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RESEARCH ARTICLE

Nasopulmonary mites (Acari: Halarachnidae)

as potential vectors of bacterial pathogens,

including Streptococcus phocae, in marine

mammals

Risa PesapaneID
1,2*, Andrea Chaves3, Janet Foley3, Nadia Javeed3, Samantha Barnum3,

Katherine GreenwaldID
4, Erin Dodd4, Christine Fontaine5, Padraig Duignan5,

Michael Murray6, Melissa Miller4

1 Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University,

Columbus, Ohio, United States of America, 2 School of Environment and Natural Resources, College of

Food, Agricultural, and Environmental Science, The Ohio State University, Columbus, Ohio, United States of

America, 3 Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California

Davis, Davis, California, United States of America, 4 California Department of Fish and Wildlife, Marine

Wildlife Veterinary Care and Research Center, Santa Cruz, California, United States of America, 5 The

Marine Mammal Center, Sausalito, California, United States of America, 6 Monterey Bay Aquarium,

Monterey, California, United States of America

* pesapane.1@osu.edu

Abstract

Nasopulmonary mites (NPMs) of the family Halarachnidae are obligate endoparasites that

colonize the respiratory tracts of mammals. NPMs damage surface epithelium resulting in

mucosal irritation, respiratory illness, and secondary infection, yet the role of NPMs in facili-

tating pathogen invasion or dissemination between hosts remains unclear. Using 16S rRNA

massively parallel amplicon sequencing of six hypervariable regions (or “16S profiling”), we

characterized the bacterial community of NPMs from 4 southern sea otters (Enhydra lutris

nereis). This data was paired with detection of a priority pathogen, Streptococcus phocae,

from NPMs infesting 16 southern sea otters and 9 California sea lions (Zalophus california-

nus) using nested conventional polymerase chain reaction (nPCR). The bacteriome of

assessed NPMs was dominated by Mycoplasmataceae and Vibrionaceae, but at least 16

organisms with pathogenic potential were detected as well. Importantly, S. phocae was

detected in 37% of NPM by nPCR and was also detected by 16S profiling. Detection of mul-

tiple organisms with pathogenic potential in or on NPMs suggests they may act as mechani-

cal vectors of bacterial infection for marine mammals.

Introduction

Nasopulmonary mites (NPMs) of the family Halarachnidae are obligate endoparasites that col-

onize the respiratory tract of mammals. Two genera with five extant species infest marine

mammals: Orthohalarachne which primarily infests eared seals (Otariidae) and walrus
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(Odobenidae), andHalarachne which infests earless seals (Phocidae) and sea otters (Enhydra
lutris) [1–5]. NPMs are viviparous [6,7] so their life cycle only consists of larvae, protonymphs,

deutonymphs, and adults [2,6]. The protonymph and deutonymph stages are of such short

duration that they are non-feeding and essentially inactive [6]. Adults are similarly non-motile

because their well-developed tarsal claws anchor them in place [6]. In contrast, the larval stage

is highly motile and hardy outside of the host [2,6] making them largely responsible for host-

to-host transmission [6]. Transmission is presumed to occur via direct exchange of larval

mites during close contact [6,8], but the persistence of larval mites in saline suggests environ-

mental transmission is also plausible [2,6].

Although sometimes regarded as benign [9], NPMs can cause substantial respiratory

pathology in a variety of marine mammal hosts [10–13]. Recent studies by our team concluded

that nasopulmonary acariasis is an underappreciated contributor to southern sea otter (E.

lutris nereis) morbidity and mortality, with up to one quarter of fresh dead otters necropsied

between 2012 and 2017 harboring NPM [2,13,14]. In a complementary study of sympatric pin-

nipeds, the prevalence of NPM infestation ranged from 8.8% to 74.1% among pinniped popu-

lations [15]. The piercing mouthparts of NPMs damage surface epithelium while consuming

bodily fluids [9] resulting in mucosal irritation, respiratory illness, and secondary infection

[1,10–13,16]. Despite increasing reports of respiratory infection associated with mite infesta-

tion [12,13,16], the role of NPMs in facilitating or disseminating pathogens is unknown.

Streptococcus phocae and related beta-hemolytic Streptococcci are opportunistic bacterial

pathogens of emerging importance in southern sea otters and other marine species that can

invade their hosts through damaged skin or mucosa [17,18]. Infection with S. phocae is associ-

ated with pneumonia, abscessation, septicemia, neoplasia, and pyometra, and may facilitate

co-infection by other opportunistic bacteria [17,19–21]. Opportunistic infections are signifi-

cant contributors to southern sea otter mortality [14] and S. phocae prevalence was reportedly

40.5% within a study of minimally decomposed sea otters necropsied between 2004 and 2010

[18].

Important questions are whether NPMs promote invasion of S. phocae and other potential

bacterial pathogens by damaging the integumentary barrier and if NPMs serve as vectors for

transmission of S. phocae and other bacterial pathogens as they migrate between upper and

lower portions of the respiratory tract and invade new hosts. The goals of this study were to (1)

assess whether NPM harbor pathogens of veterinary concern and (2) determine the prevalence

of S. phocae among NPM infesting southern sea otters and California sea lions. To explore

whether there was evidence of host pathology associated with the pathogens detected in NPM,

we present relevant postmortem results from in-depth necropsies conducted as part of a longi-

tudinal study of sea otter mortality [14].

Materials and methods

Mite collection

At necropsy each sea otter was classified according to the stranding date, stranding location,

sex, age class; pup (<6 months), immature (6 months to<1 year), subadult (1–3 years), adult

(4–10 years), and aged adult (>10 year), and nutritional condition (emaciated, poor, fair,

good, excellent) [22,23]. NPMs were collected from 16 necropsied southern sea otters and 9

California sea lions from 2007 through 2017 using necropsy methods and criteria described in

detail elsewhere [2,14,24]. Briefly, NPMs were gently scooped into cryovials when observed

during gross necropsy of fresh or moderately decomposed carcasses. Standardized southern

sea otter necropsy protocols included gross examination of the nares, rostral nasal cavity, naso-

pharynx, oropharynx, soft palate, larynx, trachea, major bronchi, and lungs, and microscopic
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examination of formalin-fixed tissues from the soft palate, tonsils, oropharynx, and lungs.

Additional samples were collected for histopathology if indicated by the presence of moderate

to severe gross pathology during necropsy. Although it is beyond the scope of the current

study to list the full range of tissue samples that are routinely collected for microscopic exami-

nation as part of detailed southern sea otter necropsy, that information has been previously

reported [22].

