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INTRODUCTION 

 

The wide application of thin film materials in different 

fields of electronics (micro-, nanoelectronics et al.) stimulates 

carrying out and further development of experimental and 

theoretical methods of investigation of their physical 

properties. It is well known that thin film materials are 

characterized by physical properties, which significantly differ 

from similar in bulk state. It is associated with two mean 

reasons. The first one is dependence of thin film crystal 

structure from preparation conditions. The second one is 

physical properties dependence from thickness or other thin 

film linear size. Since experimental and theoretical methods 

supply each other, after studying the first one in the frame of 

bachelor level the logical continuation is studying theoretical 

methods that require more substantial mathematical 

prerequisite. For this reason our English courses (at parallel 

studying in Ukrainian) are a part of education program of 

master level. 

Since size effects (SE) in electrophysical properties 

play an important role in physical properties of thin film 

materials it will be the main subject of analysis in the frame of 

this study guide. In consideration that thermodynamic SE play 

less marked role we proposed to students another study guide 

which reviews all questions according to thermodynamics of 

small size systems. 

The study guide contains problems, which are pointed 

at developing students’ problem-solving ability. 

The authors appreciate reviewers Professor 

Lopatkin Yu. M. and Ph. D. Danylchenko S. M. for their 

comments relative to study guide content. 

 



 6 

SECTION 1 

Size effects in electrical resistivity of thin films 

 

1.1 Introduction  

 

Thin film materials are widely used at developing 

microelectronics resource base, different types of sensors and 

devices because of their unique physical properties in comparison 

with materials in bulk state. There are two types of effects in films 

which can change their physical properties. One type is related to 

film structural state (amorphous, mono- or polycrystalline) and 

the other one to size effect phenomenon. Size effect is 

dependence of physical properties on film thickness or mean grain 

size. Investigations of these effects are important for better 

understanding thin film physical properties and their usefulness in 

practical application. 

The size effect (SE) in electrophysical properties appears 

when mean free path of charge carrier (λ) is comparable to the 

film thickness (d). In this section, the SE in electrical resistivity of 

thin film materials is considered from the point of view that mean 

free path of charge carrier is bordered by internal surface of the 

films or geometrical size of crystallites. In the first case, 

parameters, such as, resistance (R) or temperature coefficient of 

resistance (TCR), depend on thin film thickness, and external size 

effect (ESE) appears. In the second case, parameters depend on 

mean size of crystallites and internal size effect (ISE) appears.  

 

1.2 The geometry of thin film and types of electron 

scattering  

 

The geometry of thin films with thickness d considered 

in this section is shown in Fig. 1.1. It is assumed that film has 

isotropic bulk mean free paths λ0 and fine-grain crystallites 

with an average size L.  



 7 

 
 

Figure 1.1 – The geometry of thin film and types of 

electron scattering: p is the specularity parameter; R is the 

reflection parameter; r is the transmission parameter; GB is 

grain boundary 

 

The resistivity (ρ) is a base parameter which affects 

electronic, strain, magnetic, etc. properties of thin film 

materials. The value of resistivity increases when the film 

thickness and mean free path became of the same order. In 

general case there is a great number of types of electron 

scattering which changed total value of resistivity. However, at 

theoretical interpretation of size effect the following various 

idealized sources of scattering are considered: 

1. External surfaces of the film.  

This source of scattering is described by the specularity 

parameter p. Specularity parameter p is a probability of 

electron scattering on the external surfaces of the films. In the 

case when p = 0 the electron scattering at external surfaces is 

diffusive and scattered electrons slide along surfaces and do 

not contribute to the electrical resistance.  

2. Grain boundary.  

Grain boundaries can be represented as array of 

scattering planes. This source of scattering is described by 

electronic reflection coefficient R, which defines the 

probability of electron reflection at the grain boundaries and 



 8 

transmission coefficient r which defines the probability of 

coherent passage of the electron across the grain boundaries.  

 

1.3 The Fuchs and Sondheimer (FS) model for metal 

films 

 

The first time systematical investigation of the 

thicknesses influence on the film resistance was done by Fuchs 

(1938) and Sondheimer (1950–1952) (the Fuchs and 

Sondheimer model). 

The FS model can be summarized as follows: 

– model described size dependence of resistivity for 

monocrystalline thin film; 

– film has isotropic bulk mean free paths λ0; 

– the electron scattering on grain boundaries is not taken into 

account; 

– scattering at the external film surfaces is described by 

specularity parameter p. The value of this parameter is 

limited by the condition 0 ≤ p < 1, p = 0 is the case of 

entirely diffuse scattering, p = 1 is the case of entirely 

specular scattering;  

– the simplest boundary condition is obtained by assuming that 

the electron scattering at external surfaces is entirely diffuse 

(p = 0) so that the electrons do not contribute to the electrical 

current. 

The geometry of the FS model is presented in Fig. 1.2. 

Thin film limited by the surfaces z = 0 and z = d is subjected to  

 

 
 

Figure 1.2 – The geometry of FS model [10] 
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an electrical field E in the x direction. 

It is necessary to solve the kinetic equation of 

Boltzmann to obtain functional dependency ρ(d): 
 

 
* r

e f
E grad f grad f

m t
 

 
       

 
, (1.1) 

 

where of ff

t 

 
  

 
 – collision integral which describes 

collision of electrons with phonons or with imperfections in the 

lattice, f0 is the equilibrium distribution (distribution function 

when the electrical field is absence), f is a deviation from the 

Fermi-Dirac function f0 induced by the electrical field E, 

τ = 10-9 seconds is the relaxation time (the time of electrons 

transition from f to f0 state), e is the electron charge, m* is the 

electron effective mass, υ is the electron velocity.  

The distribution function f of the electrons for the film 

in the electrical field can be written as 
 

 f = f0 + f1(υ, z),  (1.2) 
 

where f1(υ, z) depends on the space variables only through z.  

For electrical field Ex applied in the x direction, the equation is 

(1.1) reduced to 

 

 01 1

*

z z z

ff f eE

z t m  


  

  
. (1.1´) 

 

The calculation of the current density J(z) across the 

thickness d starts with the formula 

 

 .2)z( 13

*

zyx

x x x

x dddf
h

m
еJ

x y y

  







  (1.3) 
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To obtain overall equation for electrical conductivity 

the integration of (1.3) is carried out over z:  

 

  
0

1
.

d

x

J z dz
E d

    (1.4) 

 

Taking into account that ρ = 1/σ we obtain the general 

equation of the FS model for resistivity 

 

 

1

3 50

1

3 (1 ) 1
1 ( )

8 1

kT

kT

p e
t t dt

d pe








 



  
   

 
 , (1.5) 

 

where   is the resistivity of bulk material with the same type 

and concentration of defects as in the thin film, 0  is the mean 

free path of electrons in bulk material, k is the reduced 

thickness i. e. the ration of the film thickness d to the mean free 

path 0  (
0

d
k  ), 1cos ,t    where Θ is angle between 

velocity vector υ and direction z. 
The limiting form of equation (1.5) for thick films is 

 

 

 0

0

13
1

8

f p

d

 

 


   , 1,k   (1.7) 

 

and for very thin films 

 

 

1

0 0

0

4 1
ln ,

3 1

f p

p d d

  

 





  
   

  
 1,k   (1.8) 

where ρ0 is the resistivity of bulk monocrystalline, ρf is 

resistivity of the film. 
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Theoretical values for the resistivity ratio ρf/ρ0 as a 

function of the reduced thickness k are presented in Fig. 1.3. 

 

 
 

Figure 1.3 – Theoretical dependences of relative 

changes in the resistivity ρf/ρ0 compared to reduced thickness k 

for different values of specularity coefficient p 

 

1.4 The method of experimental determination of FS 

parameters  

 

The main equation of FS model is difficult for calculation 

and comparison with experimental data, so for interpreted 

experiments on thin film resistivity in terms of FS theory it is 

reasonable to fit data with limiting forms (1.7) and (1.8).  

Generally, to compare experimental data with the 

calculation data on the base of the limiting forms of FS model 

it is necessary to linearize the equations (1.7) or (1.8). 

 

 



 12 

1.4.1 The limiting case of FS model for thick films 
 

Let’s consider the case k >> 1. 

The equation (1.7) can be rewritten in the form: 

a) k >> 1, when d >> λ0 but T is normal or when T is low and d 

is normal (see Fig. 1.4): 

  

 


 




d

p)1(

8

3 0  or (1.7´) 

 

b) k << 1, when d << λ0 but T is normal or when T is high and d 

is normal (see Fig. 1.4): 

 

 .)1(
8

3
0    pdd  (1.7´´) 

 

The equation (1.7´´) is the equation of a straight line 

ρd = A + Bd with a slope of the resisitivity of bulk material   

and an ordinate intercept of 8/)1(3 0   pА  (Fig. 1.5).  

 

 
 

Figure 1.4 – Temperature dependence of mean free path 

for thin film materials at d = const 
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Figure 1.5 – Experimental size dependence of the thin 

film resistivity (a) and dependence ρd compared to d (the 

limiting case of FS model for thick films) (b). The values of ρ∞ 

and ρ0 are the asymptotes of exponential dependence  

 

Obtaining a slope equal to the value of  , one cannot 

deduce separately the value of λ0 and (1–p) from the ordinate 

intercept. The estimation of mean free path value can be done 

in the case of entirely diffuse scattering (p = 0). 

 

1.4.2 The limiting case of FS model for very thin 

films 

 

According to above procedure it appears that a 

procedure for determining the electrical parameters in the case 

of very thin film consist of the next steps: 

1) rewriting the equation (1.8) in the form 

 

 















 




1

00 ln
1

1

3

4

ddp

p
 or (1.8´) 
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    
1

0

0

3 1 1
ln ln ;

4 1

p
d d

p
 

 






 


 (1.8´´) 

 

2) plotting the data in the form   1
d  compared to ln d 

to determine the value of mean free path (Fig. 1.6). The 

abscissa intercept is value of ln d = ln λ0;  

 

 
 

Figure 1.6 – Experimental size dependence of the thin 

film resistivity (a) and dependence 1/ρd compared to lnd (the 

limiting case of the FS model for very thin films) (b)  

  

3) using the value of specularity parameter p = 0 find 

the value of resistivity of bulk material  . The ordinate 

intercept is value of .ln
1

1

1

4

3
0

0


 




p

p
С  

Note, that the same experimental results coordinate with 

FS model, whereas others show marked departures that may be 

attributed to significant grain boundary scattering. Besides, 

experimental size dependence ρ(d) is out of keeping to 

hyperbolic law ρ ~ d –1 which follows from FS model. 
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1.5 Theoretical bases of Mayadas – Shatzkes (MS) 

model  

 

The theoretical model for total film resistivity was 

proposed by Mayadas and Shatzkes. According to their 

framework the grain boundaries can be represented as parallel, 

partially reflecting planes, randomly spaced but perpendicular 

both to the field E and to the plane of the film.  

