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ABSTRACT 

Brassica crops are grown worldwide for food and oil due to their nutritional, medicinal, 

bio-industrial and crop rotation properties. They suffer from insect pests which cause 

large yield and economic losses. Application of insecticides is the preferred way of 

dealing with insect problems, but this way of pest control is not only hazardous to the 

environment, it also affects humans as the chemicals easily get incorporated into the 

food chain. As a result, new more resistant varieties are urgently needed to meet the 

demand of growing populations. 

Phenotyping of germplasm is often the first step in breeding new insect resistant 

varieties. A set of 200 accessions were classified as resistant (non-preferred) or 

susceptible (preferred) in response to cabbage aphid (Brevicoryne brassicae) feeding 

based on aphid performance in the field. Fifteen accessions were further assessed to 

identify the level and location of resistance factors by investigating feeding behaviour of 

cabbage aphid using the Electrical Penetration Graph (EPG) technique. This study 

aimed to characterize and compare feeding behaviour of cabbage aphid for resistance 

screening in Brassica germplasm and classify the germplasm into susceptible or 

resistant groups based on the acceptability of feeding on each genotype. The feeding 

behaviour assessment revealed the presence of both interspecific and intraspecific 

variation. The results also indicated that cabbage aphid encountered plant resistance at 

multiple levels i.e. at the surface of leaves, epidermis/mesophyll and sieve elements in 

order to feed. 

The gene expression of these accessions was also investigated under induced (presence 

of aphid feeding for 24h) and non-induced (absence of aphid feeding) conditions. The 

transcriptional response after 24 h showed that gene expression is highly regulated in 



 
 

 

 

response to aphid feeding. The gene expression analysis and gene ontology (GO) 

enrichment study helped identify candidate genes which may contribute to cabbage 

aphid resistance. The gene probes NPC6, PDCB3, At1g10155; At3g56240; At5g09650 

were identified as strong candidates for surface based and phloem based resistance. It is 

strongly recommended that identified candidate genes should be further researched and 

studied to confirm their association with aphid feeding in future. There are a large 

number of genes which are still not annotated but were found significant, leaving a 

future possibility to investigate their function in cabbage aphid resistance in Brassica 

plants.  In addition to this, the gene expression differences between crop wild relatives 

and landraces indicated adaptations of landraces during the process of domestication.  

Lastly, the Gene expression data were also successfully used to develop models to 

predict insect resistance status. . The findings from this study will contribute to current 

and future research in investigating cabbage aphid resistance in Brassica for 

comprehensive and durable insect resistant cultivars.  

In conclusion, the combination of phenomics, physiology and transcriptomics provides 

an opportunity to assess Brassica germplasm for further research into defence 

mechanisms of cabbage aphids and for inclusion in the breeding programme. 
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1.1 The experimental plant: Brassicas 

1.1.1 Importance of Brassica: economic, social and medicinal 

The Genus Brassica belongs to the mustard family, formerly known as Cruciferae or 

crucifer family. This group includes a wide range of plants including Broccoli, Brussels 

sprouts, Cabbage, Cauliflower, turnips, Kale, Mustard etc (Rich 1991)  

Taxonomy of Brassica 

Kingdom Plantae 

Subkingdom Tracheobionta 

Division Angiosperms 

Class Dicotyledons 

Order Brassicales 

Family  Brassicaceae (Mustard 

Family) 

Genus Brassica 

 

The crop plants included in this family have a wide range of uses and a large amount of 

interspecific and intraspecific morphological phenotypic variation related to high levels 

of genetic variation (Lowe et al. 2004). While this genus contains many crop species, it 

also contains numerous related crop wild relatives (CWR). CWR are a plant genetic 

resource (PGR) whose largely untapped pool of genetic diversity can be utilised by the 

plant breeding community to breed novel varieties, with improved biotic and abiotic 
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stress tolerance, improved yield and reliance on fewer resource inputs, into modern crop 

varieties (Maxted and Kell, 2008; FAO, 2009). Nearly all crops have related crop wild 

species, which are a rich source of genes for the creation of new cultivars (Westman & 

Kresovich 1999).  While introgression of genes from CWR has been occurring from the 

very beginnings of agriculture, the commercial use of CWR genes by plant breeders can 

be traced back only as far as the late 19th century (Hajjar & Hodgkin 2007). By the 

1980s, the use of CWR as sources of novel traits in commercial breeding and the need 

to conserve the genetic variation they represent was widely recognised. In a review 

regarding the contribution of CWR, it was estimated that their contribution to 

commercial breeding in 1988 attributable to worth ~350 million US dollars a year  

(Prescott-Allen & Prescott-Allen 1988). This was due to the numerous successful 

breeding programmes that used CWRs to introduce new and valuable traits into existing 

cultivars. The most common traits introduced were and still are those that confer some 

kind of pest or disease resistance. 

The mustard family is included among the ten most important crops to humans and 

especially genus Brassica contains most economically important species (Westman & 

Kresovich 1999). In 2006 approximately 29 million tonnes of B.napus, 69 million 

tonnes of cabbage and 80 million tonnes of cauliflower were produced (FAO, 2008). 

The members of the Brassica family like cabbage, cauliflower, broccoli, brussels 

sprouts are important vegetables while B.napus and B.nigra are important sources of 

edible oil. In addition, B.napus and B.carinata have also been explored for their non-

food use as biofuels (Cardone et al. 2003). 

Brassica crops also include a major group of vegetables, which make them 

internationally important. Brassica plants have rich diversity with respect to both 
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speciation and the abundant morphotypes in each Brassica species (Figure 1.1). It is a 

staple food in many countries. Brassica is also socially and medicinally important. It is 

used in national dishes such as sauerkraut (Germany) and kimchi (Korea) and also 

Brussels sprouts at Christmas time in the UK.  

 

 

 

        

 

 

 

 

 

 

 

 

There have been studies where the medicinal properties of  Brassicas have been listed, 

particularly in protection against heart disease and cancer (van Poppel et al. 1999; 

Finley 2003; Willcox et al. 2003). Diets rich in broccoli have been associated with a 

reduction in risk of progression of prostate cancer progression (Traka et al. 2014). A 

 

 Figure 1.1: Rich morphotypes of Brassica plants. The picture shows 

different morphotypes of (a) B. rapa; (b) B. Oleracea. The figure was 

adapted from (Cheng et al. 2014) 
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number of epidemiological studies have identified an inverse association between 

consumption of Brassica vegetables and the risk of  gastric cancer (Ekström et al. 2011; 

Moy et al. 2009), lung cancer(London et al. 2000), bladder cancer(Zhao et al. 2007) and 

myocardial infarction (Cornelis et al. 2007). The genes from wild B.oleracea have been 

successfully used to breed increased levels of anti-cancer compounds into modern 

broccoli cultivars (Hajjar & Hodgkin 2007). In addition to this, it is also reported to be 

effective against declines associated with ageing and associated disorders like 

Alzheimer’s and cataracts (Granado et al. 2003).  

1.1.2 Brassica genetics 

Brassicaceae is one of the most diverse plant families, comprising 49 tribes, 321 genera, 

and over 3660 species (Al-Shehbaz 2012). The Brassica genus, owing to its remarkable 

species, genetic, and physiological diversity as well as its significant economic 

potential, has become a model for polyploidy and evolutionary studies (Kagale et al. 

2014). The genus Brassica is typical of many crop species in having a larger and more 

complex genome than other model plants. The genomic relationships are well 

characterised, as shown in the 'triangle of U' (Figure 1.2). The genomes have been 

denoted as A, B and C with three monogenomic diploid species, B.rapa (AA, n=10), 

B.nigra (BB, n=8) and B.oleracea (CC,n=9) and there are three allotetraploid species 

derived from each pair of the three diploid species, B. juncea (AABB, n=18), B. napus 

(AACC,n=19) and B. carinata, BBCC, n=17). The genetic relationships of these species 

were identified and confirmed by extensive experimental crosses between tetraploid 

and/or diploid plants as well as karyotyping or microscopic inspection at the synapsis 

stage of meiosis in these crosses (Nagaharu U 1935). 
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These species have been exploited to understand the basis of chromosome evolution 

since divergence from a common progenitor shared with Arabidopsis. This has allowed 

the Brassica genus to be a valuable tool for the study of chromosome evolution, in 

particular that associated with speciation and polyploidization (King 2005; Kagale et al. 

2014).  

Comparative physical mapping studies have confirmed genome triplication in a 

common ancestor of B. oleracea (O’Neill & Bancroft 2000) and B.rapa (Park et al. 

2005) since its divergence from the A. thaliana lineage at least 13–17 MYA. The 

availability of genetic maps has allowed comparative mapping of three genomes 

(Lagercrantz & Lydiate 1996) to show that the genetic content of the species is highly 

conserved despite differences in chromosome number. In Brassica, early attempts (Hu 

 

 
Figure 1.2: The triangle of U: diagram showing the genetic relationship 

between the six species of the genus Brassica. Chromosomes from each of 

the genomes A, B and C are represented by different colours (Diagram 

adapted from Wikipedia) 

 

http://en.wikipedia.org/wiki/File:Triangle_of_U_Simple1.PNG
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et al. 1998) to align linkage maps derived from different Brassica populations were 

based on very low numbers of shared markers, and suffered from a lack of resolution 

with respect to distinguishing between paralogous loci. More recent efforts have been 

successful in generating aligned maps for the Brassica A genome that integrate marker 

information using a common set of SSRs scored in B.rapa and B.napus. Comparison 

with the closely related species Arabidopsis thaliana, whose genome has been 

sequenced, provides many possibilities for identification of homologous genes between 

Arabidopsis and Brassica spp. (Sadowski et al. 1996; Cheng et al. 2014). Genome 

datasets of the Brassica species are maintained and continuously updated within 

the Brassica database (http://brassicadb.org) (Cheng et al. 2011). The genome 

sequences of B.oleracea (Liu et al. 2014), B.napus (Chalhoub et al. 2014) and B.rapa 

(Wang et al. 2011) are now available online which will facilitate further research of 

Brassica crops and breed new improved Brassica crop varieties. Functional traits of 

many Brassica CWR have been identified and many have already been transferred to 

commercially cultivated varieties. In particular resistance to black leg fungus 

(Leptosphaeria maculans) was introduced into B. napus via hybridisation with B. 

juncea, B.carinata and B. nigra (Zhu & Struss 1991; Starzycki et al. 1996). 

1.1.3 Crop Wild Relatives and loss of resistance during  domestication 

Crop wild relatives (CWR) are species which include crop progenitors and related 

species to them and may contribute to beneficial traits for crop improvement (Maxted et 

al. 2008). They are closely related to the domesticated plants and may possess traits like 

drought tolerance, salt tolerance and pest resistance.  

http://brassicadb.org/
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It is a well-established fact that CWR can contribute to crop improvement with 

examples dating back more than 60 years (Hajjar & Hodgkin 2007). Prescott-Allen & 

Prescott-Allen (1988) reviewed the importance and contribution of CWR genes to 

improve cultivars. The genus Brassica includes many important vegetable species in 

addition to CWR like B.villosa, B.incana and B.fruticulosa which are thought to possess 

important genes for insect resistance. During the process of domestication of wild 

species into a cultivated crop as a result of selection process traits like fruit size, high 

yield, reduced dormancy, were preferred (Evans LT 1996). Domestication is believed to 

have reduced herbivore resistance when compared to wild species for many non- 

exclusive reasons (Turcotte et al. 2014). There are several reasons responsible for this 

reduction in resistance, for example reduction in levels of alkaloids in domesticated 

sweet lupin (L.albus) which suffers from severe herbivory as compared to wild lupins, 

which contain high levels of toxic alkaloids (Wink 1988), and similarly improvement in 

nutritive quality of certain crops resulted in promotion of herbivore growth and fitness 

on these crops  (García-Palacios et al. 2013). The predicted resource allocation tradeoffs 

between growth and defence are also considered as a reason for decreased resistance 

against herbivores (Turcotte et al. 2014). In addition, it is also reported that the process 

of inbreeding can result in the decline in the plant’s defence (Portman et al. 2015). 

Alteration in levels of insect resistance and host plant quality are reported in yellow 

monkey flower (Mimulus guttatus) (Carr & Eubanks 2002). Wild maize species 

(teosinte) have greater resistance to insect pests (de Lange et al. 2014). The 

domesticated perennial accessions of chickpeas are reported to have suppressed levels 

of resistance against larvae of cotton bollworm (Helicoverpa armigera) as compared to 

its wild relatives C.microphyllum, C.canariense (Chaudhary 2013). There is no doubt 
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about the fact that domestication of plants is one of the most important advances in 

human history (Turcotte et al. 2014) but at the same time it resulted in making our crops 

more susceptible to insects. This also hints towards the presence of insect resistance 

genes in CWR which may be used by breeders to develop more resistant varieties.  

1.2 Insect pests 

1.2.1 Importance of Insect Pests in agriculture 

Insect pests cause huge damage to agricultural crops. The total crop production loss due 

to insect pest damage is reported to be 14-25 % (Devilliers & Hoisington 2011). The 

damage caused by insects to crop is directly by feeding on them or indirectly by 

transmission of plant viruses. It is not just the yield reduction due to insect pests; there 

are other related factors as well which affect the overall production cost like the use of 

pesticides (including insecticides, herbicides) for crop protection against the insect pest. 

Worldwide about 3 billion kg of pesticides is used every year costing around $40 billion 

per year ((Pimentel 2005))  In addition, (Pimentel 2005) reported $9.6 billion used in 

major economic and environmental losses due to the application of pesticides. In 

general, pesticides are considered profitable in agriculture; their use does not always 

decrease crop loss. Although the application of insecticides is the preferred way of 

dealing with the insect problem, but this way of pest control is not only hazardous to the 

environment, it also affects humans as the chemicals easily get incorporated into the 

food chain. Additionally, constant use of insecticides can result in the development of 

resistance or insensitivity against them. The green peach aphid, Myzus persicae, has 

developed resistance to at least seventy different synthetic compounds, and different 

insecticide resistance mechanisms have been reported worldwide (Silva et al. 2012).  In 

a case study from Pakistan, its reported that melon aphid Aphis gossypii Glover 
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(Hemiptera: Aphididae) has developed a broad-spectrum resistance to insecticides 

(Ahmad et al. 2007) and also complaints of chemical control failure against B. 

Brassicae (Ahmad & Akhtar 2013) . Due to all these factors, it has raised the need to 

find the alternative methods to protect our crops. A possible, environmentally friendly 

solution is the use of host plant resistance and development of new more resistant crop 

varieties.   

The major insect pests of Brassica crops are aphids, whiteflies, beetles, caterpillars, and 

grasshoppers. Beetles, bugs and caterpillars usually have chewing mouth parts and 

damage is seen as chewed leaves and stems. Other insects like aphids and whiteflies 

have developed more specialised feeding mechanisms. They feed with the help of 

piercing mouthparts, namely stylets to feed on plants (Pollard 1973; Tjallingii & Esch 

1993; Walling 2000).  

 

 

 

 

 

 

 

 

 

1.2.2 Cabbage aphid (Brevicoryne brassicae) 

The cabbage aphid is a member of the genus Brevicoryne. It is native to Europe with 

worldwide distribution (Kessing JLM & RFL 1991) Cabbage aphid is greyish-white in 

 

Figure 1.3: Cabbage aphids, Brevicoryne brassicae Linnaeus: A) on cabbage leaves. 

B) Cabbage aphid colony on a cabbage leaf. C) Cabbage aphid on a cabbage stem 

Photograph adapted from (Gill et.al.2013). 
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appearance with a waxy covering. They have short tube-like structures (cornicles) at the 

tip of the abdomen and feed on the stem and underside of leaves (Hines & Hutchison 

2013). Adults are present in both wingless and winged form. However, wingless 

females producing live young (nymphs) are the most common. It is a Brassica specialist 

species which causes significant damage to Brassica crops like cabbage, cauliflower, 

broccoli, mustard etc. Gabryś & Pawluk (1999) reported the restricted host range of  

cabbage aphid due to the requirement of sinigrin (a glucosinolate in Brassica plants) to 

initiate feeding and spending the whole life cycle on Brassicacea family.  

1.2.3 Life cycle and reproduction 

Aphids have a highly adaptable life cycle. They can reproduce both sexually and 

asexually depending upon the environmental conditions. In warm climates, nymphs are 

produced by females without mating. The whole colony population consists of females 

only (Gill et al. 2013).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: General life cycle of Aphid: During the spring and summer reproduction is by 

parthenogenesis. Asexually-produced embryos develop in approximately 10 days. In the fall 

there is a single generation of sexually-reproducing males and females which produce 

diapausing eggs. These eggs do not hatch until the following spring, more than 100 days 

later. The image is adapted from. http://www.ludwigsroses.co.za/rose-care/aphids-2 
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However prior to winter season the mode of reproduction changes in response to low 

temperature and decreased photoperiod and males are also produced (Blackman & 

Eastop 2000). Eggs are laid after mating. B.brassicae overwinters as eggs on the 

Brassica crops and hatch during spring (February to April).. The young alate (winged) 

forms migrate to new host plants when the plant condition deteriorates as a result of 

large population growth. Aphids have an evolutionary advantage of rapidly increasing 

population size and  as a  result, they can have up to 15 generations during a crop season 

(Hines & Hutchison 2013). 

1.2.4 Location and acceptance of host plant 

In order to locate new host plants, the winged aphids (alates) use visual cues to locate 

plants, with most species displaying a preference to land on yellow surfaces (Prokopy & 

Owens 1983)  whilst the polyphagous species R. padi and A. fabae, have been found to 

be more responsive to green wavelengths (Hardie 1989; Nottingham et al. 1991). In 

addition to the visual clues they also use chemical and mechanical signals to decide 

whether to stay. Aphids can detect plant volatiles such as nitriles, green leaf volatiles, 

benzaldehydes, isothiocyanates and monoterpenes (Visser & Piron 1997). Mechanical 

information about a plant, such as leaf waxiness, hairiness, glandular trichome absence 

or presence, and epidermal thickness also be used to deciding whether to attempt 

probing (Rehman & Powell 2010; Powell et al. 2006; Dinant et al. 2010). After landing 

on the potential host, they begin to probe with the stylets, providing information for host 

acceptance or rejection(Powell & Hardie 2000). 

1.2.5 Feeding mechanism and avoiding host defences 

Aphids have developed highly evolved feeding strategies. They have special elongated 

mouthparts called stylet (figure 1.5) to pierce through the plant tissue and reach the 
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phloem sap (Pollard 1973). During feeding, the aphid produces sheath saliva which is 

rapidly gelling, and composed of proteins, carbohydrates and phospholipids (Will et al. 

2012).  

 

 

 

 

 

 

 

 

 

 

 

 

The sheath saliva rapidly gels around the stylet at the feeding site and acts as a 

protective barrier from the plant defence response (Bhatia et al. 2011). In addition to 

sheath saliva aphids also introduce watery digestive saliva with a complex mixture of 

enzymes and other compounds which in the presence of oxidases inactivate defensive 

phytochemicals released in response to damage and wounding by plants (Miles 1999). 

The probing of tissue for locating food is often influenced by changes in the chemical 

content of sap and physiological changes induced by introduction of aphid saliva (Will 

et al. 2012). The piercing stylet causes a minimal damage to tissue and presence of 

calcium-binding proteins in aphid saliva make it difficult for the plant to perceive the 

 

Figure 1.5: Diagram of aphid mouthparts showing A: lateral view of head 

with labarum detached from front of stylet. B: Cross-section of stylet. Image 

from The University of Arizona, Centre for Insect Science Education 

Outreach (http://insected.arizona.edu/gg/resource/internal.html). C: Shows 

diagrammatic representation of aphid feeding and phloem location. 

http://insected.arizona.edu/gg/resource/internal.html
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damage and can result in a very delayed plant defence response (Will et al. 2007). The 

aphids usually deceive the host and suppress its effective defences which help them to 

colonize and successfully feed on host plants (Walling 2008). 

1.3 Aphid-plant interaction: plant defence strategies 

1.3.1 Insect resistance in plants 

In nature, plants are constantly exposed to biotic and abiotic stress. Plants are 

challenged by insects, pathogens and diseases but they still manage to survive. The 

reason behind plant success is presence of a broad array of plant defences, ranging from 

constitutively expressed to induced defences (War et al. 2012) Plants have evolved 

different defence strategies with some adapting to escape in space and time by growing 

in inaccessible locations or adapting growing seasons to avoid herbivores (Howe & 

Jander 2008). For plants where this is not possible, tolerance is the defensive tool. The 

adaptation strategy of tolerance or avoidance acts on plants as opposed to herbivores 

whereas antibiosis and antixenosis are plant defence strategies which directly affect 

herbivores (Goggin et al. 2015; Smith and Clement 2012). If the plant has antibiosis 

resistance it means that it will affect the herbivore survival by reducing longevity, 

fecundity and increased mortality. In comparison, antixenosis resistance plants own 

characters usually act as a deterrent towards a preference for that plant.  

Both antibiosis and antixenosis are widespread defence strategies used against aphid 

against aphid herbivores (Walling 2008). These can be broadly classified as constitutive 

defence, which is always present in the plant even before the herbivore attack or 

damage, or induced defence, which is triggered in response to the herbivore attack 

(Kessler & Baldwin 2002; Schoonhoven et al. 2005).The constitutive defence can be 

due to the physical or chemical barriers present in plants. Physical barriers include 
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thorns, trichomes, thick cuticles and waxes covering leaves etc. They act as the first line 

of defence against any herbivore attack. In addition to these physical barriers, plants 

also produce certain chemical substances like latex, oil, resins, sticky compounds which 

are produced and stored in plants during growth and development process. These 

chemical substances function in response to membrane disruptions, signal transduction, 

and wound response (Wittstock & Gershenzon 2002; Bennett & Wallsgrove 1994).   

The induced defence is triggered primarily after the herbivorous insect starts feeding. It 

can be localised at the feeding site or systemic i.e. in the distal undamaged tissue of 

plant (Santamaria et al. 2013). Induced defence activates various cell signalling 

pathways and results in transcriptional and metabolic changes and production of toxic 

or deterrent compound (Kuśnierczyk et al. 2008). In addition, signal transduction 

pathways like salicylic acid (SA), jasmonic acid (JA) and ethylene are activated in 

response to insect –plant interaction (Thompson & Goggin 2006; Moran & Thompson 

2001).  

Brassicas have a highly developed glucosinolate-myrosinase defence mechanism which 

protects them against the insect pests like aphids (War et al. 2012; Ahuja et al. 2009). 

When aphid feeding is initiated and cells are disrupted, glucosinolates are hydrolyzed 

by myrosinases and bioactive compounds like isothiocyanates, thiocyanates, nitriles, 

epithionitriles are formed  (Elzinga et al. 2014; De Vos et al. 2007; Bones & Rossiter 

2006). But some specialist insects like whitefly and diamond black moth have evolved 

specialist enzyme systems which detoxify the effect of glucosinolates. The Brassica 

specialist cabbage aphid hydrolyse glucosinolates with the help of its myrosinase and 

use the active product as a defence against natural enemies (Jones et al. 2002; Kazana et 

al. 2007) and also accumulate glucosinolates for self-defence (Schoonhoven et al. 
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2005). Plant-aphid interaction is a highly studied topic (Jaouannet et al. 2014; 

Broekgaarden et al. 2008)  but still a very limited knowledge is available. So it becomes 

very important to further explore the defence mechanisms to get a better understanding. 

In addition, all different defence mechanisms present the plants to defend themselves 

against insect pest, plants also offer different levels of resistance by presenting variable 

interspecific and intraspecific variations which are among many other factors discussed 

in the previous section. 

1.4 Electrical Penetration Graph (EPG) technique: monitoring aphid feeding 

behaviour 

The monitoring of feeding behaviour is important as it is an effective way of assessing 

the level of feeding suitability in the plants. It is visually performed by using a 

microscope, with or without video recording (Kindt 2004). This mode of studying 

feeding behaviour is not very effective for studying sap sucking insects as we cannot get 

accurate information regarding activities happening inside the cell. To overcome this 

issue, Electrical Penetration Graph (EPG ) technique was developed (Tjallingii 1985) 

which proved to be one of the most successful and is utilised in studying insect-plant 

interaction. This provides useful and vital information regarding the presence and 

location of resistance factors in plants (Tjallingii, W. F. and Mayoral 1992).  

EPG is an excellent method to investigate the interaction present between insect and 

host during the process of feeding (Alvarez et al. 2006; Powell & Hardie 2000; Gabryś 

& Pawluk 1999).  The EPG involves an aphid and the plant to be made part of an 

integrated electrical circuit (Tjallingii 1985) as shown in figure 1.2.  When the aphid 

inserts its stylet into the plant tissue, the circuit is closed and current (DC) flows. 
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A change in feeding behaviour generates the electric fluctuation, recorded as waveforms 

of specific patterns. The EPG technique has been extensively used to study the variation 

in resistance levels between different species (Cole 1994; Prado & Tjallingii 1999; 

Prado & Tjallingii 1997; Poelman et al. 2008).  

Ghaffar et al. (2011) reported the variation in the resistance level against Brown Plant 

Hopper in rice germplasm. The genetic variability in resistance to aphid among peaches 

(Prunus persica (L.)Batsch) and nectarine (Prunus persica variety nectarina) has been 

evaluated using feeding behaviour assessment by EPG (Verdugo et al. 2012).   

Broekgaarden et al. (2012) reported the presence of phloem specific resistance in 

B.oleracea against whitefly Aleyrodes proletella based on feeding behaviour 

 

Figure 1.6: EPG technique and stylet movement across the plant tissue (A) Represents 

EPG setup where aphid and plant are incorporated in an electrical circuit. As soon as the 

aphid starts feeding the waveforms are generated and recorded. (B) Represents the 

probing behaviour, the movement of stylet inside tissue in order to locate phloem sap. 

[the figure is adapted from (Schwarzkopf et al. 2013). 
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assessment. There are countless examples where the use of EPG proved helpful in 

enhancing the insect-plant interaction knowledge. 

1.4.1 EPG waveforms 

EPG was first tested and used for studying the feeding of aphids. Then, it has been 

applied to a wide range of other piercing insects such as Brown plant hopper (Ghaffar et 

al. 2011), whiteflies (Janssen et al. 1989; Lei et al. 1998), thrips (Hunter et al.1993; 

Harrewinji et al. 1996), leaf –plant hoppers (Backus and Hunter, 1989; Lett et al., 2001) 

and also mealy bugs (Calatayud et al. 1994). Because the feeding behaviour of these 

insects is different, so will be the waveforms generated by them. For aphids, the 

behaviour associated with these waveforms has been already described (Tjallingii 

1985).  Broadly waveforms can be classified into 7 distinct patterns (fig1.6). 

1.4.2 EPG waveform description 

All the waveforms used for characterizing aphid feeding were as described by Tjallingi 

(1985) and shown in figure 1.6.  The patterns identified were: 

1. Mean duration of non-penetration period (NP)  

2. Period of pathway waveform pattern (C).  

3. Period of potential drop (Pd) 

4. Period of salivation into sieve element (E1).  

5. Period of sustained phloem sap ingestion (E2).  

6. Period of derailed stylet mechanics (F)  

7. Period of ingestion of xylem sap (G)  

For aphids, EPG waveforms have already been well defined (Prado & Tjallingii 1994) 

and commonly used as a reference for other sap feeding insects. The first type namely 

non-penetration phase (NP) is represented by a straight line indicating no probing 



                                                                                                                                                  
Chapter1 

 

19 

 

activities happening. Non-penetration waveform is followed by the pathway waveform 

(C), which represents stylet insertion into the plant until a sieve element is reached. 

Insects can spend several hours in this phase as the insect stylet moves through the 

epidermis, mesophyll and other tissues before reaching the sieve element. It is during 

this phase an insect has to find and to test a suitable site and food for feeding to take 

place. During this time, three other stylet activities have also appeared regularly such as 

xylem ingestion (G) as an indicator for insect drinking, derailed stylet mechanics (F) 

meaning the insect faces difficulty in penetration (Prado & Tjallingii 1994).  

Waveforms E1 and E2 represent sieve element salivation and phloem ingestion 

respectively. Generally, E1 appears for a very short duration however it is an important 

critical stage for the insect to decide whether to continue to feed or not. If they proceed 

to phloem ingestion and remain longer, then the plant will be described as susceptible. 

The study of all these waveforms along with the total time taken to reach sustained E2 

phase provide important indications regarding feeding suitability for insects. 

1.5 The ‘omics’ revolution in plant research 

Continuing advances in ‘omics methodologies and instrumentation is enhancing the 

understanding of how plants cope with the dynamic nature of their growing 

environment. Characterization at the genome, transcript, protein and metabolite levels 

has illustrated the complexity of the cellular response to a whole series of environmental 

stresses, including nutrient deficiency, pathogen attack, heavy metal toxicity, cold 

acclimation, and excessive and sub-optimal irradiation (Witzel et al. 2015). Tailoring a 

crop cultivar to a specific environment is the central challenge for the plant breeder, and 

reflects the reality that genotype on its own will not generally be sufficient to support a 

biotechnology-driven crop improvement programme. The genome sequence of the 
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model plant Arabidopsis thaliana, has been known for nearly 15 years (Kaul et al. 

2000). 
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Figure 1.7  Diagram showing the EPG waveforms and correlations to aphid feeding behaviours, as defined in the ‘Probe 3.4 Manual: 

Software manual for EPG acquisition and analysis in Windows’ distributed by EPG systems, Wageningen the Netherlands.  
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The full genome sequences of both B. rapa  (Wang et al. 2011) and B.oleracea (Ayele et 

al. 2005; Liu et al. 2014) have been published more recently. Substantial amounts of 

transcript-based data have been acquired for B. oleracea (Gao et al. 2014; Izzah et al. 

2014; H. A. Kim et al. 2014). 

Omics research has a great capability in speeding up breeding processes and several 

applications for crop improvement, through, e.g., marker-assisted selection and gene 

pyramiding. In case of brassicaceous vegetables, several populations have been 

generated to establish linkage maps using simple sequence repeat (SSR), amplified 

fragment length polymorphism (AFLP), sequence tag (EST) markers with the aim to 

genetically localize favourable traits by quantitative trait locus (QTL) analysis. A high-

density linkage map was established for a B. oleracea population segregating for 

carotenoid concentration in florets and three carotenoid QTL were found  (Brown et al. 

2014). Recently, genomes of all three sequences Brassicas were compared to develop 

SSR markers and a total of 115,869, 185,662, and 356,522 primer pairs were designed 

from B. rapa, B. oleracea, and B. napus, respectively  (Shi et al. 2014). Not only in 

genomics and transcriptomics, continuous advances are made in proteomics and 

metabolomics are facilitating the huge efforts in plant breeding and will trigger a major 

breakthrough in crop improvement by reduction of time and expenses of producing new 

stress resistant and highly nutritious crop varieties. Advances in next generation 

sequencing(NGS) technologies enabled surveying genotype-phenotype-relationships 

with the highest resolution to date (Wei et al. 2013; Varshney et al. 2014). NGS allows 

mass sequencing of genomes and transcriptomes, which is producing a vast array of 

genomic information. Genome-wide expression studies provide breeders with an 

understanding of the molecular basis of complex traits. In spite of recent developments 
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in omics technologies, microarray technology is still preferred and used in a number of 

research studies. This is mainly due to the ease of use and cost effectiveness. NGS and 

other sequencing are quite expensive at the moment which makes array technology most 

preferred choice for researchers.  This current study will focus on the gene expression 

profiling and microarray studies to understand aphid and Brassica interactions. 

1.5.1 Microarrays: Tool for whole genome expression study 

The phenotype of a plant is always underpinned by its transcriptional profile, referred as 

the collection of genes which express themselves in response to physical or chemical 

changes in plants.  

The past two decades witnessed the development and application of new techniques for 

transcriptional analysis of crops and model organisms. Microarrays are considered the 

standard molecular biology tools for assessing the whole genome transcriptional 

response of organisms (Thompson & Goggin 2006). The microarray has been used in 

almost all biological disciplines (Yauk & Berndt 2007). The main concept behind 

microarray technology is based on the southern blotting technique where a small 

fragment of DNA attached to the surface is probed with a known gene (Southern et al. 

1992).This technique was first used to study the gene expression in normal tissue and 

mouse colon tumour (Augenlicht & Kobrin 1982).  

The microarrays are basically microscope slides referred to as platforms which have 

thousands of known DNA segments corresponding to specific genes deposited at 

predefined positions (Dunwell et al. 2001). To study the gene expression, the mRNA 

from the experimental tissue is isolated, converted to single stranded form, fluorescently 

labelled, and hybridized to probes present on the chip. The intensity of hybridisation is 

scanned and quantified as gene expression values for all the probes present on the chip. 
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The microarray chip can vary in its design and make depending upon the manufacturer; 

Affymetrix produces silicon chips, Agilent probe the DNA segments on the glass slide 

whereas Illumina uses the microscopic beads. Depending upon the need and design of 

experiment selection can be made in regard to use of platform. Microarrays are capable 

of analyzing thousands of genes in parallel which has made them a very useful tool to 

study the whole genome gene expression of organisms. In plants, the use of microarrays 

has been substantial. They are used to compare the genetic variation present in species 

in response to both biotic and abiotic factors as discussed in previous sections. With 

advancement in the sequencing ability and rapid genome information available it has 

now become even more important to know the function of genes and microarrays to 

help in providing this vital information. 

1.5.2 Microarrays: Applications 

The expression of genes is the main determinant of many important factors like physical 

appearance, behaviour and plant resistance to biotic stress like insect resistance 

(Broekgaarden et al. 2008; Broekgaarden, Voorrips, et al. 2011; Pelgrom et al. 2014; 

Moran & Thompson 2001; Smith & Boyko 2007) and abiotic stress like salinity stress 

in rice (Walia et al. 2005). The regulation of gene expression is responsible for 

activation or repression of both constitutive and induced defence mechanisms present in 

plants.  

Microarrays are excellent tools to monitor the whole genome expression of thousands of 

gene (Meyers et al. 2004; De Vos et al. 2005; Hammond et al. 2005; Duggan et al. 

1999). Gene expression analysis has been successfully used to identify the genes 

involved in response to many biotic and abiotic factors (Walia et al. 2005; Mazzanti et 

al. 2004; Klingler et al. 1998; Moran & Thompson 2001; Hui et al. 2003; Smith & 
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Boyko 2007; Voelckel & Baldwin 2004). De Vos et al. (2005) noted a completely 

different transcriptional response of A.thaliana to feeding by phloem feeding 

M.persicae and chewing P.rapae larvae. Not only this, insect pests with similar feeding 

behaviours are known to activate different gene expression patterns in plants. For 

example, the feeding by aphid (M.percicae) and whitefly (B.tabaci) show variable 

transcription profiles in A.thaliana (Kempema et al. 2007). Variation in transcriptional 

response has also been noticed between members of the same genus and even 

differences between accessions of the same species (Kessler et al. 2004; Gao et al. 2008; 

Barah et al. 2013; Kuśnierczyk et al. 2008; Singh et al. 1994; Ellis et al. 2000).   

Herbivores like aphids are known to regulate expression of genes involved in calcium-

dependent signalling, cell wall modifications, signal transduction pathways and 

glucosinolate synthesis in plants (Thompson & Goggin 2006). The major signal 

transduction pathway involved in plant defence against herbivory is jasmonic acid (JA), 

which regulates a number of genes involved in plant defence mechanisms (Liechti & 

Farmer 2002; Reymond 2000; Schenk et al. 2000; Devoto et al. 2005). 

