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Highlights

• The “Peri-Amazonian”, pattern observed in seasonally 
dry tropical forests, is recurrent in other lifeforms 
besides woody plants and across different dispersal 
syndromes.

• We provide a new list of flowering plant species 
disjunct in South American seasonally dry tropical 
forests, considering different types of lifeforms and 
dispersal syndromes.

• Species have responded differently to Pleistocene 
climatic fluctuations in different model conditions, 
with no consistent connections through time.

• There is a prevalence of species with good dispersal 
abilities that might evoke a scenario where long 
dispersal events might also explain the current 
observed disjunctions.

Abstract

Seasonally dry tropical forests (SDTFs) are a main 
component of open seasonally dry areas in South America 
and their biogeography is understudied compared to 
evergreen forests. In this work, we identify vascular 
plant species with long-distance disjunctions across 
SDTF patches of South America based on information 
available in online repositories and on species taxonomy 
and distribution, to explore species’ biogeographic 
patterns. Specifically, we combine distribution data from 
the Brazilian Flora 2020 Project (BFG) and the Global 
Biodiversity Information Facility (GBIF) to identify species 
with a peri-Amazonian distribution, and then use species 
distribution models to discuss possible scenarios of 
peri-Amazonian distributions under Pleistocene climatic 
fluctuations. We identified 81 candidate species for 
peri-Amazonian distributions in SDTFs, including shrubs, 
herbs, trees and lianas, and provided a summary of their 
main fruit dispersion syndrome based on the literature to 
identify prevalent dispersal patterns. The study species 
responded differently to Pleistocene climatic fluctuations, 
with both contractions and expansions through time 
in different rates and did not show consistent larger 
distributions during past climate conditions. Our results 
show that a peri-Amazonian distribution is also present 
in growth-forms other than trees. Also, the prevalence 
of species with long-distance dispersal strategies such 
as wind or vertebrate-dispersed can suggest, although 
biased for Neotropical taxa, an alternative scenario of 
long-distance dispersal, possibly using stepping-stones 
of azonal vegetation. We argue that such an alternative 
scenario, especially for species disjunct with long-
dispersal abilities, should be considered to test if SDTF 
disjunctions are relics of a past widespread distribution 
or not.

Introduction
Tropical South America is a global biodiversity 

center for vascular plants (Ulloa-Ulloa et al. 2017, 
Antonelli et al. 2018). Recent research indicates that 

complex interactions among geological and biological 
factors drive the evolution and maintenance of the 
high diversity of the region (see Antonelli et al. 2018 
for a review). However, most research focuses on the 
biota of evergreen forests (Amazonia and the Atlantic 
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Forest in coastal Brazil; Hoorn et al. 2010, Thode et al. 
2019) and Andean ecosystems (Anthelme et al. 2014, 
Godoy-Bürki et al. 2014, Quintana et al. 2017). In 
contrast, the distribution and evolution of species in 
open seasonally dry formations remain understudied 
in many aspects (Werneck et al. 2012).

If explicitly considered for continental-scale 
analyses, the open seasonally dry formations are 
mostly treated as the background in which vicariant 
events occurred in groups associated to moist forests, 
rather than entities of their own right (Werneck 2011, 
Pennington et al. 2018). This is problematic, due to the 
high species richness and endemism observed in these 
areas (Rizzini 1997, Pennington et al. 2006, Ribeiro 
and Walter 2008, Zizka 2019) and the importance 
of evolutionary connectivity among biomes for the 
evolution of South American diversity (see Simon et al. 
2009, Antonelli et al. 2018, Zizka et al. 2020).

The open seasonally dry formations of South 
America broadly include seasonally dry tropical 
forests (SDTFs) and savannas (sensu Olson et al. 2001). 
These two biomes can occur under similar climatic 
conditions but are differentiated by soil conditions 

and by differences in fire frequency (savannas burn 
regularly, SDTFs usually do not; Pennington et al. 
2018). In particular, SDTFs are also evolutionarily 
relatively isolated centers of diversity (Rizzini 1997, 
Pennington et al. 2006, Ribeiro and Walter 2008). 
Currently, SDTFs form coherent blocks through South 
America, isolated from each other by large stretches of 
forest or mountainous habitats, forming the so-called 
“peri-Amazonian pattern”, surrounding the Amazonian 
forest from Northeastern Brazil, Paraguay, Colombia 
and Venezuela (Fig. 1a, Ducke & Black 1953, Prado & 
Gibbs 1993).

