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Abstract. Land surface temperature (LST) plays a dominant role in the surface energy budget (SEB) and hy-
drological cycling. Thermal infrared (TIR) remote sensing is the primary method of estimating LST globally.
However, cloud cover leaves numerous data gaps in satellite LST products, which seriously restricts their ap-
plications. Efforts have been made to produce gap-free LST products from polar-orbiting satellites (e.g., Terra
and Aqua); however, satellite data from limited overpasses are not suitable for characterizing the diurnal tem-
perature cycle (DTC), which is directly related to heat waves, plant water stress, and soil moisture. Considering
the high temporal variability in LST and the importance of the DTC, we refined the SEB-based cloudy-sky
LST recovery method by improving its feasibility and efficiency and produced a global hourly, 5 km, all-sky
land surface temperature (GHA-LST) dataset from 2011 to 2021. The GHA-LST product was generated using
TIR LST products from geostationary and polar-orbiting satellite data from the Copernicus Global Land Service
(CGLS) and the Moderate Resolution Imaging Spectroradiometer (MODIS). Based on ground measurements
at the 201 global sites from the Surface Radiation Budget (SURFRAD), Baseline Surface Radiation Network
(BSRN), Fluxnet, AmeriFlux, Heihe River basin (HRB), and Tibetan Plateau (TP) networks, the overall root-
mean-square error (RMSE) of the hourly GHA-LST product was 3.31 K, with a bias of − 0.57 K and R2 of
0.95. Thus, this product was more accurate than the clear-sky CGLS and MODIS MYD21C1 LST samples. The
RMSE value of the daily mean LST was 1.76 K. Validation results at individual sites indicate that the GHA-
LST dataset has relatively larger RMSEs for high-elevation regions, which can be attributed to high surface
heterogeneity and input data uncertainty. Temporal and spatial analyses suggested that GHA-LST has satis-
factory spatiotemporal continuity and reasonable variation and matches the reference data well at hourly and
daily scales. Furthermore, the regional comparison of GHA-LST with other gap-free hourly datasets (ERA5 and
Global Land Data Assimilation System, GLDAS) demonstrated that GHA-LST can provide more spatial texture
information. The monthly anomaly analysis suggests that GHA-LST couples well with global surface air tem-
perature datasets and other LST datasets at daily mean and minimum temperature scales, whereas the maximum
temperature and diurnal temperature range of LST and air temperature (AT) have different anomalous magni-
tudes. The GHA-LST dataset is the first global gap-free LST dataset at an hourly, 5 km scale with high accuracy,
and it can be used to estimate global evapotranspiration, monitor extreme weather, and advance meteorological
forecasting models. GHA-LST is freely available at https://doi.org/10.5281/zenodo.7487284 (Jia et al., 2022b)
and http://glass.umd.edu/allsky_LST/GHA-LST (last access: 10 February 2023; Jia et al., 2022c).
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1 Introduction

Land surface temperature (LST) is an essential component
of the surface radiation budget and a dominant driving force
in atmospheric cycling and hydrological balance (Z.-L. Li et
al., 2022, 2013). LST directly reflects the thermal feedback
of various land covers towards incoming solar radiation and
atmospheric longwave radiation (Liang et al., 2019), and it is
employed as an important variable for urban heat island anal-
ysis (Liu et al., 2022), permafrost mapping (Zou et al., 2017),
and hazard forecasting (Bhardwaj et al., 2017; Mudele et al.,
2020; Quintano et al., 2015). Therefore, LST has been ex-
tensively utilized as a vital indicator for characterizing re-
gional and global climate change (Zhou et al., 2012; Jin,
2004; Peng et al., 2014). This parameter can be obtained by
ground measurements, model simulations, and remote sens-
ing retrievals. However, given the high spatiotemporal het-
erogeneity caused by various land covers, soil types, topogra-
phies, and meteorological conditions (Zhan et al., 2013; Liu
et al., 2006; Ma et al., 2021), remote sensing has become the
only feasible solution for monitoring LST globally.

LST can be retrieved using thermal infrared (TIR) ob-
servations from both polar-orbiting (Wan, 2008; Hulley and
Hook, 2009) and geostationary (GEO) satellites (Yu et al.,
2008; Freitas et al., 2009). In comparison, GEO satellites
provide sub-hourly observations; thus, they can precisely
capture the diurnal temperature cycles (DTCs) of the land
surface. DTCs characterize the strong temporal variability in
LST in a day, which is an important surface thermal property
that responds to local environmental changes (Hansen et al.,
1995; Sun et al., 2006). Studies have suggested that DTCs
are directly related to plant water stress and soil drought
(Fensholt et al., 2011; Stisen et al., 2008; Hernandez-Barrera
et al., 2017); thus, such a relationship has been utilized for
mapping evapotranspiration (Anderson et al., 2011) and soil
moisture (Piles et al., 2016). In addition, it helps improve
meteorological forecasting through data assimilation (Orth
et al., 2017), extreme heat wave assessments (Hrisko et al.,
2020; Jiang et al., 2015), crop yield estimations (Anderson et
al., 2016), LST spatiotemporal-scale conversions (Hu et al.,
2020), orbit drift corrections of Advanced Very High Res-
olution Radiometer (AVHRR) LST data (Jin and Treadon,
2003), and vegetation phenology analyses (Piao et al., 2015).
Considering the great potential of DTCs in scientific appli-
cations and the high temporal variability in LSTs, accurate
diurnal LST datasets are crucial for the research community
and public (Chang et al., 2021; Hrisko et al., 2020; Pinker et
al., 2019).

TIR sensors on board GEO satellites, such as the Geo-
stationary Operational Environmental Satellites (GOES)-R
Advanced Baseline Imager (ABI) and the Meteosat Sec-
ond Generation (MSG) Spinning Enhanced Visible and In-
fraRed Imager (SEVIRI), provide exceptional opportunities
to record DTCs. However, two inevitable flaws occur when
using GEO satellites to observe diurnal LST variations glob-

ally, namely data gaps caused by cloud cover and the limited
spatial view fields of individual GEO satellites, which se-
riously limit the availability of hourly all-sky LST datasets
at the global scale. Methods of recovering hourly LSTs
have been developed and comprehensively reviewed by Jia
et al. (2022a). Currently available gap-free satellite-derived
LST products are summarized in Table 1. Some gap-free LST
datasets are not listed in the table, such as skin temperature
from reanalysis datasets (e.g., ERA5 and the Modern-Era
Retrospective Analysis for Research and Applications, ver-
sion 2 – MERRA-2) (Muñoz-Sabater et al., 2021; Molod et
al., 2015) or the results of Coccia et al. (2015), as they as-
sumed that the surface broadband emissivity was equal to 1.

Table 1 reveals that only a few hourly all-sky LST datasets
are currently available; thus, an all-sky hourly LST dataset
at the global scale is urgently required. In Table 1, the prod-
ucts were divided into three categories based on their asso-
ciated methodology: data fusion, mathematical interpolation,
and cloudy-sky LST estimation based on the surface energy
balance (SEB) theory.

Land surface models and reanalysis datasets release sim-
ulated hourly skin temperatures continuously, which have
been fused with satellite-retrieved LSTs to generate gap-free
LSTs (Dumitrescu et al., 2020; Long et al., 2020; Marullo
et al., 2014; Ma et al., 2022; Muñoz-Sabater et al., 2021);
however, the accuracy of the recovered LSTs is highly de-
pendent on simulation accuracy, especially for continuous
cloudy days. In addition, passive microwave (PMW) obser-
vations can penetrate clouds and estimate LSTs under all-sky
conditions (Zhang et al., 2019; Wu et al., 2022), and stud-
ies have explored fusing such data with TIR LSTs from sen-
sors of polar-orbiting satellites (Zhang et al., 2020; Xu and
Cheng, 2021). However, PMW data have limited overpass
times in a day; thus, they cannot match well with GEO obser-
vations. Mathematical interpolation is a popular method of
reconstructing hourly LST because an ideal DTC can be pa-
rameterized by a harmonic function in the daytime and an ex-
ponential function in the nighttime (Duan et al., 2012). How-
ever, such parameterization requires at least four observa-
tions per day. Researchers have also tried to improve the fea-
sibility of obtaining gap-free LSTs by combining DTC mod-
els with spatial interpolation (Liu et al., 2017) or utilizing a
convolutional neural network (CNN) to predict missing val-
ues from neighboring clear-sky pixels and texture informa-
tion (Wu et al., 2019). However, interpolating adjacent clear-
sky samples can only obtain theoretical “clear-sky” LSTs be-
cause actual LSTs under clouds are impacted by frequent
meteorological changes and cloud cooling/warming effects
during the daytime/nighttime (Jin, 2000; Jia et al., 2020).

In comparison, cloudy-sky LST estimates based on SEB
exhibit advantages in generating all-sky diurnal LST prod-
ucts at large scales. SEB-based methods include two steps:
the first step is to reconstruct theoretical clear-sky LST val-
ues for cloudy time points, and the second step is to super-
pose the cloud effect based on the SEB equation (Jin and

Earth Syst. Sci. Data, 15, 869–895, 2023 https://doi.org/10.5194/essd-15-869-2023



A. Jia et al.: Global hourly, 5 km, all-sky land surface temperature data from 2011 to 2021 871
Ta

bl
e

1.
Su

m
m

ar
y

of
pu

bl
ic

ly
av

ai
la

bl
e

ga
p-

fr
ee

L
ST

pr
od

uc
ts

.

St
ud

y
Sp

at
ia

l
co

ve
ra

ge
Te

m
po

ra
l

co
ve

ra
ge

Sp
at

ia
l

re
so

lu
-

tio
n

Te
m

po
ra

lr
es

ol
ut

io
n

M
et

ho
do

lo
gy

A
cc

es
s

Z
ha

ng
et

al
.(

20
22

)
G

lo
ba

ll
an

d
20

03
–2

02
0

1
km

13
:3

0
an

d
01

:3
0

lo
ca

lt
im

e
(L

T
)

Sp
at

io
te

m
po

ra
li

nt
er

po
la

tio
n

ht
tp

s:
//d

oi
.o

rg
/1

0.
25

38
0/

ia
st

at
e.

c.
50

78
49

2

H
on

g
et

al
.(

20
22

)
G

lo
ba

ll
an

d
20

03
–2

01
9

0.
5◦

D
ai

ly
m

ea
n

A
nn

ua
l

te
m

pe
ra

tu
re

cy
cl

e
(A

T
C

)m
od

el
an

d
D

T
C

m
od

el
ht

tp
s:

//d
oi

.o
rg

/1
0.

52
81

/z
en

od
o.

62
87

05
2

Y
u

et
al

.(
20

22
)

G
lo

ba
ll

an
d

20
02

–2
02

0
0.

05
◦

01
:3

0,
10

:3
0,

13
:3

0,
an

d
22

:3
0

LT
Fu

si
on

of
T

IR
an

d
re

an
al

ys
is

L
ST

s
ht

tp
s:

//c
st

r.c
n/

18
40

6.
11

.M
et

eo
ro

.tp
dc

.2
71

66
3

(l
as

ta
cc

es
s:

10
Fe

br
ua

ry
20

23
)

R
ai

ns
et

al
.(

20
22

)
E

ur
op

e
20

18
–2

01
9

1
km

D
ai

ly
Fu

si
on

of
po

la
r-

or
bi

tin
g

an
d

SE
V

IR
IL

ST
da

ta
ht

tp
s:

//d
oi

.o
rg

/1
0.

52
81

/z
en

od
o.