More recently, with the advent of microarray technology becoming more affordable 

opens a new avenue. The transcriptomics data generated by different microarray 

experiments led to the development of different public data repositories. These data 

repositories and newly generated transcriptomics data can potentially be exploited to 

predict the tolerance or resistance status of genotypes of unknown status by 

computational model-based comparisons with the genotypes where tolerance or 

resistance status is known (Gavaghan et al. 2002; Cabrera-Bosquet et al. 2012)In recent 

years gene expression data is exploited for the class prediction classification (Tan et al. 

2008).  Survival prediction from gene expression data and other high-dimensional 
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genomic data have been subject to much research during the last years. The gene 

expression data provide more accurate information for sample classification and 

objective treatment strategies. The use of whole genome expression profiling is a highly 

accepted approach in classifying and predicting the disease in humans. This approach is 

very popular especially in the case of prediction of various human cancers and 

neurodegenerative diseases (Bucca et al. 2004; Reis-Filho & Pusztai 2011; Cooper-

Knock et al. 2012).  Trevino et al. (2011) successfully demonstrated the use of gene 

expression data and statistical modelling in the prediction of prostate cancer and the use 

of this approach as a diagnostic tool. The present study will attempt to use the gene 

expression data generated in the project to study class prediction for classification of 

Brassica germplasm into resistant or susceptible varieties. 

1.6 PGR secure project 

The goal of agrobiodiversity conservation, unlike other forms of conservation, is not 

only the conservation of species and intra-specific genetic diversity related to 

agriculture, but also to promote its sustainable use in facilitating agricultural production. 

PGR Secure was a collaborative project funded under the EU Seventh Framework 

Programme. The aim of PGR Secure was therefore to research novel characterization 

techniques and conservation strategies for European crop wild relative and landrace 

diversity, and further, to enhance crop improvement by breeders, as a means of 

underpinning European food security in the face of climate change. To achieve these 

goals, PGR Secure had four research themes: 
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1. Investigation of novel characterization techniques, including: Genomics, 

phenotyping and metabolomics, Transcriptomics, Focused Identification of 

Germplasm Strategy. 

2. CWR and LR conservation, including: Europe-wide CWR inventory, Exemplar 

national CWR inventories, European CWR strategy, Europe-wide LR inventory, 

Exemplar national LR inventories, European LR strategy. 

3. Facilitating breeders’ CWR and LR use, including: Identifying breeders’ needs, 

Meeting breeders’ needs, Integration of conservation and user communities,  Pre-

breeding – channelling potential interesting germplasm into commercial breeding 

programmes. 

4. Informatics development, including: CWR and LR inventory information web 

availability, Novel characterization information web availability, Inter-information 

system operability. 

The current study was part of PGR SECURE, under theme 1 which aimed to develop 

and apply a novel high throughput method for phenotyping gene bank accessions 

of Brassica for resistance towards phloem feeding insects. Starting from a collection 

of about 3,700 Brassica accessions in BrasEDB a selection of approx. 350 were made 

for the phenotyping using the FIGS approach and literature data. From these, approx. 

125 accessions were selected for further analysis using metabolomics techniques and a 

further subset of these were assessed in terms of resistance/susceptibility using the 

EPG (Electrical Penetration Graph) determining underlying mechanisms of the 

resistance measuring insect feeding behaviour. Based on the resistant and susceptible 

subsets that were identified, next generation sequencing technologies were used to 

access the total gene transcriptome content of approx. 15 accessions of Brassica crop 
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wild relatives and landraces which allowed the identification of novel genes (and 

allelic variation) in this plant material. At the same time, partly because of cost and the 

importance of biological replication, conventional transcriptomics was carried out 

using Affymetrix Arabidopsis GeneChip to assess gene expression variation across 

different accessions to determine within species variation and response to insect 

attack; also to compare the use of established and validated Arabidopsis arrays with 

the tailor made arrays from next generation sequencing. 

1.6.1 Research aims and thesis outline 

At present, it is not possible to feed the world population without the application of 

insecticides. Worldwide losses caused by insects would be at least 30% to 50% if no 

insecticides were used (Dedryver et al. 2010; Razaq et al. 2011; Isik & Görür 2009). 

However, the use of pesticides is hazardous to the environment and is usually not very 

durable as insects may develop resistance to pesticides very rapidly (Ahmad & Akhtar 

2013). This study explores the plant-insect interaction by means of insect feeding and 

plant defence response to insect attack along with studying gene expression variation 

between different Brassica species and varieties and effects of insect feeding on them. 

The core objective of the project is to study feeding behaviour of Cabbage aphid 

(Brevicoryne brassicae) in Brassica germplasm comprising of CWR and cultivated 

varieties and investigate transcriptional response Brassica plants to aphid feeding. An 

attempt has been made to link the feeding behaviour assessment of cabbage aphid with 

the transcriptional responses of the plants. 

Chapter 2 describes the germplasm screening conducted to identify the cabbage aphid 

resistant material out of the core collection of 200 varieties of Brassica. A field 

experiment was carried out with the help of Oxford Agriculture Trials Company in 2011 
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in Stratton Audley near Bicester (Oxford). The results from the experiment helped to 

attain the core aim of narrowing down the number of varieties to 15 from 200, which 

were then further studied for feeding behaviour assessment and transcriptomics. 

Chapter 3 The main aim of this chapter was to investigate the variation in the feeding 

behaviour of cabbage aphid on different varieties of Brassica. The EPG technique was 

used to assess the feeding behaviour of aphids. Both interspecific and intraspecific 

variations were noted in response to aphid feeding in the Brassica germplasm, over a 6 

hour recording time. 

Chapter 4 Explores the changes in the gene expression in response to aphid feeding in 

15 varieties of Brassica categorised as aphid resistant or susceptible based on field the 

experiment and feeding behaviour assessment. The changes in the gene expressions 

provide insight into the underlying mechanism adopted by the Brassica plants to 

counter the aphid feeding. These changes also provide vital information with regard to 

important genes involved in defence mechanisms and hence proposal of candidate genes 

for further assessment for breeding insect resistant Brassicas. 

Chapter 5 Compared the transcription profile of CWR and LR of Brassica in response 

to cabbage aphid feeding and explored changes in gene expression during the process of 

domestication.  This study provided vital clues regarding the loss of resistance during 

the process of agriculture making the cultivated species more susceptible to herbivory. 

It also provided indications for the presence of certain candidate genes for insect 

resistance in Brassicas. 

Chapter 6 Explored the possibility of using gene expression arrays as a tool for 

prediction of insect resistance in Brassica germplasm. Prediction analysis was 



                                                                                                                                                  
Chapter1 

 

30 

 

performed using the model selection tool of Partek Genomics Suite version 6.6 (Partek 

Inc., St. Louis, MO, USA), software. The results from the study show that the model 

selection tool can be successfully used to develop and test the prediction model for the 

genotypes of unknown status 

Finally, Chapter 7 summarizes all the important results from this study along with 

discussion with respect to available literature. Furthermore, the limitations of study 

along with the future perspectives are discussed in this chapter. 
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Field screening Brassica germplasm for  

feeding suitability  
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2.1 Abstract 

Biotic stresses, including insect pests, cause severe yield losses that significantly impair 

crop production. The accurate prediction of crop performance in response to insect pests 

is one of the biggest challenges in the development of new resistant varieties of crops. 

The field assessment of available Brassica germplasm to assess suitability for insect 

feeding can provide vital clues to levels of resistance present in different species of 

Brassica. The core aim of the study was to explore the natural variation present in 

different species of Brassica to cabbage aphid (Brevicoryne brassicae) and Whitefly 

(Aleyrodes proletella) feeding and also between different accessions of the same 

species. In addition, selection of group of accessions with respect to contrasting aphid 

feeding response for further evaluation was aimed. Cabbage aphid and whitefly attack 

was assessed in terms of numbers of insects present on the plant. Presence of feeding 

preference by cabbage aphid and whitefly on some accessions more than others was 

observed in the Brassica germplasm. It was also noted that crop wild relative species 

were less preferred for feeding by insect pests as compared to landrace accessions. The 

result from the study confirms high levels of putative resistance in wild relative 

accessions while partial resistance was found in several other Brassica species.  

Although field assessment provided important information about the presence of insect 

pest preference/non-preference on Brassica species, additional studies are necessary to 

make conclusions about the resistance or susceptibility to cabbage aphid in Brassica 

germplasm. Sixteen accessions varying in levels of resistance to insect feeding were 

selected for aphid feeding behaviour and gene expression studies. 
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2.2 Introduction 

Brassica crops are being attacked by many insect pests including sap feeding insects 

which cause serious damage to crops every year (Brown et al. 1999; Schoonhoven et al. 

2005). To reduce the amount of damage caused, use of pesticides is most widely used 

method at the moment, but use of pesticides can be hazardous to the environment as 

well as to humans. This method is not very durable as insects can develop resistance 

against pesticides very rapidly (Metcalf 1989; Ahmad & Akhtar 2013). So we need 

crops which are resistant to these pests and can defend themselves. One ways is to know 

about the natural resistance factors present in the crop wild relatives (CWR) and the 

landraces (LR). The insect resistant crops can be a very effective alternative way to 

address both insect control and future use of harmful pesticides (Lewis et al. 1997). In 

nature there is considerable variation in different species and also within species which 

can make a species resistant or susceptible to a particular insect pest (Broekgaarden, 

Voorrips, et al. 2011; Schoonhoven et al. 2005). Ellis et al. (2000) reported variation in 

resistance to cabbage aphid between and within wild and cultivated Brassica species. 

Resistance to insect pests may vary among individuals from a species because of 

differences in their genetic makeup. This genetic variation is thought to be maintained 

by trade-offs between the benefits of reduced herbivory and the costs of resistance and 

differential selection pressures (Schoonhoven et al. 2005). For example, when a 

population is frequently infested with a certain herbivore, the resistance traits that are 

effective against this herbivore will be selected for, whereas the lack of natural selection 

could result in a loss of the resistance from the population (Mooney et al. 2010). 

Besides variation among wild populations, variation can also be caused by artificial 

selection during domestication (Diamond 2002).  
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However, only very little of this natural variation has been exploited in agriculture. 

Exploring natural variation among wild relatives of crop plants, or even accessions of 

crop plants themselves, may yield resistant varieties. The limited availability of 

information regarding insect resistance in Brassicas makes it very important to 

characterise the available germplasm for resistance against insect pests. This will help in 

cataloguing the Brassica species according to resistance and susceptibility against insect 

pests which can help breeders to focus their interest on specific accessions of interest for 

future use (Varshney et al. 2006). So exploring the variation present among different 

CWR and LR can help us in recognising the insect resistant varieties. To be able to 

develop insect-resistant varieties, one first needs to identify resistance sources. Often, 

these are found in crop wild relatives (CWRs) or landraces (LRs). Once the accessions 

containing the resistance traits are known, the genes involved need to be located to 

facilitate efficient transfer to the crop species.   

As a first step to identifying resistant material, a collection of 200 accessions, including 

wild material and landraces of B.oleracea, as well as other CWRs, were screened for 

cabbage aphid and whitefly resistance in the field. The selection of the accessions for 

the field screening was done in order to keep uniformity of accessions used for 

phenomics, transcriptomics and other metabolomics studies as part of the bigger PGR 

secure project. The field screening was undertaken as it is a rapid, simple and reliable 

technique for evaluating core collections of Brassica germplasm for resistance against 

insect pests.  

2.2.1 Phenotyping  in field conditions vs. controlled environment 

The phenotype is referred to as the observable characteristics of organisms which results 

from the interaction between genotype and the environment. Phenotyping the genotypes 
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for resistance against or susceptibility to insect pests can be performed with help of field 

assessments as well as laboratory based experiments. Both field and lab based 

experiments have the ‘pros’ and ‘cons’. 

Working in controlled environments like green house or growth room has the advantage 

of having more control over conditions like temperature, relative humidity, photoperiod, 

soil, water and nutrients (Saint Pierre 2012). In addition laboratory based experiments 

can be planned even for the out of season crops without any difficulty. But the major 

disadvantage of greenhouse or laboratory based experiments is the plant and its 

interaction with natural environment is lacking which plays a vital role in performance 

of plants in nature. In contrast, field based experiments provide more realistic 

information regarding plant response biotic and abiotic factors as the plant is present in 

its natural habitat, interacting with environmental factors (Saint Pierre 2012). Field 

screening provides greater ecological validity than laboratory experiments as they are 

less sample bias as compared to laboratory plants in factors like soil temperature, 

uniformity in moisture in pots, proximity to ventilators, method of water and air 

circulation (Brien et al. 2013; Cox & Cochran 1946; Townend & Dickinson 1995). In 

addition to this field screening takes into account the insect pest variability also 

interaction of insect pests with other herbivores which may affect the insect pest 

performance in nature. Although field experiments have its positives but they are 

difficult to replicate as there is limited control over physical factors like temperature, 

weather and insect pest species which vary every season. Nevertheless, they are the vital 

tool used in phenotyping crop species response to biotic and abiotic stresses. The field 

screening in the current study was conducted to evaluate the natural variation in these 
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plants and also, due to the large scale of experiment which couldn’t be accommodated 

in the glasshouse. 

2.2.2 Chapter aim 

The aim of the study is to explore the natural variation in feeding response present in 

different species and within species of Brassicas. The field experiment to characterize 

the feeding preferences of cabbage aphid (Brevicoryne brassicae) and Whitefly 

(Aleyrodes proletella) in a core collection of 200 Brassica accessions representing 18 

Brassica species (Table 2.1) was conducted. This study focussed on the natural 

infestation of cabbage aphid and whitefly on plants in the field. The scientific questions 

to be answered by this study were firstly, is there any difference between wild relatives 

and landraces of Brassica species included in the core collection for resistance to 

cabbage aphid and whitefly feeding. Secondly, the most important output expected from 

the study was identification of the most preferred and non-preferred accessions by 

cabbage aphid for feeding, which could be used further for insect feeding behaviour 

investigations and whole genome transcriptomics. 

2.3 Materials and methods 

2.3.1 Plant material 

Phenotyping plants for resistance to cabbage aphid and whitefly in all known CWR and 

LR would be very time and space consuming and not possible in the time frame of this 

project so a core collection of 200 Brassica accessions were selected (Table 2.1). This 

collection included both CWR and LR originating in European Atlantic coast to North 

Sea, Mediterranean basin and Russia. The wild relatives of Brassica species included in 

the core collection were B.balerica, B.bovoniana, B.bourgeaui, B.cretica, B.frituculosa, 
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B.hilarionis,B.incana, B.insularis, B.marcocarpa, B.maurorum B.montana,  

B.robertiana, B.rupestris, B.spinescens, B.villosa and also LR accessions of B.oleracea 

were included in study. 

 

 

 

 

 

 

 

 

 

 

 

All these species have genome C with exception of B.fruticulosa, B.maurorum and 

B.spinescens with genome B. All the seed material (200 accessions) was provided by 

Wageningen UR Plant Breeding, Wageningen University and Research Centre, The 

Netherlands. The detailed list of accessions included in the study is provided in 

supplementary appendix I.  

 

Table 2.1: List of Brassica species used in field trial 

S.no CWR/

LR 

Genus Species Genome

type 

No. of 

accessions 

used in field 

trial 

1 CWR Brassica balerica C 2 

2 CWR Brassica bivoniana C 1 

3 CWR Brassica bourgeaui C 2 

4 CWR Brassica cretica C 12 

5 CWR Brassica fruticulosa B 16 

6 CWR Brassica hilarionis C 1 

7 CWR Brassica incana C 10 

8 CWR Brassica insularis C 2 

9 CWR Brassica marcocarpa C 3 

10 CWR Brassica maurorum B 2 

11 CWR Brassica montana C 7 

12 CWR Brassica oleracea C 45 

13 CWR Brassica robertiana C 1 

14 CWR Brassica rupestris C 3 

15 CWR Brassica spinescens B 1 

16 CWR Brassica villosa C 7 

17 LR Brassica oleracea C 85 

Total        200 
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2.3.2 Field Experiment                                                                                              

The field experiment was carried out with help of Oxford Agriculture Trials Company 

in June 2011 to September 2011 in Stratton Audley near Bicester (Oxford). The trial 

plot was divided into 3 blocks with 200 subplots and each subplot with 4 replicates of 

the same accession. A randomised complete block design was used. All blocks were 

labelled blind (the accession name was removed and a number was assigned as an 

identifier) and the MS Excel random number generator function was used for 

randomisation. The plot design is shown in figure 2.1 and figure 2.2 shows the Brassica 

plants at week 8. 

2.3.3 Cultivation of Brassica accessions for Field Experiment 

The seeds for the 200 accessions selected were planted individually in 6cm pots 

containing 6 parts peat based compost (Humax multipurpose) to 1 part Silvaperl under 

16:8 hour light: dark regime at 24±3 °C with 70% humidity for 5 weeks in the 

glasshouse at the University of Birmingham. The plants were transferred to the field in 

Bicester where they were monitored for growth and natural infestation (choice test) of 

cabbage aphids and whiteflies. The accessions were planted in 24 x 40 m grid. The 

plants were placed at a distance of 50 cm
2
 apart and were placed in 2 x 2 positions. So 

in total there were 2400 individual plants to screen for aphid and whitefly infestation. 

The whole plot was surrounded by a set of guard plants (B.nigra). Weeds were 

handpicked and no herbicides, pesticides or fungicides were used.  The staff at Oxford 

Agriculture monitored the plants over the summer and reported a flea beetle attack 

which resulted in loss of some of the accessions (indicated as X in figure 2.1). On day 

of scoring, difference in plants size, presence of aphids and whitefly on plants and 

presence of lady bird over some of the plants was noticed. For the current study, data 
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was collected for level of aphid infestation and presence or absence of whitefly on the 

plants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: The position of each accession in the field. Each cell represents 4 plants 

of the same accession; X refers to accessions missing on day of scoring 
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2.3.4 Statistical Analysis  

Data analysis was done with MINITAB 15 using the Anderson-Darling Normality Test 

and Analysis of Variance (ANOVA) for aphid infestation on each genotype across 3 

blocks and utilized the Univariate General Linear Model (GLM) to allow for the 

unbalanced number of replicates per block due to missing plants on day of scoring. In 

 

 

Figure 2.2: Field trial in Stratton Audley near Bicester. (A) Shows plants at 8 weeks in 

the field, dead plants as a result of flea beetle attack (B-C) 
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addition the Chi square test of association was used to look for any significant effect of 

presence of accessions next to each other in the field. 

2.4 Results 

2.4.1 Field experiment  

As a result of unusual climatic conditions (initial cold summer) or other environmental 

effects, the normal natural aphid and whitefly infestation was delayed in year 2011 

when the study was conducted. So the final scoring was delayed by 3 weeks. The 15 

week old plants in the field were scored by University of Birmingham staff for presence 

of aphids and whiteflies according to method established by (Mamun et al. 2010). A 

total of 2400 plants were screened and scored. Aphids were scored on a scale of 0-4 

where 0 is complete absence and 4 is highly infested, and whiteflies were scored 0-1 for 

absence or presence. Data is presented in supplementary table S2.1. The accessions not 

accounted for were those that either did not germinate or were lost due to flea beetle 

attack. Figure 2.4 the spread of aphid and whitefly infestation in the experimental plot 

 

 

 

 

 

 

 

 

Figure 2.3: Trial field in Stratton Audley near Bicester (A), 15 week old cabbage 

(B ),  whitefly infestation (C) and plant highly infested by cabbage aphid (D) 
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 Block 1 Block 2 Block 3  

G G G G G G G G G G G G G G G G G 

G 135 450 404 368 469 469 460 379 131 
 

451 
 

409 67 
 

G 

G 
 

353 384 261 332 416 41 392 468 
 

421 332 323 150 
 

G 

G 199 330 131 276 326 18 409 429 395 
 

127 26 430 59 452 G 

G 97 21 61 373 343 15 188 259 336 167 189 325 
 

454 392 G 

G 397 27 227 466 259 227 39 
 

410 3 450 329 
 

169 363 G 

G 453 417 144 336 350 346 13 391 465 330 371 
 

345 
 

30 G 

G 2 392 363 
 

260 135 354 456 269 21 
 

174 438 
 

346 G 

G 357 167 174 203 41 144 67 413 394 397 456 
 

275 9 326 G 

G 344 37 342 329 382 26 125 466 368 66 393 25 13 23 128 G 

G 371 461 460 20 14 327 8 467 61 451 311 
  

334 351 G 

G 201 39 29 310 313 417 203 235 260 53 413 229 434 115 310 G 

G 8 316 12 116 6 217 59 311 427 10 322 457 404 453 272 G 

G 307 32 401 449 31 
  

326 4 145 459 364 22 232 152 G 

G 5 434 429 394 325 
 

137 
 

320 458 416 39 132 461 399 G 

G 322 
 

34 387 451 421 349 450 266 352 
  

396 100 
 

G 

G 334 463 16 100 19 24 396 276 401 17 16 17 250 348 463 G 

G 190 266 311 410 137 232 100 462 329 316 400 220 331 
 

237 G 

G 18 150 53 297 26 371 19 22 323 6 199 24 10 357 190 G 

G 237 
 

346 127 400 328 169 23 322 152 260 313 382 119 166 G 

G 3 229 25 
 

24 324 
 

332 166 200 466 41 394 297 146 G 

G 323 128 395 418 66 250 119 220 398 97 387 11 145 458 402 G 

G 67 232 464 17 349 28 453 310 31 237 462 464 320 235 
 

G 

G 452 52 146 347 391 382 454 393 404 115 467 54 336 276 61 G 

G 265 455 250 198 468 116 261 32 
 

345 34 324 356 308 135 G 

G 427 399 324 
 

348 
 

127 351 
 

63 97 66 18 321 327 G 

G 56 15 458 345 335 331 357 254 
 

384 217 347 
 

330 469 G 

G 33 456 396 352 393 362 38 387 321 449 42 144 200 265 125 G 

G 169 409 362 35 234 399 
 

265 325 128 333 137 
 

29 352 G 

G 235 245 36 454 364 335 25 229 34 132 245 395 188 
 

131 G 

G 308 465 337 188 320 348 29 430 201 56 
 

335 349 21 
 

G 

G 416 217 13 356 413 33 342 459 334 464 167 203 201 386 40 G 

G 
 

430 220 354 
 

234 297 275 37 190 401 384 427 
 

398 G 

G 321 38 275 11 327 36 363 333 174 35 6 53 
 

27 350 G 

G 398 40 459 
 

421 27 386 198 461 54 397 368 
 

261 266 G 

G 10 59 331 119 9 400 307 337 364 245 7 8 28 465 373 G 

G 132 269 328 200 145 452 402 40 434 42 307 234 429 337 
 

G 

G 7 63 272 457 23 347 16 455 308 457 449 254 116 3 328 G 

G 115 333 351 254 166 5 150 313 30 350 468 269 343 32 
 

G 

G 
 

462 54 42 28 272 
 

146 373 343 4 
  

362 417 G 

G 125 30 4 467 402 7 463 9 356 353 259 38 37 56 
 

G 

G G G G G G G G G G G G G G G G G  

Figure2.4: Geographical location of each accession in the field. Each cell represents 4 plants 

of same accession; Different colours of each cell represent infestation by insect pests. Green 

cells represent aphid infestation; yellow represents whitefly infestation and red represent 

plants where both aphid and whitefly were present. 
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2.4.2 Observational scoring and statistical analysis 

The data collected were found to be normally distributed with P-Value < 0.005 using 

Anderson-Darling Normality Test. However due to the unbalanced nature of the data 

due to presence of missing data, the Univariate General Linear Model (GLM) was used 

to check the level of aphid infestation on different accessions. . In our experiment our 

dependant variable was aphid infestation and independent variable were block and 

accession. ANOVA results are shown table 2.2. Similarly the effect of white fly 

infestation on each accession present in the field was assessed using the GLM model 

which is shown below in table 2.3.  

Table 2.2: Analysis of Variance using adjusted SS for aphid infestation (General Linear 

Model: Aphid infestation versus Accession, block) 

Factor DF SS MS F-ratio P-value 

Accession 190 608.355 3.202 6.59 0.000 

Block 2 0.292 0.146 0.3 0.741 

Error 285 138.375 0.486     

Total 477 748.326       

S = 0.696797     R-Sq = 81.51%      R-Sq (adj) = 69.05%        SS= Type III Sums of Squares 

 

The ANOVA results highlighted that there is no significant difference for the aphid 

infestation in all 3 blocks (F2,285 = 0.30, P > 0.1) but also indicated that aphid infestation 

varied significantly between the accessions (F190,285 = 6.59, P≤0.001). This was in 

contrast to whitefly infestation where both accession (F190,284 = 2.178, P ≤0.001) and 
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block (F2,284 = 5.793, P ≥0.003) have significant effects on extent of whitefly infestation 

in field. 

 

A Chi Square Test of association was also conducted using MINITAB 15 on the data 

obtained from the field to look for any association between aphid infestations on the 

different genotypes present in the field due to their spacial proximity in the field.  The 

Chi Square (X2) test is the most important and most used member of the nonparametric 

family of statistical tests. Chi Square is employed to test the difference between an 

actual sample and another hypothetical or previously established distribution such as 

that which may be expected due to chance or probability. Chi Square can also be used to 

test differences between two or more actual samples. To get the expected frequency  the 

row total is multiplied by column total, and then divide by the overall total. 

Basic Computational Equation 

                       

Table 2.3: Analysis of Variance using adjusted SS for whitefly infestation (General Linear 

Model: white infestation versus Accession, block) 

Factor DF SS MS F-ratio P-value 

Accession 
190 63.226 0.333 2.178 0.00 

Block 
2 1.7703 0.885 5.793 0.003 

Error 
284 43.396 0.153     

Total 
476 108.392       

S = 0.390902     R-Sq = 60.23%      R-Sq (adj) = 33.35%           SS= Type III Sums of Squares 
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The data were placed into three categories: aphid absent in both adjacent plots; aphid 

present or absent in any one of the adjacent plots and aphid present in both adjacent 

plots. The plots where there were missing data because of absences of plants were 

excluded from the analysis.  The null hypothesis for this test was that all three 

categories are independent, i.e. the value assigned to one plot is independent and has no 

effect on the value assigned to the adjacent plot. The Chi-Square results confirmed that 

there is no association between the aphid infestations between 3 blocks due to spacial 

presence of genotypes in the blocks as the P-value is more than 0.05 so the null 

hypothesis is accepted i.e. aphid infestation is independent of location of genotypes in 

the field. 

Table 2.4: Chi-Square Test of association between aphid occurrence and genotype location 

Block 

No. 

count value Aphid  Whitefly Both Total 

1 Observed count 38 19 29 86 

Expected count 26.41 23.55 36.04  

Chi-Square contribution 5.08 0.8797 1.37 

2 Observed count 23 19 35 77 

Expected count 23.64 21.09 32.27  

Chi-Square contribution 0.017 0.20 0.23 

3 Observed count 13 28 37 78 

Expected count 23.95 21.36 32.69  

Chi-Square contribution 5.0065 2.063 0.56 

Total   74 66 101 241 

Chi-Sq = 15.439,   DF = 4,     P-Value = 0.004 

 

Similarly, another Chi-Square test of association was conducted to see if presence of 

aphid or whitefly on one accession affects the presence of the other. The null hypothesis 

for this test was that presence of aphid and whitefly is independent of each other and has 

no effect on presence or absence of each other’s presence. The Chi-Square test shows a 

degree of association between presence of aphid and whitefly on each accession (Chi-Sq 

= 15.439, DF=4, P-value < 0.05), so the null hypothesis is rejected. The aphid data set 



                                                                                                                                                  
Chapter 2 

 

46 

 

was then arranged, based on the mean score from smallest to highest number and 

grouped as resistant and susceptible accessions 

Table 2.5: Chi-Square Test of association between aphid and white fly occurrence 

Block 

No. 

count value Aphid 

absent in 

both plots 

Aphids present 

in one plot and 

absent in other 

Aphid 

present in 

both plots 

Total 

1 Observed count 62 67 17 146 

Expected count 70.25 58.48 17.27   

Chi-Square contribution 0.9695 1.2418 0.0042   

2 Observed count 59 39 16 114 

Expected count 54.85 45.66 13.48   

Chi-Square contribution 0.3132 0.9718 0.4695   

3 Observed count 58 43 11 112 

Expected count 53.89 44.83 13.25   

Chi-Square contribution 0.3131 0.0771 0.3812   

Total   179 149 44 372 

Chi-Sq = 4.759,   DF = 4,     P-Value = 0.313 

 

. The resistant group had a mean value of 0 whereas the susceptible group had a mean 

value of 3 or above. The selection of accessions for further study from both the groups 

was done in accordance with the other work packages as part of bigger PGR secure 

project, so as to keep the uniformity in the end results of project as a whole. The 

selected accessions represent both CWR and LR species from Brassica germplasm 

which were either preferred for feeding by aphid (scored 3 or 4 in all 3 blocks) or non-

preferred (scored 0 in all 3 blocks) in the field trial. The details of the selected 

genotypes are given in table 2.5. 

2.5 Discussion  

Field screening during June-September 2011 suggest the presence of different levels of 

putative resistance towards insect pests in Brassica species. Using this approach it was 

possible to screen 200 accessions in a cost efficient way and in a relatively short period. 
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This study explored the natural variation present in Brassica germplasm towards sap 

feeding cabbage aphid and whitefly. The results from the study suggest that CWR are 

less preferred as compared to the LR species by both cabbage aphid and whitefly. The 

CWR B.incana, B.fruticulosa, B.villosa have previously been reported to possess 

resistance to cabbage aphid (Ellis et al. 2000).The accessions from these species were 

found to possess putative resistance in this study, as well as the level of insect 

infestation was lower on them as compared to LR B.oleracea species. Singh et al. 

(1994) reported presence of resistance to cabbage aphid through antibiosis in wild 

species, B.fruticulosa, B.insularis and B.villosa. Although no consistent antixenosis was 

found in field screening, lower numbers of aphids were observed on the CWR. 

Brassicaceae are characterized by the presence of constitutive glucosinolates and 

induced volatile secondary defences, such as isothiocyanates and nitriles that are 

derived from the hydrolysis of glucosinolates upon damage by herbivores. This 

characteristic quality may aid in resistance via both antixenosis and antibiosis. 

Interspecies as well as intra-species variation in level of resistance against aphid feeding 

in Brassica species are  reported in the literature (Verdugo et al. 2012; Cole 1994; 

Broekgaarden et al. 2007).The field results showed variation in the level of feeding 

preferences of cabbage aphid and whitefly infestation both between and within Brassica 

species. It is often reported that presence of more than one pest can affect the 

performance of the other pest (Brien et al. 2013; Broekgaarden, Snoeren, et al. 2011; 

Broekgaarden et al. 2008). In this study the presence of association between aphid and 

whitefly was noted. ANOVA analysis showed that blocks within the field did not have 

any effect on aphid presence but it is highly affected spread of whitefly.   
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Although field screening provided vital information with respect to aphid feeding 

preference on different Brassica species, there were some limitations to this study. First 

and foremost, field screening was conducted only once due to the cost and time 

constrains within the project. There are many important factors like soil, pest and 

species heterogeneity and plant neighbourhood which was not accounted for due to the 

reason that the field experiment was designed just to categorize the Brassica accessions 

into putative resistant and putative susceptible categories in order to reduce the number 

of accessions for further experiments.  

As this study was part of the PGR secure project, Brassica accessions showing 

contrasting characters which were suitable for feeding behaviour assessment, 

transcriptomics and metabolomics studies were selected. By doing so, the core aim of 

the study to evaluate 200 accessions for aphid feeding preference and the selection of 

accessions with different levels of putative resistance to aphid feeding was achieved. 

Table 2.5 shows the list of accessions which were further explored to look at variation 

in feeding behaviour and gene expression changes in response to cabbage aphid 

infestation. From this point onward in the thesis, the term resistance will be used for the 

non-preferred and susceptible will be used for preferred accessions with respect to aphid 

feeding. 

2.6 Conclusion 

To conclude, field screening assessment was conducted to evaluate the feeding 

preference of insect pests, cabbage aphid and whitefly in a core collection of 200 

Brassica accessions which included wild relatives and LR of Brassica species. Results 
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obtained from the field reflected that CWR possess higher levels of the putative 

resistance than LR accessions. 

 

Significant differences were found between and within species in respect to presence of 

aphid and whitefly. The core aim of grouping the whole core collection into two distinct 

groups - aphid preferred and non-preferred accessions was achieved. Additionally, this 

Table 2.6: List of Brassica CWR and LRs selected from field experiment for further 

assessment of feeding behaviour and changes in gene expression in response to cabbage 

aphid infestation 

S.no Seed 

no. 

Accession no/ 

cultivar name 

Species subtaxon Material Suitability in Field 

1 24 BRA 2856 B.incana   CWR Non-Preferred 

2 26 K 10373 B.incana   CWR Non-Preferred 

3 37 K 9404 B.montana   CWR Preferred  

4 38 BRA 1644 B.montana   CWR Non-Preferred 

5 199 BRA 2401 B.oleracea capitata CWR Preferred 

6 321 57071 B.oleracea   CWR Non-Preferred 

7 325 70432 B.oleracea 
 

CWR Non-Preferred 

8 397 BRA 2923 B.villosa  CWR Non-Preferred 

9 398 K 6926 B.villosa   CWR Preferred 

10 401 K 10259 B.villosa   CWR Non-Preferred 

11 453 Bol2009-0080 B.fruticulosa   CWR Non-Preferred 

12 454 Bol2009-0081 B.fruticulosa   CWR Preferred 

13 54 BRS-0103 B.oleracea acephala LR Non-Preferred 

14 116 CGN18468 B.oleracea acephala LR Non-Preferred 

15 229 HRIGRU 

6568 

B.oleracea capitata LR Non-Preferred 

16 260 BRA 915 B.oleracea capitata LR Preferred 
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study helped in selecting 16 Brassica accessions which were further used in the feeding 

behaviour assessment and gene expression studies. Although field screening did not 

provide any definitive confirmation with respect to resistance/susceptible status of these 

accessions, but together with results from feeding behaviour experiments (EPG) and 

gene expression studies will result in categorising these more firmly into resistant or 

susceptible accessions. 

 

 

 

 

 

 

 

List of supplementary table  

Table S2.1: Scoring Data for the aphid and white fly infestation. The value 0 to 4 

(where 0 for highly resistant and 4 for susceptible) represents the level of resistance 

present in Brassica plant against insect pest. X represents missing plants. The accessions 

used in further study are highlighted in yellow  
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CHAPTER 3 

Investigating the differences in feeding behaviour of 

cabbage aphid on Brassica genotypes using  

Electrical Penetration Graph (EPG) 
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3.1 Abstract 

Plants have developed defence mechanisms to deal with attack from herbivorous insects. 

Brassica crops are frequently attacked by the cabbage aphid, with significant negative 

impact on yield and crop production.  The variability in feeding behaviour of cabbage aphid 

on different CWR and LR accessions was evaluated in this study. It also aimed to 

characterize and compare feeding behaviour of B.brassicae using EPG technique for 

resistance screening in Brassica germplasm and classify the germplasm into susceptible or 

resistant groups based on the acceptability of feeding on each genotype.  

