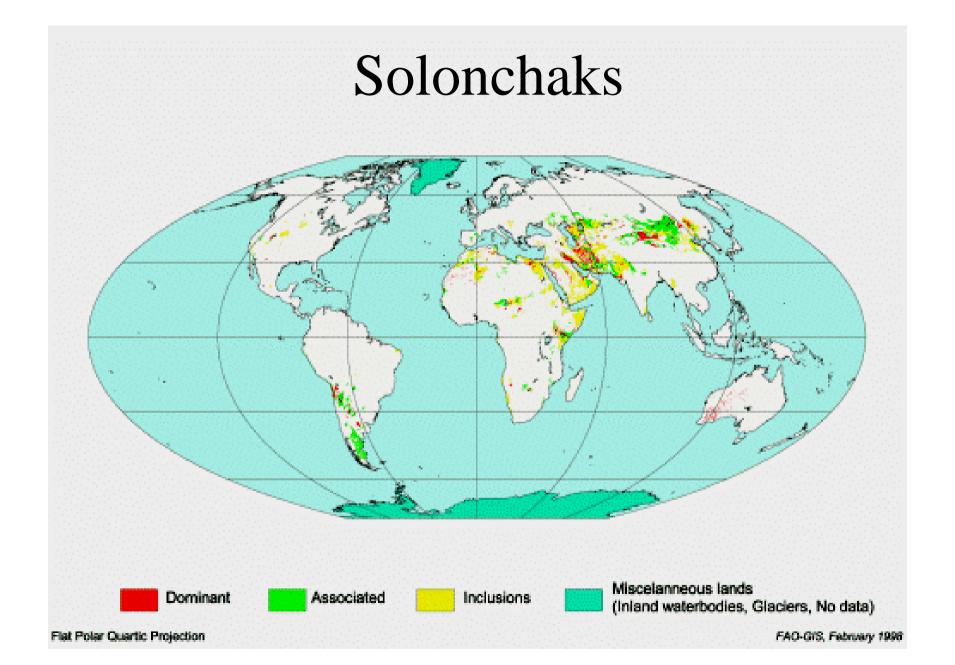
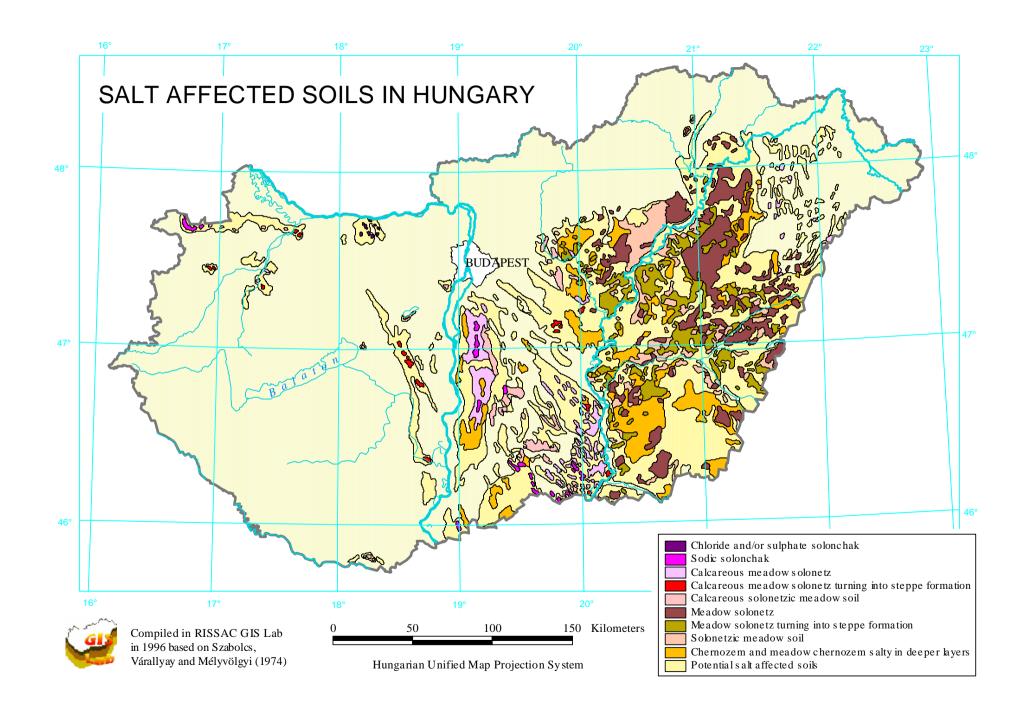
SET #7

- Soils in arid and semi-arid regions. Redistribution of calcium carbonate and gypsum is an important mechanism of horizon differentiation in soils in the dry zone.
- Soluble salts may accumulate at some depth or, in areas with shallow ground-water, near the soil surface.
 - SOLONCHAKS with a high content of soluble salts,
 - SOLONETZ with a high percentage of adsorbed sodium ions,
 - GYPSISOLS with a horizon of secondary gypsum enrichment,
 - DURISOLS with a layer or nodules of soil material that is cemented by silica, and
 - CALCISOLS with secondary carbonate enrichment.