The level of sampling for each case was affected by the extent of postmortem

decomposition and other factors, often with reduced sampling for more autolyzed and/or

scavenged carcasses, previously frozen animals, or otters infected with the zoonotic fungal

pathogen Coccidioides immitis. As a result, not all necropsies were comprehensive and there-

fore neither was NPM collection. Aerobic and/or anaerobic bacterial culture from the nares,

nasopharynx, oropharynx, trachea, bronchi, lungs, and other tissues was performed as needed

to determine the cause of death, assess infection severity and trace pathogen invasion from

wounds or other sources within the body. Bacterial isolation and characterization were per-

formed at the University of California Veterinary Medical Teaching Hospital as previously

described [25].

Case selection for bacterial culture was moderated by the presence/absence and relative

severity of pathology at gross necropsy and other factors such as the extent of postmortem

decomposition, and presence of peri- or postmortem artifact that could interfere with results

of bacterial culture or provide spurious results (e.g., perimortem regurgitation, seawater aspi-

ration, or perimortem administration of broad-spectrum antibiotics as part of clinical care).

Also considered was the day of necropsy; because bacterial swabs were shipped to a microbiol-

ogy laboratory bacterial culture and identification, fewer cultures were performed for animals

where more than 48 hours of delay were anticipated between sample collection and inocula-

tion onto bacterial culture media. For live-stranded sea otters with NPM infestations, rhinos-

copy was performed during hospitalization only when deemed necessary as part of clinical

care. Live-stranded otters were only included in this study if ultimately, they died and were

submitted for necropsy.

Because NPM were collected opportunistically from marine mammals that died of natural

causes or were euthanized by a veterinarian for clinical reasons, this study was verbally exempt

from review by the Institutional Animal Care and Use Committee at the University of Califor-

nia Davis. NPM samples were either immediately preserved in 70% ethanol or stored at −20˚C

prior to placement in 70% ethanol. Individual mites were removed from storage vials, manu-

ally separated from any residual host tissue, rinsed with 70% ethanol, and then stored in 70%

ethanol. Mites were examined using light microscopy on a stereo zoom microscope (Laxco,

Mill Creek, WA) to identify stage- and species-specific anatomic features based on published

morphological criteria [3,5,8,26,27]. Microscopic examination of tissue sections from forma-

lin-fixed sea otter tissues was performed on an Olympus BX41 compound microscope and

microscopic lesions were photographed using an Olympus DP73 digital camera (Olympus,

San Jose, CA).

DNA extraction

Individual larval or adult NPMs were placed in sterile microcentrifuge tubes and incubated

briefly at 56˚C until all residual ethanol had evaporated. Sterile needles were used to pierce

each NPM to aid in buffer penetration during tissue lysis. DNA extraction was performed on

single mites using the QIAamp DNA Micro Kit (Qiagen, Valencia, CA) under the protocol for

tissue and eluted with 40μL Buffer AE. As described below, DNA from NPMs was either sub-

jected to nested conventional PCR detection of S. phocae or 16S profiling, but not both.
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Conventional PCR

Nested conventional polymerase chain reaction (nPCR) of the 16S ribosomal RNA (16S

rRNA) gene was amplified using GoTaq Green Master Mix (2X, Promega, Madison, WI) with

primers and cycling conditions as previously described [28]. PCR products were visualized on

a 1.5% agarose gel stained with Gel Red (Biotium, Hayward, CA). A synthesized gBlock Gene

Fragment (Integrated DNA Technologies, San Diego, CA) containing a 927 bp sequence of the

16S rRNA gene of S. phocae from GenBank accession AF235052 was used as a positive control.

Molecular biology grade nuclease-free water served as a no-template control. Samples with a

band of 900 bp were considered positive. The specificity of the primer set used in this investi-

gation (PX1, PX2) for S. phocae as opposed to other beta-hemolytic Streptococcci was previ-

ously evaluated using five reference strains of S. phocae as positive controls, and multiple

strains of each of the species S. pyogenes, S. agalactiae, S. equi subsp. equi, S. equi subsp. zooepi-
demicus, S. dysgalactiae subsp. equisimilis (serogroup G), S. dysgalactiae subsp. dysgalactiae
(serogroup C), S. dysgalactiae subsp. dysgalactiae (serogroup L), S. canis, S. uberis, S. parau-
beris, S. porcinus, S. suis, S. iniae, S. difficilis, and Lactococcus garvieae as negative controls [29].

16S profiling by 16S rRNA massively parallel amplicon sequencing

Among the 16 sea otters sampled in this study, 4 underwent detailed necropsy (Table 1) as part

of a longitudinal study on sea otter mortality [14]. All cases had chronic moderate to severe

nasopulmonary acariasis where larval and adult NPM were collected simultaneously, enabling

comparison of the NPM bacterial community across life stages. As part of routine necropsy,

subsamples of all major tissues were also collected for histopathology as previously described

[22]. In some cases, additional diagnostic tests were performed, including bacterial culture,

assessment of postmortem tissue or body fluids for the biotoxins domoic acid and microcystin,

and screening of postmortem serum for antibodies to the apicomplexan protozoa Toxoplasma
gondii and Sarcocystis neurona, as previously described [14]. Following completion of histopa-

thology and diagnostic testing, the primary and any contributing cause(s) of death were deter-

mined for all 4 sea otters as described [14]. The relative significance of nasopulmonary

acariasis relative to all other necropsy findings was noted for each case (Table 1).