EPG revealed the presence of waveforms Non-Penetration (NP), Pathway (C), E1 (Phloem 

salivation), E2 (phloem ingestion), Xylem, Derailed stylet (DS) and potential drop. The 

waveforms obtained during a 6h recording time were comparable to already defined 

waveform patterns. The main criteria applied to classify genotypes into susceptible or 

resistant was time spent in NP,  Pathway , E2 and time to locate phloem. A Kruskal-Wallis 

non- parametric analysis indicated that cabbage aphid exhibited significantly different 

feeding patterns on different genotypes. The most susceptible genotypes based on EPG 

analysis were BRA2923, BRA915 as time spent to locate phloem was shorter and 

additionally aphid had sustained phloem feeding on these genotypes. In contrast, genotypes 

BRA 2856, K6926, K10259 were among highly resistant varieties. The time spent in NP 

and pathway was significantly higher and aphids could not maintain a sustained phloem 

feeding. The results of this study suggest that the deterrent agents vary in activity and may 

hinder stylet activity at different levels (epidermis, parenchymatous tissue or phloem) 

depending on plant species. This study provides vital information about the level of 
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resistance against cabbage aphid feeding present in Brassica germplasm and classification 

of germplasm as susceptible or resistant which will be used for gene expression analysis 

studies.  
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3.2 Introduction 

Aphids (Hemiptera, Aphididae) are one of the most serious pests of vegetable Brassica 

crops (Dedryver et al. 2010). It is reported that around 30% to 80% Brassica crop yield is 

lost annually due to aphid infestation in developed and developing countries respectively 

(Dedryver et al. 2010; Razaq et al. 2011; Isik & Görür 2009). The cabbage aphid, is a 

severe pest of Brassica crops throughout temperate regions of the world (Brown et al. 

1999). Aphids are extremely efficient at colonising new plants and due to parthenogenic 

reproduction can increase their population rapidly. It is known for its highly specific 

feeding behaviour which involves consumption of phloem sap from Brassica or closely 

related plant species (Cole 1997a). However not much is a known about aphid-plant 

interactions at the molecular level resulting in lack of information about the level of 

resistance present in Brassica germplasm. Plant resistance in response to aphid feeding is 

considered as a major component in insect-plant interaction (Guerrieri & Digilio 2008).   

To explore plant and aphid interactions in Brassica, Cabbage aphid and Brassica species 

provide an ideal system to study feeding behaviour patterns and preferences of the aphid.  

Aphids are primarily phloem feeders and occasionally consuming xylem sap to overcome 

dehydration after a period of starvation (Spiller et al. 1990). Aphids receive the majority of 

their nutrients from plant sap with help of piercing and sucking mouthparts called stylets. 

The stylets are used for exploring and probing plant tissue to locate sieve elements (Dixon 

1998). A stylet penetration process enables aphids to puncture the symplast and exploit 

intracellular compartments without wounding and reach phloem sap (Powell et al. 2006). 

Phloem sap is rich in sugars and free amino acids therefore providing a high source of 
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carbon and nitrogen and is often free from toxins and feeding deterrents (Dinant et al. 

2010). Aphid feeding not only reduces crop yield but also has the potential to transmit 

viruses which is another cause of crop loss (Dedryver et at. 2010). Aphid transmitted 

viruses are responsible for diseases in Brassica (Matthews, 1991) such as Turnip mosaic 

virus (TuMV), spread by B.brassicae in Brassica  (Walsh et al. 1999; Harvey et al. 2007; 

Suehiro et al. 2004), and Cauliflower mosaic virus (CaMV) transmitted by B.brassicae and 

M.persicae (Palacios et al. 2002; Martinière et al. 2009). They have a short life cycle and 

the ability to produce their offspring though both asexual and sexual reproduction (Matis et 

al. 2007). Therefore, an outbreak phenomenon could easily happen in a short time when the 

conditions suit them. At present aphid management in Brassica crops is heavily reliant on 

insecticides and aphicides that account to 39% of all insecticides application (Garthwaite 

2012). They are used to control the aphid outbreaks which is harmful to environment and 

also poses danger of getting incorporated into the human diet (Bhatia et al. 2011) making 

development of insect resistant varieties a priority.  This will enhance economic, ecological 

and environmental benefits of crop plants (Teetes 2014). The knowledge of plant-aphid 

interactions, feeding behaviour assessments and gene expression studies will help in better 

understanding of resistance mechanisms. The feeding behaviour study will provide an 

insight into the location and path followed by aphid inside plant tissue to feed. This 

information along with the gene expression studies can provide vital help in discovering 

genes involved in response to feeding.  The knowledge of resistance factors can then be 

exploited to develop new more resistant crop varieties. 
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3.2.1 Aphid feeding 

Aphids are able to pierce the plant cuticle and the cell wall with their needle-like stylets 

(Schoonhoven et.al 1998). The stylets are made of two outer mandibles and two inner 

maxillae, together forming a food canal and a salivary canal (figure 1.5). As the stylet 

penetrates, a salivary sheath made of lipoproteins is secreted. The sheath encases the stylets 

and makes a  rigid tube to facilitate penetration and direction of probe in search of the 

feeding site (Pollard 1973; Schoonhoven et.al 1998). It has also been hypothesised to 

protect aphids against plant defence (Miles 1999).  

 

 

 

 

 

 

 

 

 

The path followed by aphid to reach phloem sap is mostly extracellular (Jaouannet et al. 

2014; Tjallingii & Esch 1993) from the cuticle to the vascular element of the plant, stylet 

penetrates between mesophyll cells (Figure 3.1). Most cells along the stylet-pathway are 

punctured, including the phloem cells. Saliva, containing effectors is secreted into the 

different cell types as well as the apoplast. Aphids are also known to use chemical gradients 

 

Figure 3.1: Schematic overview of the plant-aphid interface: Aphid mouthparts 

penetrate the leaf surface upon encountering preformed defences such as trichomes 

and waxes. The figure was adapted from (Jaouannet et al. 2014). 
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to locate the feeding site (Klingler et al. 1998; Powell & Hardie 2000; Schoonhoven et.al 

1998). Probing and feeding behaviour during compatible plant–aphid interactions has been 

well documented and is thought to involve cues such as pH, sucrose and amino acid content 

(Hewer et al. 2011; Will & Vilcinskas 2013). 

When a suitable feeding site is located, saliva is injected into the sieve element to overcome 

any phloem based defences (Will et al. 2007). Sieve element sap moves though the stylet 

food canal under the often large pressures found in the phloem (Will et al. 2013; Tjallingii 

2006) The cibarial pump in the head regulates this flow ((Ponsen 1987). The saliva contains 

many enzymes which help in overcoming the plant defence by detoxifying various 

allelochemicals and other plant defences (Tjallingii & Esch 1993; Miles 1999) . Under most 

conditions aphids ingest more sugar than they can assimilate, so that their faeces consist 

carbon; low nitrogen sap (honey dew) that is passed out of the anus (Wilkinson et al. 1997). 

Aphids secrete honeydew on the leaf surface, which may also contain molecules that alter 

plant defence responses (Jaouannet et al. 2014). Researchers are now able to investigate 

what happens as an aphid is piercing and then feeding from a plant by using a technique 

called the electrical penetration graph (EPG) technique which is described in next section. 

3.2.2 Electrical Penetration Graph (EPG) 

The EPG technique is used to monitor the aphid feeding behaviour and can give indications 

about the source of plant resistance towards insects. Some quantitative information about 

insect behaviour studies like settling down, population growth has been done visually by 

monitoring aphid feeding using microscope or with video recording (Kindt, 2004). 

However it is impossible to predict what is happening inside the plant tissue. The EPG 
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technique provides detailed information about insect feeding and stylet movement inside 

the plant, while aphid locates the phloem. The ability of insects to reach the phloem sap and 

commence feeding is different on different host plant species and depends on many factors. 

In resistant plants, the insect commonly takes longer to access phloem and have sustained 

feeding following  the initial stylet insertion as compared to susceptible plants (Prado & 

Tjallingii 1994; Prado & Tjallingii 1997; Tjallingii & Esch 1993). 

The EPG technique was first developed in 1960s and a significant modification was made 

in 1978 by substitution of AC(Alternating Current) circuitry with DC (Direct Current) 

circuitry (Tjallingii 1985). The basic principle of EPG is the integration of a plant and an 

insect in an electric circuit. When the aphid inserts its stylet into plant tissue, the circuit is 

completed and EPG waveform will be recoded and visualized (Janssen et al. 1989; Prado & 

Tjallingii 1994; Huang et al. 2012; Tjallingii 1985). For aphids, the behaviour associated 

with these waveforms has been already described (Tjallingii 1985).  Broadly waveforms 

can be classified into 7 distinct patterns as described below and also shown in Figure 1.7. 

The main patterns identified are: 

1. Mean duration of non-penetration period (NP)  

2. Period of pathway waveform pattern (C).  

3. Period of potential drop (Pd) 

4. Period of salivation into sieve element (E1).  

5. Period of sustained phloem sap ingestion (E2).  

6. Period of derailed stylet mechanics (F)  

7. Period of ingestion of xylem sap (G)  
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The EPG waveforms are also used to group the aphid resistance mechanisms into three 

categories mainly surface based resistance, pathway based resistance and phloem based 

resistance. The surface based resistance is represented by non penetration waveform. When 

aphids land on the plant leaf, the first resistance barrier is the leaf morphology. The leaf 

surface and the cell wall incorporate different physical defences such as a waxy coating on 

the leaves, presence of thorns or hairy tissues and also chemical defences that are rapidly 

activated when presence of insect is detected by the plant (Bruce 2015a; Walling 2008; 

Kessler & Halitschke 2007). The pathway based resistance comes into play when the aphid 

is able to penetrate the cell wall and looks for the phloem. The waveforms C, PD, Derailed 

stylet and xylem all fall under this category. During this activity aphids can encounter both 

primary and secondary metabolites, phenolic substances, proteins and enzymes which can 

act as resistance factors and make aphid feeding difficult (Tjallingii & Esch 1993; Louis et 

al. 2012).  The phloem based resistance is represented by waveforms E1and E2. The active 

feeding period (E2) of EPG is considered important in terms of resistance against aphids as 

it is the phase where an aphid obtains its nutrition. Phloem based resistance is often taken 

into account when deciding about suitability of genotypes to insect feeding (Pegadaraju et 

al. 2007; Dinant et al. 2010; Broekgaarden et al. 2012). 

Electrical Penetration Graph technique was first tested and used for studying aphids (Tjallingii 

1985; Janssen et al. 1989). Since then, it is one of the common tools used to characterize and 

identify, in detail, plant resistance factors against insects with piercing mouthparts by 

monitoring their probing behaviours (Calatayud et al. 1994; van Helden & Tjallingii 1993; 

Spiller et al. 1990; Schwarzkopf et al. 2013; Diaz-Montano et al. 2007). It has been applied 

to a wide range of other piercing insects as such Brown plant hopper (Ghaffar et al. 2011), 
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whiteflies (Janssen et al. 1989; Lei et al. 1998), thrips (Hunter et al.1993; Harrewinji et al. 

1996), leaf –plant hoppers (Backus and Hunter, 1989; Lett et al., 2001) and also mealy bugs 

(Calatayud et al. 1994). EPG has been used to study the impact of mutation Arabidopsis 

genes on aphid feeding behaviour and thus contribution of individual genes and 

mechanisms to different aspects of Arabidopsis defence and susceptibility against different 

aphid species (Pegadaraju et al. 2007; Kempema et al. 2007; Louis & Shah 2015; Gao et al. 

2008; Nalam et al. 2012). Khan et al. (2015) reported presence of significant difference in 

probing and non-probing phase in aphid resistance wheat and barley genotypes in response 

to Russian wheat aphid. Recently, EPG technique is used as a tool to monitor the early 

stages of aphid resistance to insecticides (Garzo et al. 2015). Not only this, EPG is being 

used for acquiring and measuring electrical signals in phloem sieve elements from the 

wounded to unwounded area in plants (Salvador-Recatalà & Tjallingii 2015). In this study, 

the EPG technique is used to characterise the feeding behaviour of cabbage aphid across 16 

Brassica genotypes and provide valuable information on stylet activities. 

3.2.3 Chapter aim 

The present study compared the feeding behaviour of B.brassicae across 16 Brassica 

genotypes which were selected to cover CWR and LR Brassica species. It also aimed to 

quantify both interspecies and intraspecies variations present in genotypes in response to 

aphid feeding on Brassica germplasm. The main aim was to characterize and compare 

feeding behaviour of B.brassicae using EPG technique for resistance screening in Brassica 

germplasm and determine if antibiosis mechanisms (i.e. factors in the host plant which 

make insect survival difficult) are important in determining differences in aphid feeding. 
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The results of classification from the study were used to provide molecular explanation for 

transcriptomics analysis in later chapters. 

3.3 Material and methods  

3.3.1 Plant material 

The Brassica germplasm used in the study was obtained from Wageningen UR Plant 

Breeding, Wageningen University and Research Centre, The Netherlands. The germplasm 

collection of included both CWR and LR originating in Eastern Europe and Russia (as 

described in section 2.3.1). Sixteen genotypes were selected for the EPG study based on the 

feeding preference of cabbage aphid in field. The selection was done to cover both CWR 

and LR genotypes for which aphid showed high levels of preference and non-preference. 

As this study is part of the bigger PGR project, uniformity of genotypes used in EPG, 

transcriptomic and metabolomic study was maintained which also influenced the selection 

of genotypes. The list of crop species grown for the feeding behaviour study experiment is 

given in Table 3.1. 

3.3.2 Plant culturing 

The seeds for all 16 accessions selected from the field trial were planted individually. Ten 

plants (replicates) for each accession were potted individually in 10 cm pots containing 6 

parts peat based compost (Humax multipurpose) to 1 part Silvaperl. The plants were grown 

under 16:8 hour light: dark regime at 24±3 °C with 70% humidity in the glasshouse at the 

University of Birmingham for 12 weeks with exception of B.fruticulosa which was grown 

for 3 weeks as it reached flowering age much earlier compared to other species. For the 
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EPG experiment, the aphids were placed on underside of the leaf to access the feeding 

behaviour of aphid. 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.3 Aphid Species and infestation conditions 

Plants were infested with adult B.brassicae aphids cultured from a clone kept at the 

University of Birmingham on B.nigra plants, under the conditions outlined above. B.nigra 

Table 3.1: List of Brassica CWR and LR genotypes  used in  EPG study 

S.no Seed no. Accession no/ 

cultivar name 

Species subtaxon Material 

1 24 BRA 2856 B.incana   CWR 

2 26 K 10373 B.incana   CWR 

3 37 K 9404 B.montana   CWR 

4 38 BRA 1644 B.montana   CWR 

5 199 BRA 2401 B.oleracea capitata CWR 

6 321 57071 B.oleracea   CWR 

7 325 70432 B.oleracea 
 

CWR 

8 397 BRA 2923 B.villosa  CWR 

9 398 K 6926 B.villosa   CWR 

10 401 K 10259 B.villosa   CWR 

11 453 Bol2009-0080 B.fruticulosa   CWR 

12 454 Bol2009-0081 B.fruticulosa   CWR 

13 54 BRS-0103 B.oleracea acephala LR 

14 116 CGN18468 B.oleracea acephala LR 

15 229 HIGRU 6568 B.oleracea capitata LR 

16 260 BRA 915 B.oleracea capitata LR 
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plants were grown in an insect-free growth room before they were placed into Bugdorm 

tents for insect feeding. Tents were used to isolate aphid culture from mixing with other 

insects and also preventing aphid escape. The B.nigra plant was changed every 15 days in 

order to have a constant food supply and maintain aphid culture. Only apterous adult aphids 

were chosen for the feeding behaviour experiment. 

3.3.4 Electrical Penetration Technique 

The feeding behaviour of the active adult aphid selected from the culture was observed with 

EPG technique. As B.brassicae develops a waxy coating, it needs to be brushed before 

wiring the aphid. A gold wire 0.25mm diameter, 2-3cm long was attached to the dorsum of 

aphid using silver conductive paint (RS Components). The wired aphid was left to starve 

for about 30 minutes before being plugged into the Giga 8-CD EPG amplifier with10
9
Ω 

input resistance. The circuit was completed by putting a copper electrode into the soil in 

which plant is growing. This electrode was also connected to the amplifier (Figure 3.2). All 

experiments were performed at room temperature (18°C) in the laboratory. The recording 

for 8 plants and 8 aphids were made on 8 channels simultaneously. The probing behaviour 

of aphid was recorded for 6 hours and the signals were recorded on the computer using 

EPG Stylet+d software and were subsequently analysed using EPG Stylet+ a analysis 

programme. For each Brassica genotype selected for feeding behaviour, EPG data was 

recorded for 10 plant and aphid combination making it 10 replicates per genotype. EPG 

experiments were run at the same time-points and under the same, carefully controlled 

conditions as the microarrays (in chapter 4), provided an opportunity to map the gene 
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expression data onto aphid behaviours on the plant, thus translating the molecular data 

collected into real world applications. 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.5 Statistical Analysis 

The analysis of the EPG data was conducted using Microsoft Excel and Minitab software. 

The Anderson Darling test was performed on the data to determine if the data had a normal 

distribution. It is very important to carefully choose analysis method for this type of data as 

all parameters of EPG are not always independent of each other. One parameter can be 

negatively correlated to other not because they are associated but merely because there is 

less time for the other parameter to occur due to pre-defined time scale of recording (Cane, 

1961; Sackett et.al 1978).   

 

Figure 3.2 Diagram represents a typical EPG setup: The aphid is 

incorporated into an electrical circuit, with one electrode being attached to 

the aphid, while the other is inserted into the soil of its host plant's pot. 

When the aphid penetrates the leaf with its stylets, it completes the circuit. 

Output EPG waveforms are recorded and vary with the aphid's behaviour 

and the position of the stylet tip (Tjallingii & Gabryś 1999) 
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The EPG parameter recording was performed for 6 h as this time duration was found 

sufficient for aphid to commence feeding on majority of genotypes. Although cabbage 

aphid did not feed on accession BRA 2856 (B.incana) and K 6926 (B.villosa) at all during 

6h time period, the possible reasons for this are discussed later in chapter. The EPG data 

from all 10 replicates for each genotype was averaged and data for all parameters, non-

penetration, pathway phase and sap ingestion, xylem ingestion, derailed stylet and time to 

first E2 were analysed. The data for these parameters did not show a normal distribution, so 

they were analysed with a non-parametric Kruskal-Wallis analysis of variance to identify 

any significant differences in the behaviour observed on different Brassica genotypes.  

3.4 Results 

3.4.1 Analysis of feeding behaviour of cabbage aphid (B.brassicae) on different 

species of Brassica 

EPG monitoring of feeding behaviour of cabbage aphid on 16 Brassica genotypes for 

period of 6 hours is shown in table 3.2. The EPG data analysis using Kruskal-Wallis, non 

parametric analysis showed that all EPG activities varied significantly between genotypes. 

The feeding activity of cabbage aphid on genotype BRA 2856 (B.incana) and K 6926 

(B.villosa) were remarkably different when compared to rest of the genotypes. Cabbage 

aphid spent all 6 hours (100%) time in Non-penetration phase on these two genotypes, 

hence no feeding was observed. In contrast, cabbage aphids spent only 1.4 hours (23.6%) in 

non penetration when feeding on K 10259 (B.villosa) see figure 3.4. During 6 hour 

recording cabbage aphid spent around 25-60% time in the pathway phase on different 
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aphid-genotype combination. The average time spent in pathway phase was highest (3.6 

hours) for genotype K10259, whereas it spent only 1.5 hours (24%) of average time when 

feeding on genotype BRA915 as shown in figure 3.4. The Kruskal-Wallis showed 

significant difference (P≤ 0.001) among genotypes for these parameters. Xylem feeding 

among different genotypes ranged from 0-10%.  It was noted that cabbage aphid spent 

highest time (0.6 hours) feeding on xylem on 70432, whereas this activity was not observed 

in genotype BRA 2856, K6926, Bol2009-0080 and BRA 915 as shown in figure 3.4. The 

highest (0.5 hours) derailed stylet activity was observed in genotype 57071 while it was 

missing in genotypes BRA2856, BRA2401, 7043, K6926, BRA2923 and Bol-2009-0081. 

The data for all genotypes is presented in table 3.2. The phloem phase (E1,  E2 and time to 

first (E2) will be discussed in detail in a latter section.  

3.4.2 Comparison of interspecies variation in performance of B.brassicae on Brassica 

species. 

EPG recordings conducted for the aphid-plant combinations revealed the differences 

between genotypes belonging to the same species (figure 3.4). The data from genotypes 

belonging to the same species were averaged to have overall picture for species, although 

differences were observed within the accessions as well. The Mann-Whitney U test was 

performed for the analysis. For all data each period of NP, Pathway and Phloem 

consumption, xylem all varied significantly (P≤ 0.001) between species. 
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Table 3.2: Comparison of feeding behaviour (mean ± SE of EPG parameters) of Cabbage aphid (B.brassicae) 16 different Brassica 

varieties. (Time in Seconds): Mean amount of time (hours) recorded via the Electrical Penetration Graph (EPG) technique that aphids 

spent in different parameters on Brassica genotypes (a) NP (non-penetration), (b) Pathway, (c) Xylem ingestion), (d) Potential drop 

(Pd) and (e) Derailed stylet (F) mechanics over period of 6 hours.. N = 10 per genotype. 

S.no   Genotype NP Pathway E1 E2 DS Xylem PD Time to first 

E2 

1 24 BRA 2856 21600 0 0 0 0 0 0 21600 

(±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00) 

2 26 K 10373 7036.33 9267.11 148.11 1222.46 1377.82 1925.52 622.64 10386 

(±2174) (±1683) (±5323) (±491) (±617) (±1057) (±147) (±2950) 

3 37 K 9404 8673.57 7824.7 438.3 2658.56 559.83 1003.98 441.07 2861 

(±2083) (±1740) (±105) (±595) (±410) (±558) (±106) (±978) 

4 38 BRA 1644 13249.34 6991.62 5.7 8.85 390.88 772.14 181.47 19340 

(±2745) (±2499) (±5.70) (±8.85) (±381) (±685) (±78.2) (±2260) 

5 54 BRS-0103 2307.88 11909.92 262.64 4170.62 1226.96 787.47 934.51 1310 

(±505) (±1733) (±54.4) (±1939) (±909) (±553) (±141) (±321) 

6 116 CGN18468 7669.26 9432.38 74.02 1369 1439.2 941.38 674.75 4404 

(±1928) (±1354) (±26.7) (±686) (±605) (±563) (±121) (±1286) 

7 199 BRA 2401 4357.14 9616.27 130.02 5866.78 0 881.2 748.57 3336 

(±1596) (±1622) (±30.3) (±2145) (±0.00) (±853) (±141) (±1758) 

8 229 HIGRU 

6568 

8202.63 10038.9 67.82 511.07 561.67 1948.33 269.55 6333 

(±2053) (±1791) (±32.8) (±179) (±435) (±1773) (±102) (±2617) 

9 260 BRA 915 10504.40 

(±2258) 

5366.60 

(±1066) 

319.76 

(±134) 

3864.53 

(±1704) 

965.67 

(±966) 

65.02 

(±44.1) 

514.01 

(±178) 

3168 

 

  

(±1713) 
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10 321 57071 1025.26 10248.14 36.75 5982.18 1798.47 1738.76 770.44 10510 

(±662) (±2486) (±9.40) (±3836) (±1137) (±1450) (±241) (±3967) 

11 325 70432 5757.07 10601.85 57.15 2491.66 0 2171.25 520.99 2566 

(±3248) (±2515) (±44.4) (±1357) (±0.00) (±616) (±194) (±1423) 

12 397 BRA 2923 5962 8395.55 60.51 6035.36 148.94 213.64 783.98 2395 

(±1372) (±1376) (±13.8) (±1947) (±148) (±212) (±132) (±820) 

13 398 K 6926 21600 0 0 0 0 0 0 21600 

(±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00) 

14 401 K 10259 5106.28 13041.27 44.43 592.43 306.84 1613.79 894.93 6915 

(±1993) (±2084) (±11.0) (±221) (±291) (±810) (±214) (±2599) 

15 453 Bol2009-

0080 

3304.15 12115.63 53.55 5162.38 153.05 0 811.23 7808 

(±1772) (±1564) (±12.7) (±1368) (±153) (±0.00) (±172) (±2417) 

16 454 Bol2009-

0081 

9864.8 6297.02 45.29 3564.29 455.195 905.35 468.03 7201 

(±2473) (±1811) (±13.5) (±1652) (±455) (±905) (±133) (±2969) 
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Figure 3.3: Mean amount of time (hours) recorded via the Electrical Penetration Graph (EPG) technique that aphids spent in different parameters on Brassica 

genotypes (a) NP (non-penetration), (b) Pathway, (c) Xylem ingestion), (d) Potential drop (Pd) and (e) Derailed stylet (F) mechanics over period of 6 hours. 

Aphids species used for study was Brevicoryne brassicae over a six hour period. Plants were 12 weeks old. Aphids were removed from culture and wired 

straight up to the EPG system. Statistical analysis of this data can be found in table 3.2. N = 10 per genotype. Mean time spent is represented on vertical axis 

and Brassica genotypes are represented on horizontal axis. The data was recorded from first connection of aphid stylet with plant till end of recording period 

of 6hours. The data is provided in table 3.2. The Kruskal-Wallis showed significant difference (P ≤ 0.001) among genotypes for these parameters.  
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Mean duration of phloem consumption was lowest (0.2 hours) in B.incana and highest 

(1.0 hour) in B.oleracea.  The cabbage aphids spent the majority of time in NP phase in 

CWR species which included B.montana, B.villosa, and B.fruticulosa. This was 

consistent with the suggestion that CWR species are more resistant to cabbage aphid. 

Additionally, the time taken by aphids to reach the phloem and undertake sustained 

phloem consumption was highest in Brassica oleracea and lowest in B.incana (Figure 

3.5).   

 

 

 

 

 

 

 

 

 

3.4.3 Phloem location and acceptance 

Cabbage aphids took the shortest time (0.4 h) to locate phloem (Time to first E2) on 

genotype BRS-010 (Table 3.2.). It was noted that time to first E2 was similar in 

genotypes BRA2923 (0.7 h), 70432 (0.7 h) and K9404 (0.8 h), whereas aphids failed to 

 

Figure 3.4: Comparison of EPG Parameters: Mean time spent in each EPG parameter 

for 5 Brassica species over period of 6 hours. Plants were 12 weeks old. Aphids were 

removed from culture and wired straight up to the EPG system. Statistical analysis of 

this data can be found in table 3.2. N = 10 per genotype. Mean time spent is 

represented on vertical axis and Brassica genotypes are represented on horizontal axis. 

The data was recorded from first connection of aphid stylet with plant till end of 

recording period of 6hours. The data is provided in table 3.2. The Mann-Whitney U 

test showed significant difference (P ≤ 0.001) among species for these parameters 
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reach phloem during 6 h recording in accessions BRA2856 and K6926. The most 

sustained feeding on phloem was observed on genotypes BRA 2923 and 57071 (1.7 h) 

followed by BRA2401 (1.6 h) see figure 3.6. The cabbage aphid took 5.4 h to reach E2 

on genotype BRA1644 but could not feed subsequently on phloem. In addition, cabbage 

aphids were unable maintain sustained feeding (E2) for more than 20 minutes on 

genotype HIGRU 6568 (9 min), K10259 (10 min) and K10373 (20 min). The details of 

time to first E2 and average duration of time spent by cabbage aphid are shown in figure 

3.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Mean time in E2 and time to E2: Mean duration of time taken by cabbage aphid 

to reach phloem and average time spent feeding on different genotypes. The genotypes vary 

significantly in response to aphid feeding on E2 and the time take to reach phloem (P ≤ 

0.001). Plants were 12 weeks old. Aphids were removed from culture and wired straight up 

to the EPG system. Statistical analysis of this data can be found in table 3.2. N = 10 per 

genotype. Mean time spent is represented on vertical axis and Brassica genotypes are 

represented on horizontal axis. The data was recorded from first connection of aphid stylet 

with plant till end of recording period of 6hours. 
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3.5 DISCUSSION 

Understanding the resistance factors of Brassica crop species against cabbage aphid is 

crucial in plant breeding programme (Nishio 2014; Pérez-de-Castro et al. 2012). Field 

screening can provide information about the resistance or susceptible genotypes but lack 

in detailed information on how plans defend themselves against aphids (Soffan & 

Aldawood 2015). Therefore Electrical Penetration Graph (EPG) can be used as an 

alternative to study resistance factors present in plants (Will et al. 2007; Lei et al. 1998; 

Calatayud et al. 1994).   In this study, it was noted that during 6h of feeding, differences 

in feeding behaviour were mostly related to duration of time the aphid spent in NP, 

Pathway, Phloem ingestion or Xylem phase (Figure 3.3). Additionally, time taken to 

reach phloem was an important criterion to determine resistance or susceptibility to 

aphid feeding (Figure 3.5). The results suggest that difference in feeding behaviour is 

highly dependent on the Brassica genotypes since the aphid population used was clonal.  

The EPG technique provided important information about feeding behaviour of cabbage 

aphid on different genotypes of Brassica. This technique is also very useful in studying 

the resistance factors and their localisation in plant tissues (Tjallingii and Mayoral 

1992). In this study, EGP was used detect levels of acceptability of cabbage aphid on 

different Brassica genotypes. Aphids come across different types of resistance during 

the process of feeding (Tobias Züst & Agrawal 2016). The wave forms observed during 

the recording time can also be grouped under three main categories i.e. surface based 

(NP), pathway based (C, Pd, F & G) and phloem based (E1 & E2) based upon the 

resistance mechanisms of the host plant. 
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Surface based resistance  

Non penetration waveform represents the surface based resistance by indicating the 

level of ease/difficulty in penetrating the cell wall. The surface based resistance can be 

due to chemical or physical factors present in plant (Will & Van Bel 2006). Chemical 

defence usually involves compounds with antibiotic activity that is present on the leaf 

surface (Wagner et al. 2004). For instance, secondary metabolites present in trichomes 

of tomato prevent aphids from settling (Simmons et al. 2005). Similarly, a protein 

possessing lectin activity in Arabidopsis thaliana has an insecticidal effect towards 

aphids (Beneteau et al. 2010). The EPG showed some very interesting results. The 

genotype BRA2856 (B.incana) and K6926 (B.villosa) both showed no penetration at all 

during 6 h of recording period, suggesting high levels of resistance to cabbage aphid 

feeding at surface level in these two genotypes. This difficulty in penetrating the leaf 

surface of these genotypes can be accounted for by the fact that B.villosa (CWR) has a 

very dense coverage of trichomes (Palaniswamy & Bodnaryk 2012). It is reported to be 

resistant to insect pests due to presence of trichomes which act as a barrier to aphid 

settlement and feeding on plants (Nayidu et al. 2014). Interestingly, it was found to be 

susceptible in the field experiment (chapter 2, table 2.5). This contrast in the results may 

be due to the fact that EPG recording was conducted for 6 hours duration. Cabbage 

aphid may require more time to settle on this genotype, but once settled can feed on it. 

Another genotype BRA 2856 belonging to B.incana species was also previously found 

to be highly resistant to aphid feeding. (Ellis et al. 2000) reported that CWR B.incana 

posses a significant level of resistance against cabbage aphid. As first level of 

resistance, insect pests are exposed to surface chemicals imbedded in cuticular wax 

which may include volatile and non volatile  compounds like monoterpenes and 
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glucosinolate-derived volatiles ( Cole 1997b). The importance of glucosinolates in 

determining the feeding response of cabbage aphid is already a known fact (Cole 1994). 

In general, CWR accessions also showed comparatively higher levels of resistance as 

compared to the LR species which is consistent with earlier reports (Singh et al. 1994; 

Ellis et al. 2000; Ellis et al. 1998). 

Pathway based resistance  

The pathway based resistance provides the indication about the possible resistance 

factors present inside the plant tissue. The waveform C, Pd, derailed stylet and xylem all 

fall under this category as shown in figure 1.7. The results showed that cabbage aphid 

altered the proportion of time it spent in pathway phase over the period of 6 h feeding. It 

was noted that during initial settling phase more time was spent between probing and 

non- probing before finally having a consistent feeding activity (figure 3.3). During the 

settling on new host plants aphids often sample the chemical composition, and only 

after satisfactory test probes do they start a sustained period of pathway in order to 

locate the phloem (Tjallingii 1985; Powell et al. 2006). The repeated cell puncture 

detects the carbohydrate content and presence or absence of metabolites which help in 

decision to feed or not to feed on the plant (Muller & Riederer 2005). Analysis of 

pathway activity as shown in table 3.2 reveals variable levels of resistance between 

different Brassica genotypes. The occurrence of xylem phase is often linked with the 

difficulty to locate phloem. Cole (1994) noticed xylem ingestion behaviour in cabbage 

aphid when feeding on resistant Brassica species, where it was anticipated to play a role 

in osmoregulation (Spiller et al. 1990). It is during the pathway phase, the aphid also 

determines the level of constitutive and induced defences (Chen et al. 2013). The 

repeated stylet insertions cause damage to the plant and induce production of proteins, 
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metabolites, defence signalling and wound signalling pathways (De Ilarduya et al. 

2003). After encountering these difficulties, aphid finally reaches sap of the plant which 

is the final destination for phloem feeding insects. 

Phloem based resistance  

The waveforms E1 and E2 account for time spend by the aphid in phloem feeding. Once 

the aphid locates phloem and starts ingestion, the composition of the phloem plays a 

vital role in resistance against aphid feeding (Kehr 2006; Dinant et al. 2010; Tjallingii 

2006).The phloem sap is mainly made up of water, sugars, hormones and minerals.  All 

these together determine the suitability of sap for feeding. The results indicate that the 

cabbage aphid has different sap feeding ability on Brassica genotypes with maximum 

sustained feeding genotypes BRA 2923 and 57071 (1.7 h) followed by BRA2401 (1.6 

h) while failed to feed on genotype BRA 2856 and K6926 (figure 3.5). The accession 

57071 was noted to be highly resistant in the field assessment (chapter 2), whereas it 

has found to have a sustained phloem feeding in this study. This discrepancy may be 

accounted by the fact that aphid may have induced the plant defence response like sap 

element occlusion reaction, plugging of sieve plates and callose deposition to inhibit 

aphid feeding as shown in other aphid-plant interaction studies (Will & van Bel 2006; 

Aidemark et al. 2009; Will et al. 2007). 

The plant defence is a complex multi-level process. After reaching the host plant, aphid  

examine the surface (Ellis et al. 1996; Bruce 2015a; Walling 2000) followed by probing 

intercellular though plant tissue. They manipulate defence pathways activated in 

response to aphid feeding and wounding and finally feeding on phloem sap 

(Schwartzberg & Tumlinson 2014; Schwarzkopf et al. 2013; Moran & Thompson 
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2001). At the phloem level aphids manipulate the phloem resistance in order to sustain 

uninterrupted feeding. The understanding of underlying defence mechanisms has only 

recently begun and requires further research. EPG is an excellent tool to locate tissues 

most likely to play a role in resistance mechanisms (Helden & Tjallingii 1993). This 

technique has been extensively utilized to investigate the details of plant resistance to 

aphids, whiteflies and leafhoppers ((Broekgaarden et al. 2008; Janssen et al. 1989; 

Backus et al. 2013).  

Results from this study indicate variable levels of resistance to cabbage feeding present 

in Brassica germplasm .Significant delay in first probe for accessions BRA 2856 and 

K6926 suggests presence of some deterrent resistance factor against cabbage aphid is 

located on plants surface for these genotypes. There was significant delay noticed in 

access to phloem in BRA1644, 57071, K10373 as compared to BRS-0103, BRA 2923, 

70432. We can thus hypothesize that some resistance factor is located in either 

epidermis or mesophyll. However, increased phase of salivation not followed by 

phloem ingestion and reduced phloem consumption in HRIGRU 6568, K10259, 

K10373, and BRA1644 suggests that plant resistance is phloem based in these 

genotypes.  

