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Abstract 

Influences of river flows on recruitment success of Fynbos Riparian Vegetation along selected 

high gradient streams in the Western Cape, South Africa 

R. F Magoba 

MSc Environmental and Water Science Thesis, Department of Earth Science, University of the 

Western Cape  

 

Riparian vegetation occurs in two distinct zones, the wet bank and the dry bank.  Knowledge on 

how the flow regime influences the zonal structure of riparian vegetation is required to mitigate 

the adverse effects of water resource utilization on riparian vegetation.   

 

The first objective of this study was to determine whether flow exerts a physical influence on 

zonal structure pre- or post-recruitment.  An examination of the survival of seedlings and 

saplings was conducted along Western Cape rivers to investigate seedling persistence and 

survival on lateral zones.  A comparison of the ratios of seedlings, saplings and adults in 

different riparian zones for the years, 2004, 2011 and 2013, was carried out.  The results suggest 

that in general seeds are deposited randomly on the banks, where they germinate and become 

seedlings.  Seedlings that become established at locations unsuitable for their persistence into 

adulthood are removed either by high flows or perish during dry conditions.  Thus, lateral 

zonation eventually develops due to species differences in tolerance to conditions at different 

positions on the banks.  

 

The second objective was to explore the effects of the reduction in dry season low flows on the 

recruitment success of riparian species at sites upstream and downstream of abstraction points.  

At most sites plants were arranged into different lateral zones and the numbers of species 

between upstream and downstream sites were not significantly different.  There were significant 

differences in the abundances between up- and downstream sites, with the loss of herbaceous 

plants and sedges at downstream sites, both of which favour moist conditions.  Also, in the 

absence of dry season flows, the seedlings of dry bank tree species recruited closer to the channel 
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than those at the sites with summer flows.  The shifting of the dry bank into the channel narrows 

the channel, which may affect the hydraulic pressures exerted during floods.  

 

The spatial arrangement in the riparian zone has as much to do with flow conditions post 

recruitment as it does with conditions during recruitment.  This shows that the structure of 

riparian plants is determined not only by whether or not the minimum flows are met, this points 

to the need to reinstate the naturally variable flow and adopting a holistic approach for the 

understanding and management of aquatic systems.   
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1 Introduction 

Vegetation in the riparian zone grows in distinct lateral bands, broadly divided into the wet 

bank and the dry bank (Reinecke and Brown 2013).  The arrangement of plant communities is 

a response to water availability, channel morphology, sediment supply and surface-

groundwater interactions (Swanson et al. 1982; Naiman et al. 2005; Camporeale and Ridolfi 

2006; Gurnell et al. 2011), and the life cycles of many riparian species have been found to be 

closely linked to the natural variation of flow of a river (Poff et al. 1997; Friedman and Auble 

2000; Pettit et al. 2001).   

 

Diversion and abstraction of water from rivers for off-stream use by humans affects the 

volume of water left in the stream and therefore the extent and frequency of inundation and 

drying along the banks.  Since the flow regime of a river controls the distribution and 

abundance of riverine species and balances the ecological integrity of flowing water systems 

(Poff et al. 1997), changes to the flow regime affect the structure of riparian vegetation 

through effects on the life cycles of the individual species making up the communities with 

knock-on effects to most other parts of the ecosystem (Naiman et al. 2005).  The need to 

allocate water for the maintenance of ecosystem functions in rivers has been widely 

recognised (Poff et al. 1997; Richter et al. 2003; Postel and Richter 2003; Brown and King 

2003) and is being put into practice in many parts of the world (Tharme and King 1998; 

Richter et al. 2006).  In South Africa, the National Water Act requires that an Ecological 

Reserve is defined for all or part of a “significant” water resource in the country (Section 16 

of NWA, 1998).  However, the allocation of water for ecosystem maintenance, requires a 

knowledge of how changes in river flows, including flooding, affect the functioning of the 

riparian vegetation, so that the need for this water can be motivated.  Understanding, and if 

possible quantifying, these links aids prediction of how riparian communities would change in 

response to altered flow regimes, and thus what flows (quantity and quality) are required to 

maintain them. 

 

This study seeks to investigate the physical influences of flow on the functionality of the 

structure of riparian vegetation (lateral zonation) through investigation of its effect (flow) on 

the recruitment phases of key riparian species.  The central assumption of this study is that 

recruitment of vegetation in the riparian zone of rivers is controlled to a greater extent by the 

flow regime.  There are two parts to the study.  The first part focuses on temporal changes in 
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Fynbos riparian systems of the Western Cape to assess the possible influences of flow on the 

recruitment pattern of plant communities on the riparian lateral zones.  The second part 

concentrates on the effects of diminished summer low flows on recruitment (seedlings and 

saplings) of riparian vegetation.   

 

Accordingly, the main hypotheses for the study were: (1) lateral zonation of plants in the 

riparian zone is determined by factors that are exerted after recruitment; (2) sites that lack 

summer low flow will have less clear lateral zonation than sites that have a completely natural 

flow regime; and, (3) more seedlings will establish in the channel at sites with no summer low 

flows when compared with sites with natural summer flows and the marginal zone will be 

narrower in response to abstraction.   

 

The focal points of each chapter are as follows: 

 Chapter 1: introduction to and motivation for the study. 

 Chapter 2: a literature review, which addresses the links between lateral zonation and 

flow, recruitment dynamics, effects of flow modification on riparian community 

structure, environmental flows and adaptive management.  

 Chapter 3: investigates the positions of recruitment and whether these were dictated by 

seed distribution patterns or physical events following deposition.  

 Chapter 4: investigates whether the absence of dry season low flows in particular plays 

any kind of functional role in the positioning of plants on the river bank, especially in 

their recruitment phase.  

 Chapter 5: concludes the study.  

Chapters 2 - 4 of this thesis were written as papers but have been streamlined to reduce 

repetition in the dissertation.  To this end, the abstracts were removed, and the introductions 

and methods of data collection and analysis were cross-referenced between chapters where 

applicable. 
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1.1 Study area description 

Most parts of South Africa receive summer rainfall (Reason and Mulenga 1999).  The 

Western Cape, however, is characterized by a Mediterranean type climate with hot and dry 

summers followed by cold and wet winters (Sieben et al. 2009; Gasith and Resh 1999).  

Precipitation is mostly in the form of rain with more than 60% falling between April and 

September.  Rainfall is between 400 and 750 mm, but most mountainous areas receive about 

1000-2000 mm per year and can exceed 3000 mm (Sieben 2002).   

 

This region is recognised for the Cape Floristic Region (CFR), with two major biomes: the 

Fynbos Biome (most plants are sclerophyllous) and the Succulent Karoo (semi-arid and 

mostly supports succulent flora) (Moor and Day 2013).  This vegetation is highly diverse and 

is fire adapted.  According to Mucina and Rutherford (2006), the headwaters of south-western 

Cape rivers are characterized by a Fynbos Riparian Vegetation community typified by the 

small trees Brabejum stellatifolium, Metrosideros angustifolia and Brachylaena neriifolia 

(Holmes et al. 2005).   

 

The study was conducted in two catchments in the Western Cape, the Berg Catchment and 

Breede Catchment.  Six upper-foothill rivers were selected, of which five were in the Breede 

catchment: Elands, Molenaars, Sandrifskloof, Morraineskloof and the Keurhoek.  The Breede 

catchment is home to the wide Breede River valley, which is surrounded by mountain ranges 

with the Franschhoek and Du Toit Mountains to the west, and the Hex River Mountains to the 

north.  Rainfall varies greatly with a mean annual precipitation of 250 mm per annum in 

north-eastern areas and the southwest mountainous regions receiving about 3000 mm of rain 

per annum (DWAF 2004b).  The Elands River drains from the Hawequas Mountain and joins 

the Molenaars River at the Hugenot Tunnel before joining the greater Breede River.  The 

Sanddrifskloof, Morraineskloof and the Keurhoek Rivers are situated in the Hex River Valley, 

which is bordered by the Kwadousberg Mountains in the south and the Matroosberg 

mountains to the north (Breede Valley Municipality 2003).  These three rivers drain into the 

Hex River.  The Sanddrifskloof River joins the Hex River at the Sandhills village, while the 

Morraineskloof and the Keurhoek Rivers are both tributaries of the Amandel River, which 

flows into the Hex River shortly after they join.  The region is heavily cultivated with 
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vineyards and is well known for its table grape production being responsible for 90% of the 

total national supply (Breede Valley Municipality 2003).  

 

The sixth river was the Jonkershoek River, which is in the Berg catchment.  The Jonkershoek 

River has its source to the south-east of Stellenbosch in the Hottentots Holland Mountains.  

The mountain range has high plant diversity and reputedly has the best quality of drinking 

water in the region (Sieben 2002).  The dominant land-use is commercial agriculture, 

particularly orchards for the production of citrus fruit, and vineyards for wine production 

(DWAF 2004a).   

 

1.2 Definitions 

The following definitions apply in the study:  

Riparian vegetation: refers to the riverine plant community that is adjacent to the 

active channel and is sustained by generally moist conditions along river margins.  This 

vegetation is distinctly different in species composition from the neighbouring terrestrial 

communities (Reinecke 2013). 

 

Riparian zone and or riparian area: The area adjacent to the active channel of a river 

that is influenced by the flow regime of the river (Reinecke et al. 2007).  The two words are 

used interchangeably. 

 

Tree:  A woody plant of any life stage developing from a single stem. 

Seedling: A tree of height less than 0.3 m. 

Sapling: A tree of height between 0.3 m and 1.9 m.  

Adult: A tree of height ≥ 2 m. 

 

Lateral zones: Sub-sections of the riparian area where groups of plants preferentially 

grow in association with one another based on their shared habitat preferences and 

adaptations to withstand prevailing hydro-geomorphological conditions (Reinecke 2013).  

 

Recruitment or recruitment phase: The phases of a plant’s life cycle including 

flowering, fruit and or seed production, plus the seedlings and saplings life stages.  
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Pre-recruitment influences: Factors that have an influence on the position of seedlings 

and saplings before the seeds are deposited at site. 

 

Post recruitment influences: Factors that have an influence on seedlings and saplings 

after seeds are deposited at sites. 

 

Environmental Flows: Water that is left in a river system, or released into it, for the 

specific purpose of maintaining the ecological condition of that river (King et al. 2003a). 

 

Adaptive management: The adjustment of management plans informed by 

monitoring results (King et al. 2003a; Brown and King 2006). 
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2 Literature review 

2.1 Flow and the structure of the riparian vegetation in lateral zones 

Riparian zones are among the most structurally-complex and biologically-diverse terrestrial 

landscapes on earth (Merritt and Wohl 2002).  The term ‘riparian zone’ refers to areas directly 

adjacent to the wetted channel of a water course or waterbody that support vegetation 

communities, that are distinctly different from neighbouring terrestrial communities 

(Reinecke et al. 2007).  In the case of rivers, the vegetation in these areas typically shows a 

distributional relationship to the flow regime of the river (Reinecke and Brown 2013).  The 

vegetation zones occupy a three-dimensional transitional area (longitudinal, lateral and 

vertical) between aquatic and terrestrial ecosystems and serve as a passageway for the 

exchange of materials and energy from the one ecosystem to the other (Naiman and Decamps 

1997; Naiman et al. 2005; Kondolf et al. 2006; Reinecke et al. 2007; Richardson et al. 2007). 

 

Healthy riparian zones help to maintain the form of rivers by binding soils and strengthening 

river banks (Thorne 1990).  Trees and shrubs increase channel roughness, thus resistance to 

flow, which reduces the velocity of the flow in the channel and may lead to deposition of fine 

sediments and seeds in these areas (Chaimson 1989; King et al. 2003b).  Riparian vegetation 

also acts as a buffer against sediments, fertilizers, pesticides and other matter draining from 

the surrounding landscape through direct chemical uptake (Dosskey et al. 2010).  Riparian 

zones also provide migratory corridors for animals and breeding; feeding or nursery grounds 

for a variety of floral/faunal communities (Naiman et al. 1993; Brode and Bury 1984), and 

provide food and shelter for people and wildlife.   

 

Holmes et al. (2005) recorded that South Africa has three biogeographical vegetation types 

related to rainfall: (i) areas that receive rainfall in the winter or year around comprise mainly 

fynbos; (ii) summer rainfall areas encompass the grassland and savanna biomes; and the low 

rainfall or arid area consists of the succulent and (iii) Nama Karoo biomes.  Riparian 

vegetation in the fynbos region varies from forest to tall herbland (Sieben and Reinecke 

2007).  The riparian vegetation community in the upper reaches of fynbos rivers is 

characterized by small trees (3 - 10 m high) of Brabejum stellatifolium, Metrosideros 

angustifolia and Brachylaena neriifolia (Holmes et al. 2005; Galatowitsch and Richardson 

2005).  It has been described as closed-scrub fynbos, hygrophilous mountain fynbos, or broad 

sclerophyllous closed-scrub (Reinecke et al. 2007; Sieben and Reinecke 2007).   
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The structure of riparian vegetation varies along rivers in response to changes in various 

factors including or such as channel morphology, flow regime, sediment supply and surface-

groundwater interactions (Swanson et al. 1982; Camporeale and Ridolfi 2006; Gurnell et al. 

2011).  Riparian zones interact with the landscape in three dimensions: longitudinally as a 

vegetated strip along the channel from river source to its mouth; laterally as a channel with its 

associated banks and floodplain, which defines the area over which floods have an influence; 

and vertically between the bank, river bed and groundwater (Ward 1998; del Tánago and de 

Jalón 2006).   

 

Germination success of riparian seeds is influenced by factors such as the flow regime and 

flooding pattern, soil characteristics, temperature fluctuations, light conditions and 

competition (Kellog et al. 2003; Kunstler et al. 2009).  Survivorship of riparian plants, 

however, is mainly controlled by substratum texture and soil moisture, while the pattern of 

river discharge plays a crucial role in the establishment of saplings (Naiman et al. 2005).  

Thuiller et al. (2007) suggest that variability about these environmental factors reduces the 

importance of competition between species and individuals.  

 

According to Naiman and Decamps (1997), streams are non-equilibrium systems that have 

considerable influence on the attributes of riparian communities.  Due to the seasonal 

variations in discharge, even the most tolerant species are challenged by the environmental 

conditions created.  Accordingly, riparian plant communities tend to be composed of 

specialized and disturbance-adapted species, with morphological and physiological 

adaptations to floods and droughts (Naiman and Decamps 1997; Naiman et al. 2005).  Most 

riparian species are categorized as either resisters (ability to withstand flooding) or endurers 

(ability to resprout after breakage) in response to specific riparian disturbances.  For example 

water can reach up to 10 m on the central Amazon Basin floodplains and remain submerged 

for about 50 to 270 days yearly, and riparian plant species show strong morphological, 

phenological, and physiological adjustments to the low oxygen wet conditions (Naiman et al. 

2005).  In Australia, paper bark tree (Melaleuca sp.) are successful because they have 

characteristics that allow them to bend in floods, thereby reducing the shear stress they must 

withstand (Naiman et al. 2005).  Breonadia salicina grows on bedrock core bars of South 

African rivers in the Savanna Biome and is adapted to withstand substantial flooding, like 

many other species living in high energy environments (van Coller et al. 1997).  
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Riparian plant species are also resilient to fire (Naiman et al. 1998).  In the Western Cape, 

Brabejum stellatifolium, Metrosideros angustifolia, and Brachylaena neriifolia are able to 

resist fire; if burnt they regenerate quickly from canopy or soil-stored seeds, or by re-

sprouting (Holmes 1998).  Similarly, Sitka and Scouler willows are adapted to many 

disturbances including fire, their seeds germinate and establish post-fire, individuals have the 

ability to resprout following light intensity fires, and adventitious roots appear when the stems 

are fragmented by fires, floods or herbivory (Naiman and Decamps 1997). 

 

The width of the riparian zone varies greatly according to stream size, local geomorphology, 

and hydrological regime (Naiman et al. 2005).  In most headwater streams this zone is narrow 

and in some cases can be a closed canopy.  For mid-sized streams, the riparian zone is wider 

and almost always represented by a distinct band of vegetation.  Large rivers usually have 

complex floodplains, lateral channel migration and a diverse vegetative community (Naiman 

and Decamps 1997), particularly in their lower reaches.  The boundary of the riparian area can 

be demarcated using changes in soil conditions, vegetation, and bank topography (Naiman et 

al. 2000). 

 

The diversity in riparian characteristics is a result of the complex interactions between 

hydrology, lithology, topology, climate, natural disturbances, as well as the life history 

characteristics of riparian organisms (Poff and Ward 1989; Naiman and Decamps 1997; 

Naiman et al. 2005).  The occurrence of patterns in the riparian community is a reflection of 

the physical template and the dynamics of individuals, as well as modifications to the physical 

environment; thus integrating these interactions provides insights into understanding the 

biotic dynamics of riparian zones (Naiman et al. 2005). 

 

The presence of lateral zonation in riparian vegetation has been well documented and clear 

patterns are formed by riparian communities around the world (Naiman et al. 2005).  Distinct 

zonation patterns are exhibited by vegetation on lateral banks (Ward 1998), this reflects the 

ability of plants colonising the riparian and aquatic zones to cope with frequent flood 

disturbances, intense droughts and riverine sediments that are low in organic matter and free-

draining (Gurnell et al. 2011).  An example of lateral zonation of riparian vegetation is shown 

by Rumex spp. in the Netherlands.  Of the seven species of the riparian plant Rumex (sorrel) 

along the banks of Rhine River; Rumex acetosa and R. thyrsiflorus are sensitive to floods and 
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occur high up the bank, R. obtusifolius, R. crispus, and R. conglomeratus find optimal 

conditions in the midbank area, which is relatively wetter, while R. maritimus and R. palustris 

prefer the wet marginal zone directly or even in the water (Naiman et al. 2005). 

 

Although the naming may differ, the existence of lateral zones is usually defined using four 

factors: (i) periodicity of hydrological influence, (ii) marked changes in lateral elevation or 

moisture gradients, (iii) changes in geomorphic structure and (iv) changes in plant species 

distribution or community composition along lateral gradients, (Boucher 1999; Boucher 2002; 

Kleynhans et al. 2007; Reinecke et al. 2007).  In South Africa, Boucher (2002) recognized 

three principal zones (aquatic, wet bank and dry bank), which were shown to be consistently 

present on rivers in the Western Cape and Lesotho.  Kleynhans et al. (2007) also identified 

three general zones for South African rivers; the marginal, lower and upper zones, based on 

changes in lateral elevation and/or moisture gradients.  Boucher (2002), also recognized a 

transition zone between the dry and wet bank zone, which was called the lower dynamic 

subzone, this is an area of deposition or erosion.  Recently, Reinecke and Brown (2013) 

included this sub-zone in their four-zone classification of South African riparian areas and 

showed that the two main areas and all four zones are characterised by functional and species 

differences.   

 Wet Bank 

 Marginal zone - situated on the edge of the active channel and includes the area from 

the low-flow water level to the lower dynamic zone.  It is dominated by obligate 

riparian (wet) species.  

 Lower dynamic zone - separates the marginal from the lower zone and serves as a 

transitional area between the wet and dry bank as it contains species from these two 

neighbouring zones. 

 Dry Bank 

 Lower zone - extends from the lower dynamic to the upper zone and is characterised 

by facultative riparian (wet/dry) species.  

 Upper zone - extends from the lower zone to the terrestrial area forming the outer 

boundary of the riparian areas.  This zone is dry for most of the year and is 

characterised by a mixture of riparian and incidental terrestrial species (dry). 

 

Of the four zones, the marginal is the most consistently present across all river types and 

settings (Kleynhans et al. 2007).   
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In the Western Cape, the marginal zone is dominated by Prionium serratum and Isolepis 

prolifera, the lower dynamic zone by Calopsis paniculata and Morella serrata, the lower 

zone by Metrosideros angustifolia and Elegia capensis and the upper zone by Pteridium 

aquilinum and Diospyros glabra (Reinecke and Brown 2013).  Reinecke and Brown (2013) 

also showed that for Fynbos Rivers, the wet bank occurs within 1.5 m of the water’s edge (the 

marginal and lower dynamic zone), and that for South African rivers in general the wet bank 

and dry bank may be separated using the stage of the 1:2 year flood (a flood magnitute that 

has a two years recurrence interval) on a cross-section.  

 

2.1.1 Links between lateral zonation and river flow 

In streams, the primary source of environmental variability and disturbance is the flow regime 

(Poff and Ward 1989), which controls the abundance and spatial arrangement of individuals 

and the dispersal of vegetative propagules (e.g seeds, stem fragments), and thus successional 

dynamics (Tuner 1998).  Disturbance (floods and intermittency) and flow variability act on 

the physical template (Poff and Ward 1989): floods act as a transport mechanism exporting 

and importing plant propagules, sediments and nutrients, which impose both negative and 

positive effects on growth and survival of riparian vegetation (Friedman and Auble 2000).  

The temporal variability in river bank wetting results in the development of zones occupied 

by species with different moisture tolerances and adaptations to the frequency and duration of 

flood pulses (del Tánago and de Jalón 2006).  Most plants occurring in the riparian zone are 

specially adapted to cope with conditions associated with flood events such as sediment 

deposition, physical abrasion, and stem breakage (Busch and Smith 1995; Naiman et al. 

2005).  Nonetheless, different riparian species have different tolerances to floods and droughts 

and growth responses to inundation (Friedman and Auble 2000; Pettit et al. 2001).  In the 

absence of flooding, rates of river meandering and channel realignment often decrease, 

potentially causing a narrowing of the riparian zone and a decrease in the patchiness as well 

as diversity of the riparian habitat (Stromberg 1993).  For instance, scouring floods may 

increase species diversity as they prepare sites for primary succession by pioneering species 

(Naiman et al. 2005).  Thus, stream-flow can be considered a “master variable” that controls 

the distribution and abundance of riverine species and balances the ecological integrity of 

flowing water systems (Poff and Ward 1989; Poff et al. 1997; Friedman and Auble 2000; 

Pettit et al. 2001; Bunn and Arthington 2002; Richter et al. 2003; Gurnell et al. 2011; 

Reinecke and Brown 2013).   
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The links between zone pattern and flow have been well documented.  In ecology the critical 

aspects of a flow regime are; magnitude, frequency, seasonal timing, predictability, duration 

and rate of change of flow condition (Poff et al. 1997; Richter et al. 1997; Naiman et al. 

2008).  The interaction of these components helps in the maintenance of the in-channel 

dynamics that are essential to aquatic and riparian species (Poff et al. 1997).  Low and high 

flows at different time intervals are widely used in the characterization of a rivers natural 

hydrology, these and other aspects of flow regime dynamics are important because they often 

act as ecological "bottlenecks" (i.e. critical stresses or opportunities) for aquatic species (Poff 

and Ward 1989).   

 

The timing of flows is critical for riparian vegetation dynamics (Pettit et al. 2001).  Plants are 

adapted to the seasonal timing of flow events through "emergence phenologies" that 

determine the sequence of a plant life from flowering, seed dispersal, and seedling growth 

(Lyte and Poff 2004; Poff et al. 1997).  Seasonal variations in the timing and pattern of high 

flows have a huge impact on seedling survival and the subsequent plant community structure.  