Genomic DNA of 69 NPM collected from these 4 necropsied southern sea otters was nor-

malized to a concentration of 9-12ng/μL and stored at -20C prior to amplification and

sequencing for bacteriome characterization. DNA from up to 11 larvae or adult mites

(Table 2) were pooled for each otter and given a unique barcode label. DNA from larvae and

adults was barcoded separately, for a total of 8 pools, to enable characterization of bacterial

community composition in relation to mite life stage. Sequences homologous to bacterial 16S

rRNA were assembled into contigs. Library preparation was done using the Ion 16S™ metage-

nomics kit (A26216, ThermoFisher Scientific, Waltham, MA) following manufacturer’s

instructions. Briefly, amplicons were made from six 16S rRNA hypervariable regions (V2, V3,

V4, V67, V8, V9), then adapters and bar-codes were added. The library concentration was

determined by Bioanalyzer (5067–4626, Agilent Technologies, Santa Clara, CA). Barcoded

DNA from larval and adult mites from each sea otter was pooled for emulsion PCR at concen-

trations of 100nM each, allowing for a single sequencing workflow. Clonally amplified DNA

was templated into Ion Sphere™ Particles (ISPs) using the Ion Personal Genome Machine

(PGM)™ Hi-Q™ View OT2 Kit (A30044, ThermoFisher) on the Ion OneTouch™ 2 instrument,

following manufacturer’s instructions. ISPs were enriched on the Ion OneTouch™ ES following

manufacturer’s instructions. Sequencing was carried out on the Ion PGM™ using the Ion

PGM™ Hi-Q™ View Sequencing kit with the Ion 314™ Chip v2 following manufacturer’s

instructions. Briefly, the PGM™ went through initialization to achieve correct pH in the
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different wash solutions and deoxyribonucleotide triphosphates (dNTP’s). The Ion 314™ Chip

v2 was loaded with the ISP’s and the run started according to the manufacturer’s directions.

Generated sequences were analyzed using the Ion 16S™ metagenomics analyses module within

the Ion Reporter™ software that enables a rapid and semi-quantitative assessment of bacterial

samples.

Taxonomical assignments of Operational Taxonomic Units (OTUs) were determined by

consensus from all six hypervariable 16S rRNA regions. Multiple taxonomic assignments

(slash calls) were reduced to the next highest taxonomic level and condensed into a single

OTU (e.g., all Vibrio “slash calls” became Vibrio sp. and were synonymized with all other

genus-only Vibrio calls). Descriptive statistics and measures of alpha diversity were calculated

using the package phyloseq in R software for statistical computing [30].

The frequency of occurrence for each bacterial taxon was calculated as the number of pools

in which the taxon was present divided by the total number of pools.

Table 1. Perimortem clinical data and results of necropsy and histopathology for 4 radio-tagged southern sea otters (Enhydra lutris nereis) with nasopulmonary

mite infestations that stranded from 2014 through 2016.

Sea otter

number

4349–04 7395–15 5229–08 7139–14

Age Aged adult Aged adult Aged adult Adult

Sex Female Male Female Female

Perimortem

clinical history

Euthanized at admission, no antibiotic

therapy

Euthanized at admission, no

antibiotic therapy

Found fresh dead, no

antibiotic therapy

Died within 24 h, one dose of

intramuscular penicillin G total

Bacterial culture

at necropsy

None None Transmitter pocket &

pericardial fluid (Aerobic)

Right retropharyngeal & inguinal lymph

nodes (Aerobic/anaerobic)

Culture results N/A N/A Transmitter: Small #s

Vibrio sp., pericardial fluid:

No growth

Lymph nodes: Small #s Vibrio sp.& E.

coli (no anaerobes)

Primary COD Cardiomyopathy Cardiomyopathy Mating trauma Possible microcystin intoxication

Primary

sequelae

Heart failure Heart failure Bacterial pneumonia,

septicemia

Coagulopathy & possible hepatic

encephalopathy

Secondary COD Systemic sarcocystosis and/or

toxoplasmosis

Severe dental disease End lactation syndrome Cardiomyopathy

Secondary

sequelae

None None None Heart failure

Tertiary COD End lactation syndrome Emaciation Cerebral larva migrans End lactation syndrome

Tertiary

sequelae

None None None None

Quaternary

COD

Nasopulmonary acariasis Nasopulmonary acariasis Domoic acid intoxication Nasopulmonary acariasis

Quaternary

sequelae

Regional lymphadenitis and bacterial

spread

Regional lymphadenitis and

bacterial spread

None Regional lymphadenitis and bacterial

spread

Quinary COD Cerebrum: Possible oligodendroglioma Gastric ulcers/erosions and

melena

Nasopulmonary acariasis Domoic acid intoxication

Quinary

sequelae

None None Regional lymphadenitis

and bacterial spread

None

Comments Both retropharyngeal & axillary LNs

reactive on histopathology. The axillary LN

contains small clumps of bacterial cocci.

Retropharyngeal LN reactive.

Axillary LN not examined

microscopically.

Retropharyngeal LN

reactive.

Both retropharyngeal & axillary LNs

reactive. Right retropharyngeal LN

culture-positive for Vibrio spp. and E.

coli.

COD = cause of death, LN = lymph node.

https://doi.org/10.1371/journal.pone.0270009.t001
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Differences in count data of mapped reads and OTUs among juvenile and adult pools were

assessed using a t-test; and among sea otters using ANOVA. All statistical analyses were per-

formed in R software for statistical computing, with p-values <0.05 considered significant.

Results

Mite identification

A total of 250 NPMs from 25 marine mammals were examined in this study. The 204 NPMs

obtained from 16 southern sea otters were identified asH. halichoeri, whereas the 46 NPMs

from 9 California sea lions were all O. attenuata (Table 3).

Streptococcus phocae detection using nPCR

A total of 181 NPMs from 25 marine mammals (Table 3) were subjected to nPCR for S. phocae.
Of these, 58/135 NPMs (43%) from 14/16 otters (87.5%) and 9/46 NPM (19.6%) from 6/9 sea

lions (66.7%) were PCR-positive for S. phocae (Table 3). The overall prevalence of S. phocae
detection across all 181 NPM was 37%.

Bacteriome description based on 16S profiling

The number of readable sequences from the 8 pools of NPM ranged from 12,568 to 145,519. A

total of 267,751 mapped reads (Table 2) were initially assigned to 544 bacterial taxa. Raw Ion

Reporter™ results are provided in S1 File. After accounting for ambiguous or duplicate assign-

ments, 205 unique bacterial taxa remained (Table 2). A full list of unique bacterial taxa can be

Table 2. Number of nasopulmonary mites, mapped reads, and operational taxonomic units (OTUs) of bacteria generated by 16S rRNA massively parallel amplicon

sequencing of mites infesting four southern sea otters (Enhydra lutris nereis) necropsied during 2014 and 2015 in California.