70
26

61
2

Ji
a

et
al

.(
20

22
a)

U
ni

te
d

St
at

es
an

d
M

ex
ic

o
20

17
–2

02
1

2
km

H
ou

rl
y

D
at

a
fu

si
on

an
d

su
rf

ac
e

en
er

gy
ba

la
nc

e
(S

E
B

)c
or

re
ct

io
n

ht
tp

://
gl

as
s.

um
d.

ed
u/

al
ls

ky
_L

ST
/A

B
I/

(l
as

ta
cc

es
s:

10
Fe

br
ua

ry
20

23
)

X
u

an
d

C
he

ng
(2

02
1)

C
hi

na
20

02
–2

02
0

1
km

13
:3

0
an

d
01

:3
0

LT
D

at
a

fu
si

on
of

T
IR

an
d

PM
W

L
ST

s
ht

tp
s:

//w
w

w
.tp

dc
.a

c.
cn

/e
n/

da
ta

/7
e5

33
3d

f-
02

08
-4

c4
e-

ae
7e

-1
6d

cd
29

e4
aa

7/
(l

as
ta

cc
es

s:
10

Fe
br

ua
ry

20
23

)

Z
ha

ng
et

al
.(

20
21

)
M

ai
nl

an
d

C
hi

na
20

00
–2

02
1

1
km

13
:3

0
an

d
01

:3
0

LT
D

at
a

fu
si

on
of

T
IR

an
d

re
an

al
-

ys
is

L
ST

s
ht

tp
s:

//c
st

r.c
n/

18
40

6.
11

.M
et

eo
ro

.tp
dc

.2
71

25
2

(l
as

ta
cc

es
s:

10
Fe

br
ua

ry
20

23
)

Sh
iff

et
al

.(
20

21
)

G
lo

ba
ll

an
d

20
02

–2
01

9
1

km
13

:3
0

an
d

01
:3

0
LT

as
w

el
l

as
da

ily
m

ea
n

Fu
si

on
of

T
IR

L
ST

an
d

m
od

-
el

ed
te

m
pe

ra
tu

re
ht

tp
s:

//d
oi

.o
rg

/1
0.

52
81

/z
en

od
o.

39
52

60
4

H
on

g
et

al
.(

20
21

)
G

lo
ba

ll
an

d
20

03
–2

01
9

1
km

D
ai

ly
m

ea
n

A
T

C
m

od
el

an
d

D
T

C
m

od
el

ht
tp

://
w

w
w

.n
es

dc
.o

rg
.c

n/
sd

o/
de

ta
il?

id
=6

0f
4e

35
e7

e2
81

73
cf

0c
8a

77
1

(l
as

ta
cc

es
s:

10
Fe

br
ua

ry
20

23
)

L
ie

ta
l.

(2
02

1)
U

ni
te

d
St

at
es

20
00

–2
01

5
1

km
01

:3
0,

10
:3

0,
13

:3
0,

an
d

22
:3

0
LT

D
at

a
fu

si
on

of
M

O
D

IS
T

IR
an

d
re

an
al

ys
is

L
ST

s
us

in
g

ra
nd

om
fo

re
st

R
ea

ch
ou

tt
o

au
th

or
s

di
re

ct
ly

Z
ha

o
et

al
.(

20
20

)
C

hi
na

20
03

–2
01

7
0.

05
◦

M
on

th
ly

G
eo

gr
ap

hi
ca

lly
w

ei
gh

te
d

in
te

r-
po

la
tio

n
an

d
fu

si
on

w
ith

gr
ou

nd
m

ea
su

re
m

en
t

ht
tp

s:
//d

oi
.o

rg
/1

0.
52

81
/z

en
od

o.
35

28
02

4

Y
an

et
al

.(
20

20
)

N
or

th
A

m
er

ic
a

20
02

–2
01

8
0.

05
◦

M
on

th
ly

E
le

va
tio

n-
ba

se
d

in
te

rp
ol

at
io

n
ht

tp
s:

//d
oi

.o
rg

/1
0.

52
81

/z
en

od
o.

41
84

16
0

Z
ha

ng
et

al
.(

20
19

)
Ti

be
ta

n
Pl

at
ea

u
20

00
–2

02
1

1
km

13
:3

0
an

d
01

:3
0

LT
D

at
a

fu
si

on
of

T
IR

an
d

re
an

al
-

ys
is

L
ST

s
ht

tp
s:

//w
w

w
.tp

dc
.a

c.
cn

/e
n/

da
ta

/7
60

06
ce

7-
b8

dc
-4

ad
d-

bb
b5

-9
3f

36
f4

bd
26

c/
(l

as
ta

cc
es

s:
12

A
ug

us
t2

02
2)

M
ar

tin
s

et
al

.(
20

19
)

E
ur

op
e

an
d

A
fr

ic
a

20
21

–p
re

se
nt

3
km

30
m

in
SE

B
-c

on
st

ra
in

ed
op

tim
iz

at
io

n
m

et
ho

d
ht

tp
s:

//l
an

ds
af

.ip
m

a.
pt

/e
n/

pr
od

uc
ts

/la
nd

-s
ur

fa
ce

-t
em

pe
ra

tu
re

/m
ls

ta
s/

(l
as

ta
cc

es
s:

12
A

ug
us

t2
02

2)

D
ua

n
et

al
.(

20
17

)
C

hi
na

20
02

–2
01

1
1

km
13

:3
0

LT
D

at
a

fu
si

on
of

T
IR

an
d

PM
W

L
ST

s
ht

tp
://

w
w

w
.g

eo
da

ta
.c

n/
da

ta
/d

at
ad

et
ai

ls
.h

tm
l?

da
ta

gu
id

=3
98

35
7&

do
cI

d=
19

34
(l

as
ta

cc
es

s:
10

Fe
br

ua
ry

20
23

)

C
he

n
et

al
.(

20
17

)
G

lo
ba

ll
an

d
20

00
–2

02
0

1
km

M
on

th
ly

M
ea

n
of

da
yt

im
e

an
d

ni
gh

tti
m

e
cl

ea
r-

sk
y

L
ST

s
ht

tp
s:

//c
st

r.c
n/

18
40

6.
11

.M
et

eo
ro

.tp
dc

.2
71

18
0

(l
as

ta
cc

es
s:

10
Fe

br
ua

ry
20

23
)

M
et

z
et

al
.(

20
17

)
G

lo
ba

ll
an

d
20

03
–2

01
6

1
km

M
on

th
ly

Sp
at

io
te

m
po

ra
li

nt
er

po
la

tio
n

ht
tp

s:
//d

oi
.o

rg
/1

0.
52

81
/z

en
od

o.
11

15
66

6

A
nd

ré
et

al
.(

20
15

)
L

at
itu

de
>

45
◦

N
20

00
–2

01
1

25
km

D
ai

ly
E

m
pi

ri
ca

l
re

tr
ie

va
l

fr
om

PM
W

br
ig

ht
ne

ss
te

m
pe

ra
tu

re
(B

T
)

ht
tp

s:
//d

oi
.o

rg
/1

0.
10

16
/j.

rs
e.

20
15

.0
1.

02
8

M
et

z
et

al
.(

20
14

)
E

ur
op

e
20

00
–p

re
se

nt
25

0
m

01
:3

0,
10

:3
0,

13
:3

0,
an

d
22

:3
0

LT
Sp

at
io

te
m

po
ra

l
in

te
rp

ol
a-

tio
n

an
d

re
gr

es
si

on
-b

as
ed

do
w

ns
ca

lin
g

ht
tp

s:
//c

ou
rs

es
.n

et
el

er
.o

rg
/e

ur
ol

st
-s

ea
m

le
ss

-g
ap

-f
re

e-
da

ily
-e

ur
op

ea
n-

m
ap

s-
la

nd
-s

ur
fa

ce
-t

em
pe

ra
tu

re
s/

(l
as

ta
cc

es
s:

10
Fe

br
ua

ry
20

23
)

B
ou

ka
ba

ra
et

al
.(

20
11

)
G

lo
ba

ll
an

d
20

14
–p

re
se

nt
0.

09
–

0.
5◦

13
:3

0
an

d
01

:3
0

LT
It

er
at

iv
e

ph
ys

ic
al

in
ve

rs
io

n
fr

om
PM

W
ob

se
rv

at
io

ns
ht

tp
s:

//w
w

w
.a

vl
.c

la
ss

.n
oa

a.
go

v/
sa

a/
pr

od
uc

ts
/s

ea
rc

h?
da

ta
ty

pe
_f

am
ily

=
_J

PS
S_

SN
D

(l
as

ta
cc

es
s:

10
Fe

br
ua

ry
20

23
)

https://doi.org/10.5194/essd-15-869-2023 Earth Syst. Sci. Data, 15, 869–895, 2023

https://doi.org/10.25380/iastate.c.5078492
https://doi.org/10.5281/zenodo.6287052
https://cstr.cn/18406.11.Meteoro.tpdc.271663
https://doi.org/10.5281/zenodo.7026612
http://glass.umd.edu/allsky_LST/ABI/
https://www.tpdc.ac.cn/en/data/7e5333df-0208-4c4e-ae7e-16dcd29e4aa7/
https://cstr.cn/18406.11.Meteoro.tpdc.271252
https://doi.org/10.5281/zenodo.3952604
http://www.nesdc.org.cn/sdo/detail?id=60f4e35e7e28173cf0c8a771
https://doi.org/10.5281/zenodo.3528024
https://doi.org/10.5281/zenodo.4184160
https://www.tpdc.ac.cn/en/data/76006ce7-b8dc-4add-bbb5-93f36f4bd26c/
https://landsaf.ipma.pt/en/products/land-surface-temperature/mlstas/
http://www.geodata.cn/data/datadetails.html?dataguid=398357&docId=1934
http://www.geodata.cn/data/datadetails.html?dataguid=398357&docId=1934
https://cstr.cn/18406.11.Meteoro.tpdc.271180
https://doi.org/10.5281/zenodo.1115666
https://doi.org/10.1016/j.rse.2015.01.028
https://courses.neteler.org/eurolst-seamless-gap-free-daily-european-maps-land-surface-temperatures/
https://courses.neteler.org/eurolst-seamless-gap-free-daily-european-maps-land-surface-temperatures/
https://www.avl.class.noaa.gov/saa/products/search?datatype_family=_JPSS_SND
https://www.avl.class.noaa.gov/saa/products/search?datatype_family=_JPSS_SND


872 A. Jia et al.: Global hourly, 5 km, all-sky land surface temperature data from 2011 to 2021

Dickinson, 2000; Lu et al., 2011). However, traditional SEB-
based methods have limited feasibility because of the high
input requirements, and they can only be used during the day-
time. Therefore, Jia et al. (2021) considerably improved upon
these methods by incorporating modeling data into the pro-
cess, and the improved methods can be applied to larger spa-
tial scales. ERA5 surface longwave radiation data were used
to build a spatiotemporally evolving model, and the clear-sky
GEO LSTs were assimilated to the evolving model to cor-
rect its predictions on cloudy days. Moreover, an optimiza-
tion method was used to compute the cloud effect during both
the daytime and nighttime, and complete DTCs could be re-
covered for hourly LSTs (Jia et al., 2022a).

The latest SEB scheme has produced all-sky hourly LSTs
over the contiguous United States (CONUS) and Mexico
from ABI data; however, it has a relatively lower compu-
tational efficiency owing to the spatiotemporal assimilation
framework, which is not easy to apply globally. Further-
more, single GEO data points have a limited spatial view
field, which can be solved by combining data from mul-
tiple GEO satellites at middle and low latitudes and from
polar-orbiting satellites (Terra and Aqua) at high latitudes.
Two polar-orbiting satellites pass high latitudes at a sub-
hourly temporal scale and provide observations as frequently
as GEO satellites. This strategy has been successfully uti-
lized to generate global hourly Clouds and Earth’s Radi-
ant Energy System (CERES) radiation products (Loeb et al.,
2018); however, few studies have focused on estimating all-
sky LSTs by combining polar-orbiting and GEO satellites.