For example Naiman et al. (2005) recorded a 100-fold range in seedling density among years 

and a different dominant species each year depending on interactions between summer flow 

conditions, species-specific dispersal and germination phenology, together with sediment 

characteristics on the Wisconsin River.  Along the San Miguel River in Colorado, USA, plant 

communities are arrayed along the hydrologic gradient, and riparian zones can be estimated 

using the frequency of floods (Friedman et al. 2006).  A Salix exigua community dominated 

areas that have a less than 2.2 years flooding interval.  Another, Alnus incana and Betula 

occidentalis, peaked on sites that were inundated every 2.2 to 4.6 years (Friedman et al. 

2006).   

 

Although both low and high flows are important for the maintenance of a riparian community 

(King et al. 2003b), the intensity and duration of the flows still plays an important role in their 

survival and growth.  Varied flows (disturbances) impose both negative and positive effects 

on growth and survival of riparian vegetation (Friedman and Auble 2000).  Prolonged 

inundation is an important source of mortality among riparian plants (Boucher 2002).  In an 

extreme case, continual flooding on the Bill Williams River from 1978 to 1980 (as a result of 

dam releases) caused death of nearly all of the cottonwoods (99%) and most of the willows 

(64%) in some areas (Stromberg 1993).  Bunn and Arthington (2002) suggest that stable 
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water levels reduce growth and survival of native riverine macrophytes and encourage the 

invasion of water hyacinth and a Typha spp. in Australia. 

 

The effects of a regional drought on riparian vegetation were studied in the Colorado River 

delta in Mexico from 2002 to 2007; this was a time of notably reduced surface flows when 

compared with the previous seven years.  It was found that reduced surface flows led to a 

reduction in native tree cover but an increase in shrub cover, mostly due to an increase in 

Tamarix spp., an exotic halophytic shrub, and a reduction in Populus fremontii and Salix 

gooddingii trees.  Overall the abundance of riparian obligate species decreased, and generalist 

(facultative) species increased (Hinojosa-Huerta et al. 2013).  Reduced flows can give way for 

invasive species to dominate while not necessarily changing the total vegetation percentage 

cover at a site.  Droughts and low flow events are also likely to limit overall habitat 

availability (Bunn and Arthington 2002).  However, according to Gasith and Resh (1999) if 

the rate of drying is slow and with presence of isolated pools, the overall species abundance 

can remain high  

 

Temporary periods of low or no flow releases from impoundments may also cause tree death.  

For example, at a site along the Verde River, 46 - 84% of the Fremont cottonwoods died 

during a dry period in the 1970's.  This was due to a combination of low flow releases from 

the Bartlett Dam and groundwater pumping from the Verde River Infiltration Gallery and 

Well Facility (Stromberg 1993).  Extreme events such as uncommon floods or droughts are of 

importance as they either reset or alter physical and chemical conditions that influence the 

long-term development of biotic communities.  Although such disturbances are catastrophic/ 

disastrous and costly to human life, they are ecologically important.  In rivers, for example, 

extreme droughts and floods are crucial for maintaining common biological, physical 

characteristics and ecological vitality (Naiman et al. 2008). 

 

A flow regime regime that mimics natural variations, rather than just a minimum low flow, is 

required to sustain freshwater ecosystems (Naiman et al. 2005; King et al. 2003b; Richter et 

al. 2003; Naiman et al. 2008).  Different flow regimes are important for the maintenance of a 

river including: the dry-season low flows; the small floods that occur every year; the 

intermediate floods with occurrence intervals of two to about five years, larger floods that can 

be catastrophic for the system; and natural flow variability at daily, monthly annual and inter-

annual levels (King et al. 2003b).  According to Bunn and Arthington (2002) the loss of wet-
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dry cycles often has drastic ecological impacts that favour exotic species.  Rising and falling 

water levels transport and deposit sediments, vegetation debris and vegetative propagules to 

downstream locations (Goodson et al. 2001).  This process may play an important role in 

structuring plant communities (Merrit and Wohl 2002) and maintaining high species richness 

in riparian ecosystems (Richardson et al. 2007; Chambert 2006). 

 

2.1.2 Links between zonation and geomorphology 

2.1.2.1 Influences of geomorphology on the structure of riparian vegetation 

Together with the fluvial regime, the fluvial processes and channel form of a river have major 

influences on the spatial and temporal structure of riparian vegetation (Pettit et al. 2001).  

Site-specific erosion and deposition together with lateral channel migration are the two 

geomorphological aspects important for understanding patterns and processes in riparian 

vegetation (Naiman and Decamps 1997).  The general patterns of community structure and 

succession are also dependent on the responses of riparian vegetation to soil conditions such 

as organic matter content, moisture content, nutrient availability and mycorrhizal associations 

(Naiman et al. 2005).  Naiman and Decamps (1997) point out that vegetation distribution is 

also determined by soil-water retention and that groundwater flows are important to consider. 

 

Just like varied flows, geomorphic instability often creates sites that are most favourable for 

germination (Hinojosa-Huerta et al. 2013).  Disturbance frequency and moisture gradients on 

riparian zones determine vegetation composition and are usually associated with riparian 

landforms.  Distinctive plant communities occupy floodplain, low-terrace, and high-terrace 

landforms along smaller channels (Naiman et al. 2000).  Bendix and Hupp (2000), explain 

that the likelihood of a given species to robustly grow on a particular landform is a function of 

(i) the suitability of the site for germination and establishment, and (ii) the surrounding 

environmental conditions at the site that permit persistence at least until reproductive age.  

Thus, the presence of a given species on a particular landform may allow for considerable 

inference regarding the hydro-geomorphological conditions characteristic of the landform 

(Hupp and Bornette 2005). 

 

Different landforms may be likely to support different vegetation by virtue of either the 

processes that are active on them (principally flooding) or their physical characteristics such 

as substrate type (Bendix and Hupp 2000).  Rivers with unstable substrates usually have low 
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species diversity (Bunn and Arthington 2002) as substrate type has an influence on soil-water 

retention, aeration, resistance to penetration by roots, and availability of nutrients (Sher and 

Marshall 2003).  It is clear that the distribution of plant species within watersheds is not 

random, and is linked to the distribution of hydro-geomorphological processes and landforms 

(Bendix and Hupp 2000).  

 

Multiple scales of environmental interactions complicate the recognition and analysis of 

hydro-geomorphological impacts on riparian vegetation (Bendix and Hupp 2000).  Naiman et 

al. (2000) explains how the structure and dynamics of the riparian zones are a result of the 

interaction between biophysical factors acting at different scales.  At the largest scales, the 

form of the valley influences alluvial landform development and pattern (such as high and 

low terrace).  At small to medium scales, the arrangement of the physical environment and the 

characteristics of the riparian forest vary with spatial and temporal scale.  At the smallest 

scale, alluvial landforms of different height above the channel mediate the impact of fluvial 

disturbance on riparian zones, thus influencing the composition of vegetation.  Integration of 

these biophysical factors across all scales, with the disturbance regime, determines channel 

type and channel shape. 

 

2.2 Recruitment and mechanisms for seed dispersal 

Environmental heterogeneity of riparian plant communities (species richness) is ultimately 

constrained by dispersal (Merritt and Wohl 2002).  Hydrochory, the dispersal and transport of 

seeds by flowing water, is an effective means of seed dispersal and may be a key factor in 

controlling the position of species along rivers and laterally up river banks (Merritt and Wohl 

2000; Andersson et al. 2000; Pettit and Froend 2001; Merritt and Wohl 2002; Reinecke et al. 

2007), and also enables new plant populations to become established at great distances from 

parent populations.  Dispersal of seeds by animals (zoochory) and by wind (anemochory) may 

also be of importance, but few empirical data exist for comparison (Naiman and Decamps 

1997).  

 

Bendix and Hupp (2000) suggest that riparian communities should be considered 

compositionally stable, maintained by periodic flooding, rather than successional, recovering 

from floods.  They describe three important roles of floods in the establishment and survival 

of riparian vegetation:  
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 Most riparian plants seeds germinate in alluvium that is deposited during floods, fresh 

deposits provide sites for colonization, and the energy conditions of the floods 

determine the texture of the new substrate.  The reproductive biology of Fremont 

cottonwoods and Goodding willows is strongly tied to fluvial processes; seedling 

recruitment of both species is dependent upon periodic flood flows to deposit and 

moisten alluvial sediment bars (Stromberg 1993). 

 Floods create colonization sites by removing existing vegetation.  A change in habitat 

from riverine plants to large woody debris was reported after the Sabie River floods in 

February 2000, where large woody debris occupied about 2 to 11% area of the riverine 

landscape.  Large woody debris acts as localized focal points for accumulating fine 

sediments, nutrients and moisture, which then results in patchy resource availability.  

Favourable microclimates (increased soil moisture, reduced summer soil temperatures) 

and soil nutrients within large wood piles remained evident for years afterward (Naiman 

et al. 2008).   

 The occurrence or lack of floods after germination may determine whether seedlings 

will survive to maturity.  In some cases, floods play a significant role in dispersing 

vegetative propagules to colonization sites.  Vegetative propagules may be clonal 

segments or seeds, including some that are more often thought of as wind-dispersed 

(Bendix and Hupp 2000).  

 

For seeds to successfully recruit during the post-flood period, the plants reproductive 

phenology must synchronize with the flooding pattern, if not, the species will require a 

propagule bank, such as a persistent soil-stored seed bank which may be triggered to 

germinate after a flood (or rain) event (Richardson et al. 2007).  Naiman and Decamps, 

(1997) noted a positive relationship between floating capacity of diaspores and species 

occurrence in the riparian vegetation in Sweden.   

 

Most riparian species have evolved life history strategies whereby seeds are produced during 

a specific season synchronized with the timing of hydrological events for successful dispersal 

(Bunn and Arthington 2002; Chambert 2006).  Merrit and Wohl (2002) argue that the final 

location of hydrochorous seeds along riparian strips is a result of at least three interacting; 

factors: (1) the hydrological regime during seed release and transport, as defined by the 

timing and magnitude of peak flows together with the rate and direction of change in 
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discharge, (2) channel morphology and hydraulics, and (3) the phenology of seed release as it 

relates to hydrologic regime.   

 

Gurnell et al. (2011) suggested that the potential of the deposited propagules to survive is 

hydrologically controlled by the flood stage, which determines deposition site, and the depth 

to the alluvial water table, which controls after deposition survival and growth.  The higher 

they are deposited within the active corridor, the less likely that they will be disturbed as they 

sprout and establish. 

 

Seedlings are the most sensitive stage of a plant life cycle (Eriksson and Ehrlen 2008).  A 

recent review concluded that the most common causes of seedling mortality, as percentages, 

were herbivory (38), drought (35) and fungal attack (20); less frequent were physical damage 

(4.6) and seedling to seedling competition (1.3) (Eriksson and Ehrlen 2008).  Survivorship is 

thus highly regulated by substrate texture and soil moisture, with the pattern of river discharge 

playing a key role in the establishment of saplings (Naiman et al. 2005; Eriksson and Ehrlen 

2008).  Once a seedling’s roots reach the water table, aeration and penetration of the substrate 

may become more important for growth than soil-water retention (Sher and Marshall 2003).  

In the Ord and Blackwood River in Australia, a higher density of seedlings were found to 

have established in wet and moist riparian vegetation sites than in the dry sites (Pettit and 

Froend 2001).  Also an investigation into the relationship between bank elevation and 

seedling density showed a strong negative relationship between bank elevation and seedling 

density, with most seedlings occurring at lower elevations of the bank (Pettit and Froend 

2001). 

 

Although plants may initially establish at different sites, they are only successful on “safe 

sites”.  Safe sites have suitable conditions for germination such as adequate water and oxygen, 

also environmental conditions compatible with life history requirements (Naiman et al. 2005).  

Bank length, bank stability and bank undercut are variables that have influences on the 

establishment, growth and distribution of riparian vegetation (del Tánago and de Jalón 2006).  

Seasonal variations in the timing and pattern of flooding have profound effects on seedling 

survival and subsequent plant community structure.  In the Western Cape mountain streams, 

however, Galatowitsch and Richardson (2005) reported that seedlings are not found on recent 

(new) deposition along channels, but rather on stable banks and along rock fractures.  This 

was because headwater streams tend to be erosional, not depositional and are not prone to 
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frequent overbank flooding.  Consequently, seedling recruitment as a response to flooding 

disturbance may not be an adaptive advantage. 

 

Substrate particle size is among the key environmental variables for determining seedling 

survival and growth, therefore potentially competitive success (Sher and Marshall 2003).  In 

the Middle Rio Grande of New Mexico both Populus sp. and Tamarix sp. had greater 

germination and early growth densities on clay than in sand, but during the following year 

saplings grew better in sandier substrates.  This may relate to abiotic demands differing at 

these growth stages (Sher and Marshall 2003).  

 

2.3 Effects of flow modification on riparian community structure 

Human influences have substantially changed the natural flow of rivers around the world, 

disrupting the dynamic equilibrium between the movement of both water and sediment (Poff 

et al. 1997) with cascading effects on the physical and ecological integrity of rivers including 

the riparian area (Stromberg et al. 1996; del Tánago and de Jalón 2006).  Downstream effects 

of modified flow include altered river discharge, decreased suspended sediment, channel 

incision, flooding, floodplain and channel narrowing, stream meandering, and a decrease in 

diversity of the riparian habitat; accompanying such changes are shifts in riparian plant 

community composition (Stromberg 1993; Nilsson et al. 1991; Busch and Smith 1995; 

Gilvear et al. 2002).  The extent of manipulations is expected to continue to increase with 

growth in human population and demand for energy, irrigation and industrial activities (Poff 

et al. 1997).   

 

With this comes a need to predict the biological impacts that are associated with water 

management activities and setting water management targets that maintain riverine biota 

(Resh et al. 1988).  Sustained flooding cause damages that may lead to mortality of riparian 

communities, death by inundation is also common for riparian species that grow in or near 

new or expanded reservoirs (Stromberg 1993).  Prolonged drought or flow reductions of any 

kind can lead to a lowering of riparian water tables and ultimately mortality in riparian trees 

(Richardson et al. 2007).   

 

According to Merritt and Wohl (2000) alteration of the natural flow regime is an inescapable 

consequence of water development that influences both the temporal availability and 
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suitability of stream-side habitat and the dynamics of seed delivery to sites that are suitable 

for establishment.  Resh et al. (1988) contend that once the environment is pushed outside the 

range of its natural variability the potential for native species and natural communities to 

survive is reduced.  However Richter et al. (2003) argued that certain alterations do not 

threaten the viability of native species and the ability of an ecosystem to provide valuable 

products and services for society. 

 

In many rivers flow modifications are responsible for increases in riverine plant abundance.  

Excessive growth of submerged aquatic macrophytes in a regulated Norwegian river was 

caused by reduced summer floods and increased winter flows (i.e., a relatively stable flow 

throughout the year).  Up to 55% of the tail water surface area and slow-flowing reaches 

further downstream in the River Otra were covered with prolific growths of the submerged 

phenotype of Juncus bulbosus (Bunn and Arthington 2002).  

 

The effects of flow modification on riparian vegetation may lead to competition in plant 

communities and may give way to plant invasions, where it is frequently assumed that the 

exotic species have invaded a habitat through competitive exclusion of native species, 

however often invaders are competitively weak and therefore depend on disturbance to 

remove the competitively superior native species (Sher and Marshall 2003).  After clearing 

invasive species along selected headwater streams in the Cape Floristic Region (South 

Africa), small tree species (indigenous) became typically dominant in riparian scrub 

(Brabejum stellatifolium, Brachylaena neriifolia, Erica caffra and Metrosideros angustifolia), 

suggesting that these species may find suitable conditions for establishment in cleared sites 

that are free from competition (Galatowitsch and Richardson 2005).  Plants that are stressed 

by floods will also be placed at a competitive disadvantage (Bendix and Hupp 2000), which 

makes a river’s hydrological regime a main driving force of the out-come of species 

interactions.  As flow modification continues the most successful invaders will be those that 

are adapted to the modified flow regime (Bunn and Arthighton 2002).  

 

As river margin communities are dependent on river hydrology (Naiman and Decamps 1997), 

a change in river flow causes change in the riparian community (Jansson et al. 2000).  It takes 

a long time for an ecosystem to change; the transition to a new, altered ecosystem state can 

take tens to hundreds of years as chain reactions cascade through second and third order 

effects within an ecosystem (Richter et al. 2003).  However the specific changes that come 
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with flow regulation on streams are difficult to predict due to complexity of rivers.  To 

understand the combined and ultimate effects of river regulation, a combination of long-term 

studies for post regulation conditions are required. 

 

2.4 Environmental flows and adaptive management 

Environmental Flows (EFs) have been defined as the water that is left in a river system, or 

released into it, for the specific purpose of managing the ecological condition of that river 

(King et al. 2003a).  Methods to estimate environmental flow requirements for rivers focus 

primarily on one or a few species that live in the wetted river channel. Most of these methods 

have the narrow intent of establishing minimum allowable flows (Poff et al. 1997).  Brown 

and King (2006) acknowledge that there is no single method, approach or framework that is 

perfect to determine an EF and in most cases holistic methodologies are considered.  There 

are four main types of flow-assessment approaches (King et al. 1999); (i) hydrological data 

are essentially desktop methods and were among the earliest, (ii) hydraulic rating methods use 

field measurements to describe channel-discharge relationships, (ii) habitat rating approaches, 

the best known of which is the Instream Flow Incremental Methodology and (iv) holistic 

approaches such as the Building Block Methodology in South Africa (Tharme and King 

1998), Holistic Approach (Arthington and Zaluski 1998) and the Expert Panel Assessment 

Method (Swales and Harris, 1995 in King et al. 2003a).  Recognition of the natural flow 

variability and careful identification of key processes that are linked to various components of 

the flow regime are critical to making these judgments.  

 

Although there is little functional information of river system to place much confidence on the 

recommendations made; when EFs are set the changes on the riverine ecosystems are 

predicted, there after a monitoring process is put in place to provide feedback on the effects of 

the recommendations nearly enough information on the functioning of the system to place 

confidence on the recommendations that were made.  In the process of monitoring if it is 

realised that the changes in the ecosystem are not those predicted by the ecologists, then an 

adaptive management strategy is applied.   

 

Strategic adaptive management has been simply defined as the adjustment of management 

plans which are informed by monitoring results (King et al. 2003a; Brown and King 2006).  

According to Poff et al. (2010), an effective adaptive management means “designing, 
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implementing and interpreting research programs to refine flow alteration-ecological response 

relationships, and ensuring that this new knowledge translates into updated, implemented 

flow standards”.  Moore et al. (2011) stated that the focus of adaptive management is not 

research, although the main objective is the accumulation of knowledge for improving 

decision making.  Adding to this Gunderson (1999) indicates that it is called ‘adaptive’ 

because it acknowledges that managed resources will keep changing as a result of human 

intervention, that surprises are inevitable, and that new uncertainties will emerge. Nonetheless 

active learning is the way in which the uncertainty is dealt with. 
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3 Physical influences of recruitment on the structure of the 

lateral riparian zone 

3.1 Introduction 

Riparian zones occupy a three-dimensional transitional area between aquatic and terrestrial 

ecosystems and serve as conduits for the exchange of materials and energy between these 

systems (Naiman and Decamps 1997; Richardson et al. 2007).  The structure of riparian zones 

consists of three essential components.  The first is a longitudinal continuity from river source 

to mouth, which comprises a continuous vegetated strip along the channel that contributes to 

the control of the flow or movement of water, nutrients, sediment and species through the 

landscape.  Secondly, the lateral dimension (width) of the channel and floodplain containing 

natural riparian vegetation defines the riparian area where hydrological and ecological 

processes and functions take place, and influences the heterogeneity of the riparian zone (del 

Tánago and de Jalón 2006).  Thirdly, the species composition and structure of the riparian 

vegetation which reflects species responses to prevailing abiotic controls (van Coller 1992).  

 

Riparian vegetation exhibits distinct lateral zonation patterns from the channel outwards up 

the banks, resulting in broad-scale spatial segregation of species along an elevation gradient 

(Ward 1998).  The presence of lateral zonation in riparian vegetation has been well 

documented: flooding events shape the vegetation on riverbanks and the zones that are 

inundated annually (wet bank) have different vegetation from those that are inundated inter-

annually (dry bank) (Sieben and Reinecke 2007).  Zones of different plant communities have 

been recognized laterally up the river bank from the water’s edge to outer edge of land 

influenced by the occurrence of small to medium floods, and the duration of inundation when 

flooded intra-annually (Reinecke and Brown 2013).  These lateral zones are defined based on; 

periodicity of hydrological changes in lateral elevation or moisture gradients, and or changes 

in plant species distribution or community composition along lateral gradients.   

 

The flow regime of a river is a primary determinant of the structure and function of aquatic 

and riparian ecosystems (Poff and Ward 1989, Gurnell et al. 2011), and is considered to be a 

“master variable” that influences the distribution and abundance of riverine species (Richter et 

al. 2003).   According to Mahoney and Rood (1998), different stages of river flows affect 

seedling recruitment within lateral zones: (i) high flows drive geomorphological processes 
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that create suitably moist sites (nursery sites); (ii) receding flows expose the favorable nursery 

sites; (iii) a gradual decline in flow after germination permits the growing roots to maintain 

contact with the receding moisture levels; and (iv) sufficient flows through the low flow 

period provide seedlings with a favourable water balance to withstand the winter season.  For 

successful recruitment in the post-flood period, flowering and seed set should take place 

during the flooding season as this will disperse seeds into nursery sites.  Failing this, plants 

will have to depend on a persistent seed bank in the soil that is triggered to germinate by flood 

(or rain) events (Richardson et al. 2007).  Successful seedling recruitment on the riparian zone 

depends mainly on suitable conditions created by flow events at specific times. However 

changes in flow patterns often shift the timing of preferred conditions (Naiman et al. 1998).  

Once plants have passed the seedling stage, water availability may be the dominant factor 

controlling their survival (Reinecke 2013).  

 

3.1.1 Seed set and flow 

Most riparian species synchronize seed production with the timing of hydrological events as 

these enhance their chances of dispersing successfully (Chambert 2006).  For instance seed 

dispersal linked to fluctuating water levels is a major factor in determining zonation of willow 

and poplar species (Naiman et al. 1998).  During low flows seeds are deposited lower down 

the bank, close to the wetted channel, while during high flows they are deposited further up 

the bank.  Naiman et al. (1998) points out that the timing of germination may be partially 

responsible for the ability of different species to survive flooding.  

 

Figure 3.1 illustrates the differences in the seasonal variation of selected species’ seed release 

with the corresponding flow in the Molenaars River, which displays a flow regime typical of 

rivers in the Western Cape, South Africa.  Flows peak during mid- June, persist through July 

and start to recede in August.  Thereafter, river flows gradually decrease through the summer, 

with February having the lowest flow, before rising again between March and April. 

 

Suggested seed and flower release periods of the selected species in the Western Cape are as 

follows; according to Reinecke (2013), Salix mucronata prefers year-round waterlogged 

conditions and releases seeds during January coinciding with the summer low flows, which 

allows the seeds to establish closer to the dry season water’s edge.  For many species of 

Salicaceae, abundant seeds are produced in spring and early summer (which are low flow 
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periods).  Seed dispersal is by means of air and water, and seedlings establish only if the soil 

on which the seeds are deposited is moist and remains undisturbed through germination and 

establishment (Karrenberg et al. 2002). 