Sea otter

number

Number of mites

(juvenile/adult)

Number of mapped reads

(juvenile/adult)

Number of

OTUsa

(juvenile/adult)

Month and year of

stranding

Stranding location within Monterey

Bay, California

4349–04 20 (10/10) 31,954

(14,057 / 17,897)

17 (9/17) May 2015 Moss Landing

7395–15 17 (6/11) 41,029

(18,590 / 22,439)

29 (23/24) March 2015 Moss Landing

5229–08 20 (10/10) 27,121

(12,568 / 14,553)

89 (78/60) May 2015 Monterey Harbor

7139–14 12 (2/10) 167,647

(22,128 / 145,519)

203 (87/202) May 2014 Monterey Harbor

Total 69 (28/41) 205 (197/303)

a Parentheses may include duplicate OTUs found in both pools.

https://doi.org/10.1371/journal.pone.0270009.t002

Table 3. Detection of Streptococcus phocae bacteria via conventional PCR in nasopulmonary mites collected during marine mammal necropsy in California from

2007 through 2017.

Host species Total hosts % hosts with PCR-positive mites

(95% CI)

Mite species Range of mites per host Total mites % PCR-positive mites

(95% CI)

Enhydra lutris nereis 16 87.5%

(60.4–97.8%)

Halarachne halichoeri 1–29 135 43%

(34.6–51.8%)

Zalophus californianus 9 66.7%

(30.9–91%)

Orthohalarachne attenuata 3–11 46 19.6%

(9.8–34.4%)

Total 25 80%

(58.7–92.4%)

181 37%

(30.1–44.5%)

https://doi.org/10.1371/journal.pone.0270009.t003
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found in S2 File. The 10 most abundant taxa were primarily organisms from the families

Mycoplasmataceae (especially Mycoplasma phocidae), and Vibrionaceae (especially Vibrio
cyclitrophicus and Photobacterium damselae), but also included Staphylococcus schleiferi, Pas-
teurella multocida, and Propionibacterium acnes (Table 4). Together, these 10 taxa represented

80.7% of all mapped reads. Organisms from the family Mycoplasmataceae occurred most fre-

quently and accounted for 41% of all mapped reads. Organisms from Vibrionaceae accounted

for 22.7% of all mapped reads. Other taxa found in at least 5 of the 8 pools included Pasteurel-

laceae, Vibrionaceae, Staphylococcaceae, Flavobacteriaceae, Burkholderiaceae, Fusobacteria-

ceae, Moraxellaceae, and Propionibacteriaceae (Table 5). In contrast, 98 taxa representing 58

different families were unique to NPMs from a single otter identified as SO7139-14.

Table 4. Ten most abundant operational taxonomic units (OTUs) of bacteria detected by 16S rRNA massively parallel amplicon sequencing in pools of nasopul-

monary mites infesting 4 southern sea otters (Enhydra lutris nereis) necropsied during 2014 and 2015 in California.

OTU name Type species % of mapped reads

Mycoplasmataceae Mycoplasma spp. 19.0%

Mycoplasmataceae 15.1%

Vibrionaceae Vibrio spp. 14.5%

Staphylococcaceae Staphylococcus schleiferi 7.7%

Pasteurellaceae Pasteurella multocida 7.2%

Mycoplasmataceae Mycoplasma phocidae 6.9%

Vibrionaceae 3.8%

Vibrionaceae Photobacterium damselae 2.4%

Propionibacteriaceae Propionibacterium acnes 2.3%

Vibrionaceae Vibrio cyclitrophicus 2.0%

Many bacteria in NPMs could not be identified beyond the genus or family level.

https://doi.org/10.1371/journal.pone.0270009.t004

Table 5. Most frequent operational taxonomic units (OTUs) of bacteria detected by 16S rRNA massively parallel

amplicon sequencing across 8 pools of nasopulmonary mites infesting 4 southern sea otters (Enhydra lutris nereis)
necropsied during 2014 and 2015 in California.

OTU name Frequency of occurrence

Mycoplasmataceae 100%

Mycoplasma spp. 100%

Mycoplasma phocidae 87.5%

Pasteurella multocida 87.5%

Vibrionaceae 75%

Staphylococcus schleiferi 75%

Flavobacteriaceae 62.5%

Burkholderia spp. 62.5%

Fusobacterium spp. 62.5%

Moraxella spp. 62.5%

Pasteurella spp. 62.5%

Propionibacterium acnes 62.5%

Psychrobacter aestuarii 62.5%

Psychrobacter spp. 62.5%

Frequency of occurrence was calculated as the number of pools in which the taxon was present, divided by the total

number of pools and expressed as a percentage.

https://doi.org/10.1371/journal.pone.0270009.t005
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There were consistently more mapped reads from pools of adult NPMs than juvenile

NPMs, though this trend was not statistically significant (P = 0.338). Similarly, although the

pool of adult NPMs from otter SO7139-14 had considerably more bacterial taxa than any

other pool (Fig 1), neither mapped reads nor OTU count differed significantly by NPM life

stage (P = 0.596) or by otter (P = 0.419).

A total of 16 organisms with known or suspected pathogenic potential were identified

among the 205 unique OTUs (Table 6), many of which impact the respiratory system of

marine mammals and some that can infect humans. Notably, S. phocae was detected in both

the juvenile and adult pools of NPM from otter SO7139-14.

Sea otter pathology

Findings from gross necropsy and histopathology for the 4 sea otters where NPM were col-

lected for bacteriome assessment are summarized in Table 1. In all cases, chronic NPM infesta-

tion was considered a contributing cause of death. The regional (draining) lymph nodes were

enlarged and chronically inflamed, and bacterial spread to a regional lymph node was con-

firmed microscopically in one case (Table 1). All three female sea otters in the sample also had

Fig 1. Plot of operational taxonomic units (OTUs) of bacteria from 8 pools of nasopulmonary mites infesting 4

southern sea otters (Enhydra lutris nereis) by taxonomic family.

https://doi.org/10.1371/journal.pone.0270009.g001
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mating-associated facial trauma, including nose wounds that could contribute to observed

respiratory and lymph node pathology and bacterial spread.

In all cases, larval mites were most numerous in the rostral nasal cavity at gross necropsy,

while adults were common in the nasopharynx, oropharynx, larynx, and trachea, where they

remained attached to the mucosa. In some cases, abundant mucopurulent and sparsely hemor-

rhagic fluid surrounded the attached adult mites in the nasopharynx (Fig 2A); similar fluid

was sometimes present in the nasal cavity, trachea, and bronchi. The nasopharyngeal mucosa

was diffusely red and mildly edematous. Attached adults sometimes formed a continuous

mass of mites covering the ventral and lateral nasopharyngeal mucosa (Fig 2A and 2B), with

additional mites in the trachea and bronchi. The regional lymph nodes, especially the retro-

pharyngeal and axillary lymph nodes, were often moderately to markedly enlarged, solid on

palpation, and tan or tan-red-mottled. Sea otters with chronic, severe mite infestations often

had one or more small (2–4 mm diameter), well-circumscribed, flat or mildly depressed white

spots scattered throughout the pulmonary pleura.