This study was designed to gain insight into the feeding behaviour of cabbage aphid and 

categorise the levels of resistance present in Brassica germplasm. The result from study 

are comparable to field assessment (chapter 2) except for accession K6926 which was 

susceptible (preferred) for aphid feeding, but was found highly resistant in EPG study. 

This difference in our study was thought to be due to short recording time (6 hours) as 

compared to that in field. The results clearly demonstrate the separation of genotypes 

into resistant and susceptible to aphid feeding on surface based, pathway based and 
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phloem based resistance mechanism. The three level approach adopted in this chapter 

will be further used in the transcriptomics study in chapter 4 to study the gene 

expression changes in theses genotypes in response to aphid feeding. 

3.6 CONCLUSIONS 

The feeding behaviour patterns of B.brassicae were studied using the EPG technique on 

various Brassica species and accession. The data presented demonstrate distinguishable 

patterns of feeding by cabbage aphid on Brassica germplasm. EPG measurement of 

feeding behaviour demonstrated significant differences in activity and acceptance of 

host plants by the cabbage aphid. Differences in feeding behaviour were observed both 

within accessions and also between species. This study indicates that various levels of 

resistance are present in the plants as part of their defence mechanism. The results 

showed that B.incana, B.villosa, B.montana and B.fruticulosa species were more 

resistant to aphid feeding as compared to B.oleracea. Another important observation 

was the variation in level of resistance among the accessions of the same species 

indicating that cabbage aphid clearly responds differently to different genotypes. The 

results also demonstrate that cabbage aphid applies different plant selection mechanisms 

depending on host plant. This result is well supported by previous reports(Powell & 

Hardie 2000; Goggin 2007). The results from this study strongly support and extend 

prior knowledge about aphid-plant interactions and successfully categorise the 16 

genotypes into resistant and susceptible groups which form a firm basis for the gene 

expression study to look for genes playing roles in resistance against aphids in 

Brassicas. 
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4.1 ABSTRACT 

Cabbage aphid (Brevicoryne brassicae) is a Brassica specialist phloem feeding insect. 

Insect feeding can induce substantial changes in the host plant transcriptome. Plants 

confront the insect with a variety of direct and indirect defence mechanisms. This study 

provides a never before attempted approach and scale of profiling the whole genome 

transcriptional response in the Brassica genotypes using Affymetrix Arabidopsis 

AraGene ST microarray in response to cabbage aphid feeding. The transcriptional 

changes in response to aphid feeding in 15 Brassica genotypes were compared in 

presence or absence of aphid feeding. Brassica genotypes were classified as resistant 

(non-preferred) and susceptible (preferred) based on response to aphid feeding in field 

assessment (Chapter 2) and Electrical penetration graph (Chapter 3) studies. The gene 

expression data analysis was done by using a novel approach to compare resistant and 

susceptible accessions based on field assessment, non-penetration phase (NP), Pathway 

phase (C), and Phloem phase (E2) parameters of Electrical Penetration Graph studies. It 

was noted that gene expression was highly regulated; as a different set of differentially 

expressing significant genes were found in all four groups in response to presence or 

absence of aphid feeding. The overrepresentation of gene probes responding to Gene 

Ontology terms such as response to stress, wounding, defensive proteins, protein 

kinases, cell wall modifications, glucosinolates and involvement in hormone signalling 

pathways indicated towards their crucial role in defence regulation in Brassicas during 

aphid attack. This approach provided an insight into the location of possible resistance 

factor and speculation about the role of candidate genes identified. Gene probes like 

NPC6 and PDCB3 are strong candidates to be tested for their specific role in surface 

resistance and PP2-A10 – At1g10155; At3g56240; At5g09650 for phloem-based 
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resistance in plants against aphid feeding. Among the important identified candidate 

genes, many were not previously reported and hence, form the set of novel targets 

which may improve our understanding of insect resistance mechanism in Brassica crops 

provided that their role is functionally verified which ultimately will be useful for 

Brassica crop improvement. To conclude, this study clearly indicates that Brassica 

plants respond to cabbage aphid attack at various levels and activates many defence 

related genes which can be specific to the location of resistance factor.   
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4.2 INTRODUCTION 

Plants being sessile cannot escape biotic and abiotic stresses. Due to their immobility , 

they have evolved different defence mechanisms in response to changing environmental 

conditions like light, temperature, and herbivore attack (Barah et al. 2013). At the 

present time, due to ever increasing population, food shortage, and climatic changes, it 

is even more important than ever to secure our crops from biotic and abiotic factors and 

to develop new more resistant crops (Ahuja et al. 2010).  In order to achieve this, it is 

crucial to understand the underlying defence mechanisms of crop plants in response to 

insect feeding. This has been studied for many decades (Hancock et al. 2015; 

Broekgaarden et al. 2007; Cole 1997a) but still a large knowledge gap is present, and a 

clear picture as to how the plants respond to these stresses does not exist, particularly in 

Brassicas. 

Biotic stress like insects, bacteria, fungi, viruses are the major cause of crop damage 

(Gurr & Rushton 2005; Ahuja et al. 2010). Insect pests results in 30% to 80% crop yield 

loss worldwide (Dedryver et al. 2010; Razaq et al. 2011). Resistance to insect feeding is 

a complex trait involving both physical and chemical factors. The herbivory defences of 

plant may be present constitutively or they may be induced on insect attack 

(Broekgaarden, Voorrips, et al. 2011; Kessler & Baldwin 2002; Schoonhoven et al. 

2005; Fürstenberg-Hägg et al. 2013). It is also known that different guilds of insects 

activate different  defence responses in plants (Broekgaarden, Voorrips, et al. 2011; 

Walling 2000; Kerchev et al. 2012; Foyer et al. 2015). For example De Vos et al. (2005) 

have shown that phloem feeding Myzus persicae and chewing insect Pieris rapae larvae 

activate completely different transcriptional responses in Arabidopsis thaliana. In 

addition, variation in transcription response of Gossypium hirstum L. and Arabidopsis 
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thaliana to sap-sucking aphids and whitefly have been reported (Dubey et al. 2013; 

Kempema et al. 2007). This indicates that plants have highly evolved and specific 

defence mechanisms for specialist and generalist insects (Barthel et al. 2014; Ali & 

Agrawal 2012). 

In general, the plant defence against aphids involves direct defence like structural 

barriers (trichomes, wax, and hairy leaves), toxic chemicals and secondary metabolites 

(alkaloids, phenolic compounds, oxidative enzymes, proteinase inhibitors), and indirect 

defence regulated by signalling pathways like salicylic acid (SA), jasmonic acid (JA) 

and ethylene which are activated in response to insect–plant interaction (Moran & 

Thompson 2001; Thompson & Goggin 2006; Fürstenberg-Hägg et al. 2013). The 

structural barriers  inhibit settling of  aphids on plants in the first instance, while other 

toxic chemicals and secondary metabolites can change aphid physiology and reduce 

plant suitability to aphid feeding (Bruce 2015b). A distinct glucosinolate myrosinase 

system is present in cruciferous plants like the model plant Arabidopsis thaliana as well 

as  Brassica crops (Ishida et al. 2014; Del Carmen Martínez-Ballesta et al. 2013). It acts 

by production of toxic compounds like isothiocyanates, epithionitriles, thiocyanates, 

and nitriles due to hydrolysis of glucosinolates by myrosinases (Grubb & Abel 2006; 

Bones & Rossiter 2006; De Vos et al. 2007). But specialist aphids like Brevicoryne 

brassicae, which feed primarily on Brassica species, have developed their own 

protective myrosinase enzyme system to defend themselves against glucosinolates 

(Jones et al. 2002; Schoonhoven et al. 2005; Pratt et al. 2008; Kazana et al. 2007). 

With the recent advances in the genomic technologies, it is now possible to analyse 

transcriptomics data and determine the underlying mechanisms and genes involved in 

response to insect attack. With the use of microarray technology, simultaneous 



                                                                                                                                                  
Chapter 4 

 

83 

 

monitoring of gene expression changes of thousands of genes is possible. The changes 

in the gene expression of plants in response to aphid attack using transcriptional 

profiling have been studied (Appel et al. 2014; Thompson & Goggin 2006; Couldridge 

et al. 2007; Smith & Boyko 2007). A number of genes coding for cell wall 

modifications, oxidative stress, transcription factors, and proteins involved in defence 

mechanisms have been implicated (Delp et al. 2009; Hui et al. 2003; Korth 2003).  In 

addition constitutive or induced gene expression levels of different genotypes under 

various stress conditions can be compared and  analysed to get better understanding of 

plant and insect interaction (Becher et al. 2004; Wang et al. 2008; Walia et al. 2005).  

Several studies using the model plants are now available which address plant and insect 

interaction at transcriptional level. The cell wall modification genes have been reported 

to have differential changes due to aphid feeding (Thompson & Goggin 2006). Not only 

this, salicylic acid (SA) and jasmonic acid (JA) regulated genes have been shown to 

have different gene expression when exposed to aphid feeding (Walling 2008). Foyer et 

al.( 2015) reported systematic analysis of phloem-feeding insect-induced transcriptional 

reprogramming in Arabidopsis and highlighted common features that reveal distinct 

responses to specialist and generalist insects. Gene expression profiling of Glutathione 

transferase genes in Zea mays (L.) seedlings infested with cereal Aphids revealed 

excessive superoxide anion radicals in response to insect treatments. In recent years, the 

progress has been made in our understanding of plant-aphid interaction, especially the 

molecular bases of plant resistance and defence against aphid feeding. The development 

of high-throughput technologies allows us a global view of gene expression changes 

during plant interactions with aphids (Dong et al. 2015; Xia et al. 2014). Advances in 

field of omics related disciplines, have led to an exponential growth of plant genomic, 
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transcriptomic, proteomic and metabolomic studies (Agarwal & Narayan 2015; 

Mochida & Shinozaki 2011; Katam 2015; Barh et al. 2015). Liang et al. (2015) used 

Deep-sequencing to analyse gene expression profiles in the whole genome to identify 

differentially expressed genes related to aphid resistance in cucumber (Cucumis 

sativus L.). RNA sequencing technology was used by Xia et al. (2014) to have a 

comprehensive view of gene expression changes induced by aphid feeding in 

chrysthemum morifolium. The use of multidimensional approaches for studying plant 

defences against insects is highly advocated by (Barah & Bones 2015) Gase & 

Baldwin (2012) demonstrated NGS to be a valuable tool to identify genetic loci for 

ecologically relevant traits to study transcriptomic changes in the non-model plant 

Nicotiana attenuata elicited by abiotic factors, as well as 34 different herbivore taxa and 

innumerable pathogens. High-throughput quantitative proteomics studies have gained 

substantive importance in plant research during the last few years to characterize 

proteomes and their differential modulation during plant development, and biotic and 

abiotic stresses (Barah & Bones 2015). A proteomic study was conducted to investigate 

physiological factors affecting feeding behaviour by larvae of the insect Plutella 

xylostella on herbivore-susceptible and herbivore-resistant A. thaliana recombinant 

inbred lines (RILs) (Collins et al. 2010). Proteomic analysis was used in rice (Oryza 

sativa L.) mutants to identify differentially induced proteins during infestation by brown 

plant hopper by Sangha et al. (2013). In spite of all these advances, still microarray 

technology is a highly preferred tool to study the gene expression changes. One big 

advantage of microarrays is that they have been around for decades, which means 

researchers have developed a lot of really useful data analysis tools. Also new 

technology like RNA-seq is cost prohibitive specially when dealing with large number 
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of samples. Not only this, microarrays have been used in cross-species gene expression 

studies as well (Broekgaarden et al. 2008; Lu et al. 2009; Broekgaarden et al. 2007). 

Microarrays designed for one species can be used to measure gene expression in another 

species because orthologous genes are likely to share high sequence similarity, 

especially between closely related species. As a result, probes designed for a gene in 

one species are able to hybridize with its ortholog. Broekgaarden et al.( 2008) 

successfully used Arabidopsis 70-mer oligonucleotide microarray to study 

transcriptional responses of cabbage aphid feeding in two Brassica cultivars. The 

nuclear gene expression profiles of flowers of a Brassica napus CMS line were analysed 

using Arabidopsis thaliana flower-specific cDNA microarrays (Carlsson et al. 2007).  

The use of Arabidopsis array to study gene expression in Brassica species is highly used 

and accepted (Gaeta et al. 2009; Nishizawa et al. 2012; Lee et al. 2004).  

In the current study, a microarray analysis approach is adopted to investigate 

transcriptional changes in non model plants of Brassica species in response to cabbage 

aphid feeding using Arabidopsis gene chip. 

4.2.1 Chapter aim 

The main aim of study was to compare the transcriptional response of resistant (non-

preferred) and susceptible (preferred) genotypes in response to cabbage aphid feeding. 

This study adapted a unique approach of categorising the genotypes into two distinct 

groups (resistant or susceptible) based on aphid performance on genotypes in the field 

and feeding behaviour experiments as discussed in previous chapters (Chapter 2&3). 

This approach not only helps in targeting the significant differentially expressed genes 

between two groups, but also provides opportunity to investigate different set of 
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transcripts identified by using different categorisations. It is expected that this approach 

will provide insight about the location of resistance factors in Brassicas. In addition, 

identification of potential candidate genes for cabbage aphid resistance which can be 

further investigated and used for crop improvement is proposed.  

4.3 Material and methods  

4.3.1 Brassica plants and cabbage aphid 

The transcriptional response of aphid feeding was assessed in fifteen Brassica genotypes 

shown in table 4.1 selected from the field and feeding behaviour assessments. The 

plants were grouped as resistant and susceptible based on analysis of previous chapter 2 

& 3 (Table 4.1). The preparation of plant material and insect culture was done in the 

same way as described previously in sections 3.3.1 to 3.3.4. Briefly, seeds from each 

selected accessions were planted individually in 6cm diameter pots containing 6 parts 

peat based compost (Humax multipurpose) to 1 part Silvaperl under 16:8 hour light: 

dark regime at 24±3 °C with 60-70% humidity in a plant growth room for 12 weeks. 

The only exception to the above regime was B.fruticulosa accessions which were grown 

only for 3 weeks as they began flowering much earlier compared to other accessions 

used in the study. The cabbage aphid was maintained on the host plant B.nigra in the 

insect room.  

For gene expression analysis under stress conditions, four plants (replicates) from each 

accession received 4 clip cages containing 15 aphids each, on lower surface of two fully 

expanded leaves while empty clip cages were put on the control plants. After 24 h of 

aphid infestation, the leaf area under the clip cages was collected and four leaf discs of 

one plant were pooled and immediately flash frozen in liquid nitrogen and stored at −80 
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°C until further use. Each accession had 4 replicates each aphid exposed and control 

treatment.   

Table 4.1: List of Brassica genotypes. The grouping into resistant (non-preferred) or susceptible 

(preferred) in response to aphid feeding is based on the previous field experiment (chapter 2) and 

feeding behaviour assessment using EPG study (Chapter 3). NP (non-penetration), Pathway, and E2 

(phloem feeding) are Electrical penetration Graph parameters used in grouping. The accession 

502202452 was not analyzed for feeding behaviour analysis due to insufficient number of replicates. 

 

S.no Seed 

no. 

Accession no. Species Resistant/Susceptible 

Field NP Pathway E2 

1 24 BRA 2856 B.incana Resistant Resistant Susceptible Resistant 

2 26 K 10373 B.incana Resistant Susceptible Susceptible Resistant 

3 37 K 9404 B.montana Susceptible Resistant Susceptible Susceptible 

4 38 BRA 1644 B.montana Resistant Resistant Susceptible Resistant 

5 199 BRA 2401 B.oleracea Susceptible Susceptible Resistant Susceptible 

6 321 57071 B.oleracea Resistant Susceptible Resistant Susceptible 

7 398 K 6926 B.villosa Susceptible Resistant Resistant Resistant 

8 401 K 10259 B.villosa Resistant Susceptible Resistant Resistant 

9 453 Bol2009-0080 B.fruticulosa Resistant Susceptible Resistant Susceptible 

10 454 Bol2009-0081 B.fruticulosa Susceptible Resistant Susceptible Susceptible 

11 54 BRS-0103 B.oleracea Resistant Susceptible Resistant Susceptible 

12 116 CGN18468 B.oleracea Resistant Resistant Resistant Resistant 

13 229 HRIGRU 6568 B.oleracea Resistant Resistant Resistant Resistant 

14 260 BRA 915 B.oleracea Susceptible Resistant Susceptible Susceptible 

15 430 502202452 B.oleracea Resistant x x x 

 

4.3.2 Sample RNA Preparation 

The frozen leaf samples were then processed to extract RNA. The RNA extraction was 

carried out using TRIzol® Reagent (Invitrogen; 15596-026). Total RNA was isolated 

from leaves using a modified TRIZOL extraction method as follows. Approximately 0.1 

g of plant leaf tissue was ground to a powder in liquid nitrogen using mortar and pestle, 

resuspended without thawing in 2 ml TRIZOL reagent (Invitrogen) by vortexing, and 
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incubated at 65◦C for 5 min with regular mixing. Cell debris was pelleted by 

centrifugation (30 min, 12,000 g, 4◦C) and the supernatant was extracted twice with 3ml 

chloroform with the aqueous phase recovered each time after centrifugation (20 min, 

12,000 × g, 4◦C). RNA was precipitated from this phase at room temperature for 5 min 

with 0.5 volumes isopropanol. The RNA pellet obtained after centrifugation (30 min, 

12,000 × g, 4◦C) was washed with 70% ethanol, recovered again by centrifugation, air 

dried for 5 min and resuspended in 200µl nuclease free water. QIAGEN’s RNeasy Plant 

Mini kit was used for further RNA purification following the manufacturer’s 

instructions. The quality of total RNA was then determined using Nanodrop ND-1000 

UV-VIS Spectrophotometer (Bio-Rad).  The RNA samples having 260/280 and 260 

/230 ratios above 1.8 were selected for further analysis. The 260/280 ratio corresponds 

to any protein, phenol or alcohol contamination whereas 260/230 ratio indicates 

presence of genomic DNA.  The RNA samples with a minimum of 100 ng/µl with 

260/280 ratio of  1.8 or above ratio were then analysed with Agilent 2100 Bioanalyser 

(Agilent Technologies, Santa Clara CA,USA) to check the integrity of RNA before 

hybridization. The integrity inspection of the RNA sample is important to determine 

that RNA is not degraded during the extraction process. The samples showing RIN ≥7.0 

were selected for gene expression microarray experiments. 

4.3.3 Minimum Information about a Microarray Experiment (MIAME) 

MIAME refers to the ‘Minimum Information about a Microarray Experiment’ that is 

required to enable the interpretation of the results of the microarray experiment 

unambiguously and potentially to reproduce the experiment (Brazma et al. 2001). This 

standardized method of performing microarray experiments was initiated by the 

Microarray Gene Expression Database group (MGED; http://www.mged.org). The 



                                                                                                                                                  
Chapter 4 

 

89 

 

guidelines ensure that the data generated are| correctly established for others to use for 

reference. The MIAME document includes all information regarding the experiment 

like array design, control elements, procedures used, environmental conditions, plant 

material etc. The MIAME detail for this study is given in Appendix II. 

4.3.4 Arabidopsis vs. Brassica array 

A pilot experiment was conducted to evaluate the best available Affymetrix platforms 

suitable for study. The two chips tested were Affymetrix Brassica Exon 1.0ST array 

containing 2.3 million 25-base oligonucleotides probes, as 338195 probe sets 

representing 135201 gene models with 15 probes per gene based on three different 

Brassica species (B.rapa, B.napus and B.oleracea) with additional variant contributions. 

The other chip used was the Affymetrix Arabidopsis Gene 1.0 ST array designed with 

600941 probes as 28500 gene level probe sets with a median of 22 probes gene. It is 

derived from the inbred Columbia Arabidopsis ecotype TAIR 10 genome annotation, 

containing 33602 genes and 14671 gene models [GEO Platform reference:GPL17416 

(Barrett et al. 2013)]. The test RNA sample  and the array signals were analysed using 

Partek Genomics Suite version 6.6 software (Partek.Inc 2014). 

The results from pilot experiment showed that Affymetrix Arabidopsis Gene 1.0 ST was 

more suitable for this study. Both array chips have many probe sets that have not yet 

been functionally annotated, but the number was much greater for the Brassica array as 

compared to Arabidopsis array. Most of the annotations on the Brassica array refer back 

to Arabidopsis annotations rather than independent Brassica annotations. The 

Arabidopsis chip is derived from the most updated Arabidopsis genome database (TAIR 

10) while the Brassica array is derived from TAIR9 annotations. In addition to the lack 
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of annotations and difficulty in downstream analysis, the Brassica arrays are 1.5 times 

more costly than the Arabidopsis array. Considering the large number of slides needed 

for the experiment, annotation richness, ease of downstream data analysis and more 

straightforward possibility to link to other research, the Affymetrix Arabidopsis Gene 

1.0 ST array was selected for this study.      

 

 

 

 

 

 

 

 

4.3.5 Microarray Hybridization 

Sample preparation 

The Ambion
®

 WT Expression Kit (Ambion Inc, Austin, TX, USA) was used to prepare 

single stranded cDNA for labelling and hybridisation as per instructions provided by 

manufacturer. All starting total RNA samples were quality assessed and RNA sample 

having minimum 250ng/µl concentration and have RIN value >7 or above was used to 

cDNA.  

End Labelling and hybridisation 

 

Figure 4.1: Schematic workflow for Affymetrix GeneChip one colour Microarray 

based gene expression experiment. 
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The single stranded cDNA was end labelled and hybridized according to user manual 

using Affymetrix
®
 GeneChip

®
 WT Terminal Labelling Kit (Affymetrix Inc, Santa 

Clara, CA, USA. Briefly, each 5.5µg of single stranded cDNA were labelled and 

hybridised to probe arrays. The hybridisation was performed at 45°C at 60rpm for 17 h. 

Total RNA samples were processed as recommended by the manufacturer (Affymetrix, 

Santa Clara, CA, USA). In brief, 250 ng/µg of total RNA was reverse transcribed using 

SuperScript II RT (Invitrogen, Carlsbad, CA, USA) and T7-(dT)24 primer. All the first 

strand cDNA was used for double-strand cDNA synthesis. Double-strand cDNA was 

purified by phenol–chloroform extraction and ethanol precipitation. One-half of the 

purified double-strand cDNA was used to generate biotin-labelled cRNA from an in 

vitro transcription reaction (IVT) using the Bio-Array High-Yield RNA Transcript 

Labeling Kit (Enzo Diagnostics, Farmingdale, NY, USA). The reaction product of IVT 

was purified using an RNeasy Mini Kit (Qiagen, Valencia, CA, USA) and quantified 

with a Biophotometer (Brinkmann, Westbury, NY, USA). Fifteen micrograms of 

fragmented cRNA was used to make 300 µL of hybridization cocktail, and 225 µL of 

the cocktail was used for target hybridization. The biotin-labelled targets were 

hybridized to GeneChip Arabidopsis Gene 1.0 ST Array (Affymetrix, Inc, Santa Clara, 

CA, USA) for 17 h at 45 °C with rotation at 60 r.p.m. in an Affymetrix GeneChip 

Hybridization Oven 640.  

Detection 

Staining, washing and scanning were performed according to GeneChip
®
 Expression 

Wash, Stain and Scan user manual using the GeneChip
®
 Hybridisation Wash and Stain 

Kit and Affymetrix 3000 7G scanner respectively. Scanning, signal intensity (.cel) files 

were then generated using the Affymetrix
®
 Command console software. 
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4.3.6 Data Analysis 

The Partek
®
 Genomics Suite

™
 version 6.6 (Partek Inc., St. Louis, MO, USA), software 

was used for analysing array signal. The raw data (.CEL) files were uploaded into 

Partek and normalised by Robust Multichip Analysis (RMA). Normalised signal values 

for each sample were used to perform one way Analysis of Variance Analysis of 

Variance (ANOVA) or independent sample t-tests for comparisons between groups. 

To analyse genome wide gene expression response(s) to aphid feeding in Brassica 

genotypes, 8 different comparisons were conducted. In each comparison, resistant vs. 

susceptible genotypes were compared based on either field assessment (Chapter 2) or 

feeding behaviour assessment (Chapter 3) in response to aphid feeding and absence of 

aphid feeding  conditions. The main purpose of analysing the same data set in different 

ways is to have a clear insight of genes which get differentially regulated at different 

levels and provide information regarding location of insect resistance factors. This 

analysis resulted in 8 lists of candidate genes based on the different comparisons (Table 

4.2). All candidate gene probes were selected based on a P-value < 0.05 and a fold 

change in expression level of ≥1.5 (up-regulated genes) to ≤ -1.5 (down regulated 

genes). The significantly expressed gene probes from each list were then used for GO 

enrichment and pathway enrichment analysis using Partek® Genomics Suite™ 

software.  The GO Enrichment Analysis was completed by setting ‘Arabidopsis  TAIR 

10 gene model’ as the reference and ‘Fisher exact test’ as the statistical test method, 

‘Hochberg False Discovery Rate (FDR)’ as the multi-test adjustment method, 0.05 as 

the p-value cut-off and restricted analysis to  functional groups with more than 2 genes  

as the minimum number of mapping entries. The gene probes were then annotated and 

defined according to the GO terms directly under the three main categories: biological 
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process, molecular function and cellular component. The focus of analysis was on the 

set of genes related to biological processes like biotic stress, response to wounding 

which could be linked to insect resistance.  

Table 4.2: Number of genes showing significant differential gene expression patterns at p-value cut 

off 0.05 and fold change of  ≥ 1.5 (up regulated) or ≤ -1.5 (down regulated) for comparison of 

accessions assessed as resistant (non-preferred) and susceptible (preferred) in the field trial and 

feeding behaviour experiments. The gene expression data was recorded for both presence and 

absence of aphid feeding for 24h. Each accession had 4 replicates. 

 

Gene  

expression 

Method of assessing 

Resistant (R) vs. 

No. of 

samples 

No. Of 

genes 

Up 

regulated  

Down 

regulated 

No. of 

annotat

ed 

genes 
Susceptible( S) (Accessions 

X reps) 

R S 

Non 

Induced 

(Absence of 

aphid 

feeding) 

Field trial 40 20 54 11 43 18 

EPG( NP based) 32 24 12 12 0 1 

EPG (Pathway Based) 32 24 153 12 141 31 

EPG( E2 Based) 28 28 94 20 74 46 

Induced 

(Presence 

of aphid 

feeding) 

Field trial 28 20 7 4 3 2 

EPG  (NP based) 24 20 160 58 102 34 

EPG (Pathway Based) 28 16 105 101 4 23 

EPG (E2 Based) 20 24 143 109 34 40 

 

4.4 Results 

4.4.1 Comparison of gene expression between resistant and susceptible Brassica 

accessions (as determined in field trial) of brassica in the absence and 

presence of Cabbage Aphid feeding 

Using Affymetrix Arabidopsis Gene 1.0 ST array, the transcriptional response of 

Brassica accessions in response to absence (non-induced) and presence (induced)  of 

feeding by cabbage aphid was studied. A total of 54 gene probes (18 annotated shown 
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in table 4.3) were found to be differentially regulated in non-induced (absence of aphid 

feeding) plants when resistant accessions were compared to susceptible. Out of these 54 

gene probes, 11 were found to be up-regulated whereas 43 were down-regulated. The 

complete list of gene probes with either known and unknown function or annotation is 

shown in supplementary table S4.1.  In contrast to this, only 7 gene probes (4 up-

regulated and 3 down-regulated) were found to be differentially expressed in response 

to cabbage aphid feeding for 24h (table 4.4)  ,  when resistant accessions were compared 

to susceptible ones. Only 2 genes were found commonly expressed between both 

induced and non-induced conditions.  

In non-induced plants, when 54 significant gene probes were further subjected to GO 

enrichment, it resulted in 417 GO enriched terms which were grouped under biological 

processes, molecular function and cellular component (shown in supplementary table 

S4.2). Only gene probes under biological process like response to stimulus, response to 

stress, developmental processes, protein metabolism, signal transduction and transport 

were further investigated as they could be linked with aphid resistance. The overlap 

between the categories was observed (see supplementary table S4.3). For example 3 out 

of 4 genes in response to stress category overlapped with genes in response to abiotic 

and biotic stimulus.  

The transcript for gene AT3G142101 was found to be a part of all significantly enriched 

groups. AT3G14210, also known as ESM1 or epithiospecifier modifier 1, was found to 

be repressed in the resistant accessions when compared to susceptible ones in non 

induced conditions. Another gene AT1G04680 found in majority of categories was also 

down regulated in resistant plants. It was noted that the majority of genes present in 

response to biotic or abiotic stress, response to stimulus were down regulated in 
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resistant plants under non-induced conditions. Also AT5G03760 a glucomannan 4-beta-

mannosyltransferase 9 was found to be down regulated. Among the Up-regulated genes 

under non induced conditions were AT5g45380 (DUR3), At5G24470 (PRR5), 

AT5G26570 (ATGWD3), AT2G3380 and AT3G46970 (PHS2).  

The seven genes were found significant in their differential gene expression, out of 

them, only 2 had known annotations. These are NPC6 (AT3G48610) and MIOX2 

(AT2G19800), and both these genes are involved in metabolic and cellular process. The 

results from GO enrichment for induced and non-induced comparison between resistant 

and susceptible accessions indicated the categories of genes important in response to 

insect attack. The comparison based on the field assessment showed the large number of 

significant constitutively expressed genes and only 7 significant genes in response to 

aphid feeding, where majority of genes were down regulated. 
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Table 4.3: List of differentially regulated significant probes in non-induced (absence of aphid feeding) plants when resistant (non-preferred) and susceptible 

(preferred) genotypes in response to aphid feeding in the field assessment were compared. Table shows Affymetrix column Id, Refseq ID, Locus ID, Gene 

Symbol, p-value, fold-change (FC)  and gene assignment according to available annotations or BLAST search ;. P < 0.05; Benjamini-Hochberg false 

discovery correction applied. A positive FC indicates that infestation causes up regulation; a negative FC indicates that infestation causes down regulation. 

Each genotype had 4 replicates. 

S.n

o 

Column 

ID 

RefSeq Locus ID    

(TAIR ID) 

Gene Symbol p-value FC gene_assignment 

1 13416526 NM_179889 AT2G33830 AT2G33830 0.0000 1.78 NM_179889 // AT2G33830 // dormancy/auxin associated protein // 

--- // 817950 /// NM_128 

2 13510863 NM_123906 AT5G45380 DUR3 0.0000 1.75 NM_123906 // DUR3 // urea-proton symporter DUR3 // --- // 

834574 /// AT5G45380.1 // DUR 

3 13505974 NM_122538 AT5G26570 ATGWD3 0.0000 1.61 NM_122538 // ATGWD3 // phosphoglucan, water dikinase // --- // 

832706 /// NM_001125808  

4 13456940 NM_114564 AT3G4697 PHS2 0.0001 1.56 NM_114564 // PHS2 // alpha-glucan phosphorylase isozyme H // --

- // 823850 /// AT3G4697 

5 13422411 NM_180142 AT2G47390 AT2G47390 0.0000 1.55 NM_180142 // AT2G47390 // probable glutamyl endopeptidase // -

-- // 819352 /// AT2G4739 

6 13530385 NM_122355 AT5G24470 PRR5 0.0000 1.53 NM_122355 // PRR5 // pseudo-response regulator 5 // --- // 832518 

/// AT5G24470.1 // PR 

7 13521663 NM_120457 AT5G03760 ATCSLA09 0.0001 -1.52 NM_120457 // ATCSLA09 // glucomannan 4-beta-

mannosyltransferase 9 // --- // 831734 ///  

8 13444498 NM_111300 AT3G04290 LTL1 0.0000 -1.53 NM_111300 // LTL1 // Li-tolerant lipase 1 // --- // 819584 /// 

AT3G04290.1 // LTL1 // L 

9 13474903 NM_119022 AT4G28780 AT4G28780 0.0001 -1.55 NM_119022 // AT4G28780 // GDSL esterase/lipase // --- // 828999 

/// AT4G28780.1 // AT4G 

10 13472434 NM_118481 AT4G23500 AT4G23500 0.0003 -1.57 NM_118481 // AT4G23500 // putative polygalacturonase // --- // 

828450 /// AT4G23500.1 / 

11 13363312 NM_100348 AT1G04680 AT1G04680 0.0001 -1.58 NM_100348 // AT1G04680 // putative pectate lyase 1 // --- // 

839452 /// AT1G04680.1 //  

12 13457531 NM_114720 AT3G48610 NPC6 0.0000 -1.58 NM_114720 // NPC6 // non-specific phospholipase C6 // --- // 

824021 /// AT3G48610.1 //  

13 13496908 NM_120408 AT5G03300 ADK2 0.0000 -1.58 NM_120408 // ADK2 // adenosine kinase 2 // --- // 831882 /// 
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Table 4.4: List of differentially regulated significant probes in Induced plants (presence of aphid feeding for 24h ) when resistant (non-preferred) and 

susceptible (preferred) genotypes in response to aphid feeding in the field assessment were compared. Table shows Affymetrix column Id, Refseq ID, Locus ID, 

Gene Symbol, p-value, fold-change (FC)  and gene assignment according to available annotations or BLAST search ;. P < 0.05; Benjamini-Hochberg false 

discovery correction applied. A positive FC indicates that infestation causes up regulation; a negative FC indicates that infestation causes down regulation. Each 

genotype had 4 replicates. 

S.N

o 

Column ID RefSeq Locus ID       

(TAIR ID) 

Gene 

Symbol 

p-

value 

Fold-

Change 

gene_assignment 

1 13455618       0.0000 2.65   

2 13343527       0.0000 2.52   

3 13535928       0.0000 1.58   

4 13457531 NM_114720 AT3G48610.1 NPC6 0.0000 -1.58 NM_114720 // NPC6 // non-specific phospholipase C6 // --- // 824021 

/// AT3G48610.1 //  

5 13369773       0.0000 -1.62   

6 13447532       0.0000 -1.77   

7 13410499 NM_127538 AT2G19800.1 MIOX2 0.0000 -1.99 NM_127538 // MIOX2 // inositol oxygenase // --- // 816499 /// 

AT2G19800.1 // MIOX2 // i 

AT5G03300.1 // ADK2 // ade 

14 13475502 AT4G30210.

1 

AT4G30210 ATR2 0.0001 -1.62 AT4G30210.1 // ATR2 // NADPH--cytochrome P450 reductase 2 

// --- // 829144 /// AT4G3021 

15 13545581 NM_112278 AT3G14210 ESM1 0.0001 -1.62 NM_112278 // ESM1 // epithiospecifier modifier 1 // --- // 820639 

/// AT3G14210.1 // ES 

16 13480348 NM_116322 AT4G00950 MEE47 0.0000 -1.65 NM_116322 // MEE47 // hypothetical protein // --- // 827948 /// 

AT4G00950.1 // MEE47 // 

17 13448456 BX825917 AT3G12587 AT3G12587 0.0000 -1.92 BX825917 // AT3G12587 // Oligosaccaryltransferase // --- // 

6240849 

18 13366768 AT1G61880.

1 

AT1G61880 AT3G03847 0.0001 -1.99 AT1G61880.1 // AT3G03847 // SAUR-like auxin-responsive 

protein // --- // 821118 /// AT1 
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4.4.2 Differences in Transcriptional Response to Feeding by Cabbage Aphid 

(Brevicoryne Brassicae) comparing resistant accessions with susceptible 

ones based on different parameters of EPG assessment. 

The Brassica accessions were grouped into resistant or susceptible based on 3 

parameters of EPG assessment; Non-Penetration, Pathway and E2 (Table 4.1).  

4.4.2.1 Gene expression analysis between resistant and susceptible accessions based 

on the non- probing parameter of EPG. 