 

Metrosideros angustifolia releases its seeds over the four months from the peak of winter high 

flows (June) to the beginning of the low flow period in September (Reinecke 2013).  This 

allows the seeds to be deposited down the river banks as the flows recedes.  Brabejum 

stellatifolium seeds are released during autumn (April to May) during the approach of the wet 

season, in the Western Cape area.  As a result Brabejum stellatifolium recruits more on the 

upper portions of the riverbank as the seeds are deposited by the rising flows.  Brachylaena 

neriifolia flowers in summer and sets seed in autumn; January to March (Goldblatt and 

Manning 2000).  This disperses seeds closer to the wetted channel where they germinate 

before the high flow season arrives.  Morella serrata flowers from August to December and 

the fruits ripen in January (Goldblatt and Manning 2000).  It is a typical lower dynamic 

species occurring closer to the water’s edge.  Freylinia lanceolata flowers during high-flow 

summer periods from June to August (Pitta 2002).  Although the understanding of timning of 

seed production in the Western Cape is limited in scope,a general cinception is illustrated.  
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Figure 3.1 Seed release of species with relation to the seasonality of flows 

 

 

3.1.2 Lateral zonation in the Western Cape 

The riparian zone is divided into a number of lateral zones that are characterized by their 

species composition.  According to Reinecke (2013), various descriptions of zonation along 

the riparian bank assume that lateral zones exist and closely link them to changes in bank 

topography, aspects of the flow regime or rather their interaction thereof.  Although the actual 

number of lateral zones that occur along river banks may differ, the Wet and Dry banks are 

always defined.  Boucher (2002) introduced a classification system with seven zones that 

were distinguished on the basis of their species composition and flood recurrence intervals.  

Three principal zones were recognized (Aquatic, Wet bank and Dry bank), which he showed 

were consistently present on rivers in the Western Cape and Lesotho.  For South African 

rivers, Kleynhans et al. (2007) described three lateral zones (Marginal, Lower and Upper 

zone) characterised by flood recurrence and bank shape.  Although lateral zonation for 

Western Cape Rivers has not been intensively studied until recently with no formal 

classification (Prins et al. 2004), some authors have acknowledged their presence and defined 

them.  In the Western Cape Fynbos Riparian Vegetation Community, seven lateral zones were 
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recognized by Reinecke et al. (2007) consisting of wet bank (made of Wet Edge and Channel 

Fringe) and dry bank (made of the Tree Shrub, Outer Transitional and the Non Riparian), 

while the aquatic vegetation zone was not addressed.  Reinecke and Brown (2013) reported 

evidence of four lateral zones distinguished by plant species (Marginal, Lower dynamic, 

Lower and Upper zone).  Indicator plant species (Table 3.1) were identified for the four lateral 

zones (Reinecke and Brown 2013) in Fynbos Riparian Vegetation community (Mucina and 

Rutherford 2006).   

 

Table 3.1 Indicator species for each lateral zone (Reinecke and Brown 2013). 

 Lateral zone Indicator species 

1 Marginal  Prionium serratum and Isolepis prolifera 

2 Lower dynamic 
Calopsis paniculata and  

Morella serrata 

3 Lower  
Metrosideros angustifolia and  

Elegia capensis 

4 Upper  
Pteridium aquilinum and  

Diospyros glabra 

 

 

This chapter focuses on temporal changes in fynbos riparian systems of the Western Cape to 

assess the possible influences of flow on the recruitment pattern of plants communities on the 

riparian lateral zones.  The key research question was: Are the physical influences of flow 

(drought and floods) on riparian communities exerted before or after recruitment?  The 

working hypothesis was that the structure of plants on lateral zones will be determined by 

factors that are exerted post-recruitment.  The aim is to study if the structure of the riparian 

vegetation is determined by other influences before recruitment (pre-recruitment) or by 

influences that affect them after recruitment or establishment (post recruitment).  Sites where 

riparian vegetation communities were sampled in 2004 (Reinecke 2013) and 2011 (Otto 2014) 

were re-sampled in 2013.  Changes in population structure of undisturbed riparian zones on 

two rivers were assessed over a period of nine years.  Attention was paid to the distribution of 

saplings and seedlings in order to determine preferred recruitment location and survival post 

recruitment.   
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3.1.3 Location of study sites 

The location of the study sites within the Western Cape Province is shown in Figure 3.2. 

 

 

Figure 3.2 The location of the study catchments within the Western Cape Province.  The 

arrow points to the approximate location of study sites. 

 

 

3.2 Methods 

3.2.1 Data collection 

River cross sections were surveyed from Elands (Ela) and Molenaars (Mol) Rivers.  

Moreover, vegetation transects were sampled and hydrological data were collated from 

nearby gauging stations. 

 

3.2.1.1 Cross section data 

The variation in elevation across cross-sections of the channel at each site was surveyed in 

2011 and again in 2013 to establish whether there were any major changes in bank shape that 

 

 

 

 



27 

 

may have influenced the distribution of riparian vegetation.  Two cross-sections were 

surveyed at each site, except for Mol 2 where the repeat surveys did not overlap the original 

cross-sections.  Two cross sections that were 10 m apart were surveyed to give the overall 

shape of the river channel at sample sites.  A control point which was permanently marked in 

2004 at each site was used as a reference starting point thereafter taking a reading for the 

horizontal distance and elevation at vegetation sample plots which were one meter apart from 

each other.  The naming of the cross-sections at sites was done using the distance from the 

river (meter number) at its location.  The locations of the surveys are given in Table 3.2.  

 

Table 3.2 Location of cross-sections on sampling grid in 2011 and 2013. 

 Cross-

section 1 

Cross-

section 2 

Cross-

section 3 

Cross-

section 4 

Cross-

section 5 

Transect at site : 0 m 5 m 10 m 15 m 20 m 

Ela 3 √  √  √ 

Ela 4  √  √  

Mol 2 (Only in 

2013) 

 √  √  

Mol 5  √  √  

 

 

3.2.1.2 Vegetation data 

A long term data set was constructed using data collected at permanently marked plots on the 

Elands and Molenaars Rivers in the Breede River Catchment (Figure 3.2).  Sampling was 

conducted during the low flow season during 2004 (Reinecke et al. 2007), 2011 (Otto 2014) 

and 2013 (this study).  Vegetation data were collected in permanently marked vegetation 

transects centered on sample grids adopted from Reinecke et al. (2007).  Two suitable sites 

were selected for each river, the four sites were sampled in 2004 (Reinecke et al. 2007) and 

2011 (Otto 2014) using whole community sampling as part of different studies, and then 

resampled in 2013 for this study, except for one site (Mol 5), which was only sampled in 2011 

and 2013.   

 

The sites were named using the first three letters of the river name and a numeric code that 

corresponds to the original (2004) study, namely: Ela 3, Ela 4 on the Elands River and Mol 2, 
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Mol 5 on the Molenaars River.  The numeric code is according to the location of one site 

relative to the other; with the more upstream site having the smaller number, i.e., Ela 3 is 

upstream of Ela 4. 

 

3.2.1.3 Sample plot design 

At each site four vegetation transects were laid out on one bank.  Each transect was 20 m long 

along the wetted edge of the river, and several meters wide laterally up the bank dictated by 

the width of the riparian zone (Figure 3.3).  Each transect was divided into contiguous 1 x 5 m 

sample plots.  Sample plot labeling was done by number (1 to ‘n’) to indicate distance from 

the water in metres, and by letter A to D to indicate the four different transects.  Vegetation in 

the wetted channel (part of the channel with flowing water) was also sampled using the same 

layout, however negative numbers were used in the naming of these sample plots; i.e. the one 

metre distance from 0 m into the channel was -1 m. 

 

 

Figure 3.3 Vegetation transects A – D, showing sample plot layout 

 

 

The number, height, and contribution to canopy cover of each species were recorded for every 

species rooted in every 5 m
2
 plot in order to describe the abundance and distribution of the 

plant species.  The same sample plots used in 2004 and 2011 were re-sampled.  The rooted 
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position of each plant was recorded i.e., the position at which the roots of the plant were 

located in the sample plot.  The number of tree individuals was recorded in three height 

classes (Table 3.3) per sample plot.  These three height classes were selected according to 

plant life history stages for growth.  Two specimens of each plant species were collected, 

pressed, dried and catalogued into two separate herbaria: one for field reference and another 

for identification.  Identification of plant species was done by plant specialists from the 

Compton Herbarium at Kirstenbosch National Botanical Gardens in Cape Town, the two 

historical data sets (2004 and 2011) were also identified at this place.  Six indicator species 

that are common to the Western Cape were used: Salix mucronata, Metrosideros angustifolia, 

Brabejum stellatifolium, Morella serrata, Freylinia lanceolata and Braclylaena neriifolia.   

 

Table 3.3 Three height classes used for division of the vegetation canopy (Reinecke et 

al. 2007) 

Growth stage Height (m) 

Seedlings  < 0.3 

Saplings (juveniles) 0.4 – 1.9 

Adults  > 2 

 

Cover was estimated visually as a percentage of the cover canopy for each plant species in 

every sample plot.  Cover percentages of woody plants were recorded for every individual 

plant observed while for graminoids and groundcovers (non-woody) a percentage was given 

as a total for that species in that sample plot.  

 

3.2.2 River flow data 

Flow data were obtained from the South African Department of Water Affairs website 

(http://www.dwaf.gov.za/Hydrology/).  For each river, daily and monthly flow data were 

downloaded for the flow gauging station closest to the sample sites (Table 3.4).  These data 

were used to study the flow patterns in each river in an effort to relate them to the vegetation 

structure. 

Table 3.4 Gauging stations on each river 

River  Used for sites 
Gauge station 

number  

Location co-

ordinates  

Elands Ela 3 and Ela 4 H1H033 
33.73667 S 

19.11472 E 

Molenaars Mol  2 and Mol 5 H1H018 
33.72472 S 

19.16972 E 
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3.3 Data analysis 

3.3.1 Comparing cross-sections 

The variation of elevation with distance across the channel at each cross-section in 2011 and 

2013 were compared to establish possible changes in the channel profile.  Survey data were 

plotted against one another (horizontal distance and elevation difference between points 

across a river) in Microsoft Excel in order to produce graphs depicting channel shapes.  

Cross-sections surveyed at sites in 2011 and 2013 were overlaid to determine whether 

significant changes had taken place to the river’s cross-section profile between years. 

 

3.3.2 Analysis of vegetation data 

This was done in separate sub-sections for the purposes of identifying the lateral zonation 

patterns and observing the distribution of different plant species at different life stages 

(seedlings, saplings and adults) on the lateral zone. 

 

3.3.2.1 Analysis of hydrological data 

A full data set of available daily flows for each gauging station at the Elands and Molenaars 

River were plotted together with average monthly flow data for each year sampled.  This was 

done to deduce if the pattern of flow for the sampled years followed overall seasonal pattern 

of flows received at each station.  

 

3.3.2.2 Lateral zonation 

Everitt (1979) describes classification as a process of allocating entities to initially undefined 

classes so that individuals in the same class are, in some sense, similar to one another.  Cluster 

analysis aims to partition a set of objects into similar sub-sets.  For clusters, the within-group 

dissimilarity should be minimised while maximizing dissimilarity between clusters (Everitt 

1993; Gordon 1999).  Sample plots were partitioned using plant species so that sample plots 

that contain similar species were allocated to one of the clusters.  Multivariate analyses were 

used to discern patterns of zonation based on species level similarities.  Data were 4
th

 root 

transformed in order to boost the presence of smaller species at lower covers.  Bray-Curtis 

similarity coefficients were calculated between sample plots.  Cluster analysis and non-metric 

multi-dimensional scaling (MDS) ordinations were used to determine similarity coefficients 
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between sites and sample plots within sites.  Groups of sample plots with greater than 40% 

similarity were recognized, along with a few clusters of plots with lower similarity but 

obvious cohesion as a group.  According to the resulting groupings, sample plots were 

allocated to one of four zones (Marginal, Lower dynamic, Lower and Upper zone) based on 

the habitat characteristics of dominant species.  The lateral zones were compared within sites 

for the three years (2004, 2011 and 2013) to establish whether there was a shift in zones over 

time.  Once a sample plot had been allocated to a zone, the frequency of species occurrence at 

a zone was calculated relative to a category of growth stage.  With these the plant 

assemblages for the site under study was defined. 

 

There is no completely satisfactory method that can be used for testing the significant number 

of clusters (Everitt 1979; Mazvimavi 2003).  Several methods have been tested and 

weaknesses shown, however Everitt (1993) and McGarigal et al. (2000) recommended the use 

of a visual inspection of fusion levels displayed on a dendogram.  The union or joining of 

clusters at shorter distances suggests a strong similarity between samples tested.  Therefore an 

examination of distance at which clusters join was used in this study to assist in determining 

the number of clusters, and then allocate lateral zones to each.  

 

Lateral zonation was studied in two ways, using a combination of groundcover and tree data, 

and later by separating the two plant types.  This was done to investigate whether the usage of 

data differently would still suggest the same lateral zonation patterns at sites.   

 

3.3.2.3 Vegetation assemblages 

Species composition of each zone was determined using the total cover percentage and the 

frequency of occurrence of individual species within the lateral zone. This was done to 

identify the dominant species at lateral zones of each site. 

 

3.3.2.4 Distribution of trees 

To show the overall distribution of tree species on the lateral zone, the number of individuals 

for all life stages (seedling, sapling and adults) were summed together for each species 

represented at all sites.  These results were presented graphically showing the abundance of 

common of species along the lateral zone.   
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The progression from seedlings to saplings to adults at each bank position at each site was 

examined.  To do this it was inferred that the saplings found in 2013 in the same positions as 

seedlings in 2011 were probably the same plant.  Similarly adults were considered to be later 

life stages of the saplings or seedlings found in the same position in previous years.   

 

3.4 Results 

3.4.1 Flow data analysis  

At the Elands River (Figure 3.4) daily flows for 1969 - 2013 (red) were presented to show the 

average flows for each month.  The pattern of flow for each sampled year was compared to 

that of the long term data to observe if the vegetation at sites was influenced by the same 

pattern of flow.  During data analysis, the sample year for this study (2013) did not have a full 

flow data (January to June) on for the Elands River (Figure 3.4).  A gradual rise in flows was 

noted from April, the highest peak was in June, which was followed by a sudden fall in July 

then a gradual fall from August.  The summer months (November to March) show flows that 

are lower than 1 Mm
3
/month.  The river receives lowest flows between January to March.  

Distinguished high flows are noted during the month of June at all cases except for 2004 that 

had its highest flow in August.   

 

For the Molenaars, (Figure 3.4) the monthly average flows were generally lowest from 

December to end of March, flows start increasing from April peaking in June followed by a 

slight decrease from July and then after August there was a noticeable gradual decrease.  

During 2004 and 2013, the largest peak flow occurred in the month of August wherease in 

2011 the highest flow came through in June.  For all the three years there are noticeable rises 

in flows during June and August.  During 2004 the lowest flow occurred in February (0.429 

Mm
3
/month) and the highest flow was 82.203 Mm

3
/month recorded in August.  In 2011, the 

lowest flow occurred in March (0.348 Mm
3
/month) and the highest was in June with a volume 

of 74.299 Mm
3
.  In 2013 the lowest flow occurred in March (0.380 Mm

3
/month) and the 

highest was in August with a volume of 1118.273 Mm
3
/month.  Overall the three years 

followed the pattern of flow illustrated by the average flows from the full data available (1969 

to 2013). 
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Figure 3.4 Monthly flows 1969 - 2013 for the Elands and Molenaars Rivers, averaged 

for the whole record and plotted individually for the sample years: 2004; 

2011 and 2013. 

 

 

It was also evident on all graphs that after flows drop in July it was followed by a short period 

of high flow between August and September.  In general, the year 2004 had delayed events of 

low and high flows as compared to the other years, the first peak flow occurred in August 

while the second small one arrived in October.  The record shows slight rise and fall of flows 

between March and May at both 2004 and 2013, although it was fairly flat in 2011.   
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3.4.2 Horizontal distance and elevation (river morphology) 

The cross-sectional profiles surveyed in 2011 and 2013 are provided (Figure 3.5).  Vegetation 

samples were taken on the right bank of the Elands River, while the left bank was sampled at 

the Molenaars River.  There were no major differences in the cross-sections at any of the 

sites, although there were some small changes. 

 

At the 10 m transect (as shown in Figure 3.3) at Ela 3, the shape of the channel in 2011 and 

2013 is much the same, however the 20 m transect shows a rise on the left and right bank.  

This could have been caused by a boulder surveyed on the right bank in 2011 at the 0 m 

transect which was then missing in 2013.  At Ela 4, both transects show similar shapes for 

both years.  The cross-sections at Ela 3 and Ela 4 show a gently sloping river bank with the 

latter being slightly narrower than the former and deposition taking place on the right bank at 

Ela 3 while erosion was taking place on the right bank at Ela 4.  At Mol 2, transects at 5 and 

15 m were only surveyed in 2013, the site has a wide wetted channel accompanied by a 

gradually rising right bank and a gentle rising left bank.  On the left bank the wet bank was 3 

m in width and behind this there was a side channel 2 m in width, after which there was a 

sudden increase in on bank slope.  At Mol 5, both cross-sections showed slight changes on the 

shape of the wetted channel.  Mol 5 was a pool and characterised by steeper channel banks 

when compared to Mol 2. 
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Figure 3.5 Cross-sectional profiles for the Elands and Molenaars River sites in 2011 and 

2013. Chainage is from the left bank 

 

The variation in channel cross-sections between years (2011 and 2013) was presumably a 

result of different points being surveyed along the transects at which the level staff was placed 

as the readings were being taken.  The Molenaars River sites, in the upper foothills, are fairly 
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wider than the Elands River sites.  Although there was not a perfect overlap of the cross 

sections (2011 and 2013), the basic bank shape suggests that there were no major changes in 

the cross-section with exception to Ela 3 at transect 20m. 

 

3.4.3 Lateral zonation 

Lateral zonation was studied in two ways, first using a combination of both ground cover and 

tree (woody plants) data and then using separate data sets.  This was done to investigate 

whether the usage of data differently would still suggest the same lateral zonation patterns at 

sites. 

 

3.4.3.1 Zonation using all species 

All species collected are listed in Appendix Table 1.  Non-metric MDS ordinations and 

cluster diagrams constructed using a combination of the rooted cover percentage of 

groundcover and woody plants within each 1 m
2
 sample plot in 2013 were used to identify the 

lateral riparian zones.  The allocation of lateral zones was done according to the type species 

contained within each sample plot, the indicator species in Table 3.1 were used to guide these 

decisions.  The results are presented in Figure 3.6, Figure 3.7, Figure 3.8 and Figure 3.9 for 

Ela 3, Ela 4, Mol 2 and Mol 5, respectively.  

 

 

Figure 3.6 Cluster and MDS ordinations for 2013 at Ela 3. Sample plots (indicated as 

samples) are indicated within Mar = marginal zone, L.D = lower dynamic, 

Lwr = lower zone and Upp.= upper zone 
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Figure 3.7 Cluster and MDS ordinations for 2013 at Ela 4. Sample plots (indicated as 

samples) are indicated within Mar = marginal zone, L.D = lower dynamic, 

Lwr = lower zone and Upp.= upper zone 

 

 

 

Figure 3.8 Cluster and MDS ordinations for 2013 at Mol 2. Sample plots (indicated as 

samples) are indicated within Mar = marginal zone, L.D = lower dynamic, 

Lwr = lower zone and Upp.= upper zone 
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Figure 3.9 Cluster and MDS ordinations for 2013 at Mol 5. Sample plots (indicated as 

samples) are indicated within Mar = marginal zone, L.D = lower dynamic, 

Lwr = lower zone and Upp = upper zone 

 

 

At all sites four lateral zones were evident from the data collected; the marginal zone and 

lower dynamic zone that make up the wet bank, the lower zone and upper zone that make up 

the dry bank (after Reinecke and Brown 2013).  The marginal zone was situated at the edge of 

the wetted channel, followed by the lower dynamic, which separated the marginal from the 

lower zone.  The lower dynamic zone was a transitional zone and contained similar species to 

those from the neighbouring zones.  The lower dynamic zone was followed by the dry bank 

zones, which formed the outer boundary of the riparian zone and comprised lower zone and 

the upper zone.  At all the sites, the bigger portion (several metres) of the riparian bank was 

comprised the lower and upper zones. 

 

The overall distribution of lateral zones at each site was also studied.  The distribution of 

lateral zones within sample plots in 2013 was compared with that of 2004 and 2011. This was 

done in order to determine if there were temporal changes in lateral zonation between years 

(Figure 3.10 to Figure 3.13).  The figures below show, for each site, a lateral zone that was 

allocated to each sample plot for the three years studied.   

 

At Ela 3 (Figure 3.10), there were more similarities in the marginal and lower dynamic zones 

(-1 and 1 m) between 2004 and 2013, than between these years and 2011.  Similarly, the dry 

bank started at 4 m in 2004 and 2013, but in 2013 2 - 7 m was a mixture of lower dynamic, 

lower and the upper zone.  The upstream transect (A) of this site appeared to be drier than the 

 

 

 

 



39 

 

more downstream transects.  For instance, in 2004 and 2011, the upper zone on Transect A 

starts at 4 m, while on the other transects (B, C and D) the upper zone starts at 7 m.  

 

 

Figure 3.10 Ela 3 lateral vegetation zones lateral zones 2004 (left) 2011 (middle) and 

2013 (right). Dis= distance from the water’s edge and vegetation transects (A, 

B, C and D). Lateral riparian zones are indicated using Mar = marginal zone, 

L.D = lower dynamic, Lwr = lower zone and Upp = upper zone. The gray 

boxes are outliers or where no vegetation was recorded 

 

 

At Ela 4 (Figure 3.11), there were noticeable shifts in lateral zones between 2 - 6 m over the 

period 2004 to 2013.  For instance in 2004, the sample plots at 2 and 6 m were classified as 

lower zone, in 2011 they were lower dynamic zone, and in 2013 2 - 4 m were lower dynamic, 

and 5 – 6 were upper zone.  
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Figure 3.11 Ela 4 lateral vegetation zones lateral zones 2004 (left) 2011 (middle) and 

2013 (right). Dis= distance from the water’s edge and vegetation transects (A, 

B, C and D). Lateral riparian zones are indicated using Mar = marginal zone, 

L.D = lower dynamic, Lwr = lower zone and Upp = upper zone. The gray 

boxes show outliers or where no vegetation was recorded. 

 

 

There were some shifts in zone boundaries at Mol 2 (Figure 3.12).  This may be partly 

because the wet bank and dry bank were divided by a side channel.  For all three years, the 

wet bank was located between 0 and 3 m, with the marginal zone between 0 and 1 m.  There 

was a side channel about 2 m wide at a distance of 3 m form the main channel, which is 

shown by the grey boxes in Figure 3.12, where after the dry bank communities start.   
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Figure 3.12 Mol 2 lateral vegetation zones lateral zones 2004 (left) 2011 (middle) and 

2013 (right). Dis= distance from the water’s edge and vegetation transects (A, 

B, C and D). Lateral riparian zones are indicated using Mar = marginal zone, 

L.D = lower dynamic, Lwr = lower zone and Upp = upper zone. The gray 

boxes show outliers or where no vegetation was recorded. 

 

 

At Mol 5 (Figure 3.13) data were only collected for 2011 and 2013.  As was the case for Mol 

2, there were only minor changes in the locations of the lateral zones.  Plots identified as the 

lower dynamic (between 2 - 4 m) and the lower zone (5 - 6 m) in 2011 mostly remained the 

same in 2013.  The marginal (between 0 and 1 m) and upper (> 7 m) remained unchanged.  
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Figure 3.13 Mol 5 lateral vegetation zones lateral zones 2011 (left) with 2013 (right). 