While most plant species in SDTFs are geographically 
restricted to individual blocks (Dryflor et al. 2016), 
peri-Amazonian disjunct distributions across distant 
SDTFs occur in animals (e.g., insects, Morrone and 
Coscarón 1996; reptiles, Azevedo et al. 2016; mammals, 
Courtenay and Maffei 2004) and woody plant species 
(Prado and Gibbs 1993, Prado 2000, Pennington et al. 
2000, Dryflor et al. 2016). However, existing suggestions 
were taxonomically and functionally limited (e.g., 
to trees) and thus it is unclear how common peri-

Fig. 1. Open/seasonally dry vegetation formations across South America and scenarios for the origin of peri-Amazonian 
disjunct distributions in Seasonally dry tropical forests (SDTFs). (a) South American biomes with major SDTFs regions: 
(1) “Andean/Caribbean”, (2) Central-western South America, and (3) Caatinga. (b) Long-distance dispersal scenario. (c) 
Vicariance scenario with potential corridors of a past widespread distribution: (i) peri-Andean corridor; (ii) central Amazon 
Basin corridor (Quijada-Mascareñas et al. 2007) and (iii) central Brazilian corridor. Vegetation delimitations are based on 
Olson et al. (2001), Pennington et al. (2000, 2004) and Werneck (2011).
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Amazonian disjunctions are in other plant lifeforms, 
where they occur, and how they originated.

Peri-Amazonian disjunctions in SDTF species may 
be the result of recent or repeated long-distance 
dispersals from one SDTF region to another (Fig. 1b). 
Alternatively, they may represent relicts of past large 
distribution ranges when climatic conditions were 
more favorable for SDTF species (Fig. 1c). SDTFs may 
have changed their shape and extent through time, 
tracking climatic fluctuations in the Quaternary 
(Moritz et al. 2000, Werneck et al. 2011, Costa et al. 
2017) or even already in the Tertiary (Pennington et al. 
2004), contrasting the dynamics of evergreen forests. 
Particularly, during the Pleistocene, the climate in 
large parts of tropical South America was potentially 
drier (Pennington et al. 2004, Werneck et al. 2011). 
Peri-Amazonian disjunctions might therefore reflect 
past floristic links of a once more continuous SDTF 
connecting today’s “dry diagonal” (i.e., the Chaco + 
Cerrado + Caatinga) with peri-Andean and Venezuelan/
Colombian SDTFs (Prado and Gibbs 1993, Prado, 2000, 
Pennington et al. 2000).

Recent increases in the availability of plant 
distribution data from the digitization of collection 
records (Lavoie 2013, Schmidt-Lebuhn et al. 2013, 
Dryflor et al. 2016) and floral treatments (e.g., BFG 
2018) provide a novel opportunity to identify SDTF 
disjunct species and to cross-validate different data 
sources. Additionally, species distribution modelling 
based on environmental conditions offers a way to 
evaluate, within certain limitations (see Collevatti et al. 
2012), the distribution of species through time, 
assuming a niche conservatism in species distribution 
(Kramer-Schadt et al. 2013).

Here, we review distribution information from 
different data types to identify plant species with 
peri-Amazonian disjunct distributions and use species 
distribution models to reconstruct the distribution 
of the identified species through time to understand 
disjunctions patterns. Specifically, we aim to answer 
two questions:

1. How common are true SDTF disjunctions in 
flowering plants? We expect true disjunct species 
to be recorded as disjunctly distributed in multiple 
distribution datasets and to show disjunct projected 
distribution ranges, for different lifeforms.

2. Are peri-Amazonian disjunct distributions a relic 
of past widespread distributions? If observed 
disjunctions are relicts of larger continuous 
distributions during Quaternary climatic fluctuations 
(as suggested by the literature), we expect different 
species to respond similarly to past climatic 
fluctuations and to have continuous distribution 
ranges with little variation through time.