The distribution function f1(υ,z) of the conduction 

electrons is assumed to be due to the superimposed effects of 

background scattering and of scattering at the grain boundaries. 

In this case the kinetic equation of Boltzmann for infinitely 

thick film can be written as  

 

  )(
1

)()(),(
)(

1

0

111
0 kfdkkfkfkkp

kf
eE xx


 




   

 (1.9) 

 

with the same notation as in paragraph 1.3. The value p1(k, k´) 

is transition probability for an electronic state k to state k´ by 

grain boundaries.  

The solution for Boltzmann’s equation is 

 

 ,)( 0*

11








f
eEkf xx  (1.10) 

 

where the relaxation time *

1  is related to both the background 

and grain boundary scattering and can be obtained in the form 

 

 
*

0 0

1 1
,F

F

k

k



 
   (1.11) 

 

where kF is the magnitude of Fermi wave vector.   
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An approximation equation for current density Jx is 

 

 

,x g xJ E

   

1
F

BT


 , (1.12) 

 

where B is Boltzmann’s constant with 

  

 0 ,g f     (1.13) 

  2 33 1
1 3 3 ln 1 ,

2
f    



 
     

 
 (1.14) 

,
1

0

R

R

L 



  (1.15) 

 

where σg is the conductivity of infinitely thick polycrystalline 

film, f(α) is the function of grain boundary scattering, α is 

scattering parameter, L is the mean grain size, R is the specular 

reflection parameter at the grain boundaries. 

The general expression of the film resistivity is derived 

from the resistivity equation obtained in the FS model and 

gives 

 

 

  ,
1

1

),(

cos)1(61
1

2/

0 1

53

2

2

0









































  






ktH

ktH

g pe

e
tt

tH
dtd

k

p
 

  (1.16) 

 

where ρg is the resistivity of infinitely thick polycrystalline 

film, 
21cos

1),(
t

tH





,  1_

cost , where Θ is angle 

between velocity vector υ and direction z. 
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1.6 The approximation relationship of Tellier, 

Tosser and Pichard 

 

1.6.1 The effective mean free path model 

 

The theoretical model proposed by Mayadas and 

Shatzkes is very difficult for determination of electrical 

parameters. So Tellier, Tosser and Pichard proposed several 

alternative methods of  MS model simplification.  

Mayadas and Shatzkes  have suggested that it might be 

hoped that an “effective intrinsic mean free path” can be 

definable for a polycrystal, but no theoretical basis has been 

proposed for sustaining this physical point of view. 

The theoretical validity of this empirical assumption 

can be established by assuming that a unique mean free path 

can represent the electronic scattering from sources other than 

external surfaces. This unique mean free path is called 

“effective” mean free path λg and is defined by  

 

 )(0  fg  . (1.17) 

 

The Boltzmann equation then becomes  

 

 

 
.

)(

)(

1

0

00

z

kf

f

kff
eE xxx












 


  (1.18) 

 

The main equation for the reduced resistivity is  

 

 .)()(
)1(

8

3
1 10

0








 
 






ff

d

p
 (1.19) 

 

At ( 1)( f ) the equation of “effective” mean free 

path model is similar to the main equation of FS model. 
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For temperature coefficient of resistance (TCR) the 

equation (1.19) can be rewritten as  

 

 ,
)(

)(
1)(

)1(

8

3
1

1

0

0

















 















f

g
f

d

p
 (1.20) 

 

where β0 is the temperature coefficient of resistance of bulk 

monocrystalline material, 



d

df
g )( . 

Protsenko et al. shown that equation (1.20) for TCR can 

be simplified. Using the method of numerical calculation it has 

been shown that value of multiplier 
)(

)(
1





f

g
  is equal to value 

of grain boundary scattering function, i. e. )(
)(

)(
1 




f

f

g
  at 

α ≤ 10. 

In this case the equation (1.20) yields  

 

 















 




)(

)(
1)()(

)1(

8

3
1

1

0

0 










f

g
ff

d

p
 (1.20´) 

 

and on the assumption that 1)(
)1(

8

3 0 





f
d

p
 the equation 

(1.20) then becomes  

 

 ).()(
)1(

8

3
1 0

0







ff

d

p








 
  (1.20´´) 

 

There are two methods of determination of values of  

λ0(1–p) and R. The first one is comparison of experimental and 

fit data with equations (1.19) and (1.20´´). The correct result 
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corresponds to minimum deviation of experimental and 

calculated data. The second one is joint solution of equations 

(1.20) and (1.20´´) that allowed to obtain dependences of  

λ0(1 – p) from thickness d or grain size L. 

 

 
 

Figure 1.7 – Theoretical dependences of the reduced 

TCR β/β0 plotted against the reduced thickness k for different 

values of the specularity parameter p 

 

Figure 1.7 shows the theoretical variations of the 

reduced TCR β/β0 with the reduced thickness k for different 

values of the specularity parameter. The curves exhibit several 

features: 

1) the size effect vanishes for large reduced thicknesses; 

2) for the given thickness the TCR increases, as 

expected, with increasing values of the specularity parameter p. 

 

1.6.2 The linearized model 

 

This method of simplification is linearization of general 

equation of the resisitivity in the MS model (1.16).   
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In the case of polycrystalline thick films the equations 

for the resisitivity takes form: 
 

  
 

 

1

0

31
1 ,

8
f

mp
f

k f


  



   
  

  
 ,1k  (1.21) 

 

where   1 3,4m     at α << 1 and 
22

1
)(


 m  at α >> 1.  

In the case of polycrystalline thin films the equations 

for resisitivity takes form 
 

   
1

4 1
0,4228 ln

3 1
f g

f fp

p k k

 
 

 
  

   
, k <<1. (1.22) 

 

For temperature coefficient of resistance the linearized 

expression takes the following form: 
 

 );()1(0  Hpdd gg    

 
0

( )
1 ,

( )

g g

f

 

 
   (1.23) 

 

where βg is the temperature coefficient of resistance of bulk 

polycrystalline material, H(α) is tabulated function: 

H(0) = 0.370, H(10) = 0.022. 

The procedure for determining the electrical parameters 

is as follows: 

1) the equation (1.23) is straight-line equation 

;BAdd   therefore plot the graph βd versus d (Fig. 1.8a); 

2) the value of βg may be calculated from the slope of 

the linear law (βd, d); 

3) taking into account that )(
)(

)(
1

0









f

f

gg
  at 

α ≤ 10, the value of α may be calculated from equation (1.14); 
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4) the ordinate intercept is value of 

)()1(0  HpB g  , where the value of function H(α) can be 

measured on the plot H(α) versus α (Fig. 1.8 b). 

 

 
 

Figure 1.8 − Procedure for the determination of the 

electrical parameters in the framework of the lianearized 

model: dependences βd versus d (a) and H(α) versus α (b) 

 

The main disadvantage of linearized model lies in the 

fact that it can be used in the case L < d only. Besides, this 

model is not effective at interpretation of external size effect. In 

some cases, the calculation value of the specularity parameter 

by the equation (1.22) is less than 0, i. e. p < 0, that is non-

physical result. The main mistake of linearized model is that 

the dependence H versus α is a linear plot.  

 

1.6.3 Model of isotropic scattering 

 

Next alternative procedure of simplification of MS 

model is presented in the framework of the isotropic scattering. 

Model of isotropic scattering constitutes convenient treatment 

of the transport phenomena in both L < d and L > d cases and 

allows to perform separate experimental determination of the 
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parameters p, r and R. This model describes size dependence of 

resistivity and temperature coefficient of resistance for 

polycrystalline thin film in assumption that the conditions for 

isotropic grain boundary scattering are satisfied. Under this 

assumption the total mean free path describing the effects of 

simultaneous background (λ0), external surface (λs) and 

isotropic-grain-boundary (λi) scattering processes may be 

written as 

 

 
 1 1 1 1

0 ,i s           (1.24) 

 

where the mean free path related to the isotropic grain 

boundary scattering is 

 

 

1 1 1
ln ,i gA D

t
    (1.25) 

 

where A is the coefficient of isotropic grain boundary 

scattering to be determined, Dg is the grain diameter, R is the 

specular reflection parameter at the grain boundaries.  

The problem of determining functional dependence ρ(d) 

is treated by using the Boltzmann's equation and calculation of 

the current density J(z) across the thickness. After some 

mathematical manipulation the main expression of the isotropic 

scattering model takes form: 
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with  1 1 1 1

0

1
1 ln 1 .gAD Av

p
       
    

 
 

The linearized expression for the reduced TCR and the 

equation for calculation grain boundary TCR βg are  
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where r is the transmission parameter.  

Taking into account that  

 

 









 rR

R 1
ln97,0

)1(
,  (1.30) 

 

equations (1.28) and (1.29) allow to calculate the electrical 

parameter by the next procedure: 

1) the linearized expression for the reduced TCR (1.28) 

is strain lain equation BAdd 1  which may be plotted as 

a dependence βd –1 versus d (Fig. 1.9 a); 

2) the value of βg may be calculated from the slope of 

the linear law (β-1d, d); 

3) from the ordinate intercept 
p

A
1

ln
8

3

0

0




  and 

tabulated values of β0 and λ0 (ρ0·λ0 = const) the value of p is 

then calculated; 

4) from the equations (1.29) and (1.30) the values of R 

and r are then calculated for different values of the average 

grain parameters in order to obtain size dependence of the grain 

size (1.9 b). 
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Figure 1.9 − Procedure for the electrical parameters 

determination in the framework of the isotropic scattering 

model: dependence βd –1 versus d (a) and size dependence of 

the average grain size (b). 