Table 6. Operational taxonomic units (OTUs) of bacteria with suspected or confirmed pathogenic potential detected in nasopulmonary mites from southern sea

otters (Enhydra lutris nereis) necropsied in California during 2014 and 2015.

Phylum OTU Hosts Isolation location Associated pathology Reference

Actinobacteria Arcanobacterium
phocae

Sea otters, seals, sea lions, elephant seals,

dolphins

Respiratory system,

systemic

Pneumonia, septicemia,

inflammation, abscess, fatal

lesions in sea otters

[31,32]

Bacteroidetes Ornithobacterium
rhinotracheale

Poultry, wild birds Respiratory system Airsacculitis, pneumonia [33,34]

Firmicutes Clostridium perfringens Sea otters, marine invertebrates Digestive system Necrotizing enteritis, fatal lesions

in sea otters

[14,25,35]

Helcococcus ovis Livestock, horses Respiratory system,

circulatory system

Pneumonia, inflammation [36–39]

Staphylococcus
schleiferi

Sea otters, seals, penguins, dogs, humans, wild

birds

Systemic Inflammation, abscess, fatal

lesions in sea otters

[14,40]

Streptococcus
dysgalactiae

Whales, fish, livestock, humans Systemic Septicemia, necrotic ulcers,

inflammation, abscess

[41,42]

Streptococcus phocae Sea otters, Steller sea lions and other pinnipeds,

salmonids, mink,

Respiratory system,

systemic

Pneumonia, septicemia, neoplasia,

pyometra, fatal lesions in sea

otters

[14,18,43–

49]

Fusobacteria Fusobacterium
mortiferum

Humans Respiratory system,

digestive system

Abscess, septicemia [50,51]

Fusobacterium
necrophorum

Sea otters, livestock, antelope, marsupials,

humans

Respiratory system Necrobacillosis, pneumonia, fatal

lesions in sea otters

[14,50–57]

Proteobacteria Helicobacter sp. Sea otters, seals, sea lions, fur seals, dolphins,

wild birds

Digestive system Ulcers [58–63]

Campylobacter sp. Sea otters, seals, elephant seals Digestive system Inflammation, fatal lesions in sea

otters

[14,25,64,65]

Mannheimia varigena Cattle, sheep, swine, leeches, coral Respiratory system,

digestive system

Inflammation [66–68]

Pasteurella multocida Sea otters, seals, sea lions, walrus, livestock,

dogs, cats, poultry and wild birds, rabbits,

chimpanzees, komodo dragons

Respiratory system Pneumonia, septicemia,

inflammation, fatal lesions in sea

otters

[14,40,69–

73]

Photobacterium
damselae

Crustaceans, mollusks, cetaceans, humans,

sharks, seafood

Systemic Bacteremia, septicemia, necrotizing

fasciitis

[74,75]

Vibrio
parahaemolyticus

Sea otters, dolphins, shrimp, fish, humans Systemic, digestive

system

Cholera, fatal lesions in sea otters [14,25,76–

81]

Tenericutes Mycoplasma phocidae Seals Respiratory system,

systemic

Inflammation, ulcers [82–85]

https://doi.org/10.1371/journal.pone.0270009.t006
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On histopathology the nasopharyngeal mucosa was often diffusely inflamed, congested and

mildly edematous (Fig 2C). The inflammatory infiltrate was composed of neutrophils, plasma

cells, lymphocytes, macrophages, and sparse eosinophils, often accompanied by patchy sub-

mucosal hemorrhage. Transmigrating neutrophils were common in the mucosa, and numer-

ous neutrophils were admixed with proteinaceous fluid and hemorrhage in the

nasopharyngeal lumen. The dorsal soft palate in sea otters is lined by a thin layer of pseudos-

tratified columnar epithelium, sometimes with small patches of ciliated pseudostratified

columnar epithelium, depending on the sample location. Where adult mites were densely

packed along the dorsal soft palate, the pseudostratified columnar epithelium exhibited an

irregular, shaggy appearance with sparse surface erosion and patchy squamous metaplasia.

The regional lymph nodes, especially the retropharyngeal and axillary lymph nodes exhibited

chronic lymphadenitis, characterized by mild to moderate numbers of neutrophils, plasma

cells, lymphocytes and macrophages within the capsule, trabeculae, lymphatics and subcapsu-

lar and medullary sinuses (Fig 3A). The lymph node capsule was often mildly thickened and

fibrotic. This chronic inflammation was associated with moderate diffuse paracortical lym-

phoid hyperplasia (Fig 3A). The tonsils were often enlarged and inflamed, with moderate lym-

phoid hyperplasia.

Bacterial culture was performed at necropsy for one of the four sea otters (Table 1); in this

case the retropharyngeal lymph node was culture-positive for Vibrio spp. and E. coli. The axil-

lary lymph node of another otter contained small clumps of bacterial cocci arranged in chains

(putative streptococci) on histopathology (Fig 3B).

Discussion

NPM are common respiratory parasites of marine mammals that cause pulmonary irritation

and impairment [10–13]. Although NPM often co-occur with bacterial infection [12,13,16],

their role in the transmission of bacteria had not been explored. In this study, NPM were col-

lected from both southern sea otters and California sea lions during necropsy to determine

Fig 2. Examples of pathology associated with nasopulmonary mite infestations in southern sea otters (Enhydra
lutris nereis). (A) Example rhinoscopic view of the nasopharynx from a live southern sea otter infested with

nasopulmonary mites, showing abundant mucopurulent and variably hemorrhagic fluid surrounding adult

nasopulmonary mites covering the ventral and lateral nasopharyngeal mucosa (Bar = 0.75 mm); (B) Diffusely

inflamed, congested and mildly edematous nasopharyngeal mucosa in a necropsied sea otter with severe

nasopulmonary mite infestation (Bar = 4 mm); (C) Example microscopic view of adult nasopulmonary mites attached

to an inflamed, edematous and hemorrhagic nasopharyngeal mucosa (Hematoxylin and eosin stain, Bar = 250 μm).

https://doi.org/10.1371/journal.pone.0270009.g002
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whether they harbored bacterial organisms with known pathogenic potential in marine mam-

mals. PCR was used to directly detect S. phocae in NPM from both sea otters and sea lions as a

specific pathogen of interest whereas 16S profiling was used to investigate the broader bacter-

iome of pools of larval or adult NPM from a subset of sea otters. This subset of otters was cho-

sen because sufficient numbers of both NPM life stages were collected simultaneously,

allowing for comparison of bacterial community between life stages.