Methods

Identifying peri-Amazonian disjunctions
To identify SDTF disjunctly distributed species, we 

obtained species distribution information from two 
databases. First, we used the Brazilian Flora 2020 

Project database (henceforth “BFG”), to get a set 
of candidate species. BFG provides information on 
habitat, lifeform and taxonomy of algae, plant and fungi 
species of Brazil (BFG 2018) and all information for a 
species is filed and checked by taxonomic specialists. 
Brazil is the largest country in South America and 
comprises information for two of three principal areas 
of SDTF, as well as information on endemism of species 
of other areas in the continent. Thus, we believe it 
is a good proxy and a valid attempt to assess a list 
of species that might occur in different SDTF blocks.

In June 2020, we used BFG (BFG 2020) to identify 
potential candidate species with a peri-Amazonian 
distribution, by downloading a list of all species that 
fulfilled the following criteria: (1) vascular plants 
native to Brazil, at species level and; (2) correct names, 
setting aside names with uncertain nomenclatural or 
taxonomical status; (3) species assigned to occur in 
“Caatinga” and/or “Seasonally Deciduous Forests” 
vegetation, which includes the SDTF definition of 
this study.

In a second step, we downloaded georeferenced 
point-occurrence records from the Global Biodiversity 
Information Facility (www.gbif.org, one of the largest 
biodiversity repository publicly available, check 
Robertson et al. 2014) for all candidate species 
identified in BFG. We used the “rgbif” v. 3.0.0 
package (Chamberlain et al. 2020) in R (R Core Team 
2020) to download records based on preserved 
specimens (since we consider them more reliable than 
observational data) and, since GBIF records are error 
prone (Zizka et al. 2020), used the “CoordinateCleaner” 
v. 2.0-15 package (Zizka et al. 2019) for data cleaning, 
identifying duplicates, records whose coordinates were 
centroids, points in the sea, incomplete or inaccurate 
(i.e. degrees with no decimal information) and outliers. 
Occurrence database as well as references for all 
downloaded occurrence datasets are available as 
Supplementary Material (Appendix S1).

We then combined the information from BFG 
and GBIF and retained only species that truly were 
restricted to South American SDTFs and that were 
disjunct in at least two SDTF blocks. To do so, we 
selected only species that attained the following 
criteria: (1) had at least 10 valid occurrence records 
available, i.e., records with no coordinate issues; (2) had 
at least 90% of all records within the delimitations of 
SDTFs (sensu Olson et al. 2001), i.e., excluding species 
where more than 10% of records may have been in 
vegetation other than dry forests; (3) had at least 90% 
of the records in at least two or more blocks (or SDTF 
“regions” sensu Fig. 1).

From the remaining species, we summarized 
information on fruit dispersal syndrome, lifeform, and 
taxonomy, based on the information of the BFG and on 
the literature. Data for all selected species and each 
filtering step can be found in supplementary Table S1.

Present and past distribution ranges
To answer question 2 of this work and test if peri-

Amazonian disjunctly distributed species responded 
similarly to past climate fluctuations, we modeled 
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the suitable habitat for all species under current 
and past climatic conditions. To reduce geographic 
sampling bias, we ran a spatial thinning procedure to 
our occurrence data set, with the “spThin” package v. 
2.5-1 (Aiello-Lammens et al. 2015), keeping only one 
record in a 10 km distance radius.