 

1.6.4 Three-dimensional model 

 

Three-dimensional model assumes that the grain 

boundaries in polycrystalline films can be represented by three 

arrays of “planar type” potentials with rough surfaces oriented 

perpendicular to the x-, y- and z axes respectively. These planes 

are geometrically defined by an average interplanar spacing, 

Dg. In the case of polycrystalline films, the current is due to 

electrons which have been transmitted through a large number 

of grains, so that the associated mean free path can be 

statistically calculated by identifying the average grain 

diameter with Dg. It is the reason why only regular arrays of 

grain boundaries are considered in the rest of the section.  

Starting from the Boltzmann formulation of the 

distribution functions of electrons when both background 

scattering and grain boundary scattering are operative, the 

conductivity σg of a film subjected to an electric field applied in 

the x-direction is found to be  
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where θ and φ are polar coordinates.  

In general case the equation of the reduced conductivity 

is the following: 
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In the case when r = 1, d/λ0 << 1, p < 1 after 

mathematical manipulation one finds the expressions for the 

TCR of the polycrystalline (βp) and the monocrystalline (βm) 

films respectively in most general form: 
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where   1121   pp bca  ,   1121   mm bca  ,  paV  and 

 paU  are known function. 
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In the case of monocrystalline thin film the linearized 

expression for the TCR takes form 
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In the case of polycrystalline thin film the linearized 

expression for the TCR takes form 
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To determine the electrical parameters in the framework 

of the three-dimensional model it is necessary to complete the 

next procedure: 

1) the linearized expressions for the reduced TCR (1.37) and 

(1.38) are the strain lain equations 
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of the polycrystalline film (Fig. 1.10); 

2) the value of βm (βp) may be calculated from the slope 

of the graph; 

3) from the ordinate intercept A(B) and tabulated value 

of β0 the value of ν is then calculated; 
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Figure 1.10 − Procedure for electrical parameters 

determination  in the framework of three-dimensional model 

(case of the polycrystalline film) 

 

4) from the equations (1.34) and tabulated value of λ0 

(ρ0·λ0 = const) the value of r is then calculated. 

 

1.7 Interpretation of experiments 

 

Measurements of the resistivity and the temperature 

coefficient of resistance on metal thin films are widely 

presented in the literature. The interpretation of experimental 

data in the term of approximation relationships of Tellier, 

Tosser and Pichard such as the linearized model, the model of 

isotropic scattering and the three-dimensional model is 

presented in this section.  

The experimental size dependences of resistivity and 

TCR for different thin films are presented in Fig. 1.11 and 

1.12, respectively. From the practical point of view, the 

resistivity data are more convenient than the TCR data because 

of the inaccuracy in the TCR, mainly due to its low value. So, as 

attempted, the results from the TCR data will be presented then.  
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Figure 1.11 – Size dependences of the resistivity for 

thin films Ni, Cr (a), Sc, V (b), Cu, Mo (c), Co, Ti (d)  

 

 
 

Figure 1.12 – Size dependences of TCR for thin films 

Ni, Cr (a), Sc, V (b), Cu, Mo (c), Co, Ti (d) 
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Table 1.1 – Numerical values of electrical parameters obtained on the base of approximation 

relationships of Tellier, Tosser and Pichard 

Film d, nm 

Linearized model Model of isotropic scattering 
Three-dimensional 

model 

β∞·10-3, 

K–1 

λ(1–p),  

nm 
R p R r p R r 

Cu > 180 4,1 83,0 0,11 0,14 0,05 0,93 
0,001 – 0,80–0,72 

Cu < 100 – 38,7 0,35–0,42 0,09 0,18–0,25 0,81–0,72 

Ni 10–400 3,94 32,0 0,31–0,75 0,08 0,22–0,70 0,70–0,10 – – – 

Sc 20–140 1,57 35,1 0,39–0,49 0,04 0,37–0,47 0,54–0,40 0,01 0,49 0,43 

Cr 20–140 1,52 34,2 0,03–0,15 0,04 0,02–0,14 0,98–0,85 0,01 – 0,99–0,93 

Co 20–90 2,50 36,5 0,13–0,41 0,05 0,12–0,46 0,87–0,53 0,001 – 0,99–0,87 

Al < 600 1,10 31,0 0,44 0,59 0,48 0,52 0,50 – 0,50 

Zn < 900 1,92 12,0 0,52 0,59 0,64 0,36 0,50 – 0,43 
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Any experimental data for the TCR can be presented as 

linear low (1.23), (1,28) and (1.38) and interpreted from either 

the linearezed model or the model of isotropic scattering model 

or three-dimensional model. Results of electrical parameter 

calculation are presented in the Table 1.1. 

As conclusion, it can be noted, that the specularity 

parameter p takes values in the range from 0.001 to 0.6 and 

both the reflection parameter R and the transmission parameter 

r take values 0.2–0.9. 

The grain boundary is energy barrier for conduction 

electrons. In this point of view, taken into account the energy 

value which charge carrier failed at transmission through the 

grain boundary, grain boundaries could be of three types: 

– barrier type (r = 0.2–0.3); 

– transparent for conduction electrons (0.3 ≤ r ≤ 0.8); 

– nontransparent for conduction electrons (r = 0.8–0.9). 

 

1.8 Problems 

 

Problem # 1 

Re-arrange equation 
p

p





1

1
 to the form 

p21

1


. 

 

Problem # 2 

What is the physical nature of size effect in 

conductivity of thin film? 

 

Problem # 3 

Under the experimental results for scandium thin films 

(Fig. 1.13) determine the value of ρ∞ and λ0 in diffusive 

approach (p = 0). 
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Figure 1.13 – The experimental dependence of ρ 

compared to d for scandium thin films, which have been 

prepared in vacuum 10–7 Pа  

 

Problem # 4 

Compare the value of ρ∞, which has been received in 

the previous exercise with value of ρ0(300 K) =  

= 7,5·10–7 Ohm·m for bulk materials. Explain the reason of 

difference. 

 

Problem # 5 

Explain why the values p < 0 and p > 0 do not have 

physical meaning. What is the physical meaning of the 

parameter p = 0?  

 

Problem # 6 

On the basis of the definition of temperature coefficient 

of resistance (TCR) 
T








1
 or 

T




0

0

1 


  show that 
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from the equation 
d
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equation for TCR: 
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Directive: It is necessary to use the expansion 

procedure on binomial theorem   ..., nxaxa
n

 where 

x << a. 
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Problem # 8 

Create graph of the function f(α) vs the value of α, 

which changed in the range from 0,01 to 10. 

 

Problem # 9 

Explain a physical meaning of parameters: ρg, βg, R and 

r. Compare the physical meaning of ρg and ρ∞. 

 

Problem # 10 

On the basis of experimental data for scandium thin 

films at 300 K (Fig 1.14) calculate parameters R and r in the 

frame of effective mean free path model and model of isotropic 

scattering. Take value of mean free path λ0 from exercise # 3. 
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Problem # 11 

Explain why the value of R + r is unequal to one 

according to result of exercise # 10. 

 

 
 

Figure 1.14 – Size dependence of TCR for scandium 

thin film at Т = 300 (1) and 570 К (2) 

 

Problem # 12 

 

The process of impurity atom grain boundary diffusion 

occurs in scandium thin films. On the basis of data presented at 

the Figures 1.13 and 1.14 plot dependence of resistivity and 

temperature coefficient of resistance vs film thickness at 

different values of γ·c (the parameter of grain boundary 

scattering at low concentration of impurity atom is directly 

proportional to impurity atom concentration i. e. R' = R ± γ·c, 

where R' and R are parameters of the specular reflection at the 

grain boundaries at c ≠0 and c = 0, respectively; c is 

concentration of impurity atom; γ is aspect ratio). Examine the 

cases γ < 0 and γ > 0.  

The value of ρ0(300) = 75·10–8 Оhm·m, β0(300) = 42,5·10–4  

К–1, λ0(1–р) (300) = 130 nm and L   d in the range of the 

thickness 50–100 nm. 
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Note, the values of ρg and βg can be calculated by 

extrapolation of dependences )( 1 d  and )( 1 d  to 

zero (Fig. 1.15). 

 

 
 

Figure 1.15 – The method of ρg value determination by 

extrapolation to zero of experimental dependence ρ vs inverse 

thickness 

 

Problem # 13 

 

Calculate the size dependence of ratio ρ/ρg at different 

values of parameter γ·c, using the data presented in the 

Table 1.2. Examine the cases γ < 0 and γ > 0. The value of 

ρ0(300) = 1,3·10–7 Оhm·m, ρg(300) = 2,6·10–7 Оhm·m. 

 

Table 1.2 – Electrophysical properties of chromium thin films 

d, 

nm 

λ0(1–р), 

nm 

L, 

nm 
R 

d, 

nm 

λ0(1–р), 

nm 

L, 

nm 
R 

50 

60 

70 

131 

130 

139 

25 

30 

35 

0,09 

0,11 

0,14 

80 

90 

100 

140 

131 

127 

40 

45 

50 

0,16 

0,20 

0,24 
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SECTION 2  

Size effects in electrical resistivity and TCR of double-

layered films 

 

2.1 Introduction 

 

The theoretical models of size effect for double-layered 

films and their experimental approbation are presented in this 

section.  

The main difference between size effect in thin films 

and in double-layered films is that in second case new 

mechanism of the conduction electron scattering appears. This 

mechanism is scattering of charge carrier at the boundary 

between two layers, which are called an interface scattering. 

Besides, both layers are characterized by their own mean free 

path λ01 and λ02, as well as the linear coefficients of thermal 

expansion α1 and α2. Thickness relation is also significant too 

as the internal and external size effects appear separately in 

each layer.  

 

2.2 The geometry of double-layered films 

 

The double-layered thin film consists of upper layer of 

a metal 1 with thickness dl and average grain size L1 and lower 

layer of a metal 2 with thickness d2 and average grain size L2. 

The sample is subjected to an electrical field E in the x 

direction. The geometry of the film system is presented in 

Fig. 1.12.  

There are three scattering mechanisms for conduction 

of electrons in such a structure: scattering at the external 

surfaces, at the grain boundaries and at the interface between 

the layers. The first mechanism is described by the specularity 

parameters p1 and p2 related to lower and upper layers 

respectively. The second mechanism is characterized by two 
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parameters: the specular reflection at the grain boundaries R1 

and R2 and the transmission parameter across the grain 

boundaries r1 and r2.  