The comparison between resistant and susceptible accessions based on non-penetration 

phase of EPG in response to presence or absence of cabbage aphid feeding was 

analysed. The results reveal that more genes were induced in response to aphid feeding 

as compared to non induced plants (Table 4.2). A total of 12 significant genes probes 

(all up-regulated) were found to be differentially regulated in non induced plants (Table 

4.5) in comparison to 160 genes for plants exposed to aphid feeding for 24h (34 

annotated gene probes shown in Table 4.6, complete list in Table S4.4). Out of 160 

genes, only 58 gene probes were induced while 102 were repressed in response to 

cabbage aphid feeding.  Only AT3G48610 (NPC6) gene probe had a defined gene 

annotation, so this gene list was not further subjected to GO enrichment. NPC6 was 

found to be significantly up regulated in non induced plants while in induced plants its 

expression levels were not significant.  

In contrast to non induced gene expression, a higher number of genes were found 

expressing differentially due to aphid feeding. The 34 gene probes were subjected to 

GO enrichment and gene probes under biological process were further investigated 

(Table S4.5 & Table S4.6). The GO category response to stimulus, response to stress, 
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cell organization and biogenesis, developmental processes, protein metabolism, signal 

transduction were among highly enriched categories. The genes KAS, Delta-tip, MYB2, 

CPN20 were included in category of response to stress while in the case of biotic and 

abiotic stresses PAS2, FAD3, FAD6 were noted.  Another gene probe enriched under 

both molecular and cellular function was PDCB3. The PDCB3 gene probe was found 

1.6 fold up regulated in resistant plants in response to aphid feeding. The deposition of 

callose in response to wounding and abiotic stress is reported in the GO category. 
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Table 4.5: Complete list of differentially regulated significant probes in non-induced (absence of aphid feeding) plants when resistant (non-

preferred) and susceptible (preferred) genotypes in response to aphid feeding in the Non-penetration parameter of EPG experiment were 

compared. Table shows Affymetrix column Id, Refseq ID, Locus ID, Gene Symbol, p-value, fold-change (FC)  and gene assignment according to 

available annotations or BLAST search ;. P < 0.05; Benjamini-Hochberg false discovery correction applied. A positive FC indicates that 

infestation causes up regulation; a negative FC indicates that infestation causes down regulation. 

S.no Column 

ID 

RefSeq Locus ID   

(TAIR ID) 

Gene 

Symbol 

p-value Fold-

Change 

gene_assignment 

1 13323795 --- --- --- 0.0000 1.62 --- 

2 13324507 --- --- --- 0.0000 1.62 --- 

3 13325533 --- --- --- 0.0000 1.62 --- 

4 13330813 --- --- --- 0.0000 1.62 --- 

5 13332045 --- --- --- 0.0000 1.62 --- 

6 13332055 --- --- --- 0.0000 1.62 --- 

7 13447311 --- --- --- 0.0000 3.69 --- 

8 13457531 NM_114720 AT3G48610 NPC6 0.0000 1.51 NM_114720 // NPC6 // non-specific phospholipase C6 // --

- // 824021 /// AT3G48610.1 //  

9 13526012 --- --- --- 0.0000 1.74 --- 

10 13414338 --- --- --- 0.0000 3.01 --- 

11 13511981 --- --- --- 0.0000 1.56 --- 

12 13490219 --- --- --- 0.0000 1.59 --- 
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Table 4.6 List of differentially regulated significant probes in Induced (presence of aphid feeding for 24h) plants when resistant (non-

preferred) and susceptible (preferred) genotypes in response to aphid feeding in the Non-penetration parameter of EPG experiment were 

compared. Table shows Affymetrix column Id, Refseq ID, Locus ID, Gene Symbol, p-value, fold-change (FC)  and gene assignment 

according to available annotations or BLAST search ;. P < 0.05; Benjamini-Hochberg false discovery correction applied. A positive FC 

indicates that infestation causes up regulation; a negative FC indicates that infestation causes down regulation. 

S.N

o 

Column ID RefSeq Locus ID    

(TAIR ID) 

Gene Symbol p-value Fold-

Change 

gene_assignment 

1 13460341 NM_115382 AT3G55240 AT3G55240 0.0000 2.51 NM_115382 // AT3G55240 // 

hypothetical protein // --- // 824690 /// 

AT3G55240.1 // AT3G 

2 13429022 NM_112495 AT3G16240 DELTA-TIP 0.0000 2.25 NM_112495 // DELTA-TIP // aquaporin 

TIP2-1 // --- // 820870 /// AT3G16240.1 // 

DELTA-TI 

3 13414696 NM_179808 AT2G29980 FAD3 0.0000 2 NM_179808 // FAD3 // omega-3 fatty 

acid desaturase // --- // 817548 /// 

AT2G29980.2 //  

4 13538982 NM_124700  AT5G53210 SPCH 0.0000 1.98 NM_124700 // SPCH // transcription 

factor SPEECHLESS // --- // 835402 /// 

AT5G53210.1 / 

5 13510281 NM_123769 AT5G44020 AT5G44020 0.0000 1.96 NM_123769 // AT5G44020 // HAD 

superfamily, subfamily IIIB acid 

phosphatase // --- // 83 

6 13459298 NM_115154 AT3G52940 FK 0.0001 1.8 NM_115154 // FK // delta(14)-sterol 

reductase // --- // 824460 /// NM_202691 // 

FK // d 

7 13458820 NM_115041 AT3G51820 G4 0.0000 1.76 NM_115041 // G4 // chlorophyll synthase 

// --- // 824345 /// AT3G51820.1 // G4 // 

chlor 
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8 13334904 NM_100137 AT1G02560 CLPP5 0.0003 1.72 NM_100137 // CLPP5 // ATP-dependent 

Clp protease proteolytic subunit 5 // --- // 

839433 

9 13369708 NM_101695 AT1G18370 HIK 0.0000 1.7 NM_101695 // HIK // kinesin HINKEL // 

--- // 838418 /// AT1G18370.1 // HIK // 

kinesin H 

10 13369782 NM_202129 AT1G18640 PSP 0.0000 1.7 NM_202129 // PSP // phosphoserine 

phosphatase // --- // 838445 /// 

AT1G18640.2 // PSP / 

11 13369792 NM_101723 AT1G18650 PDCB3 0.0000 1.65 NM_101723 // PDCB3 // plasmodesmata 

callose-binding protein 3 // --- // 838446 /// 

AT1G 

12 13495802 NM_120132 AT4G39710 FKBP16-2 0.0007 1.62 NM_120132 // FKBP16-2 // FK506-

binding protein 16-2 // --- // 830126 /// 

AT4G39710.1 // 

13 13444762 NM_111372 AT3G05000 AT3G05000 0.0000 1.59 NM_111372 // AT3G05000 // transport 

protein particle (TRAPP) component // --- 

// 819661 

14 13337416 NM_100725 AT1G08520 ALB1 0.0000 1.57 NM_100725 // ALB1 // magnesium-

chelatase subunit chlD // --- // 837374 /// 

AT1G08520.1  

15 13461438 NM_115674 AT3G58120 BZIP61 0.0000 1.56 NM_115674 // BZIP61 // basic-leucine 

zipper transcription factor family protein // 

---  

16 13504088 NM_0012034

21 

AT5G20720 CPN20 0.0000 1.55 NM_001203421 // CPN20 // chaperonin 

20 // --- // 832195 /// AT5G20720.3 // 

CPN20 // cha 

17 13524399 NM_0012033

48 

AT5G10480 PAS2 0.0000 1.54 NM_001203348 // PAS2 // very-long-

chain (3R)-3-hydroxyacyl-[acyl-carrier 

protein] dehyd 

18 13463479 NM_116156 AT3G62910 APG3 0.0000 1.52 NM_116156 // APG3 // peptide chain 

release factor 1 // --- // 825466 /// 



                                                                                                                                                  Chapter 4 

 

103 

 

AT3G62910.1 // 

19 13532040 NM_0010851

62 

AT5G33370 AT5G33370 0.0004 1.52 NM_001085162 // AT5G33370 // GDSL 

esterase/lipase // --- // 833315 /// 

NM_122861 // AT5 

20 13528015 NM_121875 AT5G18700 RUK 0.0000 1.52 NM_121875 // RUK // protein kinase 

family protein with ARM repeat domain // 

--- // 8319 

21 13491800 NM_119243 AT4G30950 FAD6 0.0000 1.51 NM_119243 // FAD6 // omega-6 fatty 

acid desaturase // --- // 829220 /// 

AT4G30950.1 //  

22 13536190 NM_123998 AT5G46290 KAS 0.0000 1.51 NM_123998 // KAS I // beta-ketoacyl-

[acyl carrier protein] synthase I // --- // 

834671  

23 13500671 NM_121256  AT5G1218 CPK17 0.0000 -1.52 NM_121256 // CPK17 // calcium-

dependent protein kinase 17 // --- // 

831091 /// AT5G1218 

24 13342632 NM_101911 AT1G20600 AT1G20600 0.0002 -1.53 NM_101911 // AT1G20600 // AP2/B3-

like transcriptional factor family protein // 

--- // 8 

25 13406076 NM_130287  AT2G47190 MYB2 0.0000 -1.54 NM_130287 // MYB2 // R2R3 MYB 

DNA binding domain transcription factor 

// --- // 819332  

26 13545317 ATMG00770.

1 

ATMG00770.1 ArthMp069 0.0002 -1.55 ATMG00770.1 // ArthMp069 // 

hypothetical protein // --- // 4024989 

27 13545283 ATMG00470.

1 

ATMG00470.1 ArthMp039 0.0000 -1.56 ATMG00470.1 // ArthMp039 // 

hypothetical protein // --- // 3371332 

28 13392218 NM_126731 AT2G07674 AT2G07674 0.0001 -1.58 NM_126731 // AT2G07674 // 

hypothetical protein // --- // 815346 /// 

AT2G07674.1 // AT2G 

29 13408306 NM_147272 AT2G07772 AT2G07772 0.0002 -1.6 NM_147272 // AT2G07772 // 

hypothetical protein // --- // 815359 /// 

AT2G07772.1 // AT2G 
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30 13424117 NM_111315 AT3G04440 AT3G04440 0.0001 -1.79 NM_111315 // AT3G04440 // plasma-

membrane choline transporter family 

protein // --- //  

31 13545363 ATMG01110.

1 

ATMG01110.1 ArthMp097 0.0002 -1.88 ATMG01110.1 // ArthMp097 // 

hypothetical protein // --- // 4024973 

32 13545411 ATMG01410.

1 

ATMG01410.1 ArthMp112 0.0000 -2.45 ATMG01410.1 // ArthMp112 // 

hypothetical protein // --- // 4024966 

33 13545128 NM_147273 AT2G07774 AT2G07774 0.0000 -2.57 NM_147273 // AT2G07774 // 

hypothetical protein // --- // 815361 /// 

AT2G07774.1 // AT2G 

34 13545190 NM_147273 AT2G07774 AT2G07774 0.0000 -2.57 NM_147273 // AT2G07774 // 

hypothetical protein // --- // 815361 /// 

AT2G07774.1 // AT2G 
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4.4.2.2 Gene expression analysis between resistant and susceptible accessions based 

on the Pathway parameter of EPG.. 

The results from the gene expression comparison between resistant and susceptible 

accessions under induced and non-induced conditions reveal that constitutively, the 

gene expression is negatively regulated (i.e. more genes are down regulated) . Out of a 

total of 153 significant genes differentially expressed in the absence of aphid feeding, 

141 were down-regulated and only 12 were up-regulated (Table 4.7, only 13 annotated 

gene probes shown and complete list in table S4.7). In contrast to this, although the 

number of significant gene probes differentially expressed in response to aphid feeding 

was 105, 96.1% (101) were up-regulated and only 3.9% (4) down-regulated (Table 4.8 

,14 only annotated gene probes and complete list in table S4.10).  

The GO enrichment analysis of non induced plants identified 14 significantly 

overrepresented groups under biological processes, cellular component and molecular 

function. These groups were further categorised according to functional characterisation 

(see table S4.8 and Table S4.9). The groups enriched under cellular component and 

molecular function were organelles part, membrane; cell part, binding, catalytic activity, 

transport activity, and electron carrier activity. In addition response to stress, response 

to stimulus, developmental process and reproductive process were among significantly 

overrepresented biological processes. On other hand the GO enrichment for induced 

plants showed 10 significantly overrepresented groups. The main categories enriched 

for biological process were response to stimulus, biological regulation and cellular 

process while membrane component, extracellular region, cell part, cell junction, and 
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organelle were overrepresented under cellular component along with catalytic activity 

and binding under molecular function (Table S4.11 and Table S4.12). When the groups 

were further analysed for non induced expression the gene probe AT5G25190 (ESE3) a 

member of ethylene induced response factor family, involved in ethylene activated 

signalling pathways was identified. Among the up-regulated genes probes AT2G07695, 

AT2G30600, ATMG00990 and AT2G43150 are reported to be located in the membrane 

or cytoplasm.    

When the gene probes in induced plants were investigated most of them were annotated 

as hypothetical proteins. However, AT1G68760 (NUDX1) first defined nudix hydrolase 

in Arabidopsis had more than 2 fold up-regulated change in its expression in induced 

plants when resistant accessions were compared to susceptible ones.   
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Table 4.7: List of differentially regulated significant probes in Non-Induced (absence of aphid feeding) plants when resistant (non-preferred) and 

susceptible (preferred) genotypes in response to aphid feeding in the Pathway parameter of EPG experiment were compared. Table shows 

Affymetrix column Id, Refseq ID, Locus ID, Gene Symbol, p-value, fold-change (FC)  and gene assignment according to available annotations or 

BLAST search ;. P < 0.05; Benjamini-Hochberg false discovery correction applied. A positive FC indicates that infestation causes up regulation; a 

negative FC indicates that infestation causes down regulation. 

S.

no 

Column ID RefSeq Gene 

Symbol 

Locus ID   

(TAIR ID) 

p-

value 

Fold-

Change 

gene_assignment 

1 13392220 NM_147270 AT2G07751 AT2G07751 0.0000 2.17 

NM_147270 // AT2G07751 // NADH-ubiquinone 

oxidoreductase chain 3 // --- // 815347 /// A 

2 13545349 ATMG00990.1 ArthMp086 ATMG00990.1 0.0000 1.87 

ATMG00990.1 // ArthMp086 // NADH 

dehydrogenase subunit 3 // --- // 3890475 /// 

ATMG0099 

3 13392253 NM_126745 AT2G07695 AT2G07695 0.0001 1.67 

NM_126745 // AT2G07695 // cytochrome C oxidase 

subunit II-like, transmembrane domain // 

4 13398991 NM_001202713 AT2G30600 AT2G30600 0.0000 1.56 

NM_001202713 // AT2G30600 // BTB/POZ 

domain-containing protein // --- // 817610 /// AT2 

5 13503687 NM_121978 AT5G19730 AT5G19730 0.0000 1.56 

NM_121978 // AT5G19730 // probable 

pectinesterase 53 // --- // 832093 /// AT5G19730.1 / 

6 13404388 NM_129877 AT2G43150 AT2G43150 0.0000 1.51 

NM_129877 // AT2G43150 // Proline-rich extensin-

like family protein // --- // 818917 // 

7 13530775 NM_122428 ESE3 AT5G25190 0.0000 -1.54 

NM_122428 // AT5G25190 // ethylene-responsive 

transcription factor ERF003 // --- // 832 

8 13425273 NM_111570 AT3G06895 AT3G06895 0.0003 -1.64 

NM_111570 // AT3G06895 // hypothetical protein // 

--- // 819875 /// AT3G06895.1 // AT3G 

9 13335368 NM_202776 AT4G03410 AT4G03410 0.0000 -2.24 

NM_202776 // AT4G03410 // peroxisomal 

membrane (Mpv17/PMP22) family protein // --- // 8 

10 13356880 NM_118771 AT4G26380 AT4G26380 0.0000 -2.58 

NM_118771 // AT4G26380 // cysteine/histidine-rich 

C1 domain-containing protein // --- / 
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11 13402182 NM_114974 AT3G51140 AT3G51140 0.0000 -2.81 

NM_114974 // AT3G51140 // hypothetical protein // 

--- // 824278 /// AT3G51140.1 // AT3G 

12 13544460 NM_001203547 AT5G45720 AT5G45720 0.0000 -4.73 

NM_001203547 // AT5G45720 // AAA-type 

ATPase family protein // --- // 834611 /// AT5G45 

13 13445024 NM_001161121 AT3G05520 AT3G05520 0.0000 -4.76 

NM_001161121 // AT3G05520 // F-actin-capping 

protein subunit alpha // --- // 819717 /// 

 

Table 4.8:  List of differentially regulated significant probes in Induced (presence of aphid feeding for 24h) plants when resistant (non-preferred) 

and susceptible (preferred) genotypes in response to aphid feeding in the Pathway parameter of EPG experiment were compared. Table shows 

Affymetrix column Id, Refseq ID, Locus ID, Gene Symbol, p-value, fold-change (FC) and gene assignment according to available annotations or 

BLAST search ;. P < 0.05; Benjamini-Hochberg false discovery correction applied. A positive FC indicates that infestation causes up regulation; a 

negative FC indicates that infestation causes down regulation. 

S.no Column ID Locus-ID        

(TAIR ID) 

Gene Symbol RefSeq p-value Fold-

Change 

gene_assignment 

1 13545411 ATMG01410.1 ArthMp112 ATMG01410.1 0.000 2.46041 ATMG01410.1 // ArthMp112 // hypothetical 

protein // --- // 4024966 

2 13545363 ATMG01110.1 ArthMp097 ATMG01110.1 0.000 2.36064 ATMG01110.1 // ArthMp097 // hypothetical 

protein // --- // 4024973 

3 13428711 AT3G15534 AT3G15534 NM_001125164 0.000 2.13931 NM_001125164 // AT3G15534 // hypothetical 

protein // --- // 6240914 /// AT3G15534.1 //  

4 13408306 AT2G07772 ATT2G07772 NM_147272 0.000 2.11543 NM_147272 // AT2G07772 // hypothetical protein 

// --- // 815359 /// AT2G07772.1 // AT2G 

5 13452267 AT1G68760.1 NUDX1 AT1G68760.1 0.000 2.02776 AT1G68760.1 // NUDX1 // nudix hydrolase 1 // --- 

// 843207 

6 13475949 AT2G24390 AT2G24390 NM_001202662 0.000 2.01753 NM_001202662 // AT2G24390 // AIG2-like family 

protein // --- // 816974 /// AT2G24390.3  

7 13545317 ATMG00770.1 ArthMp069 ATMG00770.1 0.000 1.82219 ATMG00770.1 // ArthMp069 // hypothetical 

protein // --- // 4024989 

8 13545283 ATMG00470.1 ArthMp039 ATMG00470.1 0.000 1.71183 ATMG00470.1 // ArthMp039 // hypothetical 

protein // --- // 3371332 
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9 13455565 AT3G42475 AT3G42475 NM_001125284 0.000 1.69745 NM_001125284 // AT3G42475 // hypothetical 

protein // --- // 6241006 /// AT3G42475.1 //  

10 13392342 AT2G07787 AT2G07787 NM_201712 0.000 1.60657 NM_201712 // AT2G07787 // hypothetical protein 

// --- // 2745469 /// AT2G07787.1 // AT2 

11 13392334 AT2G07827 AT2G07827 NM_001161035 0.000 1.55211 NM_001161035 // AT2G07827 // hypothetical 

protein // --- // 7922309 /// AT2G07827.2 //  

12 13383470 AT1G65346 AT1G65346 NM_001160976 0.000 1.53487 NM_001160976 // AT1G65346 // hypothetical 

protein // --- // 7922305 /// AT1G65346.1 //  

13 13427325 AT3G12760 AT3G12760 AT3G12760.1 0.000 -

1.58079 

AT3G12760.1 // AT3G12760 // hypothetical 

protein // --- // 820458 /// NM_112112 // AT3G 

14 13490383 AT4G27450 AT4G27450 NM_118880 0.000 -

1.61607 

NM_118880 // AT4G27450 // aluminum induced 

protein with YGL and LRDR motifs // --- // 8 
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4.4.2.3 Gene expression analysis between resistant and susceptible accessions based 

on the E2 parameter of EPG. 

The gene expression comparison of resistant and susceptible accessions in induced and 

non-induced plants showed that number of significant gene probes differentially 

expressed upon insect attack (143) is more in comparison with non-induced plants (94). 

In absence of aphid feeding, 74 genes were down-regulated in comparison with 20 up-

regulated genes (30 gene probes shown in table 4.9, while supplementary table S4.13 

show complete list of all significant gene probes). In contrast, more genes were found to 

be up-regulated (109) after exposure to aphids in resistant vs. susceptible plants (Table 

4.10 and Table S4.16). 

The GO enrichment analysis of the non induced group showed 548 GO terms which 

were characterised under biological processes, cellular component and molecular 

function (Supplementary Table S4.14 and S4.15). The important GO categories 

overrepresented under biological process category in non induced comparison were 

noted to be response to stimulus, single cell organism process, establishment of 

localisation, cellular and metabolic process, biological regulation. The response to 

stimulus was further investigated as this showed the highest enrichment. The gene probe 

AT5G09650 (PPa6) encoding a protein with pyrophosphatase activity was enriched for 

detection and response to biotic stimulus, glucosinolate biosynthetic process, and 

jasmonic acid mediated signalling pathway.  The gene probe AT1G10760 (SEX1) also 

known as starch excess gene was found up regulated in resistant plants. In the non-

induced plants, gene probe AT1G10155 (PP2-A10) was also found to be two-fold 

down-regulated differentially expressed gene. The Gene enrichment analysis details for 

the induced group are shown in supplementary table S4.17 and 4.18. The gene probe in 
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response to stress in induced plants AT4G13480 (IIL1) is involved in glucosinolate 

biosynthesis. This was found up regulated in resistant plants in response to aphid 

feeding in our result. The other gene probe AT4G26870 is class11 aminoacyl-tRNA and 

biotinsynthetase super family protein involved in regulation of meristem growth, RNA 

interference and virus induced gene silencing was 4.8 fold up-regulated in resistant 

plants in response to aphid feeding. Also AT5G23540, AT1G11840, were found up-

regulated while AT3G21860 (SK10) is SKP1-like protein 10 involved in response to 

stress and response to misfolded protein and AT3G13750 (BGAL1) involved in 

carbohydrate metabolic process and regulation of protein localisation, at cell wall and 

plasmodesma was found down regulated.  All these gene probes were enriched under 

response to stress in Gene Ontology terms.  
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Table 4.9: List of differentially regulated significant probes in Non-Induced (absence of aphid feeding) plants when resistant (non-preferred) and 

susceptible (preferred) genotypes in response to aphid feeding in the E2 parameter of EPG experiment were compared. Table shows Affymetrix 

column Id, Refseq ID, Locus ID, Gene Symbol, p-value, fold-change (FC)  and gene assignment according to available annotations or BLAST search ;. 

P < 0.05; Benjamini-Hochberg false discovery correction applied. A positive FC indicates that infestation causes up regulation; a negative FC indicates 

that infestation causes down regulation. 

S.

no 

Column 

ID 

RefSeq Locus ID  

(TAIR ID) 

Gene 

Symbol 

p-

value 

Fold-

Change 

gene_assignment 

1 13366330 NM_100952 AT1G10760 SEX1 0.0004 1.89 NM_100952 // SEX1 // alpha-glucan water dikinase 1 // --- // 

837619 /// AT1G10760.1 //  

2 13416526 NM_179889 AT2G33830 AT2G33830 0.0000 1.88 NM_179889 // AT2G33830 // dormancy/auxin associated 

protein // --- // 817950 /// NM_128 

3 13381189 NM_104696 AT1G60040 AGL49 0.0000 1.71 NM_104696 // AGL49 // protein agamous-like 49 // --- // 

842298 /// AT1G60040.1 // AGL49 

4 13444738 NM_00112510

2 

AT3G04855 AT3G04855 0.0000 1.70 NM_001125102 // AT3G04855 // hypothetical protein // --- // 

6241394 /// AT3G04855.1 //  

5 13456940 NM_114564 AT3G46970 PHS2 0.0000 1.68 NM_114564 // PHS2 // alpha-glucan phosphorylase isozyme 

H // --- // 823850 /// AT3G4697 

6 13530385 NM_122355 AT5G24470 PRR5 0.0000 1.66 NM_122355 // PRR5 // pseudo-response regulator 5 // --- // 

832518 /// AT5G24470.1 // PR 

7 13350898 NM_104039 AT1G51610 AT1G51610 0.0000 1.58 NM_104039 // AT1G51610 // metal tolerance protein C4 // --- 

// 841586 /// AT1G51610.1 / 

8 13519470 NM_180940 AT5G64940 ATH13 0.0000 -1.50 NM_180940 // ATH13 // putative ABC transporter // --- // 

836618 /// AT5G64940.1 // ATH1 

9 13432672 NM_113324 AT3G24190 AT3G24190 0.0002 -1.51 NM_113324 // AT3G24190 // ABC1 protein kinase 6 // --- // 

822005 /// AT3G24190.1 // AT3 

10 13509784 NM_123638 AT5G42740 AT5G42740 0.0000 -1.53 NM_123638 // AT5G42740 // glucose-6-phosphate isomerase 

// --- // 834283 /// AT5G42740. 

11 13545151 NM_126752 AT2G07708 AT2G07708 0.0000 -1.54 NM_126752 // AT2G07708 // hypothetical protein // --- // 

815383 /// AT2G07708.1 // Arth 

12 13496908 NM_120408 AT5G03300 ADK2 0.0001 -1.55 NM_120408 // ADK2 // adenosine kinase 2 // --- // 831882 /// 

AT5G03300.1 // ADK2 // ade 

13 13532469 NM_122988 AT5G35970 AT5G35970 0.0004 -1.55 NM_122988 // AT5G35970 // P-loop containing nucleoside 
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triphosphate hydrolases superfam 

14 13460707 NM_115482 AT3G56240 CCH 0.0000 -1.56 NM_115482 // CCH // copper chaperone // --- // 824790 /// 

AT3G56240.1 // CCH // copper  

15 13490658 NM_118942 AT4G28030 AT4G28030 0.0005 -1.56 NM_118942 // AT4G28030 // GCN5-related N-

acetyltransferase (GNAT) family protein // --- 

16 13523904 NM_121002 AT5G09650 PPa6 0.0000 -1.56 NM_121002 // PPa6 // soluble inorganic pyrophosphatase 1 // 

--- // 830824 /// AT5G09650 

17 13361877 NM_099996 AT1G01140 CIPK9 0.0000 -1.56 NM_099996 // CIPK9 // CBL-interacting serine/threonine-

protein kinase 9 // --- // 83934 

18 13341008 NM_101533 AT1G16720 HCF173 0.0003 -1.58 NM_101533 // HCF173 // high chlorophyll fluorescence 

phenotype 173 protein // --- // 83 

19 13426735 NM_111953 AT3G11170 FAD7 0.0001 -1.59 NM_111953 // FAD7 // fatty acid desaturase 7 // --- // 820288 

/// AT3G11170.1 // FAD7 / 

20 13390224 NM_106724 AT1G80760 NIP6;1 0.0000 -1.59 NM_106724 // NIP6;1 // aquaporin NIP6-1 // --- // 844415 /// 

AT1G80760.1 // NIP6;1 // a 

21 13450603 NM_112631 AT3G17510 CIPK1 0.0000 -1.61 NM_112631 // CIPK1 // CBL-interacting serine/threonine-

protein kinase 1 // --- // 82101 

22 13529974 NM_122271 AT5G23660 MTN3 0.0000 -1.62 NM_122271 // MTN3 // bidirectional sugar transporter 

SWEET12 // --- // 832431 /// AT5G2 

23 13429022 NM_112495 AT3G16240 DELTA-TIP 0.0003 -1.66 NM_112495 // DELTA-TIP // aquaporin TIP2-1 // --- // 

820870 /// AT3G16240.1 // DELTA-TI 

24 13475502 AT4G30210.1 AT4G30210 ATR2 0.0000 -1.69 AT4G30210.1 // ATR2 // NADPH--cytochrome P450 

reductase 2 // --- // 829144 /// AT4G3021 

25 13366768 AT1G61880.1 AT3G03847 AT3G03847 0.0001 -1.96 AT1G61880.1 // AT3G03847 // SAUR-like auxin-responsive 

protein // --- // 821118 /// AT1 

26 13366039 NM_148455 AT1G10155 PP2-A10 0.0000 -2.01 NM_148455 // PP2-A10 // phloem protein 2-A10 // --- // 

837553 /// AT1G10155.1 // PP2-A1 

27 13387345 AK221799 AT5G60280 AT5G60280 0.0000 -2.08 AK221799 // AT5G60280 // concanavalin A-like lectin 

kinase-like protein // --- // 83615 

28 13540082 NM_125031 AT5G56480 AT5G56480 0.0000 -2.12 NM_125031 // AT5G56480 // bifunctional inhibitor/lipid-

transfer protein/seed storage 2S 

29 13337838 NM_00120354 AT5G45720 AT5G45720 0.0002 -3.58 NM_001203547 // AT5G45720 // AAA-type ATPase family 
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7 protein // --- // 834611 /// AT5G45 

30 13445024 NM_00116112

1 

AT3G05520 AT3G05520 0.0002 -3.58 NM_001161121 // AT3G05520 // F-actin-capping protein 

subunit alpha // --- // 819717 /// 

 

Table 4.10: List of differentially regulated significant probes in Induced (presence of aphid feeding for 24h) plants when resistant (non-preferred) 

and susceptible (preferred) genotypes in response to aphid feeding in the E2 parameter of EPG experiment were compared. Table shows Affymetrix 

column Id, Refseq ID, Locus ID, Gene Symbol, p-value, fold-change (FC)  and gene assignment according to available annotations or BLAST search ;. 

P < 0.05; Benjamini-Hochberg false discovery correction applied. A positive FC indicates that infestation causes up regulation; a negative FC indicates 

that infestation causes down regulation. 

S.no Column 

ID 

Locus ID 

(TAIR ID) 

Gene 

Symbol 

RefSeq p-value Fold-

Change 

gene_assignment 

1 13408386 AT2G07825 AT2G07825 NM_001124816 0.0000 6.17 NM_001124816 // AT2G07825 // hypothetical protein 

// --- // 6240956 /// AT2G07825.1 //  

2 13474015 AT4G26870 AT4G26870 NM_118821 0.0000 4.82 NM_118821 // AT4G26870 // Asx tRNA synthetase 

(AspRS/AsnRS) class II core domain-contat 

3 13428711 AT3G15534 AT3G15534 NM_001125164 0.0000 2.21 NM_001125164 // AT3G15534 // hypothetical protein 

// --- // 6240914 /// AT3G15534.1 //  

4 13375015 AT1G32900. AT1G32900 NM_103023 0.0000 1.91 NM_103023 // AT1G32900 // granule-bound starch 

synthase // --- // 840184 /// AT1G32900. 

5 13370518 AT1G20575 AT1G20575 NM_101908 0.0009 1.91 NM_101908 // AT1G20575 // dolichol-phosphate 

mannosyltransferase // --- // 838646 /// A 

6 13503687 AT5G19730 AT5G19730 NM_121978 0.0000 1.86 NM_121978 // AT5G19730 // probable pectinesterase 

53 // --- // 832093 /// AT5G19730.1 / 

7 13428254 AT3G14720 MPK19 NM_112333 0.0000 1.78 NM_112333 // MPK19 // mitogen-activated protein 

kinase 19 // --- // 820700 /// AT3G1472 

8 13342559 AT1G20260 AT1G20260 NM_101877 0.0005 1.71 NM_101877 // AT1G20260 // V-type proton ATPase 

subunit B3 // --- // 838614 /// AT1G2026 

9 13484009 AT4G13430 IIL1 NM_117417 0.0000 1.69 NM_117417 // IIL1 // 3-isopropylmalate dehydratase // 

--- // 826975 /// AT4G13430.1 //  

10 13392224 AT2G07676 AT2G07676 NM_126733 0.0004 1.68 NM_126733 // AT2G07676 // hypothetical protein // --- 
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// 815350 /// AT2G07676.1 // AT2G 

11 13355217 AT1G64680 AT1G64680 NM_105143 0.0000 1.67 NM_105143 // AT1G64680 // hypothetical protein // --- 

// 842776 /// AT1G64680.1 // AT1G 

12 13445595 AT3G06550 AT3G06550 NM_001084647 0.0000 1.67 NM_001084647 // AT3G06550 // O-acetyltransferase 

family protein // --- // 819834 /// AT 

13 13524637 AT5G10946 AT5G10946 BX832040 0.0000 1.67 BX832040 // AT5G10946 // hypothetical protein // --- // 

6241503 

14 13355407 AT1G65260 PTAC4 NM_105199 0.0000 1.62 NM_105199 // PTAC4 // plastid transcriptionally active 

4 // --- // 842833 /// AT1G65260 

15 13524498 AT5G10730 AT5G10730 NM_121111 0.0001 1.61 NM_121111 // AT5G10730 // Rossmann-fold NAD(P)-

binding domain-containing protein // --- 

16 13465459 AT4G03950 AT4G03950 NM_116633 0.0000 1.59 NM_116633 // AT4G03950 // Nucleotide/sugar 

transporter family protein // --- // 825705  

17 13416771 AT2G34470 UREG NM_128999 0.0000 1.57 NM_128999 // UREG // urease accessory protein G // --

- // 818010 /// NM_001036404 // UR 

18 13455565 AT3G42475 AT3G42475 NM_001125284 0.0006 1.57 NM_001125284 // AT3G42475 // hypothetical protein 

// --- // 6241006 /// AT3G42475.1 //  

19 13377872 AT1G50430 DWF5 NM_103926 0.0000 1.56 NM_103926 // DWF5 // 7-dehydrocholesterol reductase 

// --- // 841465 /// NM_001084224 / 

20 13461010 AT3G57050 CBL NM_180382 0.0003 1.56 NM_180382 // CBL // cystathionine beta-lyase // --- // 

824872 /// AT3G57050.3 // CBL // 

21 13462884 AT3G61620 RRP41 NM_001125406 0.0001 1.56 NM_001125406 // RRP41 // exonuclease RRP41 // --- // 

825335 /// AT3G61620.2 // RRP41 // 

22 13417589 AT2G36360 AT2G36360 NM_001036416 0.0002 1.54 NM_001036416 // AT2G36360 // galactose 

oxidase/kelch repeat-containing protein // --- / 

23 13339000 AT1G11840 GLX1 NM_001198039 0.0007 1.53 NM_001198039 // GLX1 // glyoxalase I homolog // --- 

// 837731 /// AT1G11840.6 // GLX1 / 

24 13402202 AT2G38080 IRX12 NM_129364 0.0006 1.53 NM_129364 // IRX12 // laccase-4 // --- // 818386 /// 

AT2G38080.1 // IRX12 // laccase-4  

25 13479460 AT4G39210 APL3 NM_120081 0.0000 1.52 NM_120081 // APL3 // glucose-1-phosphate 

adenylyltransferase large subunit 3 // --- //  

26 13504946 AT5G23540 AT5G23540 NM_122261 0.0000 1.52 NM_122261 // AT5G23540 // 26S proteasome non-
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ATPase regulatory subunit 14 // --- // 832 

27 13446447 AT3G08530 AT3G08530 NM_111688 0.0000 1.52 NM_111688 // AT3G08530 // Clathrin, heavy chain // --

- // 820001 /// AT3G08530.1 // AT3 

28 13465878 AT4G05010 AT4G05010 NM_116740 0.0000 1.51 NM_116740 // AT4G05010 // F-box protein // --- // 

825843 /// AT4G05010.1 // AT4G05010 / 

29 13344895 AT1G26940 KDR NM_179381 0.0001 -1.52 NM_179381 // KDR // basic helix-loop-helix protein 

KIDARI // --- // 839585 /// AT1G2694 

30 13501752 AT5G15230 GASA4 NM_121527 0.0001 -1.52 NM_121527 // GASA4 // gibberellin-regulated protein 

4 // --- // 831375 /// AT5G15230.1  

31 13335137 AT1G03090 MCCA NM_179252 0.0002 -1.58 NM_179252 // MCCA // methylcrotonoyl-CoA 

carboxylase subunit alpha // --- // 838362 /// 

32 13473882 AT4G26530 AT4G26530 NM_001036644 0.0000 -1.58 NM_001036644 // AT4G26530 // fructose-bisphosphate 

aldolase 5 // --- // 828759 /// NM_1 

33 13385632 AT1G70260 AT1G70260 NM_105694 0.0003 -1.59 NM_105694 // AT1G70260 // nodulin MtN21-like 

transporter UMAMIT36 // --- // 843362 ///  

34 13494491 AT4G36780 BEH2 NM_119842 0.0000 -1.59 NM_119842 // BEH2 // BES1/BZR1-like protein 2 // --- 

// 829831 /// AT4G36780.1 // BEH2  

35 13537386 AT5G49360 BXL1 NM_124313 0.0000 -1.62 NM_124313 // BXL1 // bifunctional {beta}-D-

xylosidase/{alpha}-L-arabinofuranosidase //  

36 13432048 AT3G23050 IAA7 NM_113205 0.0000 -1.66 NM_113205 // IAA7 // auxin-responsive protein IAA7 

// --- // 821879 /// AT3G23050.1 //  

37 13545206 AT2G07671 AT2G07671 ATMG01080.1 0.0008 -1.96 ATMG01080.1 // AT2G07671 // ATP synthase subunit 

9 // --- // 815343 /// ATMG01080.1 //  

38 13427803 AT3G13750 BGAL1 NM_112225 0.0000 -2.18 NM_112225 // BGAL1 // beta galactosidase 1 // --- // 

820584 /// AT3G13750.1 // BGAL1 // 

39 13452464 AT3G21860 SK10 NM_113081 0.0008 -2.20 NM_113081 // SK10 // SKP1-like protein 10 // --- // 

821740 /// AT3G21860.1 // SK10 // S 

40 13502105 AT5G16030 AT5G16030 NM_001125761 0.0001 -2.96 NM_001125761 // AT5G16030 // hypothetical protein 

// --- // 831460 /// NM_001036812 //  

41 13392313 AT2G07722 AT2G07722 NM_126759 0.0001 -5.96 NM_126759 // AT2G07722 // hypothetical protein // --- 

// 815395 /// AT2G07722.1 // AT2G 
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4.4.3 Comparison of transcriptional profiles in response to presence or absence 

of aphid feeding in distinct groups as determined by field assessment and 

EPG parameters 

The gene expression responses were analysed in 15 accessions of Brassica grouped as 

resistant (non-preferred) or susceptible (preferred) based on field assessment (Chapter 

2) and EPG parameters (Chapters 3) revealed the distinct transcriptional responses 

based on grouping. A large variation in number of significant gene probes was noticed 

that were significantly different in their gene expression between all eight comparisons 

(Figure 4.2). This shows the overall comparison between the induced and non-induced 

condition when resistant accessions were compared with susceptible ones.  