We then downloaded nineteen bioclimatic variables 
for four time-slices from the Pliocene to the present, 
based on layers of the ecoClimate project (Lima-
Ribeiro et al. 2015): (1) Present (0 kybp, kiloyears 
before present); (2) Holocene (6 kybp), (3) Last Glacial 
Maximum (LGM, c. 22 kybp); and (4) mid-Pliocene 
Warm period (ca. 3300 kybp). We did not include 
projections for the LIG (Last Interglacial Period) in this 
study because climatic data in the required resolution 
and consistent with the other time-slices (i.e., based on 
the same earth system models, see below) were not 
available. We used the “sdm” package v. 1.0-81 (Naimi 
and Araujo 2016) to model species distributions with 
five different modeling algorithms, regression-based 
or machine learning-based (support vector machines, 
random forest, boosted regression tree, multivariate 
adaptive regression splines and maximum entropy), 
performing five runs and 5k-folds cross-validation for 
each model, and selecting 1000 random background 
points for prediction. Ideally, edaphic variables would 
significantly improve model accuracy because SDTFs 
favor high pH and relatively fertile soils (Ferreira-
Nunes et al. 2013, Pennington et al. 2000, 2018). 
However, we did not include edaphic variables in the 
distribution models, since soil data in the required 
resolution are lacking to a large extent for the study 
area and are not available for past time slices.

As general circulation models have high variation, 
especially in the Neotropics, as shown for the SDTFs 
(Collevatti et al. 2012), this might lead to high 
differences in paleodistributions predicted by one 
unique algorithm. Thus, we performed niche modeling 
considering this variation, by running models with 
different paleoclimatic algorithms besides the general 
CCSM model. We selected six other models (CNRM, 
FGOALS, IPSL, MIROC, MPI and MRI) and compared 
their major results to evaluate the potential differences 
on the species distribution projections, but CCSM was 
the main model used to discuss our results, while we 
show results from the other models in Supplementary 
Materials (Appendix S2 and S3).

Finally, we used the Area Under the Curve (AUC) 
for modeling evaluation, keeping only models with 
AUC > 0.7. To generate binary layers, we applied a 
10th percentile training presence cut-off, i.e., omitting 
all areas with habitat suitability lower than suitability 
values for the lowest 10% of the occurrence records. 
Extension ranges generated for each model were 
calculated and summarized to build graphs to check 
the rate of variation and the expansion or contraction 
through past time slices.

Results

Identifying peri-Amazonian disjunct species
When searching for taxa occurring in dry deciduous 

formations according to the BFG, we found 2,302 species 
of vascular plants (see Table S1 in Supplementary 

Materials). However, when downloading data of these 
species and applying filtering criteria to select only 
species from SDTF blocks, this number drops to only 81 
species, exclusively including flowering plants (Table 1). 
This final data set included both trees and herbs from 
different families, but families such as Leguminosae, 
Euphorbiaceae, Malvaceae and Rubiaceae prevailed. 
In addition, information on main dispersal syndrome 
modes revealed the prevalence of both anemochory, 
autochory and zoochory in these plants (Table 1). All 
occurrence records, before and after data cleaning, 
can be found in Appendix S1 in the Supplementary 
Materials.

Present and past distribution ranges
Almost all species (78 of 81 species) recovered 

good models, with AUC > 0.7, and were considered 
for downstream analyses. The projected species 
distributions show a consistently disjunct pattern for 
all study species, although for the Pliocene this area 
seems to enlarge towards connecting SDTF blocks 
in the Caatinga and Central-western South America 
(Fig. 2). All plots and binary model outputs, as well as 
information on thresholds and AUCs for all species can 
be found in Supplementary Materials (Appendix S2 
and S3). Similar scenarios were found when comparing 
CCSM to other alternative general circulation models, 
but this also varied in some cases, especially comparing 
oldest time slices (check Table S2 in Supplementary 
Materials).

The amount of suitable habitat varied for all species, 
and species area have varied over time (Fig. 3). When 
considering area variation over time (Fig. 3a), variation 
is observed in almost all time slices, with species 
both contracting and expanding their area (Fig. 3b). 
A notable exception is when comparing the Holocene 
period with LGM, where most species have expanded 
their area (Fig. 3b).

Discussion
We found species occurrences that are congruent 

with the predicted SDTF disjunct blocks described in 
classical works (Prado and Gibbs 1993, Pennington et al. 
2000, 2004), in trees, shrubs, and herbs (Table 1). Past 
modeling projections, especially in past time slices, are 
to some extent congruent with Prado & Gibbs (1993) 
ideas of the existence a more widespread tropical dry 
forest. However, the modelled species ranges under 
past climatic conditions varied among species, as did 
species responses (range expansion or contraction) to 
past climatic changes (see Fig. 4 for examples on this 
variation from four selected species). This suggests 
that species responded differently to paleoclimatic 
conditions, which would in turn contradict the idea 
of past widespread distribution of SDTF species and 
a related relict nature of present-day peri-Amazonian 
disjunctions.