In this study, we produced a global hourly, all-sky LST
dataset (GHA-LST) from 2011 to 2021 at a 5 km scale, and
a comprehensive assessment was implemented using 201
ground sites worldwide. Global clear-sky LSTs were ob-
tained by combining GEO LSTs from the Copernicus Global
Land Service (CGLS) and Moderate Resolution Imaging
Spectroradiometer (MODIS) MxD21 LST swath products,
and a more efficient spatiotemporal assimilation scheme was
proposed. It represents the first available global all-sky LST
scheme on an hourly timescale with satisfactory accuracy
based on global site validation; thus, it has great potential
for use in analyzing global thermal dynamics, atmospheric
cycling, and hydrological budgets.

2 Data and method

2.1 Data

The proposed GHA-LST dataset was recovered from a com-
bination of clear-sky LST products, including the CGLS
hourly LSTs, which cover middle and low latitudes, and
MOD and MYD21 instantaneous swath LSTs, which cover
high latitudes. ERA5 provides dynamic surface temperature
signals for building a temperature-time-evolving model, and
CERES global hourly surface radiation products were used
to compute the cloud effect. In addition, the all-sky LST

data were comprehensively assessed based on globally dis-
tributed sites collected from the Surface Radiation Budget
(SURFRAD), Baseline Surface Radiation Network (BSRN),
Fluxnet, AmeriFlux, Heihe River basin (HRB), and Tibetan
Plateau (TP) networks.

2.1.1 Input data

CGLS LST provides hourly clear-sky LST retrievals from
a constellation of GEO satellites, including multiple gener-
ations of Meteosat Second Generation (MSG), Multifunc-
tional Transport Satellite (MTSAT)/Himawari, MSG Indian
Ocean Data Coverage (IODC), and GOES. The product
is released as a global product that covers land surfaces
worldwide within the 60◦ S to 70◦ N latitudes. The gener-
alized split-window (GSW) algorithm and dual algorithm
(DA) in mono- and dual-channel forms were used to retrieve
LST from top-of-atmosphere (TOA) brightness temperatures
(BTs) in thermal infrared window channels (Freitas et al.,
2013). Based on the ground validation, the accuracy ranges
from 1.83 to 3.70 K.

MOD and MYD21 swath instantaneous LST products
(Hulley et al., 2016) were used to provide LST over the rest
of the land surface, which mainly covered high latitudes. A
temperature/emissivity separation (TES) algorithm was used
to retrieve the LST in the MOD and MYD21 products. It
showed comparable accuracy to that of MOD and MYD11
(Wan, 2008) for most land cover types and performed better
in bare land regions (Li et al., 2020; Yao et al., 2020). Level 3
MOD and MYD21 LST products provide gridded LST data
in sinusoidal projection such that LST images were available
four times a day and pixel locations were fixed. This data
format is convenient for users; however, many valid retrieval
values are lost at higher latitudes due to reprojection. In fact,
dozens of times can be recorded by combining two polar-
orbiting satellites, which is comparable to GEO observations
at middle and low latitudes. Therefore, to fully incorporate
the available clear-sky retrievals, MOD and MYD21 swath
instantaneous LST data were used in this study. All swath
images were converted to the Climate Modeling Grid (CMG)
individually and then aggregated to the same spatial reso-
lution as CGLS LST. The instantaneous observations were
used for averaging only when they were within a 30 min win-
dow centered on the CGLS recording time (UTC standard
time). In addition, to minimize the impact of retrieval uncer-
tainty, records with a view zenith angle greater than 40◦ were
not used in this study (Li et al., 2014; Guillevic et al., 2013).
By using this strategy, we can obtain a recording frequency
over polar regions that is comparable to that of the CGLS
LST data; however, using this strategy does not mean that
significantly more clear-sky LST samples will be obtained,
as cloud cover persists at high latitudes (King et al., 2013).
This process only ensures that clear-sky LSTs at high lati-
tudes are included in as many observations as possible.

Earth Syst. Sci. Data, 15, 869–895, 2023 https://doi.org/10.5194/essd-15-869-2023



A. Jia et al.: Global hourly, 5 km, all-sky land surface temperature data from 2011 to 2021 873

To obtain continuous surface thermal variational signals,
surface upward longwave radiation (ULW) and downward
longwave radiation (DLW) simulated by ERA5 were used to
build the LST time-evolving model. Satellite-derived broad-
band emissivity (BBE) was obtained from the Global LAnd
Surface Satellite (GLASS) (Liang et al., 2021). We calcu-
lated the LST series using ERA5 DLW and ULW data simu-
lated using clear-sky scenarios, which were generated based
on real atmospheric and meteorological conditions, although
clouds were assumed to be absent. The ERA5 clear-sky sce-
nario was used because utilizing cloud radiative forcing cal-
culated from global satellite data is more accurate than using
the simulated results from the reanalysis (Wang and Dick-
inson, 2013). The clear-sky LST retrievals were then as-
similated into the time-evolving model to obtain continuous
LSTs without cloud gaps, and the cloud cooling/warming ef-
fect was then estimated and superposed from satellite radia-
tion products. Essentially, in this revised SEB-based recovery
method, the temperature change signals under cloud cover
were divided into two parts: the evolving model provided
LST variations due to real-time meteorological changes un-
der clouds, and satellite radiation products estimated the
cloud cooling and warming effects caused by cloud radiative
forcing.

Global hourly surface DLW and downward shortwave ra-
diation (DSR) from CERES satellite products were used to
estimate the cloud effect. To monitor cloud radiative forc-
ing, the CERES project retrieved global gap-free, hourly
DSR and DLW under both all-sky (realistic) and theoretically
cloud-free conditions (Doelling et al., 2016). CERES utilized
the same strategy as this study to generate global hourly ra-
diation products by combining remote sensing observations
from multiple GEO sensors and two MODIS sensors. The
CERES surface shortwave radiation and longwave radiation
(Doelling et al., 2013) were estimated based on the Lang-
ley Fu–Liou radiative transfer theory (Fu et al., 1997), the
cloud properties were obtained from microwave cloud prod-
ucts (Minnis et al., 2020), and the aerosol optical depth was
based on the MODIS aerosol product (Remer et al., 2006).
Surface CERES downward radiation fluxes have an overall
bias (standard deviation) of 3.0 W m−2 (5.7 %) for shortwave
and−4.0 W m−2 (2.9 %) for longwave radiation, which have
been validated based on 85 sites (Rutan et al., 2015). CERES
has been extensively evaluated and is generally considered
a benchmark for satellite radiation products for assessments
and intercomparisons (Jia et al., 2018; R. Li et al., 2022;
Wang and Dickinson, 2013).

To improve the production efficiency, the complicated
downward longwave parameterization schemes in Jia et
al. (2022a) were replaced by directly exploiting the CERES
dataset and converting its cloud radiative forcing into the
corresponding cloud cooling/warming effect. Specifically,
the CERES DSR difference between all-sky and clear-sky
schemes was considered cloud DSR forcing; combined with
the GLASS surface albedo data, the cloud net shortwave

forcing was then computed. Cloud DLW forcing represents
the difference between CERES all-sky and clear-sky DLW
products, and the corresponding net longwave forcing was
estimated using an optimization method (Sect. 2.2.4). In ad-
dition, according to previous studies (Wang and Dickinson,
2013; Zhang et al., 2015), the impact of the coarse spatial
resolution of CERES downward radiation can be ignored be-
cause it has less heterogeneity than surface variables. CERES
products were bilinearly interpolated to match the spatial
scale of the CGLS LST. However, this assumption may in-
troduce a certainty degree of uncertainty in areas with rugged
terrain because complicated terrain in a coarse pixel may still
affect the downward radiation components and increase the
heterogeneity.

The GLASS 0.05◦ land surface albedo and BBE were used
for the net radiation calculation (Liang et al., 2021), and
the GLASS leaf area index (LAI) was used for computing
ground heat flux from the net radiation. All input data were
preprocessed using bilinear resampling to match the CGLS
LST. The input metadata are listed in Table 2.

2.1.2 Ground measurement

To comprehensively assess the accuracy of the proposed
GHA-LST dataset, globally distributed in situ sites must be
collected for ground validation. We processed the records
from the SURFRAD, BSRN, Fluxnet, AmeriFlux, HRB, and
TP networks. SURFRAD was established in 1993 and con-
sistently provides long-term ground measurements of the sur-
face radiation components over the CONUS for climate re-
search and remote sensing retrieval validation (Augustine et
al., 2000). The BSRN is a combined network of globally dis-
tributed sites from several projects (Driemel et al., 2018), and
it provides records with strict data quality maintenance; thus,
it is usually used as a reference dataset for radiation prod-
uct validation at the global scale. Fluxnet includes hundreds
of ground sites that have been utilized for global LST vali-
dation and analysis (Xing et al., 2021). AmeriFlux measures
radiation and carbon fluxes over South and North America
(Novick et al., 2018). The HRB network is from the Chi-
nese Heihe Watershed Allied Telemetry Experimental Re-
search (HiWATER) project (X. Li et al., 2013), and the TP
network is from the Third Tibetan Plateau Atmospheric Sci-
entific Experiment (TIPEX-III) (Zhao et al., 2018); these two
datasets have been used for LST validation at the kilometer
scale (Xing et al., 2021).

In addition, only raw observations marked as “good qual-
ity” were used for validation. Site-measured ULW and DLW
were used to compute LSTs with a GLASS BBE based on
the Stefan–Boltzmann law. LST raw records within a 30 min
window centered on each UTC time period were then aggre-
gated for hourly LST validation. The daily mean LST was
further aggregated as long as 24 hourly LSTs were avail-
able in a day, which is sufficient to represent the entire DTC
based on Jia et al. (2022a). The validation period was 2011–
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Table 2. Metadata input for production.

Product Variable Temporal Spatial Usage
resolution (◦) resolution (◦)

CGLS Clear-sky LST Hourly 0.045 LST for recovery
Swath MOD and MYD21 Clear-sky LST Instantaneous 1 km LST for recovery
ERA5 Clear-sky DLW and ULW Hourly 0.25 Time-evolving model
GLASS BBE 8 d 0.05 Time-evolving model
CERES All-sky and clear-sky DSR and DLW Hourly 1 Cloud effect
GLASS Surface albedo 8 d 0.05 Cloud effect
GLASS LAI Daily 0.05 Cloud effect

2020. The following validation metrics are used in this study:
N is the sample amount; bias, also called mean bias error
(MBE), represents the systematic errors/differences between
LST products and ground measurements; root-mean-square
error (RMSE) characterizes the actual uncertainty caused by
bias and random error; and R2 indicates the overall goodness
of fit based on a 1 : 1 line. These metrics are commonly used
for LST validation. The standard deviation (SD) of the differ-
ences between LST products and site measurements was not
used because it provides similar information to the RMSE
but cannot reflect errors caused by systematic bias; thus, the
SD is generally smaller than the RMSE.