Dis= distance from the water’s edge and vegetation transects (A, B, C and D). 

Lateral riparian zones are indicated using Mar = marginal zone, L.D = lower 

dynamic, Lwr = lower zone and Upp = upper zone. The gray boxes show 

outliers or where no vegetation was recorded 

 

 

In general for all four sites, the transition between the wet (marginal and lower dynamic 

zones) and dry (lower and upper zones) banks occurred at around 6 m from the water’s edge.  

There were some shifts in zones but these were mainly associated with the boundary between 

the marginal and lower dynamic zones.  Overall, the dry bank (lower and upper zones) did not 

change markedly at any of the sites.   

 

3.4.3.2 Zonation using groundcover and trees separately 

Using the 2013 vegetation data, two sets of MDS ordinations and cluster diagrams were 

generated; one using only groundcover species and the other using only tree species.  The 

zonation pattern obtained using groundcovers was similar to that obtained using all species 

presented above and are presented in Appendix Figure 2.  However, where only trees were 

used, the wet and dry banks were not easily separated (Figure 3.14 and Figure 3.15).  In most 

cases, only the lower dynamic zone and the lower zone were distinguishable.  In Ela 4 and 

Mol 5, the marginal zone was not identified, the reason could be that the cover percentage of 

the indicator tree species was less than cover percentages of other species (that are of other 
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zones) that were present.  At Mol 5 the S. mucronata species, which is mostly a marginal zone 

species was not present, whilst in Ela 4 it was present but in minimal amounts. 

 

 

Figure 3.14 Cluster and MDS ordinations for 2013 tree data at Ela 3 and Ela 4. 

Sample plots (indicated as samples) are indicated within Mar = marginal 

zone, L.D = lower dynamic, Lwr = lower zone and Upp =upper zone 
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Figure 3.15 Cluster and MDS ordinations for 2013 tree data at Mol 2 and Mol 5. 

Sample plots (indicated as samples) are indicated within Mar = marginal 

zone, L.D = lower dynamic, Lwr = lower zone and Upp =upper zone 
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3.4.4 Vegetation assemblages in the lateral zones 

The percentage cover of individual species in the riparian zones ranged from as little as 0.15 

to 57%, reflecting a wide variation in the distribution of plants between lateral zones and 

between sites (refer to Table 3.5 to Table 3.8).  The assemblage analyses revealed that at all 

sites the marginal zones comprised mainly Isolepis prolifera, Salix mucronata, Prionium 

serratum and Metrosideros angustifolia seedlings.  

 

At Ela 3 (Table 3.5) and Ela 4 (Table 3.6), the lower dynamic zone was characterised by 

Elegia capensis and saplings of Salix mucronata, Brachylaena neriifolia and Brabejum 

stellatifolium, with a number of Metrosideros angustifolia and Salix mucronata seedlings.   

 

At Mol 2 (Table 3.7) and Mol 5 (Table 3.8), this zone was dominated by the trees Morella 

serrata and Metrosideros angustifolia.   
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Table 3.5 Species composition of each zone at Ela 3 with respectivetrees heights in 

meters. Column T shows the total cover percentage of a species and column F 

is the frequency of occurrence of the species within the lateral zone 

Ela 3 

Marginal    Lower dynamic   

 T F   T F 

Metrosideros angustifolia seedling 26 2  Metrosideros angustifolia seedling 34 2 

Salix mucronata 2-5 25 2  Salix mucronata 0.3-2 26 4 

Salix mucronata 0.3-2 20 4  Salix mucronata seedling 13 2 

Salix mucronata seedling 10 2  Isolepis prolifera 12 3 

Isolepis prolifera 9 3  Brabejum stellatifolium seedlings 6 1 

Brabejum stellatifolium seedlings 5 1  Platylophus trifoliatus 0.3-2 3 1 

Moss 2 1  Moss 3 1 

       

Lower    Upper    

 T F   T F 

Elegia capensis 11 8  Schizaea tenella 12 4 

Pteridium aquilinum 8 8  Aristea sp. 10 6 

Brabejum stellatifolium 0.3-2 6 5  Pteridium aqualinum 7 6 

Schizaea tenella 5 2  Moss 6 2 

Diospyros glabra 5 7  Capeochloa cincta  6 4 

Brabejum stellatifolium 2-5 5 4  Cyperaceae sp. 5 3 

Morella serrata 0.3-2 3 3  Metrosideros angustifolia 2-5 4 1 

Ilex mitis 2-5 3 1  Calopsis paniculata 3 2 

Moss 3 5  Morella serrata 0.3-2 2 4 

Metrosideros angustifolia 2-5 3 1  Brabejum stellatifolium 2-5 2 1 

Aristea sp. 2 2  Elegia sp. 2 2 

Drosera capensis 2 3  Drosera capensis 2 3 

Metrosideros angustifolia 0.3-2 2 2  Elegia capensis 2 1 

Podalyria sp. 1 2  Morella serrata 2-5 1.4 1 

Psoralea cf. affinis  1 2  Brabejum stellatifolium 0.3-2 1.4 1 

Brachylaena neriifolia 2-5 1 1  Cyperaceae sp.12 1.4 1 

Platylophus trifoliatus 0.3-2 1 1  Metrosideros angustifolia 0.3-2 0.9 1 

Platylophus trifoliatus 2-5 1 2  Lycopodiella caroliniana  0.9 1 

Capeochloa cincta  1 1  Diospyros glabra 0.5 1 

Brachylaena neriifolia 0.3-2 1 2  Pentameris (Pentaschistis) sp. 0.5 1 

Todea babara 1 1  Podalyria sp. 0.5 1 

Metrosideros angustifolia seedling 1 3  Osmitopsis  0.3 1 

    Morella serrata seedlings 0.2 1 

    Ehrharta ramosa 0.2 1 

    Stoebe sp.2 0.2 1 

 

 

 

 

 

 

 



47 

 

Table 3.6 Species composition of each zone at Ela 4 with respectivetrees heights in 

meters. Column T shows the total cover percentage of a species and column F 

is the frequency of occurrence of the species within the lateral zone 

Ela 4 

Marginal     Lower   

 T F   T F 
Isolepis prolifera 57 5  Erica pinea 23 5 

Morella serrata 2-5 17 1  Cliffortia strobilifera  13 2 

Metrosideros angustifolia seedling 11 1  Brabejum stellatifolium 2-5 9 1 

Brabejum stellatifolium seedlings 6 1  Brabejum stellatifolium 0.3-2 8 3 

Moss 6 1  Hymenolepis parviflora  7 2 

Morella serrata seedlings 3 1  Hackea sericia 6 2 

    Cymbopogon marginatus  5 2 

 Lower dynamic    Ischyrolepis subverticillata 5 1 

 T F  Erica caffra 4 1 

Moss 12 8  Diospyros glabra 4 4 

Elegia capensis 11 7  Ilex mitis 0.3-2 3 1 

Brachylaena neriifolia 0.3-2 9 7  Brachylaena neriifolia 2-5 3 1 

Brabejum stellatifolium 0.3-2 9 9  Morella serrata 0.3-2 1.2 1 

Metrosideros angustifolia 2-5 7 4  Aristea sp. 0.6 1 

Calopsis paniculata 7 7  Cf. Heliophila sp. 0.6 1 

Morella serrata 0.3-2 6 5     

Metrosideros angustifolia 0.3-2 6 5  Upper    

Erica caffra 5 5   T F 
Diospyros glabra 5 5  Cyperaceae sp. 19 9 

Stoebe sp. 4 6  Pentameris (Pentaschistis) sp. 10 8 

Pseudobaeckia africana 3 2  Cliffortia strobilifera  8 5 

Aristea sp. 2 3  Brabejum stellatifolium 0.3-2 8 5 

Platycaulos sp. 2 1  Erica pinea 7 5 

Schizaea tenella 1.4 1  Morella serrata 0.3-2 6 6 

Erica pinea 0.9 1  Ilex mitis 0.3-2 4 3 

Psoralea cf. affinis  0.9 1  Aristea sp. 4 4 

Metrosideros angustifolia seedling 0.7 1  Moss 4 6 

Ilex mitis 0.3-2 0.5 1  Stoebe plumosa 3 3 

Heeria argentea 0.3-2 0.2 1  Hymenolepis parviflora  3 5 

Drosera capensis 0.2 1  Ischyrolepis subverticillata 3 3 

Ischyrolepis subverticillata 0.2 1  Calopsis paniculata 2 1 

    Stoebe sp. 2 3 

    Diospyros glabra 2 3 

    Pseudobaeckia africana 1 1 

    Askidiosperma paniculatum  1 1 

    Brabejum stellatifolium seedlings 1 1 

    Todea barbara 1 1 

    Metrosideros angustifolia 0.3-2 0.3 1 

    Elegia capensis 0.3 1 

    Ehrharta ramosa 0.3 1 

    Lobelia jasionoides  0.3 1 

    Morella serrata 2-5 0.1 1 
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Table 3.7 Species composition of each zone at Mol 2 with respectivetrees heights in 

meters. Column T shows the total cover percentage of a species and column F 

is the frequency of occurrence of the species within the lateral zone. 

Mol 2 

  Marginal     Lower  
  T F     T F 

Isolepis prolifera 24 3   Morella serrata 0.3-2 15 1 

Hemarthria altissima  13 3   Prionium serratum 15 1 

Metrosideros angustifolia 0.3-2 11 2   Fuirena hirsuta 10 1 

Morella serrata 0.3-2 7 2   Elegia capensis 6 1 

Platycaulos sp. 6 3   Holcus lanatus L. 5 2 

Prionium serratum 5 2   Platycaulos sp. 5 3 

Capeochloa cincta 5 4   Stoebe plumosa 4 2 

Brabejum stellatifolium 0.3-2 4 1   Searsia angustifolia 4 4 

Salix mucronata 0.3-2 4 2   Acacia mearnsii 0.3-2 4 2 

Freylinia lanceolata 0.3-2 3 1   Brabejum stellatifolium 0.3-2 4 2 

Holcus lanatus L. 3 2   Restionaceae sp. 4 1 

Acacia mearnsii 0.3-2 2 2   Salix mucronata 0.3-2 3 1 

Pentameris (Pentaschistis) sp. 2 1   Freylinia lanceolata 0.3-2 3 1 

Sesbania punicea  1.2 3   Acacia mearnsii seedling 2 2 

Moss 1.0 1   Anthospermum spathulatum 1.5 1 

Morella serrata seedlings 0.4 1   Pseudobaeckia africana 1.5 1 

Acacia mearnsii seedling 0.2 1   Ehrharta ramosa 1.5 1 

        Erica sp.  1.2 1 

Lower dynamic   Pteridium aqualinum 0.9 1 

  T F   Asteraceae sp. 0.9 1 

Restionaceae sp. 25 12   Hemarthria altissima  0.6 1 

Morella serrata 2-5 21 11         

Platycaulos sp. 13 9   Upper  
Metrosideros angustifolia 2-5 11 8     T F 

Ischyrolepis subverticillata 6 4   Stoebe plumosa 30 17 

Salix mucronata 2-5 5 3   Searsia angustifolia 25 15 

Brabejum stellatifolium 0.3-2 4 6   Pteridium aqualinum 20 19 

Freylinia lanceolata 0.3-2 3 4   Cliffortia strobilifera  7 5 

Moss 2 2   Diospyros glabra 5 4 

Metrosideros angustifolia 0.3-2 2 1   Ischyrolepis subverticillata 3 3 

Isolepis prolifera 2 2   Pentameris (Pentaschistis) sp. 3 2 

Morella serrata 0.3-2 1 3   Brabejum stellatifolium 0.3-2 1.4 1 

Holcus lanatus L. 1 1   Fuirena hirsuta 1.4 1 

Anthospermum spathulatum 0.5 1   Erica sp.  1.4 2 

Capeochloa cincta  0.5 1   Acacia mearnsii 0.3-2 0.9 2 

Pycreus polystachyos 0.3 1   Hymenolepis parviflora  0.4 1 

Sesbania punicea 0.2 2         

Prionium serratum 0.15 1         

Hemarthria altissima  0.15 1         

Freylinia lanceolata seedlings 0.10 1         

Acacia mearnsii 0.3-2 0.10 1         

Salix mucronata seedling 0.10 1         

Metrosideros angustifolia seedling 0.05 1         

Morella serrata seedlings 0.05 1         
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Table 3.8 Species composition of each zone at Mol 5 with respectivetrees heights in 

meters. Column T shows the total cover percentage of a species and column F 

is the frequency of occurrence of the species within the lateral zone. 

Mol 5 

Marginal      Lower   
 T F   T F 

Morella serrata 0.3-2 22 3  Metrosideros angustifolia 2-5 25 1 

Ehrharta ramosa 22 4  Acacia mearnsii 0.3-2 22 6 

Prionium serratum 9 2  Metrosideros angustifolia 0.3-2 18 2 

Calopsis paniculata 7 1  Cyperaceae sp. 16 2 

Brabejum stellatifolium 0.3-2 7 1  Ischyrolepis subverticillata 7 1 

Isolepis prolifera 7 3  Brabejum stellatifolium 2-5 5 1 

Metrosideros angustifolia seedling 6 3  Acacia longifolia 0.3-2 4 1 

Metrosideros angustifolia 0.3-2 4 2  Calopsis paniculata 2 1 

Morella serrata seedlings 4 1  Diospyros glabra 2 1 

Acacia mearnsii 0.3-2 4 3     

Holcus lanatus  4 1   Upper    
Platycaulos sp. 4 1   T F 

Moss 1.2 1  Searsia angustifolia 36 15 

    Diospyros glabra 13.1 6 

Lower dynamic    Ischyrolepis subverticillata 7.3 8 

 T F  Fuirena hirsuta 5.6 6 

Brabejum stellatifolium 0.3-2 25 11  Acacia mearnsii 0.3-2 4.6 5 

Morella serrata 0.3-2 14 6  Stoebe plumosa 4.4 3 

Metrosideros angustifolia 2-5 14 4  Calopsis paniculata 4.1 3 

Erica caffra 12 5  Brabejum stellatifolium 2-5 3.6 2 

Metrosideros angustifolia 0.3-2 6 3  Morella serrata 2-5 2.1 1 

Cyperaceae sp. 5 2  Metrosideros angustifolia 0.3-2 1.8 2 

Calopsis paniculata 5 2  Elegia capensis 1.5 2 

Ischyrolepis subverticillata 4 4  Hemarthria altissima  1.3 2 

Freylinia lanceolata 2-5 4 1  Brabejum stellatifolium 0.3-2 1.03 1 

Moss 3 2  Prionium serratum 1.03 1 

Acacia mearnsii 0.3-2 2 3  Cliffortia sericea  0.77 1 

Acacia longifolia 0.3-2 2 3  Pentameris (Pentaschistis) sp. 0.77 2 

Searsia angustifolia 0.8 1  Anthospermum spathulatum 0.51 1 

Stoebe plumosa 0.4 1  Thesium juncifolium  0.36 1 

Diospyros glabra 0.4 1  Peucedanum galbanum 0.26 1 

Morella serrata seedlings 0.4 1  Elytropappus scaber  0.26 1 

Fuirena hirsuta 0.4 1  Platycaulos sp. 0.26 1 

Metrosideros angustifolia seedling 0.16 1  Brabejum stellatifolium seedlings 0.05 1 

 

 

The lower zone comprised some species that also belonged to the lower dynamic and upper 

zone.  The lower zone at Ela 3, Ela 4 and Mol 2 was dominated by Brabejum stellatifolium 

and Morella serrata, with the latter being typical of the lower dynamic zone.  Similarly, at Ela 

3 and Ela 4, Pteridium aquilium, an upper zone plant, occurred in the lower zone and at Mol 2 

Prionium serratum, which is a marginal species occured in the lower zone.  At the Elands 
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sites, there was a high percentage of Diospyros glabra in the lower zone while on the 

Molenaars River much this species was mostly in the upper zone.   

 

At Ela 3 and Ela 4, the upper zone was dominated by the fern species Schizaea tenella, and 

some species of Cyperaceae and Pentameris.  The upper zone at the Mol 2 and 5 was 

dominated by bushes of Searsia angustifolia, Diospyros glabra and Stoebe plumosa.  

Calopsis paniculata appears in this zone at all sites but in small amounts.   

 

3.4.5 Distribution of trees in the lateral zones 

The distributions of five common trees were compared across the lateral zones at all sites: 

Salix mucronata, Morella serrata, Metrosideros angustifolia, Brabejum stellatifolium and 

Brachylaena neriifolia (Figure 3.16).  These were selected based on their common occurrence 

in the Western Cape area and because they are members of the Fynbos Riparian Vegetation 

community. 

 

Different species were more numerous at different distances up the bank (Figure 3.16 and 

Figure 3.17).  S. mucronata was dominant at 0 to 1 m, M. angustifolia was found all the way 

up the bank but numbers peaked at 1 m from the water’s edge.  B. stellatifolium also occurred 

throughout the riparian zone, but the number of individuals peaked at 3 m.  B. neriifolia did 

not occur within the channel, but from 1 m, numbers gradually increased to a peak at 5 m.  

There was a mixture of species in the wetted channel and on the water’s edge, with M. 

serrata, S. mucronata and M. angustifolia being most abundant.   
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Figure 3.16 The mean number of individuals per species up the bank at the four study 

sites in 2013 

 

 

Wet bank species tended to have the highest abundance at distances that are closer to the 

water’s edge whilst the dry bank species peaked after this distance.  For instance, S. 

mucronata, M. serrata and M. angustifolia all peaked at 1 m from the water’s edge then 

gradually decreased up the bank (Figure 3.17).  On the other hand the dry bank species, B. 

stellatifolium and B. neriifolia, gradually increased to 3 m and then declined again after 6 m.  

M. serrata (lower dynamic zone), M. angustifolia (lower zone) and B. stellatifolium (upper 

zone) have multiple peaks at different positions up the bank.  This is a different behaviour 

from the S. mucronata (marginal zone) which only have one high peak followed by a sudden 

fall.  Thus the wet bank species possibly occur as groups and populate the same area whilst 

the dry bank species are usually well spread laterally on bank.  
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Figure 3.17 An illustration of the distribution of species abundance up the bank 

 

 

3.4.6 Distribution of life stages of trees 

Trees were categorized into three life stages based on height; seedlings (<0.3 m tall), saplings 

(0.4 to 1.9 m tall) and adults (>2 m tall).  Thereafter, the number of seedlings, saplings and 

adults in 2004, 2011 and 2013 were examined (Figure 3.18).  For the most part, regardless of 

the date of collection, there were more seedlings than saplings and adults, and again more 

saplings than trees, except in 2004, where there were more adults than saplings (114 saplings 

and 128 adults). 

 

 

 

 

 



53 

 

 

Figure 3.18 Number of seedlings, saplings and adults for all sites in 2004, 2011 and 

2013 

 

 

A comparison of plant life stages that occurred at distances up the bank at each site was done 

for the three sample periods.  The distributions of seedlings, saplings and adults for each 

species at each site in each year are provided in Figure 3.19 to Figure 3.34.  The size of the 

circle is proportional to the number of individuals of the same height occurring at a particular 

distance up the bank.  The table alongside each graph gives the actual count of trees of 

different height at distances (Dis) from the water’s edge.  

 

 

 

 



54 

 

 

Figure 3.19 The number of individuals of B. stellatifolium in the three life stages at Ela 

3. Red lines separate the three height classes, below 0.3m=seedling, below 

2m=saplings and above 2m=adults. The tables show the number of 

individuals in relation to distance up the bank, reflected by the size of the 

circles on the graph 
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Figure 3.20 The number of individuals of B. neriifolia in the three life stages at Ela 3. 

Red lines separates the three height classes, below 0.3m=seedling, below 

2m=saplings and above 2m=adults. The tables show the number of 

individuals in relation to distance up the bank reflected by the size of the 

circles on the graph 
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Figure 3.21 The number of individuals of M. angustifolia in the three life stages at Ela 

3. Red lines separates the three height classes, below 0.3m=seedling, below 

2m=saplings and above 2m=adults.  The tables show the number of 

individuals in relation to distance up the bank reflected by the size of the 

circles on the graph 
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Figure 3.22 The number of individuals of M. serrata in the three life stages at Ela 3. 

Red lines separates the three height classes, below 0.3m=seedling, below 

2m=saplings and above 2m=adults.  The tables show the number of 

individuals in relation to distance up the bank reflected by the size of the 

circles on the graph 
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Figure 3.23 The number of individuals of S. mucronata in the three life stages at Ela 3. 

Red lines separates the three height classes, below 0.3m=seedling, below 

2m=saplings and above 2m=adults.  The tables show the number of 

individuals in relation to distance up the bank reflected by the size of the 

circles on the graph 
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Figure 3.24 The number of individuals of B. stellatifolium in the three life stages at Ela 

4. Red lines separates the three height classes, below 0.3m=seedling, below 

2m=saplings and above 2m=adults.  The tables show the number of 

individuals in relation to distance up the bank reflected by the size of the 

circles on the graph 
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Figure 3.25 The number of individuals of B. neriifolia in the three life stages at Ela 4. 

Red lines separates the three height classes, below 0.3m=seedling, below 

2m=saplings and above 2m=adults.  The tables show the number of 

individuals in relation to distance up the bank reflected by the size of the 

circles on the graph 
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Figure 3.26 The number of individuals of M. angustifolia in the three life stages at Ela 

4. Red lines separates the three height classes, below 0.3m=seedling, below 

2m=saplings and above 2m=adults.  The tables show the number of 

individuals in relation to distance up the bank reflected by the size of the 

circles on the graph 
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Figure 3.27 The number of individuals of M. serrata in the three life stages at Ela 4. 

Red lines separates the three height classes, below 0.3m=seedling, below 

2m=saplings and above 2m=adults.  The tables show the number of 

individuals in relation to distance up the bank reflected by the size of the 

circles on the graph 
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Figure 3.28 The number of individuals of B. stellatifolium in the three life stages at 

Mol 2. Red lines separates the three height classes, below 0.3m=seedling, 

below 2m=saplings and above 2m=adults.  The tables show the number of 

individuals in relation to distance up the bank reflected by the size of the 

circles on the graph 
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Figure 3.29 The number of individuals of M. angustifolia in the three life stages at Mol 

2. Red lines separates the three height classes, below 0.3m=seedling, below 

2m=saplings and above 2m=adults.  The tables show the number of 

individuals in relation to distance up the bank reflected by the size of the 

circles on the graph 
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Figure 3.30 The number of individuals of M. serrata in the three life stages at Mol 2. 

Red lines separates the three height classes, below 0.3m=seedling, below 

2m=saplings and above 2m=adults.  The tables show the number of 

individuals in relation to distance up the bank reflected by the size of the 

circles on the graph 
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Figure 3.31 The number of individuals of S.mucronata in the three life stages at Mol 2. 

Red lines separates the three height classes, below 0.3m=seedling, below 

2m=saplings and above 2m=adults.  The tables show the number of 

individuals in relation to distance up the bank reflected by the size of the 

circles on the graph 
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Figure 3.32 The number of individuals of B. stellatifolium in the three life stages at 

Mol 5. Red lines separates the three height classes, below 0.3m=seedling, 

below 2m=saplings and above 2m=adults.  The tables show the number of 

individuals in relation to distance up the bank reflected by the size of the 

circles on the graph 
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Figure 3.33 The number of individuals of M. angustifolia in the three life stages at Mol 

5 Red lines separates the three height classes, below 0.3m=seedling, below 

2m=saplings and above 2m=adults.  The tables show the number of 

individuals in relation to distance up the bank reflected by the size of the 

circles on the graph 
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Figure 3.34 The number of individuals of M. serrata in the three life stages at Mol 5. 