Our two-level approach combining different types 
of distribution data from two up-to-date databases 
reinforces the support of such a pattern, described 
originally based only on woody plants from point 
occurrence records, which can be spatially biased for less 
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collected areas. Hence, by using a collaboratively built 
dataset such as the BFG, we could recover part of SDTF 
diversity that overcomes previous functional limitations 
and demonstrates peri-Amazonian disjunctions not only 
for trees, but also for shrubs and herbs.

We follow a conservative approach in identifying 
species from SDTFs with the aim to only identify 
unambiguous peri-Amazonian disjunctions. However, 
we consequently excluded some species iconic 
to SDTFs, for instance Anadenanthera colubrina 
(Vell.) Brenan (Leguminosae) (Dryflor et al., 2016). 
Anadenanthera colubrina was not selected because 
BFG does not explicitly consider it present in 
“Seasonally Deciduous Forests” at the moment of our 
search, although it actually is (Pennington et al., 2000, 
Dryflor et al. 2016). This example illustrates that the 
number we present is likely a conservative estimate 
on the number of plant species with a peri-Amazonian 
disjunction, and we hope that this list may initiate the 
discovery of additional species with a similar pattern.

Still, traditionally, seminal studies that have 
assessed disjunct patterns in SDTF blocks (Prado and 
Gibbs 1993, Pennington et al. 2000, Collevatti et al. 

2012) have focused much more on the woody 
component (especially trees) rather than the 
herbaceous stratum instead. Although trees are 
important components of SDTFs, they are inserted in 
a context of open seasonally dry formations, where 
the shrubby-herbaceous stratum prevails. Moreover, 
life-history and distribution of herbaceous lineages can 
be significantly different when comparing different 
lifeforms (Ehrendorfer 1970, Petit and Hampe 2006, 
Smith and Beaulieu 2009), and all strata should be 
considered when analyzing different habitats.

The role of long-distance-dispersal
Peri-Amazonian disjunctly distributed woody 

species described in previous works and identified 
in this study share attributes that can enhance 
long-dispersal events. For instance, some species 
have either winged fruits or seeds which are 
dispersed by birds, e.g., Anacardiaceae—Astronium, 
Loxopterygium spp., Schinopsis (Griz and Machado 
2001, Leite 2002, Burnham & Carranco 2004, 
Villaseñor-Sánchez et al. 2010), Apocynaceae—

Fig. 2. Species richness map of modeled projections for species from SDTF fragments for the selected time slices, for the 
CCSM general circulation model. Check Appendix S2 and S3 in Supplementary Materials for files for other models and 
for each species.

Fig. 3. Range variation of species with present-day peri-Amazonian distribution through time. (a) Area variation over 
time (numerical area difference between each pair of time slice, from the present to the past). (b) Percent of species 
whose projected distribution has expanded, contracted, or have not changed between one time slice and the previous 
one. Time slices: Current (0 kypb); Holocene (6 kybp); LGM = Last Glacial Maximum (22 kybp); Pliocene = Mid-Pliocene 
warm period (3300 kybp).
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Aspidosperma (Griz and Machado 2001, Vieira et al. 
2008), Bignoniaceae—Bignonia (Vieira et al. 2008), 
Leguminosae—Amburana in our list, but also, 
Rhamnaceae—Crumenaria in our list, but also 
Zizyphus (Griz and Machado 2001, Alves 2008). 
While these species suggest some role of long-
distance dispersal, a rigorous comparison using a 
null distribution based on a random selection of 
species from SDTFs will yield results that are more 
robust, once distribution data for more species is 
available. Furthermore, such future work may include 
a comparison of the results of this study with the 
distribution and dispersal mode of the 2,000 non-
endemic SDTF species.

