 38.0 µl 

H2O) for genotyping reaction with 10.0 µl of a 1:50 LIZ:Hi-Di mix (95 °C for 5 min).  

Mitochondrial Control Region (mtCR) and Cytochrome B (Cyt B) were amplified 

and sequenced for G. mirabilis and Q. y-cauda using A and M, AJG15 and H5 primer 

sets (Lee et al. 1995; Akihito et al. 2000). Primers K and N from (Lee et al. 1995) were 

used to amplify and sequence mtCR for Fundulus parvipinnis. Amplification and 

sequencing protocols are available in detail (Ellingson 2012). Trees were constructed in 

MRBAYES v3.1.2 (Ronquist & Huelsenbeck 2003) on the CIPRES Science Gateway 

(Miller et al. 2010). Sequences were partitioned by gene and a rate partitioning scheme 

was applied to mtCR region in Q. y-cauda following (Ellingson et al. 2014) and we 

eliminated the fastest of four rate partitions due to concern over homoplasy and saturation 

(Figure 2-S3A). Three runs of 12 million generations were completed with 4 chains per 

run under default model settings and a burn-in fraction of 25% trees discarded. While 

unresolved in our Bayesian analysis, F. parvipinnis structure was recovered in a 

Neighbor-Joining tree reconstruction method previously (Bernardi & Talley 2000) and 

showed north-south geographically structure clades. 

The following programs were used for file conversions: CONVERT, GENODIVE, 

and PGDSPIDER (Glaubitz 2004; Meirmans & Van Tienderen 2004; Lischer & Excoffier 

2012). Observed mtDNA mismatch distributions and pairwise FST were calculated in 

ARLEQUIN v3 (Excoffier et al. 2005); gene diversity and allelic richness were calculated 

in FSTAT v1.2 (Goudet 1995). STRUCTURE v2.3 (Pritchard et al. 2000) was used to run K 

= 2–5 (3 replicates each) that were analyzed in STRUCTURE HARVESTER (Earl & vonHoldt 
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2011). The following graphics R packages were used: LATTICE, ADE4, PLYR, RESHAPE2, 

GGPLOT2 (Chessel et al. 2004; Wickham 2007; Sarkar 2008; Wickham 2011). All other 

statistics were performed in JMP® v11 (SAS Institute Inc., Cary, NC, 1989-2007).  

 

Appendix 2-2: Additional habitat modeling methods 

Detailed methods   

Parameterization To predict estuarine habitat area, we defined three criteria 

necessary to form estuarine habitat. First, we used Google Earth® v5 (Google Inc., 

Mountain View, CA) to calculate modern bathymetric slopes amongst the 18 estuaries in 

this study (Table 2-S3). For five relatively large and heterogeneous estuaries, we captured 

a range of within-estuary slopes at the center, sides, stream entry, mouth, as applicable. 

We calculated a single slope from each of 13 relatively small estuaries. The ‘run’ used for 

slope calculations varied with estuary size from 200–5,000 m. Slopes ranged between 

0.0% and 1.3% (mean = 0.45%, median = 0.39%). Our second criterion was a sea level 

requirement. Using a composite sea-level curve (Chaytor et al. 2008), sea-level lowstand 

was determined as 130–140 mbpsl. The midpoint depth value was used to date each bin 

(e.g., 135 mbpsl). Finally, we assume estuaries require sufficient adjacent upland area to 

permit watershed development. We used the smallest upland area adjacent to a modern 

habitat (Catalina Island, 190 km2) as a minimum requirement.  

 

Implementation Using the raster calculator tool in ArcMAP v10 (ESRI, Redlands, 

CA), we queried an SRTM30_PLUS (Becker et al. 2009) Digital Elevation Model 

(DEM) with WGS_1984_UTM_Zone_11N projection for areas matching the slope 
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analysis range (0.0–1.3%) and 10-meter depth range (e.g., 130–140 mbpsl). We iterated 

this process for 0–140 mbpsl to yield a sequence of depth-specific layers using the 

following equation (Eq. 1): 

 

Eq. 1   ("Elevation" < x) & ("Elevation" >=  y) & ("Slope"  <=  1.3) 

Example ("Elevation" <  - 130) & ("Elevation" >=  - 140) & ("Slope"  <= 1.3) 

 

 

where x is the upper and y is the lower limit of each depth bin, respectively. For the 

present (0 kya) bin we used 0 ± 5 mbpsl. We converted areas matching our query (value 

= 1) to a sequence of feature layers in which simplified polygons bounded areas that met 

slope requirements. To obtain per-depth area estimates for individual coastal regions we 

also created a feature layer for each coastal region (Figure 2-S7). With the “Select 

Features by Location” tool we selected the habitat area polygons within each coastal 

region using the “Target layer(s) features are within (Clementini) the source layer” 

setting. On these selected features we used the “Statistics” feature to provide the 

following statistical attributes: number of polygons, minimum polygon area, maximum 

polygon area, total polygon area, mean polygon area, and standard deviation of polygon 

area. We added a seventh additional attribute, which normalized the summed polygon 

area by the coastal feature area to account for different coastal area sizes (analogous to 

habitat density within a given coastal area). These statistical attributes were calculated 

per depth-bin within each coastal region: 14 depth bins, 9 coastal regions, and 7 statistical 

attributes per bin-region produced 882 observations. Of note, the Mercator projection 
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used here could bias polygon areas by a maximum of 7% of width over the latitude range 

studied (larger in the northern regions and smaller in the south) relative to an equal area 

projection. As it is, however, the northern polygon areas are already smaller than 

southern polygons (i.e. Vizcaíno), and would be unlikely to alter interpretations herein. 

 

Statistical assessment  To better determine whether the three fish species studied 

here would likely inhabit the lowstand-associated polygon habitat, we used the modern (0 

kya, 0 ± 5 mbpsl) depth bin and species occurrences from this study to determine which 

polygon statistical attribute(s) predict species occurrences. We performed Discriminant 

Function Analysis (DFA) using JMP on the seven statistical attributes of 8 coastal 

locations grouped by habitat presence (N = 6) or absence (N = 2). Vizcaíno was excluded 

from the DFA analysis after a Robust Fit Outliers analysis (using Huber and Quartile 

methods with the default K=4) revealed anomalous coastal area size, which biased the 

statistical attributes. A stepwise variable selection process (SVSP) in the DFA produced 

two statistically significant predictive variables: Maximum polygon area (maximum size 

of a single polygon) and Summed habitat area. We then entered these variables into a 

Generalized Linear Model (GLM) with binomial distribution (variable states were ‘yes’ 

or ‘no’) to determine which coastal region(s) were likely to have supported refuge 

populations within the 130–140 m (~20 kya) depth bin. If the GLM was significant, it 

was re-run using Firth’s Biased Adjustment estimates and False Discovery Rate. We 

performed this iteratively for different refuge scenarios (Table 2-S6). Unlike typical 

GLM analyses, this was not used to exclude variables from the refuge scenario model, 

but rather test whether, given the two variables identified a priori via DFA to be 
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predictive, the refuge scenario given was statistically significant based on p values and 

AICc scores. Key refuge scenarios are listed in Table 2-S6 with significance scores. Only 

one refuge scenario was statistically significant (Vizcaíno + North Conception). Vizcaíno 

was run as a refuge model individually with each additional population not listed in Table 

2-S6, none of which were significant in the GLM.  

 

Climatic, oceanographic factors  

For the tidal estuarine habitat of focus here, we modeled the major physical 

geomorphological parameters required for estuary formation. In traditional Ecological 

Niche Modeling, temperature and precipitation indices are usually the foremost 

predictors of paleohabitat distributions for both terrestrial and intertidal species (Syphard 

& Franklin 2009; Waltari & Hickerson 2013). However, temperature and precipitation 

are less important for estuarine habitat examined here given the relatively small change in 

temperature from the LGM to present, and because: 1) tidal systems generally have a 

range of salinities within the system due to marine and freshwater (river) inputs, and 2) 

spring and summer estuary temperatures are often controlled by cloud cover which is in 

turn controlled by upwelling. The physical shape, size, and ecology of tidal estuaries can 

also greatly affect temperature, but are rarely well studied in modern systems, and for 

which there is little information about historical systems. Detailed reconstruction would 

very difficult for paleoestuaries because the location where one could physically assess 

(via coring or seismic imaging) the paleoestuary migrates over time. 

Finally, there are additional oceanographic features that we did not take into 

account (Wares et al. 2001). Specifically, Point Conception marks the northern extent of 
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eddy formation in the southern California Bight (Pt. Conception to Dana Point) 

(Bernstein et al. 1977; Seapy & Littler 1980). The resulting increased retention and 

mixing of water in this region may have an impact on larval dispersal through a 

homogenizing effect in southern California specifically (Bucklin 1991). This 

homogenization may help explain why the north-south cline observed in Figure 2-4A 

begins near the southern end of eddy mixing, and why the northern (Morro Bay–Mugu) 

populations of all three taxa appear to be well mixed. 

 

Uplift   

Significant coastal uplift could, in theory, affect the depth-time correlations 

inferred from the sea-level curve. However, uplift rates along the coast are typically less 

than a millimeter per year and unlikely to influence the results of this work when 

extrapolated over the LGM to present (20 kyrs). As a sensitivity test, we used a 0.7 

mm/yr uplift rate extrapolated over 20 kyr, which still produced qualitatively and 

quantitatively similar results, including the existence of the Conception and Vizcaíno 

Refugia. Estuaries along this coast are typically on the downthrown block in locally 

tectonically active areas and are therefore experiencing minimal or no uplift. For 

example, Pts. Buchon, Loma, and Banda are on uplifting blocks with rates of 0.24–0.09 

mm/yr, 0.14–0.16 mm/yr, 0.22–0.25 mm/yr, providing upper limits on uplift rates for the 

adjacent estuaries of Morro Bay, San Diego Bay, and Banda, respectively (Lettis & 

Hanson 1992; Muhs et al. 1992). At these rates the effects of uplift on our habitat 

modeling are negligible.  
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 Exceptions to low uplift rates (i.e. 2 mm/yr) are observed locally in the Santa 

Barbara Channel and could affect our results by biasing the habitat origination ages in 

this region towards younger estimates (Niemi et al. 2008; Gurrola et al. 2014). Given 

higher uplift rates in this region we cannot exclude the possibility of habitat in this region 

at lowstand 20 kya, but we did not assess whether such potential area in this region would 

have similar attributes to modern estuaries. It is possible that if there were lowstand 

habitat in this region, that it could be viewed as an extension of the adjacent North 

Conception Refugium, and would not greatly alter our biological interpretations. 
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Figure 2-1. Sample collection and bathymetric map. Bathymetry is contoured at 10-meter 
intervals from 0 to 140 meters below present sea level (orange to dark blue, respectively). White 
markers note sample sites for fish species where: G- Gillichthys mirabilis, Q- Quietula y-cauda, 
F- Fundulus parvipinnis. Triangle denotes the Cabo Colonet region, which our models predict 
supported habitat ~10 thousand years ago (kya), but does not today. Note the distribution of 
offshore islands, whose sizes increased with lowered sea level. 
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Figure 2-2. Estuarine habitat distribution through time. Time slices shown for three coastal 
locations (listed left) ordered by latitude and corresponding to regions indicated by blue lines on 
guide map (right). Area is colored as inhabitable (yellow) or too steep to form habitat (red) at 
~18–20 kya (140–120 meters below present sea level), ~15 kya (110–100 meters below present 
sea level), ~10 kya (40–30 meters below present sea level). Bathymetry is contoured in greyscale 
by 10-m bins and black represents land. Modern habitats originate at different times and North 
Conception (top) is the only refugium amongst these three locations at lowstand (see Figure 2-S7 
for the full coastline time series).  
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Figure 2-3. Estuarine habitat abundance through time. A) Sea-level curve adapted from 
(Chaytor et al. 2008). Dashed arrow indicates meltwater pulse 1A and solid arrow notes onset of 
modern stillstand. B) Total habitat area quantified through time for 9 coastal regions (see Figure 
2-S8). Vizcaíno refugium is colored black and drives the overall habitat peak at ~14 kya, North 
Conception refugium is orange; non-refugia are colored in greyscale (see key). Locations are 
ordered by latitude. C) Habitat area normalized by coastal area (akin to habitat density) over time. 
This graph excludes Vizcaíno to show the expansion of southern Californian habitat 15–9 kya.  
Regions are colored by latitude in a gradient of red (north) to blue (south, see key). Asterisk 
denotes timing of the Younger Dryas cold period. Time on x-axis applies to panels A–C. 
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Figure 2-4. Genetic signatures of refugia and subsequent population mixing. A) Bayesian 
assignment tests from Structure using microsatellite data for individuals (vertical bars) ordered 
north (left, red) to south (right, blue). B) The numbers of northern (red) and southern (blue) 
discriminant allele counts are shown for all individuals against geographic coastal distance where 
they were collected. Favored regressions (AICc) are shown in corresponding colors (see Table 2-
S5).  
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Figure 2-S1. Conceptual schematic. Presented are two refuge-recolonisation scenarios. Colors 
represent genetic relatedness, where more similar colors are more genetically similar. A) 
Illustration of our hypothesis where several estuarine populations reduce to two (upper), which 
diverge (different colors, lower panel), and admix (blending of red and blue to form purple) as 
they bi-directionally recolonize. B) This is the conventional model where individuals follow 
isotherms. Here, southern refuge(s) (upper) retain all the genetic diversity of the range (blue), and 
isolation by distance northern range expansion (lower panel) renders populations a series of 
genetic subsampling (blue gradient) from the south as individuals postglacially move northward. 
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Figure 2-S3.  New tree reconstructions for Quietula y-cauda. A) Construction in MRBAYES 
using mtDNA (mitochondrial control region and Cytochrome B, 1668 bp). Node posterior 
support is shown. B) Construction based on 17 microsatellite loci used in study. Neighbor-joining 
tree made in POPULATIONS. Collapsed branches are samples outside the geographic region of the 
study. Parallel bars indicate shortened branch lengths for viewing. Individuals are color-coded by 
geographic region, consistent with the scale in Table 2-S1, with a red (north) to blue (south) 
gradient. 
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Figure 2-S4  New tree reconstructions for Fundulus parvipinnis. A) Construction in 
MRBAYES using mtDNA (Mitochondrial Control Region, 883 bp). Branch posterior support is 
shown. B) Construction based on 20 microsatellite loci used in study. Neighbor-joining tree made 
in POPULATIONS. Collapsed branches are samples outside the geographic region of the study. 
Parallel bars indicate shortened branch lengths for viewing. Individuals are color-coded by 
geographic region, consistent with the scale in Table 2-S1, with a red (north) to blue (south) 
gradient. 
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Figure 2-S5. Diversity indices. Mean allelic richness (A) and mean gene diversity (B) for 
species with populations oriented north to south on the x-axis. Sites thought to be admixed are not 
higher nor lower in diversity than refuge source populations (MOR, MAN, GNG, OJO). Note that 
the x-axis is not absolute geographic distance because population sites are not equidistant. 
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Figure 2-S6. Mismatch distribution. Pairwise differences per population for observed 
haplotypes in Gillichthys mirabilis. Sites ordered north to south. Sites expected to be admixed 
exhibit bimodal distributions, and unimodal distributions are observed in expected refuges (MOR, 
MAN_GNG). One site (HID) is monotypic and may be a founder bottleneck. 
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Figure 2-S7. Time-series habitat maps. Areas meeting slope requirements (yellow) or not (red) 
are shown for regions along the coast (rows, see guide map) for specific time points (columns). 
Time points and depth as meters below present sea level are listed for each column with 0 kya 
extending to 5 meters above present sea level (+5). Purple denotes areas that meet slope but not 
the minimum upland drainage area requirement to form estuarine habitat. Coastal regions are not 
of equal size. 
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Table 2-S1. Sample locales. Sites of collections used in this study (bold) and sites only used in 
Figures 2-S1, 2-S2. 2-S3 (not bold) show corresponding 3-letter codes and coordinates in decimal 
degrees. Number of individuals per site listed; rough linear distance from the northernmost site in 
this study (Morro Bay) was calculated in Google Earth using the path tool and following the 
general orientation of the coastline. These geographic distances were used in the regression 
analysis in Figure 2-4. Colors correspond to color-coding in Figures 2-S1, 2-S2, 2-S3. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Site location code latitude° longitude° distance from 
MOR (km)

SI Fig 1 
color 

Number of Individuals (N)

F. parvipinnis G. mirabilis Q. y-cauda

Albany race track ALB 37.889333 -122.311683 - black - - -
Morro Bay MOR 35.348517 -120.8336 0 red 12 9 5
Devereaux Slough DEV 34.41735 -119.873983 176 orange - 10 -
U. Santa Barbara               USB 34.409383 -119.845017 179 orange - 10 -
Goleta Slough GOL 34.417046 -119.839374 181 orange - - 7
Carpenteria CAR 34.400167 -119.538667 211 orange 14 - -
Mandalay Canal MDC 34.136892 -119.183952 256 yellow - - 2
Point Mugu MGU 34.11391 -119.0821 269 yellow - 3 -
Ballona Lagoon BNA 33.962764 -118.4458 334 yellow - 10 -
Alamitos Bay ALA 33.745519 -118.117547 391 yellow 6 - 5
Anaheim Bay ANB 33.736302 -118.093844 394 green 5 - -
Catalina Island CAT 33.430928 -118.50608 448 green - - 1
Hidden Lagoon HID 33.275532 -117.451668 474 green - 10 -
Santa Margarita MRG 33.234 -117.410833 480 green - - 5
Penasquitos PSQ 32.9325 -117.258 517 green 6 - 4
Mission Bay MSN 32.770833 -117.232333 538 cyan - - 1
Famosa Slough FAM 32.751155 -117.228381 539 cyan - 12 -
Punta Banda BAN 31.765157 -116.617381 678 cyan 12 10 -
San Quintín QTN 30.418794 -116.023086 872 cyan 6 12 8
Laguna Manuela MAN 28.247533 -114.085517 1266 blue 6 4 4
Guerrero Negro GNG 28.021722 -114.114667 1290 blue 6 10 2
Ojo de Liebre OJO 27.78305 -114.3129 1323 blue 6 - -
la Bocana BOC 26.789283 -113.675733 - black - - -
Ignacio lagoon IGN 26.818667 -113.1815 - black - - -
el Cuarente CUA 26.556133 -113.0028 - black - - -
Batequi BAT 26.42715 -112.776733 - black - - -
Purisima PUR 26.06265 -112.282083 - black - - -
el Rosario ROS 25.698083 -112.074717 - black - - -
el Tambor TAM 24.831932 -112.055708 - black - - -
Punta Pajaro PPJ 24.753467 -112.043317 - black - - -
Salinas SAL 24.582114 -111.787706 - black - - -
Gallinitas GAL 24.557442 -111.735303 - black - - -
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Table 2-S2. Microsatellite primers. Listed are primers developed for this project. Gillichthys 
mirabilis primers unlisted here are available in (Ellingson 2012). All forward primers in this 
study were labeled at the 5’ end with the M13 complement: 
5‘AGGGTTTTCCCAGTCACGACGTT ’3. 
 