 

 
 

Figure 2.1 – The geometry of double-layered thin film 

 

Indexes 1 and 2 are related to lower and upper layers 

respectively. The third mechanism is described by the 

parameter of interface scattering Q, which defines the 

probability of electron reflection at the interface or 

transmission across the interface from upper to lower layer 

(Q21) and from lower to upper layer (Q12)). 

For a theoretical analysis, it is assumed that both metals 

have isotropic bulk mean free paths λ01 and λ02 and that the 

Fermi energies of two metals are sufficiently close and that the 

contact potential difference arising at the interface may be 

neglected.  

Thus, for a theoretical analysis of the experimental data, 

some models have been proposed.  

 

2.3 The Dimmich model 

 

The Dimmich model describes the electrical conduction 

and TCR for double-layered films. Dimmich has proposed 
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double-layered model for the electrical conductivity and the 

TCR taking into account the mechanisms of electron scattering 

at external surfaces of the films, grain boundaries, interface 

between the layers and the isotropic background scattering due 

phonons and point defects.  

The distribution function f(υ, z) for the charge carrier 

for the sample in the electrical field can be given as  

 

 
0 1

0 2

( , ) ( , ),

( , ) ( , ),

f z f f z

f z f f z

 

 

 

 
 (2.1) 

 

where f0 is the equilibrium distribution, f1(υ, z) and f2(υ, z) are 

the deviations from the Fermi-Dirac function induced by the 

electrical field Е in the layers –d1 ≤ z ≤ 0 and 0 ≤ z ≤ d2 

respectively, υ is the electron velocity. 

The Boltzmann kinetic equations for the layers take the 

forms 

 

 01 1

* *

1 1

,
z z x

ff f eE

z m   


 

 
 (2.2) 

 02 2

* *

2 2

,
z z x

ff f eE

z m   


 

 
  

 

where *

1  and *

2  are the grain boundary limited relaxation 

times; е is the electron charge; *

1m  and *

2m  are the effective 

electron masses for layers material 1 and 2 respectively. 

The procedure of obtaining general expression for the 

ratio of conductivity of the layer σi to the value of conductivity 

σ0i in the bulk monocrystalline material, where i = 1 or 2 is 

number of layer, is presented in the work in detail. 

General expressions take form: 
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where B1, B2, G, H1, H2 are the functions presented in Dimmich 

work. 

As noticed in previous section, the resistivity data are 

more convenient than the TCR data from the practical point of 

view, so in the framework of Dimmich model is considered the 

dependence of TCR from thicknesses d1 and d2.    

Temperature coefficient of resistance β is relative 

change of the resistivity at temperature change upon 1 K, i. e. 

 

dT

d

dT

d 




ln1
 . 

 

The double-layered film can be presented as two films 

in parallel connected resistors. The total value of such system 

resistance is calculated as R = R1·R2/(R1 + R2). Taking into 

account that 
l

da
R i

ii


 , where i = 1, 2 is number of the 

layer, equation for the total system resistivity takes form 

 

1221

2121

dd

dd









 . Thus, the equation for the TCR can be 

rewritten as 

 



 43 

 

 

dT

dd

dd
d

dT

d














1221

2121ln
ln 




 . 

 

Using the general equations (2.3) and (2.4) for the 

electrical conductivity, differentiation yields the general 

expression for the TCR in the form 
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where 
i

iF


0  is the Fuch’s function (i = 1, 2), 

FdFd

Fd
A

022011

1011
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




 , 

FdFd

Fd
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022011

2022
2






 , σ = 1/ρ,  

  1*

1102

*

2201


 mHmHa  , m* is the effective electron mass, 

ki = di/λ0i is the reduced thickness, li = Li/λ0i is the reduced grain 

size, Hi = Hi(α, φ), 
)1(

10

RRL 



 , φ is the approached angle 

to the grain boundary.  

The mathematical form of equation (2.5) is not very 

favourable to an easy numerical evaluation of the film TCR so 
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Protsenko I. Yu. et al. have been proposed the method of 

simplification equation (2.5). According to Protsenko I. Yu.  

et al. at assumption that: dlnFi/dlna = 0, where a is thickness 

independent parameter (a = const); dlnFi/dlnkk ≈ 0, 

dlnFi/dlnlk ≈ 0 (i ≠ k) in the case when the coefficient of 

interface scattering equals to 1 with λ01 = λ02, or equals to 0, the 

equation (2.5) can be rewritten as 

 

1 1 2 2
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1 1 2 2
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where  
1

11

1011

1

1

ln

ln

k

F
Fd

kd

Fd







  was determined through the 

experimental parameters. 

For thick films the equation (2.5′) is reduced to  

 

 022011  AA  . (2.5′′) 

 

The experimental results and calculated data based on 

the Dimmich model are presented in Table 2.1. The 

comparison between experimental values of the TCR and the 

values derived from equation (2.5′) show some difference. 

There are two main reasons of deviation between 

experimental data and calculated values for the TCR. The first 

one is the process of interdiffusion which leads to changing the 

parameters of scattering at the interfaces and at the grain 

boundaries. The second one is the process of the thermal 

expression which leads to the film deformation and as a result 

to both increase and decrease of the resistivity and the TCR. 

The Dimmich model leaves out of account these effects. 

It can be noted that the experimental data better agreed 

with calculated ones when the β0 is changed to βg. 
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Table 2.1 – The experimental and calculated values of TCR 

with the Dimmich model for double-layered film systems 

Film (d, nm) βexp∙103, К–1 βcalc∙103, К–1 

Co(75)/Cr(55)/S 2,60 1,56 

Co(80)/Cr(120)/S 2,40 1,42 

Cr(25)/Co(35)/S 1,30 0,75 

Cr(40)/Co(40)/S 1,70 0,89 

Cr(80)/Co(55)/S 2,08 1,84 

Co(25)/Ni(20)/S 2,95 1,99 

Co(90)/Ni(30)/S 3,20 1,76 

Co(100)/Ni(65)/S 3,45 2,45 

Ni(55)/Co(20)/S 3,60 1,20 

Ni(80)/Co(59)/S 3,60 2,00 

Ni(140)/Co(60)/S 3,83 2,13 

 

Protsenko I. Yu. et al. have shown that deviation of 

experimental data with calculated ones in the frame of 

Dimmich model may amount 70 % depending on type of thin 

film system. But accounting temperature dependence of 

scattering parameters p and r leads to better agreement of 

experimental data with calculated ones in the frame of the 

Dimmich model. So Protsenko I. Yu. et al. have proposed a 

trilayered model in which the temperature effect on scattering 

parameters (p, r, Q) has been taken into account.  

This model requires several assumptions in its 

formulation which are summarized here: 

1) the trilayered film can be presented as two ones in 

parallel connected resistors; each layer is characterized by thickness 

di, value of mean free path λ0i, effective specularity parameter pi, 

transmission parameter across the grain boundaries ri and 

parameter of interface scattering Qij (from i-layer to j-layer); 

2) temperature effects in scattering parameters were 

taken into account by corresponding temperature coefficient of 

resistance: 
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3) transmission of electrons across the interface may 

occur between adjacent layers (from i-layer to (i + 1) layer) or 

between several layers (e. g., from i-layer to (i ± 1) and (i ± 2) 

layers) depends on relationship between layer thickness di and 

mean free path λ0i;  

4) the processes of diffuse and specular scattering at 

interfaces ( ii pP  ) and interlayer transition (Qij) are taken into 

account; 

5) the values of Qij and 
ijQ  are approximately equal to 

ri and 
ir

 . 

The model is shown in Figure 2.2. 

The trilayered film in the framework of this model can 

be presented as three ones in parallel connected resistors, so 

equation for the total system resistance may be written as 
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Logarithmic differentiation on the temperature of this 

equation gives 
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 (2.6) 

where 
dT

ld ln
1   is the temperature coefficient of thermal 

expansion (the value of α1 ~ (10–5 –10–6) K–1). 
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Figure 2.2 – The geometry of trilayered thin film 

system: 1 and 1´´ are surface scattering (in general case 

p1 = p2); 2, 2´ and 2´´ are grain boundary scattering (in general 

case r1 ≠ r2 ≠ r3); 3, 3´ and 3´´ are scattering at interface and 

transmission through interface ( 112 pP  ; 223 pP  ; 332 pP  ; 

2112 QQ  ; 3223 QQ  ); 3, 3´ and 3´´ are interlayer transitions at 

the 
120 ; 4 and 4´´ are interlayer transitions at the 

130  

 

For taking into account temperature effects in scattering 

parameters (p, r, Q) Fi, it is necessary to write parameters as 

function of ki and mi as 
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 (2.7) 

 

Note, that values of ki are determined by surface 

scattering and mi by grain boundary and interface scattering. In 

expanded form derivative d ln F1/dT has the form 
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Substituting equations (2.8) and analogical equations 

for F2 and F3 into (2.7), we finally obtain the equation for 

temperature coefficient of resistance for trilayered system: 
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where 



3

1

00 /
i

iiiiiii FdFdA   (Fi = σ0i/σi); ki and mi are the  

reduced thickness and mean grain size respectively; β0i/β0n is 

equal β01/β02 (for the first layer); β02/β01 and β03/β02 (for the 

second layer) and β03/β02 (for the third layer). 
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If allow interlayer transitions 4 and 4'' (see Fig. 2.2) 

then the right part is necessary to be supplemented by two 

summand in the brackets near the multiplicands A1 and A3. 

It should be noted that this theoretical model can be 

easy carried over in case of any quantity of layers. 

 

2.4 The macroscopic model 

 

The double-layered film in the framework of macroscopic 

model can be presented as two ones in parallel connected resistors 

by analogy with the Dimmich model. Hence, equation for the 

total system resistivity is expressed by 
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where 
T

d

di

i



 11

  is the coefficient of thermal expansion of 

the film thickness.  

There are two limiting forms of equation (2.10): 

1) when the thickness of first layer d1 is constant, the 

thickness of second layer d2 takes infinitive value. Equation 

(2.6) then becomes 

 

2

21

221211

2

22
21 




 




d

dd

d

d
; 

 

2) when the thickness of second layer d2 is constant, the 

thickness of first layer d1 takes infinitive value. Equation (2.10) 

then becomes  
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d
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Hence, the values of β1 and β2 are the asymptotes for 

the TCR of the first and second layers respectively (Fig. 2.3).  
 