The proposed GHA-LST dataset has a spatial resolution of
approximately 5 km, although some sites may not be repre-
sentative of the corresponding pixels. To remove sites with
higher heterogeneity, we utilized two removal strategies. The
first is based on 30 m LSTs from the United States Geologi-
cal Survey (USGS) Landsat 8 Level 2 Collection 2, in which
clear-sky Landsat LSTs were extracted from all site locations
from 2013 to 2020 and the average 30 m LSTs were extracted
within the corresponding 5 km pixel range; then, the RMSE
at each site was computed as the site representativeness using
the 30 m LSTs paired with the averaged 5 km LSTs. One site
was marked if it had a considerably larger RMSE, indicating
that there were larger LST differences between the 30 m and
5 km scales. The second strategy considered the MYD21C1
0.05◦ LST as a benchmark LST product at a 0.05◦ spatial
scale. As MYD21 has been comprehensively validated and
produces results with high and stable accuracy at a global
scale (Li et al., 2020; Yao et al., 2020; Hulley, 2015), we ar-
gue that if one site has a significantly larger RMSE in the val-
idation of MYD21C1 samples with good quality, the site will
have low representativeness at the 5 km spatial scale. Prepro-
cessed sites detected by either of these two strategies were
excluded from this study, and the analysis results are shown
in Fig. 1. The selection threshold of each strategy was equal
to the average RMSE+ 2SD for all sites.

Based on Fig. 1, 201 global sites were included in this
study, including 5 SURFRAD sites, 11 BSRN sites, 91
Fluxnet sites, 89 AmeriFlux sites, 3 HRB sites, and 2 TP
sites. The distribution of sites is shown in Fig. 2. Addition-

ally, as site selection influences the final validation statistics,
we also validated samples from clear-sky MYD21C1 and
CGLS for accuracy comparisons, and the accuracy level of
the validation results can be used as the reference for GHA-
LST.

2.2 Methods

2.2.1 Production framework

Jia et al. (2022a) developed a three-step framework to gen-
erate all-sky hourly LSTs on a regional scale. In this study,
we revised this framework to improve its efficiency and fea-
sibility worldwide. A flowchart of the framework is shown in
Fig. 3.

In the first step, a time-evolving model of clear-sky LSTs
was designed based on the ERA5 LST series at each pixel
location (Sect. 2.2.2). The ERA5 LST series was computed
from the DLW and ULW from the clear-sky simulation sce-
narios, and it provides continuous variational information on
LST without considering the cloud cooling/warming effect.
Such variational information under clouds can be attributed
to advective meteorological changes and air movement. The
ERA5 skin temperature was not involved because we cal-
culated the cloud effect based on satellite-derived radiation
products, which are more reliable at a global scale.

In the second step, the Kalman filter (KF) was used to
assimilate available clear-sky LST retrievals into the time-
evolving model to correct the predictions for times with
cloud cover, and theoretical clear-sky LSTs were then re-
constructed. In the original framework of Jia et al. (2022a),
three-dimensional data assimilation was utilized to generate
a spatiotemporally dynamic model; however, this process is
time-consuming, particularly when working at a large spa-
tial scale. We replaced the spatial module in the assimilation
by linear regression, which still works well to incorporate
spatially adjacent clear-sky retrievals (Sect. 2.2.3). After this
step, hypothetical LSTs were reconstructed during times with
cloud cover. The cloud effect was further superimposed in the
final step.

In the third step, the cloud effect was estimated from
the satellite radiation products (Sect. 2.2.4). In the original
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Figure 1. LST site selection results based on the (a) site representativeness calculated by Landsat samples and (b) site RMSEs of MYD21C1.
The thresholds are the black lines, and sites with RMSEs higher than the line were masked out. The abbreviations used in the figure are as
follows: SURFRAD – Surface Radiation Budget, BSRN – Baseline Surface Radiation Network, HRB – Heihe River basin (HRB), and TP –
Tibetan Plateau.

Figure 2. Global distribution of the 201 LST sites utilized. The abbreviations used in the figure are as follows: SURFRAD – Surface
Radiation Budget, BSRN – Baseline Surface Radiation Network, HRB – Heihe River basin (HRB), and TP – Tibetan Plateau.

framework, cloud longwave radiative forcing was computed
based on a series of parameterization schemes; however, the
scheme was not well assessed at the global scale. Therefore,
to simplify the calculation and improve the feasibility of fill-
ing gaps over a large spatial scale, we replaced the DLW
parameterization with CERES clear-sky and all-sky DLW
products that have been assessed globally (Wang and Dickin-
son, 2013). The cloud effects at daytime and nighttime were
determined by searching for the optimal cloud radiative ef-
fect (CRE) values to meet the SEB. The final clear-sky LSTs
are the assimilated results, and the cloudy-sky LSTs are the
reconstructed LSTs from the second step plus the optimal
cloud effect.

2.2.2 Time-evolving model

A time-evolving model describes how LSTs change at a cer-
tain pixel over time, and it characterizes relative variation

based on the ERA5 LST rather than absolute magnitudes.
The ERA5 LST series was initially downscaled to match the
CGLS LST using elevation (Duan et al., 2017). The evolving
model can be mathematically represented by Eqs. (1) and (2):

LSTt,d = Ft,d ×LSTt,d−1, (1)

Ft,d =

(
1+

1
Zt,d + δ

)
dZt,d

dt
. (2)

Here, LSTt,d is the LST predicted by the model on day d
at hour t ; Ft,d is the prediction operator, which is generated
based on the temperature temporal profile Zt,d (temperature
difference between d and d − 1 at hour t , i.e., the differ-
ence with the LST 24 h before); and δ = 0.01 avoids a null
denominator. The model evolves from day to day for each
hour of the day (HOD) because the modeling bias is self-
correlated at the same HOD on different days (Marullo et al.,
2014). The correction of the data assimilation can be better
inherited based on the evolving structure of Eqs. (1) and (2).
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Figure 3. Flowchart of the proposed GHA-LST dataset production. The abbreviations used in the figure are as follows: DLW – downward
longwave radiation, ULW – upward longwave radiation, DSR – downward shortwave radiation, BBE – broadband emissivity, LST – land
surface temperature, and CRE – cloud radiative effect.

In addition, only the difference information was used in the
study, which can minimize the impact of the uncertainty of
the ERA5 LST, especially of its systemic bias (Nogueira et
al., 2021).

The time-evolving model provides continuous temperature
variation; however, the modeling process must be consis-
tently corrected by assimilating available clear-sky retrievals.
In addition, partially cloud-covered yet retrieved (“likely
cloud-contaminated”) pixels were masked out before assim-
ilation. The detection method follows Jia et al. (2022a). One
clear-sky retrieval is excluded if it has a substantially larger
absolute difference from the modeled LST (3 SDs) than
neighboring days within±15 d, which assumes that modeled
LSTs have fewer anomalies than directly retrieved values.
It should be noted that some input data (e.g., CERES and
reanalysis data) are not available at near-real time (NRT);
moreover, this likely cloud-contaminated detection method
also requires a 30 d time window for high-quality clear-sky
LST selection, which means that the proposed cloudy-sky
LST recovery method cannot be used for NRT all-sky LST
production.

2.2.3 Kalman filter

The KF was used to assimilate clear-sky LST retrievals to
correct the evolving model prediction because real-time re-

trievals are discontinuous, while the evolving model predic-
tion is continuous. When a retrieval value is available, a
weighted average is implemented between the prediction and
the observation based on their individual uncertainties, and
the prediction is then corrected. When observations are not
available, the prediction will be implemented based on the
updated prediction from the former step. Therefore, a contin-
uous LST series can be generated using this iterative process.
The KF can be mathematically represented as follows:

T̂ −t,d = A
t
d−1T̂t,d−1+ω

t
d−1, (3)

T̂t,d = T̂
−

t,d +K
t
d (Tt,d − T̂ −t,d ), (4)

Kt,d = P
−

t,d (P−t,d +R)−1, (5)

Pt,d = (I −Kt,d )P−t,d . (6)

Here, T̂ −t,d is the temperature prediction at time t on day d
from the prediction of d− 1, and Atd−1 is the prediction pro-
cess (Sect. 2.2.2) with a prediction error of ωtd−1. The symbol
“−” next to a variable indicates that the variable is an ini-
tial prediction without assimilation correction. The modeling
prediction is propagated to P−t,d after this prediction.

If an observation (Tt,d ) is available, T̂ −t,d will be cor-
rected using the Kalman gain K t

d (Eq. 4), which was deter-
mined by the relative magnitude of the squared uncertainty
of the model prediction P−d and the satellite retrieval R. R
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is the squared retrieval uncertainty at each pixel of CGLS
and MODIS, and it is calculated based on the “ERROR-
BAR_LST” or “LST_err” information in the files. The initial
modeling uncertainty was calculated based on a comparison
between the ERA5 and satellite retrievals at clear-sky time
in the data series. The assimilation started in October 2010,
and the model prediction reached a stable status before the
product release date; thus, the initial value did not affect the
output. The prediction error of d will also be corrected to
Pt,d (Eq. 5). The next day will then be iteratively predicted.
If there are no observations, the LST will be automatically
predicted on day d without correction.

Jia et al. (2022a) used a spatial KF module that can as-
similate spatially adjacent clear-sky pixels into the evolv-
ing model; however, this process is time-consuming and im-
practical for global production. In this study, if an observa-
tion on d was available, the time-evolving model was cor-
rected by KF normally. If an observation was not available,
a 30×30 (∼ 150 km, as per Jia et al., 2022a) spatial window
was set for the time-evolving model, and clear-sky pixels and
their corresponding ERA5 LST within the spatial window
will regress a linear conversion model; the missing LST at
the center pixel on d will then be predicted from its corre-
sponding ERA5 LST using such a linear relationship. Es-
sentially, a local linear relationship replaced the spatial KF
module, although it still effectively incorporated the adjacent
clear-sky retrieval, and the computation efficiency was sig-
nificantly improved. After the center LST was estimated by
linear regression, it was considered the available retrieval for
KF correction on d. If the spatial window did not have avail-
able clear-sky retrievals, the time-evolving model predicted
the LST on d based on the results on d − 1.

2.2.4 Cloud effect estimation

After data assimilation, the LST under clouds was initially
predicted without considering the cloud effect. The cloud
effect is the temperature warming/cooling effect caused by
changing the SEB from clouds, which can be estimated us-
ing cloud radiative forcing. The SEB equation is as follows:

Rn = R
d
s (1−α)+ εRdl − σεT

4
=G+LE+H, (7)

where Rn is the surface net radiation, Rds is the DSR, α is the
surface albedo, ε is the surface broadband emissivity (BBE),
Rdl is the DLW, σ is the Stefan–Boltzmann constant, and T is
the LST. Rn is partitioned into latent heat (LE), sensible heat
(H ), and ground heat (G). Cloud cover changes Rn, which is
called cloud radiative forcing. By following the land surface
analysis (LSA SAF) GEO evapotranspiration product,G can
be parameterized as follows:

G= Rn× 0.5exp(−2.13(0.88− 0.78exp(−0.6LAI))), (8)

where theG is set to 0.15 (0.05) Rn for bare land (permanent
snow/ice). Based on the conventional “force-restore” method

(Jin and Dickinson, 2000), G can be represented as follows:

G= kg
∂T

1Z
= kg

T − Td

1Z
, (9)

where kg represents surface thermal conductivity
(W m−1 K−1) and 1Z is the responding surface depth,
which is set to 0.1 m. The deep-layer temperature (Td) is
assumed to have little response towards SEB; thus, Eq. (9)
can be rewritten as follows:
∂G

∂Ts
=

∂

∂Ts

[
kg
Ts− Td

1Z

]
≈

kg

1Z
. (10)

Accordingly, the change in G (∂G) caused by cloud cover
can be directly converted into the variation in LST, and ∂G
is determined by partitioned cloud radiative forcing. That is,
by knowing any two of the three variables (∂G,1Ts, and kg),
the other can be estimated. According to Jia et al. (2022a),
kg was predetermined based on a continuous temperature se-
ries from the assimilation results and corresponding radiation
data:

kg =1h
¯Gnoon− Ḡsr
¯Tnoon− T̄sr

, (11)

where ¯Gnoon ( ¯Tnoon) and Ḡsr (T̄sr) are the monthly aver-
aged ground heat (clear-sky LST) within ±15 d at noon and
sunrise, respectively, which are considered because morning
warming can mainly be attributed to the SEB. The continu-
ous data series from the data assimilation step ensures suf-
ficient sampling for the kg calculation. Monthly means were
used to minimize the disturbance of daily variation. Then, the
cloud radiative forcing needs to be determined to estimate
1Ts:

Rc = (1−α) (Rds,cld−R
d
s,clr)+ ε

(
Rdl,cld− σT

4
cld

)
− ε

(
Rdl,clr− σT

4
clr

)
, (12)

where Rc is the cloud radiative forcing, Rds,cld (Rds,clr) is the
cloudy-sky (clear-sky) DSR, and Rdl,cld (Rdl,clr) is the cloudy-
sky (clear-sky) DLW. The shortwave variables, BBE, and
DLW can be obtained from the global radiation products.