 

 
 
 
 
 
 
 

Species Marker Forward (5’ - 3’) Reverse (5’ - 3’)

F. parvipinnis FMA02 ATTTACGGCAACCACCTGC AACCCTAGCTAACGCCTCC
F. parvipinnis FMA03 TCCTGACCATCATAACAGATTTCG CCTACCTGGCCAACAGC
F. parvipinnis FMA04 GGAGGTAAACAGGGCACAG CAGCATCCAGCAGCTTTCC
F. parvipinnis FMA05 TCGAGTTGATCCAACAGATTGC AGAGGCGGAAACATCCCTG
F. parvipinnis FMA07 TCCAGTCTGAGCAAACTCC ACGCAGGACACAGTTAGCC
F. parvipinnis FMA08 GCCAACGTCAAGTCTCAAG CTCGCCCATTGTATGCTGG
F. parvipinnis FMA09 GAAGCAGGAATGGGTAGCG AGTCAGTCCCAAACAGTCG
F. parvipinnis FMA10 CACGCCTTTAACACGTCGG CCTGGGAACGCCTTGGG
F. parvipinnis FMA13 AACCCTGACCTGTATCGGC CTGGCCTTTATCATGCTTTCC
F. parvipinnis FMA14 TCATGCAAAGGTTAGTGTCGG GAGGAGCTGGCCCAAGTAG
F. parvipinnis FMA15 GCCTTGTACATAGAGCGTGG GTGATCTTGTTGTGTACGGC
F. parvipinnis FMA16 CCAGGAGAGACCATGGGAC TTGACAGCTGGAGACAGGC
F. parvipinnis FMA18 GTTCCCTGCAAGAACAGACG CTCCAAGAGAATGTCGGGC
F. parvipinnis FMA19 CGCTCCAGACAGCTAATGC ATTCACGGTGCTACGGAGG
F. parvipinnis FMA21 CCCACTCAACATACCAAGCTG TCCATGCCAGTCATAGGCG
F. parvipinnis FMA23 TCCTCCCGCTTTCATTCCG GACTGCAGCCCAGATGTTG
F. parvipinnis FMA24 CTCCAGCCACACTTTATGCG CGGTGAATGTGCTCCAAGG
F. parvipinnis FMA25 CAGAGCATCACAGAACCTCG GTGGACTCTGATTTGCTGCC
F. parvipinnis FMA26 CAGCCGCCAAATTAGAAAGC TCCCATGCTGCAACTTGTTC
F. parvipinnis FMA29 GCTACACTACCCACCTCTGG GCATGCAGGCGCTCAACAAG
G. mirabilis GMA01 GATTCCGATTCCAATGTTC TTGCAACTTACAAGAAATTCAC
G. mirabilis GMA03 TTGAAGACGTACAGCACCAC CCAGTCAGAATGTGTTCCAC
G. mirabilis GMA08 TAATGACGCAGTGTTTGATG CTGTGTGCCTTGAAGGTG
G. mirabilis GMA14 CATGAATTTAGCACCATCATC TTCTTGTGGAGTCTCTTCAAAG
G. mirabilis GMA20 GACTCTTTGTCCAGCATTTC TGTTATTCAAGTGCCATCATC
Q. y-cauda QMA01 CTGTGACTTTGGGCATTAG AATGCCCTGGTTATCTGTC
Q. y-cauda QMA03 CGACATTCACGACACAAATC ACGAATTTGACCTGAGAGC
Q. y-cauda QMA04 AATGAAACGGTGAAAGAAAC TTCAGCTCCTTCAGTTTGAC
Q. y-cauda QMA05 TTCTTTCTTGCCTTGTCC CATGAAGGCACGAAAGAG
Q. y-cauda QMA06 GACTGTTCCATGTTCCTGTG TCAGAGCAGTTTAATCCAAAG
Q. y-cauda QMA07 CTTCCTCCACTCTCTCACAG AGCGACGTACTTCTGAAGAG
Q. y-cauda QMA08 ACTGAAGCTCCAAGGACAC TGATTGTGCTGTGACTCATG
Q. y-cauda QMA09 AGTGCAGGCATACATACATG TTTGATTTGATGTATGCACTG
Q. y-cauda QMA10 GTGATTTATGCGTCCAGATG TTCAGGGTCGTCTTTAAATC
Q. y-cauda QMA13 AGGCTCAGGACTCTCATGTAC CTTCTCCTCTACCGCTCAG
Q. y-cauda QMA17 TATTTGTCATCGCCCTAATG CAAATTAAAGCCAATTGTTG
Q. y-cauda QMA24 CCCGCTCCGTCAACACTC CAATGGTGAGCGCGTACATG
Q. y-cauda QMA25 GACATGCTCCTCGTTTGACC CACGCCCACATTTCAAGGAC
Q. y-cauda QMA26 TTCGTCTGACTGTGCTGGTTG CTCCTGCTCGGTTCATGCC
Q. y-cauda QMA27 GACTGTTCCATGTTCCTGTGAG ACCTACTTCGACTGACTGGC
Q. y-cauda QMA28 ATCTGCAGTAACGTGGGCTC AGTGTGCTCGTGACTTATGC
Q. y-cauda QMA30 TTGACTGCGCTCTTACATGG CACGGACTGTTCGACAATATTG
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Table 2-S3. Slope measurements. Sites where at least two of the three species co-occur were 
measured five times, others were measured once. Run lengths vary based on what portion of the 
estuary was being measured and overall size of the system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Site Slope (%) Run Length (km)
Morro Bay 0.499 500-600
Morro Bay 0.906 500-600
Morro Bay 1.111 500-600
Morro Bay 1.150 500-600
Morro Bay 0.363 500-600

Alamitos Bay 0.498 200-400
Alamitos Bay 0.256 200-400
Alamitos Bay 0.455 200-400
Alamitos Bay 0.578 200-400
Alamitos Bay 0.000 200-400

Banda 0.000 200-600
Banda 0.00 200-600
Banda 0.687 200-600
Banda 0.192 200-600
Banda 0.241 200-600

San Quintín 0.000 1000-1700
San Quintín 0.000 1000-1700
San Quintín 0.312 1000-1700
San Quintín 0.100 1000-1700
San Quintín 0.198 1000-1700

Vizcaíno 0.106 2000-5000
Vizcaíno 0.116 2000-5000
Vizcaíno 0.254 2000-5000
Vizcaíno 0.743 2000-5000
Vizcaíno 1.263 2000-5000

Devereaux Slough 0.424 250
Santa Barbara Channel 0.713 400

Carpenteria 0.952 100
Goleta Slough 1.330 75

Point Mugu 0.542 350
Catalina 0.298 350

Mandalay Canal 0.498 200
Ballona 0.862 120

Anaheim Bay 0.000 500
Los Penasquitos 0.571 175
Famosa Slough 0.437 250
Santa Margarita 0.305 985

Mission Bay 0.328 305
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Table 2-S4. Fixation Index. Pairwise FST values listed on the lower half of the table and 
significance indicated (p-value < 0.01) on the upper half for: G. mirabilis (A), Q. y-cauda (B), 
and F. parvipinnis (C). Note that populations may be sample-limited for this metric, particularly 
in Q. y-cauda. 

 
 
 

C MOR CAR ALA ANB PSQ BAN QTN MAN GNG OJO
MOR + + + + + + + + +
CAR 0.12178 + + + + + + + +

ALA 0.18952 0.1248 - + + + + + +
ANB 0.14079 0.06373 0.04448 - + + + + +
PSQ 0.18514 0.0925 0.0784 0.03604 + + + + +

BAN 0.20903 0.1308 0.10186 0.11841 0.08601 + + + +
QTN 0.36129 0.29639 0.23719 0.25691 0.26707 0.111 + + +
MAN 0.2809 0.19879 0.16387 0.15858 0.17707 0.1074 0.09602 - -
GNG 0.23274 0.16499 0.1211 0.10075 0.12859 0.08157 0.1129 0.01897 -

OJO 0.26223 0.17876 0.13097 0.13189 0.13236 0.04938 0.07599 0.0082 0.0167

B MOR GOL CAT MDC ALA MRG PSQ MSN QTN MAN GNG

MOR + - - + + - - + + -

GOL 0.18882 - - - + - - + + -

CAT 0.35014 0.35305 - - - - - - - -

MDC 0.02749 0.0252 0.22865 - - - - - - -

ALA 0.14909 0.06344 0.21702 0.02549 - - - - - -

MRG 0.2212 0.12796 0.22574 0.08269 0.01366 - - - - -

PSQ 0.16498 0.08628 0.20494 0.03161 -0.00175 -0.02079 - - - - -

MSN 0.07978 0.0898 0.45455 -0.03927 0.00809 0.04493 0.02279 - - -

QTN 0.21292 0.13986 0.25464 0.10784 0.056 0.04772 -0.01143 0.03424 - -

MAN 0.23235 0.21966 0.25788 0.12299 0.08238 0.09591 0.0878 0.03725 0.08041 -

GNG 0.30393 0.21731 0.32613 0.14373 0.10027 0.02961 -0.01873 -0.00267 0.00494 0.0298

A MOR DEV USB MGU BNA FAM HID BAN QTN MAN GNG

MOR - + - + + + + + + +

DEV 0.11259 - - - - + - + - +

USB 0.1585 -0.00284 - - + + + + - +

MGU 0.02382 -0.02909 -0.00054 - - + - + - -

BNA 0.14001 0.04147 0.04251 -0.01184 + + - + - +

FAM 0.15165 0.04154 0.086 0.03708 0.061 + + + + +

HID 0.36703 0.28492 0.37074 0.26191 0.30592 0.23939 + + + +

BAN 0.11088 0.04977 0.07244 0.02616 0.05321 0.05381 0.35553 + - +

QTN 0.23894 0.16832 0.14758 0.15631 0.19337 0.15255 0.42318 0.08467 - +

MAN 0.17583 0.06185 0.07306 0.02963 0.11049 0.11616 0.42224 -0.00465 0.04351 -

GNG 0.16641 0.11276 0.13273 0.08537 0.15241 0.09274 0.2881 0.05073 0.06413 -0.00933



 145 

 
 
 
Table 2-S5. AICc regression values.  Comparison of corrected Akaike Information Criterion 
(AICc) values for linear, quadratic, and cubic regressions of northern and southern allele counts 
versus geographic distance. Yellow cells indicate the statistically favored regression for each 
allele set. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Taxon
AICc regression scores

linear quadratic cubic

G. mirabilis- North 369.045 368.924 368.88

G. mirabilis- South 297.835 299.836 301.451

Q. y-cauda- North 208.753 209.045 211.482

Q. y-cauda- South 177.798 179.985 181.337

F. parvipinnis- North 378.669 347.987 343.632

F. parvipinnis- South 354.81 354.537 335.681
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Table 2-S6. Refuge habitat model values.  Comparison of p-value and corrected Akaike 
Information Criterion (AICc) scores for different refuge scenarios (left column). Results are from 
Generalized Linear Models using the predictive variables identified via DFA (Maximum Polygon 
Area and Summed Habitat Area). Asterisks denote significant values, dagger denotes models 
performed with Firth’s Biased Adjustment estimates, double daggers were models run with False 
Discovery Rate. The only significant scenario is Vizcaíno and North Conception refugia (shown 
in yellow). A Vizcaíno only refugium is not supported.  

 
 
 
 
 
 
 
 
 

Refugium Model Scenario
Habitat 

p-value AICc

Vizcaíno + N. Conception 0.0085* 18.0000

Vizcaíno + N. Conception†‡ 0.0240* 12.9156

Vizcaíno + Morro Bay 0.0813 17.2383

Vizcaíno + Morro Bay + N. Conception 0.0599 23.8280

Vizcaíno + Morro Bay + N. Conception†‡ 0.1297 25.3831

Vizcaíno + Morro Bay + N. Conception + LA Basin 0.2165 20.1049

Vizcaíno + LA Basin 0.0889 15.4952

Vizcaíno + LA Basin†‡ 0.2716 24.9661

Vizcaíno + Santa Barbara Channel 0.0889 15.4952

Vizcaíno + Santa Barbara Channel†‡ 0.2716 24.9661

Vizcaíno only 0.0433* 10.8000

Vizcaíno only†‡ 0.1147 20.0641

San Quintín + N. Conception 0.1786 16.8895

Vizcaíno + San Quintín + N. Conception 0.0633 16.7370

Vizcaíno + San Quintín + N. Conception†‡ 0.1146 25.1359
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Abstract  

 Estuaries are interesting study systems from an evolutionary perspective because 

their distributions change over space and time. We performed paleohabitat modeling and 

genetic analyses along 4,600 km of coastline from San Francisco, California (USA, 38 

°N) to Sinaloa, Mexico (23 °N). Our models estimated estuarine habitat distribution at 

near-millennial resolution from the Last Glacial Maximum (LGM) 20 thousand years ago 

(kya), when sea level was ~130 m lower, to the present. We assessed genetic subdivision 

of co-distributed tidal estuarine fishes within these habitats using mitochondrial sequence 

data and 16–20 microsatellite loci on a total of 524 individuals of three species: Fundulus 

parvipinnis, Quietula y-cauda, and Gillichthys mirabilis. Results from genetic analyses 

and habitat models independently indicate that estuarine habitat was reduced to three 

refugia along the Pacific coast and eight refugia in the Gulf of California at lowstand. Our 

results also reveal that San Francisco Bay was extirpated at lowstand and subsequently 

recolonized from the south. We propose a working hypothesis in which tectonics and 

oceanographic processes control coastal shelf topography. Sea-level change operates 

across this topography to eliminate, isolate, and re-form estuarine habitat over time. 

Regions with steeper coastlines (central and southern California and the western Gulf of 

California) support only a few small, isolated refugia in which populations differentiate 

genetically at lowstand. This extirpation-recolonization model likely pertains to other 

species inhabiting discontinuous coastal habitat at latitudes far from the presence of 

glaciers, and suggests isolation in sea-level driven refugia may be an important driver of 

genetic differentiation. 

 



 158 

Introduction  

To understand evolution it is critical to determine mechanisms that govern 

population subdivision and connectivity over time (Wright 1931; Slatkin 1987; Hastings 

& Harrison 1994). A pattern of isolation and reconnection among populations may 

contribute to genetic diversity (Hewitt 2000; 2004; Briggs 2006), alter species ranges 

(Marko 2004; Kelly & Palumbi 2010), and facilitate speciation (Briggs 2006). We 

expand on recent work (Dolby et al. in revision) to show how glacially driven sea-level 

change and coastal shelf topography operate together to eliminate and re-form habitats, 

thereby isolating and reconnecting coastal populations over millennia. We assess these 

patterns on local to regional geographic scales (100s to 1,000s km).  

 Previous research uncovered biogeographic provinces, phylogeographic breaks, 

and several noteworthy patterns within the subtropical eastern Pacific and Gulf of 

California. Promontories along the Pacific (Californian and Baja Californian; Figure 3-1) 

coast are thought to principally structure populations and serve as range limits (Bernardi 

& Talley 2000; Dawson 2001; Dawson et al. 2002; Jacobs et al. 2004; Kelly & Palumbi 

2010; Ellingson 2012). Within the Gulf of California (hereafter, Gulf), north-south 

oceanographic gyres (Marinone et al. 2008; Munguía-Vega et al. 2014; Soria et al. 

2014), localized upwelling in the east and at the Midriff Islands (Roden 1964; Zeitzschel 

1969; Santamaría-del-Angel et al. 1994) and trans-peninsular seaways (Riddle et al. 

2000; Riginos 2005; Lindell et al. 2006; Leache et al. 2007; Munguía-Vega 2011; Dolby 

et al. 2015) have been thought to influence population connectivity. Work has also 

suggested that incipient speciation is occurring among disjunct Pacific and Gulf 

populations due to Pleistocene glacial cycles (Terry et al. 2000; Bernardi et al. 2003).  
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 Many of the aforementioned factors believed to control population connectivity in 

this region have not been explicitly tested with independent physical data or models. 