 
 

Figure 2.3 – The qualitative size dependences for 

double-layered films (β1(d1) (1), β2(d2) at βg2 > βg1 (2) and 

β2(d2) at βg2 < βg1) in two limiting cases: d1 = const, d2 →∞ (a), 

d2 = const, d1 →∞ (b) 
 

According to limiting forms of equation (2.10) the 

conclusions can be made as follows: 

1) the value of the TCR of double-layered film 

increases with increasing the total film thickness assuming that 

βg2 < βg1; 

2) the value of the TCR of double-layered film 

decreases with increasing the total film thickness assuming that 

βg2 > βg1. 

The comparison between experimental data of the TCR 

with calculated values of the TCR using the macroscopic model 

is presented in Table 2.2. Experimental data better conform 
 

to calculated ones at low interdiffusion process.  

In the case of multilayered film systems the general 

equation for the TCR in the framework of the macroscopic 

model can be rewritten in the following form: 
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Table 2.2 – The experimental and calculated values of the TCR 

for double-layered film systems with the macroscopic model 

Film (d, nm) βexp∙103, К–1 βcalc∙103, К–1 

Cr(25)/Ni(10)/П 1,41 1,22 

Cr(50)/Ni(55)/П 1,69 2,88 

Cr(20)/Ni(20)/П 1,19 2,61 

Cr(30)/Ni(40)/П 1,64 3,02 

Sc(18)/Cu(48)/П 2,10 2,30 

Sc(60)/Cu(30)/П 1,76 2,17 

Sc(65)/Cu(43)/П 1,90 2,18 

Sc(93)/Cu(38)/П 1,69 2,17 

Cu(30)/Cr(30)/П 1,64 1,94 

Cu(48)/Cr(15)/П 2,22 2,26 

Cr(48)/Cu(55)/П 2,58 2,71 

Ni(25)/Cr(75)/П 1,08 1,79 

Ni(15)/Cr(25)/П 1,44 1,64 

Ni(30)/Cr(45)/П 1,61 2,32 

Ni(40)/Cr(60)/П 1,85 2,58 
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Figure 2.4 – The qualitative size dependences for 

trilayered films: β∞3 > β∞2 > β∞1 (a); β∞3 < β∞2 < β∞1 (b) and the 

oscillated dependences (c, d) 

 

 
 

Figure 2.5 – The qualitative size dependences for 

multilayered film systems 
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The qualitative size dependences of the TCR for 

trilayered film and multilayered film system are presented at 

Fig. 2.4 and 2.5 respectively. 

Thus, the size dependence of the TCR of multilayered 

film system has oscillated character. The value of the TCR 

both increasing and decreasing at the increase of the thickness, 

tends to the asymptotic value βg. The materials of each layer 

can be chosen as the value of the TCR will only increase  or 

only decrease. 

 

2.5 Effects of thermal expansion and interdiffusion  

 

In previous section the general expression for the 

electrical resistivity and the temperature coefficient of 

resistance has been proposed, including the effects of thermal 

expansion of the film thickness which appear at the interfaces 

both between the film and the substrate and between the layers. 

However, in most experiments related to thin metal films it is 

generally assumed that the thermal expansion coefficients of 

film thickness are negligible with respect to the bulk TCR, β0.  

Moreover one should not forget that thermal variations 

in the electrical parameters p, R, r and Q are not taken into 

account in calculations presented in Section 1 and 2. 

The estimation method of thermal expansion significance 

values has been proposed by Protsenko I. Yu. et al. 

For the reason that thermal expansion, in comparison 

with structural expansion, do not relax at the heat treatment, for 

estimation of thermal expansion significance value the 

following equations can be used: 

 

    ,,
1

TT
E

S sfTsf

f

T 


 


 (2.7) 
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where ST is the thermal expansion, αf and αs are the coefficients 

of linear expansion of the film and substrate respectively, E is 

Young’s modulus, μf is Poisson’s ratio of the film. 

The pressure coefficient of resistance is relative change 

of the resistance at the pressure change: 
p

p










1
. The 

estimation of (ρ/ρ)max value was done by the extrapolation of 

the value of βp onto p = ST. The calculations of (ρ/ρ)max at the 

maximum value of Δε and ST are presented in Table 2.3. 

 

Table 2.3 – The calculation of the relative change of resistivity 

under expression  

Film 
E·10–10, 

H/m2 
ν 

α·106, 

K–1 

Δεmax 

·103 

ST·109, 

H/m2 

βp·1011, 

Pa–1 (ρ/ρ)max, 

% 
p = 0 p = ST 

Mo 32.9 0.31 5.59 0.24 0.11 1.31 1.31 0.14 

Cr 24.5 0.30 5.88 1.40 0.50 22.20 19.50 5.00 

Re 76.1 0.26 6.70 0.70 1.00 – – – 

Ni 20.2 0.30 14.98 4.00 1.10 1.77 1.81 2.00 

Ti 10.4 0.36 7.70 10.80 0.20 1.19 1.18 0.24 

Sc 6.6 0.30 11.40 25.60 0.26 – – – 

 

One can make the general conclusion that the thermal 

expansion has no effect on the electrical resistivity and, as a 

result, on the TCR of the films.  

The analysis of interdiffusion effects on the electrical 

resistivity and the TCR requires the following assumption: 

– the diffusion of the impurity atoms occurs inside of the grains 

and at the grain boundaries, but only the second type of 

interdiffusion have an effect on the value of the scattering 

parameter R; 

– at low concentration of the second-rate atoms the value of R 

is changed proportionally to the concentration, i. e. 
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R′ = R + γ·c, where R is the value of the scattering parameter 

at c = 0; γ is the coefficient of proportionality which takes 

both positive and negative values. 

On the basis of these assumptions, the estimation values 

of relative changes in Δρ/ρ0 and Δβ/β0 can be done in the 

framework such as the effective mean free path model (1.19) 

and (1.20′′). The calculation procedure consists of the 

following steps: 

1) calculation of the value of the specular parameter R′ 

at different values of γ·c; 

2) calculation of the value of the scattering parameter α 

at different values of R′: 11

0 )1(   RRL ; 

3) calculation of the value of the function of grain 

boundary scattering f(α) (1.14); 

4) calculation of the values of ρ/ρ0 and β/β0 in the 

framework of the effective mean free path model (1.19) and 

(1.20′′); 

5) calculation of the values Δρ/ρ0 and Δβ/β0, where 

Δρ = ρ(R′) – ρ(R) and Δβ = β(R′) – β(R).  

The calculations showed that the change of the 

electrical resisitivity and the TCR amount to several percent.  
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SECTION 3 

Strain effect in thin films 

 

3.1 Introduction 

 

In previous sections the features of electrical resistivity 

and temperature coefficient of resistance of thin films and 

double-layered films have been studied from a theoretical point 

of view. The predicted results were compared with 

experimental data. In this section the variations in film 

resistivity with stress are examined first. The method of strain 

coefficient measurement is discussed and, finally some 

theoretical models of size effect in strain coefficient of thin 

film and double-layered film are then summarized.  

 

3.2 The concept of size effect in strain 

 

It is known from the previous sections that electro-

physical properties of thin films usually differ from bulk 

materials. It is explained by size effects and features of crystal 

structure. Besides, electrical properties are strongly affected by 

temperature effects and defect concentration. It is important to 

note that mechanical stress is affected on resistance too. The 

variations in film resistivity with strain or compression are 

tensoresistive effect. From physical point of view tensoresistive 

effect is caused by the processes which appear inside of crystal 

at microscopical level (increasing or decreasing latticed 

parameter) and at the interface of the film or at the grain 

boundaries at microscopical and macroscopical levels (change 

of different type defects concentration, extension or decrease of 

the crystallite size, emergence of the localized energy level, 

change of parameters p, r, etc.). 

The mechanical properties of thin films can be studied 

by introducing the mechanical parameters which are usually 
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defined for bulk materials, i. e. Young’s modulus and Poisson’s 

ratio. 

Young’s modulus, E, of an isotropic bulk material is the 

reciprocal ratio of the differential strains in the length, width 

and thickness directions d/dl, d/da, d/dd respectively, to the 

stress applied in the corresponding direction dSl, dSa, dSd 

respectively, i. e. 

 

 
dal Sdd

d

Sda

d

Sdl

d
E

111
 . (3.1) 

 

The Poisson’s ratio of the film μf of an isotropic bulk 

material expresses the differential strain in the direction 

perpendicular to that of the applied stress. For instance, the 

strain in the d-direction, d/dd, is related to the longitudinal 

strain d/dl due to a stress applied in the l-direction by the 

equation (Fig. 3.1) 

 

 
dld

ddd
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d

dd

d
ff

/

/
  . (3.2) 

 

In case of thin metal films a preferred orientation often 

exists and it could be necessary to introduce several Poisson’s 

ratios for an accurate description of the phenomena. In most 

cases, the preferred direction for nucleation is perpendicular to 

the surface of the substrate, so that two mechanical parameters 

can be useful: the Poisson’s ratios μf1, μf2; when a stress is 

applied in the l-direction, the strains induced in a- and d-

directions are then given by  

 

 
dld
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dld

ddd
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/
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/
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Figure 3.1 – Geometry of strain sensitive device 

 

If the substrate has no mechanical action, i. e. one may 

consider that the film is not attached to a substrate. 

In case of supported films, a mechanical stress applied 

to the film substrate induces strains in the film; it is generally 

assumed that the strains applied to an attached film in the l- and 

w-directions are identical to the strains induced in the substrate 

by  stress applied to the substrate, whereas the strain in the d-

direction is determined by the mechanical properties of the film 

subjected to strains in both l- and a-directions. For instance, a 

longitudinal mechanical stress applied to the film substrate 

leads to: a longitudinal strain dls/ls in substrate length ls; to a 

transverse strain das/as in substrate width as, the strains obey 

the relation
ss

ss
s

ldl

ada

/

/
 , where μs is the Poisson’s ratio of 

the substrate. 

The strains in film length and width are then 
s

s

l

dl

l

dl
  

and 
s

s
f

a

da

a

da
 . 