The cloudy-sky LST (Tcld) equals the reconstructed LST
(Tclr) plus the cloud effect (1Ts), and Tclr is reconstructed
from step 2.1Ts is unknown for the radiative forcing calcula-
tion and represents the ultimate target of this step. Therefore,
the optimal 1Ts must be determined based on the optimiza-
tion method to satisfy the SEB. Following Jia et al. (2022a),
1Ts was initially assumed to be 0 K, and the initial Rc was
obtained based on Eq. (12). After energy partitioning through
the LAI, G is computed, and the updated 1Ts is estimated
using kg; thus, Rc can be recomputed. By iteratively com-
paring the Rc differences and adjusting 1Ts (step= 0.05 K),
the surface energy budget is balanced (|1CRE|< 20 W m−2;
see Fig. 3). The threshold of 20 W m−2 is the current accu-
racy level of the longwave radiation products (Wang et al.,
2020).
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3 Results and discussion

3.1 Overall assessment

Based on all paired samples from the proposed GHA-LST
dataset and 201 sites from 2011 to 2020, the overall RMSE
of the all-sky GHA-LST is 3.31 K, with a bias of −0.57 K
and R2 of 0.95. As site selection may influence the accu-
racy statistics, the accuracy of GHA-LST was also compared
with that of the CGLS and MYD21C1 data (Fig. 4). Fig-
ure 4a shows the extracted clear-sky samples from the CGLS,
whereas the corresponding clear-sky results from GHA-LST
are shown in Fig. 4b, which has the same sampling amount
as Fig. 4a. The recovered cloudy-sky LST at the correspond-
ing CGLS cloudy time of Fig. 4a is validated in Fig. 4c. Such
an accuracy comparison between the GHA-LST and CGLS
data is sufficiently fair; thus, we also compared the accura-
cies between GHA-LST and MYD21C1 (Fig. 4d, e, f). Be-
cause MYD21C1 may have a slightly different observation
time (< 0.5 h) relative to GHA-LST, it was converted to the
nearest UTC time based on the diurnal cycle recorded by site
observations to match the GHA-LST recording time.

The proposed GHA-LST dataset had better accuracy than
the CGLS and MYD21C1 data under both clear-sky and
cloudy-sky conditions (Fig. 4). Compared to the CGLS
(Fig. 4a), the clear-sky GHA-LST had a similar RMSE
(3.35 K; Fig. 4b), which is reasonable because most of the
clear-sky GHA-LST samples were derived from clear-sky re-
trievals from the CGLS. The partially cloud-contaminated
samples were marked during production (Sect. 2.2.2) and
considered cloudy pixels. The results of MYD21C1 (Fig. 4d)
only utilized samples that were marked as good quality and
passed a cloud contamination test (Sect. 3.6 in Ma et al.,
2020). In comparison, GHA-LST produced similar accuracy
with high-quality MODIS samples (Fig. 4e) and represented
a stable accuracy (RMSE=∼ 3.3 K with few biases) under
both clear-sky and cloudy-sky conditions. Based on the sam-
pling amount (Fig. 4a, b, c), the number of cloudy pixels
was nearly 1.5 times higher than the number of clear-sky
pixels, indicating the importance and necessity of the pro-
posed GHA-LST dataset. As MYD21C1 (Fig. 4d, e, f) only
includes samples from noon and midnight, it has significantly
fewer samples than the CGLS group (Fig. 4a, b, c). Studies
on similar topics, such as the recovery of all-sky MSG/SE-
VIRI LST (Martins et al., 2019), produced RMSEs of 2.1–
3.7 K at three sites. However, direct comparisons of the val-
idation statistics are difficult because substantially different
sites and sampling amounts were utilized in this study.

Figure 5 illustrates that the GHA-LST process has a con-
siderably higher performance in obtaining daily mean LSTs.
GHA-LST has a similar RMSE to the daily mean CGLS,
with 24 values in a day retrieved by satellites (Fig. 5a, b);
however, GHA-LST has substantially more available sam-
ples than the CGLS clear-sky results. In comparison, the
daily mean computed from the average of the paired day-

time/nighttime MYD21C1 has the largest RMSE, with a
clear bias of 2.41 K. However, MODIS LSTs have been more
widely used than GEO LSTs, and many studies have ob-
tained daily mean LSTs by simply averaging two instanta-
neous Aqua retrievals at noon and midnight (Ouyang et al.,
2012; Chen et al., 2017; Zou et al., 2017). This study sug-
gests that the proposed GHA-LST dataset can significantly
improve the accuracy and data availability of the daily mean
LST.

To demonstrate the accuracy and stability of the GHA-
LST under different surface conditions, the hourly samples
were further differentiated based on land cover types. Land
cover data are obtained from the MCD12Q1 International
Geosphere-Biosphere Programme (IGBP) classification. The
validation statistics are listed in Table 3.

Table 3 indicates that the GHA-LST has stable accuracy
under both clear-sky and cloudy-sky conditions for various
land cover types. However, some clear biases were found
for the forest and barren land cover types, which could be
caused by split-window retrieval errors under clear-sky con-
ditions due to the large emissivity uncertainty (Z.-L. Li et al.,
2022). In comparison, high R2 values in these regions reflect
the ability of the GHA-LST to capture regional temperature
variations.

3.2 Individual site validation

Considering that 201 global sites were utilized, the RMSEs
at individual sites can reflect the spatial pattern of GHA-LST
accuracy; therefore, site RMSE maps under clear-sky and
cloudy-sky conditions are illustrated in Fig. 6.

The GHA-LST had similar accuracy patterns under both
clear-sky and cloudy-sky conditions, and it had lower RM-
SEs (< 3.5 K) in eastern America, Europe, and Australia but
variable RMSEs from 3.5 to 5 K in western America and the
TP. The median site RMSE under clear-sky conditions was
3.18 K, with an SD of 0.81 K, and the median site RMSE un-
der cloudy-sky conditions was 2.97 K, with an SD of 1.01 K,
indicating that cloudy-sky results had a slightly larger spa-
tial variance with respect to accuracy. Validation statistics for
each site are listed in the Appendix.

3.3 Temporal and spatial analysis

To evaluate the temporal continuity of the proposed GHA-
LST dataset, the temporal LST variations from GHA-
LST, CGLS, and corresponding ground measurements were
compared at hourly and daily mean scales. In Fig. 7,
four global sites are shown as the representative sites
from SURFRAD (SXF; 43.74◦ N, 96.62◦W), BSRN (CAB;
51.97◦ N, 4.93◦ E), Fluxnet (AU-Rig; 36.65◦ S, 145.58◦ E),
and AmeriFlux (US-Ro1; 44.71◦ N, 93.09◦W) (see the fig-
ure caption for full site names). The study period was ran-
domly chosen for different years.
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Figure 4. Density scatterplots of hourly LST samples from (a) CGLS clear-sky retrievals, (b) GHA-LST clear-sky samples corresponding
to panel (a), (c) GHA-LST cloudy-sky samples corresponding to CGLS cloudy time, (d) MYD21C1 clear-sky retrievals, (e) GHA-LST
clear-sky samples corresponding to panel (d), and (f) GHA-LST cloudy-sky samples corresponding to MYD21C1 cloudy time.

Figure 5. Density scatterplots of the daily mean LST samples from (a) GHA-LST, (b) CGLS, and (c) average daytime and nighttime
MYD21C1 pairs.

The GHA-LST data have satisfactory temporal continu-
ity and correspond to the ground measurements at hourly
and daily mean scales. At the hourly scale, the hourly LST
exhibits harmonic diurnal variations under clear-sky condi-
tions, especially at Fluxnet AU-Rig (Fig. 7c), where the cli-
mate is dry and cloud cover is low. In comparison, a more
complicated temporal pattern of LSTs is observed for contin-
uous cloudy time (e.g., BSRN CAB; Fig. 7b), indicating that
the harmonic function-based DTC models may not work well
in these cases. The GHA-LST data can capture the DTCs un-
der both clear-sky and cloudy-sky conditions and correspond
to the ground measurements and clear-sky CGLS. Certain
clear-sky CGLS points are scattered and have a clear neg-

ative bias (Fig. 7a) because they were detected as partially
covered pixels; thus, they were not used in the data assimila-
tion. At the AmeriFlux US-Ro1 site (Fig. 7d), GHA-LST is
more consistent with CGLS than the ground measurements
on clear-sky days; thus, we infer that US-Ro1 has a larger
heterogeneity issue than the other sites.

After temporal aggregation, the daily mean LST variation
in different years also demonstrated the continuity and stable
accuracy of the GHA-LST. The relatively larger differences
between the satellite datasets and ground measurements at
noon (hourly scale) and during summer (daily mean scale)
can be explained by site representativeness. A temporal vari-
ation analysis of accuracy (Jia et al., 2022a) suggests that
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Table 3. Validation statistics for different land cover types.

Land cover Clear-sky samples Cloudy-sky samples

Bias (K) RMSE (K) R2 N Bias (K) RMSE (K) R2 N

Evergreen needleleaf forests 0.03 3.29 0.90 187 100 0.50 2.78 0.89 281 421
Evergreen broadleaf forests 0.22 3.03 0.89 37 907 1.34 2.27 0.95 39 350
Deciduous broadleaf forests −1.26 3.26 0.94 190 753 −0.54 2.61 0.94 275 551
Mixed forests −1.03 2.97 0.96 90 369 0.19 2.83 0.95 176 405
Closed shrublands 1.19 3.80 0.94 21 781 0.61 3.21 0.91 12 760
Open shrublands −0.49 2.87 0.97 124 904 −0.28 4.07 0.96 184 840
Woody savannas −0.20 3.26 0.93 263 142 0.34 3.63 0.94 602 743
Savannas −0.56 3.06 0.95 182 085 0.06 3.03 0.96 318 231
Grasslands −0.25 3.66 0.84 571 722 0.19 3.95 0.92 552 178
Permanent wetlands 1.29 3.81 0.91 11 265 0.13 3.35 0.96 72 375
Croplands −0.28 3.10 0.95 522 715 0.15 2.72 0.94 790 227
Urban −0.61 3.80 0.94 59 698 −0.44 3.11 0.92 88 839
Barren −2.01 4.02 0.98 3925 −1.95 4.59 0.94 4812

ground measurements generally have the lowest representa-
tiveness at noon and that the RMSE statistics of hourly LST
products can increase by more than 1 K from nighttime to
noon. As solar radiation increases in the morning, LST has
distinct warming responses over different land cover types
in a pixel; thus, the spatial heterogeneity of the pixel is en-
hanced during daytime.