 

 

 

 

 

 

 

 

 

 

        

Figure 4.2: Comparison of number of genes, in response to aphid feeding in different groups 

when resistant (non-preferred) Brassica genotypes were compared with susceptible 

(preferred) genotypes. (A) Venn diagram representing the distribution of genes in absence of 

aphid feeding. (B) Venn diagram representing the distribution of genes in presence of aphid 

feeding for 24 h. The numbers in the overlapping area indicate the shared number of genes in 

the comparisons and include genes with an average expression ratio ≥ 1.5 -fold and a P value 

< 0.05 in both experiments. Numbers outside the overlapping area represent genes only in 

that group. 
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The number of significant genes expressing between resistant and susceptible genotypes 

in case of field assessment in absence of aphid feeding were more (54) as compared to 

only 7 in response to aphid feeding. The number of genes in all comparison based on 

EPG parameters showed that more genes were induced in response to aphid feeding 

when resistant genotypes were compared with susceptible ones. Only 1 gene was found 

common in comparison between non-penetration parameter and field assessment in 

absence of aphid feeding while more overlap of genes was noticed with E2 parameter 

(17 genes) and pathway parameter (8 genes).  In contrast, none of the gene was found 

common in E2 parameter and field assessment in response to aphid feeding. When E2 

parameter was compared to pathway parameter in absence of aphid feeding it showed 

14 genes in common as compared to only 4 after aphid feeding. The comparison 

between pathway parameter and non-penetration parameters showed absence of any 

common gene expressing between these two groups in absence of aphid feeding as 

compared to 33 genes in presence of aphid feeding. The details are shown in figure 4.2. 

4.5 Discussion    

The plant defences against insect herbivores involve various morphological, 

biochemical and molecular mechanisms in order to overcome insect attack (War et al. 

2012). In this study we evaluated the changes in transcriptional response of Brassica 

accessions to aphid feeding. The Affymetrix Arabidopsis Gene 1.0 ST arrays were used 

to compare the gene expression changes between 12 week old resistant (non-preferred) 

and susceptible (preferred) plants in response to presence or absence of aphid feeding. 

The novel approach of comparison was adapted, and as anticipated it resulted in 

providing insight into the transcriptional response variation depending upon the 
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classification group based on EPG parameters and also indicated towards the location 

specific gene activation. 

4.5.1 Arabidopsis Gene 1.0 ST array microarrays are applicable to Brassica 

studies 

This study was aimed at getting insight into the transcriptional responses of Brassica 

genotypes grouped as resistant (non-preferred) and susceptible (preferred) in response to 

aphid feeding based on the field assessment (Chapter 2) and feeding assessment using 

EGP parameters (Chapter 3) using full genome microarray analyses. Although, Brassica 

Exon 1.0 ST array were available, but they posed challenge during data analysis in the 

pilot experiment as described earlier in section 4.3.4 (Chapter 4). There were no 

enhanced annotations directly available and other published annotations referred back to 

Arabidopsis genome. On balance because of cost and current annotation consideration, 

Arabidopsis Gene 1.0 ST array was used for this study. The successful use of Cross-

species arrays have been reported in literature (Carlsson et al. 2007; Gaeta et al. 2009; 

Nishizawa et al. 2012). Arabidopsis oligonucleotide microarray have been used to study 

gene expression changes in Brassica plants (Broekgaarden et al. 2007; Lee et al. 2004; 

Broekgaarden, Snoeren, et al. 2011). Overall, the gene expression was successfully 

studied for all 15 Brassica genotypes and further downstream analysis was done. In 

accordance with results mentioned above, it is expected that all species within the 

Brassicaceae can be analyzed with A. thaliana based microarrays. Of course, genes 

specific for Brassica will not be detected using these microarrays. 
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4.5.2 Transcriptional profile differ in Brassica genotypes in response to aphid 

feeding depending on grouping criteria 

This study suggests that 24h of B.brassicae infestation of Brassica accessions led to 

induction of multiple transcriptional responses. The microarray results indicated that 

transcriptional responses to aphid feeding mainly overlapped between gene ontology 

groups like response to biotic stress, wounding, oxidative stress response, ethylene 

response pathway, cell wall modifications, cellular processes which were significantly 

overrepresented in the GO enrichment analysis. The difference in the gene probes for 

each comparison is in line with our hypothesis that different genes are activated at 

different locations in order to counter the aphid attack.  

For example, in comparison based on field assessment, gene transcript AT3G142101 

was significantly enriched in all significant gene ontology groups. This gene is already 

known to be involved in response to insects   

(https://www.arabidopsis.org/servlets/TairObject?name=AT3G14210&type=locus). 

AT3G14210, also known as ESMI is known as a semi-dominant QTL, 

https://www.arabidopsis.org/servlets/TairObject?id=39264&type=gene) which has an 

epistatic effect on the epithiospecifier gene. This gene represses nitrile formation and 

favours isothiocyanate production during glucosinolate hydrolysis, and its functional 

allele deters insect herbivory (Zhang et al. 2006). AT1G04680 is reported as a pectin 

lyase-like superfamily protein, present in extracellular region/membrane    

(http://www.arabidopsis.org/servlets/TairObject?type=locus&name=At1g04680). It is 

involved in biological processes such as plant cell wall organisation, polysaccharide 

biosynthesis processes, regulation of cell size etc. From the above information, we 

speculate that it may well be directly or indirectly affecting aphid behaviour because of 

https://www.arabidopsis.org/servlets/TairObject?name=AT3G14210&type=locus
https://www.arabidopsis.org/servlets/TairObject?id=39264&type=gene
http://www.arabidopsis.org/servlets/TairObject?type=locus&name=At1g04680
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its cell size and cell wall organisation functions. The DUR3 gene is a known major 

transporter for high affinity urea across plasma membranes of nitrogen deficient 

Arabidopsis roots (Kojima et al. 2007). The GO annotation implicated this gene in both 

response to stress and response to abiotic and biotic stimulus.  The comparison based on 

field assessment showed more constitutively expressed genes (54) as compared to only 

7 in response to aphid feeding. It is possible that this variation in gene expression is due 

to the taxonomic differences between accessions and has no relation to aphid feeding.  

The comparison between resistant and susceptible genotypes based on non-penetration 

parameter of EPG showed many gene transcripts which can be speculated to be linked 

with surface resistance. The up-regulated AT3G48610 (NPC6) is involved in hydrolase 

activity and it is known to be expressed during the developmental stages of a plant. Its 

involvement in hydrolase activity acting on ester bonds, is already established 

(http://www.arabidopsis.org/servlets/TairObject?type=locus&name=At3g48610).  This 

indicates a possible role of NPC6 in response to aphid feeding in development of plants 

and may hinder growth of plants. The gene MYB2 encodes a transcription factor R2R3 

MYB DNA binding domain which regulated expression of salt and dehydration genes. 

It is also reported to regulate the response of wounding in plants and has been shown to 

bind to calmodium (http://www.ncbi.nlm.nih.gov/gene/819332). In addition to this it is 

also involved in hormone mediated signalling pathways and response to abscisic acid 

and ethylene, both plant hormones involved in response to stress. The probe 

AT1G18650, known as the PDCB3 gene is assigned as plasmodesmata callose-binding 

protein 3, and encodes a member of the X8-GPI family of proteins known to localize to 

the plasmodesmata and to regulate cell -to- cell trafficking 

(http://www.arabidopsis.org/servlets/TairObject?type=locus&name=At1g18650). 

http://www.arabidopsis.org/servlets/TairObject?type=locus&name=At3g48610
http://www.ncbi.nlm.nih.gov/gene/819332
http://www.arabidopsis.org/servlets/TairObject?type=locus&name=At1g18650
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Simpson et al. (2009) reported the role of PDCB family members PDCB1, PDCB2 and 

PDCB3 in accumulation of callose and its role in cell to cell communication. PDCB3 

was found up-regulated in resistant plants in our study. Callose blocking of sieve tubes 

is a known defence of sieve tubes to physical damage. To conclude, from the 

assessment of transcriptional changes of resistant and susceptible plants in response to 

presence or absence of aphid feeding based on the non penetration parameter of EPG 

indicates some gene probes (NPC6 and PDCB3) may be associated with plant defence 

associated with surface cues of initial probing. 

The time period from first stylet insertion by aphids into leaf tissue to reaching phloem 

sap is defined as the pathway phase. It is the time when the aphid is exploring the leaf 

tissue, moving stylet from one cell to another in order to locate the phloem sap. As 

proposed in an earlier chapter (chapter 3), presence of resistance factors to aphid 

feeding are present in the pathway. Aphid stylets secrete a variety of proteins including 

lipases, peroxidases, pectinases, and glucosidases, as they make their way through and 

around other cells in the leaf to reach the phloem and activate plant defence responses  

(Walling 2008; Miles 1999; Elzinga & Jander 2013).  A massive transcriptional 

response was evoked in Brassica plants in response to aphid feeding when resistant 

genotypes were compared to susceptible ones based on pathway parameter of EPG.  

Down regulation of AT5G25190 (ESE3) was noticed in our study. It is located in 

intracellular/nucleus and aids in DNA binding and sequence specific DNA binding 

transcription factor 

(https://www.arabidopsis.org/servlets/TairObject?type=locus&name=At5g25190). It 

was found to be down regulated under non induced conditions. This gene is reported to 

play a role in response to salt induced stress in Arabidopsis (L. Zhang et al. 2011). Most 

https://www.arabidopsis.org/servlets/TairObject?type=locus&name=At5g25190
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of the gene probes in response to aphid feeding under pathway parameter were 

annotated as hypothetical proteins so their values in regard to resistance are unknown.  

NUDX1, first defined nudix hydrolase in Arabidopsis was found to be 2 fold 

upregulated in resistant plants. Members of NUDX family are shown to be regulated in 

cellular response to biotic and abiotic stress (Ishikawa et al. 2010).  

The distinct set of genes was found when comparison was done based on the E2 

parameter of EPG. The changes in gene expression of resistant and susceptible 

accessions in response to presence and absence of aphid feeding can provide vital 

information regarding phloem based resistance. The gene probe AT5G09650 (PPa6) is 

known to have a negative regulation of defence response which supports our result as 

this probe was down regulated in our result also 

(https://www.arabidopsis.org/servlets/TairObject?id=130686&type=locus). The gene 

probe AT1G10760 (SEX1) gene encodes for α-glucan, a water dikinase required in 

starch degradation. It is reported that in SEX1 mutant, there has been 3-7 fold increase 

in level of starch content. This gene is up regulated in resistant plants, indicating lower 

starch content in resistant plants as compared to susceptible ones. A phloem tissue 

transport sucrose which is converted into starch in the sink cell. It is speculated that 

SEX1 gene up-regulation at phloem level in resistant plants may result in changes in 

sucrose content which lowers starch production in sink cells hence making plant less 

favourable to aphid feeding. Gene probe AT1G10155 is annotated as Phloem Protein 2-

A10 (PP2-A10), and was enriched as part of cellular component. Phloem protein 2 

(PP2) , a known conserved phloem lectin is found in abundance in phloem sap (Dinant 

et al. 2003). It is often believed to have a important  role in the establishing phloem 

based defence (PBD) due to  insect attacks (Kehr 2006; Dinant et al. 2010; C. Zhang et 

https://www.arabidopsis.org/servlets/TairObject?id=130686&type=locus
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al. 2011) and other stresses, such as wounding (Alvarez et al. 2006) and oxidative 

conditions. In our study PP2-A10 was found to be significantly down-regulated in 

absence of aphid feeding in resistant plants. Gene probe AT4G13480 (IIL1) was found 

up-regulated in our study. It is involved in glucosinolate biosynthesis. Glucosinolates  

have a well established role in response to insect herbivory (Cole 1997b; Barah et al. 

2013; Mithöfer & Boland 2012; Jones et al. 2002). In resistant plants a short E2 phase 

(chapter 3). Glucosinolates are negatively associated to aphid performance (Kim et al. 

2008) The up-regulation of IIL1 can be linked to shorted E2 phase in resistant plants. 

It was noted that many growth and development related gene probes were down 

regulated in this study. This may be due to the fact that plants reallocate resources for 

defence at the cost of growth and development (Broekgaarden, Voorrips, et al. 2011). 

The large differences in the induced and non induced plants were found in this study. 

This is also reported in other studies where plant response to sap feeding insects is 

investigated  (De Vos et al. 2005; Broekgaarden et al. 2008; Pelgrom et al. 2014). The 

expression of gene probes typical to response to stress (abiotic and biotic) is a common 

finding in response to insect feeding and they are expected to reconfigure the primary 

metabolism (Schwachtje & Baldwin 2008). The SNF1/AMPK/SnRK1/CPK  protein 

kinases family are thought to mediate defence response for stress in plants (Hong & 

Carlson 2007; Polge et al. 2008; Crozet et al. 2014). The gene probe AT3G24190, 

AT1g01141and AT5G1218 belonging to CPK protein kinases family were all down 

regulated in our study. The SnRk1 is reported to be down regulated in response to 

M.persicae feeding in Arabidopsis (Appel et al. 2014), and also regulates relocation of 

photoassimilates in response to chewing herbivores in Nicotiana attenuata (Schwachtje 

et al. 2006). The gene probe AT1G10155 (PP2-A10), which is a phloem protein gene 
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was down regulated in non induced plants in this study. However Zhang et al.  (2011) 

have reported reduced phloem ingestion by M.persicae as a result of PPa2-A1 in 

presence of Harpin-induced expression. The different in gene expression responses of 

phloem feeding insects M.persicae and B.brassicae on Brassica species are reported 

(Broekgaarden et al. 2007; Broekgaarden, Voorrips, et al. 2011). Although 

photosynthesis was not measured in our study but down regulation of gene probe ATR2 

(AT4G30210), a NADPH-cytochrome 450 reductase2, which play role in controlling 

circadian rhythm in plants, was noticed. Down-regulation of photosynthesis is a 

common response to biotic stress and has been previously reported to also occur in 

response to herbivory (Giri et al. 2006; Tang et al. 2006; Bilgin et al. 2010). Some of 

the plant transcriptional responses to insects involved sugars (Bolouri Moghaddam & 

Van den Ende 2012; Morkunas & Ratajczak 2014). Previous work also has shown that  

herbivores can stimulate localized sink strength in the tissues they attack (Appel et al. 

2014; Mewis et al. 2005). While we did not directly studied this in our study but gene 

expression changes in many of the gene probes linked to hexoses family support the 

view that hexose signalling are part of plant insect interaction. Up-regulation of genes 

encoding proteins involved in biosynthesis of glucosinolate in response to aphid feeding 

was noticed which is also reported previously (Kim et al. 2008; Barah et al. 2013).  

The results from this study provided clear evidence that cabbage aphid faces resistance 

at different levels while feeding on the Brassica plants. The genes like NPC6 ,PDCB3 

PP2-A10, IIL1, At3g56240; At5g09650, are strong candidates to be tested for their 

specific role against cabbage aphid resistance in plants by studying them further using 

more advanced “omics” technology and  testing the hypothesis that they are source of 

surface level resistance and for phloem based resistance in plants against aphid feeding. 



                                                                                                                                                  
Chapter 4 

 

126 

 

Recently many new studies have utilised the next generation sequencing and proteomics 

techniques to further evaluate the results obtained from microarray experiments. The 

candidate genes reported in our study need to be further studied, and doing the 

quantitative real time (qRT) PCR may prove useful in validating the microarray results. 

In addition, doing the knock-in/knock-out studies using these candidates in model plant 

Arabidopsis can help in confirming the role of these candidate genes.  

The complexity of the situation that is described goes some way towards explaining 

why it has been so difficult to identify strong enduring resistance to aphids by Brassicas 

in breeding programmes. Any utilizable resistance in the plant breeding sense will be 

highly polygenic; the genes underpinning any resistance will therefore only be likely to 

explain relatively small percentages of the total variation in resistance and 

susceptibility. A number of strong candidate genes as discussed in the results section for 

resistance have been revealed in both induced and non-induced situations, and some of 

these clearly contribute in different physiological ways related to modifying feeding 

behaviour of the aphids. This suggests that for future crop improvement, several or 

many different resistance genes will need to be ‘stacked’ as part of the plant breeding 

process in order to enhance effective resistance. Shan et al. (2013) reported another very 

efficient approach CRISPR for genomic engineering in various organisms including 

rice. CRISPR provides the possibility of producing knock-outs for multiple genes and 

for inducing mutants for those genes, and is being developed as multiplex genome 

editing tool for crop plants (Sander & Joung 2014; Shan et al. 2013; Bortesi & Fischer 

2014; Belhaj et al. 2015) . Seemingly it could be used for modifying the expression of a 

number of genes at a time to confer resistance, and could therefore be a very useful tool 

to demonstrate the combined effects of our candidate genes for resistance in a single 
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genotype of Brassica. Genomics including sequencing of the model plant and plant 

pathogen genome has progressed rapidly and opened several opportunities for genetic 

improvement of crop plants (Agarwal & Narayan 2015). Comparative genomics could 

help in achieving improvement of yields in rice, maize, and other related grass crops 

such as barley, rye, sugarcane and wheat (Mochida & Shinozaki 2011). Bioinformatics 

is now playing a significant role in the development of agriculture sector (Agarwal & 

Narayan 2015). It has opened up many avenues of utilising the vast data already 

available in databases to be used again to answer different biological questions and 

efforts are being carried out internationally to link existing related databases around the 

whole world.  

In this study we used a variety of Brassica genotypes which included both CWR and 

LR. The data generated in this chapter was further evaluated to study the gene 

expression changes in CWR and LR in response to aphid feeding which are represented 

in next chapter (Chapter 5). In addition to this, it was also attempted to utilise the 

microarray data set generated in this study to develop a prediction model as a tool to test 

insect resistance in Brassica germplasm (Chapter 6). Although, the dataset used in next 

two chapters will be same but it will used to look at two different aspects and prove the 

hypothesis that same dataset can provide different results depending on the way of 

analysis (Tarca et al. 2006). 

4.6 Conclusion 

In summary, our results provide a comprehensive overview of transcriptional response 

of Brevicoryne brassicae feeding in resistant and susceptible accessions.  It was noted 

that expression of the gene probes was overrepresented in GO terms for response to 

stress, response to stimulus, transport, and cell wall modification in response to aphid 
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feeding as indicated by GO enrichment analysis. The result from the study strongly 

support our hypothesis that insect feeding evokes defence responses at different levels 

in plants making plant defence mechanism a multilevel and complex system. The 

candidate gene probes specific to surface, pathway and phloem were successfully 

identified.  The genes like NPC6, PDCB3 PP2-A10, IIL1, At3g56240; At5g09650, are 

strong candidates to be tested for their specific role against cabbage aphid resistance 

One of our very strong candidate genes for resistance (At1g10155) has already been 

shown to be effective in aphid resistance in Arabidopsis by way of a gene knock-out, 

and therefore it is extremely likely to play a role in phloem-based resistance in Brassica 

plants’ defence against aphids as well. This justifies our location specific resistance 

approach and adds credence to our other probes indentified also being good candidates. 

Following on from this it could be recommended that further knock-outs in Arabidopsis 

be explored for our other strong candidates so that gene stacking could be developed. 

Somewhat as expected, there are no genes of major effect that have been revealed as 

conferring resistance to aphids in Brassica germplasm. The resistance against aphids is 

likely multigenic and acts by way of contrasting physiological routes. Our results would 

certainly support this conclusion, and therefore any advances in breeding for resistance 

to aphids in Brassicas should take this into account. Among the identified genes in 

resistant and susceptible genotypes, the genes that were not characterized before 

constitute the most novel target genes and would be of great interest in future to 

functionally validate the role of these genes which can then be used for biotechnological 

manipulation to improve the insect resistance in Brassica crops. 
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List of Supplementary tables 

Table S4.1: List of differentially regulated significant probes in non-induced (absence of 

aphid feeding) plants when resistant (non-preferred) and susceptible (preferred) genotypes in 

response to aphid feeding in the field assessment were compared. Table shows Affymetrix 

column Id, Refseq ID, Locus ID, Gene Symbol, p-value, fold-change (FC)  and gene assignment 

according to available annotations or BLAST search ;. P < 0.05; Benjamini-Hochberg false 

discovery correction applied. A positive FC indicates that infestation causes up regulation; a 

negative FC indicates that infestation causes down regulation. Each genotype had 4 replicates 

Table S4.2: Functional characterisation of significant differentially expressed genes 

between resistant and susceptible accession based on field assessment in non-induced 

(absence of aphid feeding) plants. 

Table S4.3 List of GO terms under biological process for non-induced, field 

assessment for comparison between resistant and susceptible accessions using TAIR’s 

Gene Ontology annotation search and functional categorization web tool analysis. 

Table S4.4: List of differentially regulated significant probes in Induced (presence of aphid 

feeding for 24h) plants when resistant (non-preferred) and susceptible (preferred) genotypes in 

response to aphid feeding in the Non-penetration parameter of EPG experiment were 

compared. Table shows Affymetrix column Id, Refseq ID, Locus ID, Gene Symbol, p-value, 

fold-change (FC)  and gene assignment according to available annotations or BLAST search ;. P 

< 0.05; Benjamini-Hochberg false discovery correction applied. A positive FC indicates that 

infestation causes up regulation; a negative FC indicates that infestation causes down regulation. 

Table S4.5 Functional characterisation of significant differentially expressed genes 

between resistant and susceptible accession based on Non-penetration parameter of 

EPG assessment in induced (presence of aphid feeding). 

Table S4.6 List of GO terms under biological process for induced, non-penetration 

parameter of EPG for comparison between resistant and susceptible accessions using 

TAIR’s Gene Ontology annotation search and functional categorization web tool 

analysis. 

Table S4.7: List of differentially regulated significant probes in Non-Induced (absence of 

aphid feeding) plants when resistant (non-preferred) and susceptible (preferred) genotypes in 



                                                                                                                                                  
Chapter 4 

 

130 

 

response to aphid feeding in the Pathway parameter of EPG experiment were compared. Table 

shows Affymetrix column Id, Refseq ID, Locus ID, Gene Symbol, p-value, fold-change (FC)  

and gene assignment according to available annotations or BLAST search ;. P < 0.05; 

Benjamini-Hochberg false discovery correction applied. A positive FC indicates that infestation 

causes up regulation; a negative FC indicates that infestation causes down regulation. 

Table S4.8 Functional characterisation of significant differentially expressed genes 

between resistant and susceptible accession based on Pathway parameter of EPG 

assessment in non-induced (absence of aphid feeding) plants. 

Table S4.9: GO Enrichment analysis of significant differentially expressed genes 

between resistant and susceptible accession based on pathway parameter of EPG 

assessment in non-induced (absence of aphid feeding) plants 

Table S4.10: List of differentially regulated significant probes in Induced (presence of aphid 

feeding for 24h) plants when resistant (non-preferred) and susceptible (preferred) genotypes in 

response to aphid feeding in the Pathway parameter of EPG experiment were compared. Table 

shows Affymetrix column Id, Refseq ID, Locus ID, Gene Symbol, p-value, fold-change (FC) 

and gene assignment according to available annotations or BLAST search ;. P < 0.05; 

Benjamini-Hochberg false discovery correction applied. A positive FC indicates that infestation 

causes up regulation; a negative FC indicates that infestation causes down regulation 

Table S4.11: Functional characterisation of significant differentially expressed genes 

between resistant and susceptible accession based on Pathway parameter of EPG 

assessment in induced (presence of aphid feeding) 

Table S4.12:  GO Enrichment analysis of significant differentially expressed genes 

between resistant and susceptible accession based on pathway parameter of EPG 

assessment in induced (presence of aphid feeding) plants. 

Table S4.13: List of differentially regulated significant probes in Non-Induced (absence of 

aphid feeding) plants when resistant (non-preferred) and susceptible (preferred) genotypes in 

response to aphid feeding in the E2 parameter of EPG experiment were compared. Table 

shows Affymetrix column Id, Refseq ID, Locus ID, Gene Symbol, p-value, fold-change (FC)  

and gene assignment according to available annotations or BLAST search ;. P < 0.05; 
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Benjamini-Hochberg false discovery correction applied. A positive FC indicates that infestation 

causes up regulation; a negative FC indicates that infestation causes down regulation. 

Table S4.14 Functional characterisation of significant differentially expressed genes 

between resistant and susceptible accession based on E2 parameter of EPG assessment 

in non-induced (absence of aphid feeding) plants. 

Table S4.15: GO Enrichment analysis of significant differentially expressed genes 

between resistant and susceptible accession based on E2 parameter of EPG assessment 

in non-induced (absence of aphid feeding) plants. 

Table S4.16: List of differentially regulated significant probes in Induced (presence of aphid 

feeding for 24h) plants when resistant (non-preferred) and susceptible (preferred) genotypes in 

response to aphid feeding in the E2 parameter of EPG experiment were compared. Table 

shows Affymetrix column Id, Refseq ID, Locus ID, Gene Symbol, p-value, fold-change (FC)  

and gene assignment according to available annotations or BLAST search ;. P < 0.05; 

Benjamini-Hochberg false discovery correction applied. A positive FC indicates that infestation 

causes up regulation; a negative FC indicates that infestation causes down regulation. 

Table S4.17 Functional characterisation of significant differentially expressed genes 

between resistant and susceptible accession based on E2 parameter of EPG assessment 

in induced (presence of aphid feeding) plants. 

Table S4.18: GO Enrichment analysis of significant differentially expressed genes 

between resistant and susceptible accession based on E2 parameter of EPG assessment 

in induced (presence of aphid feeding) plants.  
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5.1 Abstract 

Crop domestication is one of the most important processes in human history. In order to 

meet the feeding needs of human populations, farmers started selecting from wild 

species which resulted in landrace varieties. Both crop wild relatives (CWR) and 

landraces (LR) are very important resources for crop improvement and can provide 

resistance against abiotic and biotic stress. In this chapter the gene expression 

differences and changes that may have resulted from domestication between Brassica 

CWR and LR were studied in response to presence and absence of aphid (B.brassicae) 

feeding.  

The results show that the comparison of induced and non-induced gene expression of 

CWR and LR is highly affected by aphid feeding. A larger number of genes (261) were 

found significantly differentially expressed in response to aphid feeding in contrast to 

only 75 genes expressed differentially in the absence of aphid feeding. It was also 

noticed that there was a greater number of up-regulated genes involved in response to 

aphid feeding in CWR as compared to LR, which is in line with the domestication 

hypothesis that selection for higher yield, and desired characters results in decreased 

plant defence.  

In addition, up-regulated genes like PTR3, NAC083, TIFY7, HCHIB, RAP2.10 and 

ERD6 are indicated as strong candidates for resistance against aphid feeding in Brassica 

and are found in CWR. It is strongly suggested that identified candidate genes should be 

further investigated to confirm their association with aphid feeding in future. 
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5.2 Introduction 

In today’s world our crops are affected by many abiotic and biotic stresses which 

threaten the world’s food supplies. The wild relatives of our crops (CWR) and the local 

varieties, grown traditionally and adapted to local environments (landraces) are 

considered as useful resources for crop improvement. Their value for food security is 

widely recognized (Hyten et al. 2006; Chaudhary 2013).  

The origin of landraces is the result of the domestication process of wild crop species 

over several hundred years for desired traits which were selected and grown every 

season. This resulted in area specific varieties with traits which separate them from their 

wild relatives. Mostly these crops were grown and maintained by farmers themselves. 

As a result of this highly selective cultivation,  the majority of plant species showed 

changes in a variety of traits like enhanced yield, fruit size, reduced seed dormancy, and 

relative susceptibility to pathogens and insect pests (Burger et al. 2008; Hyten et al. 

2006; Tanksley & McCouch 1997). This is thought to be maintained by predicted 

resource allocation tradeoffs between the benefits of reduced herbivory and the costs of 

resistance and differential selection pressures. The landrace crops have now become a 

very important source of germplasm which can be used in crop improvement by crop 

breeders. However, the selection process has narrowed the genetic diversity in crop 

species which is also assumed to be an important  reason for the reduced resistance of 

crop plants to important traits like resistance to biotic and abiotic stresses (Chaudhary 

2013).  

Crop wild relatives are an important and beneficial germplasm resource for modern 

agriculture. They provide plant breeders with a potentially useful gene pool. That CWR 
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genes can be used to improve crop performance is an established fact supported by 

many examples dating back more than 60 years (Hajjar & Hodgkin 2007; Ford-Lloyd et 

al. 2011; Nevo 2014; Tew & Bekeko 2014). CWR can have beneficial traits relating to 

both biotic and abiotic stress. Studies have been conducted to search for extended gene 

pools for pest and disease resistance that can be transferred to agricultural crops (Brar & 

Khush 1997; Brar & Khush 2002). Disease resistance genes have been reported in 

tomato wild relatives and used in commercial cultivars (Rick & Chetelat 1995).  In 

millet Pyricularia grisea resistance was introgressed from its wild relative Pennisetum 

glaucum subsp. monodii  (Burton & Wilson 1995). Similarly in bananas, resistance 

against Black Sigatoka caused by the fungus Mycosphaerella fijiensis has been 

developed from its wild relative Musa acuminata most commonly known as “Calcutta 

4” ((Hajjar & Hodgkin 2007) The wild relatives of crop Brassicas (Brassica fruticulosa 

Cyr., B. spinescens Pomel., B. insularis Moris. and B. villosa Biv) have been reported to 

possess resistance against cabbage aphid, Brevicoryne brassicae (Ellis et al. 2000).  

There is much evidence that transcriptional studies are helpful in finding the genes 

which can prove useful in generating more resistant crops to both biotic and abiotic 

stresses (Redden 2013; Yumurtaci 2015). With this evidence of success, the current 

study was conducted to look at differences in gene expression changes in response to 

aphid feeding between the CWR and LR of Brassicas. To study these changes the 

Affymetrix array was used and gene expression levels of wild relatives of Brassica i.e. 

B.incana, B.montana, B.villosa were compared with landrace B.oleracea accessions in 

response to presence and absence of aphid feeding.  The data set obtained in chapter 4 is 

evaluated again in this chapter in order to explore the gene expression variation present 

between CWR and LR in response to aphid feeding. Although the data set is the same, 



                                                                                                                                                  
Chapter 5 

 

136 

 

in chapter 4 the whole data set was evaluated in relation to feeding behaviour 

parameters from chapter 3 as criteria for classification of genotypes. In this chapter 

(chapter 5) a direct comparison of cabbage aphid feeding response between CWR and 

LR grouped as resistant based on feeding preference in the field (chapter 2) and EPG 

analysis (chapter 3) is explored. The susceptible accessions were not included due to 

very small numbers of replicates available.  

5.2.1 Chapter aim 

This study aims at investigating the differences in the gene expression of CWR and LR 

of Brassica germplasm under control conditions (absence of aphid) and following 

exposure to aphids for 24 h. At the end of the study we will have identified a list of 

significantly differentially expressed genes between resistant CWR and resistant LR 

under control and stress conditions and would have identified candidate resistance genes 

to cabbage aphid using the microarray approach. 

5.3 Material and methods  

These are the same as previously described in chapter 4 (section 4.3). 

5.4 Results 

5.4.1 Determination of significantly differentially expressed genes between CWR 

and LR using ANOVA. 

The gene expression data for 4 CWR and 4 LR Brassica accessions were analyzed using 

Partek® Genomics Suite™ software. The Analysis of Variance was used to obtain a list 

of genes that were significantly differentially expressed between CWR and LR after 24 

h of aphid exposure and absence of aphid exposure. All samples were subjected to the 
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same statistical parameters to identify the constitutive and aphid-induced gene 

expression patterns. The results from the one-way ANOVA produced a spreadsheet 

containing all 38,408 genes. This consists of the overall statistical results from the 

experiment which were further reduced to a list of genes that pass statistical criteria of 

significant difference in expression at FDR corrected p- value < 0.05 and fold change 

1.5 to ≤ -1.5 selected to cover the maximum number of genes showing change in 

expression. 

5.4.2 Comparison of gene expression between CWR and LR accessions of 

Brassica in the absence of Cabbage Aphid 

All Brassica accessions used in this experiment were untreated i.e. no aphid infestation 

in order to identify the differences in gene expression between wild and cultivated 

germplasm in absence of aphid feeding.  