Here, we address the role of sea-level change, a previously overlooked driver of 

population extirpation, isolation, and connectivity in the subtropical eastern Pacific and 

Gulf of California, as a potential driver of population subdivision. We model paleohabitat 

distribution through time to reconstruct the distribution of tidal estuarine habitat between 

23 °N–38 °N since the Last Glacial Maximum (LGM) at near-millennial resolution. We 

also assess the population genetic structure of three co-distributed, low-dispersal tidal 

estuarine fishes inhabiting these tidal estuaries to independently infer population history 

and range-wide intraspecific genetic patterns. Using mitochondrial (mtDNA) and large 

microsatellite datasets (16–20 loci), we compare our genetic results to those of our 

paleohabitat models and previously cited drivers of population structure, such as currents 

and seaways.  

 The strengths of such an interdisciplinary approach are threefold. First, the habitat 

modeling and genetic analyses provide independent lines of evidence that can be 

interpreted separately, and then compared for increased power. Secondly, we use primary 

geological data, including a sea-level curve and knowledge of factors governing coastal 

geomorphology (e.g., waves, uplift, faults, barrier features). These data enable estimation 

of habitat at greater temporal resolution than that of many habitat models, and 

comparable to the fine-scale genetic patterns of some species within them (Earl et al. 

2010; Jacobs et al. 2011). Finally, integration of these independent data reveals the 

dynamism and co-evolutionary processes of estuaries and their inhabitants. 
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 Estuaries are semi-enclosed coastal bodies of water with both marine and 

freshwater inputs. Estuaries are of particular interest from an evolutionary perspective 

because they are intermittent in both space and time, and can form highly genetically 

isolated populations (Bertness & Gaines 1993; Earl et al. 2010). They are therefore ideal 

systems in which to study evolutionary consequences of changing population 

connectivity through time and thus levels of population differentiation and diversity. 

They also provide a unique opportunity to study the link between causal physical 

processes and biological evolution using simple topo-bathymetric models. Several classes 

of estuaries exist in the subtropical eastern Pacific and other Mediterranean climates, 

from closed bar-built lagoons to perpetually open, tidal systems (Jacobs et al. 2011). Here 

we focus primarily on tidal estuaries, with some regional variability dictated by our 

species occurrences. The co-distributed tidal estuarine fishes we used were Quietula y-

cauda (Shadow Goby), Gillichthys mirabilis (Longjaw Mudsucker), and Fundulus 

parvipinnis (California Killifish), which have limited dispersal and are thereby likely to 

retain signatures of population history. 

 

Materials and methods 

Paleohabitat modeling 

 We modeled estuarine habitat through time in two phases. The first phase 

(Parameterization and Application) determined the physical parameters that constrain 

where estuaries can form using physical features (i.e. sea level, slope, upland area) 

characteristic of modern estuaries in which our three study species occur today. The 

second phase (Assessment) is a series of statistical assessments that use the size and 
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density characteristics of habitats in which the species presently occur, to test whether 

areas that meet slope requirements at lowstand were similar to modern habitat, and thus 

likely to provide habitat these species in particular. 

 

Parameterization  

To estimate the habitat requirements of Pacific coast estuaries (south of Punta 

Eugenia and north of Morro Bay), we followed the parameterization of Dolby et al. (in 

revision), which used a slope range of 0.0–1.3% and minimum adjacent upland area of 

190 km2, which eliminates classifying shallow offshore features as potential habitat. Due 

to different oceanographic patterns (Littler & Littler 1981) and geologic histories 

(Ingersoll & Rumelhart 1999; Helenes & Carreno 1999; Oskin & Stock 2003; Dolby et 

al. 2015) between the Pacific and Gulf, we parameterized the slope limit separately for 

Gulf estuaries inhabited by G. mirabilis and Q. y-cauda (F. parvipinnis does not occur in 

the Gulf). In each of 23 estuaries we calculated the slope at five haphazardly chosen 

locations to accommodate intra-estuarine variability (mean slope = 1.0%, median slope = 

0.7%, Table 3-S3). The elevations and ‘runs’ were calculated in Google Earth® v5 

(Google Inc., Mountain View, CA). We applied the maximum slope observed as a cutoff, 

and thus 0.0–3.4 % was used as the suitable slope envelope within the Gulf. This cutoff 

differs from the 0.0–1.3 % slope used for Pacific coast estuaries and thus subsequent 

habitat analyses were performed separately for the Pacific and Gulf regions. We ignored 

islands within the Gulf because estuarine habitat on Gulf islands is minimal at present 

and likely minimal and ephemeral in the past. 
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Application  

We partitioned bathymetry into 10-meter depth bins from 0–140 mbpsl with the 

addition of a ‘modern’ depth bin (0 kya, 0 mbpsl ± 5 m). In ArcMAP v10.2 (ESRI, 

Redlands, CA) using the Raster Calculator tool we queried the 30-arc-second 

SRTM30_PLUS Shuttle Radar Topography Mission (Becker et al. 2009) Digital 

Elevation Model (DEM) for regions matching the slope criteria for each depth bin. Areas 

that positively matched slope and depth criteria were converted to a series of simplified 

polygon feature layers. We then subdivided regions of the Gulf coastline into coastal 

regions based on shelf topography and modern distribution of estuarine habitat (Figures 

3-S2, 3-S3). We used Select Features by Location tool with ‘Target layer(s) features are 

within (Clementini) the source layer’ to summarize polygon statistics for habitat area 

within each coastal region. We recorded these polygon attribute statistics for each depth 

bin. The statistics summarized were: number of polygons, minimum polygon area, 

maximum polygon area, total polygon area, mean polygon area, and standard deviation of 

polygon area. We added a seventh attribute that normalized the summed polygon area by 

the coastal region area to provide a proxy for habitat density because the size of coastal 

regions varied. The 14 depth bins, 7 statistical attributes, and 9 Gulf coastal regions 

produced 882 observations within the Gulf. Our separate calculations in the Pacific 

expanded the coastal regions covered in Dolby et al. (in revision) by 3, yielding 294 

additional observations. Finally, we correlated ages to the mid-point depth of each depth 

bin using a composite sea level curve (Chaytor et al. 2008).  

 

Assessment 
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To assess whether the physical characteristics of lowstand habitat meeting the 

slope requirements were statistically similar to present habitat, and thus likely to support 

populations of the species studied here, we used a Discriminant Function Analysis 

(habitat DFA) and series of Generalized Linear Models (GLMs). First, using the polygon 

attribute (potential habitat) data we performed a search for outliers in JMP v11 (SAS, 

Cary, NC) using Quantile Range Outliers with default settings (Tail Quantile = 0.1, Q = 

3), and Huber Robust Fit Outliers (K = 4). No outliers were discovered using the 7 

polygon attribute variables and thereby all coastal regions were included in the habitat 

DFA. Next, we used the habitat DFA to determine which polygon attributes statistically 

predict where our three species presently occur. We performed this training because it is 

unlikely that all areas of coastline that met the slope criterion at lowstand would have 

been estuaries where our three species lived. In other words we expected there to be a 

minimum size or additional physical attribute that would predict species occurrences at 

lowstand. We therefore performed habitat DFA on the statistical polygon attributes of 

modern coastal areas divided into two groups: those that have populations of these fishes 

today (N = 6, Reforma, mid-eastern Gulf, Kino, Colorado Delta, Francisquito, Zacatecas; 

see Figures 3-S3, 3-4), and those that do not (N= 3: Angel de la Guarda/western Gulf, 

south of Francisquito, and north of Zacatecas; see Figures 3-S3, Table 3-4). Habitat DFA 

used Stepwise Variable Selection Process (SVSP), pseudoinverses, and linear common 

covariance, which did not produce a statistically significant model without 

misclassifications. Normalized area was the only significant variable in this model, and it 

produced 3 misclassifications. Values for normalized area varied for the habitat group 

(mean = 88.7, standard deviation = 51.9, standard error mean = 21.2) compared to the 
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non-habitat group (mean = 10, standard deviation = 16.5, standard error mean = 9.5), 

which may be partly due to different sample sizes (6:3, respectively). We therefore re-ran 

the analysis using quadratic (different covariances) with SVSP, which produced two 

models. Of these two models, the first had only one significant variable (normalized 

habitat area, p = 0.04) and one misclassification. To improve the misclassification result 

we added the next, non-significant variable (number of polygons) which produced p = 

0.08 with zero misclassifications. We chose this last, two-variable unequal covariance 

model with normalized habitat area and number of polygons for further analyses. We 

used these two predictive variables from the habitat DFA in a series of GLMs to test 

which of the areas meeting lowstand slope requirements were areas similar to modern 

habitat. In other words, we used these variables to test the statistical support for several 

refugium hypotheses. GLMs used a binomial distribution and logit link function and in a 

given scenario each region was classified as ‘yes’ or ‘no’ for whether it was habitat at 

lowstand. These classifications produced either a statistically significant or non-

significant model, which was evaluated with p values and AICc scores (Table 3-S4). 

Statistically significant models were re-run using Firth Biased Estimates and False 

Discovery Rates to correct for correlated variables (Table 3-S4).  

 For Pacific coast sites, we ran habitat DFA using the previously established 

predictive variables (maximum polygon area & summed area, Dolby et al. in revision) 

applied to the three additional coastal regions described here (Magdalena refugium, 

central CA coast, San Francisco; Table 3-S4). 

 

Inferring population structure and history 
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DNA extraction and mtDNA amplification 

We isolated DNA from posterior muscle tissue using the Qiagen DNeasy Blood 

and Tissue extraction kit (QIAGEN #69506). Polymerase Chain Reaction (PCR) 

amplification for mitochondrial Control Region (mtCR) used CRA and CRM primers 

(Lee et al. 1995) with the following specifications: preheat 94 °C for 120 sec, denaturing 

94 °C for 30 sec, annealing 52 °C for 30 sec, extension 68 °C for 90 sec with 35 cycles 

and a final extension of 68 °C for 10 minutes. Amplification of Cytochrome B used 

AJG15 and H5 primers (Akihito et al. 2000) with the following thermocycler protocol: 

preheat 95 °C for 120 sec, denaturing 95 °C for 30 sec, touch-up annealing gradient 48.5–

54 °C for 20 sec with +0.5 °C/cycle, extension of 68 °C for 90 sec with 40 cycles and a 

final extension time of 68 °C for 10 minutes. Reaction volumes were 25 µl for both 

markers: 19 µl ddH2O, 2.5 µl 10x Taq buffer w/MgCl2, 1.0 µl Primer 1, 1.0 µl Primer 2, 

0.5 µl 10 mM dNTPs, 0.1 µl Taq DNA Polymerase, 1.0 µl template DNA per sample. If 

amplification was unsuccessful as assessed via 1.5% agarose gel electrophoresis run at 80 

volts for 30 minutes, then 1.0 µl of water was replaced with 1.0 µl of BSA (10 mg/mL). 

Independent sequencing reactions for forward and reverse primers were performed and 

sent to DNA Analysis Facility at Yale University for Sanger sequencing. We performed 

quality control and processed chromatograms in Codoncode Aligner® v4 (CodonCode 

Corporation, Centerville, MA) or Geneious® Pro v5.6.7 (Biomatters, Aukland, New 

Zealand). 

 

Microsatellite analysis 
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Populations not previously analyzed in Dolby et al. (in revision) were amplified 

for the same microsatellite loci, following the same protocols, and genotyped at the 

UCLA GenoSeq Core (for methods see Dolby et al. in revision). Not all individuals were 

run for both mtDNA and microsatellite markers (Tables 3-S1, 3-S2). Sample sizes and 

numbers of loci are as follows: F. parvipinnis (N = 109, 20 loci), Q. y-cauda (N = 177, 

17 loci), G. mirabilis (N = 238, 16 loci). To assess population structure, microsatellite 

datasets for each taxon were analyzed thrice, once as the full dataset (K = 2–5), once with 

Pacific-only samples (K = 2–4), and once with Gulf-only samples (K = 2–4) in 

STRUCTURE (Pritchard et al. 2000). For G. mirabilis, K = 1 was run post hoc to assess the 

relative likelihood of a two-population versus one-population model using ∆K. This post 

hoc test was necessary because the paleohabitat models predict one less refugium for G. 

mirabilis than Q. y-cauda due to its smaller range (it does not occur in the southwestern 

Gulf) and the favored K for Q. y-cauda was 3. Three replicates for each K were run and 

parameterized with correlated frequencies and admixture models; iterations included 1 

million burnin and 5 million post-burnin generations each. Results of the three iterations 

were analyzed in STRUCTURE HARVESTER (Earl & vonHoldt 2011) and combined for 

each K in CLUMPP v1.1.2 (Jakobsson & Rosenberg 2007) using the GREEDY algorithm 

(M = 2 with greedy option 1) and S of 1 (using G statistic). To infer phylogenetic history 

of these groups we constructed Neighbor-Joining trees with the microsatellite data in 

POPULATIONS v1.2.3 (©Langella, www.bioinformatics.org/populations) following the 

Nei minimum distance algorithm with 5,000 bootstrap replicates on loci (Figure 3-S4). 

 To assess population-level patterns of genetic diversity we calculated the 

following basic diversity statistics per taxon using the full dataset where individuals were 
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grouped by collection site (Tables 3-S1, 3-S2): Fisher’s Exact G test for genotypic 

population differentiation (Table 3-S6), pairwise FST (Table 3-S7), and global Hardy-

Weinberg tests for heterozygote deficit and excess (Table 3-S8); all of these tests were 

executed in GENEPOP v4.2 using 10,000 dememorization steps, 20 batches, 5,000 

iterations per batch where applicable. To further assess genetic diversity of populations 

we calculated average gene diversity, and mean observed and expected heterozygosities 

in ARLEQUIN v3 (Excoffier et al. 2005). Finally, we used HIERFSTAT v0.04 (Goudet 

2005) to calculate allelic richness per locus per population in R v3.2 (the R Foundation 

for Statistical Computing, www.R-project.org) for each taxon, which we used to calculate 

the per-population mean and median allelic richness (Table 3-S8).  

 

Mitochondrial analyses 

 Mitochondrial datasets were developed for Fundulus parvipinnis (N = 80 plus 3 

samples of Fundulus sciadicus—Genbank accession numbers: EU182727.1, 

EU182728.1, EU182729.1; 889 bp of mitochondrial control region), Quietula y-cauda (N 

= 195; 912 bp of Cytochrome B), and Gillichthys mirabilis (N = 233 plus one sample of 

G. detrusus; 1827 basepairs of mitochondrial control region and Cytochrome B). 

Gillichthys detrusus and F. sciadicus were used as outgroups to determine the order 

(‘directionality’) of branching events. We used MRBAYES v3.1.2 (Huelsenbeck & 

Ronquist 2001; Ronquist & Huelsenbeck 2003) on the CIPRES Science Gateway (Miller 

et al. 2010) for phylogenetic tree reconstruction to enable inference of historical 

relationship among populations. Tree reconstructions were parameterized as follows: F. 

parvipinnis (3 runs, 4 chains per run, 6 million generations, Nst = 2, rates = equal, burnin 
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fraction = 0.25), Q. y-cauda (3 runs, 4 chains per run, 10 million generations, Nst = 2, 

rates = equal, burnin fraction = 0.25), and G. mirabilis (2 runs, 4 chains per run, 10 

million generations, Nst = mixed, rates = gamma, burnin fraction = 0.25). For G. 

mirabilis, basepairs were partitioned by evolutionary rate using a rate partitioning method 

(Ellingson et al. 2014). Closely related species to F. parvipinnis (F. sciadicus) and G. 

mirabilis (G. detrusus) were used for outgroups and rooting (Figures 3-S5, 3-S7, 

respectively). Quietula y-cauda has only one congener, which is thought to have diverged 

~13 Ma (Ellingson 2012), and thus no outgroup was used in tree reconstruction and the 

tree is rooted on the longest internal branch (Figure 3-S6).   

 

Results 

Paleohabitat modeling 

Temporal and regional habitat patterns 

 The maximum slope observed in estuaries inhabited by G. mirabilis and Q. y-

cauda in higher in the Gulf (≤ 3.4%) than Pacific (≤ 1.3%). The maximum observed 

habitat area for any depth bin in a Pacific coastal region is 2,390 km2 (Magdalena 

Refugium 100–90 mbpsl; Figure 3-S3), compared with 3,483 km2 within the Gulf 

(Reforma Refugium, 0 ± 5 mbpsl; Figure 3-S3). These maximum observed areas are 

comparable in size, which suggests the higher slope cutoff for the Gulf does not appear to 

overestimate habitat abundance. Total refugial habitat area at lowstand in the Pacific was 

1,006 km2, and in the Gulf was 1,557 km2. While these maximum areas are of a similar 

scale, comparing estuarine habitat abundance through time (Figure 3-2) reveals different 

patterns between the Pacific (Figure 3-3A) and Gulf (Figure 3-3B). Total habitat area 
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along the Pacific coast exhibits a heterogeneous pattern in which habitat area varies by 

both region and depth/time. For example, total habitat area in southern California (Morro 

Bay–San Diego; Figure 3-S3) peaks 12–9 kya with ~436 km2, yet Vizcaíno is the single 

largest habitat on the Pacific coast and its size peaks ~15 kya (2,815 km2; Figure 3-S3), 

while habitat at San Francisco peaks about 7 kya with 3,242 km2. By contrast, habitat 

area in the Gulf appears to lack this heterogeneity and was simply reduced at lowstand 

and increases exponentially between 15 and 5 kya. Total change in estimated Gulf habitat 

area from 20 kya to 0 kya is 1,557 to 10,331 km2 (Figures 3-3B, 3-S3).  