More than one third of NPMs sampled were positive for S. phocae using nPCR, and most

marine mammal hosts harbored mites that were S. phocae positive. The primers used in the

current study were previously demonstrated as effective at distinguishing S. phocae from other

closely related beta-hemolytic Streptococci [29]. For one otter, S. phocae was successfully

detected inH. halichoeri using both 16S profiling and nPCR.

Beta-hemolytic streptococci, including S. phocae are some of the most common opportu-

nistic bacterial pathogens of southern sea otters and other marine mammals [14]. These bacte-

ria commonly colonize damaged skin, often resulting in abscessation, bacteremia, or sepsis

[18] and have been associated with fatal lesions in otters [35]. Breaks in host integument due

to trauma and other causes was significantly associated with risk of infection in an epidemio-

logic study of S. phocae in sea otters [18]. Internal lesions were assessed cumulatively as perfo-

rations in the mucosa of the gastrointestinal, respiratory, or urogenital tract. However, specific

associations with NPM infestation were not assessed, and NPMs were reported during gross

necropsy or in archival photos in only four S. phocae-positive otters as part of that prior study

[18]. An insufficient number of individuals with NPM-associated lesions were included in the

prior study to conclude whether mucosal damage from NPMs facilitates infection with S. pho-
cae. Interestingly, S. phocae and other beta-hemolytic streptococci are commonly isolated

from the nares and nasopharynx at necropsy, including nose wounds of adult female sea otters

that develop as a result of copulatory activity (M. Miller, unpub. data). In addition, for one of

Fig 3. Microscopic views of perinasal draining lymph nodes from southern sea otters (Enhydra lutris nereis) with nasopulmonary mite

infestations. (A) Chronically inflamed retropharyngeal lymph node with lymphatic dilation (top left) and marked expansion of the lymph node

capsule by a mixed inflammatory infiltrate (left). (B) Inflamed axillary lymph node containing two dense clusters of bacterial cocci (putative

streptococci) in the superficial cortex. Both sections hematoxylin and eosin stain, Bar = 100 μm (A) and 40 μm (B).

https://doi.org/10.1371/journal.pone.0270009.g003
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the four sampled sea otters in the current study (an adult female with a nose wound and severe

NPM infestation), a regional lymph node contained small clumps of bacterial cocci arranged

in chains (putative streptococci) on histopathology (Fig 3B). Additional studies are needed to

clarify the relationship between NPM infestation and the potential for spread of S. phocae and

other beta-hemolytic Streptococci within and between sea otters and other marine mammals.

The bacteriome of theH. halichoeri sampled in this study was dominated by organisms

from the family Mycoplasmataceae, a family consisting ofMycoplasma and Ureaplasma gen-

era. These small, pleomorphic bacteria lack a cell wall [86] and have exceptionally short

genomes [87]. Many Mycoplasmataceae are pathogenic in humans and animals, includingM.

phocicerebrale which is associated with zoonotic skin infections (i.e. seal finger) [82].Myco-
plasma species, especiallyM. phocidae, have been reported in harbor seals and grey seals

[83,84] and are commonly associated with infected wounds of the respiratory tract [83–85,88].

Mycoplasma phocidae has also been found on the teeth of pinnipeds and in bite wounds [84]

suggesting it is an opportunist capable of causing severe infection through breaks in host integ-

ument. NPMs are found in these same pinniped species; mechanical transfer ofMycoplasma
species by mites may be a route for bacterial spread between pinniped hosts, and mites may

facilitate tissue infection through damage to the mucosa secondary during feeding. A majority

of the Mycoplasmataceae in NPMs could not be identified beyond the genus or family level,

though this is not unusual since there is a great diversity of undescribedMycoplasma species,

including many that are associated with respiratory disease [84,89].Mycoplasma strains have

previously been isolated from the oropharynx of southern sea otters at necropsy including a

purportedly novelMycoplasma species, for which the nameMycoplasma enhydrae sp. nov. has

been proposed [90]. Given that 19% of mapped reads in the current study wereMycoplasma
spp., it is highly possible thatMycoplasma enhydrae sp. nov. was present in NPM.

The second most prolific bacterial group identified inH. halichoeri were from the family

Vibrionaceae. There have been several revisions to taxonomy within Vibrionaceae; the family

currently consists of two genera, Vibrio and Photobacterium, which are motile, gram-negative

bacteria that generally require seawater for growth [91]. These bacteria are commonly associ-

ated with marine and estuarine environments and are capable of infecting a wide variety of

aquatic organisms [91]. Although some Vibrionaceae in NPMs could not be identified beyond

the family or genus level, the species V. cyclitrophicus and P. damselae were abundant. A prior

study of bacterial isolates in southern sea otters identified P. damselae in lung tissue [74]. Cer-

tain subspecies of P. damselae can cause wound infections in marine animals and hemorrhagic

septicemia or severe necrotizing fasciitis in humans [75]; however, subspecies identification of

P. damselae from NPMs was not possible for the current study. The fecal pathogen V. parahae-
molyticus was also detected in NPMs but was not abundant. This pathogen can cause severe

gastroenteritis in humans [76], and is increasingly reported among sick or stranded marine

mammals [77], including sea otters [25]. A sea otter with Vibrio spp.-positive NPM in the cur-

rent study (SO7139-14) was also culture-positive for Vibrio spp. in a regional lymph node

(Table 1). Fatal lesions associated with Vibrio spp., including V. parahaemolyticus, have been

documented in southern sea otters [14].

Numerous organisms with pathogenic potential were detected inH. halichoeri, including

several associated with disease in sea otters and pinnipeds (Table 6). Most of these organisms

are considered opportunistic pathogens that rely on breaks in host integument or mucosa, in

some cases causing severe systemic disease or death. In a recent long-term study of sea otter

mortality and morbidity, bacterial invasion was a primary or contributing cause of death for

12% of southern sea otters and overall 68% of otters had bacterial infection as a cause of death

or sequela [14]. Seven of the pathogens detected in NPM were found to be associated with fatal

lesions in that study: S. phocae, P.multocida, Campylobacter spp., V. parahaemolyticus,
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Fusobacterium necrophorum, and Clostridium perfringens [14]. Some of the organisms detected

in NPM also represent biological pollution of microbes from land to sea via coastal runoff

[35]. Additionally, to our knowledge this is the first report of F.mortiferum,Helcococcus ovis,
and Ornithobacterium rhinotracheale in the marine environment.