A global all-sky LST map was analyzed to demonstrate
the spatial continuity of the proposed GHA-LST dataset.
The global annual mean maps of all-sky LST from GHA-
LST and clear-sky LST from CGLS+MYD/MOD21 were
compared (Fig. 8). Overall, the GHA-LST data exhibit high
spatial continuity across the globe at different timescales.
The annual mean GHA-LST for 2021 (Fig. 8a) illus-
trates a reasonable spatial pattern. The annual LSTs from
CGLS+MYD/MOD21 (Fig. 8b) present a systematic clear-
sky bias (Ermida et al., 2019), especially in the connec-
tion regions of the CGLS and MODIS data (southwestern
Canada and Siberia), where clear artificial lines are shown.
In comparison, assimilating the clear-sky results to the time-
evolving model can produce more spatially consistent LST
maps.

At the hourly scale, the GHA-LST map (Fig. 8c) can also
produce the reasonable spatial variation in LST. Compared
with the clear-sky pixels in Fig. 8d, the cloudy-sky pixels of
the GHA-LST data (Fig. 8c) were well recovered. It should
be noted that the clear-sky map (Fig. 8b) had more spatial
textures than the all-sky annual mean map (Fig. 8a) because
clear-sky LSTs have higher spatial heterogeneity due to so-
lar heating. Furthermore, the various numbers of available
clear-sky days in different locations may cause spurious spa-
tial textures (e.g., lines at the connection region of CGLS
and MODIS). Additionally, the GHA-LST spatiotemporally
filtered clear-sky satellite LSTs using the simulated model
series, which may sacrifice spatial textures for data fusion.

To evaluate the ability of GHA-LST to capture spatial tex-
tures at regional scales, the GHA-LST annual means in the
Alaska and TP regions are shown in Fig. 9. These two ar-
eas were selected because they are hot spot regions in terms
of their response to climate change (Kuang and Jiao, 2016;
Melvin et al., 2017), and GHA-LST was recovered in these
two regions from MODIS and CGLS, respectively. The cor-
responding annual mean skin temperatures of ERA5 and the
Global Land Data Assimilation System (GLDAS) were also
included for comparison. ERA5 and GLDAS were employed
because global hourly all-sky LST is currently only avail-
able from reanalysis datasets, and both are widely used in
the relevant research (Muñoz-Sabater et al., 2021; Rodell et
al., 2004). GHA-LST has a spatial pattern similar to that of
the two reanalysis datasets but produces many more spatial
details. GHA-LST has a spatial resolution of ∼ 5 km; there-
fore, it can provide more spatial texture information than the
ERA5 (0.1◦) and GLDAS (0.25◦) data. GLDAS data have in-
valid pixels, mainly because GLDAS ignores all inland lakes.

3.4 Global anomaly analysis

To justify the potential use of LST in climate-warming-
related issues, the relationship between LST and surface
air temperature (AT) has recently been discussed. However,
previous studies have either focused on local site scales
(Hachem et al., 2012; Good, 2016; Sohrabinia et al., 2015;
Mutiibwa et al., 2015) or ignored the clear-sky LST bias
(Good et al., 2017). In comparison, the proposed GHA-LST
provides an exceptional opportunity to spatiotemporally up-
scale the all-sky hourly LST to allow for comparisons with
AT climate datasets. Monthly anomaly variations in global
LST and AT are shown in Fig. 10 by removing the seasonal
cycle in the daily mean temperature (Tmean), daily minimum
temperature (Tmin), daily maximum temperature (Tmax), and
diurnal temperature range (DTR).
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Figure 6. Global RMSE statistics at individual sites under (a) clear-sky and (b) cloudy-sky conditions.

Berkeley Earth Surface Temperatures (BEST; Rohde et al.,
2013); NASA Goddard Institute for Space Studies Surface
Temperature Analysis, version 4 (GISTEMP v4; Lenssen et
al., 2019); and Climatic Research Unit Temperature, ver-
sion 4 (CRUTEM4; Osborn and Jones, 2014), were used to
characterize the AT variation (Fig. 10a). Other all-sky LST
datasets were averaged and shown to verify the GHA-LST
anomaly, including two MODIS-derived gap-free results, as
shown in Table 1 (Hong et al., 2022; Zhang et al., 2022), and
the ERA5-Land reanalysis skin temperature. Only BEST and
GHA-LST can provide Tmax and Tmin; thus, they were used

in Fig. 10b, c, and d. The reference time period was 2015–
2017, and the uncertainty shadow in Fig. 10a is the SD of the
averaged LST/AT datasets.

The LST anomaly couples well with the global AT
anomaly at the Tmean and Tmin scales, and LST has a slightly
larger amplitude than AT, whereas the Tmax and DTR of the
two variables can only match the anomalous direction and the
magnitude is quite different. At the Tmean scale, anomalies of
GHA-LST and other LSTs have very similar variations with
the AT datasets, even though they have completely different
data sources (Fig. 10a). These findings are consistent with the
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Figure 7. Temporal variation in the (a–d) hourly LST and (e–h) daily mean LST at four sites: (a, e) SURFRAD SXF, (b, f) BSRN CAB, (c,
g) Fluxnet AU-Rig, and (d, h) AmeriFlux US-Ro1. The abbreviations used in the figure are as follows: SURFRAD SXF – “Surface Radiation
Budget Sioux Falls”; BSRN CAB – “Baseline Surface Radiation Network Cabauw”; AU-Rig – “Australia – Riggs Creek”; US-Ro1 – “United
States-Ro1”; GHAT – global hourly, 5 km, all-sky land surface temperature; and CGLS – Copernicus Global Land Service.

trend comparison between the ERA5-Land skin temperature
and AT (Wang et al., 2022). Both datasets have limited uncer-
tainty (shadowed areas), indicating that they can accurately
characterize the land surface thermal dynamics. In compar-
ison, LST had a slightly larger anomaly amplitude than AT,
which was mainly caused by the daytime LST. Solar heating
increases the temperature difference between LSTs and ATs
over different surface land cover types (Good et al., 2017).
Accordingly, Tmax exhibited the largest difference (Fig. 10b),
especially in years with large anomalies, thereby indicating

that LST Tmax had a stronger response to heat anomalies.
Tmin showed a higher correlation between the two variables
(Fig. 10c). LST has a considerably stronger DTR disturbance
than AT owing to the difference in Tmax (Fig. 10d). We did
not quantify the trend magnitude because the time span was
only 11 years and the overall trend was affected by the value
in 1 specific year. This analysis demonstrates the potential
usefulness of GHA-LST in climate studies and global hourly
AT estimates.

Earth Syst. Sci. Data, 15, 869–895, 2023 https://doi.org/10.5194/essd-15-869-2023



A. Jia et al.: Global hourly, 5 km, all-sky land surface temperature data from 2011 to 2021 883

Figure 8. Global LST maps of the (a) GHA-LST annual mean in 2021 and the (b) CGLS, MYD, and MOD21 annual mean in 2021 as
well as the corresponding hourly LST maps at 02:00 UTC on 7 September 2021 for (c) GHA-LST and (d) CGLS, MYD, and MOD21. The
abbreviations used in the figure are as follows: GHA-LST is the global hourly, 5 km, all-sky land surface temperature, and CGLS is the
Copernicus Global Land Service.

4 Discussion

The site RMSE statistics were compared with the corre-
sponding site elevations and latitudes to detect the potential
factors that impact the accuracy of the results (Fig. 11).

The RMSE statistics at each site were mainly affected by
the site elevation (Fig. 11). The scatterplots of site RMSE
and site elevation under clear-sky and cloudy-sky conditions
(Fig. 7a, b) show that the linear relationship was statistically
significant (p value < 0.01). We suppose that increasing el-
evation will decrease the spatial representativeness of the
sites; therefore, the RMSEs of the clear-sky results showed
an increasing trend. In addition, the cloudy-sky results had a
larger slope (Fig. 11b), indicating that they were more sensi-
tive to elevation variations. Thus, we inferred that elevation
was an essential factor affecting LST recovery. In these re-
gions with high elevation, clear-sky LSTs with larger RM-
SEs were assimilated in the time-evolving model, thereby
affecting the cloudy-sky results. In addition, modeled tem-
perature series include higher uncertainty in these regions,
and a relevant “cool bias” issue in highlands was found in re-
gional simulation models and global reanalysis datasets (Jia
et al., 2022d; Meng et al., 2018). Although the relationship
between the site RMSE and site latitude was not statistically
significant (Fig. 11c, d), the GHA-LST data at higher lati-
tudes produced higher RMSEs than the data at lower lati-
tudes, especially under cloudy-sky conditions; thus, we in-
ferred that high latitudes were frequently covered by clouds
and fewer clear-sky LSTs could be used in the data assimila-

tion. In addition, sites at higher latitudes are usually located
in coastal areas (Fig. 6a), which may limit their spatial rep-
resentativeness at the 5 km scale.

Furthermore, the spatial continuity at the regional scale
was evaluated. A detailed mapping examination suggests
that no artificial textures occurred under most conditions at
middle and low latitudes; however, at high latitudes where
MODIS swath data are the basic input data, swath edges are
observed on the map in some cases (Fig. 12).

Such spatial discontinuity occurs when the clear-sky LST
retrievals within a swath have considerable temperature dif-
ferences compared with that of spatially neighboring pixels
that are not covered by the swath. Regions at high latitude ex-
perience longer cloud durations than those at lower latitudes;
thus, pixels that are not covered by the swath might accumu-
late high uncertainties compared with the adjacent clear-sky
retrievals. Therefore, an artificial texture remained after the
data assimilation. Based on the literature review, spatial con-
tinuity is also a major issue for current MODIS LST products
due to substantially different view zenith angles and view
times of neighboring swaths after reprojection (Figs. 14 and
17 in Z.-L. Li et al., 2022). To address such discontinuity is-
sues, machine learning methods that incorporate additional
variables for estimating cloudy-sky LST can be used in the
future (Zhao et al., 2019).
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Figure 9. Temporally averaged all-sky LST maps in 2021 from (a, b) GHA-LST, (c, d) ERA5, and (e, f) GLDAS (a, c, e) over the Tibetan
Plateau and (b, d, f) Alaska. The abbreviations used in the figure are as follows: GHA-LST – global hourly, 5 km, all-sky land surface
temperature and GLDAS – Global Land Data Assimilation System.

5 Data availability

The GHA-LST dataset from 2011 to 2021 is freely avail-
able at https://doi.org/10.5281/zenodo.7487284 (Jia et al.,
2022b), as well as at the University of Maryland (http://
glass.umd.edu/allsky_LST/GHA-LST, last access: 10 Febru-
ary 2023; Jia et al., 2022c). Quality check (QC) flags are
also included: the “Bit 0” indicates the sky condition mask
(1 for clear sky and 0 for cloudy sky), and the “Bit 1” is the

cloud duration that represents the uncertainty level (0 denotes
≤ 10 d and 1 denotes > 10 d). The algorithm produced a sta-
ble accuracy within 10 d, as indicated by Jia et al. (2022a).

6 Conclusions

LST is an essential driving factor in the surface radiation
budget and hydrological cycling, and TIR-based satellite re-
trieval is the primary method used to obtain LST globally.
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Figure 10. Monthly anomaly variation in the globally geographically weighted LST and land surface air temperature (AT) at different scales:
(a) mean temperature (Tmean), (b) maximum temperature (Tmax), (c) minimum temperature (Tmin), and (d) diurnal temperature range (DTR).
The abbreviations used in the figure are as follows: GHA-LST – global hourly, 5 km, all-sky land surface temperature and BEST – Berkeley
Earth Surface Temperatures.