 

Refuge assessments 

According to our series of GLMs, four separate refugium models were 

statistically supported (α = 0.05) within the Gulf. The simplest of these four scenarios 

classified the Colorado Delta, Bahía Kino, mid-eastern Gulf, and Reforma as refugia (p = 

0.01, AICc = 20.8), all of which are within the northern or eastern Gulf. Note that the 

mid-eastern Gulf refugium comprises three small, adjacent individual refugia. It was 

unclear if these would have been separate, or effectively one single refugium, and 

therefore we combined these three refugia into the eastern Gulf refugium (labeled ME in 

Figure 3-4B). In this simplest model, all other habitats were classified as non-refugial. In 

the most complex GLM, the addition of two western Gulf regions (Francisquito and 

Zacatecas) to the simplest refugium model was also statistically significant (p = 0.02, 

AICc = 21.9). Refugium scenarios with and without Francisquito and Zacatecas are both 

significant, which may be because these western refugia are much smaller than the 

northern/eastern refugia (mean lowstand habitat size for Francisquito and Zacatecas = 41 
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km2, mean lowstand habitat for the Reforma, mid-eastern Gulf, Bahía Kino and Colorado 

Delta = 369 km2).  

Along the Pacific coast we expanded the area of the previous study (Dolby et al. 

in revision) by ~1,000 km of coastline northward to San Francisco, and southward to 

Baja California Sur (south of Punta Eugenia; Figure 3-1). Over this increased study area, 

the GLM using Magdalena (south of Punta Eugenia) and the previous two refugia 

(Vizcaíno and North Conception) was statistically significant (p = 0.04). In this model, 

all other regions were classified as non-refugia. The previous scenario of only two refugia 

(Vizcaíno and North Conception) was not supported over this expanded geographical 

area (p =  0.19). Our results suggest that two refugia were large (Magdalena refugium, 

462 km2 and Vizcaíno refugium, 519 km2) and one was relatively small (North 

Conception refugium, 25 km2). In summary, over the entire Pacific range of these three 

species, only three lowstand refugia were statistically supported in our paleohabitat 

models for the Pacific coast. Despite a large habitat today, San Francisco was not 

statistically supported as a refugium (p = 0.07). Although the San Francisco region has 

area that meets the slope requirements (≤ 1.3%, 62 km2) in the 130–140 mbpsl 

bathymetric bin that corresponds to the LGM lowstand, the GLM test for lowstand 

habitat produced a non-significant result. It could be that the attributes of this area do not 

reflect those of modern habitat, perhaps because the area meeting slope requirements at 

lowstand was distributed patchily and would not support an estuary. 

 

Inferring population structure and history 

Regional diversity patterns  



 171 

Mean pairwise FST values for populations of: F. parvipinnis (N = 109, 20 loci, 14 

populations), Q. y-cauda (N = 177, 17 loci, 38 populations), G. mirabilis (N = 238, 16 

loci, 31 populations) were 0.24, 0.21, 0.25, respectively. The Pacific and Gulf 

populations appear genetically isolated in both Quietula y-cauda and Gillichthys 

mirabilis. Pairwise fixation indices (FST) among intra-Pacific and intra-Gulf populations, 

compared with trans-Pacific-Gulf populations were analyzed using two-tailed unpaired t 

tests and revealed statistically reduced FST values  (p < 0.0001 for Q. y-cauda and G. 

mirabilis; Tables 3-S7B, 3-S7C). Minimal observed admixture in STRUCTURE analyses 

(Figure 3-6) and reciprocally monophyletic clades within microsatellite-based Neighbor-

Joining tree topologies in both species (Figure 3-S4) further support Pacific-Gulf 

isolation. Finally, highly significant p values from Fisher’s exact G test for pairwise 

population differentiation (Table 3-S6) also support this finding, and have previously 

demonstrated reliability and power with microsatellite data (Ryman et al. 2006). 

 Mean allelic richness for populations of the three species were as follows: F. 

parvipinnis (mean = 4.8, range = 3.7–4.6), Q. y-cauda (mean = 2.5, range = 1.8–2.8), and 

G. mirabilis (mean = 2.4, range = 1.9–2.8). We compared mean allelic richness between 

Pacific (2.4, 2.5) and Gulf populations (2.5, 2.6) for Q. y-cauda and G. mirabilis, 

respectively, and found that generally mean allelic richness is higher for Gulf populations 

than Pacific populations. This finding was statistically significant in G. mirabilis (p < 

0.0001) and not significant in Q. y-cauda (p = 0.18) using two-tailed unpaired t tests. 

Fundulus parvipinnis does not occur in the Gulf, so we compared FST values among 

populations distributed on the Pacific coast north and south south of Punta Eugenia (a 

previously determined biogeographic break; Bernardi and Talley 2000) and found 
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significantly reduced FST across this boundary (p < 0.001). Based on Fisher’s Exact (G) 

test, F. parvipinnis appears more differentiated than Q. y-cauda or G. mirabilis (Table 3-

S6), though all three species exhibit strong genetic subdivision. Despite this observed 

genetic differentiation, FST values for neighboring populations within all three species are 

not high (mean FST = 0.08, 0.04, and 0.07 for neighboring populations of F. parvipinnis, 

Q. y-cauda, G. mirabilis, respectively).  

 

Refugial population structure 

 We used the ∆K metric (Evanno et al. 2005) to choose which number of groups 

was favored for each taxon in order to compare the favored number of genetic groups 

with the number of lowstand refugia predicted in the paleohabitat models. The ∆K 

provided in STRUCTURE HARVESTER results revealed that, for Pacific coast populations, K 

= 3 was favored for each taxon: F. parvipinnis (∆K = 2069), Q. y-cauda (∆K = 28), and 

G. mirabilis (∆K = 20). Within the Gulf, K = 3 was favored for Q. y-cauda (∆K = 707), 

and K = 2 was favored for G. mirabilis (∆K = 357). These favored numbers of genetic 

groups are identical to the number of refugia expected from the paleohabitat modeling for 

the Pacific (Figure 3-4). The favored Ks in the Gulf are fewer than the number of 

lowstand refugia predicted by the paleohabitat models. The 2 and 3 K favored in the Gulf 

suggest that the northern and eastern Gulf refugia are not isolated genetically. The 

expected number of refugia for G. mirabilis in the Gulf is one fewer than Q. y-cauda 

because the distribution of G. mirabilis does not extend south of Bahía Concepción to the 

Zacatecas refugium. This expectation is consistent with the favoring of K = 2 for G. 

mibrabilis and K = 3 groups for Q. y-cauda. 
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Discussion 

To assess the role of refugia in coastal estuarine fishes on different geographical 

scales, we employed paleohabitat modeling and genetic analysis of three tidal estuarine 

fish species over the entirety of their ranges from San Francisco, CA (USA) to Sinaloa 

(MX), covering ~4,600 km of coastal distance. This geographical study range spans 15 

degrees of latitude, from tropical to temperate (23 °N–38 °N). This coastal extent also has 

regions of varying shelf topography, coastal orientation, oceanography, and offshore 

islands (Figure 3-1; Dolby et al. in revision). Encompassing coastal shelf heterogeneity 

over such a wide area enabled us to assess: 1) conditions under which estuarine habitats 

were isolated during lowstand, 2) when they were able to support genetic connectivity, 

and 3) how this manifested spatially in genetic data. 

 

Formation of coastlines and regional habitat patterns 

Pacific coast 

 The Pacific and Gulf of California have different tectonic histories, which have 

shaped the shelf topography, width, and orientation of their coastlines. Each of these 

regions, however, have historical processes that are thought to have contributed to 

regional shelf heterogeneity. Portions of the Farallon tectonic oceanic plate subducted 

beneath the North American plate along California ~30–12 Ma (Humphreys 1995). 

Postsubduction pull-apart rifting (Ingersoll & Rumelhart 1999) and the San Benito fault 

(Plattner et al. 2009) have likely both contributed to coastal steepness from Punta 

Eugenia through southern California (Figure 3-1). Uplift (positive vertical movement of 
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Earth’s crust) up to 2 mm/yr (Muhs et al. 1992; Niemi et al. 2008) has also probably 

contributed to its steepness. In contrast, Punta Eugenia and areas south (e.g., Bahía 

Magdalena), did not experience the same rifting or uplift, and the Tosco-Abreojos fault 

system south of Punta Eugenia is farther offshore than the San Benito fault (Michaud et 

al. 2007). These factors combine to produce a wider continental shelf in Vizcaíno and 

Magdalena than in Baja California Norte and southern California. These two broad 

regions are the sites of the two large lowstand refugia predicted by our paleohabitat 

models, and the third refugium in southern California is along a steeper margin, which 

might explain its relatively small size. 

 

Gulf of California coast 

The Gulf, by comparison, is a young rift margin with a steep western flank and a 

broader, more shallowly sloping eastern flank. This asymmetry is probably caused in part 

from the shifting of the rift margin from the eastern to western Gulf (Aragón-Arreola & 

Martín-Barajas 2007) about 3 million years ago (Ma; Stock 2000), and from greater 

sediment supply to the eastern coast from the rivers of mainland Mexico (Nava-Sánchez 

et al. 2001). Uplift of the western flank (the Baja peninsula) between 5.6 and 3.2 Ma 

(Mark et al. 2014) may also have contributed to steepness of the western Gulf. This 

heterogeneity in coastal steepness has produced variability in the distribution of modern 

coastal habitat within the Gulf (Brusca et al. 2005; Hendrickx et al. 2007). Similar to the 

Pacific coast patterns we observe, our models predict two relatively small refugia along 

the steep western Gulf coast, and four large refugia along the north and eastern Gulf, 

which may have maintained gene flow at lowstand.  
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Regional habitat patterns 

Several broad, regional patterns emerge from interpreting our paleohabitat 

modeling results within this geological context. The coastline south of southern 

California near Vizcaíno and south of Punta Eugenia (e.g., Magdalena Bay) hosts broad 

shallow-sloping areas. Within the Gulf, the Colorado Delta and eastern coastline are also 

broad. These three shallowly sloping regions support the highest modern estuary 

abundance. Our paleohabitat models suggest these regions also retain the largest number 

and size of refugia at lowstand (Figures 3-2, 3-4). In contrast, much of the California and 

western Gulf coastlines are too steep today to form estuaries (Figures 3-1, 3-S1), and 

instead host rocky-shore and intertidal habitat (Bernardi 2000; Dawson 2001; Dawson et 

al. 2002; Hendrickx et al. 2014). Such regions with narrower coastal shelves generally 

have smaller modern habitats and have very little lowstand habitat (Figures 3-2, 3-S2, 3-

S3). Our results suggest estuarine habitat in these steeper regions is either eliminated at 

lowstand, in which case long stretches of coast are uninhabited by estuarine species, or 

small refugia persist in isolation and produce individuals with unique genetic signatures 

as revealed in STRUCTURE analyses (Figure 3-4) and tree topologies (Figure 3-S4). 

 

Gulf-Pacific patterns 

Disjunction and speciation  

We find evidence for little to no gene flow between Pacific and Gulf populations 

of Quietula y-cauda and Gillichthys mirabilis (Figure 3-6), inferred from significantly 

reduced FST values (p < 0.0001) among populations disjunct between these regions (F. 
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parvipinnis does not occur in the Gulf). Microsatellite tree topologies of both species 

(Figure 3-S4) and mtDNA tree topology for Q. y-cauda further reveal reciprocally 

monophyletic clades of Pacific-Gulf populations. Bernardi et al. (2003) previously found 

similar monophyly in eight of twelve fish species studied, most of which were rocky-

shore associated. The authors therein note this may be a sign of incipient speciation, in 

which the warm waters of interglacial periods prohibit migration around the Cabo Block 

(Figure 3-1). Our results support this pattern, which has been observed in many other 

species (Maldonado et al. 1995; Terry et al. 2000; Bernardi et al. 2003; Bernardi 2014). 

If warm waters near the Cabo region presently limit Pacific-Gulf migration, then it 

follows that gene flow has typically occurred during the cooler temperatures of glacial 

periods. While this may be true, we observe a similar level of genetic differentiation 

between Pacific and Gulf populations. We suggest that isolation in the lowstand refugia 

described here have also contributed to the genetic differentiation of these Pacific-Gulf 

populations in our species and in those previously studied. Lowstand isolation may be 

particularly important in species that are absent from the southwestern Gulf, such as G. 

mirabilis. Our habitat models and genetic data predict G. mirabilis was absent from the 

Zacatecas refugium at lowstand because it does not occur south of Bahía Concepción and 

has only two genetic groups in the Gulf (Figures 3-4, 3-S4, 3-S7). Several disjunct 

species exhibit similar southwest-limited distributions that, combined with lowstand 

extirpation of many habitats, would likely contribute to Pacific-Gulf isolation over 

repeated glaciations. Additionally, differences in tidal range and temperature variability 

(Roden 1964; Ellingson 2012), mangrove distributions (Aburto-Oropeza et al. 2008), 

seasonal upwelling (Zeitzschel 1969), and faunal distributions between the Pacific and 
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Gulf may impart different selection pressures (Littler & Littler 1981). Differential 

selection pressures may have been particularly acute during lowstand when population 

sizes are likely reduced and populations isolated to greater degree than at present. 

 

Pacific coast patterns 

We extended paleohabitat modeling for the entirety of the Pacific coast from San 

Francisco to the southern tip of the Baja Peninsula, which expanded on previous work 

(Dolby et al. in revision). Across this broader geographic scale we find statistical support 

for the addition of the Bahía Magdalena refugium in addition to the two refugia found 

previously (p = 0.04, AICc = 20.7, Table 3-S4). A model with only the two previously 

found refugia (North Conception and Vizcaíno) is not supported in this larger 

geographical extent (p = 0.19). Therefore, we infer for populations of F. parvipinnis, Q. 

y-cauda, and G. mirabilis located along the Pacific coast, only three refugia existed 

during lowstand along ~2,100 km of coastline. Our results suggest that the Vizcaíno and 

Bahía Magdalena refugia were large and the North Conception refugium was relatively 

small (Figures 3-4, 3-S3). The larger refugia encompass what are many individual 

estuaries today. Importantly, nearly all present-day populations of these fishes south of 

Punta Eugenia (Figure 3-1) fall within the Bahía Magdalena refugium. If these habitats 

south of Punta Eugenia persisted through time this would have important consequences 

because they would not experience the loss of genetic diversity that results from 

extirpation. Consistent with this hypothesis, we observe higher mean allelic richness in 

populations south of Punta Eugenia than in populations north of Punta Eugenia. When 

tested with unpaired two-tailed t tests, this difference was significant in F. parvipinnis (p 
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= 0.004) and G. mirabilis (p = 0.04), and not significant in Q. y-cauda (p = 0.07). In 

further support for closely associated lowstand habitat among populations south of Punta 

Eugenia, within each species these populations appear to be genetically similar to one 

another; they lack population subdivision (Figures 3-4A, 3-S8), have non-significant 

scores for Fisher’s exact (G) test for population differentiation (Table 3-S6), and exhibit 

low pairwise FST values (Table 3-S7). We also find reduced gene flow across Punta 

Eugenia in F. parvipinnis, which supports the subspecies designation between F. 

parvipinnis parvipinnis (north) F. parvipinnis brevis (Miller & Hubbs 1954).  

In contrast to the habitat stability south of Punta Eugenia, our models suggest that 

to the north of Punt Eugenia, almost all Californian populations were extirpated at 

lowstand and subsequently recolonized when habitat formed during sea-level rise (Figure 

3-4A). This pattern of recolonization is independently supported by results from genetic 

analyses. Populations thought to be recolonized show signatures of admixture between 

the two identified source refugia (Vizcaíno and North Conception) in STRUCTURE results 

(Figures 3-4A, 3-S8), allele frequencies (Dolby et al. in revision), and in unresolved or 

mixed tree topologies (Figures 3-S4, 3-S5, 3-S6, 3-S7, 3-S8).  

 

San Francisco   

Although the San Francisco Bay (SFB, Figures 3-1, 3-5) area had an estimated 62 

km2 of habitat within the slope parameter (≤ 1.3%) at lowstand (130–140 mbpsl), our 

GLM assessments suggest the size characteristics of this area were not similar to modern 

habitats. Gillichthys mirabilis is our only study species whose range extends as far north 

as SFB. The northern range limit for both Fundulus parvipinnis and Quietula y-cauda is 



 179 

in southern California at Morro Bay, CA (near Point Conception; Figure 3-1). Point 

Conception is a common biogeographic break between Oregonian and Californian marine 

fauna (Seapy & Littler 1980; Dawson 2001), and may be partly controlled by temperature 

(Hellberg et al. 2001). Our genetic analyses independently suggest SFB was not a refuge 

during lowstand. Individuals of G. mirabilis from SFB are not genetically unique in 

STRUCTURE results (Figure 3-4) or tree reconstructions (Figures 3-S4, 3-S7), as one 

would expect if a population existed there in isolation during glaciations. Instead, G. 

mirabilis individuals in SFB genetically resemble populations from southern California, 

Baja California Norte, and even Baja California Sur (BCS, south of Punta Eugenia), a 

region that is 1,300—1,800 km to the south. The strength of the northerly California 

Current between 20 kya and today is unclear; a weakened current may have facilitated 

northern colonization of SFB from the south, as has happened during El Niño events 

(Johnson et al. 2009). Kellet’s whelk (Zacherl et al. 2003) and the aeolid nudibranch 

Phidiana hiltoni (Goddard et al. 2011) have extended their ranges northward to SFB or 

just beyond in association with El Niño conditions. Additional biological support for 

recent colonization of SFB comes from the California grunion. Microsatellite results for 

the California grunion reveal its disjunct populations in Monterey Bay and San Francisco 

Bay are not genetically distinct and are also sourced from the south (Johnson et al. 2009; 

Byrne et al. 2013), which is consistent with our results for G. mirabilis. While grunion 

spawn on sandy beach habitat, and thus may be influenced by additional ecological 

factors, Johnson and authors (2009) suggested the colonization of SFB may be recent and 

mediated by El Niño events. The warmer waters of SFB compared to the Pacific coast 



 180 

(Conomos 1979) could potentially sustain more subtropically associated species 

following colonization. 