Numerous bacteria harbored byH. halichoeri have also been identified in other mites.

Staphylococcus species have been reported in the red poultry mite (Dermanyssus gallinae), the

mold or cheese mite (Tyrophagus putrescentiae), and the chigger Leptotrombidium imphalum
[92–95]. Though there were several Staphyloccocus species found inH. halichoeri, the most

common was S. schleiferi which is most often associated with humans and dogs but has also

been reported in pinnipeds as well as numerous other animals [40]. This bacterium is thought

to be primarily commensal, but some subspecies are opportunistic pathogens of humans and

dogs. In sea otters, S. schleiferi has been associated with fatal lesions [14]. Pasturella multocida
represented almost 7% of all mapped reads in NPM and has also been found in red poultry

mites. Pasturella multocida is an economically important pathogen that causes fowl cholera in

birds and pneumonia or hemorrhagic septicemia in a diversity of mammalian hosts [96]

including fatal lesions in sea otters [14]. This bacterium often invades the lower respiratory

tract and can spread systemically [97]. Propionibacterium acnes, a human skin commensal that

can cause acne as well as other infections [98], is another abundant bacterium in NPMs that

has also been detected in L. imphalum. The presence of P. acnesmay represent a human con-

taminant in NPM or a transient, yet relevant, passenger. Interestingly, no Rickettsiales were

detected in NPMs despite this bacterial order being commonly associated with terrestrial

Acari [92,93,95,99,100].

Interpretations of the composition of microbial communities can vary based on the method

of amplicon generation and the choice of bioinformatic pipeline used for analysis [101,102].

Characterization of dominant microbiota in the house dust mite (Dermatophagoides farina)

microbiome varied among studies employing different approaches to amplicon generation

and within a study that compared results across three different bioinformatic pipelines [101].

The 16S profiling approach used in this NPM study has been demonstrated as a superior

method of characterizing microbiomes, particularly when higher sensitivity for finer resolu-

tion is desired [102]. Our findings, based on a limited sample set, suggest that approximately

80% of the NPM bacteriome is comprised of just 10 OTUs (Table 4). Similarly low bacteriome

diversity has been reported in red poultry mites [92], house dust mites [101,103], and the chig-

ger L. imphalum [95].

There are other possible alternative explanations for the microbiota detected in NPMs in

this study that are external to NPMs. As endoparasites, NPMs are anchored into host integu-

ment so it is possible that the bacterial community reported here represents surface contami-

nation by host microbiota. Care was taken to separate host tissue from NPMs and they were

rinsed with ethanol prior to DNA extraction. Ethanol was chosen over a mild sodium hypo-

chlorite (bleach) solution commonly used in preparing ticks for microbiome analysis [104]

due to concerns that such a caustic product would damage the soft-bodied halarachnid mite

specimens. However, future NPM studies should explore whether repeated washings with

phosphate buffered saline [92,95,105] or DNA Away [106] are superior approaches for surface

decontamination. Regardless of whether some of the bacterial taxa reported here are from the

mite surface, neither the value of these bacteria, nor their association with mites, should imme-

diately be dismissed. The mammalian skin microbiome is important to mammalian immune

defense [107,108] so the surface bacteria of parasites may also play an important role in patho-

gen transmission and spread [109].

A primary challenge for identifying parasites as potential disease vectors is untangling para-

site and host microbial communities because parasites imbibe portions of the host’s
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microbiome during feeding or are surface contaminated when anchored in host tissues. In

populations of red poultry mites, Hubert et al. [92] compared microbial communities among

eggs, larvae, and engorged nymphs/adults and found Bartonella spp. in all life stages. These

results suggest that red poultry mites are not only getting Bartonella bacteria from the host

during feeding, but that potentially maternal (transovarial) transmission is occurring, and the

parasite-pathogen relationship may continue through life stages (transstadial transmission).

Comparing the bacterial communities of different mite life stages provides more information

about the relationships between parasite and associated opportunistic pathogens and clarifies

the potential role of parasites in disease transmission.

No significant differences in mapped reads nor OTU count were detected by NPM life

stage or by otter, though our sample sizes were low for resolution at this level. Other mite bac-

teriome studies have detected differences in bacterial community composition between life

stages. In a study of red poultry mites, Hubert et al. [92] found that counts of OTUs and bacte-

rial diversity were 2X higher in eggs and larvae compared with adults and nymphs. Sample site

also significantly influenced bacterial community composition, which the authors attributed

to variations in site-specific farming practices. In a study of red poultry mites, Lima-Barbero

et al. [110] reported significant differences in the composition of alphaproteobacterial micro-

biota by life stage and feeding status. The species composition of bacterial communities of L.

imphalum also differed by life stage [95]. The biology of these mite species differs substantially

from that of NPMs. Red poultry mites are hematophagous ectoparasites, but only nymphs and

adults blood feed. Similarly, L. imphalum only blood feeds during the larval stage. Because not

all life stages are parasitic, the microbiome of some life stages may be decoupled from that of

the host. As obligate endoparasites, NPM consume host lymph during juvenile and adult life

stages, making it difficult to distinguish between mite-specific bacteria (e.g., endosymbionts)

and bacteria associated with the meal, host, or environment. Additionally, although some

mites can be reared in laboratory colonies to investigate possible endosymbiotic microbes and

evaluate or manipulate changes in microbial community composition [94,95,101,111], meth-

ods for in vitro propagation of NPMs have not yet been developed.

Although the bacterial community ofH. halichoeri was largely consistent across all pools,

one sample of adult mites from otter SO 7139–14 had markedly higher diversity. In contrast,

the bacteriome of the pool of juvenile mites from this same otter more closely resembled that

of mites from other otters. It is unclear why the bacteriome of the adult mite pool would differ

from the juvenile mite pool from the same host, but it may be related to mite ontogeny. Since

adults are sessile, it is possible the mite bacteriome more closely resembles the host bacteriome

after longer periods of infestation.