The strain in film thickness is due to the superimposed 

effects of the stresses acting in the l- and a-directions; these 

stresses are not directly measurable and we know only that the 

resulting effects of both stresses are the strains dl/l and da/a. 
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Therefore one should bear in mind that the effect of the 

longitudinal (transverse) stress is a fictive longitudinal 

(transverse) strain εl (εt) which differs from dl/l (da/a), i. e. 

 

l

dl
l   










a

da
t . 

 

The quantitative characteristic of tensoresistive effect is 

strain coefficient (γ). The general definitions of the longitudinal 

(γl) and transverse (γt) strain coefficients of resistance are 
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wdw
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Notice that the current direction is parallel to the 

deformation direction at the longitudinal stress and the current 

direction is perpendicular to the deformation direction at the 

transverse stress. This is the main reason of different values γl 

and γt, as a rule γl > γt. 

 

3.3 The experimental method of strain coefficients 

measurement  

 

On the basis of equation (3.1.) we can confirm that  

 

ttll
R

dR

R

dR
  , . 

 

Hence, the value of strain coefficients γl or γt may be 

accurately calculated from the slope of the dependence dR/R in 

comparison with strain. It is necessary to note that strain 

dependence has linear law at the definite curve piece only; 

therefore the linear section of the strain dependence may be 
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considered at the determination of strain coefficients. In 

practice, it is done to calculate integral (int) and differential 

(dif) strain coefficients. The calculation of integral and 

differential strain coefficients is carried out by equations: 

 

 ,
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)( intint
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  (3.5) 

 

where R(0) is resistance at zero longitudinal deformation; Rі and 

dRi are resistance of the thin film sample at the beginning of the 

strain interval Δεli and their change at the increase of longitudinal 

strain respectively.  

The problem of the strain value determination is more 

difficult in this case. Consider two types of strain: expansion 

and bending (Fig. 3.2). 

In the first case εl is equal to εt. According to the 

Figure 3.2 b geometry can find the equation for this strain:  
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where lin is the initial value of the samples length. 

In the second case, it is necessary to separately calculate 

strain as 
in

l
l

l
  and 

in

t
a

a
 , where ain is the initial value of 

the samples width. 

The example of dependences ΔR/R, R and γli in 

compаrison with εl  for Pt(20)/S thin film is presented in Fig. 3.3. 
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Figure 3.2 – The method of strain value determination at 

bending (a) and expansion (b): A0B0 is neutral surface track, R is 

neutral surface radius, Ox is baseline, h is maximal flexure, D and d 

are the thicknesses of the substrate and the film respectively, l and w 

are the initial length and width of the film, M is microscrew, F is force 

 

 
 

Figure 3.3 – Dependences ΔR/R(0), R and (γl)dif versus 

εl for Pt(20)/S thin film at Δl1 = 0–1 %. I, VII are numbers of 

deformation cycles “load – unload” 
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3.4 Theoretical expression of strain coefficients of 

thin films  

 

The analysis of experimental results for thin film strain 

coefficients showed that the value of γ depends on its thickness 

as a result of the size effect.  

In this item the theoretical models for strain coefficients 

of monocrystalline and polycrystalline thin films will be 

described. 

 

3.4.1 Fuchs and Sondheimer model  

 

In the framework of Fuchs and Sondheimer conduction 

model the calculations of the strain coefficients begin from the 

equation for resistance 

 

da

l
R


   

or  

lnR = lnρ + lnl – lna – lnd. 

 

After differentiation: 
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On the basis of definition of the longitudinal and 

transverse strain coefficients the equations for γl and γt can be 

written in the form  
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 = –μf. 

For comparison of equations (3.7) and (3.8) with 

analogous ones for bulk materials (thick film samples) it is 

necessary to be out of the equation   1

0~


 n , where n is the 

concentration of electrons. Then, taking into account that 

resistance for bulk materials can be written as 
00

0
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we receive  
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 ),21(200   ll  (3.9) 

 

where η0l is the deformation coefficient of the electron mean 

free path in the bulk material. 

For thin film with thickness in the range from 20 to 

600 nm the FS model gives  
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where (Y/F) is relations of the famous function, γl0 is the 

longitudinal strain coefficient of the bulk monocrystal. 

From equations (3.10) it follows that γl > γl0 at η0l < μf 

and vice versa. The similar result was received for the 

transverse strain coefficient γt. 

 

 



 66 

3.4.2 Effective mean free path model of Tellier, 

Tosser and Pichard 

 

The equation for conductivity in the framework of 

Mayadas – Shatzkes model for size effect in electrical 

resistivity can be used for calculation of strain coefficient  

 

    ,,)(0 pkAf  , (3.11) 

 

where σ0 is the bulk conductivity; f(α) is the function of 

electrons grain boundary scattering described in detail in 

Section 1;  
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where Θ is angle between velocity vector υ and direction z. 
The differentiation of equation (3.11) by strain allows 

to give the equation for strain coefficient 
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where X and Y' are known functions. 

 



 67 

3.4.3 Linearized model of Tellier, Tosser and 

Pichard 

 

The model of FS is closely applied for thin film in the 

case when γ < γ0 but not in the case when γ > γ0. However, 

there are many experimental data for high-melting thin films or 

thin film with relatively high melting temperature which are 

characterized by regularity γ > γ0 (Fig. 3.3).  

 

 

 

Figure 3.3 – The experimental size dependence of the Pt 

thin films strain coefficient (γl0 is the asymptote of the 

exponential dependence) 

 

Therefore K. Tellier, A. Tosser and K. Pichard on the 

basis of the Mayadas – Shatzkes model and effective mean free 

path model received the equation for strain coefficients in case 

when γ > γ0. In the first approximation the equations for γl and 

γt are 
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 (3.13) 



 68 

where H(α) and U(α) are the known and tabulated functions;  

)1(

)1(

f

ss









  is reduced Poisson’s ratio for thin film. 

The linearized equation (3.13) allows calculating 

parameters ηl, λ0, p. For this purpose, it is necessary to plot 

experimental data in the form γl·d in comparison with d. This 

graph is a straight line with a slope   )(1  fl   and an ordinate 

interception          UHfp l
 1)()(11 0 . 

 

3.4.4 Three-dimensional model of Tellier, Tosser and 

Pichard 

 

The linearized model can be used in case if L > d only. 

But  K. Tellier, A. Tosser and K. Pichard in the frame of three-

dimensional model for electrical conductivity have proposed 

more general three-dimensional model for strain. For the 

theoretical characterization of independent electron scattering 

at the grain boundaries and external surfaces of the thin film 

the following parameters have been used: 
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In addition, three-dimensional model assumes that 

crystallites have arbitrary shape, so in general case Lx ≠ Ly ≠ Lz. 

The equation for longitudinal strain coefficient has been 

written in the form  
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where F(νx), G(νy), G'(α'), their derivatives 
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The value of longitudinal strain coefficient can be 

received if the experimental or calculated data are used. The 

similar equations can be written for the transverse strain 

coefficient. The approbation of the three-dimensional model of 

experimental data for Cr thin films allows to ascertain that the 

equation (3.14) complies with experimental data at 

complementary assumption about size dependence of 

coefficient ηl: ηl = 9,70 (d = 30 nm); 7,60 (45 nm); 1,73 

(65 nm); 1,00 (90 nm). Note that the idea of size dependence of 

ηl is unexceptionable because quantity of parameters depends 

on film thickness. Specifically, the mean free path in film 

λg = λ·f(α) depends on thickness. 

 

3.5 Experimental data for thin films strain 

coefficients 

 

Measurements of the longitudinal and transverse strain 

coefficients of metal thin films are widely presented in the 

literature. It allows to receive experimental size dependences of 

the strain coefficient for different thin film materials (Fig. 3.4). 

On the basis of literature data the regularity of size 

effect in strain can be formulated: 

1) the value of strain coefficient in the thin 

monocrystalline films can be smaller or bigger than the value 

for samples in bulk state; 
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2) the size effect of strain coefficient in the 

polycrystalline thin films has the features as follows: 

– the value of γl is almost always bigger than the value of γt. It 

is explained by features of crystal lattice inner potential 

changes in deformation; 

– the value of strain coefficients can increase or decrease at the 

thickness (crystallite size) increasing subject to surface-grain 

boundary scattering relation; 

3) the value of γl and γt strongly depends on the number 

of deformation cycles as a result of residual deformation;  

4) stain coefficients do not depend on substrate 

materials; 

5) the value of γl and γt changes as linear law subjects to 

measurement temperatures; 

 

 
 

Figure 3.4 – Size dependences of longitudinal strain 

coefficient for thin films: Cr (1, 2); Cu (3, 4); Sc (5); Ni (6). 1, 

4, 5 are teflon and Ni foil substrates; 2, 3, 6 are glass-fibre 

laminate substrates 
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6) the value of γl and γt monotonously decreases during 

samples aging;  

7) the value of γl and γt at bending deformation is 

significantly bigger than at expansion deformation under 

similar conditions. 

These behaviors are typical for transition of d-metal 

thin films and not always appear for low-melting metal and 

discontinuous (island) films. 

 

3.6 Size effects in strain of double-layered films 
 

Tensosensitivity of thin metal films is significantly 

lower in comparison with semiconductor thin films. One of the 

method of it increasing is using double or multilayered thin 

film systems. The main difference of double-layered thin film 

systems from single-layered is that new mechanism of the 

conduction electron scattering at interfaces appears.  

 

3.6.1 The microscopic model 

 

For developing the double-layered model it is necessary 

to make assumption that double-layered film can be presented as 

parallel connection of two thin films with resistance R1 and R2: 
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where l1 = l2 =l, a1 = a2 =a, σ is conductivity. 

If the function of Sondheimer denotes that F = σ/σ0, then 

previous equations can be rewritten as  
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where 
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  are effective 

specularity parameters, p10, p12, p20 are specularity parameters 

at the interfaces of first layer-substrate, first layer-second layer, 

second layer-vacuum respectively. 

Equations for γl and γt can be received at assumption 

that  
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For this purpose it is necessary to take logarithmic 

differential from the left and right part of equation (3.15): 
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addition that p* and r do not depend on temperature, the 

equation (3.16) can be rewritten in the form 
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the equation for strain coefficients take form 
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where it is taken into account that lli 00 1     and 

tti 00 1    . 