There is a possibility of artificial (i.e. anthropogenic) colonization of Gillichthys 

mirabilis to SFB since its use as live bait for fishing began in the 1930s (Turner & 

Sexsmith 1967). However, G. mirabilis existed in SFB by the late 1800s, as it was noted 

in 1877 that locals ate individuals of this species (Lockington 1877; Love 2012). That, 

combined with the fact that G. mirabilis was more commonly used for fishing in regions 

to the south and for inland freshwater fishing (Turner & Sexsmith 1967), suggests 

colonization through artificial means was unlikely. 

In combination, our paleohabitat modeling and genetic analyses strongly suggest 

that San Francisco did not support tidal estuarine habitat 20 kya. Previous work by 

Atwater (1979) indicates the San Francisco estuary did not reach its modern extent until 

between 5–10 kya, which is consistent with our models. Extralimital populations such as 

those found in SFB are of interest in evolution because they are often genetic sinks, 

whereby genetic diversity in these populations is imported from the rest of a species 

range. Over consecutive glacial periods SFB would likely have been extirpated 

repeatedly, in which case populations in SFB may be genetic sinks over evolutionary 

time despite possible repeat colonizations during interglacial periods. Although, if coastal 

sea-surface temperatures increase along the California coast in association with future 

climate change, and species accommodate this increase by shifting northward as often 

predicted (McFarlane et al. 2000; Roessig et al. 2004; Ficke et al. 2007), then SFB 

populations may cease to be disjunct in time. With this northward migration, the disjunct 
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SFB population of many species might no longer be a sink for southern genetic diversity 

as they become established as a more integral part of their range. 

 

Gulf of California patterns 

 Quietula y-cauda in particular, and Gillichthys mirabilis to a lesser degree, appear 

to inhabit more steeply-graded estuaries along the western Gulf of California (Gulf) than 

eastern Gulf or Pacific coastlines (Table 3-S3). Our paleohabitat models suggest that 

potential habitat area within the Gulf was reduced by 85% at lowstand 20 kya relative to 

today (Figures 3-3B, 3-S3). The increase in total habitat area between 15 and 5 kya 

appears to be exponential and driven primarily by northern (Colorado Delta) and eastern 

(mainland Mexico) estuarine habitat. This pattern is reasonable given the different coastal 

geomorphologies of these regions, as there is a much wider shelf on which habitat could 

expand in the north and east, and much less in the west (Figures 3-1, 3-S1).  

Our suite of GLMs assessed the statistical support for lowstand refugia in 

different areas within the Gulf based on modern habitat characteristics. These models 

produced several similar statistically significant results (Table 3-S4). The simplest 

significant model included Reforma, mid-eastern Gulf, Bahía Kino, and Colorado Delta 

as lowstand refugia (p = 0.03, AICc = 33.3; Figure 3-4). Addition of two western Gulf 

refugia (Francisquito and Zacatecas) to the model was also significant (p = 0.02, AICc = 

21.9). This second model when run without the mid-eastern Gulf or without Zacatecas 

was not significant. The AICc scores from refugium models and independent genetic 

results indicate that Francisquito and Zacatecas were indeed refugia and produced 

genetically differentiated clades over time (Figures 3-4B, 3-S4, 3-S6, 3-S7). This 
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example highlights the complementarity of these habitat and genetic approaches when 

interpreted together. 

Our models suggest that lowstand refugia were larger and more connected in the 

northern and eastern Gulf than in the western Gulf or along the Pacific coast. These 

findings are supported by STRUCTURE results (Figure 3-4B) and microsatellite tree 

topologies (Figure 3-S4) in which the northern and eastern Gulf are genetically 

homogeneous. By contrast, the two western Gulf refugia (Francisquito and Zacatecas) 

appear to be geographically and genetically isolated. Unique genetic signatures for 

central (Francisquito, orange region of Figure 3-4B) and southern (Zacatecas, pink region 

of Figure 3-4B) refugia in STRUCTURE plots (Figure 3-4B) support the concept of 

genetically isolated refugia. Neighbor-Joining trees (Figure 3-S4) also support these as 

two refugia that evolve in isolation during recurrent periods of glacial lowstand (Figures 

3-S4, 3-S6, 3-S7).  

Deng and Hazel (2010) suggested the way in which the physical footprint of the 

Gulf shrinks with lowered sea level may be an important factor when interpreting 

phylogeographic patterns. The converse of this general idea has been considered, in 

which the expansion of island footprints may have facilitated migration between 

mainland Mexico and the Baja peninsula via the Midriff Islands (Clark-Tapia & Molina-

Freaner 2003; but see Pfeiler & Markow 2011). For coastal marine taxa, however, as the 

size of the Gulf’s footprint decreases during lower sea level, the proximity of populations 

on the eastern and western coasts increases. For example, at the latitude of Isla Tiburón, 

trans-Gulf populations are separated by only ~70 km at lowstand relative to 100 km at 

present, and ~150 km versus ~180 km at the latitude of Bahía Concepción. Increased 
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proximity may facilitate trans-Gulf migration as habitat forms during sea-level rise 

(Figure 3-3B). Evidence for trans-Gulf migration exists in several individuals between 

the eastern (blue) and western (orange) groups in Figure 3-4. However, migration across 

the middle of the Gulf may also be aided by the upper arm of the seasonal southern gyre 

(Marinone 2003; Soria et al. 2014). The curvature of the upper Gulf and Colorado Delta 

would cause this region to be affected to perhaps an even larger degree with habitats 

becoming much more closely spaced during lowstand (Deng & Hazel 2010). An absence 

of population differentiation (Tables 3-S6B, S6C) and subdivision (Figure 3-4), and low 

pairwise FST values (Tables 3-S7B, 3-S7C) suggest genetic homogeneity across the 

northern Gulf, which may be a consequence of this reduced footprint at lowstand. 

 

Theoretical framework for lowstand refugia 

We propose the following working hypothesis to explain how physical processes 

control habitat distribution and genetic connectivity through time. Rifting, uplift, and 

faulting in combination with wave erosion and other oceanographic factors work to shape 

offshore islands, coastal orientation and regional geomorphology of tectonically active 

coastlines. The grade and width of the coastline that results from these processes dictate 

where estuarine, and likely many coastal habitats, can form. Sea-level oscillations over 

this heterogeneous shelf topography during glacial-interglacial periods eliminate and re-

form estuarine habitat over millennia. Biological populations exhibit two primary genetic 

signatures as a consequence: genetically distinct clades that result from isolation in 

lowstand refugia, and admixed populations that are recolonized from multiple genetically 

distinct refugial sources. These genetic patterns are commonly observed in studies of 
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glacial-interglacial phylogeography (reviewed in Hewitt 2000; 2004). Yet, this working 

hypothesis differs from previous studies because the combination of tectonically-driven 

shelf heterogeneity and sea-level change are global phenomena that may produce this 

extirpation-isolation-recolonization process in coastal species at latitudes far from the 

glacial front. While this extirpation-recolonization pattern is likely relevant for species 

with discontinuous habitats regardless of latitude, at tectonically passive coastlines with 

broad shelves, a simpler north-south migration pattern may still be observed (Marko 

2004; Adams et al. 2006).  

 

Comparisons to non-estuarine taxa 

Phylogeographic studies within the Gulf have focused on rocky intertidal 

(Hurtado et al. 2007; Deng & Hazel 2010), rocky shore (Riginos & Nachman 2001; 

Riginos 2005), sandy beach (de Jesús Suárez-Moo et al. 2013; Byrne et al. 2013; Hurtado 

et al. 2013), reef (Lin et al. 2009), and pelagic species (Segura et al. 2006). Most of these 

habitats are discontinuously distributed along the coastline (Riginos & Nachman 2001), 

and the focal taxon within each of these studies exhibited population level structure 

within the Gulf of California. While the specific location of lowstand refugia would differ 

by habitat type, the pattern of extirpation, isolation, and recolonization as revealed here 

with sea-level change may be applicable to these habitats. For example, rocky intertidal 

habitat is common in the western Gulf and less abundant in the eastern Gulf, which is the 

opposite pattern observed with estuarine habitat. Lowstand refugia for rocky-associated 

species may therefore have been common in the western Gulf with sustained gene flow 

between populations, and more isolated in the eastern Gulf. This pattern is opposite to 
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what we observe for estuaries, which we estimate were abundant in the northern and mid-

eastern Gulf, and minimal in the western Gulf. Based on regional shelf topography one 

might indeed expect opposite habitat distribution patterns for low slope habitats (e.g., 

estuaries) and higher sloping habitats (e.g., rocky intertidal). Regardless of specific 

refugial patterns, the role of glacial refugia has not often been considered when 

interpreting patterns of population subdivision in such studies but may provide insight 

into isolation mechanisms in future work. 

 

Mid-peninsular seaway hypothesis 

Many studies have treated a longstanding and contentious hypothesis regarding 

the presence of a transient trans-peninsular seaway 1–2 Ma across the middle of the Baja 

Peninsula (reviewed in Dolby et al. 2015). Findings from marine studies have echoed the 

pattern found in terrestrial work of a north-south genetic break among populations on 

either side of this purported feature (Riginos & Nachman 2001; Riginos 2005; Dolby et 

al. 2015). It was recently suggested that instead of yielding a north-south genetic break in 

nearshore species, that a mid-peninsular seaway could have acted as a dispersal corridor 

for many marine and coastal taxa (Dolby et al. 2015). Based on the reciprocal monophyly 

between Pacific and Gulf populations and the results from STRUCTURE analyses, we find 

evidence in microsatellite or mtDNA data that suggests individuals adjacent to the 

purported seaway region were not in recent genetic contact. The mtDNA topology for G. 

mirabilis is the only result potentially consistent with a seaway interpretation. 

Colonization of the Pacific and the first branching event between northern Gulf (dark 

blue/purple, Figure 3-S7) and the other clades could have been facilitated by dispersal 
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through and cessation of a seaway. This mtDNA tree topology was previously recovered 

in G. mirabilis (Huang & Bernardi 2001), but could also arise from incomplete lineage 

sorting or selection on the mitochondrion, or through migration around the peninsula and 

extirpation south of Punta Eugenia on the Pacific coast. If this topology was produced by 

a seaway in part, then a similar pattern should be observed in other species; but to the 

authors’ knowledge there is not evidence from previous marine literature that indicates 

individuals dispersed through such a seaway. The mitochondrial tree topology presented 

here for Q. y-cauda suggests the opposite—that the southwestern Gulf clade (light blue 

clade, Figure 3-S6) is sister to the Pacific clades and that the Pacific was colonized 

around the peninsula as opposed to across it.  

Glacial refugia have not previously been considered in interpreting this north-

south genetic discordance across the mid-peninsular region in marine taxa, perhaps due to 

challenges with modeling paleohabitat distributions. Our findings here suggest, however, 

that isolated glacial refugia may be a viable alternative explanation for the pattern of 

north-south discordance observed in marine species in the Gulf (Riginos & Nachman 

2001; Riginos 2005; Ellingson 2012). In this scenario, during sea-level rise non-refugial 

populations are recolonized from genetically distinct sources (refugia), and this pattern 

could appear as a genetic break in that recolonized region or as individual clades in tree 

topologies (Figures 3-S6, 3-S7). The location, number, and characteristics of refugia 

would vary by habitat type. Our specific refugia predictions would not translate to rocky-

shore, mangrove, or coral reef habitat per se, though the generalized pattern of refugial 

isolation may be widespread. The role of refugia and postglacial colonization should 

therefore be assessed in future studies of such habitats. 
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Conclusion 

 We expanded on recently developed paleohabitat models of estuaries and 

complemented these models with comparative population genetic assessments of three 

co-distributed fishes over ~4,600 km of coastline. We find that the proximate mechanism 

controlling connectivity of estuarine populations through time is changing sea level 

against a coastal shelf topography that varies on a regional scale. The ultimate 

mechanism underlying estuarine habitat distribution through time, and thus genetic 

population subdivision in part, is the tectonic history of the region and ongoing 

oceanographic processes that control the overall shelf topography itself. This working 

hypothesis may find relevance in many coastal and nearshore species that inhabit 

coastlines far from the glacial front, and be a significant driver of intraspecific diversity 

and cladogenesis. Beyond refugial processes, our data support previous assertions of 

incipient speciation among populations disjunct between the Pacific and Gulf of 

California. Finally, we broadly find evidence in conflict with a mid-peninsular seaway, 

which would likely have facilitated dispersal between the Pacific and Gulf. Instead, we 

suggest such north-south discordance and other marine phylogeographic patterns found 

previously may be a consequence of isolation in lowstand refugia and postglacial 

recolonization.   

 

 

 

 



 188 

 
Figure 3-1 Areas meeting slope requirements for estuarine habitat are shown for each 
10-m depth bin from 140 to 0 mbpsl (for colors see legend). Select localities are labeled: 
S.F.- San Francisco, L.A.- Los Angeles, Ti- Tijuana, L.P.- La Paz, and the Mexican states 
of Sonora and Sinaloa. Select biogeographic barriers are also mapped: Point Conception, 
Punta Eugenia, and the Cabo Block region. 
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Figure 3-2 Habitat area normalized by coastal region for all populations from San 
Francisco, USA to Reforma, Mexico for ease of visualization and to show the relative 
change in habitat size across coastal regions. Sites are in coastal order and area is in km2. 
Note that habitat area measured per time-point (depth bin) is independent of other 
measurements and therefore this graph is not displaying cumulative area through time. 
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Figure 3-3 Habitat area per site, normalized by coastal region size shown here for 
populations divided between A) Pacific sites, and B) Gulf sites. Area was calculated for 
each location per-time bin and is not cumulative through time. Normalized relative area 
shown here divided total habitat area for a region by its coastal region size which enables 
visualization of all sites rather than just the largest sites that otherwise drive this curve 
(Vizcaíno, Magdalena, Colorado Delta). For total area values see Figure 3-S3. All sites 
are color-coded (see legends) and ordered by coastal location from northernmost (San 
Francisco, top) to bottom. Gulf sites are ordered clockwise around the Gulf of California 
(Zacatecas to Reforma). 
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Figure 3-4 STRUCTURE 
results with corresponding 
reference maps showing 
refugia predicted through 
paleohabitat models (Figure 3-
1). Red ticks mark collection 
locations for fish samples 
(details in Table 3-S1). 
Individuals in STRUCTURE 
plots are in coastal order (top to 
bottom); varying dashed lines 
denote predicted or inferred 
geographic barriers. Species 
and number of groups (K) 
listed beneath each plot. The 
ranges of F. parvipinnis and Q. 
y-cauda do not extend 
northward of the small dashed 
line (panel A) and G. mirabilis 
does not extend southward of 
the widely hashed line (panel 
B). A) Pacific samples 
corresponding to black-outlined 
coast. Asterisk denotes an 
inferred founder event in 
population HID within G. 
mirabilis. Breaks listed are: 
San Francisco (small dash), 
southern California Bight 
(medium dash), Punta Eugenia 
(large dash). B) Gulf samples 
corresponding to black-outlined 
coast (clockwise around the 
Gulf perimeter). Breaks listed 
are: Bahía Concepción (large 
dash) and San Felipe (small 
dash).  
Refugia labeled as referenced 
in the text: NC- North 
Conception, V= Vizcaíno, M- 
Magdalena, Z- Zacatecas, F- 
Francisquito, CD- Colorado 
Delta, K- Bahía Kino, ME- 
mid-eastern Gulf, R- Reforma. 
Note the mid-eastern Gulf 
(ME) groups three refugia; 
according to genetic data these 