Red lines separates the three height classes, below 0.3m=seedling, below 

2m=saplings and above 2m=adults.  The tables show the number of 

individuals in relation to distance up the bank reflected by the size of the 

circles on the graph 
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At Ela 4, in 2004 all life stages of B. stellatifolium were concentrated between 3 and 6 m 

(Figure 3.24).  In 2011 and 2013, however, there were many B. stellatifolium seedling and 

saplings between 1 and 7 m.  There were no B. neriifolia seedlings in 2004 and 2011, but in 

2013 they were at 4 and 5 m (Figure 3.25).  Saplings were mainly between 2 and 5 m in 2004 

and 2013, but were situated lower down the bank in 2011.  Adults were present between 3 and 

6 m.  M. angustifolia adults are mostly distributed between 2 and 5 m up the bank (Figure 

3.26).  For all the three years M. serrata saplings and adults were densely spread between 1 

and 7 m from the water’s edge (Figure 3.27).  

 

At Mol 2, all plant species of all life stages mostly occurred clustered at certain positions, this 

was evident especially for B. stellatifolium, M. angustifolia and M. serrata. For B. 

stellatifolium seedings, saplings and adults were concentrated at 2 m (Figure 3.28, Figure 3.29 

and Figure 3.30, respectively).  In 2004 and 2013, S. mucronata seedlings were abundant at 1 

m but there were no seedlings in 2011 (Figure 3.31).  The progression from seedling (2004), 

to saplings and adults (2011 and 2013) at 2 m suggests preferable conditions for growth of 

seedlings into adults over time.  

 

At Mol 5, B. Stellatifolium (Figure 3.32) seedlings recruited between 2 and 4 m, but saplings 

were spread between 2 and 7 m.  Adults were fewer than saplings and did not occur in 

clusters like those of seedlings and saplings.  Positions that had M. angustifolia adults in 2011 

also had adults in 2013, indicating that some saplings had grown into adults (Figure 3.33).  

There was a marked paucity of saplings in 2013 relative to 2011.  M. serrata seedlings and 

saplings were clustered at metres 1, 2 and 3 but adults (>2 m) took up an arrangement that is 

different from that of the other life stages (Figure 3.34).  This arrangement may have been due 

to the landscape of the site, which has a 2 m wide side channel at 4 to 5 m, it separates the wet 

and dry banks. 

 

3.4.7 Temporal shifts in life stages at site scale 

To get an overview of the progression of plants from seedlings to saplings and adults the 

following analyses were done: 

 the number of seedlings at each position in 2011 were compared with the number of 

sapling in that position in 2013; 
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 the number of sapling at each position in 2011 were compared with the number of 

adults in that position in 2013; 

 the number of sapling at each position in 2004 were compared with the number of 

adults in that position in 2011; and 

 the number of adults in at each position in 2004 were compared with the number of 

adults in that position in 2011 and 2013. 

 

3.4.7.1 The number of seedlings in 2011 compared to saplings in 2013 

The comparison of seedling loss and success (survival) was carried out based on the total 

number of trees of a given life stage at a site.  Seedlings that were recorded in 2011 were not 

marked so they could not be traced to establish if they had become saplings, however this 

study seeks to describe (estimate) the ability of different species to survive (in this case by 

passing on to the next life stage to become saplings or adults) or withstand the conditions at 

the position on which they recruit at.  This has been done by inferring that the saplings that 

were found in 2013 at the exact same positions (sample plot) as seedlings during 2011 were 

probably the same plant (Figure 3.35 to Figure 3.38), the same applied in case of saplings to 

adults (Figure 3.39 to Figure 3.45).  The total number of seedlings (2011) and saplings (2013) 

were compared at each site graphically.  Note: Graphs are plotted at different scales of the y-

axis. 

 

At Ela 3, none of the seedlings recorded between -1and 0 m in 2011 were present in 2013 

(Figure 3.35).  Between 0 and 1 m there were 27 seedlings in 2011 and five saplings in 2013.  

The M. angustifolia seedlings that occurred at -1 to 2 metres in 2011 were no longer present 

in 2013.  At -1 m there were eight M. serrata seedlings in 2011, but only one sapling was 

recorded in 2013.  Half of the total B. stellatifolium seedlings that recruited at 5 m in 2011 

survived to saplings stage in 2013.  In addition, there was some recruitment subsequent to the 

2011 sample because there were saplings present in 2013 where there were no seedlings in 

2011. 
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Figure 3.35 The number of seedlings in 2011 versus saplings in 2013 at Ela 3 

 

 

At Ela 4 (Figure 3.36) there is a shallow pool and due to the boulder edge between -1 and 0 m 

there was no recruitment recorded in both years.  There was one B. stellatifolium seedling 

between 0 and 1 m, in 2011 and the same position had two saplings in 2013.  It is a possible 

that they are both new recruits since their height was less than 1 m.  The number of B. 

stellatifolium saplings that were recorded in 2013 between 0 and 3 m was greater than the 

seedlings recorded in the same position in 2011 while fewer saplings than seedlings were 

recorded between 3 and 6 m.  Saplings of different species (B. stellatifolium, M. serrata and 

M. angustifolia) were recorded in 2013 up the bank although there were no seedlings at those 

positions in 2011.  There were 29 M. serrata seedlings in 2011 and, only nine saplings in the 

same position during 2013; all the other saplings that were recorded beyond 1 m were not 

found as seedlings in 2011. 
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Figure 3.36 The number of seedlings in 2011 versus saplings in 2013 at Ela 4 

 

 

At Mol 2 (Figure 3.37) there were fewer B. stellatifolium saplings in 2013 than seedlings in 

2011 at 2 m and new saplings were established at 3 m in 2013 that were not present as 

seedlings in 2011.  Out of 14 M. angustifolia seedlings at 1 and 2 m, only two survived and 

became saplings in 2013 at metres 1 and 2 respectively.  One seedling that had recruited at 6 

m was not found in 2013.  M. serrata saplings that occurred at 3 and 7 m were not recorded as 

saplings in 2011, only five of the fifteen M. serrata and two of the M. angustifolia seedlings 

that were on metre 1 in 2011 survived.  M. serrata saplings were dominant at distances 

between 1 and 3 m from the water’s edge while new S. mucronata saplings were recorded 

between 1 and 2 metres. 
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Figure 3.37 The number of seedlings in 2011 versus saplings in 2013 at Mol 2 

 

At Mol 5 (Figure 3.38) there were more saplings of M. serrata at positions 1, 2 and 3 m in 

2013 than seedlings recorded in 2011 and new saplings were recorded at 4, 7 and 8 m in 2013 

despite the absence of seedlings at these positions.  The three B. neriifolia seedlings did not 

survive to be saplings.  There were no M. angustifolia seedlings in 2011, the saplings present 

must have recruited after the 2011 sampling.  There were 13 B. stellatifolium seedlings at 4 m 

in 2011 and only 3 of those were saplings during 2013.  There were more saplings at positions 

in 2013 as compared to the number of seedlings, at 1 m there was only one M. serrata 

seedling while in 2013 the same position had five saplings, 2 m had four seedlings while in 

2013 the same position had six saplings.  Positions where more saplings were recorded when 

compared with seedlings were 4, 7 and 8 m containing species of M. angustifolia and M. 

serrata. 
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Figure 3.38 The number of seedlings in 2011 versus saplings in 2013 at Mol 5 

 

 

In general, there were more saplings present in 2013 at positions where seedlings were 

present during 2011.  These are possibly plants that recruited (established) after the 2011 

sampling was done.  However recruitment of saplings was also recorded at all sites in 2013 

where no seedlings were present in 2011 and this did not appear to be related to bank position.   

 

3.4.7.2 The number of saplings in 2011 compared to adults in 2013 

Few sapling individuals grew on to become adults.  The distribution of saplings does not 

relate well to that of the adults, thus the dominance of saplings at specific locations is not the 

same as that of adults. 
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At Ela 3 (Figure 3.39), there were a greater number of sapling individuals in 2011 than adults 

in 2013.  M. serrata saplings were well spread throughout the site, from -1 to 9 m up the 

bank, in 2013 while adults only occurred at 2, 3 and 5 m.  The pattern was the same for B. 

stellatifolium with adults found between 3 and 6 m in 2013.  For both B. stellatifolium and M. 

serrata, the number of sapling individuals peaked between 2 and 5 m.  B. neriifolia recruited 

at 3 and 4 m after the 2011 sampling period.  At -1 and 0 m there was only one S. mucronata 

sapling in 2011 and in 2013 they were two adults at each of these positions. 

 

 

Figure 3.39 The number of saplings in 2011 versus adults in 2013 at Ela 3 

 

At Ela 4 (Figure 3.40), the same number of B. neriifolia saplings and adults was found 

between 2 and 3 m, while there was a greater number of saplings than adults beyond 4 m.  

There was an increase in the number of M. angustifolia adults in 2013 when compared to 
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saplings of 2011.  Saplings of B. stellatifolium and M. serrata at Ela 3 and Ela 4 both peaked 

at similar positions up the bank (1 to 4 m for Ela 4 and 2 to 5 m for Ela 3). 

 

 

Figure 3.40 The number of saplings in 2011 versus adults in 2013 at Ela 4 

 

 

At Mol 2 (Figure 3.41), there were fewer adults in 2013 than saplings recorded in 2011 for all 

species except for S. Mucronata .  Both saplings and adults were concentrated between 1 and 

3 m, while some saplings of M. serrata grew on to become adults beyond 3 m. 
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Figure 3.41 The number of saplings in 2011 versus adults in 2013 at Mol 2 

 

 

At Mol 5 (Figure 3.42), all B. neriifolia and S. mucronata saplings that were sampled in 2011 

between 1 – 6 m were not present as trees during 2013.  There were a greater number of M. 

angustifolia trees between 3 and 7 m in 2013 when compared to saplings in 2011.  The reason 

for this increase could be that, there were some trees already present at 2011. 
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Figure 3.42 The number of saplings in 2011 versus adults in 2013 at Mol 5 

 

 

During the comparison of saplings to adults for each site there was no obvious pattern in how 

the number of saplings related to that of the adults between 2011 and 2013.  Overall there 

were a greater number of saplings recorded in 2011 than there were adults in 2013 and 

saplings and adults of the same species were located near one another.  There were more 

saplings recorded in 2013 when compared to 2011, probably because many 2011 seedlings 

had grown on to become saplings by 2013 while younger 2011 saplings had not grown 

sufficiently in height to become trees. 
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3.4.7.3 The number of saplings in 2004 compared to adults in 2011 

The number of saplings in 2004 was compared to adults in 2011, and the results are shown in 

Figure 3.43 and Figure 3.45. 

 

At Ela 3 (Figure 3.43), there were five S. mucronata saplings at -1, 0 and 1 m during 2004, 

and of which 3 adults remained at -1 m, none at 0 m and one at 1 m.  A mixture of B. 

stellatifolium, B. neriifolia, M. angustifolia and M. serrata saplings occurred between 2 and 7 

m, and by 2013 different species had taken root as adults at different positions. 

 

 

Figure 3.43 The number of saplings in 2004 versus adults in 2011 at Ela 3 
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At Ela 4 (Figure 3.44), in 2004, B. stellatifolium saplings occur between 3 and 8 m, while 

adults were found between 2 and 7 m in 2011.  Increased numbers of M. angustifolia adults at 

2 to 5 m were recorded in 2013.  B. neriifolia adults occurred at same positions in 2004 as 

saplings in 2011.  Adults of M. serrata, which is a lower dynamic species, occurred as far up 

as 6 and 7 m on the bank. 

 

 

Figure 3.44 The number of saplings in 2004 versus adults in 2011 at Ela 4 

 

 

At Mol 2 (Figure 3.45), in 2004, saplings of S. mucronata occurred between 0 and 2 m, but in 

2013 adults were only recorded at 2 m.  In 2004 there were no M. serrata saplings but by 

2011 there were adults at 2 and 3 m. 
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Figure 3.45 The number of saplings in 2004 versus adults in 2011 at Mol 2 

 

 

Over the six year period, new adults of different species occurred at positions where no 

saplings were previously recorded and positions where saplings were recorded were more 

likely to grow on to adults for each species. 

 

3.4.7.4 The number of adults in 2004, 2011 and 2013 

A comparison of the adults between 2011 and 2013 showed that adults still occupied the same 

position in most cases.  In some cases a tree was recorded in an adjacent sample plot between 

the sample years, especially if the tree was at a sample plot boundary as it may have grown or 

indeed have been knocked over during a flood and resprouted a new canopy from a shifted 

position.  The sample plots positions were realigned accordingly using the bigger adult trees 

greater than 2.5 m tall that were recorded both in 2011 and 2013.  As was seen for saplings, 
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the number of adults at Ela 4 and Mol 5 increased suggesting that some saplings had grown to 

become adults.  Figure 3.47 below is an example of the structure of adults at Ela 4 that were 

recorded in 2004, 2011 and in 2013.  In this case the same arrangement of adults was 

maintained.  

 

At Ela 3 (Figure 3.46) all B. stellatifolium, M. serrata and B, neriifolia adults at metres 0, 1, 7, 

8 and 9 m were removed over time.  Between 2 to 5 m, M. angustifolia adults persisted over 

the years.  At 4 and 5 m there were three B. stellatifolium adults in 2011 which were still 

present in 2013. 

 

At Ela 4 (Figure 3.47), at 3, 4 and 5 m, there were the same species although the number of 

adults varied each year.  B. neriifolia, M. angustifolia and M. serrata dominated this site and 

occupied similar positions (metres that are closer to each other) during all three years.  In 

2004 there were five B. neriifolia at 3 m and one at 4 to 6 m, during 2011 and 2013 there were 

two at 3 m and three at 4 to 5 m.  The number of M. angustifolia peaks from 2 to 5 m across 

all years.  

 

At Mol 2(Figure 3.48), during 2011 and 2013 there were plenty M. serrata adults at this site 

whilst in 2004 there were none.  The B. stellatifolium adults that were at positions 0 and 2 m 

in 2004 were not recorded in 2011; however in 2013 metre 2 had three adults of this species.  

Even though the same number of individuals occurred at this position these could be new 

plants and not necessarily the same ones that were there in 2004.  This site was mainly 

dominated by adult species of M. angustifolia and S. mucronata. 

 

The Mol 5 site (Figure 3.49) was only established in 2011, so there were no 2004 data for this 

site.  The B. neriifolia adults recorded at 3 and 4 m in 2011 were not present in 2013.  The 

total number of B. stellatifolium, M. serrata and M. angustifolia adults at the site was higher 

in 2013 than in 2011.  
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Figure 3.46 The number of adults in 2004, 2011 and 2013 at Ela 3 
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Figure 3.47 The number of adults in 2004, 2011 and 2013 at Ela 4 
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Figure 3.48 The number of adults in 2004, 2011 and 2013 at Mol 2 
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Figure 3.49 The number of adults in 2011 and 2013 at Mol 5 

 

 

At Ela 3 and Ela 4, the same adults of B. stellatifolium, B. neriifolia M. serrata and M. 

angustifolia species were present at the same positions over the 9 year period.  At all sites the 

number of adults in 2004 was much higher than those in 2011 and 2013.  The species 

distribution however was similar for all the years, with B. stellatifolium mostly dominated 

between 3 and 6m.  M. angustifolia was dominant between 1 and 5 m up the bank, with M. 

serrata mostly populating distances that are 1 to 3 m from the water’s edge.  S. mucronata 

remained in the wetted channel and just up to 2 m from the water’s edge.  

 

Even though the adults sampled during the three years could not be retraced the presence of 

the same species of a certain life stage at similar positions suggests that the adults are able to 
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withstand the conditions at the particular lateral zone they occupy.  The individuals however 

keep getting replaced by newer adults.  However, for saplings this happens faster and more 

often than for the adult trees.  As for seedlings, seeds of all species get deposited at different 

positions on the lateral zones where they recruit and can only grow to the next life stage if 

they are able to withstand the conditions at site.  The presence of a nursery area that has 

enough water is important at all growth stages of a species.  For this study across all sites, 

more than half of the total number of seedlings did not become saplings; this reduction of the 

number of individuals is noticeable across all species.  The seedlings that recruit much closer 

to the wetted channel (mostly at -1 and 0 m) did not seem to be able to grow into saplings.  

These positions were mainly occupied by seedlings, sedges and other groundcover species.  

Only at the Elands River sites were all life stages of M. serrata and S. mucronata found closer 

to the water’s edge (positions -1 and 0 m).  

 

3.5 Discussion 

The profile of a river changes as it moves from the upper to lower course as a result of 

changes in the river’s energy and other processes associated with the river channel (Naiman 

and Decamps 1997).  These changes in the cross-sectional profile of a river also have 

implications for plant survival and growth (Naiman and Decamps 1997).  In this study, 

between 2011 and 2013, alternate banks at both sites were subject to deposition and erosion.  

Erosion and deposition at the sites possibly contributed to the differences in survival of 

seedlings and saplings that progressed to the next life stage, thus affecting plant distributions 

at a site.  In this study, however, despite slight changes on cross-sections between 2011 and 

2013, there was not much change to the number and distribution of trees greater than 2.5 m 

tall.   

 

Four lateral zones, marginal, lower dynamic, lower and upper zones were identified at each 

study sites.  A clear distinction between the dry and wet bank zones was shown using a 

combination of both groundcovers and tree cover percentage data.  In general the transition 

between the wet (marginal and lower dynamic zones) and dry (lower and upper zones) banks 

occurred at distances of about 6 m from the water’s edge.  There were some shifts in lateral 

zones but these were mainly associated with the boundary between marginal and lower 

dynamic zones.  When comparing the number of individuals at different life stages for the 

three years, it was evident that regardless of year of collection, there were more seedlings than 
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saplings and adults, and again more saplings than adults.  An exception to this was the 2004 

period, when there were more adults than saplings.   

 

Species that are found closer to the water’s edge and in the wet bank in general, such as S. 

mucronata, M. serrata and B. neriifolia release their seeds during the summer low flow 

period.  Within this period water levels are low allowing the seeds to establish closer to the 

water’s edge.  M. angustifolia release its seeds over a period of four months starting during 

the winter high flow to the beginning of the low flow period (Reinecke 2013).  This allows 

the M. angustifolia seeds to be deposited throughout the lateral bank as flow recedes.  B. 

stellatifolium seeds are released at the approach of the wet season, which could explain why it 

recruits more on the upper bank as the seeds are deposited by the rising flows.  

 

With exception to S. mucronata, the other indicator species recruited throughout the riparian 

zone, despite their saplings and trees being concentrated in particular lateral zones.  Only S. 

mucronata showed zone specific recruitment, with seedlings, saplings and adults all restricted 

within two metres of the water’s edge.  For the other species new recruits established at 

different positions on the bank, with plants shorter than 1 m showing less pattern than larger 

individuals.  For instance, at the Ela 3 and Ela 4, plants shorter than 1 m were evenly spread 

between 3 and 7 m, and those taller than 1 m were restricted to positions between 2 – 5 m up 

the bank.  Zonal patterns started to emerge for plants that were taller than 1.5 m, and trees 

greater than 2 m tall have a fairly distinct zonal arrangement and tended to dominate more or 

less the same positions up the bank in all three years.  This suggests that as plants establish 

there is no clear lateral zonation that is presented but as they grow and withstand the 

conditions at site positions a pattern of plant arrangement then emerges.  

 

The areas of most recruitment differed between species.  For instance, M. angustifolia 

seedlings were mostly concentrated at 1 to 3 m, while those of B. stellatifolium were most 

dense at 3 to 5 m.  However, at all sites M. angustifolia and B. stellatifolium adults were most 

common in the dry bank and their seedlings equally common in the wet and dry banks.  The 

seedlings that recruited close to the wetted edge (mostly at -1 and 0 m) tended not to grow to 

become saplings, either because they were washed out or because they were out-competed by 

marginal zone specialists such as sedges and other groundcovers.  That said, S. mucronata 

also showed a fairly high failure rate of seedlings becoming saplings and adults.  This was 

true for all sites, even though S. mucronata is a well-adapted marginal zone species.  In this 
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case seedlings established at a site, but their survival at particular positions of recruitment was 

not guaranteed.  This suggests that even though plants are well adapted to a specific zone their 

survival could still be affected by other factors, which were not investigated in this study. 

 

Across all sites, seedling establishment was plentiful and widely distributed through the 

lateral zones.  A high turnover of seedlings was recorded but there was a clear decline in the 

number of individual seedlings that developed to saplings and grew on to become adults.  

This suggests that the lateral zonation seen in the riparian vegetation community is at least 

partly determined by factors exerted after recruitment, and that the zonation is dictated by the 

ability of different species to withstand floods and zonal perturbations of different 

magnitudes.  This is clearly shown by the fact that the distribution pattern of seedlings of a 

species differs from that of individuals taller than 1.5 m.  It suggests that, for some reason, 

seedlings do not always survive the conditions at a given lateral zone and thus do not make it 

to the next life stage.  For an individual to grow into mature adults, they must withstand the 

conditions that prevail at positions of recruitment.  The results obtained in this study agree 

with those of Mahoney and Rood (1998), who showed poor seedling survival outside of the 

optimal zone for survival.  Mahoney and Rood (1998) suggested that most seedlings die from 

drought-stress, and those individuals that survive do so because they are able to maintain a 

functional root contact with the moisture zone. 

 

Findings from this study suggest that seedlings and saplings prefer different bank position for 

colonisation.  Thus the positions where seedlings dominate are not necessarily the positions 

where saplings will dominate.  Although the focus of this study differs from that conducted by 

Sher and Marshall (2003), which looked at competition between seedlings across substrate 

types the findings are in agreement.  Sher and Marshall (2003) illustrated that seedlings and 

saplings show a substrate preference.  For instance, Populus deltoides and Tamarix 

ramosissima seedlings grew best in clay, while their saplings grew better in sandier 

substrates.  The suggestion given was that this could be due to differing abiotic demands.  
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4 The effects of diminished dry season low flows on 

riparian vegetation communities 

4.1 Introduction 

Aquatic ecosystems require a certain amount of water be purposefully left in or released to 

maintain conditions that will support direct and indirect use values of these systems (King et 

al. 2003a).  The flows left or maintained in a river so that the system remains in a state 

considered desirable are referred to as environmental flows.  Other terms used to refer to these 

flows are ecological or instream flow requirements. Failure to manage the condition of the 

ecosystem leads to decline in the health of water resources around the world (Poff et al. 1997; 

Richter et al. 2003; Postel and Richter 2003; Brown and King 2003).  In efforts to prevent 

future ecological damage, there is increasing awareness of the need to provide for the water 

needs of river ecosystems proactively by reserving a portion of river flows for ecosystem 

support (Tharme and King 1998; Richter et al. 2006).   