Figure 11. Scatterplots of the site RMSE against (a, b) elevation and (c, d) latitude under (a, c) clear-sky and (b, d) cloudy-sky conditions.
The significant linear relationships (p values < 0.01) are drawn (a, b).
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Figure 12. Case showing the artificial texture (middle of the image)
in northwestern Canada at 05:00 UTC on 2 January 2012.

However, TIR-derived LST has numerous data gaps, mainly
due to cloud cover, which seriously restricts the application
of current LST products. Studies have focused on produc-
ing all-sky LST products; nevertheless, global all-sky LSTs
on an hourly scale are still unavailable. Considering the high
temporal variability in the LST and the importance of the
DTC in evapotranspiration (ET) estimation, drought detec-
tion, and heat wave monitoring, we produced a global hourly,
5 km, all-sky land surface temperature dataset (GHA-LST)
from 2011 to 2021. The data are recovered using CGLS LST
products from geostationary satellites and the MYD/MOD21
products from polar-orbiting satellites. Moreover, GHA-LST
represents the first global gap-free LST product at an hourly
scale, and it has been comprehensively validated by in situ
measurements at 201 global sites in this study.

Based on the ground measurements from the SURFRAD,
BSRN, Fluxnet, AmeriFlux, HRB, and TP networks, the
overall RMSE of GHA-LST is 3.31 K, with a bias of−0.57 K
and R2 of 0.95. The comparisons of individual accuracy sug-
gest that the proposed GHA-LST dataset has better accu-
racy than the CGLS and MYD21C1 data under both clear-
sky and cloudy-sky conditions. In addition, the accuracy is
stable under both clear-sky and cloudy-sky conditions (RM-
SEs of ∼ 3.3 K with few biases based on different sampling
groups). The overall sampling amount was more than 5 mil-
lion, and we suppose that the overall validation can represent
the general accuracy of GHA-LST globally. In addition, after
temporal aggregation to the daily mean scale, the GHA-LST
dataset produced an RMSE of 1.76 K and significantly im-
proved the accuracy and data availability of the global daily
mean LST. The individual site validation indicated that the
GHA-LST dataset has similar accuracy in terms of spatial
patterns under different sky conditions. In comparison, the
cloudy-sky results had a larger spatial variance in accuracy.

Temporal analyses were performed for four representative
sites, and the GHA-LST dataset had a high temporal con-
tinuity and was consistent with the ground measurements
at hourly and daily mean scales. The temporal variation in

hourly LST also illustrated that mathematically predictable
DTCs cannot be obtained for locations with continuous
cloudy days, thereby highlighting the advantage of the time-
evolving model-based method used for the GHA-LST prod-
uct. Spatial analysis suggested that the GHA-LST dataset has
satisfactory spatial continuity over clear-sky and cloudy-sky
regions, and artificial textures were not observed. Regional
mapping analysis of the TP and Alaska regions demonstrated
that GHA-LST can capture greater spatial detail than reanal-
ysis datasets, which were the only data source for obtain-
ing hourly gap-free LSTs before this study. The monthly
anomaly analysis indicated that the GHA-LST anomalies are
consistent with global AT datasets and other LST datasets at
the Tmean and Tmin scales, whereas the Tmax and DTR of the
LSTs and ATs are only consistent with the anomalous direc-
tion when the magnitudes are different.

In the future, additional clear-sky LST products, such as
the Visible Infrared Imaging Radiometer Suite (VIIRS) and
Advanced Very High Resolution Radiometer (AVHRR), can
also be assimilated to increase the time span and spatial reso-
lution of the proposed dataset. Machine learning can be em-
ployed to effectively incorporate information from ground
measurements, spatial textures, and related factors (e.g., el-
evation, soil moisture, land cover, and wind speed). GHA-
LST represents the first gap-free LST dataset at an hourly,
5 km scale over the globe, and it has satisfactory accuracy
and great potential for use in estimating global plant water
stress, monitoring extreme weather, and advancing meteoro-
logical forecasting models.
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Appendix A

Table A1. Validation statistics of each site.

Network Site Clear-sky samples Cloudy-sky samples

Bias RMSE R2 N Bias RMSE R2 N

SURFRAD BND −0.34 2.34 0.97 36 983 0.90 2.32 0.96 50 266
FPK −1.17 2.94 0.97 36 910 −0.17 2.93 0.96 50 501
GWN 0.64 2.80 0.95 42 136 0.64 2.85 0.91 44 621
PSU −0.81 2.75 0.96 34 317 −0.50 2.23 0.96 52 809
SXF −0.42 2.32 0.98 37 649 0.39 2.48 0.96 49 400

BSRN bar 0.11 2.69 0.97 25 941 −0.12 3.33 0.94 48 341
bud 0.87 3.66 0.94 4942 −0.92 3.49 0.91 7939
cab −0.53 2.18 0.95 22 129 0.28 1.84 0.93 40 650
dar −2.38 4.66 0.86 14 516 −1.18 3.89 0.48 20 617
e13 −0.31 2.39 0.97 37 930 0.93 2.93 0.94 35 193
pay 0.79 2.26 0.96 29 785 −0.42 2.36 0.92 54 290
sel −1.55 3.38 0.90 3605 −2.95 3.99 0.84 4843
spo 0.45 3.61 0.92 2681 0.22 3.81 0.91 5810
tat 0.01 3.35 0.95 36 718 0.03 2.51 0.93 50 949
tik 0.05 3.55 0.97 12 411 −0.65 4.28 0.94 57 405
tor −1.13 3.53 0.95 12 559 −0.80 2.87 0.93 70 797

Fluxnet AU-ASM 1.59 3.80 0.94 21 781 0.61 3.21 0.90 12 760
AU-Cpr 0.20 3.55 0.96 19 103 1.74 3.27 0.93 14 607
AU-DaP 3.36 4.98 0.89 11 696 3.95 4.81 0.80 11 099
AU-DaS 0.59 3.37 0.89 17 051 1.07 2.49 0.85 16 929
AU-Dry −1.96 3.63 0.92 14 357 −2.27 3.48 0.86 11 939
AU-Emr 0.94 2.99 0.95 13 603 0.95 2.85 0.89 8054
AU-Gin 0.50 2.44 0.95 15 637 0.45 3.42 0.87 9008
AU-GWW 0.71 3.13 0.98 6328 1.70 4.04 0.92 3712
AU-RDF 0.23 3.01 0.91 7611 0.17 2.67 0.83 6871
AU-Rig −0.01 2.53 0.96 17 709 0.28 2.39 0.92 12 438
AU-Rob −0.15 2.79 0.73 4762 0.54 1.33 0.88 3864
AU-Stp 0.92 2.99 0.94 18 748 0.50 3.34 0.84 14 097
AU-Whr 0.50 3.17 0.94 14 734 0.25 1.67 0.95 12 076
AU-Wom 0.35 3.47 0.89 16 156 1.04 1.91 0.93 17 560
AU-Ync 0.64 2.44 0.97 10 896 1.26 3.21 0.92 7989
BE-Lon −0.60 2.35 0.94 9418 0.55 1.70 0.95 24 109
CA-Gro −0.86 2.40 0.98 10 517 0.85 1.99 0.98 19 025
CH-Cha 2.15 3.48 0.94 5909 −0.41 2.73 0.92 11 457
CH-Dav −0.63 4.14 0.90 4289 −0.55 4.88 0.77 4412
CH-Fru 3.50 5.85 0.75 368 3.21 4.64 0.85 90
CN-Sw2 1.31 2.37 0.97 36 −0.29 2.23 0.46 11
CZ-BK1 0.02 2.64 0.94 9109 1.16 2.86 0.91 20 696
CZ-wet 1.64 4.06 0.88 7983 0.27 3.19 0.86 11 327
DE-Akm 0.54 1.94 0.96 9771 1.21 1.95 0.96 20 507
DE-Geb −0.28 2.66 0.94 9599 −0.18 2.59 0.92 25 439
DE-Gri 2.31 4.18 0.92 9857 0.94 2.54 0.93 24 950
DE-Hai −0.77 3.42 0.89 4910 0.80 2.62 0.90 12 100
DE-Kli −0.96 3.66 0.89 9558 0.18 2.72 0.90 24 733
DE-Lnf −0.71 3.97 0.84 4835 0.74 2.63 0.89 11 927
DE-Obe −1.56 3.30 0.93 10 758 0.60 2.86 0.89 23 689
DE-RuR 0.02 2.39 0.93 7775 0.17 1.69 0.95 22 683
DE-RuS 0.22 2.77 0.92 5938 0.30 1.84 0.94 16 662
DE-SfN 0.70 2.86 0.94 5497 −1.18 2.70 0.92 15 626
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Table A1. Continued.

Network Site Clear-sky samples Cloudy-sky samples

Bias RMSE R2 N Bias RMSE R2 N

Fluxnet DE-Spw −0.50 2.35 0.95 9326 1.01 1.86 0.97 23 628
DE-Tha −1.68 3.18 0.94 9873 0.20 2.25 0.93 25 184
DE-Zrk −1.33 2.86 0.91 4559 0.00 1.95 0.93 9525
DK-Sor −0.94 3.02 0.91 7224 1.09 3.22 0.84 17 380
FI-Hyy −0.65 1.29 0.99 24 −0.38 1.74 0.97 264
FR-Pue 1.41 3.35 0.92 14 666 0.24 2.25 0.92 17 435
GF-Guy −0.16 2.89 0.33 7675 0.95 1.66 0.41 9819
GH-Ank 0.50 2.40 0.57 9314 2.86 3.62 0.49 8107
IT-CA1 −0.61 2.55 0.96 12 906 −1.64 2.81 0.92 11 233
IT-Isp −0.17 2.67 0.93 7082 −1.10 2.54 0.91 10 436
IT-Ren 2.31 4.63 0.87 9756 2.95 5.88 0.71 12 239
IT-SR2 3.21 4.27 0.91 3492 1.56 2.71 0.90 17 518
NL-Hor 0.55 2.81 0.86 2969 0.32 1.79 0.92 5737
NL-Loo −0.69 2.99 0.90 9372 0.76 1.77 0.95 15 435
RU-Fyo −0.46 2.05 0.96 238 0.77 2.22 0.96 7008
RU-Sam −0.76 2.88 0.98 1644 0.81 3.97 0.95 9583
RU-SkP −3.05 5.34 0.97 864 −1.63 3.30 0.98 1971
US-AR1 −1.31 3.49 0.96 10 508 −0.24 3.03 0.95 6996
US-AR2 −0.83 3.79 0.95 7432 −0.11 2.97 0.96 5464
US-CRT −0.83 2.78 0.96 10 347 0.43 2.07 0.97 15 745
US-Los −0.08 2.70 0.97 3021 0.15 2.17 0.97 4542
US-Me2 0.34 2.75 0.95 12 973 0.23 3.51 0.90 19 078
US-Ne1 0.92 3.13 0.96 10 294 2.62 3.83 0.95 10 852
US-NR1 −1.02 3.66 0.92 16 549 0.47 3.92 0.86 18 482
US-Oho −0.40 3.67 0.95 10 223 1.16 2.70 0.96 16 047
US-Prr 1.73 4.60 0.93 863 0.11 3.86 0.94 3674
US-SRC −0.58 2.43 0.98 15 668 −0.47 3.85 0.91 11 042
US-SRG 2.25 3.81 0.95 21 746 2.24 4.64 0.89 12 345
US-Syv −2.01 3.01 0.98 7748 −0.66 2.18 0.97 11 231
US-Tw1 2.85 4.50 0.92 14 013 2.39 3.39 0.92 7556
US-UMB −1.62 3.11 0.97 11 318 0.48 2.28 0.97 20 943
US-Var −1.56 4.09 0.94 21 334 −1.75 3.66 0.92 13 087
US-WCr −2.47 4.86 0.95 220 −1.56 4.52 0.95 2110
US-Whs −1.15 2.31 0.98 19 711 −0.19 3.79 0.92 14 735
US-Wkg −0.98 3.04 0.97 20 263 −0.26 3.96 0.91 13 703
US-WPT −2.00 3.51 0.95 10 666 −0.21 2.02 0.96 14 589
BR-Npw 0.76 2.40 0.91 8409 2.01 3.24 0.72 12 547
CA-SCB 0.86 3.04 0.96 18 819 0.49 4.05 0.93 26 292
DE-Dgw −1.49 3.75 0.87 6103 −0.36 2.81 0.87 17 270
FI-Sii −1.14 4.39 0.87 655 −0.44 4.55 0.88 19 230
FR-LGt 2.16 4.04 0.91 3863 1.50 3.06 0.90 6792
ID-Pag 1.29 2.73 0.61 1361 0.66 1.74 0.65 3877
JP-BBY 0.25 3.05 0.95 10 928 0.27 2.92 0.94 23 698
JP-Mse −0.27 3.48 0.94 3501 0.69 2.20 0.95 5199
JP-SwL −2.00 4.45 0.84 3522 −1.53 4.39 0.77 4334
KR-CRK −0.87 3.03 0.95 16 752 −0.79 2.31 0.96 15 019
NZ-Kop −0.50 2.53 0.90 16 963 0.72 2.36 0.88 18 010
PH-RiF −2.70 3.91 0.75 2213 −0.35 1.96 0.72 6215
US-Bi1 2.98 4.49 0.90 12 504 2.92 4.30 0.84 8264
US-BZB 2.51 5.48 0.93 8946 1.45 4.86 0.92 23 668
US-EML −0.98 4.01 0.93 4492 −0.81 3.96 0.92 19 278
US-Ho1 −1.28 2.38 0.98 23 048 0.81 1.96 0.97 30 691
US-HRA −0.01 3.36 0.78 1582 0.39 2.71 0.73 1645
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Table A1. Continued.