appear to function as a series of genetically connected refugia that, unlike Francisquito and 
Zacatecas, are not isolated genetically at lowstand and through time (Figures 3-S4, 3-S6, 3-S7). 
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Figure 3-5  Here we depict the San Francisco Bay area with a hillshade DEM where 
light grey is land and dark gray is ocean. Ten-meter depth bins are contoured from 0–140 
mbpsl and labeled to the right by the lower limit of each bin. The limited area available 
within the 120–140 mbpsl bins is likely what limits lowstand habitat. Note that much of 
the Sacramento and San Joaquin Delta region (coral color on right-hand side) is actually 
below sea level and has been dyked and modified for land use purposes. 
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Figure 3-6 Structure results (K = 2) for A) Q. y-cauda, and B) G. mirabilis showing 
low levels of genetic mixing between Pacific (dark grey) and Gulf of California (light 
grey) individuals. 
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Figure 3-S1  Map presented to shows slope values based on STRM30_PLUS 
DEM. Slope classification scheme emphasizes values suitable for Pacific coast estuaries 
(0.0–1.3%, Dolby et al. in revision), slope values suitable for Gulf of California estuaries 
(0.0–3.4%, this study) and some seafloor spreading and fault zones within the Gulf of 
California basin (red, slope >15.0). Here the steeper slopes of the western Gulf shelf are 
visible except for Conception (C.) and La Paz (P.) bays. The less steep, wider coastal 
shelf along the Colorado Delta (D.) and mainland Mexico (M.) shelves are also shown. 
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Figure 3-S2  A time series of habitat maps are shown for chosen Gulf regions. 
Areas meeting slope (≤ 3.4%) requirements (yellow) for chosen bathymetric bins are 
depicted. Land is shown in black, ocean shown in blue, and bathymetry is contoured by 
10-m bins and colored in greyscale. Coastal regions 1–7 (left) correspond to regions 
numbered on the guide map in orange (right). 
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Figure 3-S4  Neighbor-Joining trees constructed with microsatellite data for 
Gillichthys mirabilis (top), and Quietula y-cauda (bottom) are shown where the 
collection locations of the taxa are colored according to the map. The Pacific and Gulf 
form reciprocally monophyletic clades in each species. Not all sample sites are shown on 
the map for visual clarity. 
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Figure 3-S5  Phylogenetic tree created in MRBAYES with 889 bp of 
mitochondrial control region (Dloop) and 81 individuals of Fundulus parvipinnis plus 
three outgroup samples of Fundulus sciadicus, which is not its sister species. Three runs 
were parameterized and summed as follows: nchains = 4, Nst = 2, lset rates = equal, 
generations = 8 million, burnin fraction = 25 %.  
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Figure 3-S6  Phylogenetic tree created in MRBAYES with 912 bp of Cytochrome 
B and 195 individuals of Quietula y-cauda with no outgroup samples. Three runs were 
parameterized and summed as follows: nchains = 4, Nst = 2, lset rates = equal, 
generations = 10 millions, burnin fraction = 25 %. 
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Figure 3-S7  Phylogenetic tree created in MRBAYES with 1827 bp of 
mitochondrial control region (Dloop) and Cytochrome B, with 233 individuals of 
Gillichthys mirabilis with one outgroup sample from its sister taxon G. detrusus. Two 
runs were parameterized and summed as follows: nchains = 4, Nst = mixed, lset rates = 
gamma, generations = 10 millions, burnin fraction = 25 %. 
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Figure 3-S8  Structure results for Pacific samples of Quietula y-cauda (Qyc), 
Gillichthys mirabilis (Gmi), Fundulus parvipinnis (Fpa). Vertical bars delineate sampled 
populations, which are labeled with population three-letter codes (see Table 3-S1). 
Shapes denote the hypothesized or inferred geographic breaks from Figure 3-2: San 
Francisco–southern California (star), southern California Bight (triangle), Punta Eugenia 
(circle). Structure results are shown for K = 5 for F. parvipinnis because the results for K 
= 4 were well resolved. 
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Figure 3-S9  Structure results for Gulf samples of Quietula y-cauda (Qyc) 
and Gillichthys mirabilis (Gmi). Vertical bars delineate sampled populations, which are 
labeled with population three-letter codes (see Table 3-S1). Shapes denote the 
hypothesized or inferred geographic breaks from Figure 3-2: southern-central refugia 
(star), central-Delta refugia (triangle), Delta refuge–mid-eastern Gulf (circle). 
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Figure 3-S10  Mean allelic richness is shown against population order from north 
(left) to south (right) for all three species. Mean population allelic richness values were 
obtained by averaging across loci at each population, using the results from HEIRFSTAT. 
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Table 3-S1 Listed is information for Pacific locations used in this study. Site names, 
3-letter codes, GPS coordinates in decimal degrees, and sample sizes for each species are 
noted. Not all individuals were both genotyped for microsatellites and sequenced for 
mtDNA (see sample sizes).  

  
 
 
 
 
 
 
 
 

Pacific collection sites

Site location code latitude° longitude° color 
hue

Sample Size: microsatellites Sample Size: mtDNA

F. parvipinnis G. mirabilis Q. y-cauda F. parvipinnis G. mirabilis Q. y-cauda

Albany race track ALB 37.889333 -122.311683 0 - 10 - - 10 -
Morro Bay MOR 35.348517 -120.833600 30 12 9 5 12 9 7
Devereaux Slough DEV 34.417350 -119.873983 50 - 10 - - 8 -
U. Santa Barbara               USB 34.409383 -119.845017 50 - 10 - - 10 -
Goleta Slough GOL 34.417046 -119.839374 50 - - 7 - - 7
Carpenteria CAR 34.400167 -119.538667 50 14 - - 2 - -
Mandalay Canal MDC 34.136892 -119.183952 50 - - 2 - - 2
Point Mugu MGU 34.113910 -119.082100 50 - 3 - - 3 -
Ballona Lagoon BNA 33.962764 -118.445800 50 - 10 - - 10 -
Alamitos Bay ALA 33.745519 -118.117547 70 6 - 5 - - 5
Anaheim Bay ANB 33.736302 -118.093844 70 5 - - 3 - -
Catalina Island CAT 33.430928 -118.506080 70 - - 1 - - -
Hidden Lagoon HID 33.275532 -117.451668 70 - 10 - - 10 -
Santa Margarita MRG 33.234000 -117.410833 70 - - 5 - - 9
Penasquitos PSQ 32.932500 -117.258000 70 6 - 4 - - 5
Mission Bay MSN 32.770833 -117.232333 70 - - 1 - - 1
Famosa Slough FAM 32.751155 -117.228381 70 - 12 - - 8 -
Punta Banda BAN 31.765157 -116.617381 90 12 10 - 11 10 -
San Quintín QTN 30.418794 -116.023086 90 6 12 8 6 12 15
Laguna Manuela MAN 28.247533 -114.085517 120 6 4 4 6 4 4
Guerrero Negro GNG 28.021722 -114.114667 120 6 10 2 6 10 2
Ojo de Liebre OJO 27.783050 -114.312900 120 6 - - 4 - 2
la Bocana BOC 26.789283 -113.675733 150 - 2 6 - 2 6
Ignacio lagoon IGN 26.818667 -113.181500 150 - 10 - 2 10 -
el Cuarente CUA 26.556133 -113.002800 150 12 2 6 11 2 11
Batequi BAT 26.427150 -112.776733 150 6 - 5 6 - 5
Purisima PUR 26.062650 -112.282083 150 - 10 5 - 10 6
el Rosario ROS 25.698083 -112.074717 150 - - 5 - - 6
el Tambor TAM 24.831932 -112.055708 150 6 - - 6 - -
Punta Pajaro PPJ 24.753467 -112.043317 150 6 - - 6 - -
Salinas SAL 24.582114 -111.787706 150 - - 2 - - 2
Gallinitas GAL 24.557442 -111.735303 150 - - 4 - 2 12
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Table 3-S2 Listed is information for Gulf locations used in this study. Site names, 3-
letter codes, GPS coordinates in decimal minutes, and sample sizes for each species are 
noted. Not all individuals were both genotyped for microsatellites and sequenced for 
mtDNA (see sample sizes). The range of Fundulus parvipinnis does not extend to the 
Gulf, and Gillichthys mirabilis is not found south of el Mojon.  

 
 
 
 
 
 

Gulf of California collection sites

Site location code latitude longitude color 
hue

Sample size: microsatellites Sample size: mtDNA

G. mirabilis Q. y-cauda G. mirabilis Q. y-cauda

Zacatecas ZAC 24° 09.616’N 110° 25.594’W 180 - 7 - 9

Nopolo NOP 25° 54.970’N 111° 20.978’W 180 - 5 - 9

Boca San Juanico JNC 26° 23.638’N 111° 27.332’W 210 - 10 - 8

Arementa ARE 26° 37.618’N 111° 48.879’W 210 - 6 - 6

Tombolo TOM 26° 38.273’N 111° 49.902’W 210 - 4 - -

Tondo TON 26° 38.267’N 111° 50.159’W 210 - 2 - 2

Mulege MUL 26° 54.219’N 111° 57.366’W 210 - 2 - 2

el Mojon MOJ 27° 01.420’N 112° 00.624’W 210 20 1 19 -

San Marcos MRC 27° 07.391’N 112° 03.284’W 210 - 6 - 6

la Palmita PAL 28° 06.558’N 112° 48.678’W 240 1 - 1 -

San Francisquito FRN 28° 25.520’N 112° 51.883’W 240 - 9 - 7

Animas ANI 28° 47.855’N 113° 20.894’W 240 10 1 10 2

la Gringa GRI 29° 02.375’N 113° 32.461’W 240 10 8 10 7

San Luis 
Gonzaga

LGZ 29° 48.260’N 114° 23.490’W 270 - 1 - 1

Santa Maria MAR 30° 44.730’N 114° 42.010’W 270 2 - 2 -

Estero Percebu PCB 30° 48.500’N 114° 42.040’W 270 9 - 8 -

Estero Primero PRI 31° 11.540’N 114° 53.260’W 270 1 - 1 -

Estero Segundo SGU 31° 15.355’N 114° 53.011’W 270 - 4 - 5

Estero Tercero TRC 31° 17.354’N 114° 54.831’W 270 10 - - 1

Bahía Adaír ADR 31° 32.244’N 113° 58.910’W 270 - 1 - 6

NW of Cholla NWC 31° 27.822’N 113° 37.898’W 270 10 6 10 -

Puerto Peñasco MOI 31° 17.200’N 113° 15.170’W 270 2 - 2 -

Gated Estero GE 30° 57.350’N 113° 05.566’W 270 6 8 6 6

Bahía Kino KIN 28° 47.500’N 111° 54.540’W 270 20 1 20 1

el Ranchero RCH 27° 58.206’N 110° 58.794’W 300 1 - 1 -

Yavaros YAV 26° 40.700’N 109° 29.600’W 300 1 6 1 10

la Reforma REF 25° 04.233’N 108° 03.533’W 300 1 12 1 6
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Table 3-S3 Slope calculations are provided here for the 23 Gulf sites (5 calculations 
per site) used to train the slope parameter in the habitat modeling. The maximum 
observed slope (3.4 %, yellow) was used as a cutoff value in the models. Many slope 
values are greater than those observed for Pacific Coast sites (see Dolby et al. in 
revision); 13 of the 23 sites (32 calculations shown in orange or yellow) have values 
greater than the Pacific 1.3 % cutoff (mean slope = 1.0 %, median = 0.7 %, standard 
deviation = 0.9 % within the Gulf). 
 

 
 
 
 
 
 
 
 
 
 
 

Site Slope 
(%)

Run Length 
(km)

species 
present

Zacatecas

0.1% 2,000

Qyc
0.1% 2,000
0.0% 3,100
0.1% 1,945
0.1% 1,700

Nopolo 

3.0% 100

Qyc
3.0% 135
1.6% 122
1.6% 128
2.3% 215

San Juanico

1.3% 400

Qyc
0.4% 250
0.8% 260
1.9% 215
2.5% 162

Arementa

2.3% 300

Qyc
0.1% 4,700
0.1% 5,000
0.5% 3,000
0.7% 5,440

el Mojon

1.5% 270

Gmi 
Qyc

1.3% 235
1.8% 110
2.0% 100
2.2% 90

San Marcos

3.3% 122

Qyc
3.0% 66
0.7% 150
0.2% 550
1.1% 95

la Palmita

2.4% 42

Gmi
1.6% 62
1.5% 65
0.0% 12
1.4% 144

San 
Francisquito

3.0% 100

Qyc
1.4% 140
0.6% 310
2.7% 112

Site Slope 
(%)

Run Length 
(km)

species 
present

San Franciscuito 3.3% 90

Animas 

1.3% 240

Qyc 
Gmi

0.6% 180
0.5% 210
0.4% 260
0.4% 280

la Gringa

1.7% 117

Qyc 
Gmi

0.7% 150
0.8% 120
1.3% 157
3.1% 130

San Luis 
Gonzaga

1.2% 344

Qyc
0.4% 460
0.5% 220
1.9% 160
2.4% 247

Santa Maria

1.2% 250

Gmi
0.5% 221
0.4% 230
0.4% 240
0.8% 130

Estero Percebu

1.3% 75

Gmi
1.0% 100
0.4% 450
0.3% 330
1.0% 100

Estero Primero

0.7% 135

Gmi
0.7% 450
0.7% 275
1.2% 170
1.2% 568

Estero Segundo

0.3% 750

Qyc 
0.1% 1,300
0.5% 660
0.5% 740
1.0% 290

Bahía Adair
1.5% 66

Qyc0.0% 129

Site Slope 
(%)

Run Length 
(km)

species 
present

Bahía Adair
0.0% 75
0.0% 165
0.0% 335

NW of Cholla

2.1% 145

Qyc 
Gmi

2.0% 50
0.9% 112
0.9% 116
0.7% 150

Gated Estero

0.5% 219

Qyc 
Gmi

0.4% 225
0.2% 811
0.3% 290
1.4% 143

Puerto Peñasco

3.4% 58

Gmi
3.0% 100
0.8% 1,200
0.5% 1,228
2.4% 125

Bahía Kino

0.8% 130

Qyc 
Gmi

0.4% 281
0.2% 490
0.6% 165
0.7% 150

el Ranchero

1.3% 530

Gmi
0.7% 540
0.3% 380
0.3% 331
0.5% 650

Yavaros

0.6% 162

Qyc 
Gmi

0.5% 381
0.3% 950
0.3% 800
1.2% 241

la Reforma

0.6% 717

Qyc 
Gmi

0.2% 1,200
0.1% 1,785
0.1% 1,600
0.8% 500
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Table 3-S4 P-values and corrected Akaike Information Criterion (AICc) scores are 
provided for selected Generalized Linear Model (GLM) refuge scenarios within the 
Pacific (top) and Gulf (bottom). Yellow rows and asterisks denote statistically significant 
models. Dagger denotes models run with False Discovery rate applied, and double dagger 
marks models performed with Firth Biased corrections to mitigate issues of low sample 
size and correlated variables. 
 

 
 
 
 
 

Refugium Model Scenario: Gulf
Habitat 

p-value AICc

Reforma + eastern Gulf + Bahia Kino + Colorado Delta + Francisquito + Zacatecas* 0.010 18.0

Reforma + eastern Gulf + Bahia Kino + Colorado Delta + Francisquito + Zacatecas* † ‡ 0.023 21.9

Reforma + eastern Gulf + Bahia Kino + Colorado Delta + Francisquito* 0.034 23.6

Reforma + eastern Gulf + Bahia Kino + Colorado Delta + Francisquito † ‡ 0.094 25.6

Reforma + eastern Gulf + Bahia Kino + Colorado Delta + Zacatecas* 0.002 18.0

Reforma + eastern Gulf + Bahia Kino + Colorado Delta + Zacatecas* † ‡ 0.008 20.8

all 9 Gulf sites 1.000 18.0

Reforma + eastern Gulf + Bahia Kino + Colorado Delta* 0.002 18.0

Reforma + eastern Gulf + Bahia Kino + Colorado Delta* † ‡ 0.029 33.3

Reforma + Bahia Kino + Colorado Delta* 0.003 18.1

Reforma + Bahia Kino + Colorado Delta † ‡ 0.119 35.6

Colorado Delta only* 0.043 18.0

Colorado Delta only † ‡ 0.126 20.3

Reforma + Colorado Delta + Francisquito + Zacatecas* 0.004 19.2

Reforma + Colorado Delta + Francisquito + Zacatecas* † ‡ 0.026 23.1

Refugium Model Scenario: Pacific
Habitat 

p-value AICc

Magdalena + Vizcaíno + N. Conception* 0.001 13.7

Magdalena + Vizcaíno + N. Conception* † ‡ 0.038 20.7

Magdalena + Vizcaíno + N. Conception + San Francisco* 0.001 13.7

Magdalena + Vizcaíno + N. Conception + San Francisco † ‡ 0.069 23.6

Vizcaíno + N. Conception* 0.042 18.2

Vizcaíno + N. Conception † ‡ 0.195 21.3
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Table 3-S6 Listed in this table are p-values generated by GENEPOP for Fisher’s exact 
test (G) for population differentiation using genotypes for A) Fundulus parvipinnis, B) 
Quietula y-cauda, and C) Gillichthys mirabilis. Analyses used 10,000 dememorization 
steps, 20 batches, and 5,000 iterations per batch for each taxon. Coloring of cells indicate: 
significant (α < 0.05, yellow), highly significant (chi square approached infinity, orange), 
and populations that were sample limited (no data, dark grey). Populations are listed by 
3-letter codes in coastal order (see Table 3-S1 and 3-S2), where light pink are Pacific 
coast sites north of Punta Eugenia, dark pink are Pacific coast sites south of Punta 
Eugenia, and Gulf sites are teal. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

P values for Fisher’s exact test (G) for population differentiation — Fundulus parvipinnis