Note that one of the reason of deviation between 

calculated (3.17), (3.18) and experimental data is assumption 

that coefficients p* and r do not depend on film strain. In this 

connection, Protsenko I. Yu. et al. proposed theoretical model 

which takes into account strain dependence of scattering 

parameters.  

The double-layered film in the framework of this model 

can be presented as three ones in parallel connected resistors, 

so equation for the total system resistance may be written as 
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Logarithmic differentiation of this equation gives 
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the value )(0  figi  , where f(α) and σ0 are the function of 

grain boundary scattering and conductance of bulk monocrystal 

respectively); 
11 ln

ln
f

i
f

ld

dd
 


 is the Poisson’s coefficient. 

In this theoretical model it has been considered that 

function Fi depends on both the reduced thickness 
0

d
k  , the 

effective specularity parameter p*, r and the reduced mean 

grain size 
0

L
m   and the parameter of interface scattering Q. 

The derivative of the function Fi at i = 1 can be written as 
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(i, k = 1, 2 and i ≠ k), the equation for the strain coefficient of 

double-layered film is 
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Derivatives can be approximately represented then as 
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The physical meaning of strain coefficients is that the 

process occurs at deformation of thin film in volume of the 
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grain (the increase of grain line size, the increase of lattice 

parameter, the deformation of lattice inner potential) and at the 

grain boundary (the deformation of grain boundary, turn of 

grains, relaxation processes related with the defects healing or 

defects generation, the initiation of localized energy levels).  

In case of polycrystalline thin films it is necessary to 

use MS equation for the conductivity in multiplier for A1 and 

A2 in the equation (3.21). But this procedure is ineffective, 

besides, experimental and calculated data are unsatisfactory 

according to equation (3.21). The main reason is that the 

deformation depends on the parameter of specular reflection at 

the grain boundaries and the transmission parameter across the 

grain boundaries. 

 

3.6.2 The macroscopic model 

 

In the framework of macroscopic model for 

longitudinal strain we can ascertain that 
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This equation can be rewritten as  
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The index “ρ” signifies that γl is defined through the 

resistivity ρ. If the derivatives are sequentially multiplied and 

divided by d1, d2, ρ1, d2, ρ2 and d1, then we receive  
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The analogical equation can be received for the 

coefficient of transverse strain. 

The limiting forms of equation (3.22) are  
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The analysis of equation (3.22) in two limiting cases 

showed that size dependence of strain coefficient has the 

feature that value of strain coefficient for double-layered film 

system can increase (
  21 gg  ) at decreasing thickness d2  

(d1 = const) or decrease (
  21 gg  ) working for to the 

asymptotic value 
 2g  (Fig. 3.5). 

For multilayered film system with arbitrary number of 

layer and total thickness d = d1 + d2 + …+ dn, the equation 

(3.22) can be rewritten as 
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Figure 3.5 – The qualitative size dependences for 

double-layered films (γ1(d1) (1), γ2(d2) at γg2 > βg1 (2) and γ2(d2) 

at γg2 < βg1) in two limiting cases: d1 = const, d2 →∞ (a), 

d2 = const, d1 →∞ (b) 

 

 
 

Figure 3.6 – The qualitative size dependences for 

multilayered film systems 
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Size dependence of strain coefficient of multilayered 

film system has nonmonotonic character: the value of strain 

coefficient will increase (   ln21 ... ll ), decrease (at 

reverse inequation) or oscillate working for corresponding 

asymptotic value  g  at increasing thickness d1 . In the frame of 

total multilayered system the value of strain coefficient will 

monotonously decrease (Fig. 3.6). 

 

3.6.3 Interpretation of experiments  

 

Values of γl and γt can be calculated by equations (3.17) 

and (3.18) using data for single-layered films. The results of 

comparison between experimental and calculated data for  

 

Table 3.1 – Comparison between experimental and calculated 

data for strain coefficients of double-layered films 

Sample 

Experimental data Calculated data 

d1, nm d2, nm β·103, K–1 γl ηl γl 
ST·10–8, 

Pa 

Cr 25–10    2–4,3   

Ni 20–120    0,6–1,3   

Co 20–65    19,0   

Cr/Co 90 60 2,60 26,7  16,1 1,80 

Co/Cr 60 65 2,25 21,0  15,8 4,20 

Ni/Co 30 80 3,38 13,5  10,5 3,72 

Co/Ni 50 55 3,40 9,0  11,1 3,66 
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double-layered film systems based on Cr, Co and Ni are 

presented in Table 3.1. As we can see from Table 3.1 the 

deviation of one data from another is significant.  

The reasons of deviations are as follows: 

1) assumption that coefficients p* and r do not depend 

on film strain;  

2) interdiffusion of atoms from one layer to another; 

3) presence of thermal expansion at interface between 

the layers. 

 

3.7 Temperature dependence of strain coefficients  

 

One of the least studied questions in the physics of thin 

films is the question about temperature dependence of strain 

coefficients.  

On the basis of carried out analysis the conclusion on 

temperature dependence of strain coefficients can be made. In 

most general case we can write that γl = C1+C2·T and 

γt = C3+C4·T. Thus, the value of longitudinal strain coefficient 

most probably will increase at temperature increase in case of  

 

 
 

Figure 3.7 – Qualitative temperature dependence of 

longitudinal (a) transverse (b) strain coefficients  
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metal thin films and decrease at temperature increase in case of 

semiconductor films (Fig. 3.7).  

On the assumption of more general considerations it is 

clear that strain coefficients must increase at temperature 

growth. According to our experimental data for Cr thin films 

temperature dependence of strain coefficients is linear and does 

not have peculiarities at points, which were described in 

previous subsections. The question about correlation 

temperature coefficients of strain βγl and βγt (TCS) and 

resistance was studied better. For obtaining the equation for 

these coefficients it is necessary to use the definition of TCS  
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and equations (3.7) and (3.8). After differentiation with respect 

to temperature we obtain 
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These equations can be rewritten in the form 
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and transverse strain coefficients, and 0
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Subjected to γl and γt ≥ 10, equation (3.24) can be 

simplified to the form 
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which allows to determine the value of 
Tt





2

 that 

characterizes the behaviour of strain sensor in the condition of 

temperature and deformation change. Note, that equations 

(3.24) and (3.24') are more precision in comparison with 

equation of Meiksin Z. βγ ≈ -β. The data for βγ, -β and 
Tt





2

 

are presented in Table 3.2. 

Note that corresponding data for transverse strain are 

similar to data presented in Table 3.2. 

Equations (3.24) and (3.24') allow to analyze the 

question for temperature dependence of γl and γt. 

In case of polycrystalline thin Me films, when β > 0 and 

0
2






Tt


, the value of 

l
  will be bigger than nought if  
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that is realized according to Table 3.2 at ρ ~ 10–6–10–7 Ohm·m. 

In case of amorphous thin Me films or semiconductor 

thin films β < 0 and value of 
l

  will be bigger than zero if  
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, parameter 

l
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have positive value. 

 

Table 3.2 – Parameter of strain sensibility for polycrystalline 

and amorphous thin films (T = 300 K) 

Film β·10–3, 

K–1 

γl 
l

 ·10–3, 

K–1 Tt





2

,
K

mOhm 
 

Cr (poly) 

Mo (poly) 

Mo(amorph.) 

0,70 

–0,09 

–0,20 

2,0 

13,5 

36,6 

6,0 

9,9 

10,6 

4,5·10–9 

11,4·10–9 

38,0·10–8 

 

In conclusion of strain effect discussion it is necessary 

to emphasize that strain properties have been investigated for 

Au, Pd, Pt, Co, Ni, Al, Sb, Te, Cr, Mo, W etc. thin films and 

thin film systems based on them. It is obvious, that such thin 
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film materials can be used as strain sensor if they have stable 

and resettability parameters. The artificial ageing of thin films 

at the heat treatment a little improved stability of strain 

parameters but did not meet the real problem. Stability of strain 

properties of thin film materials increases if deposit of thin 

silicon oxide layer is applied on the top of thin film or deposit 

of thin film on the Al2O3 layer were previously applied on 

substrate by method of RF sputtering. Although it does not 

solve the problem of thermal stability of strain parameters. 

 

3.8 Problems 

 

Problem # 1 

On the basis of the definition of strain coefficients γl 

and γt, show that  f
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  respectively. 

 

Problem # 2 
Prove that for bulk materials the equation for the 

longitudinal strain coefficient can be written as 

   12ll
. 

Directive: it is necessary to use the equation for 

conductivity 
0 n , where n is the electron concentration, 

and theoretical evaluation   1



dn

dn . 
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Problem # 3  

On the base of the definition of temperature 

coefficients of strain 
l

  and 
t

 , prove that in the limiting 

case of large values of γl and γt: 
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In what case   ? 

 

Problem # 4 

Show qualitatively size dependences of γl and γt (in 

width range of thickness) in the frame of the Fuchs and 

Sondheimer model. 

 

Problem # 5  

Why the Fuchs and Sondheimer model in strain is not 

agreed with experimental data? 
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Conclusion 

 

The range of thin film materials application is so wide 

and numerous, that we can talk about new technological 

direction – thin film matter science. It is, first of all, wide 

application in submineering of electronics, post and disc 

support for coaxial systems, plate hearing for wave systems, 

bolometers and thermoelements, strain sensor with high 

sensibility, application of magnetic thin films as logic or 

magnetic components, instrument engineering technical 

direction of applied character in thin films. Thin films with 

thickness in the range from ten nanometers to several microns 

are used at thin film elements production. Common preparation 

of many elements like resistors, capacitors, inductance, 

contacts etc. exclude the stage of elements arrangement and 

allows reducing their cost price. The modern stage of 

microelectronic development is characterized by using 

integrated circuits (IC). Their development and innovation 

allow developing big integrated circuits (BIC) with high scale 

of integration and complication of functions. On the base of 

BIC chip the computer has been developing. The main element 

of computer becomes microprocessor. 

The first microprocessor (was developed in 70th of 20th 

century) took several plated circuit. Very large scale integrated 

circuits appeared subsequently and microelectronic circuits 

received application in other technical devices. 

Describe the ways of introducing metal films in 

microelectronics in brief. 

 

C1. Resistors on the base of thin films 

 

For the first time patent on the using Me thin film as 

resistor was received by the Englishmen F. Kruger in 1919. 