 

The provision of EFs has become one of the priorities of the South African water resource 

governance through the National Water Act (NWA, 1998).  Prior to the enactment of this 

legislation, aquatic ecosystems were generally perceived as a competing for water use (King 

et al. 2003a).  The NWA makes provision for the Reserve, which is comprise allocation of 

water for the human basic need and an allocation of water for the aquatic environment.  The 

establishment of the Ecological Reserve in NWA introduces direct competition between the 

aquatic ecosystem and the needs of humans (van Wyk et al. 2006) and, as such, decisions on 

the volumes of the original flow regime, that should be left or released downstream to 

maintain the aquatic ecosystem of the river system (Yang et al. 2009) are often highly 

contested and difficult to make.  In South Africa, the level of use (and conversely it 

protection) of any water resource is decided by first identifying the condition in which it 

should be maintained (Ecological Category; after Kleynhans et al. 1999), and then setting the 

Reserve Quality Objectives (RQOs; including the volume and timing of flows required for the 

Ecological Reserve) in accordance with the chosen category (King and Pienaar 2011).  These 

provisions are then incorporated into any licences (Section 29 of NWA) to use water which 

control the extent to which the resource can be used (King and Pienaar 2011).  
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Regions with mediterranean climate are generally water-stressed (Gasith and Resh 1999), 

because high temperatures in summer result in high evaporation and transpiration rates and at 

the same time having low to no rainfall during this season.  This results in a drying up of 

those rivers with no significant groundwater contributing to flows, and hence aquatic 

ecosystems become stressed (Moor and Day 2013).  When complete drying of the river beds 

occurs, taxa lacking desiccation-resistant stages or those unable to find refugia are eliminated 

(Gasith and Resh 1999).  In the Western Cape Province of South Africa, the abstraction of 

water for irrigating crops in summer coincides with the occurrence of low river flows.  Moor 

and Day (2013) have suggested that direct water abstractions are the biggest threat to riverine 

biodiversity in the Western Cape.  Streams in mediterranean climate regions are shaped by 

sequential seasonal events of flooding and drying over an annual cycle (Gasith and Resh 

1999).  Diversions of water from the stream may change a perennial river to an intermittent 

one (Gasith and Resh 1999).  Such changes may alter the distribution of the biota, life history 

cues and overall structure of the riparian community.  According to Gasith and Resh (1999) 

during the dry season habitat conditions become harsher, with more water abstracted during 

low flow periods, it leaves less for the biota at the time when they need the water most.  A 

major but rarely discussed consequence of water diversions is the change in salinity that puts 

the biota of mediterranean-type streams at risk (Gasith and Resh 1999).  Boucher (2002) 

states that drying of stream banks without compensatory releases leads to an increase in fire 

temperatures.   

 

Riparian vegetation is sensitive to changes in minimum and maximum flows (NRC 1992; 

Stromberg 1993) and low flows have long been thought to be crucial for maintaining riparian 

vegetation during dry conditions (Boucher 1999), although there are very few studies that 

address this directly.  A study by Boucher and Rode (2001) in the Breede River, Western 

Cape, showed that plants that were closer to the water developed faster than those on dry parts 

of the bank.  Typically plants that occur in or near the wetted channel are influenced by 

hydro-geomorphological factors while those that grow higher up the bank are mainly 

influenced by plant-induced (autogenic) factors (Francis 2006).  Many marginal zone species 

are soft-stemmed or fleshy and thus may easily suffer stem break, be uprooted or broken into 

fragments during periods of high flow (Reinecke 2013).  Also on the Breede River, the effect 

of summer abstraction for agriculture and resultant low summer flows were shown to promote 

invasion and establishment of alien species (Eucalyptus camaldulensis and Sesbania 

punicea.) on the transitional area between the wet (see Sections 2.1 and 3) and dry bank zones 
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(DWAF 2002).  Indeed, in the Western Cape alien-invaded rivers typically have reduced 

summer flow due to abstractions (Sieben and Reinecke 2008).  Boucher and Rode (2001) 

stated that the migration of typical dry bank species into wet bank zone intensifies flooding.  

A study of the Breede River and its tributaries by (Boucher and Rode 2001) revealed that 

following the closure of Theewaterskloof Dam there was been a considerable reduction in 

both the magnitude and variability of summer flows which has had a major influence on the 

riparian vegetation along the river.  On the Riviersonderend the wet bank zone was poorly-

developed and the drybank was dominated by woody aliens.  On the Baviaans River, also 

downstream of a long-standing abstraction reservoir, there were changes in lateral vegetation 

zones had migrated to lower levels on the banks relative to where they were found in 

unimpacted rivers.  Prolonged low flow periods also resulted in the invasion of the stream bed 

by wet bank zone vegetation such as Prionium serratum and Paspalum distichum (Boucher 

and Rode 2001).  Changes to the riparian vegetation will have knock-on effects for the whole 

ecosystem as riparian vegetation helps to shape aquatic habitats for aquatic ecosystems such 

as fish and macroinvertebrates (Stromberg 2001).  In the McKenzie River lowered flows 

caused a reduction in channel movement, which led to a loss of spawning gravel and a loss of 

habitat for juvenile salmon and a reduced average population size (Ligon et al. 1995).  In 

Mediterranean streams, benthic macroinvertebrate assemblages that are flow-dependent taxa 

(such as filter feeders) are affected when flow into pools is eliminated, when isolated pools 

are formed this may increase predation (Gasith and Resh 1999).  Riparian vegetation also 

affects sediment supply and movement, lowering of flows may lead to a reduction in the 

river’s efficiency to transport incoming sediment, which may result in the build up of 

sediment deposits in the wetted channels and the covering of the exposed bedrock to form 

sand sheets and alluvial anastomising bars (Van Coller 1997).  Conversely, an increase in 

sediment transport potential through channel narrowing may result in armouring, and a loss of 

important gravel and cobble habitat (Gilvear et al. 2002; Rowntree 1990; Kleynhans 1996). 

 

This study focused on the links between summer low flows and the population structure of 

selected plant species along river banks on four mountain streams in the Western Cape, South 

Africa.  The objective was to determine whether long-term abstraction of dry season low 

flows has had an influence on the recruitment success of selected (common) riparian species.  

To address this objective, recruitment patterns were recorded upstream and downstream of 

abstraction points that remove most or all of the dry season low flows.  Differences in 

recruitment success within the wetted channel under two different flow regimes, viz. near-
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natural versus the absence of dry season low flows, were compared for six common species of 

Fynbos Riparian Vegetation (Salix mucronata; Morella serrata, Metrosideros angustifolia; 

Brachylaena neriifolia; Freylinia lanceolata and Brabejum stellatifolium).  The key research 

question was “What are the influences of the lack of dry season low-flows on the lateral 

distribution of riparian vegetation communities?”   

 

The working hypotheses of this chapter were as follows:  

 The downstream sites have less clear zonation than the upstream sites.  

 There are more seedlings in the channel downstream than upstream, and the marginal 

zone is narrower in response to abstraction. 

 

4.2 Study sites 

Data were collected from eight paired sites on four rivers during the summer of 2012/2013.  

The four rivers were the Sanddrifskloof, the Morraineskloof, the Keurhoek and the 

Jonkershoek Rivers (Figure 4.1).  Each pair was situated upstream and downstream of an 

abstraction point (Figure 4.2), which diverted the bulk of the summer base flow leaving the 

channel downstream dry or with standing pools for the summer months (December to March 

in the Western Cape).  Three of the abstraction points were situated downstream of a flow 

gauging station.  The exception was the Sanddrifskloof River where the abstraction point was 

located downstream of the gauging weir (Figure 4.2).  Site locations and flow gauge numbers 

are provided in Table 4.1.  At the time of sampling, surface flow at the upstream sites was 

strong, and at the downstream sites was negligible, although there were small, isolated, 

shallow pools and a thin section of the channel remained wet.  Replicate samples of the 

riparian vegetation were collected on opposing banks and were named as follows using the 

Sanddrifskloof River as an example: San1 LB (left bank) and San1 RB (right bank).   
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Figure 4.1 Map showing the location of the study sites, arrow A showing the location of 

river sites in the Breede catchment and B points at river sites on the Berg 

catchment 

 

 

Figure 4.2 Schematic diagram showing sample site orientation in relation to the 

abstraction points (red) and the flow gauging stations (brown).  The year that 

abstraction began at each river is also shown 
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Table 4.1 Details of study sites and DWA flow gauges at each river 

Catchment River Site Code Gauge Month of no flow Co-ordinates 

Breede Sanddrifskloof 

San1 LB 

San1 RB 

San3 LB 

San3 RB 

H2L004 February to April 
33.48556S 

19.52917E 

Breede Morraineskloof 

Mor1 LB 

Mor1 RB 

Mor2 LB 

Mor2 RB 

H2L001 
December to 

March 

33.49722S 

19.49444E 

Breede Keurhoek 

Keu1 LB 

Keu1 RB 

Keu2 LB 

Keu2 RB 

H2L003 January to April 
33.52083S 

19.48750E 

Berg  Jonkershoek 

Jon3 LB 

Jon3 RB 

Jon4 LB 

Jon4 RB 

G2H037 
December to 

March 

33.98472S 

18.95333E 

 

 

4.2.1.1 Study site descriptions 

Sanddrifskloof River 

Abstraction of water from the Sandrifskloof has been taking place since c. 1968, i.e., for more 

than 45 years.  At the time of sampling there was no flow downstream, the wetted channel 

comprised stagnant pools.  The riparian vegetation at both the upstream and downstream sites 

was relatively undisturbed.  At the upstream sites the left bank was steep and had little 

vegetation on it.  The right bank was of a shallower gradient and there were many Cape 

willows (Salix Mucronata) and lance-leaf waxberries (Morella serrata) recruiting into the 

wetted channel.  At the downstream sites both left and right margins of the river were 

dominated by the restio Ischyrolepis subverticillata as well as Palmiet (Prionium serratum) in 

the wetted channel. 

 

Morraineskloof River 

Abstraction of water from the Morraineskloof has been taking place since c. 1960, i.e., for 

more than 50 years.  At the time of sampling the upstream site comprised shallow pools of 

water and at the downstream site there was a narrow strip (1 m) of very low flow.  The sites 

were fairly flat and characterised by sandy banks, particularly upstream.  The downstream 
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sites had more cobbles and boulders.  The riparian vegetation at both the upstream and 

downstream sites was relatively undisturbed.  The upstream site was dominated by saplings of 

Morella serrata and Freylinia lanceolata situated close to the water’s edge while the 

downstream site was dominated by Pelargonium scabrum and Brabejum stellatifolium adults 

mainly.  

 

Keurhoek River 

Abstraction of water from the Keurhoek River has been taking place since c. 1960, i.e., for 

more than 50 years.  At the time of sampling, the upstream site comprised pools on the left 

and right banks, which could make it difficult for the seedlings to establish on the margins of 

the channels.  The downstream site did not have flowing water but there were small pools of 

shallow stagnant water between rocks, the channel was populated by grasses and shrubs.  The 

left bank of both up- and downstream sites had a steep cliff and comprised a very narrow 

marginal area and a mountain of boulders; the right banks were however, fairly flat with loose 

sand.  A thick bush of Ischyrolepis subverticillata and shrubs of Pteridium aquilinum at the 

back dominated upstream sites.  The downstream sites were characterized by a strip of 

Morella serrata and Metrosideros angustifolia saplings in the wetted channel extending 

outwards. 

 

Jonkershoek River 

Abstraction of water from the Jonkershoek River has been taking place since c. 1910, i.e., for 

more than 100 years.  At the time of sampling, the upstream sites had a mixture of pools and 

riffles while on the downstream sites there was no flow but the middle section of the channel 

was wet with a few pools.  The upstream sites were characterized by gently sloping banks 

with sand covered by old tree residues just outside the channel.  The right bank at the 

downstream sites was similar to those at the upstream site, but the left bank was steeper.  A 

lot of Freylinia lanceolata and Brachylaena neriifolia saplings had established closer to the 

wetted channel at upstream sites while Brabejum stellatifolium and Ilex mitis adults dominate 

the margins of the downstream sites.  Both sites lacked the characteristic Western Cape 

riparian species Salix mucronata.  
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4.3 Methods 

4.3.1 Data collection 

4.3.1.1 Flow data 

Average daily discharge records for the gauging weirs at each of the sites were obtained from 

the Department of Water Affairs website: www.dwa.gov.za.  Information about the volume of 

water abstracted from the Morraineskloof, Keurhoek and Sanddrifskloof Rivers was obtained 

from the chairperson of the Hex Valley Water User Association, Mr Christiaan Olivier.  

Information for the Jonkershoek River was obtained from Dr Joan Barnes, an independent 

consultant. 

 

4.3.1.2 Vegetation data 

Vegetation data were collected in replicate transects on opposing banks at each site.  

Transects were arranged in the same way as those of the previous chapter (Figure 3.3).  Each 

transect was 10 m wide, along the wetted edge of the river, and stretched several metres up 

the bank. The length of each transect was dictated by the width of the riparian area (Figure 

4.3).  Each transect was divided into two bands 5 m in width and into contiguous sample plots 

1 m in length.  Sample plot labeling was done by number (1 to ‘n’) to indicate distance from 

the wetted edge in metres, and by letter A and B for the two bands.  In cases where plant 

species were rooted on islands or cobble bars in the wetted channel, or where the edge of 

channel was not straight, the vegetation transect was extended into the channel and numbered 

in a negative direction.  The maximum height and percentage cover of all species present in 

each sample plot was recorded as well as the number of individuals and relative positions of 

trees to 1-m accuracy.   

 

Trees were separated into two life stages (Chapter 3): juveniles (height < 2 m); and adults 

(height > 2 m).  These data were collected for six small trees that are common along fynbos 

rivers (Sieben and Reinecke 2008): Salix mucronata; Morella serrata, Metrosideros 

angustifolia; Brachylaena neriifolia; Freylinia lanceolata and Brabejum stellatifolium.  Five 

of these species were present at every site and Salix mucronata was absent from the 

Jonkershoek River.  The different plants establish at different lateral zones of the riparian 

bank, the favourable conditions allow them to survive in their respective zones. 
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Figure 4.3 Sample grid showing the matrix and numbering of sample plots 

 

4.4 Data analysis 

4.4.1 Flow data 

Time series of daily average flows were obtained from DWA (2012) for the gauging stations 

near each site (Table 4.1).  The mean monthly flow for each site was calculated and plotted on 

graphs to show high and low flow periods for each river. 

 

4.4.1.1 Vegetation data 

The data were analysed at two scales: across rivers (at a river scale) and between sites (at a 

sample plot scale).  Sites on different rivers represented replicates of the upstream and 

downstream conditions, with two sites on the up and downstream of the abstraction point.  

This was done in order to compare sites on different rivers and catchments at some level.  The 

plants within sample plots were used to identify the lateral zones at site scale; this was also 

done to give a glimpse into the difference in zonation at disturbed (downstream) and 

undisturbed (upstream) sites.  

 

River comparisons: Species abundances at each site, as percentage cover, of all sample plots 

at each site were summed and standardised to give a single value per species.  Data were 4
th

 

root transformed in order to boost the presence of smaller species at lower percentage covers.  
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Bray-Curtis similarity coefficients were calculated in PRIMER between rivers and the results 

were displayed using cluster analyses (Clarke and Gorley 2006).  Following the MDS and 

cluster analysis, dissimilarities between rivers and river sites were then studied by using 

species composition.  A global nested pair-wise ANOSIM routine (PRIMER V6, Clarke and 

Warwick 2006) of species abundance between sites was used.  ANOSIM is a method that 

allows testing for significant differences in species composition between a priori identified 

groups, in this case upstream and downstream sites.  

 

Measures of species diversity were calculated between sites using the DIVERSE routine in 

PRIMER V6, (Clarke and Gorley 2006).  Paired and unpaired T-tests were used to discern 

differences between rivers (four replicates, hereafter referred to as river-scale) and/or sites 

(eight replicates, hereafter referred to as site-scale).  After testing species diversity, further 

tests were done examining possible differences at species level.  Differences at river scale 

were studied, using different growth forms and riparian factors (Appendix Table 3) for each 

plant.  There were six growth form types as shown in Appendix Table 3, i.e. tree, shrub, 

herbaceous perennial, restio, sedge, and grass.  Species habitats were assigned according to 

habitat preference for each species using three categories (referred to as riparian factors; 

Goldblatt and Manning 2000), as follows: 

 Obligate riparian - plant species that are common on or near streamsides, seeps, rivers 

and watercourses (wet species), 

 Incidental terrestrial - plant species occurring on rocky slopes and outcrops or mountain 

slopes (dry species) and  

 Facultative riparian - plant species that occur in bush, woodland or forests and/or 

associated with water courses (wet/dry species).  The species in this group are 

associated with wet conditions but their survival is not entirely dependent on the water. 

 

Not all plants could be identified to species level, and almost half were only identified to 

genus.  Plants that were not identified to species level were left out of the riparian factor 

analysis as they could not be allocated to a specific factor.  Thus, for analysis for the riparian 

factor section, only data for the plants that were known to the species level were used 

(Appendix Table 3).  The unidentified species were however used for the comparison on 

growth forms.  

 

Testing for significant differences between up and downstream sites was done by comparing: 
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 the number of individuals at different life stages (seedling, sapling and adults); 

 the number of individuals of different growth forms; 

 the number of species in each growth form category; 

 the number of individuals in each riparian category; and, 

 the number of species in each riparian category. 

 

After testing for significant differences between sites, the SIMPER routine (PRIMER v6, 

Clarke and Gorley 2006) was used to identify typical and indicator species for each group 

(up/downstream sites).  SIMPER identifies the taxa that are responsible for similarities and 

dissimilarities between and within prior defined groups (in this case up and downstream 

sites).  The percentage dissimilarity between the upstream and downstream sites was also 

calculated, and the characteristic species that contributed to the dissimilarity between the two 

groups were identified (Table 4.11). 

 

The number of individuals of typical wet and dry bank species was then compared in bar 

graphs at a site-scale.  Finally, the relative positions of wet and dry bank juveniles were 

compared between sites.  A combination of seedlings and saplings was used to study the 

positions at which recruitment at downstream sites is more probable, as the main aim of the 

chapter was to study the effects of the absence of flows on recruitment.  The sum of saplings 

and seedlings (juveniles) at each site was then plotted against the lateral distance on the bank.  

 

4.5 Results 

4.5.1 River flows 

The monthly hydrographs for each of the sites are provided in Figure 4.4.  An increase in 

average flow is observed between April and May for all sites.  The high flows persist for 

about seven months followed by a sudden decrease of flows in October.  The period from 

December to March has the lowest flows for all sites: this is the dry summer period in the 

Western Cape. 
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Figure 4.4 Mean monthly flows for a hydrological year at each site 

 

4.5.2 River comparisons 

The results of the MDS and cluster analysis are shown in Figure 4.5.  The 16 sites grouped 

according to catchment.  The three rivers in the Hex valley (Breede River catchment; 

Sanddrifskloof, Morraineskloof and Keurhoek) were more closely related to one other than to 

the Jonkershoek River (Berg River) catchment, which grouped on its own (Figure 4.5).  

Within these catchment groups the sites at each river separated from those at other rivers.  

Within each river, upstream sites separated from the downstream except for the Keurhoek 

River, where Keu1 LB was an outlier, possibly because of the left bank being a sparsely 

vegetated near vertical cliff (see Section 4.2.1.1).   

 

The Morraineskloof sites were most similar to the Keurhoek sites, and Mor2 LB and Mor2 

RB paired with Keu2 LB and Keu2 RB, Mor1 LB and Mor1 RB sites paired with Keu1 RB.  

The Sanddrifskloof upstream and downstream sites were most strongly related to one another 

at a 60% similarity between sites, while the Morraineskloof and Keurhoek sites exhibited 

50% similarity and the Jonkershoek sites a less than 40% similarity (Table 4.2).  
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Figure 4.5 A Cluster and MDS ordination of Bray Curtis similarity between species 

composition of sites. Site codes as per Table 4.1 

 

 

Table 4.2 Similarity coefficients between upstream and downstream sites 

 

 

 

The left bank at Keu1 was an outlier (Figure 4.5), which showed that this site was different 

from all the other sites (including the other sites from the same river), however, the general 

pattern of Keu1 LB relative to Keu2 samples was similar to that between Keu1 RB and Keu2 

samples.  

Dissimilarities in species composition between rivers and between sites were investigated.  A 

global nested pair-wise ANOSIM of species abundance between sites showed that rivers were 

significantly different from one another (Global R = 0.896).  Overall the species composition 

between upstream and downstream sites was also significantly different (Global R =0.813).   

 

San1 LB San1 RB San3 LB San3 RB Mor1 LB Mor1 RB Mor 2 LBMor2 RB Keu1 LB Keu1 RB Keu2 LB Keu2 RB Jon3 LB Jon3 RB Jon4 LB Jon4 RB

San1 LB

San1 RB 62.0

San3 LB 57.5 57.0

San3 RB 63.7 61.7 71.3

Mor1 LB 46.7 41.4 43.7 38.1

Mor1 RB 39.1 37.9 34.7 40.8 55.9

Mor2 LB 41.6 51.5 39.8 41.4 40.2 41.9

Mor2 RB 50.1 49.6 47.0 44.7 37.0 41.1 53.4

Keu1 LB 22.0 30.6 20.5 23.7 33.2 35.8 34.2 22.1

Keu1 RB 37.6 37.5 33.1 36.9 51.0 50.7 34.6 44.5 37.5

Keu2 LB 39.1 49.5 38.2 37.9 34.0 33.3 54.8 50.2 29.9 45.2

Keu2 RB 41.2 44.7 39.1 39.6 35.4 42.1 50.6 48.0 34.4 52.7 70.9

Jon3 LB 31.6 30.3 26.6 30.7 29.9 34.5 32.1 21.5 30.0 25.2 24.1 26.8

Jon3 RB 41.5 45.9 36.7 41.4 30.1 31.3 34.4 26.4 22.7 26.8 26.5 28.2 53.9

Jon4 LB 39.8 31.3 35.2 35.5 35.2 27.7 33.6 26.3 27.7 30.1 31.6 35.9 41.1 41.7

Jon4 RB 40.0 33.1 40.0 36.0 36.0 32.5 28.5 18.0 29.6 30.7 23.2 28.3 52.4 40.2 55.8
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4.5.2.1 Lateral zonation 

The analysis of lateral zone pattern between upstream and downstream sites did not show a 

conclusive result.  At most sites all lateral zones were present, although at the downstream 

sites had some dry bank species on their marginal and lower dynamic zones.  The results for 

the lateral zonation within sites did not show major dissimilarities between the upstream and 

downstream sites.  Some of the downstream sites had all the four lateral zones.   

 

All sites on the Sanddrifskloof River had the marginal zone, all of which were 3 m wide 

except for San1 LB which was 2 m in width (Table 4.3).  At upstream sites, the wet bank 

width (all wet bank zones combined) was 2 m on the left bank and 3 m on the right bank, 

while at the downstream sites they were 5 m on both banks (Figure 4.6). 

 

 

Figure 4.6 MDS ordinations for the Sanddrifskloof River sites. Sample plots (indicated 

as samples) are indicated within Mar = marginal zone, L.D = lower dynamic, 

Lwr = lower zone and Upp.= upper zone 
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Sites at Morraineskloof River did not have the marginal zone except for Mor2 RB which was 

1 m in width (Table 4.3).  The upstream sites comprised pools at the water’s edge, which 

could explain the absence of the marginal zone.  For the upstream sites, the total width of the 

wet bank was 1 m on the right bank while on the left bank it was not represented.  At 

downstream sites the wet bank was 2 m wide on both banks (Figure 4.7).  