Otter SO7139-14 stranded in poor condition and was hospitalized but died within a day of

stranding. During necropsy, mild infestations of both juvenile and adult mites were noted in

the oropharynx and nasopharynx; these mites were sampled for evaluation in this study. Strep-
tococcus phocae was detected in mites from otter SO7139-14 on both nPCR and 16S profiling,

along with several other species of Streptococcus, Vibrio,Mycoplasma, and every organism

with pathogenic potential listed in Table 6. Lymph node cultures did not detect any aerobic

bacteria, which would include S. phocae, but did detect very low levels of Vibrio spp. and

Escherichia coli. No bacterial cocci were observed on histopathology. Notably, antibiotics were

administered as part of perimortem therapy (Table 1), which could impact the results of bacte-

rial culture and histopathology. Microcystin intoxication was suspected but was not con-

firmed. Streptococcus phocae infection was not detected on culture for any other otters in this

study where mites were positive, but very limited bacterial culture was performed. Although

several other S. phocae-positive otters were infested with NPM, no mites were available from

these cases for genomic (or nPCR) testing. It is possible that chronic NPM infestation
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contributed to the bacterial pneumonia and septicemia for sea otter SO5229-08, along with

concurrent severe mating trauma (Table 1). Culture was not performed on the six California

sea lions harboring S. phocae-positive NPM from this study, however three had a diagnosis of

pneumonia in their perimortem medical notes.

NPM larvae are highly motile and hardy outside of the host [2,6] making them potential

vectors for bacterial transmission between hosts [6]. Several mite species have been identified

as biological or mechanical vectors of bacterial pathogens. Examples of biological vectors

(where bacteria multiply within the mite host), are the mouse mite (Liponyssoides sanguineus)
which transmits Rickettsia akari causing human rickettsialpox [112], and larval mites (chig-

gers) of the genus Leptotrombidium, which transmit Orientia tsutsugamushi, causing scrub

typhus [95]. Although some other mite species are closely associated with bacterial infections,

it is unclear whether they merely create opportunity (i.e. causing physical breaks in host tissues

or inhibiting host immune responses) [107,113], mechanically contaminate the site, or serve as

hosts for bacterial propagation. Examples include human hair follicle mites (Demodex follicu-
lorum and D. brevis) which are associated with opportunistic infections of Staphylococcus
aureus and Streptococcus pyogenes [114,115], sarcoptic mange mites (Sarcoptes scabiei) which

cause dysbiosis of the mammalian skin microbiome and facilitates secondary bacterial infec-

tions, particularly Staphylococcus spp. [107,116], and red poultry mites (Dermanyssus gallinae)
which are implicated in transmission of several bacterial and viral pathogens [93,117] includ-

ing transstadial and transovarial transmission of Salmonella enteritidis [118]. Sea otters with

chronic severe NPM infestation often have mucopurulent and variably bloody fluid surround-

ing the adult mites in the nasopharynx (Fig 2A), and this fluid can extend into the trachea and

bronchi. On histopathology this fluid often contains numerous bacterial cocci and rods. In

addition, the mucosal epithelium of heavily parasitized regions is roughened and irregular,

with numerous tiny foci of mucosal erosion or ulceration. Collectively our data suggest that

NPM may be able to transport opportunistic bacterial pathogens from host to host. In addi-

tion, through their feeding activity, these mites provide portals of bacterial entry and spread

via direct mucosal damage, mite movement throughout the respiratory tract, and elicitation of

mucopurulent fluid containing mites and opportunistic bacterial pathogens that can spread

into the lower respiratory tract.

Even if NPMs are not biological vectors of bacterial pathogens, the detection of multiple

organisms with confirmed pathogenic potential in or on NPMs appears to confirm their role

as potential mechanical vectors. If larvae become contaminated with an opportunistic patho-

gen in one host, then spread to another host where they open tissue and contaminate the

wound, this process could pose significant host health risks. Notably, many mite species dem-

onstrate relatively low host specificity.Halarachne halichoeri infestations have been reported

in eight marine host species [15,119,120] and Orthohalarachne attenuata in fourteen marine

host species [15,119], suggesting broad exchange of halarachnid mites among proximate

marine mammal populations [2,13,120]. As a result, NPM could mechanically or biologically

vector bacteria and other pathogens within and between mammalian host species. NPM infes-

tation could also modify the microhabitat of the upper respiratory tract to favor opportunistic

bacterial pathogens.

This study represents several new contributions to the current body of mite microbiome lit-

erature. To date most mite microbiome studies have focused on ectoparasitic mites of domes-

tic animals in terrestrial environments. Our study represents the first investigation of the

microbial community of mites parasitizing wildlife hosts, of an endoparasitic mite parasitizing

any host taxa, and of an acarine in the marine environment adding to a broader understanding

of parasite microbiota across contexts. Our results confirm that NPM harbor S. phocae and

other bacterial pathogens of marine mammals. Given that NPMs are globally distributed and
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relatively abundant across marine mammal populations [12,16,119,120], including imperiled

species like the southern sea otter and the Guadalupe fur seal (Arctocephalus philippii town-
sendi) [2,15], the potential for transmission of opportunistic bacterial pathogens is concerning.

This potential for pathogen spread between animals should be considered for animal translo-

cation programs, and co-housing of animals in rehabilitation facilities, zoos, aquaria, and oil

spill response settings. Because the highly mobile larvae can survive for prolonged periods out-

side of the host [2,6] and the mites are both directly pathogenic and may spread bacteria

between animals, aggressive facility decontamination and periodic animal treatment with acar-

acides is advised.

Collectively our findings contribute to an improved understanding of the host-parasite

microbial community which can inform veterinary treatment, captive animal care, and animal

conservation and translocation efforts. Prior captive care is a risk factor for NPM infestation in

wild sea otter populations [13], and NPM parasitism can be very high in captivity without reg-

ular acaricidal treatment [1,4,121], and NPM are found in marine mammals worldwide

[15,119,120]. As a result, our work has important implications for preventing pathogen trans-

mission during captive care, oil spill response, and animal reintroduction efforts globally.

Additional studies are needed to investigate the potential environmental and ecological inter-

connections between H. halichoerimites, wild sea otters, sympatric harbor seals (another com-

mon host forH. halichoeri), and the various bacteria encompassed in this study. Because sea

otters are a federally listed threatened species that is struggling to achieve population recovery,

and animal translocation is being considered as a potential tool to facilitate recovery, this work

is strongly merited. Future studies should continue to investigate NPM-host-pathogen rela-

tionships to better understand the role these mites play in bacterial infection and the signifi-

cance of different bacterium in NPM for mite biology.
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