Network Site Clear-sky samples Cloudy-sky samples

Bias RMSE R2 N Bias RMSE R2 N

Fluxnet US-MRM 1.63 3.74 0.90 851 1.28 3.58 0.91 8514
US-NC4 −0.14 1.96 0.95 6969 0.29 1.73 0.94 7481
US-NGC 1.05 5.21 0.45 1226 −1.40 4.49 0.65 4598
US-Sne 2.23 4.80 0.88 13 559 1.92 3.38 0.90 9069
US-Uaf 2.23 4.43 0.95 21 801 1.87 4.86 0.93 69 880

AmeriFlux CA-ARB −0.74 2.91 0.98 14 549 1.34 3.88 0.95 26 437
CA-Ca3 0.45 2.86 0.98 22 291 1.05 2.57 0.89 80 737
CA-Cbo −0.10 2.99 0.96 30 675 1.55 2.80 0.96 53 145
CA-DB2 1.34 3.92 0.91 2069 −0.29 3.14 0.84 9357
CA-HPC 2.12 4.75 0.92 1246 0.43 3.96 0.90 5235
CA-LP1 −0.84 3.82 0.93 21 152 −0.76 4.14 0.91 85 705
CA-SMC 1.44 3.98 0.94 1584 −0.50 4.29 0.92 6376
CA-TVC 0.77 4.31 0.96 597 0.44 4.23 0.93 7059
CR-Fsc −1.69 2.83 0.89 4375 −1.10 2.21 0.79 5075
MX-Aog 0.68 4.09 0.82 13 245 −0.40 3.47 0.76 9890
MX-Ray −0.81 4.30 0.82 1696 −0.58 4.19 0.74 1369
PR-xGU −1.30 3.01 0.84 8677 0.99 3.04 0.64 5644
US-A32 0.58 2.54 0.97 8069 1.23 3.07 0.94 7247
US-A74 0.47 2.53 0.96 5684 1.46 3.21 0.91 5129
US-ALQ 0.24 4.24 0.92 6691 0.02 3.16 0.93 9417
US-Aud 1.54 2.99 0.98 3896 2.09 4.49 0.88 2342
US-Br1 −0.45 2.88 0.96 3189 0.85 2.67 0.96 4219
US-BRG 1.03 3.22 0.94 15 519 0.98 2.72 0.94 21 042
US-CPk −0.70 4.79 0.86 9156 −0.19 4.44 0.85 11 985
US-CS1 −0.04 2.55 0.97 2503 0.56 2.32 0.97 4840
US-Cwt −0.34 3.44 0.87 18 318 −2.15 2.98 0.93 21 479
US-DFC −0.87 2.82 0.96 4238 0.22 2.39 0.95 6946
US-HB2 0.19 1.77 0.96 3965 0.63 1.65 0.95 4221
US-HBK −2.43 3.30 0.97 8713 −1.81 2.99 0.95 12 407
US-HWB −1.67 3.04 0.95 11 420 −1.09 2.26 0.96 15 504
US-Jo1 −1.30 2.85 0.98 30 406 −0.74 4.02 0.92 24 292
US-KFS 0.12 3.97 0.91 25 297 1.03 4.36 0.87 29 666
US-KM4 0.96 3.44 0.93 33 623 1.31 2.66 0.96 48 132
US-Kon 0.11 4.76 0.89 12 873 0.84 4.11 0.89 14 146
US-MC2 0.91 3.82 0.84 1515 −0.88 3.16 0.80 1551
US-MH1 2.40 4.13 0.91 864 3.32 5.50 0.87 1469
US-Mj1 0.77 3.10 0.93 903 0.91 3.76 0.85 818
US-MOz −1.07 3.09 0.95 32 259 0.46 1.99 0.97 38 554
US-Mpj 1.14 4.84 0.93 49 525 2.19 5.86 0.87 36 528
US-MRf 0.37 2.52 0.91 1220 1.38 2.93 0.84 2455
US-MSR 0.72 4.99 0.82 1056 0.20 5.37 0.72 1383
US-MVF 0.65 2.54 0.97 1237 −0.14 3.83 0.89 1807
US-MWA −1.89 3.74 0.93 7021 −0.32 2.05 0.97 13 027
US-MWF −1.28 2.85 0.95 6609 0.01 1.62 0.98 12 025
US-MWW −2.13 4.02 0.91 7136 −1.70 2.80 0.95 11 146
US-NC1 1.91 2.86 0.96 8453 1.84 2.77 0.94 9058
US-ONA −0.41 2.35 0.93 20 058 0.85 2.34 0.89 19 570
US-PFb 0.49 2.61 0.80 839 2.72 3.64 0.84 846
US-PFk −0.89 1.70 0.94 845 1.44 2.03 0.96 885
US-PHM −1.02 3.29 0.90 11 040 −0.16 3.78 0.77 25 556
US-Rls 0.47 3.99 0.93 24 093 −0.39 4.58 0.86 27 506
US-Ro1 0.08 2.96 0.96 18 488 0.00 2.46 0.96 24 116
US-Rpf −0.48 3.34 0.95 2054 0.28 3.59 0.94 63 663
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Table A1. Continued.

Network Site Clear-sky samples Cloudy-sky samples

Bias RMSE R2 N Bias RMSE R2 N

AmeriFlux US-Seg −0.31 2.35 0.98 46 399 −0.20 4.04 0.92 38 404
US-Skr 1.46 3.14 0.77 3282 3.46 4.84 0.65 2707
US-Slt −0.30 1.91 0.97 8329 1.59 2.48 0.96 9199
US-TrB −3.27 4.06 0.93 2256 −2.62 3.43 0.94 2715
US-Tur −1.52 4.31 0.71 509 −0.19 4.21 0.68 1687
US-UiA 1.49 3.14 0.96 3830 1.01 2.33 0.96 4907
US-Vcm 0.10 3.76 0.90 45 014 0.64 4.60 0.80 34 198
US-Vcs −1.09 3.81 0.90 24 731 −1.23 4.69 0.79 18 661
US-Wgr 0.14 3.17 0.92 3108 −0.35 2.45 0.90 4191
US-Wjs 0.59 4.62 0.93 42 573 1.16 5.29 0.88 34 057
US-Wpp 1.26 4.86 0.77 2723 0.82 4.43 0.70 3381
US-Wrc −0.80 3.05 0.92 13 709 −1.57 2.54 0.93 25 363
US-xAB −0.32 2.30 0.94 9821 −0.19 1.96 0.91 18 766
US-xAE −2.71 4.41 0.94 15 088 −0.99 3.14 0.94 13 825
US-xBL −1.88 3.04 0.96 12 366 −1.01 2.33 0.96 17 532
US-xBR −3.18 3.95 0.97 14 553 −2.78 3.59 0.96 20 114
US-xCP −2.19 3.05 0.98 15 172 −0.96 4.59 0.90 18 990
US-xDC −2.22 3.41 0.97 12 281 −1.30 2.74 0.97 16 593
US-xDJ −0.72 3.62 0.94 1186 −1.59 4.03 0.94 32 892
US-xDL −0.55 2.78 0.91 14 189 1.05 2.56 0.92 17 607
US-xDS −1.30 2.64 0.94 16 311 −0.71 2.34 0.88 17 426
US-xGR −1.52 3.33 0.91 11 223 −2.71 3.79 0.91 16 486
US-xHA −2.01 2.86 0.97 13 716 −0.65 2.07 0.96 18 138
US-xJE −1.73 3.80 0.88 15 472 −0.20 2.65 0.90 16 721
US-xJR −1.19 3.06 0.97 17 076 −0.54 4.09 0.92 11 774
US-xKA −2.16 3.57 0.96 13 431 −0.84 2.79 0.95 14 802
US-xLE −1.53 3.11 0.92 11 741 0.34 1.98 0.94 13 226
US-xMB −2.54 3.61 0.98 15 039 −2.31 4.81 0.93 13 100
US-xML −1.75 3.37 0.92 12 540 −0.63 3.50 0.87 16 124
US-xNG −1.91 3.35 0.97 10 233 −0.15 2.85 0.96 16 173
US-xNQ −1.90 3.36 0.97 13 902 −1.44 4.63 0.91 14 718
US-xRM −1.61 3.38 0.93 14 558 −1.59 4.45 0.84 16 957
US-xSB −1.61 2.64 0.94 15 547 −1.02 2.25 0.90 17 909
US-xSC −1.32 3.70 0.91 13 934 −1.00 2.67 0.94 20 575
US-xSE −0.91 2.36 0.96 14 088 −0.11 1.74 0.96 18 191
US-xSL −1.83 3.52 0.96 14 314 −0.63 4.39 0.89 15 042
US-xSP −3.52 4.13 0.96 16 381 −2.63 3.88 0.90 10 012
US-xST −2.19 2.95 0.98 10 986 −0.55 2.08 0.97 17 499
US-xTA −3.32 4.01 0.94 13 180 −0.40 2.05 0.94 15 434
US-xUN −2.53 3.12 0.98 13 573 −1.09 2.13 0.98 20 054
US-xWD −1.76 2.99 0.98 11 784 −0.53 2.44 0.97 17 020

HRB ArouCJZ −0.26 4.43 0.93 3624 −0.65 5.76 0.79 5111
BajitanGB −2.72 4.03 0.98 3925 −2.35 4.70 0.93 4812
DamanCJZ −0.03 2.95 0.96 3815 1.62 5.07 0.89 4729

TP biru −0.76 4.89 0.89 3451 −0.45 4.72 0.87 3584
namucuo −0.23 4.01 0.90 3321 0.12 4.22 0.90 3412
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