 

 

Figure 4.7 MDS ordinations for the Morraineskloof River sites. Sample plots (indicated 

as samples) are indicated within Mar = marginal zone, L.D = lower dynamic, 

Lwr = lower zone and Upp.= upper zone 

 

 

At the Keurhoek River, Keu1 RB and Keu2 LB did not have the marginal zone.  The 

upstream left bank marginal zone was 1 m thick, while the downstream right bank was 2 m 

(Table 4.3).  The width of the wet bank area of upstream sites was 3 m on the left bank and 1 

m on the right bank.  At downstream sites the right bank was 1.5 m wide while on the left 

bank it was 4 m in width (Figure 4.8). 
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Figure 4.8 MDS ordinations for the Keurhoek River sites. Sample plots (indicated as 

samples) are indicated within Mar = marginal zone, L.D = lower dynamic, 

Lwr = lower zone and Upp.= upper zone 

 

 

At the Jonkershoek River, the marginal zone was absent at all sites (Table 4.3).  The entire 

wet bank width for downstream sites (1 m) was smaller than that of the upstream (2 m) 

(Figure 4.9).  
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Figure 4.9  MDS ordinations for the Jonkershoek River sites. Sample plots (indicated as 

samples) are indicated within Mar = marginal zone, L.D = lower dynamic, 

Lwr = lower zone and Upp.= upper zone 

 

 

4.5.2.2 Width of riparian zone 

Overall, the width of the entire wet bank zone (marginal and lower dynamic zones) at 

upstream sites was smaller than that of the downstream sites at Jonkershoek and Keurhoek 

River.  At Sanddrifskloof, the wet bank of the downstream sites was wider than that of the 

upstream sites.  However, there was no definite reduction on the marginal zones at 

downstream sites, instead the marginal zone is represented by similar widths at both up and 

downstream sites for each river.  Although at downstream sites the marginal zone had 

extended into the channel, most marginal zones are -1 to 0 m positions. 
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Table 4.3  Width of the marginal zone at sites 

Site Bank Marginal zone width 

  Upstream (m) Downstream (m) 

San Left 2 3 

 Right 3 3 

Mor Left 0 0 

 Right 0 2 

Keu Left 1 0 

 Right 0 3 

Jon Left 0 0 

 Right 0 0 

 

 

4.5.2.3 Species diversity 

Five measures of species richness were calculated and compared using t-tests: 1. total number 

of species; 2. Margalef’s species richness (d, Margalef 1972 in Magurran 2004); 3. Shannon 

Weiner equitability (H; Shannon and Weaver 1949 in Magurran 2004); 4. Pielou’s relative 

diversity (J; Pielou 1975 in Magurran 2004) and 5. Simpson’s index (ƛ, Simpson 1949 in 

Magurran 2004).  There were no significant differences between sites for any of the diversity 

measures tested for either the paired or the unpaired test (Table 4.4).  Following this, further 

analysis sought to identify the characteristics responsible for group separations. 
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Table 4.4 Different univariate diversity measures used to test for significance between 

river sites.  S = Total species, d = species richness (margalef), J` = Pielou’s 

evenness, H=.Shannon Weiner and Lambda= Simpson’s index 

Sites Diversity measures 

  S d J' H'(loge) 1-Lambda' 

San1 LB 18 3.69 0.98 2.82 0.95 

San1 RB 21 4.34 0.98 2.99 0.96 

Mor1 LB 15 3.04 0.98 2.65 0.94 

Mor1 RB 17 3.47 0.99 2.79 0.95 

Keu1 LB 11 2.17 0.98 2.36 0.91 

Keu1 RB 15 3.04 0.99 2.67 0.94 

Jon3 LB 15 3.04 0.98 2.65 0.93 

Jon3 RB 19 3.91 0.99 2.91 0.95 

Mean 16.38 3.34 0.98 2.73 0.94 

SD 3.07 0.67 0.00 0.20 0.01 

            

San3 LB 15 3.04 0.97 2.64 0.93 

San3 RB 18 3.69 0.98 2.85 0.95 

Mor2 LB 19 3.91 0.98 2.89 0.95 

Mor2 RB 22 4.56 0.98 3.03 0.96 

Keu 2 LB 19 3.91 0.98 2.90 0.95 

Keu2 RB 18 3.69 0.98 2.85 0.95 

Jon4 LB 12 2.39 0.97 2.42 0.92 

Jon4 RB 7 1.30 0.99 1.92 0.86 

Mean 16.25 3.31 0.98 2.69 0.93 

SD 4.77 1.04 0.01 0.36 0.03 

Paired P-value 0.96 0.96 0.49 0.80 0.66 

Unpaired P-value 0.95 0.95 0.76 0.77 0.61 

 

 

4.5.2.4 Life stages 

There were no significant differences between the number of individuals of different life 

stages of the six species of trees tested (seedlings, saplings and adults) at upstream and 

downstream sites (Table 4.5).   
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Table 4.5  Number of plants in each life stage for each site 

  Sites Life stage 

U
p
st

re
am

 s
it

es
 

 

  Seedling Sapling Adult 

San1LB 12 41 44 

San1 RB 70 56 55 

Mor1 LB 26 2 7 

Mor1 RB 27 71 13 

Keu1 LB 41 5 7 

Keu1 RB 76 13 32 

Jon3 LB 37 12 3 

Jon3 RB 46 19 14 

Mean 27.38 41.88 21.88 

SD 25.54 21.92 19.38 

D
o
w

n
st

re
am

 s
it

es
 

 

  

   San3 LB 18 16 31 

San3 RB 49 31 51 

Mor2 LB 85 15 5 

Mor2 RB 73 28 13 

Keu 2 LB 18 35 15 

Keu2 RB 48 2 6 

Jon4 LB 18 7 6 

Jon4 RB 13 16 7 

Mean 18.75 40.25 16.75 

SD 11.63 27.88 16.29 

T-test 
Unpaired 0.39 0.89 0.57 

Paired  0.32 0.9 0.21 

 

 

This led to an investigation of whether there were differences between growth forms and/or 

between the riparian factors (Appendix Table 3) at up and downstream sites.  

 

4.5.2.5 Growth form 

The number of species (Table 4.7) and individuals (Table 4.6) in each growth form were 

tested to see if they differed significantly between upstream and downstream sites.  Six 

categories of growth forms were used as shown in Appendix Table 3: tree, shrub, herbaceous 

perennial, restio, sedge and grass.  There were significant differences at the 5 and 10% level 

between the number of individuals making up the herbaceous perennials and sedges with p-

value = 0.025 and 0.095 respectively.   

 

The number of species within the sedges were also significantly different at the 5 and 10% 

level with p-value =0.09 (Table 4.7). 
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Table 4.6 Number of individuals for each growth form at sites.  Asterisked values are 

significant.  Herb = herbaceous perennial 

Site Growth form 

  Grass Herb Restio sedge Shrub Tree 

San1 LB 2 2 2 4 8 93 

San1 RB 3 2 3 1 8 181 

Mor1 LB 0 1 2 1 7 37 

Mor1 RB 0 1 3 2 11 111 

Keu1 LB 0 2 2 4 5 53 

Keu1 RB 1 1 4 1 9 122 

Jon3 LB 3 2 2 4 6 52 

Jon3 RB 2 0 2 2 7 79 

Mean 1.38 1.25* 2.5 1.25* 7.63 91 

SD 1.3 0.71* 0.76 0.46* 1.85 47.04 

              

San3 LB 1 7 2 1 4 65 

San3 RB 2 9 3 2 5 131 

Mor2 LB 1 2 1 1 4 105 

Mor2 RB 1 1 3 0 13 114 

Keu 2 LB 2 2 5 0 10 68 

Keu2 RB 2 7 5 1 13 56 

Jon4 LB 1 2 2 0 5 31 

Jon4 RB 0 6 2 0 4 36 

Mean 1.25 4.5* 2.88 0.63* 7.25 75.75 

SD 0.71 3.07* 1.46 0.74* 4.06 36.88 

Paired P-value 0.826 0.025* 0.401 0.095* 0.773 0.348 

Unpaired P-value 0.814 0.011* 0.528 0.063* 0.815 0.482 

 

 

Table 4.7 Number of species of different growth forms at upstream and downstream 

sites.  Asterisked values show significant differences. Herb = herbaceous 

perennial 

Sites Growth form 

  Tree Shrub Herb Restio Sedge Grass 

San1LB 12 8 2 2 2 2 

San1 RB 14 8 2 3 1 3 

Mor1 LB 10 7 1 2 1 0 

Mor1 RB 11 11 2 3 1 0 

Keu1 LB 5 5 2 2 2 0 

Keu1 RB 7 9 1 4 1 1 

Jon3 LB 8 6 5 2 1 3 

Jon3 RB 12 7 6 2 1 2 

Mean 9.88 7.63 2.63 2.50 1.25* 1.38 

SD 3.00 1.85 1.85 0.76 0.46* 1.30 

              

San3 LB 12 8 1 2 1 1 

San3 RB 13 7 2 3 2 2 

Mor2 LB 9 11 2 1 1 1 

Mor2 RB 12 13 1 3 0 1 

Keu 2 LB 9 10 2 5 0 2 

Keu2 RB 6 13 2 5 1 2 

Jon4 LB 10 5 2 2 0 1 

Jon4 RB 8 4 2 2 0 0 

Mean 9.88 8.88 1.75 2.88 0.63* 1.25 
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Sites Growth form 

  Tree Shrub Herb Restio Sedge Grass 

SD 2.36 3.44 0.46 1.46 0.74* 0.71 

Paired P-value 1.00 0.26 0.21 0.40 0.09* 0.83 

Unpaired P-value  1.00 0.38 0.21 0.52 0.063* 0.81 

 

 

4.5.2.6 Riparian factors 

The number of species (Table 4.8) and individuals (Table 4.9) in each riparian factor category 

were tested to see if they differed significantly between upstream and downstream sites.  

There were significant differences between upstream and downstream sites between the 

number of individuals in the facultative category, with p-value = 0.01 (Table 4.8). 

 

Table 4.8 Number of individuals belonging to each riparian category at upstream and 

downstream sites. Asterisked values show significant differences 

Sites Riparian factor   Sites Riparian factor 

  Obligate Incidental Facultative     Obligate Incidental Facultative 

San1 LB 93 2 1   San3 LB 65 1 0 

San1 RB 181 2 1   San3 RB 131 1 0 

Mor1 LB 36 5 1   Mor2 LB 105 8 1 

Mor1 RB 111 3 1   Mor2 RB 114 9 0 

Keu1 LB 53 6 1   Keu2 LB 68 5 1 

Keu1 RB 121 5 1   Keu2 RB 56 9 1 

Jon3 LB 52 4 2   Jon4 LB 31 3 0 

Jon3 RB 79 2 2   Jon4 RB 36 1 1 

Mean 90.75 3.63 1.25   Mean 75.75 4.63 0.5* 

SD 47.11 1.6 0.46   SD 36.88 3.62 0.53* 

Paired P-value 0.357 0.358 0.019* 

Unpaired P-value 0.489 0.486 0.009* 

 

 

When data for species composition were tested, once again the facultative riparian factor 

showed that the upstream sites were significantly different from those downstream.  The mean 

value for the upstream sites was 1.25 while for the downstream sites was 0.5 (Table 4.9).  The 

probability (p-value) for this riparian factor was 0.01. 
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Table 4.9 Number of species belonging to each riparian category at the upstream and 

downstream sites.  Asterisked values show significant differences 

Sites Factor   Sites Factor 

  Obligate Incidental Facultative     Obligate Incidental Facultative 

San1LB 17 2 1   San3 LB 16 1 0 

San1 RB 22 2 1   San3 RB 21 1 0 

Mor1 LB 13 3 1   Mor2 LB 15 5 1 

Mor1 RB 16 3 1   Mor2 RB 18 6 0 

Keu1 LB 8 3 1   Keu2 LB 16 3 1 

Keu1 RB 13 3 1   Keu2 RB 13 5 1 

Jon3 LB 12 2 2   Jon4 LB 12 3 0 

Jon3 RB 18 1 2   Jon4 RB 9 1 1 

                  

Mean 14.88 2.38 1.25*   Mean 15 3.13 0.5* 

SD 4.29 0.74 0.46*   SD 3.7 2.03 0.53* 

Paired P-value   0.940 0.190 0.019* 

Unpaired P-value   0.950 0.340 0.009* 

 

 

The SIMPER routine (PRIMER v6, Clarke and Gorley 2006) was used to identify typical and 

indicator species for the upstream and downstream communities.  The dissimilarity 

percentage between the upstream and downstream sites was also calculated, and the 

characteristic species that contributed to the dissimilarity identified.  In general, the similarity 

between upstream sites was driven by wet bank species and that between the downstream 

sites was driven by dry bank species (Table 4.10).   

 

Table 4.10 Similarity percentages for species at the upstream and downstream sites 

Site 

dominant 
Species Sim/SD Growth form 

Riparian factor 

factor 

Upstream 

M. angustifolia juveniles 6.10 Tree Obligate 

Pteridium aquilinum 2.73 
Herbaceous 

perennial 
Facultative 

B. lanceolata juveniles 5.37 Tree Obligate 

Downstream 

M. angustifolia juveniles 5.51 Tree Obligate 

Diospyros glabra 3.53 Shrub Incidental 

F. lanceolata saplings 1.59 Tree Facultative 

 

 

The upstream sites were 43.66% similar to one another, this group of sites was characterised 

by species of M. angustifolia juveniles (16.98%), Pteridium aquilinum (13.58%) and B. 

neriifolia juveniles (12.04%), which together contributed 42.60% of the total similarity of 

43.66%.  Downstream sites were 43.87% similar to each other and were characterised by two 

 

 

 

 



114 

 

species: M. angustifolia juveniles (13.88%), Diospyros glabra (13.72%) and F. lanceolata 

juveniles (10.91%).  Together these contributed 38.52% of the total similarity of 43.87%.   

 

The dissimilarity between the upstream and downstream sites was 58.18% (Table 4.11).  The 

species that were mainly responsible for this were juveniles of the trees B. stellatifolium, B. 

neriifolia, F. lanceolata, a shrub, Pteridium aquilinum and a restio, Ischyrolepis 

subverticillata.  Overall the contribution of adult trees to the dissimilarities between the 

up/downstream sites was weak (Table 4.11).  M. angustifolia was a dominant species at both 

up and downstream sites. 
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Table 4.11 Dissimilarities between upstream and downstream sites calculated from 

SIMPER, with average cover of each species upstream and downstream.  The 

blue shading shows typical wet bank species and brown shows the dry bank 

species 

Groups: Upstream and downstream sites 

Average dissimilarity = 58.18 
Species Upstream Downstream 

    

 
Average cover Average cover Av.Diss Diss/SD Contrib% Cum.% 

B. stellatifolium juvenile 4.64 7.15 3.07 1.17 5.29 5.29 

Pteridiun aquilinum 7.78 3.9 2.95 1.55 5.07 10.35 

Diospyros glabra 3.33 7.54 2.55 1.45 4.38 14.73 

B. neriifolia juvenile 6.05 5.14 2.39 1.59 4.12 18.85 

Ischyrolepis subverticillata 5.82 4.67 2.26 1.29 3.89 22.74 

M. serrata juvenile 5.47 3.62 2.15 1.31 3.7 26.44 

Prionium serratum 2.46 3.57 2.13 1.12 3.66 30.1 

Searsia angustifolia 2.83 6.07 2.11 1.4 3.62 33.72 

F. lanceolata juvenile 2.84 6.09 2.05 1.62 3.52 37.24 

Erica cafra 2.75 4.17 1.95 1.4 3.35 40.59 

Stoebe plumosa 3.66 1.44 1.88 1.07 3.24 43.83 

Isolepis prolifera 3.89 1.08 1.86 1.15 3.2 47.03 

Notobubon galbanum 2.47 2.86 1.7 1.14 2.92 49.95 

Cliffortia strobilifera 1.35 2.82 1.5 1.03 2.58 52.53 

Stoebe cinerea 2.01 1.64 1.45 0.78 2.49 55.03 

Calopsis paniculata 1.62 2.3 1.4 1.08 2.4 57.43 

Blechnum capense 1.62 1.42 1.36 0.68 2.33 59.76 

M. angustifolia juvenile 8.38 7.66 1.35 1.3 2.32 62.09 

B. stellatifolium adult 1.35 1.96 1.34 0.81 2.31 64.4 

S. mucronata juvenile 1.22 2.4 1.34 1.03 2.3 66.7 

Elegia capensis 2.39 0.99 1.34 0.94 2.3 69 

Psoralea aphylla 2.4 0 1.2 0.77 2.07 71.06 

M. angustifolia t 2.15 2.66 1.15 1.35 1.97 73.04 

Pelargonium scabrum 0.93 1.68 1.11 0.84 1.9 74.94 

M. serrata adult 2.48 2.01 1.1 1.14 1.89 76.82 

B. neriifolia adult 1.67 1.43 1.1 0.96 1.88 78.71 

Dodonaea viscosa 0.48 1.99 1.07 0.84 1.84 80.54 

Rhus crenata 0.67 1.8 1.03 0.82 1.76 82.31 

Acacia longifolia 1.19 1.15 0.93 0.79 1.59 83.9 

F. lanceolata t 0.88 1.22 0.87 0.72 1.5 85.4 

S. mucronata adult 1.3 1.41 0.86 1.13 1.48 86.88 

Anthospermum spaculata 0.66 1.26 0.82 0.67 1.41 88.29 

Ehrharta ramosa 1.45 0 0.73 0.53 1.25 89.54 

Heeria argentea 1.42 0 0.71 0.38 1.22 90.76 

 

 

The cover of dry bank trees (B. stellatifolium, F. lanceolata, M. angustifola) all increased 

downstream.  Apart from S. mucronata the wet bank (M. serrata and B. neriifolia) had a 

consistently less cover downstream.   
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4.5.2.7 Bank position 

The positions on the lateral bank of the juveniles (seedlings and saplings) of six common trees 

(wet bank species: S. mucronata; M. serrata, B. neriifolia; and dry bank species: B. 

stellatifolium, F. lanceolata, M. angustifola) were then investigated for differences in the 

recruitment patterns upstream and downstream of the abstraction points.  To do this, the 

number of juveniles for the typical dry bank species was plotted against their positions on the 

bank (Figure 4.10).  

 

There were no marked differences for the wet bank trees.  However, for the dry bank species, 

the results showed that the juveniles established closer to the water’s edge (0 m) at the 

downstream sites than at the upstream sites (Figure 4.10).  There were also very few 

individuals further than 3 m from the water’s edge at the downstream sites.  B. stellatifolium 

juveniles occurred in similar numbers at the up and downstream sites for all rivers but that at 

the upstream sites they occurred 2 - 5 m from the water’s edge, whereas downstream they 

were most abundant 1 to 3 m from the water’s edge.  There were fewer F. lanceolata 

juveniles at the upstream sites than at downstream sites, and most occurred 2-3 m from the 

wetted channel, while at the downstream sites they were concentrated much closer to the 

wetted channel (at 0-2 m).  At the upstream site on the Keurhoek River there were no F. 

lanceolata juveniles.  There were numerous M. angustifola at all sites, but there were 

considerably more downstream than upstream at Morraineskloof and Keurhoek.  The 

positioning of F. lanceolata juveniles at downstream sites was similar to that of in the 

upstream, the M. angustifolia juveniles were spread out between 3 - 7 m from the water’s 

edge, and while downstream they occurred at distances 0 - 2 m.  Indeed, M. angustifolia 

established in the wetted channel on Mor2 LB and Keu2 RB.   
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Figure 4.10 The number of juvenile individuals for three dry bank species that were 

most abundant in the wet bank zone of the downstream sites 

 

 

4.6 Discussion 

The flow regimes at the downstream sites are distinguished from their upstream counterparts 

by an almost complete lack of summer surface flows.  They are virtually identical in all other 

respects.  In all cases the abstractions that remove the summer flow have been in place for 

more than 40 years.  Thus, if the absence of summer flow from a naturally perennial river 

does have an influence on riparian vegetation community structure it is reasonable to assume 

that this would be evident at the downstream sites.  Disruption of any of vegetation zones 

implies that their function is impeded and that ecological processes associated with a 

particular zone are affected (Boucher and Rode 2001).  As expected from the onset, the data 
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gathered in this study showed differentiation between rivers on the basis of catchment and 

within each catchment, sites were further separated into different rivers.  Catchments were 

shown to differ in species composition although they were located on rivers with the same 

vegetation community.  This agrees with the findings of Reinecke (2013) and Otto (2014), 

and has been attributed to a riparian-based river signature.  These data also showed significant 

differences between the communities upstream and downstream of the abstraction points, 

however, discerning the exact nature of these differences was difficult. 

 

The first hypothesis that the downstream sites would have less clear zonation than the 

upstream sites did not hold.  All lateral zones were present at most downstream sites, and it 

was possible to distinguish between them at both upstream and downstream sites.  There was 

also no significant difference in species diversity upstream versus downstream.  The second 

hypothesis that there would be more seedlings in the channel downstream than upstream, with 

a shrinking marginal zone in response to abstraction, was less clear.  There were no 

significant differences in the diversity or abundance of different life stages of trees, and no 

difference in the position of wet bank juveniles.  Instead the differences were more subtle and 

were shown as significant differences in the abundance of sedges and herbaceous perennials 

and in the diversity and abundance facultative riparian plants.  

 

The changes between upstream and downstream can be described as functional adjustments.  

In the absence of dry season flows, the seedlings of dry bank trees species recruited closer to 

the channel than when summer flows were present, similar to that shown by Boucher and 

Rode (2001).  There is a relationship that emerges with the timing of recruitment for plants 

and locations/positions of juvenile trees.  With the absence of summer flows the plants that 

are known to recruit during the summer period are in lower quantities at the downstream sites 

(Figure 3.1; Goldblatt and Manning 2000).  The opposite case can be made for the 

recruitment and distribution of plants that are reliant on the winter flows: these floods still 

occur and thus the seeds of species are able to get to the site and, once there, they arguably 

have less competition from the summer recruiting plants than would be the case upstream.  So 

the hypothesis that there would be more seedlings in the channel downstream than upstream is 

partially supported in that dry bank species have moved closer to the channel and some 

recruited into the channel (F. lanceolata and M. angustifolia).  However, what is more 

interesting is that these species have essentially replaced the wet bank species.  This is also 

evident with the loss of herbaceous plants and sedges at downstream sites, both of which are 
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favoured by moist conditions.  A similar behavior was observed in Boucher (1999) when the 

dry bank vegetation was observed on the wet bank zone position.  In the south-western Cape 

and Lesotho, the aquatic zone was invaded by herbaceous plants during the dry periods 

(Boucher 2002).  This suggests that there is a gradual drying out of the riparian zone as a 

result of the summer abstractions, as these plants are usually not found in the wetted channel 

(Reinecke 2013, Reinecke unpublished data).  The drying out of the wet bank zone is also 

supported by the increase in facultative species downstream.   

 

The second part of the second hypothesis pointed to a shrinking marginal zone in response to 

abstraction.  The results do not show a noticeable reduction on the width of the marginal zone, 

although a shrinking of the wet bank zone is evident at downstream sites relative to their 

upstream partners.  The narrowing of the riparian vegetation distribution is usually associated 

with more constant flows rather than reduced flows (Kleynhans 2007).  There may be some 

growth factors at play as some data suggest that the herbaceous perennials and sedges were 

fewer downstream than upstream, but this was not explored further here.  With increasing 

aridity, riparian vegetation becomes more restricted closer to the wetted channel (Gasith and 

Resh 1999), and may result to a loss of a major proportion of plants such as grasses, sedges 

and willows (Boucher 1999).  As wet banks gets dry, obligate species are subject to change as 

they depend on shallow water tables or perennial streamflow for their survival.  On the other 

hand facultative species may remain unaffected or move into areas that were once occupied 

by riparian obligates (Stromberg 2001).   