The abovementioned traits are likely related to 
increased long-distance dispersion abilities that 
might have occurred recently, as disjunct taxa have 
no apparent morphological differences at species 
levels (Fryxell 1967). Instead, these species can have 
traits that can facilitate indirect dispersal modes 
such as epizoochory, which is the case of e.g., 
shrub-herbaceous Malvaceae (Colli-Silva & Pirani 

2020) that we recovered in this study. High dispersal 
capacity might be an essential trait for species 
of open seasonally dry formations since these 
areas are often themselves a mosaic of different 
vegetation types, including deciduous forests 
(where most disjunct species seem to prevail), 
but also savannas and grasslands (e.g., Prado and 
Gibbs 1993, Prado 2000, Pennington et al. 2006, 
Whitlock et al. 2011). Minor patches of azonal 
vegetation within forest biomes (e.g., the well-
known open savanna patches within Amazonian 
rainforest) may act as stepping-stones diminishing 
the dispersal distance among major parts of open/
seasonally dry formations (Pennington et al. 2006, 
Olmstead 2012).

Responses to Pleistocene climatic fluctuations
Forests may have played an important role as 

environmental barriers, keeping species from open/
dry habitats fragmented at least since the LGM 
(Werneck et al. 2011, Costa et al. 2017). An analogous 
situation can be traced with the dynamics of South 

Fig. 4. The modelled distribution based on climatic conditions for four selected species for both present and past time 
slices, with different dispersal syndromes (see Table 1), highlighting the variance of past climatic conditions for different 
species. See Appendix S2 and S3 in Supplementary Materials for files for other models and for each species.
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American tropical rainforests. Current disjunctions of 
related lineages—i.e., one from the Atlantic Forest 
and another one from the Amazonia—suggests at 
least two main past corridors through these forests 
(Bigarella et al. 1975, Costa 2003, Thode et al. 2019).

Quaternary dynamics of forests might have led 
to the observed disjunctions of forested species, 
separating related lineages (Ledo and Colli 2017, 
Thode et al. 2019). For plant species in SDTFs, 
disjunction would have been more recent than the 
disruption of South American rainforests (Werneck 
2011, Costa et al. 2017) and mounting evidence 
indicates that evolutionary lineages of open seasonally 
dry environments, incl. SDTFs, have rapidly diversified 
since the Pliocene (e.g., Simon et al. 2009, Werneck 
2011, Hughes et al. 2013, Vasconcelos et al. 2020). In 
the case of our study, although extrapolating for earlier 
time slices such as Pliocene, where some species may 
not have existed, our results of a varying distribution 
of SDTF species under past climatic conditions and the 
varying response to past climate change contradict 
the idea of a past widespread distribution of SDTF 
species and peri-Amazonian distributions as relictual.

Furthermore, our results agree with palynological 
evidence (Pennington et al. 2006) in not corroborating 
a corridor of open seasonally dry vegetation in 
the middle of the Amazonian Basin (Quijada-
Mascareñas et al. 2007). This is not likely for SDTFs, 
as they do not spread through Amazonian rainforests 
because of the unsuitable edaphic conditions, which 
in turn would favor species from savannas with similar 
soil conditions (Pennington et al. 2000, Ferreira-
Nunes et al. 2013, Bueno et al. 2016). Conversely, 
the apparent tendency in species range expansions 
observed from the Holocene to the LGM is related 
to a shift of forest distributions in South America. 
As observed by Allen et al. (2020), areas occupied 
by evergreen forests were instead occupied by open 
seasonally dry vegetation in different extensions, 
suggesting at least expansion in some places where 
SDTF blocks are found.

Phylogeographic methods using genetic population 
structure of SDTF (disjunct) lineages in association 
with lifeforms and dispersal modes, would certainly 
contribute to elucidate past distribution and dispersal 
scenarios and the evolutionary history of these 
lineages. However, such studies are scarce for SDTF 
species and, for plants, inconclusive. Naciri et al. (2006) 
for instance observed different differentiation events 
when comparing populational structure of two equally 
disjunct species in seasonally dry tropical forests, 
but the question if the main drivers for disjunctions 
are long-dispersal events whether than relics of past 
connected areas remained open.
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