A CAR ALA ANB PSQ BAN QTN MAN GNG OJO CUA BAT PPJ TAM

MOR HS HS HS HS HS HS HS HS HS HS HS HS HS

CAR HS 0.00 0.00 HS HS HS HS HS HS HS HS HS

ALA 0.02 0.00 HS HS HS 0.00 HS HS HS HS HS

ANB 0.22 HS HS HS 0.00 HS HS HS HS HS

PSQ 0.00 HS HS 0.00 HS HS HS HS HS

BAN 0.00 HS HS 0.00 HS HS HS HS

QTN 0.00 0.00 0.02 HS HS HS HS

MAN 0.25 0.67 HS HS HS HS

GNG 0.46 HS HS HS HS

OJO HS HS HS HS

CUA 0.94 0.01 0.17

BAT 0.00 0.05

PPJ 0.30
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P values for Fisher’s exact test (G) for population differentiation — Quietula y-cauda —continued
Qyc ZAC NOP JNC ARE TOM TON MUL MOJ MRC FRN ANI GRI LGZ SGU TRC ADR GE KIN YAV REF
MOR 0.00 0.00 HS 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.02 0.00 0.00 0.02 0.00 HS
GOL 0.00 0.00 HS 0.00 0.00 0.00 0.00 0.00 0.00 Highl 0.00 0.00 0.01 0.00 0.00 HS 0.00 0.01 0.00 HS
MDC 0.00 0.02 0.00 0.00 0.26 0.41 0.47 0.35 0.00 0.00 0.35 0.00 0.36 0.06 0.35 0.00 0.00 0.50 0.01 0.00
ALA 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.12 0.00 0.00 0.12 0.00 0.13 0.00 0.31 0.00 0.00 0.36 0.00 0.00
CAT 0.31 0.37 0.06 0.54 0.78 0.36 1.00 NA 0.18 0.05 NA 0.07 NA 0.51 NA 0.12 0.17 NA 0.45 0.06
MRG 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.06 0.00 0.00 0.14 0.00 0.09 0.00 0.09 0.00 0.00 0.15 0.00 0.00
PSQ 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.10 0.00 0.00 0.19 0.00 0.12 0.00 0.27 0.00 0.00 0.30 0.00 0.00
MSN 0.30 0.24 0.05 0.35 0.60 0.82 1.00 NA 0.31 0.11 NA 0.12 NA 0.38 NA 0.10 0.07 NA 0.38 0.08
QTN 0.00 0.00 HS 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.05 0.00 0.02 0.00 0.04 0.00 0.00 0.12 0.00 HS
MAN 0.00 0.00 0.00 0.00 0.00 0.08 0.09 0.25 0.00 0.00 0.31 0.00 0.25 0.00 0.38 0.00 0.00 0.49 0.00 0.00
GNG 0.02 0.05 0.00 0.02 0.49 0.53 0.36 0.36 0.01 0.00 0.36 0.00 0.36 0.10 0.36 0.00 0.00 0.55 0.02 0.00
BOC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.32 0.00 0.09 0.00 0.19 0.00 0.00 0.19 0.00 HS
CUA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.09 0.00 0.03 0.00 0.15 0.00 0.00 0.14 0.00 HS
BAT 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.04 0.00 0.00 0.17 0.00 0.06 0.00 0.16 0.00 0.00 0.16 0.00 0.00
PUR 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.00 0.00 0.14 0.00 0.05 0.00 0.14 0.00 0.00 0.22 0.00 0.00
ROS 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.06 0.00 0.00 0.08 0.00 0.06 0.00 0.18 0.00 0.00 0.13 0.00 0.00
SAL 0.05 0.15 0.00 0.09 0.60 0.95 0.85 0.58 0.02 0.00 0.58 0.00 0.36 0.17 0.33 0.00 0.00 0.58 0.05 0.00
GAL 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.11 0.00 0.00 0.08 0.00 0.08 0.00 0.36 0.00 0.00 0.19 0.00 0.00
ZAC 0.98 0.06 0.46 0.46 0.59 0.76 0.23 0.00 0.00 0.27 0.00 0.48 0.00 0.30 0.00 0.00 0.14 0.00 0.00
NOP 0.64 0.95 0.76 0.90 0.56 0.65 0.00 0.00 0.47 0.00 0.62 0.01 0.37 0.00 0.00 0.33 0.00 0.00
JNC 0.19 0.54 0.59 0.18 0.59 0.00 0.00 0.33 0.00 0.29 0.00 0.15 0.00 0.00 0.13 0.00 HS
ARE 0.75 0.99 0.62 0.38 0.00 0.00 0.38 0.00 0.22 0.00 0.29 0.00 0.00 0.28 0.00 HS
TOM 0.99 1.00 0.99 0.02 0.04 0.92 0.02 0.83 0.22 0.83 0.01 0.00 0.59 0.04 0.00
TON 0.99 0.90 0.04 0.04 0.70 0.03 0.36 0.14 0.35 0.03 0.01 0.63 0.03 0.00
MUL 1.00 0.12 0.01 1.00 0.01 NA 0.55 1.00 0.17 0.22 1.00 0.14 0.01
MOJ 0.80 0.57 NA 0.62 NA 0.79 NA 0.93 0.98 NA 0.66 0.31
MRC 0.00 0.31 0.00 0.12 0.02 0.54 0.19 0.16 0.44 0.04 0.00
FRN 0.52 0.04 0.89 0.00 0.09 0.00 0.00 0.11 0.00 HS
ANI 0.52 NA 0.78 NA 0.77 0.40 NA 0.63 0.59
GRI 0.70 0.00 0.14 0.00 0.00 0.29 0.00 0.00
LGZ 0.28 NA 0.41 0.79 NA 0.79 0.45
SGU 0.91 0.52 0.11 0.73 0.25 0.02
TRC 0.70 0.41 NA 0.47 0.21
ADR 0.54 0.62 0.27 0.02
GE 0.95 0.28 0.16
KIN 0.99 0.82
YAV 0.50

 P values for Fisher’s exact test (G) for population differentiation — Quietula y-cauda
B GOL MDC ALA CAT MRG PSQ MSN QTN MAN GNG BOC CUA BAT PUR ROS SAL GAL
MOR 0.00 0.27 0.00 0.50 0.00 0.00 0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GOL 0.46 0.00 0.35 0.00 0.00 0.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MDC 0.99 0.98 0.92 0.92 0.95 0.83 0.98 0.92 0.78 0.33 0.93 0.49 0.11 0.96 0.60
ALA 0.95 0.73 0.08 0.97 0.00 0.17 0.17 0.05 0.00 0.05 0.01 0.00 0.34 0.01
CAT 0.96 0.98 NA 0.89 0.95 1.00 0.93 0.63 0.99 0.90 0.51 0.98 0.68
MRG 0.97 0.99 0.12 0.24 0.54 0.07 0.01 0.08 0.09 0.09 0.66 0.17
PSQ 0.97 0.63 0.32 0.72 0.37 0.10 0.40 0.03 0.06 0.88 0.60
MSN 0.98 0.99 0.90 0.99 0.98 0.99 0.96 0.82 0.98 0.99
QTN 0.05 0.33 0.00 0.01 0.01 0.00 0.00 0.18 0.00
MAN 0.95 0.50 0.16 0.64 0.07 0.00 0.59 0.22
GNG 0.55 0.34 0.91 0.48 0.12 0.94 0.32
BOC 0.98 1.00 0.53 0.51 1.00 0.86
CUA 0.94 0.54 0.39 0.69 0.95
BAT 1.00 0.89 1.00 0.95
PUR 0.30 0.76 0.59
ROS 1.00 0.84
SAL 1.00
GAL
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Table 3-S7 Fixation indices (FST) for pairwise population comparisons for A) 
Fundulus parvipinnis, B) Quietula y-cauda, and C) Gillichthys mirabilis. Cell coloring 
schemes denote: high gene flow (0.0–0.05, dark green), moderate gene flow (0.05–0.25, 
light green), reduced gene flow (0.25–0.5, orange), and extremely limited gene flow (> 
0.5, red). Populations are listed by 3-letter codes in coastal order (see Table 3-S1 and 3-
S2), where light pink are Pacific coast sites north of Punta Eugenia, dark pink are Pacific 
coast sites south of Punta Eugenia, and Gulf sites are teal. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Pairwise Populuation Fst— Fundulus parvipinnis
A MOR CAR ALA ANB PSQ BAN QTN MAN GNG OJO CUA BAT PPJ

CAR 0.12
ALA 0.19 0.12
ANB 0.14 0.06 0.04
PSQ 0.19 0.10 0.08 0.03
BAN 0.21 0.13 0.10 0.11 0.09
QTN 0.36 0.30 0.24 0.26 0.26 0.11
MAN 0.28 0.20 0.16 0.15 0.17 0.10 0.09
GNG 0.24 0.17 0.13 0.10 0.13 0.08 0.12 0.02
OJO 0.26 0.18 0.14 0.13 0.13 0.05 0.08 0.00 0.02
CUA 0.44 0.40 0.38 0.35 0.37 0.35 0.34 0.32 0.31 0.30
BAT 0.45 0.41 0.38 0.35 0.37 0.35 0.36 0.32 0.32 0.30 0.00
PPJ 0.49 0.45 0.41 0.39 0.41 0.39 0.37 0.35 0.35 0.33 0.02 0.04
TAM 0.49 0.45 0.41 0.39 0.42 0.38 0.38 0.37 0.36 0.35 0.01 0.03 0.01
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Table 3-S8 Basic diversity indices including for A) Fundulus parvipinnis, B) Quietula 
y-cauda, C) Gillicthys mibrabilis. Scores for mean genic diversity, observed 
heterozygosity (HO), expected heterozygosity (HE), sample size (number of alleles within 
a population), tests for heterozygote excess and deficit, and F-statistics for within 
individuals (1-Qintra), between individuals (1-Qinter), and inbreeding coefficient (FIS) are 
provided. Cells highlighted in yellow reflect a difference in HO and HE greater than 0.2, 
significance for excess heterozygotes (p < 0.05), or a high FIS score (≥ 0.15). 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

A
mean 
genic 

diversity
Ho He sample 

size

Test for 
heteroz
ygote 
deficit

Test for 
heteroz
ygote 

excess

1-Qintra 1-Qinter Fis

F. parvipinnis - Pacific Sites

MOR 0.40 0.54 0.54 24 0.39 0.61 0.41 0.39 -0.04

CAR 0.44 0.62 0.62 28 0.38 0.62 0.44 0.44 0.00

ALA 0.48 0.63 0.64 12 0.52 0.48 0.48 0.47 -0.02

ANB 0.51 0.67 0.72 10 0.07 0.93 0.47 0.51 0.08

PSQ 0.52 0.57 0.70 12 0.43 0.57 0.46 0.46 0.00

BAN 0.50 0.59 0.63 24 0.07 0.93 0.48 0.50 0.04

QTN 0.45 0.74 0.69 12 0.97 0.03 0.48 0.44 -0.09

MAN 0.51 0.54 0.61 12 0.01 0.99 0.46 0.52 0.12

GNG 0.53 0.74 0.70 12 0.88 0.12 0.56 0.52 -0.07

OJO 0.53 0.65 0.63 12 0.79 0.21 0.55 0.53 -0.04

CUA 0.62 0.60 0.69 24 0.00 1.00 0.54 0.62 0.12

BAT 0.63 0.62 0.70 12 0.01 0.99 0.56 0.64 0.12

TAM 0.56 0.51 0.66 12 0.00 1.00 0.44 0.56 0.22

PPJ 0.57 0.60 0.72 12 0.00 1.00 0.50 0.57 0.12
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B
mean 
genic 

diversity
Ho He sample 

size

heterozy
gote 

deficit

heterozy
gote 

excess
1-Qintra 1-Qinter Fis

Q. y-cauda - Pacific Sites

MOR 0.33 0.53 0.51 10 0.64 0.36 0.34 0.33 -0.04

GOL 0.40 0.51 0.53 14 0.31 0.68 0.39 0.41 0.05
MDC 0.39 0.67 0.74 4 0.26 0.91 0.35 0.41 0.14
ALA 0.63 0.53 0.67 10 0.02 0.97 0.54 0.63 0.15
CAT 0.12 1.00 1.00 2 NA NA NA NA NA
MRG 0.58 0.44 0.61 10 0.00 1.00 0.42 0.58 0.28
PSQ 0.59 0.55 0.67 8 0.13 0.87 0.51 0.57 0.11
MSN 0.41 1.00 1.00 2 NA NA NA NA NA
QTN 0.62 0.51 0.66 16 0.00 1.00 0.49 0.62 0.22
MAN 0.65 0.50 0.69 8 0.00 1.00 0.51 0.65 0.22
GNG 0.65 0.68 0.79 4 0.52 0.70 0.61 0.63 0.03
BOC 0.64 0.52 0.64 12 0.02 0.98 0.57 0.65 0.13
CUA 0.61 0.51 0.61 12 0.12 0.88 0.55 0.61 0.09
BAT 0.66 0.42 0.66 10 0.00 1.00 0.48 0.65 0.26
PUR 0.63 0.49 0.63 10 0.00 1.00 0.52 0.62 0.17
ROS 0.55 0.52 0.62 10 0.03 0.96 0.47 0.55 0.14
SAL 0.52 0.58 0.68 4 0.16 0.92 0.47 0.59 0.21
GAL 0.58 0.52 0.61 8 0.24 0.76 0.52 0.55 0.07

Q. y-cauda - Gulf Sites
ZAC 0.80 0.57 0.80 14 0.00 1.00 0.60 0.82 0.26
NOP 0.78 0.62 0.78 10 0.00 1.00 0.66 0.80 0.17
JNC 0.79 0.56 0.79 22 0.00 1.00 0.61 0.78 0.22
ARE 0.77 0.55 0.77 12 0.00 1.00 0.57 0.85 0.32
TOM 0.78 0.48 0.83 8 0.00 1.00 0.57 0.93 0.38
TON 0.70 0.50 0.74 4 0.01 1.00 0.50 0.80 0.37
MUL 0.78 0.47 0.78 4 0.01 1.00 0.57 0.93 0.38
MOJ 0.47 1.00 1.00 2 NA NA NA NA NA
MRC 0.65 0.42 0.69 12 0.00 1.00 0.48 0.68 0.30
FRN 0.60 0.41 0.60 18 0.00 1.00 0.53 0.70 0.24
ANI 0.41 1.00 1.00 2 NA NA NA NA NA
GRI 0.64 0.44 0.69 14 0.00 1.00 0.56 0.76 0.27
LGZ 0.29 1.00 1.00 2 NA NA NA NA NA
SGU 0.70 0.58 0.79 8 0.01 0.99 0.66 0.83 0.20
TRC 0.35 1.00 1.00 2 NA NA NA NA NA
ADR 0.71 0.52 0.81 12 0.00 1.00 0.55 0.77 0.29
GE 0.70 0.53 0.79 16 0.00 1.00 0.61 0.80 0.24
KIN 0.47 1.00 1.00 2 NA NA NA NA NA
YAV 0.71 0.45 0.71 12 0.00 1.00 0.59 0.78 0.24
REF 0.70 0.45 0.70 24 0.00 1.00 0.53 0.71 0.25
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C
mean 
genic 

diversity
Ho He sample 

size

heterozy
gote 

deficit

heterozy
gote 

excess
1-Qintra 1-Qinter Fis

G. mirabilis - Pacific Sites

ALB 0.34 0.47 0.50 20 0.69 0.31 0.33 0.32 -0.04

MOR 0.26 0.37 0.42 18 0.23 0.77 0.23 0.23 -0.00

DEV 0.32 0.41 0.46 20 0.16 0.84 0.28 0.31 0.08

USB 0.31 0.43 0.49 20 0.18 0.82 0.27 0.29 0.07

MGU 0.45 0.57 0.57 6 0.57 0.48 0.35 0.35 0.00

BNA 0.30 0.35 0.37 20 0.36 0.64 0.29 0.30 0.05

HID 0.16 0.48 0.43 20 0.97 0.03 0.18 0.15 -0.23

FAM 0.22 0.38 0.36 24 0.70 0.30 0.29 0.28 -0.05

BAN 0.38 0.44 0.43 20 0.67 0.33 0.38 0.38 -0.01

QTN 0.38 0.46 0.47 24 0.40 0.60 0.38 0.37 -0.02

MAN 0.41 0.52 0.50 8 0.61 0.39 0.42 0.41 -0.04

GNG 0.40 0.45 0.50 20 0.02 0.98 0.37 0.41 0.09

BOC 0.41 0.60 0.65 4 0.36 0.84 0.38 0.42 0.11

IGN 0.40 0.46 0.54 20 0.13 0.87 0.35 0.38 0.08

CUA 0.43 0.65 0.68 4 0.87 0.33 0.43 0.36 -0.20

PUR 0.38 0.37 0.40 20 0.50 0.50 0.35 0.36 0.03

G. mirabilis - Gulf Sites

MOJ 0.63 0.61 0.63 40 0.24 0.76 0.61 0.64 0.04

PAL 0.38 1.00 1.00 2 NA NA NA NA NA 

ANI 0.66 0.59 0.66 20 0.04 0.96 0.59 0.66 0.12

GRI 0.68 0.59 0.68 20 0.00 1.00 0.60 0.68 0.12

MAR 0.63 0.69 0.77 4 0.15 0.96 0.56 0.66 0.14

PCB 0.73 0.61 0.73 18 0.01 0.99 0.64 0.72 0.11

PRI 0.69 1.00 1.00 2 NA NA NA NA NA 

ADR 0.69 0.63 0.69 20 0.10 0.90 0.64 0.69 0.08

NWC 0.71 0.65 0.71 20 0.17 0.83 0.68 0.71 0.05

MOI 0.65 0.68 0.74 4 0.34 0.86 0.60 0.65 0.08

GE 0.71 0.60 0.71 12 0.04 0.96 0.63 0.72 0.12

KIN 0.69 0.63 0.69 40 0.00 0.99 0.65 0.68 0.05

RCH 0.44 1.00 1.00 2 NA NA NA NA NA 

YAV 0.75 1.00 1.00 2 NA NA NA NA NA 

REF 0.69 1.00 1.00 2 NA NA NA NA NA 



 218 

References 

Aburto-Oropeza O, Ezcurra E, Danemann G et al. (2008) Mangroves in the Gulf of 

California increase fishery yields. Proceedings of the National Academy of Sciences 

of the United States of America, 105, 10456–10459. 

Adams SM, Lindmeier JB, Duvernell DD (2006) Microsatellite analysis of the 

phylogeography, Pleistocene history and secondary contact hypotheses for the 

killifish, Fundulus heteroclitus. Molecular Ecology, 15, 1109–1123. 

Akihito, Iwata A, Kobayashi T et al. (2000) Evolutionary aspects of gobioid fishes based 

upon a phylogenetic analysis of mitochondrial cytochrome B genes. Gene, 259, 5–15. 

Aragón-Arreola M, Martín-Barajas A (2007) Westward migration of extension in the 

northern Gulf of California, Mexico. Geology, 35, 571–4. 

Atwater BF (1979) Ancient processes at the site of southern San Francisco Bay: 

movement of the crust and changes in sea level. In: San Francisco Bay the urbanized 

estuary, pp. 31–45. San Francisco, CA. 