From the available 38,408 gene probes on the Affymetrix Arabidopsis Gene 1.0 ST 

array, at FDR corrected p- value < 0.05 and fold change ≥1.5 to ≤ -1.5 only 75 genes 

were found that were constitutively differentially expressed between CWR and LR. The 

complete list of up and down regulated gene probes along with gene symbols, fold 

change and gene assignment is provided in table 5.1and S5.1. Out of 75 significant gene 

probes 41 were up regulated in CWR while 34 were down regulated in CWR as 

compared to LR. The fold changes varied between 22.82 fold up regulated for 

ATMG01220 to -3.39 fold down regulated probe ID (13451950) with unknown gene 

ID.  

Out of 75 significantly expressed gene probes, 32 with available locus ID were then 

used for GO enrichment analysis using Partek® Genomics Suite™ software as 
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mentioned previously in section 4.36. The gene probes were then annotated and defined 

according to the GO terms directly under the three main categories: biological process, 

molecular function and cellular component. Further analysis was focused on the set of 

genes related to biological processes like biotic stress, response to wounding which 

could be linked to insect resistance. The detailed information of functional 

characterisation and Go enrichment is shown in Table S5.2 and S5.3 

These differentially expressed significant genes were functionally categorised as 

majorly involved in cellular and metabolic processes, transport, response to stress, 

response to biotic or abiotic stimulus, electron transport or energy pathways, 

developmental processes, protein metabolism, DNA dependent transcription etc. 

Additionally genes involved in cell organisation and biogenesis were down regulated in 

CWR when compared to LR. The list of genes under biological processes with detailed 

gene assignment is shown in supplementary table S5.2 

5.4.2.1 Genes involved in Transport 

Four genes AT1G08930 (ERD6), AT1G15210 (PDR7), AT5G24030 (SLAH3), and 

ATG46050 (PTR3) were found differentially expressing between CWR and LR under 

GO category of gene involved in transport. Out of these 3 genes AT1G08930, 

AT1G1520, ATG46050 were up regulated in CWR while AT5G24030 was found to be 

down regulated.  

5.4.2.2 Response to Stress and response to stimulus 

Five genes (AT1G08930, AT3G03780, AT5G13180, AT5G4650 and AT5G46050) 

were categorised as response to stress. These 5 genes were enriched in both response to 

stress and response to stimulus category in GO enrichment analysis. All these genes 
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were found to be up regulated in CWR when compared with the LR. The gene 

AT1G08930 (ERD6) is known to be involved in sugar transport in plants. The genes 

AT3G03780 (MS2), encodes cytosolic methionine  synthase and is involved  in 

methionine regeneration via activated methyl cycle. AT5G13180 (NACO83) is known 

to negatively regulate xylem vessel formation, and AT5G46050 (PTR3) up regulated 

in CWR, and encodes for a di- and tri-peptide transporter involved in response to 

wounding (Karim et al. 2005). Karim et al. (2007) reported that AtPTR3 gene mutant 

had increased susceptibility to virulent pathogenic bacteria Erwinia carotovora subsp. 

corotovora and Pseudomonas syringae and  protects plants against biotic and abiotic 

stresses (Karim et al. 2007). The 1.9 fold up regulation of PTR3 gene in CWR in the 

current study may be speculated as one of the reasons for higher levelsof protection to 

wounding present in wild plant species as compared to LR.   

5.4.2.3 Genes involved in Signal Transduction and transcription 

The gene AT5G25190 was enriched in both signal transduction and transcriptional 

response categories. It was found to be 1.57 fold up-regulated in CWR when compared 

to LR in the absence of aphid feeding. In addition to this AT5G13180 (NAC083) 

was also found 2.4 fold up-regulated. The details of all GO enrichments is provided in 

the supplementary table S5.2 
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Table 5.1  Differentially Expressed genes:   Number of genes with significant different in expression at FDR corrected p- Value < 0.05 and fold 

change ≥1.5 to ≤ -1.5 for comparison of resistant Brassica Crop Wild relative (CWR) and Landraces (LR) in absence of aphid feeding. 

 

S.No Transcript 

ID 

Gene Symbol RefSeq Locus ID Fold-

Change 

Fold-Change 

(Description) 

gene_assignment 

1 13524842 ASP3 NM_121190 AT5G11520 1.70 Up-regulated NM_121190 // ASP3 // aspartate 

aminotransferase 3 // --- // 831024 /// 

AT5G11520.1 // A 

2 13343847 AT1G23465 NM_202168 AT1G23465 2.22 Up-regulated NM_202168 // AT1G23465 // peptidase-

S24/S26 domain-containing protein // --- 

// 2745760 

3 13383271 AT1G64850 NM_105159 AT1G64850 1.64 Up-regulated NM_105159 // AT1G64850 // calcium-

binding EF-hand-containing protein // --- 

// 842793 / 

4 13545217 AT2G07696 NM_126746 AT2G07696 1.62 Up-regulated NM_126746 // AT2G07696 // ribosomal 

protein S7 // --- // 815372 /// 

AT2G07696.1 // rps7 

5 13408365 AT2G07721 NM_126758 AT2G07721 4.12 Up-regulated NM_126758 // AT2G07721 // 

hypothetical protein // --- // 815394 /// 

AT2G07721.1 // AT2G 

6 13437647 AT3G50123 NM_001125335 AT3G50123 1.55 Up-regulated NM_001125335 // AT3G50123 // 

hypothetical protein // --- // 6240873 /// 

AT3G50123.1 //  

7 13442656 AT3G62510 NM_116116 AT3G62510 1.60 Up-regulated NM_116116 // AT3G62510 // protein 

disulfide isomerase-like protein // --- // 

825425 /// 

8 13530775 AT5G25190 NM_122428 AT5G25190 1.57 Up-regulated NM_122428 // AT5G25190 // ethylene-

responsive transcription factor ERF003 // 

--- // 832 
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9 13374992 CID11 NM_001036054 

AT1G32790 

1.74 Up-regulated NM_001036054 // CID11 // CTC-

interacting domain 11 protein // --- // 

840173 /// AT1G327 

10 13536092 DELTA-

OAT 

NM_123987 

AT5G46180 

1.65 Up-regulated NM_123987 // DELTA-OAT // 

ornithine-delta-aminotransferase // --- // 

834660 /// AT5G461 

11 13337731 ERD6 NM_001035929 

AT1G08930 

1.64 Up-regulated NM_001035929 // ERD6 // sugar 

transporter ERD6 // --- // 837414 /// 

NM_100765 // ERD6 / 

12 13423873 MS2 NM_180176 

AT3G03780 

1.61 Up-regulated NM_180176 // MS2 // methionine 

synthase 2 // --- // 821147 /// 

NM_001125092 // MS2 // m 

13 13500896 NAC083 NM_121321 AT5G13180 2.05 Up-regulated NM_121321 // NAC083 // NAC domain 

containing protein 83 // --- // 831157 /// 

AT5G13180. 

14 13545387 nad1 ATMG01220.1 ATMG01220 22.82 Up-regulated ATMG01220.1 // nad1 // NADH 

dehydrogenase subunit 1 // --- // 3890477 

15 13368314 PDR7 AT1G15210.1 AT1G15210 1.50 Up-regulated AT1G15210.1 // PDR7 // ABC 

transporter G family member 35 // --- // 

838087 /// NM_10138 

16 13536042 PTR3 NM_123973 AT5G46050 1.95 Up-regulated NM_123973 // PTR3 // peptide 

transporter 3 // --- // 834646 /// 

AT5G46050.1 // PTR3 //  

17 13374451 RUB1 NM_102873 AT1G31340 1.52 Up-regulated NM_102873 // RUB1 // ubiquitin-

NEDD8-like protein RUB1 // --- // 

840023 /// AT1G31340.1 

18 13345523 AT1G28307 NM_001123899 AT1G28307 -1.56 Down-regulated NM_001123899 // AT1G28307 // 

hypothetical protein // --- // 6241164 /// 

AT1G28307.1 //  
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19 13347647 AT1G34041 NM_001123935 AT1G34041 -1.51 Down-regulated NM_001123935 // AT1G34041 // 

hypothetical protein // --- // 6241199 /// 

AT1G34041.1 //  

20 13385899 AT1G70949 AT1G70949.1 AT1G70949 -1.92 Down-regulated AT1G70949.1 // AT1G70949 // 

hypothetical protein // --- // 6240811 /// 

NM_001124109 //  

21 13392218 AT2G07674 NM_126731 AT2G07674 -1.98 Down-regulated NM_126731 // AT2G07674 // 

hypothetical protein // --- // 815346 /// 

AT2G07674.1 // AT2G 

22 13421794 AT2G45860 NM_130149 AT2G45860 -1.78 Down-regulated NM_130149 // AT2G45860 // 

hypothetical protein // --- // 819194 /// 

AT2G45860.1 // AT2G 

23 13431841 AT3G22415 NM_202624 AT3G22415 -1.67 Down-regulated NM_202624 // AT3G22415 // 

hypothetical protein // --- // 2745889 /// 

AT3G22415.1 // AT3 

24 13380596 CYP96A15 NM_104570 AT1G57750 -1.55 Down-regulated NM_104570 // CYP96A15 // alkane 

hydroxylase CYP96A15 // --- // 842150 

/// AT1G57750.1 / 

25 13353669 E1 NM_104682 

AT1G59900 

-1.54 Down-regulated NM_104682 // E1 ALPHA // pyruvate 

dehydrogenase complex E1 alpha subunit 

// --- // 8422 

26 13407392 EXPA15 NM_126361 AT2G03090 -1.54 Down-regulated NM_126361 // EXPA15 // expansin A15 

// --- // 814838 /// AT2G03090.1 // 

EXPA15 // expan 

27 13355059 GH9C2 NM_105114 AT1G64390 -1.94 Down-regulated NM_105114 // GH9C2 // glycosyl 

hydrolase 9C2 // --- // 842747 /// 

AT1G64390.1 // GH9C2  

28 13339000 GLX1 NM_001198039 AT1G11840 -1.74 Down-regulated NM_001198039 // GLX1 // glyoxalase I 

homolog // --- // 837731 /// 

AT1G11840.6 // GLX1 / 
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29 13369782 PSP NM_202129 AT1G18640 -1.50 Down-regulated NM_202129 // PSP // phosphoserine 

phosphatase // --- // 838445 /// 

AT1G18640.2 // PSP / 

30 13401542 SBE2.1 NM_129196 

AT2G36390 

-1.52 Down-regulated NM_129196 // SBE2.1 // 1,4-alpha-

glucan branching enzyme 2-1 // --- // 

818212 /// AT2G3 

31 13530101 SLAH3 NM_122308 AT5G24030 -1.56 Down-regulated NM_122308 // SLAH3 // SLAC1 

homologue 3 // --- // 832468 /// 

AT5G24030.1 // SLAH3 // SL 

32 13356178 URE NM_105422 AT1G67550 -1.50 Down-regulated NM_105422 // URE // urease // --- // 

843076 /// AT1G67550.1 // URE // 

urease // --- //  
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5.4.3 Comparison of gene expression between resistant CWR and resistant LR 

accessions of Brassica after 24 hours of Cabbage Aphid feeding. 

A total of 261 genes were differentially expressed when resistant CWR were compared 

to resistant LR after 24 hours of aphid feeding. Out of these, 102 genes were found to be 

induced (up-regulated) while 159 genes were repressed (down regulated) in CWR. All 

significantly differentially expressed genes are listed in table 5.2and S5.4. These genes 

were further categorised according to their functional categorisations of biological 

process, cellular component and molecular function. Still a large set of genes were not 

studied as there were no annotations available for these genes. The fold changes varied 

between 43.92 fold up regulated in gene ATMG01220 (nad1) to -10.65 fold down 

regulated in an annotated gene.  Out of 261 genes, 142 annotated genes were then used 

for GO enrichment analysis using Partek® Genomics Suite™ software as described 

earlier. The focus was mainly on genes enriched under the biological categories like 

response to stress, response to biotic stress, response to wounding etc. which can be 

linked to aphid infestation. On functional categorisation of loci under biological process, 

70 genes encoding for cellular and 70 genes for metabolic process were found, 8 genes 

encoding for transport, 12 for developmental processes, 25 for response to stress, 27 for 

response to abiotic or biotic stress , 14 for response to protein metabolism, 10 for 

transcription and DNA-dependant process, 7 for signal transduction and 3 for electron 

transport pathway along with 3 genes involved in DNA or RNA metabolism (Table 

S5.5). The details of functional categorizations and GO enrichment is provided in 

supplementary data table S5.5 and Table S5.6 
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Table 5.2  Differentially Expressed genes:   Number of genes with significant different in expression at FDR corrected p- Value < 0.05 and fold change ≥1.5 

to ≤ -1.5 for comparison of resistant Brassica Crop Wild relative (CWR) and Landraces (LR) in presence of aphid feeding. 

S.no Transcript 

ID 

Gene 

Symbol 

RefSeq Locus ID Fold-

Change 

Fold-

Change(Description) 

Gene_assignment 

1 13457204 ABCA2 NM_114641  AT3G47730 1.52 Up-regulated NM_114641 // ABCA2 // ABC transporter A 

family member 2 // --- // 823927 /// AT3G47730. 

2 13528308 ACL5 NM_001085136  AT5G19530 1.84 Up-regulated NM_001085136 // ACL5 // Thermospermine 

synthase ACAULIS5 // --- // 832073 /// 

AT5G19530 

3 13545283 ArthMp039 ATMG00470.1 ATMG00470 1.62 Up-regulated ATMG00470.1 // ArthMp039 // hypothetical 

protein // --- // 3371332 

4 13545359 ArthMp091 ATMG01040.1 ATMG01040 1.84 Up-regulated ATMG01040.1 // ArthMp091 // hypothetical 

protein // --- // 4024969 

5 13545411 ArthMp112 ATMG01410.1 ATMG01410 1.51 Up-regulated ATMG01410.1 // ArthMp112 // hypothetical 

protein // --- // 4024966 

6 13524842 ASP3 NM_121190 AT5G115200 1.64 Up-regulated NM_121190 // ASP3 // aspartate aminotransferase 

3 // --- // 831024 /// AT5G11520.1 // A 

7 13342911 AT1G21245 NM_148476 AT1G21245 1.67 Up-regulated NM_148476 // AT1G21245 // Protein kinase 

superfamily protein // --- // 838720 /// AT1G2 

8 13343847 AT1G23465 NM_202168 AT1G23465 3.21 Up-regulated NM_202168 // AT1G23465 // peptidase-S24/S26 

domain-containing protein // --- // 2745760 

9 13354650 AT1G63220 NM_105001 AT1G63220 1.51 Up-regulated NM_105001 // AT1G63220 // calcium-dependent 

lipid-binding domain-containing protein //  

10 13356629 AT1G68570 NM_105528 AT1G68570 1.67 Up-regulated NM_105528 // AT1G68570 // putative nitrite 

transporter // --- // 843186 /// AT1G68570.1 

11 13384976 AT1G68570 NM_105528 AT1G68570 1.57 Up-regulated NM_105528 // AT1G68570 // putative nitrite 

transporter // --- // 843186 /// AT1G68570.1 

12 13358274 AT1G72290 NM_105888 AT1G72290 1.83 Up-regulated NM_105888 // AT1G72290 // trypsin inhibitor 

(Kunitz) domain-containing protein // --- / 
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13 13386441 AT1G72540 NM_105913 AT1G72540 1.94 Up-regulated NM_105913 // AT1G72540 // putative receptor-

like protein kinase // --- // 843586 /// AT 

14 13407824 AT2G04650 NM_126494 AT2G04650 1.67 Up-regulated NM_126494 // AT2G04650 // ADP-glucose 

pyrophosphorylase-like protein // --- // 815007 / 

15 13408365 AT2G07721 NM_126758 AT2G07721 11.11 Up-regulated NM_126758 // AT2G07721 // hypothetical protein 

// --- // 815394 /// AT2G07721.1 // AT2G 

16 13392342 AT2G07787 NM_201712 AT2G07787 1.53 Up-regulated NM_201712 // AT2G07787 // hypothetical protein 

// --- // 2745469 /// AT2G07787.1 // AT2 

17 13411645 AT2G22370 NM_127802 AT2G22370 1.61 Up-regulated NM_127802 // AT2G22370 // hypothetical protein 

// --- // 816769 /// AT2G22370.1 // AT2G 

18 13401971 AT2G37440 NM_129299 AT2G37440 1.71 Up-regulated NM_129299 // AT2G37440 // DNAse I-like 

superfamily protein // --- // 818321 /// AT2G374 

19 13404388 AT2G43150 NM_129877 AT2G43150 1.53 Up-regulated NM_129877 // AT2G43150 // Proline-rich 

extensin-like family protein // --- // 818917 // 

20 13428400 AT3G14990 NM_001035621 AT3G14990 1.55 Up-regulated NM_001035621 // AT3G14990 // protein DJ-1-like 

A // --- // 820728 /// NM_112361 // AT3G 

21 13452781 AT3G23090 NM_113210 AT3G23090 1.54 Up-regulated NM_113210 // AT3G23090 // targeting protein for 

Xklp2-like protein // --- // 821884 /// 

22 13432310 AT3G23510 NM_113254 AT3G23510 1.54 Up-regulated NM_113254 // AT3G23510 // cyclopropane-fatty-

acyl-phospholipid synthase // --- // 82193 

23 13453160 AT3G24180 NM_001035680 AT3G24180 1.64 Up-regulated NM_001035680 // AT3G24180 // Beta-

glucosidase, GBA2 type family protein // --- // 

82200 

24 13457337 AT3G48030 NM_114672 AT3G48030 1.56 Up-regulated NM_114672 // AT3G48030 // RING-H2 finger 

protein ATL48 // --- // 823958 /// AT3G48030.1 

25 13437332 AT3G49130 NM_114772 AT3G49130 1.52 Up-regulated NM_114772 // AT3G49130 // SWAP (Suppressor-

of-White-APricot)/surp RNA-binding domain-co 

26 13460997 AT3G57020 NM_115561 AT3G57020 1.73 Up-regulated NM_115561 // AT3G57020 // strictosidine 

synthase family protein // --- // 824869 /// AT 
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27 13480634 AT4G01700 NM_116400 AT4G01700 1.73 Up-regulated NM_116400 // AT4G01700 // Chitinase family 

protein // --- // 828131 /// AT4G01700.1 //  

28 13465352 AT4G03420 NM_116580 AT4G03420 1.52 Up-regulated NM_116580 // AT4G03420 // hypothetical protein 

// --- // 827928 /// AT4G03420.1 // AT4G 

29 13465878 AT4G05010 NM_116740 AT4G05010 1.57 Up-regulated NM_116740 // AT4G05010 // F-box protein // --- // 

825843 /// AT4G05010.1 // AT4G05010 / 

30 13485148 AT4G15885 NM_148338 AT4G15885 1.56 Up-regulated NM_148338 // AT4G15885 // kinesin motor 

protein-like protein // --- // 827270 /// AT4G1 

31 13485638 AT4G16765 NM_179213 AT4G16765 1.55 Up-regulated NM_179213 // AT4G16765 // oxidoreductase, 

2OG-Fe(II) oxygenase family protein // --- // 

32 13477038 AT4G33440 NM_119498 AT4G33440 1.66 Up-regulated NM_119498 // AT4G33440 // pectin lyase-like 

superfamily protein // --- // 829481 /// AT 

33 13529672 AT5G22860 NM_180728 AT5G22860 1.58 Up-regulated NM_180728 // AT5G22860 // Serine 

carboxypeptidase S28 family protein // --- // 

832349 / 

34 13542294 AT5G61820 AT5G61820.1 AT5G61820 1.54 Up-regulated AT5G61820.1 // AT5G61820 // hypothetical 

protein // --- // 836304 /// NM_125576 // AT5G 

35 13543310 AT5G64250 NM_125821 AT5G64250 1.62 Up-regulated NM_125821 // AT5G64250 // Aldolase-type TIM 

barrel family protein // --- // 836546 ///  

36 13537205 ATSDI1 NM_124262 AT5G48850 2.02 Up-regulated NM_124262 // ATSDI1 // protein SULPHUR 

DEFICIENCY-INDUCED 1 // --- // 834943 /// 

AT5G48 

37 13484924 BAM5 NM_117609 AT4G15210 1.78 Up-regulated NM_117609 // BAM5 // beta-amylase 5 // --- // 

827185 /// AT4G15210.1 // BAM5 // beta-am 

38 13363863 CALS1 NM_100436 AT1G05570 1.58 Up-regulated NM_100436 // CALS1 // callose synthase 1 // --- // 

837059 /// AT1G05570.1 // CALS1 // c 

39 13374992 CID11 NM_001036054 AT1G32790 1.65 Up-regulated NM_001036054 // CID11 // CTC-interacting 

domain 11 protein // --- // 840173 /// AT1G327 
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40 13420535 CSY3 NM_129840 AT2G42790 1.71 Up-regulated NM_129840 // CSY3 // citrate synthase 3 // --- // 

818879 /// AT2G42790.1 // CSY3 // cit 

41 13536092 DELTA-

OAT 

NM_123987 AT5G46180 1.77 Up-regulated NM_123987 // DELTA-OAT // ornithine-delta-

aminotransferase // --- // 834660 /// AT5G461 

42 13505359 DMR6 NM_122361 AT5G24530 2.36 Up-regulated NM_122361 // DMR6 // downy mildew resistance 

6 protein / oxidoreductase // --- // 83252 

43 13337731 ERD6 NM_001035929 AT1G08930 1.63 Up-regulated NM_001035929 // ERD6 // sugar transporter ERD6 

// --- // 837414 /// NM_100765 // ERD6 / 

44 13545581 ESM1 NM_112278 AT3G14210 4.03 Up-regulated NM_112278 // ESM1 // epithiospecifier modifier 1 

// --- // 820639 /// AT3G14210.1 // ES 

45 13418497 FAC1 NM_129384 AT2G38280 1.59 Up-regulated NM_129384 // FAC1 // AMP deaminase // --- // 

818408 /// NM_179963 // FAC1 // AMP deamin 

46 13543347 FKBP12 NM_125831 AT5G64350 1.53 Up-regulated NM_125831 // FKBP12 // peptidyl-prolyl 

isomerase FKBP12 // --- // 836556 /// AT5G64350. 

47 13448399 HCHIB NM_112085 AT3G12500 1.77 Up-regulated NM_112085 // HCHIB // basic chitinase B // --- // 

820429 /// AT3G12500.1 // HCHIB // ba 

48 13402202 IRX12 NM_129364 AT2G38080 1.64 Up-regulated NM_129364 // IRX12 // laccase-4 // --- // 818386 

/// AT2G38080.1 // IRX12 // laccase-4  

49 13456324 IVD NM_114399 AT3G45300 1.66 Up-regulated NM_114399 // IVD // isovaleryl-CoA-

dehydrogenase // --- // 823668 /// AT3G45300.1 // 

IV 

50 13459262 MDAR1 NM_001161202 AT3G52880 1.53 Up-regulated NM_001161202 // MDAR1 // 

monodehydroascorbate reductase (NADH) // --- // 

824454 /// AT3 

51 13454169 MUB4 NM_113612 AT3G26980 1.64 Up-regulated NM_113612 // MUB4 // membrane-anchored 

ubiquitin-fold protein 4 // --- // 822315 /// AT 

52 13344465 MYB116 NM_102344 AT1G25340 1.67 Up-regulated NM_102344 // MYB116 // putative transcription 

factor (MYB116) // --- // 839118 /// AT1G 

http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT1G08930
http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT3G26980
http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT1G25340
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53 13518334 NAC101 NM_125632 AT5G62380 1.56 Up-regulated NM_125632 // NAC101 // NAC-domain 

transcription factor // --- // 836359 /// 

AT5G62380.1 

54 13545387 nad1 ATMG01220.1 ATMG01220 43.92 Up-regulated ATMG01220.1 // nad1 // NADH dehydrogenase 

subunit 1 // --- // 3890477 

55 13528833 NPH4 NM_180715 AT5G20730 1.62 Up-regulated NM_180715 // NPH4 // auxin-regulated 

transcriptional activator NPH4 // --- // 832196 // 

56 13448873 PA200 NM_112178 AT3G13330 1.56 Up-regulated NM_112178 // PA200 // proteasome activating 

protein 200 // --- // 820533 /// AT3G13330. 

57 13494916 PCK1 NM_119948 AT4G37870 1.64 Up-regulated NM_119948 // PCK1 // phosphoenolpyruvate 

carboxykinase [ATP] // --- // 829943 /// AT4G3 

58 13368314 PDR7 AT1G15210.1 AT1G15210 1.59 Up-regulated AT1G15210.1 // PDR7 // ABC transporter G family 

member 35 // --- // 838087 /// NM_10138 

59 13429722 PYD1 NM_112662 AT3G17810 1.56 Up-regulated NM_112662 // PYD1 // putative dihydropyrimidine 

dehydrogenase // --- // 821049 /// AT3G 

60 13478537 RAP2.10 NM_119854 AT4G36900 1.53 Up-regulated NM_119854 // RAP2.10 // ethylene-responsive 

transcription factor RAP2-10 // --- // 8298 

61 13357574 TIFY7 NM_105738 AT1G70700 1.54 Up-regulated NM_105738 // TIFY7 // protein TIFY 7 // --- // 

843407 /// AT1G70700.1 // TIFY7 // prote 

62 13361730 WRKY40 NM_106732 AT1G80840 1.77 Up-regulated NM_106732 // WRKY40 // putative WRKY 

transcription factor 40 // --- // 844423 /// AT1G8 

63 13519410 WRKY51 NM_125877 AT5G64810 1.66 Up-regulated NM_125877 // WRKY51 // putative WRKY 

transcription factor 51 // --- // 836602 /// AT5G6 

64 13386963 ALPHA NM_106027 AT1G73680 -1.56 Down-regulated NM_106027 // ALPHA DOX2 // alpha 

dioxygenase // --- // 843703 /// AT1G73680.1 // 

ALPHA  

65 13367035 AT1G12423 NM_001123802 AT1G12423 -1.80 Down-regulated NM_001123802 // AT1G12423 // hypothetical 

protein // --- // 6240731 /// AT1G12423.1 //  

http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT5G20730
http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT4G37870
http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT1G70700
http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT5G64810
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66 13374726 AT1G32080 NM_102942 AT1G32080 -1.53 Down-regulated NM_102942 // AT1G32080 // plastidal 

glycolate/glycerate translocator 1 // --- // 840100 

67 13378599 AT1G52220 AT1G52220.1 AT1G52220 -1.91 Down-regulated AT1G52220.1 // AT1G52220 // hypothetical 

protein // --- // 841652 /// AT1G52220.2 // AT 

68 13385899 AT1G70949 AT1G70949.1 AT1G70949 -2.07 Down-regulated AT1G70949.1 // AT1G70949 // hypothetical 

protein // --- // 6240811 /// NM_001124109 //  

69 13386385 AT1G72430 NM_105902 AT1G72430 -1.68 Down-regulated NM_105902 // AT1G72430 // SAUR-like auxin-

responsive protein family // --- // 843575 // 

70 13415609 AT2G31830 NM_128741 AT2G31830 -1.55 Down-regulated NM_128741 // AT2G31830 // Type II inositol-

1,4,5-trisphosphate 5-phosphatase 14 // ---  

71 13437797 AT3G05520 NM_001161121 AT3G05520 -5.76 Down-regulated NM_001161121 // AT3G05520 // F-actin-capping 

protein subunit alpha // --- // 819717 /// 

72 13445024 AT3G05520 NM_001161121 AT3G05520 -5.77 Down-regulated NM_001161121 // AT3G05520 // F-actin-capping 

protein subunit alpha // --- // 819717 /// 

73 13387889 AT3G05520 NM_001161121 AT3G05520 -5.83 Down-regulated NM_001161121 // AT3G05520 // F-actin-capping 

protein subunit alpha // --- // 819717 /// 

74 13458322 AT3G05520 NM_001161121 AT3G05520 -5.83 Down-regulated NM_001161121 // AT3G05520 // F-actin-capping 

protein subunit alpha // --- // 819717 /// 

75 13425033 AT3G06470 NM_111522 AT3G06470 -1.73 Down-regulated NM_111522 // AT3G06470 // GNS1/SUR4 

membrane protein family // --- // 819824 /// 

AT3G06 

76 13544974 AT3G20362 AT3G20362.1 AT3G20362 -1.62 Down-regulated AT3G20362.1 // AT3G20362 // hypothetical 

protein // --- // 821581 /// NM_148737 // AT3G 

77 13453771 AT3G25880 NM_113491 AT3G25880 -1.99 Down-regulated NM_113491 // AT3G25880 // hypothetical protein 

// --- // 822183 /// AT3G25880.1 // AT3G 

78 13435143 AT3G43570 NM_114225 AT3G43570 -1.90 Down-regulated NM_114225 // AT3G43570 // GDSL 

esterase/lipase // --- // 823453 /// AT3G43570.1 // 

AT3G 



                                                                                                                                                  Chapter 5 

 

151 

 

79 13460341 AT3G55240 NM_115382 AT3G55240 -3.60 Down-regulated NM_115382 // AT3G55240 // hypothetical protein 

// --- // 824690 /// AT3G55240.1 // AT3G 

80 13471375 AT4G20940 NM_118212 AT4G20940 -1.54 Down-regulated NM_118212 // AT4G20940 // leucine-rich 

receptor-like protein kinase // --- // 827842 // 

81 13487592 AT4G21520 NM_118272 AT4G21520 -1.60 Down-regulated NM_118272 // AT4G21520 // WD40 repeat family 

protein // --- // 828237 /// AT4G21520.1 / 

82 13346598 AT4G26380 NM_118771 AT4G26380 -2.28 Down-regulated NM_118771 // AT4G26380 // cysteine/histidine-

rich C1 domain-containing protein // --- / 

83 13356880 AT4G26380 NM_118771 AT4G26380 -2.28 Down-regulated NM_118771 // AT4G26380 // cysteine/histidine-

rich C1 domain-containing protein // --- / 

84 13395867 AT4G26380 NM_118771 AT4G26380 -2.28 Down-regulated NM_118771 // AT4G26380 // cysteine/histidine-

rich C1 domain-containing protein // --- / 

85 13411603 AT4G26380 NM_118771 AT4G26380 -2.28 Down-regulated NM_118771 // AT4G26380 // cysteine/histidine-

rich C1 domain-containing protein // --- / 

86 13453704 AT4G26380 NM_118771 AT4G26380 -2.28 Down-regulated NM_118771 // AT4G26380 // cysteine/histidine-

rich C1 domain-containing protein // --- / 

87 13489860 AT4G26380 NM_118771 AT4G26380 -2.28 Down-regulated NM_118771 // AT4G26380 // cysteine/histidine-

rich C1 domain-containing protein // --- / 

88 13489862 AT4G26380 NM_118771 AT4G26380 -2.28 Down-regulated NM_118771 // AT4G26380 // cysteine/histidine-

rich C1 domain-containing protein // --- / 

89 13501968 AT4G26380 NM_118771 AT4G26380 -2.28 Down-regulated NM_118771 // AT4G26380 // cysteine/histidine-

rich C1 domain-containing protein // --- / 

90 13476724 AT4G32710 NM_119424 AT4G32710 -1.63 Down-regulated NM_119424 // AT4G32710 // proline-rich 

receptor-like protein kinase PERK14 // --- // 37 

91 13476949 AT4G33080 NM_119462 AT4G33080 -1.52 Down-regulated NM_119462 // AT4G33080 // AGC (cAMP-

dependent, cGMP-dependent and protein kinase C) 

kin 

92 13522706 AT5G06530 NM_001036766 AT5G06530 -1.67 Down-regulated NM_001036766 // AT5G06530 // ABC transporter 

G family member 22 // --- // 830541 /// AT 
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93 13525208 AT5G12323 NM_001125743 AT5G12323 -1.50 Down-regulated NM_001125743 // AT5G12323 // hypothetical 

protein // --- // 6240742 /// AT5G12323.1 //  

94 13526694 AT5G15780 NM_121583 AT5G15780 -1.64 Down-regulated NM_121583 // AT5G15780 // pollen Ole e 1 

allergen and extensin family protein // --- // 

95 13532237 AT5G35480 NM_122939 AT5G35480 -2.65 Down-regulated NM_122939 // AT5G35480 // hypothetical protein 

// --- // 833512 /// AT5G35480.1 // AT5G 

96 13510281 AT5G44020 NM_123769 AT5G44020 -1.95 Down-regulated NM_123769 // AT5G44020 // HAD superfamily, 

subfamily IIIB acid phosphatase // --- // 83 

97 13337838 AT5G45720 NM_001203547 AT5G45720 -5.81 Down-regulated NM_001203547 // AT5G45720 // AAA-type 

ATPase family protein // --- // 834611 /// AT5G45 

98 13370341 AT5G45720 NM_001203547 AT5G45720 -5.81 Down-regulated NM_001203547 // AT5G45720 // AAA-type 

ATPase family protein // --- // 834611 /// AT5G45 

99 13494665 AT5G45720 NM_001203547 AT5G45720 -5.81 Down-regulated NM_001203547 // AT5G45720 // AAA-type 

ATPase family protein // --- // 834611 /// AT5G45 

100 13531589 AT5G45720 NM_001203547 AT5G45720 -5.81 Down-regulated NM_001203547 // AT5G45720 // AAA-type 

ATPase family protein // --- // 834611 /// AT5G45 

101 13544460 AT5G45720 NM_001203547 AT5G45720 -5.81 Down-regulated NM_001203547 // AT5G45720 // AAA-type 

ATPase family protein // --- // 834611 /// AT5G45 

102 13517400 AT5G60280 AK221799 AT5G60280 -4.38 Down-regulated AK221799 // AT5G60280 // concanavalin A-like 

lectin kinase-like protein // --- // 83615 

103 13387345 AT5G60280 AK221799 AT5G60280 -3.05 Down-regulated AK221799 // AT5G60280 // concanavalin A-like 

lectin kinase-like protein // --- // 83615 

104 13411454 AT5G60280 AK221799 AT5G60280 -3.05 Down-regulated AK221799 // AT5G60280 // concanavalin A-like 

lectin kinase-like protein // --- // 83615 

105 13413099 AT5G60280 AK221799 AT5G60280 -3.05 Down-regulated AK221799 // AT5G60280 // concanavalin A-like 

lectin kinase-like protein // --- // 83615 

106 13427522 AT5G60280 AK221799 AT5G60280 -3.05 Down-regulated AK221799 // AT5G60280 // concanavalin A-like 

lectin kinase-like protein // --- // 83615 
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107 13442068 AT5G60280 AK221799 AT5G60280 -3.05 Down-regulated AK221799 // AT5G60280 // concanavalin A-like 

lectin kinase-like protein // --- // 83615 

108 13468093 AT5G60280 AK221799 AT5G60280 -3.05 Down-regulated AK221799 // AT5G60280 // concanavalin A-like 

lectin kinase-like protein // --- // 83615 

109 13499770 AT5G60280 AK221799 AT5G60280 -3.05 Down-regulated AK221799 // AT5G60280 // concanavalin A-like 

lectin kinase-like protein // --- // 83615 

110 13508977 AT5G60280 AK221799 AT5G60280 -3.05 Down-regulated AK221799 // AT5G60280 // concanavalin A-like 

lectin kinase-like protein // --- // 83615 

111 13519435 AT5G60280 AK221799 AT5G60280 -3.05 Down-regulated AK221799 // AT5G60280 // concanavalin A-like 

lectin kinase-like protein // --- // 83615 

112 13521637 AT5G60280 AK221799 AT5G60280 -3.05 Down-regulated AK221799 // AT5G60280 // concanavalin A-like 

lectin kinase-like protein // --- // 83615 

113 13338203 BCAT-1 NM_001123785 AT1G10060 -2.28 Down-regulated NM_001123785 // BCAT-1 // branched-chain-

amino-acid aminotransferase 1 // --- // 837542 

114 13461438 BZIP61 NM_115674 AT3G58120 -1.73 Down-regulated NM_115674 // BZIP61 // basic-leucine zipper 

transcription factor family protein // ---  

115 13516311 CER3 NM_125164 AT5G57800 -1.78 Down-regulated NM_125164 // CER3 // protein ECERIFERUM 3 // 

--- // 835889 /// AT5G57800.1 // CER3 // p 

116 13477383 CYCD3;1 NM_119579  AT4G34160 -1.57 Down-regulated NM_119579 // CYCD3;1 // cyclin-D3-1 // --- // 

829564 /// AT4G34160.1 // CYCD3;1 // cycl 

117 13380596 CYP96A15 NM_104570 AT1G57750 -1.52 Down-regulated NM_104570 // CYP96A15 // alkane hydroxylase 

CYP96A15 // --- // 842150 /// AT1G57750.1 / 

118 13452868 EDA6 NM_113247 AT3G23440 -1.51 Down-regulated NM_113247 // EDA6 // embryo sac development 

arrest 6 protein // --- // 821925 /// AT3G2 

119 13407392 EXPA15 NM_126361  AT2G03090 -1.80 Down-regulated NM_126361 // EXPA15 // expansin A15 // --- // 

814838 /// AT2G03090.1 // EXPA15 // expan 

120 13538937 FTSH11 NM_124696 AT5G53170 -1.53 Down-regulated NM_124696 // FTSH11 // ATP-dependent zinc 

metalloprotease FTSH 11 // --- // 835398 ///  

http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT3G23440
http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT5G53170
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121 13355545 HEXO3 NM_105233  AT1G65590 -1.69 Down-regulated NM_105233 // HEXO3 // beta-hexosaminidase 3 // 

--- // 842871 /// AT1G65590.1 // HEXO3 / 

122 13426364 KCS14 NM_111863 AT3G10280 -2.49 Down-regulated NM_111863 // KCS14 // 3-ketoacyl-CoA synthase 

14 // --- // 820190 /// AT3G10280.1 // KC 

123 13545262 nad6 ATMG00270.1 ATMG00270.1 -1.54 Down-regulated ATMG00270.1 // nad6 // NADH dehydrogenase 

subunit 6 // --- // 814580 

124 13524399 PAS2 NM_001203348 AT5G10480 -1.74 Down-regulated NM_001203348 // PAS2 // very-long-chain (3R)-3-

hydroxyacyl-[acyl-carrier protein] dehyd 

125 13369792 PDCB3 NM_101723 AT1G18650 -1.50 Down-regulated NM_101723 // PDCB3 // plasmodesmata callose-

binding protein 3 // --- // 838446 /// AT1G 

126 13367598 PGL1 NM_101239 AT1G13700 -1.67 Down-regulated NM_101239 // PGL1 // 6-phosphogluconolactonase 

1 // --- // 837931 /// AT1G13700.1 // PG 

127 13374442 PSAF NM_102871 AT1G31330 -1.59 Down-regulated NM_102871 // PSAF // photosystem I subunit F // -

-- // 840021 /// AT1G31330.1 // PSAF / 

128 13346202 PSAK NM_102775 AT1G30380 -1.56 Down-regulated NM_102775 // PSAK // photosystem I reaction 

center subunit psaK // --- // 839918 /// AT 

129 13458456 PSBO2 NM_114942 AT3G50820 -1.58 Down-regulated NM_114942 // PSBO2 // oxygen-evolving 

enhancer protein 1-2 // --- // 824246 /// AT3G508 

130 13369782 PSP NM_202129 AT1G18640 -1.80 Down-regulated NM_202129 // PSP // phosphoserine phosphatase // 

--- // 838445 /// AT1G18640.2 // PSP / 

131 13444474 PTAC3 NM_111297 AT3G04260 -1.51 Down-regulated NM_111297 // PTAC3 // plastid transcriptionally 

active 3 // --- // 819581 /// AT3G04260 

132 13489109 RBP31 AT4G24770.1 AT4G24770 -1.67 Down-regulated AT4G24770.1 // RBP31 // ribonucleoprotein // --- // 

828579 /// NM_118610 // RBP31 // ri 

133 13445203 RCI2A NM_111462 AT3G05880 -1.93 Down-regulated NM_111462 // RCI2A // Hydrophobic protein 

RCI2A // --- // 819757 /// AT3G05880.1 // RCI 

134 13382582 RFC2 NM_104994 AT1G63160 -1.55 Down-regulated NM_104994 // RFC2 // replication factor C 2 // --- 

// 842620 /// AT1G63160.1 // RFC2 // 

http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT5G10480
http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT1G30380
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135 13544913 rpl32 ATCG01020.1 ATCG01020 -2.47 Down-regulated ATCG01020.1 // rpl32 // ribosomal protein L32 // -

-- // 844704 

136 13439976 SBPASE NM_115438  AT3G55800 -1.57 Down-regulated NM_115438 // SBPASE // Sedoheptulose-1,7-

bisphosphatase // --- // 824746 /// AT3G55800. 