Thereafter thin film resistors were widely used and 
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successfully compete with bulk resistors, which have size less 

then 130 μm (precision resistors with sizes 130–260 μm are 

economically sound in comparison with thin film resistors 

only). Thin film resistors can be prepared both as discrete type 

and as a part of integrated circuits. 

Thin Me films which have sheet resistance R = 10–

1000 Ohm are more particularly used at resistors preparation. 

Note, that R is resistance of sample with length l which is equal 

to width a, so R = ρ/d. Besides corresponding value of R, thin 

films must have small value of temperature coefficient of 

resistance (less than 10–4 K–1) and good stability of parameters. 

Any change of resistance during the work of resistor should not 

transcend permissible value. In the end, technology of resistors 

preparing should ensure their low cost. 

Summarizing results of Section 3, it is necessary to note 

such reasons of Me thin films high resistance: 

– size effects of Fuchs – Sondheimer and Mayadas – Shatzkes 

in electrical conductance and TCR, although these effects are 

seldom used at the resistors preparing; 

– thin film may have much larger quantity of impurities and 

crystalline defects in comparison with equilibrium because of 

low value of TCR and high value of resistance. For 

comparison, note, that dislocations, vacancies, penetration 

atoms, grain boundaries and equilibrium impurities give 

additional resistance: 0,1·10–8; 0,5·10–8; 1·10–8; 40·10–8 and 

180·10-8 Ohm·m respectively; 

– two-phase thin film (cermet or of the type “metal-insulator”), 

in which conducting phase is dissolved in insulator solution; 

– thin films with small density (porous films) have high 

resistance and low TCR but they have large surface area and 

need protection from high-speed oxidation;  

– multilayered thin films in which separate layers have 

different TCR in sign; resistors with high resistance and low 

TCR were received as a result of such combination; 



 92 

– new crystal structures with low concentration of charge 

carrier (well-known example of such structure is β-Ta).  

Different types of alloys, metal systems like cermets and 

semiconductors are used for resistors production.  

Nichrome (80 % Ni + 20 % Cr) is one of the best alloy for 

resistor preparing. The value of resistance of thin nichrome 

films changes in the range from 5 to 400 Ohm/□ and 

temperature coefficient of resistance changes in the range from 

–100·10–6 to 200·10–6 K–1. An effort of receiving thin films 

with higher value of resistivity in comparison with nichrome 

was done. With this purpose Ni atoms were exchanged into Si 

atoms. As a result the value of TCR takes ±5·10–4 K–1. 

In connection with the problem of composition control 

of the alloy the monometallic resistors are more perspective. 

Currently, the Ta thin films are widely used at resistors 

preparing because these electrical properties are better in 

comparison with another heat-resisting material (Ti, Hf, Mo, 

W, Re, Ct et al.). The electro-physical properties of tantalum 

thin films subject to preparation condition are presented in 

Figure C1. 

 

 
 

Figure C1 – Nitrogen influence on resistivity and TCR 

of tantalum thin films 
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The most successful result among bundle of 

compositions of metal-insulators that were investigated in the 

state of thin film was obtained in the system of Cr-SiO. The 

value of resistivity and TCR of Cr-SiO corresponding to SiO 

concentration changes in the range (80–6000)·10–8 Ohm·m and  

(–800–100)·10–6 K–1. The other cermets (Cr-MgF, Au-SiO, Pt-

TaO, Au-WO, Au-TaO) were also investigated, but they did 

not prove the resistance range and stability like a Cr-SiO 

system. 

 

C2. Thin film capacitors 

 

The technology of thin film IC provides formation of 

bundle resistors, capacitors and junctions on the insulator 

substrate. Thin films with chemical and temperature stabilities 

are used at capacitor preparing. Insulator thin films like TaO 

(dielectric constant ε = 25), Al2O3 (ε = 25), SiO (ε = 6), SiO2 

(ε = 4) are most widely used at capacitor preparing. The 

schematic structure of tantalum capacitor (basic type) is 

presented in Figure C2. 

 

 
 

Figure C2 – The basic type of the tantalum capacitor 

 

Insulators like Mn2O3, MnO2, SiO can be used in return 

for TaO in another type of capacitors. As a metal electrode (top 

armature) thin films likes Au, Pd, Sb, Gd, Fe, In, Al, etc. can 

be used. At their combination with insulator substrate Ta2O5 

the intensity of electric field breakdown E = Ub/d, where Ub is 
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the voltage of capacitor breakdown, d is insulator thickness, 

and takes value (0,64–4,12)·108 V/m at requirement 107–

109 V/m. 

Very important characteristic of capacitor is stability at 

voltage, temperature and humidity test. The special 

investigations were carried out for determination of these 

characteristics.  

 

C3. Superconductor thin films and devices based on 

them 

 

D. Bak in 1956 proposed the device cryotron, which 

can be used as computing element. It consists of tantalum 

superconducting element (gate) enclosed by solenoid from 

niobium wire. Tantalum conductor can be taken out from 

superconductor state by magnetic field which is generated by 

niobium solenoid. The analysis showed that gate can be 

prepared as thin film and in 1959 V. Newhouse and J. Bremer 

constructed thin film cryotron. This cryotron consisted of 

solenoid of tin thin film isolated from gate layer by SiO 

interlayer.  

If valve of cryotron contains in the middle point of 

transition from superconductor to normal state, then negligible 

increase of current control may set conditions for significant 

change of current or voltage through the valve. Such highly 

complex system allows intensifying current that flows through 

gate. 

Cryotron may be of the wire-wound or crossed-film 

(flat) type. The design of crossed-film cryotron is presented in 

Figure C4. 

Some properties of cryotron allow using it as switching 

or storage and logic device. 

Quite a number of application examples of 

superconductor thin films at developing different devices can  
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Figure C3 – The design of crossed-film cryotron:  

1 – control film (Pd); 2 – insulating layer (SiO2); 3 – gate film 

(Sn); 4 – insulating layer (SiO2); 5 – ground plane; 6 – substrate. 

Ic – control electric current; Ig – gate electric current 

 

be done. One of them is bolometer. Bolometer on the basis of 

the tin thin film has sensibility 10–12 Watt. Storage cell of 

Josephson is widely used. 

 

C4. Thin film sensors 

 

Sensors in the broadest sense of the word are master 

nodes of electronic circuit for measuring nonelectric 

parameters located directly near the object.  

The technology of sensors design and application was 

developed in independent direction of measurement 

technology. Since main requirements to sensor are minimal: 

low cost, mechanical strength, so the technology of their 

preparing is the same as for preparing semiconductor integrated 

circuits (thin-film and thick-film technologies of sensors 

preparing are compatible with microelectronic technology). 

Pt and Ni thin films are used as temperature sensors. The 

design of thin film thermoresistor is presented in Figure C4.  

Principle of operation of strain sensor is based on strain 

measurement of resistance strain gauge which is formed into Si  
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Figure C4 – The design of thin film thermoresistor:  

1 – substrate; 2 – thin film sensitive element (mono- of 

multilayered thin film system); 3 – leads 

 

 
 

Figure C5 – The design of converter on the base of thin 

film resistance strain gauge 

 

epitaxial thin film on the top of sapphire substrate soldered by 

brazen alloy to titanium membrane (Figure C5). 

Pressure sensors (barometer) are prepared from Si 

template with etched membrane. Strain elements deposit on the 

top of membrane by method of implantation or deposition. 

Humidity measurement can be done using dry and wet 

bulb hygrometers, dew point hygrometers, and electronic 

hygrometers. There is a surge in the demand of electronic 

hygrometers, often called humidity sensors. Humidity sensors 
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determine the amount of water vapour present in a gas that can be 

a mixture, such as air, or a pure gas, such as nitrogen or argon.  

Humidity sensors can be broadly divided into two 

categories: one employs capacitive sensing principle, while 

other uses resistive effects (Figure C6). 

In case of capacitive type humidity sensor 

(Figure C6, a), lower electrode is formed using gold, platinum 

or other material on alumina substrate. A polymer layer such as 

PVA is deposited on the electrode. This layer senses humidity. 

On the top of this polymer film, gold layer is deposited which 

acts as top electrode. The upper electrode also allows water 

vapour to pass through it into the sensing layer. The vapour 

enters or leave the hygroscopic sensing layer until the vapour 

content is in equilibrium with the ambient air or gas. Thus, 

capacitive type sensor is basically a capacitor with humidity 

sensitive polymer film as the dielectric. 

In case of resistive type humidity sensors (Figure C6, b) 

thick film conductor of precious metals like gold, ruthenium 

oxide is printed and calculated in the shape of the comb to form 

an electrode. Then a polymeric film is applied on the electrode; 

the film acts as a humidity sensing film due to the existence of 

movable ions. Change in impedance occurs due to change in 

the in the number of movable ions. 

 

 
 

Figure C6 – Basic structures of capacitive type (a) and 

resistive type (b) humidity sensors 
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Thin film system Ti/Si is used as a sensor of ammonia. 

On the base of monophase thin films TiO0,2, TiO0,5, TiO0,7–

TiO1,3, TiO1,4 layered structures Me/oxide/semiconductor and 

Me/oxide/Me were realized.  

Thin film system Au/SnO2/Au is used as humidity 

sensor on the base of capacity measurement with dry or moist 

insulator SnO2. Thin films SnO2 become sensitive to humidity 

after annealing at oxygen atmosphere or without annealing by 

method of low-temperature formation of gas sensitive layer. 

The principle of nitric oxide sensor operation is based 

on changes of transmission coefficient as a result of thin film 

systems AIBi(Ge)CVI oxidation, where AI is Li, K, Rb; CVI is S, 

Se. 

Thin film system Pt/LaF3/SiO2/SiC is successfully used 

for chlorofluorocarbon (Freon) registration. 

It is known that low-dimensional organic materials 

found a successful application in the strain sensor technology, 

as such materials have value of strain coefficient – 100–1000. 

Essential fault of such films is very low thermal stability like a 

semiconductor strain sensors. 

In this connection multilayered film systems on the base 

of Cr, Ni and other metal are more effective than sensing 

elements of high-temperature strain sensors. The value of strain 

coefficient of such multilayered systems is equal to 10. Such 

strain sensors have practical application as mechanical motion 

transducer. 
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