Becker JJ, Sandwell DT, Smith WHF et al. (2009) Global Bathymetry and Elevation 

Data at 30 Arc Seconds Resolution: SRTM30_PLUS. Marine Geodesy, 32, 355–371. 

Bernardi G (2000) Barriers to gene flow in Embiotoca jacksoni, a marine fish lacking a 

pelagic larval stage. Evolution, 54, 226–237. 

Bernardi G (2014) Baja California disjunctions and phylogeographic patterns in 

sympatric California blennies. Frontiers in Ecology and Evolution. 

Bernardi G, Talley D (2000) Genetic evidence for limited dispersal in the coastal 

California killifish, Fundulus parvipinnis. Journal of Experimental Marine Biology 

and Ecology, 255, 187–199. 



 219 

Bernardi G, Findley L, Rocha-Olivares A (2003) Vicariance and dispersal across Baja 

California in disjunct marine fish populations. Evolution, 57, 1599–1609. 

Bertness MD, Gaines SD (1993) Larval dispersal and local adaptation in acorn barnacles. 

Evolution, 47, 316. 

Briggs JC (2006) Proximate sources of marine biodiversity. Journal of Biogeography, 33, 

1–10. 

Brusca RC, Findley LT, Hastings PA (2005) Macrofaunal diversity in the Gulf of 

California. In: Marine reserves help preserve genetic diversity after impacts derived 

from climate variability: Lessons from the pink abalone in Baja California (eds 

Cartron J-LE, Ceballos G, Felger RS), pp. 179–203. Nature. 

Byrne RJ, Bernardi G, Avise JC (2013) Spatiotemporal Genetic Structure in a Protected 

Marine Fish, the California Grunion (Leuresthes tenuis), and Relatedness in the 

Genus Leuresthes. Journal of Heredity, 104, 521–531. 

Chaytor JD, Goldfinger C, Meiner MA et al. (2008) Measuring vertical tectonic motion 

at the intersection of the Santa Cruz-Catalina Ridge and Northern Channel Islands 

platform, California Continental Borderland, using submerged paleoshorelines. 

Geological Society of America Bulletin, 120, 1053–1071. 

Clark-Tapia R, Molina-Freaner F (2003) The genetic structure of a columnar cactus with 

a disjunct distribution: Stenocereus gummosus in the Sonoran desert. Heredity, 90, 

443–450. 

Conomos TJ (1979) Properties and circulation of San Francisco Bay waters. In: San 

Francisco Bay The urbanized estuary, pp. 47–84. American Association for the 

Advancement of Science, San Francisco, CA. 



 220 

Dawson MN (2001) Phylogeography in coastal marine animals: a solution from 

California? Journal of Biogeography, 28, 723–736. 

Dawson MN, Louie KD, Barlow M, Jacobs DK, Swift CC (2002) Comparative 

phylogeography of sympatric sister species, Clevelandia ios and Eucyclogobius 

newberryi (Teleostei, Gobiidae), across the California Transition Zone. Molecular 

Ecology, 11, 1065–1075. 

de Jesús Suárez-Moo P, Calderon-Aguilera LE, Reyes-Bonilla H et al. (2013) Integrating 

genetic, phenotypic and ecological analyses to assess the variation and clarify the 

distribution of the Cortes geoduck (Panopea globosa). Journal of the Marine 

Biological Association of the United Kingdom, 93, 809–816. 

Deng QE, Hazel W (2010) Population structure and phylogeography of an acorn barnacle 

with induced defense and its gastropod predator in the Gulf of California. Marine 

Biology, 157, 1989–2000. 

Dolby GA, Bennett SE, Lira-Noriega A, Wilder BT, Munguía-Vega A (2015) Assessing 

the Geological and Climatic Forcing of Biodiversity and Evolution Surrounding the 

Gulf of California. Journal of the Southwest, 57, 391–455. 

Dolby GA, Hechinger R, Ellingson RA, Findley LT, Lorda J, Jacobs DK Palaeohabitat 

and genetic modelling reveal refugia and postglacial mixing of estuarine fishes along 

Alta and Baja California coasts Proceedings of the Royal Society B, in revision. 

Earl DA, vonHoldt BM (2011) STRUCTURE HARVESTER: a website and program for 

visualizing STRUCTURE output and implementing the Evanno method. 

Conservation Genetics Resources, 4, 359–361. 

Earl DA, Louie KD, Bardeleben C, Swift CC, Jacobs DK (2010) Rangewide 



 221 

microsatellite phylogeography of the endangered tidewater goby, Eucyclogobius 

newberryi (Teleostei: Gobiidae), a genetically subdivided coastal fish with limited 

marine dispersal. Conservation Genetics, 11, 103–114. 

Ellingson R (2012) Phylogenetics and phylogeography of North Pacific bay gobies: 

adaptive convergence, relictual endemism, and climate-driven population structure. 

Univeristy of California, Los Angeles. 

Ellingson RA, Swift CC, Findley LT, Jacobs DK (2014) Convergent evolution of 

ecomorphological adaptations in geographically isolated Bay gobies (Teleostei: 

Gobionellidae) of the temperate North Pacific. Molecular Phylogenetics and 

Evolution, 70, 464–477. 

Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals 

using the software structure: a simulation study. Molecular Ecology, 14, 2611–2620. 

Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software 

package for population genetics data analysis. Evolutionary bioinformatics online, 1, 

47–50. 

Ficke AD, Myrick CA, Hansen LJ (2007) Potential impacts of global climate change on 

freshwater fisheries. Reviews in Fish Biology and Fisheries, 17, 581–613. 

Goddard JHR, Gosliner TM, Pearse JS (2011) Impacts associated with the recent range 

shift of the aeolid nudibranch Phidiana hiltoni (Mollusca, Opisthobranchia) in 

California. Marine Biology, 158, 1095–1109. 

Goudet J (2005) Hierfstat, a package for R to compute and test hierarchical F‐statistics. 

Molecular Ecology Notes. 

Hastings A, Harrison S (1994) Metapopulation Dynamics and Genetics. Annual Review 



 222 

of Ecology and Systematics, 25, 167–188. 

Helenes J, Carreno AL (1999) Neogene sedimentary evolution of Baja California in 

relation to regional tectonics. Journal of South American Earth Sciences, 12, 589–

605. 

Helenes J, Carreño AL, Carrillo RM (2009) Middle to late Miocene chronostratigraphy 

and development of the northern Gulf of California. Marine Micropaleontology, 72, 

10–25. 

Hellberg ME, Balch DP, Roy K (2001) Climate-driven range expansion and 

morphological evolution in a marine gastropod. Science, 292, 1707–1710. 

Hendrickx ME, Brusca RC, Reséndiz GR (2014) Biodiversity of Macrocrustaceans in the 

Gulf of California, Mexico. Zootaxa, 3835, 338–348. 

Hendrickx ME, Brusca RC, Cordero M, Ramírez R G (2007) Marine and brackish-water 

molluscan biodiversity in the Gulf of California, Mexico. Scientia Marina, 71, 637–

647. 

Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature, 405, 907–913. 

Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. 

Philosophical Transactions of the Royal Society B: Biological Sciences, 359, 183–

195. 

Huang D, Bernardi G (2001) Disjunct Sea of Cortez–Pacific Ocean Gillichthys mirabilis 

populations and the evolutionary origin of their Sea of Cortez endemic relative, 

Gillichthys seta. Marine Biology, 138, 421–428. 

Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogeny. 

Bioinformatics. Bioinformatics, 17, 754–755. 



 223 

Humphreys ED (1995) Post-Laramide removal of the Farallon slab, western United 

States. Geology, 23, 987–990. 

Hurtado LA, Frey M, Gaube P, Pfeiler E, Markow TA (2007) Geographical subdivision, 

demographic history and gene flow in two sympatric species of intertidal snails, 

Nerita scabricosta and Nerita funiculata, from the tropical eastern Pacific. Marine 

Biology, 151, 1863–1873. 

Hurtado LA, Lee EJ, Mateos M (2013) Contrasting Phylogeography of Sandy vs. Rocky 

Supralittoral Isopods in the Megadiverse and Geologically Dynamic Gulf of 

California and Adjacent Areas (R Cordaux, Ed,). PLoS ONE, 8, e67827. 

Hurtado LA, Mateos M, Santamaria CA (2010) Phylogeography of Supralittoral Rocky 

Intertidal Ligia Isopods in the Pacific Region from Central California to Central 

Mexico (SJ Goldstien, Ed,). PLoS ONE, 5, e11633–13. 

Ingersoll RV, Rumelhart PE (1999) Three-stage evolution of the Los Angeles basin, 

southern California. Geology, 27, 593–6. 

Jacobs DK, Haney TA, Louie KD (2004) Genes, Diversity, and Geologic process on the 

Pacific coast. Annual Review of Earth and Planetary Sciences, 32, 601–652. 

Jacobs D, Stein ED, Longcore T (2011) Classification of California estuaries based on 

natural closure patterns: Templates for restoration and management. Southern 

California Coastal Water Research Project. 

Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation 

program for dealing with label switching and multimodality in analysis of population 

structure. Bioinformatics, 23, 1801–1806. 

Johnson PB, Martin KL, Vandergon TL et al. (2009) Microsatellite and Mitochondrial 



 224 

Genetic Comparisons between Northern and Southern Populations of California 

Grunion (Leuresthes tenuis). Copeia, 2009, 465–474. 

Kelly RP, Palumbi SR (2010) Genetic Structure Among 50 Species of the Northeastern 

Pacific Rocky Intertidal Community (SA Sandin, Ed,). PLoS ONE, 5, e8594–13. 

Leache AD, Crews SC, Hickerson MJ (2007) Two waves of diversification in mammals 

and reptiles of Baja California revealed by hierarchical Bayesian analysis. Biology 

Letters, 3, 646–650. 

Lee WJ, Conroy J, Howell WH, Kocher TD (1995) Structure and evolution of teleost 

mitochondrial control regions. Journal of Molecular Evolution, 41, 54–66. 

Lin H-C, Sánchez-Ortiz C, Hastings PA (2009) Colour variation is incongruent with 

mitochondrial lineages: cryptic speciation and subsequent diversification in a Gulf of 

California reef fish (Teleostei: Blennioidei). Molecular Ecology, 18, 2476–2488. 

Lindell J, Ngo A, Murphy RW (2006) Deep genealogies and the mid-peninsular seaway 

of Baja California. Journal of Biogeography, 33, 1327–1331. 

Littler MM, Littler DS (1981) Intertidal macrophyte communities from Pacific Baja 

California and the upper Gulf of California: relatively constant vs. environmentally 

fluctuating systems. Mar Ecol Prog Ser. 

Lockington WN (1877) The Long-Jawed Goby. The American Naturalist, 11, 474–478. 

Love MS (2012) Certainly More Than You Want to Know About The Fishes of The 

Pacific Coast—A Postmodern Experience. Really Big Press. 

Maldonado JE, Davila FO, Stewart BS, Geffen E, Wayne RK (1995) Intraspecific 

Genetic Differentiation in California Sea Lions (Zalophus californianus) From 

Southern California and the Gulf of California. Marine Mammal Science, 11, 46–58. 



 225 

Marinone SG (2003) A three-dimensional model of the mean and seasonal circulation of 

the Gulf of California. Journal of Geophysical Research letters, 108, 3325–27. 

Marinone SG, Ulloa MJ, Parés-Sierra A, Lavín MF, Cudney-Bueno R (2008) 

Connectivity in the northern Gulf of California from particle tracking in a three-

dimensional numerical model. Journal of Marine Systems, 71, 149–158. 

Mark C, Gupta S, Carter A, Mark DF, Gautheron C (2014) Rift flank uplift at the Gulf of 

California: No requirement for asthenospheric upwelling. Geology, 42, 259–262. 

Marko PB (2004) “What's larvae got to do with it?” Disparate patterns of post-glacial 

population structure in two benthic marine gastropods with identical dispersal 

potential. Molecular Ecology, 13, 597–611. 

McFarlane GA, King JR, Beamish RJ (2000) Have there been recent changes in climate? 

Ask the fish. Progress in Oceanography, 47, 147–169. 

Michaud F, Calmus T, Royer J-Y et al. (2007) Right-lateral active faulting between 

southern Baja California and the Pacific plate: The Tosco-Abreojos fault. In: Right-

lateral active faulting between southern Baja California and the Pacific plate: 

breojos fault, pp. 287–300. Geological Society of America. 

Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for 

inference of large phylogenetic trees. 2010 Gateway Computing Environments 

Workshop (GCE), 1–8. 

Miller RR, Hubbs CL (1954) An Erroneous Record of the California Killifish, Fundulus 

parvipinnis, from Cabo San Lucas, Baja California. Copeia, 1954, 234–235. 

Muhs DR, Rockwell TK, Kennedy GL (1992) Late Quaternary uplift rates of marine 

terraces on the Pacific coast of North America, southern Oregon to Baja California 



 226 

Sur. Quaternary International, 15-16, 121–133. 

Munguía-Vega A (2011) Habitat Fragmentation in Small Vertebrates from the Sonoran 

Desert in Baja California. Conservation Genetics Laboratory School of Natural 

Resources, The University of Arizona, Tuscon, AZ. 

Munguía-Vega A, Jackson A, Marinone SG et al. (2014) Asymmetric connectivity of 

spawning aggregations of a commercially important marine fish using a 

multidisciplinary approach. PeerJ, 2, e511–33. 

Nava-Sánchez EH, Gorsline DS, Molina-Cruz A (2001) The Baja California peninsula 

borderland: structural and sedimentological characteristics. Sedimentary Geology, 

144, 63–82. 

Niemi NA, Oskin M, Rockwell TK (2008) Southern California Earthquake Center 

Geologic Vertical Motion Database. Geochemistry, Geophysics, Geosystems, 9, 1–

14. 

Oskin M, Stock J (2003) Marine incursion synchronous with plate-boundary localization 

in the Gulf of California. Geology. 

Pfeiler E, Markow TA (2011) Phylogeography of the Cactophilic Drosophila and Other 

Arthropods Associated with Cactus Necroses in the Sonoran Desert. Insects, 2, 218–

231. 

Plattner C, Malservisi R, Govers R (2009) On the plate boundary forces that drive and 

resist Baja California motion. Geology, 37, 359–362. 

Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using 

multilocus genotype data. Genetics, 155, 945–959. 

Riddle BR, Hafner DJ, Alexander LF, Jaeger JR (2000) Cryptic vicariance in the 



 227 

historical assembly of a Baja California Peninsular Desert biota. Proceedings of the 

National Academy of Sciences, 97, 14438–14443. 

Riginos C (2005) Cryptic vicariance in Gulf of California fishes parallels vicariant 

patterns found in Baja California mammals and reptiles. Evolution, 59, 2678–2690. 

Riginos C, Nachman MW (2001) Population subdivision in marine environments: the 

contributions of biogeography, geographical distance and discontinuous habitat to 

genetic differentiation in a blennioid fish, Axoclinus nigricaudus. Molecular Ecology, 

10, 1439–1453. 

Roden GI (1964) Oceanographic aspects of Gulf of California. In: Marine Geology of the 

Gulf of California (eds van Andel TH, Shor GG Jr), pp. 30–58. 

Roessig JM, Woodley CM, Cech JJ Jr, Hansen LJ (2004) Effects of global climate 

change on marine and estuarine fishes and fisheries. Reviews in Fish Biology and 

Fisheries, 14, 251–275. 

Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under 

mixed models. Bioinformatics, 19, 1572–1574. 

Ryman N, Palm S, André C et al. (2006) Power for detecting genetic divergence: 

differences between statistical methods and marker loci. Molecular Ecology, 15, 

2031–2045. 

Santamaría-del-Angel E, Alvarez-Borrego S, Müller-Karger FE (1994) Gulf of California 

biogeographic regions based on coastal zone color scanner imagery. Journal of 

Geophysical Research letters, 99, 7411–14. 

Seapy RR, Littler MM (1980) Biogeography of rocky intertidal macroinvertebrates of the 

Southern California Islands. In: The California islands (ed Powers DM), pp. 307–



 228 

323. 

Segura I, Rocha-Olivares A, Flores-Ramírez S, Rojas-Bracho L (2006) Conservation 

implications of the genetic and ecological distinction of Tursiops truncatus ecotypes 

in the Gulf of California. Biological Conservation, 133, 336–346. 

Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science, 

236, 787–792. 

Soria G, Torre-Cosio J, Munguía-Vega A et al. (2014) Dynamic connectivity patterns 

from an insular marine protected area in the Gulf of California. Journal of Marine 

Systems, 129, 248–258. 

Stock JM (2000) Relation of the Puertecitos Volcanic Province, Baja California, Mexico, 

to development of the plate boundary in the Gulf of California. Special Papers-

Geological Society of America, 143–156. 

Terry A, Bucciarelli G, Bernardi G (2000) Restricted gene flow and incipient speciation 

in disjunct Pacific Ocean and Sea of Cortez populations of a reef fish species, Girella 

nigricans. Evolution, 54, 652–659. 

Turner CH, Sexsmith JC (1967) Marine baits of California. Department of Fish and 

Game. 

Wright S (1931) Evolution in Mendelian Populations. Genetics, 16, 97–159. 

Zacherl D, Gaines SD, Lonhart SI (2003) The Limits to Biogeographical Distributions: 

Insights from the Northward Range Extension of the Marine Snail, Kelletia kelletii 

(Forbes, 1852). Journal of Biogeography, 30, 913–924. 

Zeitzschel B (1969) Primary productivity in the Gulf of California. Marine Biology, 3, 

201–207. 