Solonchaks (SC)


from R. sol, salt, and R. chak, salty area


Soils that have a **high concentration of `soluble salts**' at some time in the year. Solonchaks occur mainly in arid and semi-arid climatic zones and to coastal regions in all climates.

Often in seasonally or permanently waterlogged areas with grasses and/or halophytic herbs, and in poorly managed irrigation areas.

Common international names:

`saline soils' and `salt-affected soils'.

Definition of Solonchaks

Soils

having a salic horizon starting within 50
from the soil surface; and

2. lacking diagnostic horizons other than a histic, mollic, ochric, takyric, yermic, calcic, cambic, duric, gypsic or vertic horizon.

Salic horizon

must, throughout its depth:

Have an Electrical Conductivity (ECe) of the saturation extract of more than 15 dS m⁻¹ at 25°C at some time of the year; or an ECe of more than 8 dS m-1 at 25°C if the pH(H₂O) of the saturation extract exceeds 8.5

 have a product of thickness (in cm) times salt percentage of 60 or more; and

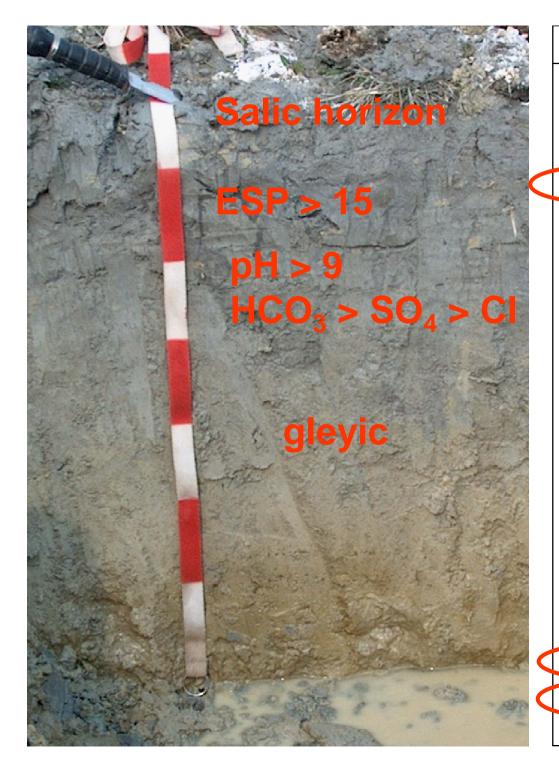
have a thickness of 15 cm or more.

Genesis of Solonchaks

The most extensive occurrences of Solonchaks are in inland areas where **evapotranspiration is considerably greater than precipitation**, at least during a greater part of the year.

Salts dissolved in the soil moisture remain behind after evaporation / transpiration of the water and accumulate

- at the surface of the soil (`external Solonchaks'), or
- at some depth ('internal Solonchaks').


Composition of accumulated salts

Having in a 1:1 aqueous solution:

a soil-pH > 8.5 *and* $HCO_3 > SO_4 > Cl$: Carbonatic

 $SO_4 > HCO_3 > CI$: **Sulphatic**

 $Cl > SO_4 > HCO_3$: **Chloridic**

SOLONCHAKS

Histic

Gelic

Vertic

Gleyic

Mollic

Gypsic

Duric

Calcic

Petrosalic

Hypersalic

Stagnic

Takyric

Yermic

Aridic

Hyperochric

Aceric

Chloridic

Sulphatic

Carbonatio

Sodic

Haplic

SOLONCHAKS

Histic

Gelic

Vertic

Gleyic

Mollic

Gypsic

Duric

Calcic

Petrosalic

Hypersalic

Stagnic

Takyric

Yermic

Aridic

Hyperochric

Aceric

Chloridic

Sulphatic

Carbonatio

Sodic

Haplic

`Puffed Solonchak

Solonchak with fluctuations in the morphology of salts

High concentration of Sodium sulphate

At night: temperature at the soil surface is low

air humidity is high

needle-shaped mirabilite crystals

 $(Na_2SO_4).10H_2O)$

The push fine soil aggregates apart

1

At day time: dry, hot

mirabilite convert to water-free thenardite

(Na₂SO₄)

Soft and fluffy surface