 

Plants that grow closer to flowing water tend to be composed of specialized and disturbance-

adapted species, with morphological and physiological adaptations to floods and droughts 

(Naiman and Decamps 1997; Naiman et al. 2005).  For instance in Australia paperbark 

(Melaleuca) are successful close to the river channel because they have characteristics that 

allow them to bend in floods, thereby reducing the shear stress they must withstand (Naiman 

et al. 2005).  In South African rivers, Breonadia salicina living in high energy environments 

is adapted to withstand substantial flooding (van Coller et al. 1997; Reinecke 2013).  In this 

study at downstream sites, the position usually occupied by wet bank species (wetted channel 

and marginal zone) was dominated by dry bank species, which tend to be less flexible and 

more resistant to floods, and thus increase the sheer stress on the banks.  The colonization of 

dry bank species on the wet bank zone thus intensifies the problems of flooding (Boucher and 

Rode 2001).   
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The interaction between large volumes of fast moving water and non-flexible trees may focus 

flows more into the channel, leading to an increase in in-channel erosion and a change in 

instream habitats.  For instance, it is conceivable that smaller sediment size such as silt, mud, 

sand and gravel, which are critically important components of aquatic habitat (Sher and 

Marshall 2003; Gurnell et al. 2011), would be flushed more effectively downstream than 

upstream (Gordon et al. 2004).   

 

There were no significant differences in species richness between up- and downstream sites. 

The findings of this study agrees with those presented in Nilsson et al. (1999), for two rivers: 

the natural Vindel River and the regulated Ume River in northern Sweden, there were no 

significant difference on the number of species found but the frequency distributions 

(abundance) of species were largely different between rivers (this abundance was also not 

related to plant life stage), the Ume had lower species than the Vindel.  It was reported that 

the perennials and the natural vegetation were responsible; again the zonation of plants was 

not clear on the regulated stream.  In Gasith and Resh (1999) it was found that provided 

isolated pools remain, the overall species richness at a site can remain high.  There are 

however significantly fewer herbaceous perennial plants and sedges at the downstream sites.  

The reasons for this could be that they were eliminated by the drying or that they have been 

out-shaded by the large dry bank species that have colonised their area.  A reduction in 

biodiversity is expected following reduced transport of silt and clay, for instance herbaceous 

riparian plants tend to increase on fine soil textures (Stromberg 2001).  All this gives a 

possible increase in the scour which in turn affects the whole riverine ecosystem including 

riparian vegetation.  Therefore it is vital that river management processes are to consider the 

effects of river flow alteration on common plants at sites as this could lead to a total change in 

the river ecosystem and functional dynamics if not carefully managed.  According to 

Stromberg (1993), Environmental Flows are relatively high for riparian trees, implying that 

even partial diversions of flow can result in riparian vegetation decline.  In the Western Cape 

this situation gets to be more adverse as the province does not receive summer low flows and 

remains dry for most of the season. 
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5 Conclusion 

Understanding the functional responses of riparian species to flow regime is necessary for 

restoration, conservation planning, and to inform environmental flow studies (Reinecke 2013) 

and adaptive management.  Making precise predictions of ecosystem response to disturbance 

is difficult, although it is possible to use historical studies to see what has happened in the past 

and then use that knowledge to predict what will happen in the future.  Nonetheless, riverine 

ecosystems are characterised by complex and simultaneous physical, chemical and ecological 

interactions (Thoms 2006) and Poff et al. (2010) suggest that the development of strong 

relationships of flow-ecology needs to take into consideration the role that other 

environmental factors play in shaping ecological patterns in streams. 

 

Evaluation of the recruitment phase of plants’ lifecycles is particularly useful for 

understanding functional changes in riparian vegetation in response to flow change.  In 

riparian vegetation, recruitment is closely linked to the flow regime of a river and tends to 

have both a temporal (seasonal) and a spatial component that can be related to different parts 

of the hydrograph.  The seasonal component defines the time when each species flowers, 

seeds, fruits and recruit (Lyte and Poff 2004; Poff et al. 1997) and the spatial component 

determines the location or position on the river bank where it establishes (Reinecke and 

Brown 2013).   

 

An added benefit is that changes in recruitment occur far more rapidly than do changes in the 

adult population.  Once a tree is established it can withstand a wide array of climatic and other 

impacts to which recruiting individuals are far more vulnerable.  The recruiting life stage of 

any species is highly affected by many factors, and is the most sensitive stage of a plant life 

cycle (e.g., Eriksson and Ehrlen 2008).  Thus, if a dam is constructed on a river, changing the 

downstream flows, the effects of these changes are more likely to be reflected in the behavior 

and survival of recruiting plants than of adults.  Thus, changes shown by the young plants are 

important not only for predicting EFs but are also useful for monitoring purposes and adaptive 

management.   

 

This study illustrated that the factors controlling seedling and adult positions are fairly 

complex.  Although fruiting, flowering and the release of seeds of different species is timed to 
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link with different flow conditions (Chapter 3), these do not ultimately define the position of 

these species on the bank.  Spatial arrangement in the riparian zone has as much to do with 

flow conditions post recruitment as it does with conditions during recruitment.  Seedlings 

were found throughout the riparian zones but adults were positioned in clear lateral zones.  

This implies that the structure of riparian vegetation is probably determined not only by 

whether or not the minimum flows are met but also the larger floods that deposit seeds at 

different zones and small to medium floods that remove seedlings before they can become 

established.  Thus, for instance, Salix mucronata release their seeds during summer low flow 

periods and grow immediately adjacent to the wetted channel (Chapter 3; Section 3.1.1).  

Thus, if summer low flows do not come through, Salix mucronata may not recruit or 

recruiting individuals may dry out and die (Table 4.11), and/or dry bank species will migrate 

to this zone (Section 4.5.2.7 and Figure 4.10).  However, it is also clear from the results that if 

the large floods do not occur then Salix mucronata could be out-competed by other - more 

robust - dry bank species as these would not be removed post-recruitment (Figure 4.10).  

Thus, although Salix mucronata does not have a direct phenological link to large floods it is 

indirectly dependent on them to establish the conditions it requires to thrive 

 

The result presented in this study also suggested that plant recruitment is substrate specific 

(Chapter 3; Otto 2014).  Sediments deposited by floods of different magnitude vary in depth, 

texture, and nutrient content, and support different assemblages of plants (Marks 1950 in 

Stromberg et al. 2001).  This suggests that if sediment supply or transport conditions were to 

change through land-use changes, construction of an upstream reservoir or through changes in 

the flow regime (van Wyk 1987; Ligon et al. 1995; Bunn and Arington 2002), that 

recruitment, and presumably the whole structure of the riparian zone, would also change 

(Stromberg 2001), and emphasizes the importance of an holistic approach to environmental 

flow studies, and catchment and river management.  Consideration of drought, low-flows and 

floods are crucial as together they maintain biological, physical characteristics and ecological 

vitality (Naiman et al. 2008), not only one part of the flow regime can be focused on while the 

others are neglected.  Even for a species that is obviously being driven by one part of the flow 

regime, competitors of that species may be driven by the other part of the flow regime.   

 

The importance of mimicking the natural annual and intra-annual variability of a flow regime, 

rather than just a minimum low flow, in sustaining freshwater ecosystems has been 

recognised by many different authors (King et al. 2003a; Richter et al. 2003; Naiman et al. 
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2005; Naiman et al. 2008).  Shortening of the natural flood peaks can prevent recruitment of 

native riparian vegetation and allow alien invasion (Stromberg et al. 2001), and alteration of 

flood patterns in the western United States and Canada has reduced recruitment rates of 

Populus and Salix trees (Poff et al. 1997; Stromberg et al. 2001).  Long term studies of 

naturally variable systems show that dry periods favour some species while the wet periods 

favour other species and that overall biological diversity and ecosystem function benefit from 

these variations in species success (Tilman et al. 1994 cited in Poff et al. 1997).  The loss of 

wet-dry cycles often has drastic ecological impacts that favour exotic species (Bunn and 

Arthington 2002).  Stromberg et al. 2001 calls for a restoration of water and sediment of 

flows in sufficient quantities and with appropriate temporal and spatial patterns  

 

There will always be some uncertainty in the understanding of functional relationships 

between flow alteration and ecological responses (King et al. 2003a; Poff et al. 2003; Richter 

2003; Brown and King 2006; Poff et al. 2010).  However to be able to maintain and restore 

the integrity of river ecosystems, it is required that the conservation and management actions 

be strongly grounded on scientific understanding (Poff et al. 1997).  Long term data are 

needed to study the natural flow regime of a river, this is described by the characteristic 

pattern of a river's flow quantity, timing, and variability; this flow patterns vary during 

seasons and over years.   

 

In South Africa, a four-part strategy is being adopted in environmental flow assessments: (i) 

more research on environmental flows to increase the knowledge base; (ii) moving ahead with 

limited knowledge (taking decisions based on limited knowledge); (iii) monitoring the 

outcomes of the management actions (learning by doing); and (iv) strategic adaptive 

management.  Thus, although there is a dearth of historic data for many (most) of our riverine 

species (Brown and King 2006), functional information is gradually being developed to 

predict how the ecosystems will respond.  This study illustrates some of the finer building 

blocks of lateral zonation in vegetation and specifically riparian vegetation recruitment 

dynamics in Western Cape streams that are subject to high levels of abstraction particularly in 

the summer low flow month, and shows that such information is available, even in rivers with 

highly variable, and fairly unpredictable, flow regimes.  Although the ecosystems are 

complex, the accumulation of knowledge on individual aspects of their functionality can, and 

will eventually, build up to a more complete picture and a better understanding of how these 

systems are likely to respond to outside pressures.  Thus, studies such as this one add to the 

 

 

 

 



124 

 

body of knowledge that is needed to make recommendations and take decisions in 

environmental management.  Despite the complexity of system, it is possible to break it into 

smaller fractions to study separately. 

 

It also illustrates the importance of a holistic approach to understanding rivers and river 

management.  Poff et al. (1997) suggest that incorporating the five critical components of the 

natural flow regime (i.e., magnitude, frequency, duration, timing, and rate of change) into a 

broader framework for ecosystem management would constitute a major advance in 

contribute to the developing science of stream restoration.  Focusing on just one or a few 

species and on minimum flows fails to recognize that what is good for individual species may 

not be of benefit to the ecosystem (Poff et al. 1997).  The use of holistic methods on the other 

hand makes use of different species and how they respond to different kinds of flow then use 

the information to build up a recommendation.  For a long time in environmental flow 

management focused on minimum flows for key species, but the results for this study show 

that for riparian vegetation, concentrating on only one species can lead to incorrect 

recommendations, not the least because the behavior of that species is affected by the 

behavior with the other species.  
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Appendix A. Additional figures referred to in the text 

 

Appendix Figure 1 Lateral zones formed using groundcovers only (2013) at Elands 

River sites 
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Appendix Figure 2 Lateral zones formed using groundcovers only (2013) at Molenaars 

River sites 
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Appendix B. Additional tables referred to in the text  

Appendix Table 1 Presence and absence of species at sites 2013 

Species (tree height in metres) Sites sampled   
 Ela 3 Ela 4 Mol 2 Mol 5 

Acacia longifolia 0.3-2   * * 
Acacia longifolia 2-5     
Acacia longifolia seedlings   *  
Acacia mearnsii 0.3-2   * * 
Acacia mearnsii 2-5     
Acacia mearnsii seedlings   *  
Anthospermum spaculata   * * 
Aristea sp. * *   
Askidiosperma paniculatum  *   
Asteraceae sp.15   *  
Brabejum stellatifolium 0.3-2 * * * * 
Brabejum stellatifolium 2-5 * *  * 
Brabejum stellatifolium seedlings * *  * 
Brachylaena neriifolia 0.3-2 * *   
Brachylaena neriifolia 2-5 * *   
Brachylaena neriifolia seedlings     
Calopsis paniculata * *  * 
Cannamois sp.     
Capeochloa cincta *  *  
Cf. Heliophila sp.  *   
Cliffortia sericea     * 
Cliffortia strobilifera  * *  
Cyclopia maculata      
Cymbopogon marginatus  *   
Cyperaceae sp.11 *   * 
Cyperaceae sp.12 *    
Diospyros glabra * * * * 
Drosera capensis * *   
Ehrharta ramosa * * * * 
Elegia capensis * * * * 
Elegia sp.1 *    
Elytropappus scaber    * 
Erica caffra * *  * 
Erica pinea  *   
Erica sp.   *  
Erica sp.1     
Freylinia lanceolata 0.3-2   * * 
Freylinia lanceolata 2-5   * * 
Freylinia lanceolata seedling     
Fuirena hirsuta   * * 
Hackea sericia  *   
Halleria olyphia     
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Species (tree height in metres) Sites sampled   
 Ela 3 Ela 4 Mol 2 Mol 5 

Heeria argentea 0.3-2  *   
Heeria argentea 2-5     
Heeria argentea seedlings     
Hemarthria altissima   * * 
Holcus lanatus L.   * * 
Hymenolepis parviflora   * *  
Ilex mitis 0.3-2  *   
Ilex mitis 2-5 *    
Ilex mitis seedlings     
Ischyrolepis fraterna     
Isolepis digitata     
Isolepis prolifera * * *  
Lobelia jasionoides   *   
Lycopodiella caroliniana  *    
Metrosideros angustifolia 0.3-2 * * * * 
Metrosideros angustifolia 2-5 * * * * 
Metrosideros angustifolia seedling * * * * 
Morella serrata 0.3-2 * * * * 
Morella serrata 2-5 * * * * 
Morella serrata seedlings * * * * 
Osmitopsis *    
Osmitopsis osmitoides    *  
Osteospermum spinosum      
Pennisetum macrourum *    
Pentameris (Pentaschistis) sp. * * * * 
Pentameris sp.1     
Peucedanum galbanum    * 
Phylica axillaris      
Phylica sp.1     
Platycaulos sp.1  * * * 
Platylophus trifoliatus 0.3-2 *    
Platylophus trifoliatus 2-5 *    
Platylophus trifoliatus seedlings     
Podalyria sp.5 *    
Prionium serratum   * * 
Protea soft *    
Pseudobaeckia africana  * *  
Pseudoselago sp.3     
Psoralea aphylla     
Psoralea cf. affinis  * *   
Pteridium aqualinum *  *  
Pycreus polystachyos   *  
Ischyrolepis subverticillata  * * * 

Rubus fruiticosus     
Salix mucronata 0.3-2 *  *  
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Species (tree height in metres) Sites sampled   
 Ela 3 Ela 4 Mol 2 Mol 5 

Salix mucronata 2-5 *  *  
Salix mucronata seedlings *  *  
Schizaea tenella * *   
Searsia angustifolia   * * 
Senecio sp.     
Sesbania punicea   *  
Stoebe aethiopica      
Stoebe plumosa  * * * 
Stoebe sp.1  *   
Stoebe sp.2 *    
Thesium juncifolium     * 
Todea babara * *   
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Appendix Table 2 Presence and absence of species at sites referred to in chapter 4. 

Species tree height (m) Sites sampled  S a n 1  L B
 

S a n 1  R B
 

S a n 3  L B
 

S a n 3  R B
 

M o r 1  L B
 

M o r 1  R B
 

M o r 2  L B
 

M o r 2  R B
 

K e u 1  L B
 

K e u 1  R B
 

K e u  2  L B
 

K e u 2  R B
 

J o n 3  L B
 

J o n 3  R B
 

J o n 4  L B
 

J o n 4  R B
 

Acacia longifolia 0.3-2 *  * *  *           
Acacia longifolia seedling                 
Acacia longifolia 2-5                 
Anthospermum sp.   * *             
Anthospermum spaculata      * * *         
Aristea sp.             * *   
Aspalathus rugosa       * *         
Asparagus rubicundus               *  
Asteraceae sp.           * *     
Athanasia dentata        *         
Blechnum capense             * * *  
Lobostemon sp.      * *     *     
Calopsis paniculata    *  *  *  * * *     
Cannamois sp.           * *     
Carpha glomerata          *       
Cliffortia strobilifera * * *     *   * *     
Cyclopia maculata              *   
Diospyrus glabra * * * * *  * *  * * *   * * 
Dodonaea viscosa  * * *   *          
Drosern capensis    *             
Ehrharta ramosa * *               
Ehrharta sp. * * * *   * *  * * *     
Elegia capensis  *        * * *  *   
Elegia sp.             *  * * 
Erica cafra * *  *   * *   * * * * *  
Heeria argentea         *        
Isolepis prolifera  *  * * * *  *    *    
Isolepis sp.         *   *     
Moss * * * *  * * * *  * * * * * * 
Notobubon galbanum     * * * *  * * *     
Olea africana Mill.               *  
Osmitopsis osmitoides      *           
Osteospermum spinosum       * * *        
Pelargonium scabrum       *  *  * *     
Pentameris (Pentaschistis) sp.            * *   
Phylica sp.               *  
Platycaulos sp. * * * * * * * * * * * * * * * * 
Pleopeltis macrocarpa             * *   
Podalyria sp.              *   
Prionium serratum * * * *         * *  * 
Psoralea aphylla     * *    *       
Pteridium aquilinum * *   * * *  * * * * * *  * 
Ischyrolepis subverticillata * * * * * *  * * * * *     

Rhus crenata     *  *    * *     
Schizaea tenella Kaulf.              *   
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Species tree height (m) Sites sampled  S a n 1  L B
 

S a n 1  R B
 

S a n 3  L B
 

S a n 3  R B
 

M o r 1  L B
 

M o r 1  R B
 

M o r 2  L B
 

M o r 2  R B
 

K e u 1  L B
 

K e u 1  R B
 

K e u  2  L B
 

K e u 2  R B
 

J o n 3  L B
 

J o n 3  R B
 

J o n 4  L B
 

J o n 4  R B
 

Searsia angustifolia 0.3-2 * * * *   * *  * * *  * *  
Searsia angustifolia seedling                 
Searsia angustifolia 2-5                 
Senecio sp. *   *             
Stoebe cinerea        * * *  *     
Stoebe plumosa     * *  *  *  * *    
Stoebe sp.              *   
Thesium juncifolium             * *   
Brabejum stellatifolium 0.3-2 *  * * * *      * * * * * 
Brabejum stellatifolium 2-5  *           * * * * 
Brabejum stellatifolium seedling *  * * *   *  *    * * * 
Brachylaena neriifolia 0.3-2 * *  *  *    *  * * * * * 
Brachylaena neriifolia 2-5  *     * * *  *   *   
Brachylaena neriifolia seedling     * *   * * *  *  * * 
Freylinia lanceolata 0.3-2  * * *  * * *   * *  * * * 
Freylinia lanceolata 2-5  *     *    *   *   
Freylinia lanceolata seedling * *   *  * *   * *   *  
Metrosideros angustifolia 0.3-2 * *  *  * * *  * *  * *  * 
Metrosideros angustifolia 2-5   *   * * * * * * * *  *  
Metrosideros angustifolia 
seedling 

* * * * * * *  * *  * * * * * 

Morella serrata 0.3-2 * * * * * * * *     * *   
Morella serrata 2-5 * * * * * * * *      *   
Morella serrata seedling * * * * * *  *      *   
Salix mucronata 0.3-2 * *  *    *         
Salix mucronata 2-5 * * * * *   *   *      
Salix mucronata seedling  * * *       *      

 * shows species occurs at site 
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Appendix Table 3 A list of plants known to species level that were used with their 

associated riparian factor and specified growth forms. 

  Species Habitat characteristic 
Riparian 
factor 

Growth form 
Lateral  
zone 

1 Acacia longifolia Riverine, Exotic Obligate Tree Wet 

2 
Anthospermum 
spathulatum 

Clay slopes, DRY Incidental Shrub 
Dry 

3 Aspalathus rugosa  Mountain fynbos, DRY Incidental Shrub Dry 

4 Asparagus rubicundus Sandy and granite slopes, DRY Incidental Shrub Dry 

5 Athanasia dentata Sandy coastal slopes, DRY Incidental Shrub Dry 

6 Blechnum capense  Riverine, WET Obligate Herbaceous perennial Dry 

7 Brabejum stellatifolium Riverine, WET Obligate Tree Dry 

12 Brachylenea seedling Riverine, WET Obligate Tree Wet 

13 Calopsis paniculata Riverine, WET Obligate Restio Wet 

14 Carpha glomerata Riverine, WET Obligate Sedge Wet 

15 Cliffortia strobilifera 
Moist sandstone flats and lower slopes, 
WET 

Obligate Shrub 
Wet 

16 Cyclopia maculata  Streamside lowland (Riverine, WET) Obligate Shrub Dry 

17 Diospyros glabra  Sandy flats and slopes, DRY Incidental Shrub Dry 

18 Dodonaea viscosa 
Riverine thicket and rocky outcrops, 
WET 

Obligate Tree 
Dry 

19 Drosera capensis Marshy sandstone, WET Obligate Herbaceous perennial Wet 

20 Ehrharta ramosa  Mountain slopes, DRY Incidental Grass Dry 

21 Elegia capensis Riverine, WET Obligate Restio Dry 

22 Erica cafra Riverine, WET Obligate Shrub Wet 

23 Freylinia lanceolata Riverine, DRY Facultative Tree Dry 

26 Heeria argentea Rocky forest and bush, DRY Incidental Tree Dry 

27 
Ischyrolepis 

subverticillata 
Riverine, WET Obligate Restio 

Wet 

28 Isolepis prolifera Riverine, WET Obligate Sedge Wet 

29 
Metrosideros 
angustifolia 

Riverine, WET Obligate Tree 
Dry 

34 Morella serrata Rocky streamsides, WET Obligate Tree Wet 

35 Notobubon galbanum  Moist rocky and sandy soils, WET Obligate Shrub Dry 

36 Olea africana  Rocky sandstone/ granite slopes, DRY Incidental Tree Dry 

37 Osmitopsis osmitoides  Moist slopes and forest margins, WET Obligate Shrub Dry 

38 
Osteospermum 
spinosum  

Gravelly slopes and flats, DRY Incidental Shrub 
Dry 

39 Pelargonium scabrum  Rocky sandstone slopes, DRY Incidental Shrub Dry 

40 Pleopeltis macrocarpa Forest Facultative Herbaceous perennial Dry 

41 Prionium serratum Riverine, WET Obligate Shrub Wet 

42 Psoralea aphylla 
Mountain and lowland fynbos, 
streambanks, WET  

Obligate Shrub 
Wet 

43 Pteridiun aquilinum Fynbos, forest Facultative Herbaceous perennial Dry 

44 Rhus crenata Sandy coastal slopes, DRY Incidental Shrub Dry 

45 Salix mucronata Riverine, WET Obligate Tree Wet 

48 Schizaea tenella  Riverine, WET Obligate Shrub Dry 

49 Searsia angustifolia Riverine, WET Obligate Tree Dry 

50 Stoebe cinerea Rocky slopes, DRY Incidental Shrub Dry 

51 Stoebe plumosa  Rocky flat and slopes, DRY Incidental Shrub Dry 

52 Thesium juncifolium  Sandstone slopes, DRY Incidental Shrub Dry 
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