137 13530101 SLAH3 NM_122308 AT5G24030 -1.75 Down-regulated NM_122308 // SLAH3 // SLAC1 homologue 3 // --

- // 832468 /// AT5G24030.1 // SLAH3 // SL 

138 13525738 SMT1 NM_121374 AT5G13710 -1.64 Down-regulated NM_121374 // SMT1 // cycloartenol-c-24-

methyltransferase // --- // 831216 /// AT5G13710 

139 13469677 TPS03 NM_117775 AT4G16740 -1.58 Down-regulated NM_117775 // TPS03 // tricyclene synthase // --- // 

827377 /// AT4G16740.1 // TPS03 //  

140 13474801 TYRDC NM_001203932 AT4G28680 -1.65 Down-regulated NM_001203932 // TYRDC // tyrosine 

decarboxylase // --- // 828986 /// AT4G28680.3 // 

TYR 

141 13519853 XTH6 NM_125970 AT5G65730 -1.51 Down-regulated NM_125970 // XTH6 // probable xyloglucan 

endotransglucosylase/hydrolase protein 6 // -- 

142 13352563 ZKT NM_104423 AT1G55480 -1.61 Down-regulated NM_104423 // ZKT // ZKT protein containing 

PDZ, K-box and a TPR region // --- // 841995 

 

http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT5G65730
http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT1G55480
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5.4.3.1 Genes involved in Signal Transduction 

In contrast to non-induced (aphid feeding absent) plants, 7 genes were found 

significantly differentially expressed in the signal transduction category when resistant 

CWR were compared to resistant LR after aphid feeding.  Out of these 7 genes 5 were 

up-regulated. These genes included AT1G70700 (TIFY7), a protein presumed to be 

involved in jasmonate signalling  

(https://www.arabidopsis.org/servlets/Tairobject?id=30459&type=Locus); AT3G12500 

(HCHIB) which encodes a basic chitinase involved in ethylene/jasmonic acid mediated 

signalling pathway during systemic acquired resistance based on expression analyses; 

AT4G36900 (RAP2.10) ethylene-responsive transcription factor which encodes a 

member of the DREB subfamily A-5 of ERF/AP2 transcription factor family (RAP2.10) 

- it is involved in ethylene-activated signalling pathway and regulation of transcription; 

AT5G20730 (NPH4), encodes an auxin-regulated transcriptional activator; AT5G64810 

(WRKY51) is a putative transcription factor. The two genes found down regulated were 

AT4G20940 and AT4G26380. Both these genes encode for putative leucine-rich 

receptor-like protein kinase. Transcription factors (TFs) and signal transduction genes 

have been reported to be significant for crop domestication (Doebley et al. 2006). 

Moreover these genes are considered to play a central role in regulating gene expression 

and control innumerable biological processes by cabbage aphid feeding. According to 

one theory of domestication, trait change is usually a result of loss of function in order 

to adapt to new environments (Lester 1989).  
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5.4.3.2 Genes in response to stress 

Changes in transcription of genes associated with stress increased from 5 in non-

stressed plants to 25 after aphid feeding. The majority of genes responding to stress 

were up-regulated in response to aphid feeding in CWR when compared to LR.   In total 

25 genes were found in this category, 15 were found to be induced (up-regulated by 

aphid feeding) while 10 were down- regulated in CWR.  

The up-regulated genes in response to aphid feeding were AT1G08930 (ERD6), 

AT1G70700 (TIFY7), AT1G80840 (WRKY40), AT2G22370, AT3G12500 (HCHIB), 

AT3G13330 (PA200), AT3G14210 (ESM1), AT3G14990, AT3G48030, AT4G01700, 

AT4G37870 (PCK1), AT5G24530 (DMR6), AT5G46180 (DELTA-OAT), 

AT5G48850 (ATSDI1), AT5G64810 (WRKY51).  The down regulated genes were 

AT1G55480 (ZKT), AT1G73680 (ALPHA), AT3G05880 (RCI2A), AT3G55800 

(SBPASE),   AT4G16740 (TPS03), AT4G24770, (RBP31), AT4G28680 (TYRDC), 

AT5G06530, AT5G53170 (FTSH11), AT5G65730 (XTH6). The details of all genes 

are provided in supplementary table S5.6 and will further be discussed later in the 

chapter.  

5.4.3.3 Genes in response to stimulus 

The majority of genes that were found in this category overlapped with ‘response to 

stress’ category as expected because GO term ‘Response to stress’ is a subdivision of 

this category as generally stress occurs as a result of changes due to some stimulus in 

plants.  Twenty seven were found to be significantly enriched under response to 

stimulus category. Out of these, 16 were found to be induced in response to 24 hours of 

aphid feeding while 11 were found to be repressed when CWR were compared to LR. 



                                                                                                                                                  
Chapter 5 

 

158 

 

Twenty one genes were common to response to stress category while 6 genes were 

unique to response to stimulus. Genes falling only under this category after aphid 

feeding were AT1G72290, AT5G64250, AT4G15210, AT5G62380, AT5G20730, 

AT3G50820. The higher number of genes in response to stress and response to stimulus 

category indicates the variation in transcription response to CWR and LR towards aphid 

feeding and these genes may be good candidates for aphid resistance in Brassica plants. 

5.4.4 Comparison of gene expression of CWR and LR in response to presence or 

absence of aphid feeding 

The comparison of induced and non-induced gene expression showed that a large 

number of genes are induced by aphid feeding. A total of 75 genes had significant 

difference in expression when resistant CWR were compared with resistant LR in the 

absence of aphid feeding (Table 5.1). In contrast, a total of 261 genes were significantly 

differentially expressed in response to aphid feeding (Table 5.2).  

 

 

 

 

 

 

 

                                            Venn diagram (CWR vs. LR) 

 

Figure 5.1: Venn diagram: Venn diagram shows the number of significantly 

differentially expressed among CWR and LR in presence and absence of aphid 

feeding. 
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Twenty five common genes were significantly differentially expressed between non 

induced and induced plants.  

Out of these 25 common genes, 15 genes were up regulated in CWR while 10 were 

down regulated. The details of these genes are provided in table 5.3. The common genes 

are involved in functions like Cellular and metabolic processes, transport, protein 

metabolism, response to stress, and response to stimulus. Similarly a list of uniquely 

expressed genes in presence of aphid feeding (table 5.4) and in absence of aphid feeding 

(table 5.5) is provided. The uniquely up regulated genes can be important indicators of 

response to aphid feeding and need further investigation in future. The number of 

candidate genes for aphid resistance has been revealed in response to aphid feeding. 

These candidate genes should be further explored in future to confirm their role in 

resistance in Brassica plants due to aphid feeding.  
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Table 5.3: List of 25 genes common between induced ( presence of aphid feeding) and non -induced (absence of aphid feeding) treatment: 

List of common genes between two comparisons with significant differences in expression at FDR corrected p-value <0.05 and fold change ≥1.5 
to  ≤-1.5. A positive FC indicates up regulation ;negative FC indicates down regulation 

S.no Column ID RefSeq Gene 

Symbol 

Fold-

Change 

Fold-Change 

(Description) 

gene_assignment 

1 13524842 NM_121190 ASP3 1.64 Up-regulated NM_121190 // ASP3 // aspartate 

aminotransferase 3 // --- // 831024 /// 

AT5G11520.1 // A 

2 13343847 NM_202168 AT1G23465 3.21 Up-regulated NM_202168 // AT1G23465 // peptidase-S24/S26 

domain-containing protein // --- // 2745760 

3 13385899 AT1G70949.1 AT1G70949 -2.07 Up-regulated AT1G70949.1 // AT1G70949 // hypothetical 

protein // --- // 6240811 /// NM_001124109 //  

4 13408365 NM_126758 AT2G07721 11.11 Up-regulated NM_126758 // AT2G07721 // hypothetical 

protein // --- // 815394 /// AT2G07721.1 // AT2G 

5 13374992 NM_001036054 CID11 1.65 Down-regulated NM_001036054 // CID11 // CTC-interacting 

domain 11 protein // --- // 840173 /// AT1G327 

6 13380596 NM_104570 CYP96A15 -1.52 Up-regulated NM_104570 // CYP96A15 // alkane hydroxylase 

CYP96A15 // --- // 842150 /// AT1G57750.1 / 

7 13536092 NM_123987 DELTA-

OAT 

1.77 Down-regulated NM_123987 // DELTA-OAT // ornithine-delta-

aminotransferase // --- // 834660 /// AT5G461 

8 13337731 NM_001035929 ERD6 1.63 Up-regulated NM_001035929 // ERD6 // sugar transporter 

ERD6 // --- // 837414 /// NM_100765 // ERD6 / 

9 13407392 NM_126361 EXPA15 -1.80 Down-regulated NM_126361 // EXPA15 // expansin A15 // --- // 

814838 /// AT2G03090.1 // EXPA15 // expan 

10 13545387 ATMG01220.1 nad1 43.92 Down-regulated ATMG01220.1 // nad1 // NADH dehydrogenase 

subunit 1 // --- // 3890477 
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11 13368314 AT1G15210.1 PDR7 1.59 Up-regulated AT1G15210.1 // PDR7 // ABC transporter G 

family member 35 // --- // 838087 /// NM_10138 

12 13369782 NM_202129 PSP -1.80 Down-regulated NM_202129 // PSP // phosphoserine 

phosphatase // --- // 838445 /// AT1G18640.2 // 

PSP / 

13 13530101 NM_122308 SLAH3 -1.75 Down-regulated NM_122308 // SLAH3 // SLAC1 homologue 3 // 

--- // 832468 /// AT5G24030.1 // SLAH3 // SL 

14 13348616     7.99 Up-regulated --- 

15 13361670     4.00 Down-regulated --- 

16 13367956     -2.51 Down-regulated --- 

17 13406143     2.33 Up-regulated --- 

18 13406711     -1.76 Down-regulated --- 

19 13442074     -2.18 Up-regulated --- 

20 13451950     -3.84 Up-regulated --- 

21 13466328     2.41 Up-regulated --- 

22 13475068     -1.79 Down-regulated --- 

23 13482213     5.81 Up-regulated --- 

24 13511965     2.26 Up-regulated --- 

25 13531979     2.53 Up-regulated --- 
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Table 5.4: List of 236 uniquely expressed induced ( presence of aphid feeding) treatment: List of unique genes in presence of aphid feeding with 

significant differences in expression at FDR corrected p-value <0.05 and fold change ≥1.5 to  ≤-1.5. A positive FC indicates up regulation 

;negative FC indicates down regulation 

S.no Transcript 

ID 

Gene 

Symbol 

RefSeq Locus ID Fold-

Change 

Fold-

Change(Description) 

Gene_assignment 

1 13355545 HEXO3 NM_105233  AT1G65590 -1.69 Down-regulated NM_105233 // HEXO3 // beta-

hexosaminidase 3 // --- // 842871 /// 

AT1G65590.1 // HEXO3 / 

2 13457204 ABCA2 NM_114641  AT3G47730 1.52 Up-regulated NM_114641 // ABCA2 // ABC 

transporter A family member 2 // --- // 

823927 /// AT3G47730. 

3 13439976 SBPASE NM_115438  AT3G55800 -1.57 Down-regulated NM_115438 // SBPASE // 

Sedoheptulose-1,7-bisphosphatase // --- 

// 824746 /// AT3G55800. 

4 13477383 CYCD3;1 NM_119579  AT4G34160 -1.57 Down-regulated NM_119579 // CYCD3;1 // cyclin-D3-

1 // --- // 829564 /// AT4G34160.1 // 

CYCD3;1 // cycl 

5 13528308 ACL5 NM_001085136  AT5G19530 1.84 Up-regulated NM_001085136 // ACL5 // 

Thermospermine synthase ACAULIS5 

// --- // 832073 /// AT5G19530 

6 13363863 CALS1 NM_100436 AT1G05570 1.58 Up-regulated NM_100436 // CALS1 // callose 

synthase 1 // --- // 837059 /// 

AT1G05570.1 // CALS1 // c 

7 13338203 BCAT-1 NM_001123785 AT1G10060 -2.28 Down-regulated NM_001123785 // BCAT-1 // 

branched-chain-amino-acid 

aminotransferase 1 // --- // 837542 

8 13367035 AT1G12423 NM_001123802 AT1G12423 -1.80 Down-regulated NM_001123802 // AT1G12423 // 

hypothetical protein // --- // 6240731 /// 

AT1G12423.1 //  

9 13367598 PGL1 NM_101239 AT1G13700 -1.67 Down-regulated NM_101239 // PGL1 // 6-

phosphogluconolactonase 1 // --- // 
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837931 /// AT1G13700.1 // PG 

10 13369792 PDCB3 NM_101723 AT1G18650 -1.50 Down-regulated NM_101723 // PDCB3 // 

plasmodesmata callose-binding protein 

3 // --- // 838446 /// AT1G 

11 13342911 AT1G21245 NM_148476 AT1G21245 1.67 Up-regulated NM_148476 // AT1G21245 // Protein 

kinase superfamily protein // --- // 

838720 /// AT1G2 

12 13344465 MYB116 NM_102344 AT1G25340 1.67 Up-regulated NM_102344 // MYB116 // putative 

transcription factor (MYB116) // --- // 

839118 /// AT1G 

13 13346202 PSAK NM_102775 AT1G30380 -1.56 Down-regulated NM_102775 // PSAK // photosystem I 

reaction center subunit psaK // --- // 

839918 /// AT 

14 13374442 PSAF NM_102871 AT1G31330 -1.59 Down-regulated NM_102871 // PSAF // photosystem I 

subunit F // --- // 840021 /// 

AT1G31330.1 // PSAF / 

15 13374726 AT1G32080 NM_102942 AT1G32080 -1.53 Down-regulated NM_102942 // AT1G32080 // plastidal 

glycolate/glycerate translocator 1 // --- 

// 840100 

16 13378599 AT1G52220 AT1G52220.1 AT1G52220 -1.91 Down-regulated AT1G52220.1 // AT1G52220 // 

hypothetical protein // --- // 841652 /// 

AT1G52220.2 // AT 

17 13352563 ZKT NM_104423 AT1G55480 -1.61 Down-regulated NM_104423 // ZKT // ZKT protein 

containing PDZ, K-box and a TPR 

region // --- // 841995 

18 13382582 RFC2 NM_104994 AT1G63160 -1.55 Down-regulated NM_104994 // RFC2 // replication 

factor C 2 // --- // 842620 /// 

AT1G63160.1 // RFC2 // 

19 13354650 AT1G63220 NM_105001 AT1G63220 1.51 Up-regulated NM_105001 // AT1G63220 // calcium-

dependent lipid-binding domain-

containing protein //  

http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT1G25340
http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT1G30380
http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT1G55480
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20 13356629 AT1G68570 NM_105528 AT1G68570 1.67 Up-regulated NM_105528 // AT1G68570 // putative 

nitrite transporter // --- // 843186 /// 

AT1G68570.1 

21 13384976 AT1G68570 NM_105528 AT1G68570 1.57 Up-regulated NM_105528 // AT1G68570 // putative 

nitrite transporter // --- // 843186 /// 

AT1G68570.1 

22 13357574 TIFY7 NM_105738 AT1G70700 1.54 Up-regulated NM_105738 // TIFY7 // protein TIFY 

7 // --- // 843407 /// AT1G70700.1 // 

TIFY7 // prote 

23 13358274 AT1G72290 NM_105888 AT1G72290 1.83 Up-regulated NM_105888 // AT1G72290 // trypsin 

inhibitor (Kunitz) domain-containing 

protein // --- / 

24 13386385 AT1G72430 NM_105902 AT1G72430 -1.68 Down-regulated NM_105902 // AT1G72430 // SAUR-

like auxin-responsive protein family // -

-- // 843575 // 

25 13386441 AT1G72540 NM_105913 AT1G72540 1.94 Up-regulated NM_105913 // AT1G72540 // putative 

receptor-like protein kinase // --- // 

843586 /// AT 

26 13386963 ALPHA NM_106027 AT1G73680 -1.56 Down-regulated NM_106027 // ALPHA DOX2 // alpha 

dioxygenase // --- // 843703 /// 

AT1G73680.1 // ALPHA  

27 13361730 WRKY40 NM_106732 AT1G80840 1.77 Up-regulated NM_106732 // WRKY40 // putative 

WRKY transcription factor 40 // --- // 

844423 /// AT1G8 

28 13407824 AT2G04650 NM_126494 AT2G04650 1.67 Up-regulated NM_126494 // AT2G04650 // ADP-

glucose pyrophosphorylase-like protein 

// --- // 815007 / 

29 13392342 AT2G07787 NM_201712 AT2G07787 1.53 Up-regulated NM_201712 // AT2G07787 // 

hypothetical protein // --- // 2745469 /// 

AT2G07787.1 // AT2 

30 13411645 AT2G22370 NM_127802 AT2G22370 1.61 Up-regulated NM_127802 // AT2G22370 // 

hypothetical protein // --- // 816769 /// 

AT2G22370.1 // AT2G 

http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT1G70700
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31 13415609 AT2G31830 NM_128741 AT2G31830 -1.55 Down-regulated NM_128741 // AT2G31830 // Type II 

inositol-1,4,5-trisphosphate 5-

phosphatase 14 // ---  

32 13401971 AT2G37440 NM_129299 AT2G37440 1.71 Up-regulated NM_129299 // AT2G37440 // DNAse 

I-like superfamily protein // --- // 

818321 /// AT2G374 

33 13402202 IRX12 NM_129364 AT2G38080 1.64 Up-regulated NM_129364 // IRX12 // laccase-4 // --- 

// 818386 /// AT2G38080.1 // IRX12 // 

laccase-4  

34 13418497 FAC1 NM_129384 AT2G38280 1.59 Up-regulated NM_129384 // FAC1 // AMP 

deaminase // --- // 818408 /// 

NM_179963 // FAC1 // AMP deamin 

35 13420535 CSY3 NM_129840 AT2G42790 1.71 Up-regulated NM_129840 // CSY3 // citrate synthase 

3 // --- // 818879 /// AT2G42790.1 // 

CSY3 // cit 

36 13404388 AT2G43150 NM_129877 AT2G43150 1.53 Up-regulated NM_129877 // AT2G43150 // Proline-

rich extensin-like family protein // --- // 

818917 // 

37 13444474 PTAC3 NM_111297 AT3G04260 -1.51 Down-regulated NM_111297 // PTAC3 // plastid 

transcriptionally active 3 // --- // 

819581 /// AT3G04260 

38 13387889 AT3G05520 NM_001161121 AT3G05520 -5.83 Down-regulated NM_001161121 // AT3G05520 // F-

actin-capping protein subunit alpha // --

- // 819717 /// 

39 13437797 AT3G05520 NM_001161121 AT3G05520 -5.76 Down-regulated NM_001161121 // AT3G05520 // F-

actin-capping protein subunit alpha // --

- // 819717 /// 

40 13445024 AT3G05520 NM_001161121 AT3G05520 -5.77 Down-regulated NM_001161121 // AT3G05520 // F-

actin-capping protein subunit alpha // --

- // 819717 /// 

41 13458322 AT3G05520 NM_001161121 AT3G05520 -5.83 Down-regulated NM_001161121 // AT3G05520 // F-

actin-capping protein subunit alpha // --

- // 819717 /// 
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42 13445203 RCI2A NM_111462 AT3G05880 -1.93 Down-regulated NM_111462 // RCI2A // Hydrophobic 

protein RCI2A // --- // 819757 /// 

AT3G05880.1 // RCI 

43 13425033 AT3G06470 NM_111522 AT3G06470 -1.73 Down-regulated NM_111522 // AT3G06470 // 

GNS1/SUR4 membrane protein family 

// --- // 819824 /// AT3G06 

44 13426364 KCS14 NM_111863 AT3G10280 -2.49 Down-regulated NM_111863 // KCS14 // 3-ketoacyl-

CoA synthase 14 // --- // 820190 /// 

AT3G10280.1 // KC 

45 13448399 HCHIB NM_112085 AT3G12500 1.77 Up-regulated NM_112085 // HCHIB // basic 

chitinase B // --- // 820429 /// 

AT3G12500.1 // HCHIB // ba 

46 13448873 PA200 NM_112178 AT3G13330 1.56 Up-regulated NM_112178 // PA200 // proteasome 

activating protein 200 // --- // 820533 

/// AT3G13330. 

47 13545581 ESM1 NM_112278 AT3G14210 4.03 Up-regulated NM_112278 // ESM1 // 

epithiospecifier modifier 1 // --- // 

820639 /// AT3G14210.1 // ES 

48 13428400 AT3G14990 NM_001035621 AT3G14990 1.55 Up-regulated NM_001035621 // AT3G14990 // 

protein DJ-1-like A // --- // 820728 /// 

NM_112361 // AT3G 

49 13429722 PYD1 NM_112662 AT3G17810 1.56 Up-regulated NM_112662 // PYD1 // putative 

dihydropyrimidine dehydrogenase // --- 

// 821049 /// AT3G 

50 13544974 AT3G20362 AT3G20362.1 AT3G20362 -1.62 Down-regulated AT3G20362.1 // AT3G20362 // 

hypothetical protein // --- // 821581 /// 

NM_148737 // AT3G 

51 13452781 AT3G23090 NM_113210 AT3G23090 1.54 Up-regulated NM_113210 // AT3G23090 // targeting 

protein for Xklp2-like protein // --- // 

821884 /// 

52 13452868 EDA6 NM_113247 AT3G23440 -1.51 Down-regulated NM_113247 // EDA6 // embryo sac 

development arrest 6 protein // --- // 

821925 /// AT3G2 

http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT3G23440
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53 13432310 AT3G23510 NM_113254 AT3G23510 1.54 Up-regulated NM_113254 // AT3G23510 // 

cyclopropane-fatty-acyl-phospholipid 

synthase // --- // 82193 

54 13453160 AT3G24180 NM_001035680 AT3G24180 1.64 Up-regulated NM_001035680 // AT3G24180 // Beta-

glucosidase, GBA2 type family protein 

// --- // 82200 

55 13453771 AT3G25880 NM_113491 AT3G25880 -1.99 Down-regulated NM_113491 // AT3G25880 // 

hypothetical protein // --- // 822183 /// 

AT3G25880.1 // AT3G 

56 13454169 MUB4 NM_113612 AT3G26980 1.64 Up-regulated NM_113612 // MUB4 // membrane-

anchored ubiquitin-fold protein 4 // --- 

// 822315 /// AT 

57 13435143 AT3G43570 NM_114225 AT3G43570 -1.90 Down-regulated NM_114225 // AT3G43570 // GDSL 

esterase/lipase // --- // 823453 /// 

AT3G43570.1 // AT3G 

58 13456324 IVD NM_114399 AT3G45300 1.66 Up-regulated NM_114399 // IVD // isovaleryl-CoA-

dehydrogenase // --- // 823668 /// 

AT3G45300.1 // IV 

59 13457337 AT3G48030 NM_114672 AT3G48030 1.56 Up-regulated NM_114672 // AT3G48030 // RING-

H2 finger protein ATL48 // --- // 

823958 /// AT3G48030.1 

60 13437332 AT3G49130 NM_114772 AT3G49130 1.52 Up-regulated NM_114772 // AT3G49130 // SWAP 

(Suppressor-of-White-APricot)/surp 

RNA-binding domain-co 

61 13458456 PSBO2 NM_114942 AT3G50820 -1.58 Down-regulated NM_114942 // PSBO2 // oxygen-

evolving enhancer protein 1-2 // --- // 

824246 /// AT3G508 

62 13459262 MDAR1 NM_001161202 AT3G52880 1.53 Up-regulated NM_001161202 // MDAR1 // 

monodehydroascorbate reductase 

(NADH) // --- // 824454 /// AT3 

63 13460341 AT3G55240 NM_115382 AT3G55240 -3.60 Down-regulated NM_115382 // AT3G55240 // 

hypothetical protein // --- // 824690 /// 

AT3G55240.1 // AT3G 

http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT3G26980
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64 13460997 AT3G57020 NM_115561 AT3G57020 1.73 Up-regulated NM_115561 // AT3G57020 // 

strictosidine synthase family protein // -

-- // 824869 /// AT 

65 13461438 BZIP61 NM_115674 AT3G58120 -1.73 Down-regulated NM_115674 // BZIP61 // basic-leucine 

zipper transcription factor family 

protein // ---  

66 13480634 AT4G01700 NM_116400 AT4G01700 1.73 Up-regulated NM_116400 // AT4G01700 // 

Chitinase family protein // --- // 828131 

/// AT4G01700.1 //  

67 13465352 AT4G03420 NM_116580 AT4G03420 1.52 Up-regulated NM_116580 // AT4G03420 // 

hypothetical protein // --- // 827928 /// 

AT4G03420.1 // AT4G 

68 13465878 AT4G05010 NM_116740 AT4G05010 1.57 Up-regulated NM_116740 // AT4G05010 // F-box 

protein // --- // 825843 /// 

AT4G05010.1 // AT4G05010 / 

69 13484924 BAM5 NM_117609 AT4G15210 1.78 Up-regulated NM_117609 // BAM5 // beta-amylase 

5 // --- // 827185 /// AT4G15210.1 // 

BAM5 // beta-am 

70 13485148 AT4G15885 NM_148338 AT4G15885 1.56 Up-regulated NM_148338 // AT4G15885 // kinesin 

motor protein-like protein // --- // 

827270 /// AT4G1 

71 13469677 TPS03 NM_117775 AT4G16740 -1.58 Down-regulated NM_117775 // TPS03 // tricyclene 

synthase // --- // 827377 /// 

AT4G16740.1 // TPS03 //  

72 13485638 AT4G16765 NM_179213 AT4G16765 1.55 Up-regulated NM_179213 // AT4G16765 // 

oxidoreductase, 2OG-Fe(II) oxygenase 

family protein // --- // 

73 13471375 AT4G20940 NM_118212 AT4G20940 -1.54 Down-regulated NM_118212 // AT4G20940 // leucine-

rich receptor-like protein kinase // --- // 

827842 // 

74 13487592 AT4G21520 NM_118272 AT4G21520 -1.60 Down-regulated NM_118272 // AT4G21520 // WD40 

repeat family protein // --- // 828237 /// 

AT4G21520.1 / 
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75 13489109 RBP31 AT4G24770.1 AT4G24770 -1.67 Down-regulated AT4G24770.1 // RBP31 // 

ribonucleoprotein // --- // 828579 /// 

NM_118610 // RBP31 // ri 

76 13346598 AT4G26380 NM_118771 AT4G26380 -2.28 Down-regulated NM_118771 // AT4G26380 // 

cysteine/histidine-rich C1 domain-

containing protein // --- / 

77 13356880 AT4G26380 NM_118771 AT4G26380 -2.28 Down-regulated NM_118771 // AT4G26380 // 

cysteine/histidine-rich C1 domain-

containing protein // --- / 

78 13395867 AT4G26380 NM_118771 AT4G26380 -2.28 Down-regulated NM_118771 // AT4G26380 // 

cysteine/histidine-rich C1 domain-

containing protein // --- / 

79 13411603 AT4G26380 NM_118771 AT4G26380 -2.28 Down-regulated NM_118771 // AT4G26380 // 

cysteine/histidine-rich C1 domain-

containing protein // --- / 

80 13453704 AT4G26380 NM_118771 AT4G26380 -2.28 Down-regulated NM_118771 // AT4G26380 // 

cysteine/histidine-rich C1 domain-

containing protein // --- / 

81 13489860 AT4G26380 NM_118771 AT4G26380 -2.28 Down-regulated NM_118771 // AT4G26380 // 

cysteine/histidine-rich C1 domain-

containing protein // --- / 

82 13489862 AT4G26380 NM_118771 AT4G26380 -2.28 Down-regulated NM_118771 // AT4G26380 // 

cysteine/histidine-rich C1 domain-

containing protein // --- / 

83 13501968 AT4G26380 NM_118771 AT4G26380 -2.28 Down-regulated NM_118771 // AT4G26380 // 

cysteine/histidine-rich C1 domain-

containing protein // --- / 

84 13474801 TYRDC NM_001203932 AT4G28680 -1.65 Down-regulated NM_001203932 // TYRDC // tyrosine 

decarboxylase // --- // 828986 /// 

AT4G28680.3 // TYR 

85 13476724 AT4G32710 NM_119424 AT4G32710 -1.63 Down-regulated NM_119424 // AT4G32710 // proline-

rich receptor-like protein kinase 

PERK14 // --- // 37 
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86 13476949 AT4G33080 NM_119462 AT4G33080 -1.52 Down-regulated NM_119462 // AT4G33080 // AGC 

(cAMP-dependent, cGMP-dependent 

and protein kinase C) kin 

87 13477038 AT4G33440 NM_119498 AT4G33440 1.66 Up-regulated NM_119498 // AT4G33440 // pectin 

lyase-like superfamily protein // --- // 

829481 /// AT 

88 13478537 RAP2.10 NM_119854 AT4G36900 1.53 Up-regulated NM_119854 // RAP2.10 // ethylene-

responsive transcription factor RAP2-

10 // --- // 8298 

89 13494916 PCK1 NM_119948 AT4G37870 1.64 Up-regulated NM_119948 // PCK1 // 

phosphoenolpyruvate carboxykinase 

[ATP] // --- // 829943 /// AT4G3 

90 13522706 AT5G06530 NM_001036766 AT5G06530 -1.67 Down-regulated NM_001036766 // AT5G06530 // ABC 

transporter G family member 22 // --- // 

830541 /// AT 

91 13524399 PAS2 NM_001203348 AT5G10480 -1.74 Down-regulated NM_001203348 // PAS2 // very-long-

chain (3R)-3-hydroxyacyl-[acyl-carrier 

protein] dehyd 

92 13525208 AT5G12323 NM_001125743 AT5G12323 -1.50 Down-regulated NM_001125743 // AT5G12323 // 

hypothetical protein // --- // 6240742 /// 

AT5G12323.1 //  

93 13525738 SMT1 NM_121374 AT5G13710 -1.64 Down-regulated NM_121374 // SMT1 // cycloartenol-c-

24-methyltransferase // --- // 831216 /// 

AT5G13710 

94 13526694 AT5G15780 NM_121583 AT5G15780 -1.64 Down-regulated NM_121583 // AT5G15780 // pollen 

Ole e 1 allergen and extensin family 

protein // --- // 

95 13528833 NPH4 NM_180715 AT5G20730 1.62 Up-regulated NM_180715 // NPH4 // auxin-

regulated transcriptional activator 

NPH4 // --- // 832196 // 

96 13529672 AT5G22860 NM_180728 AT5G22860 1.58 Up-regulated NM_180728 // AT5G22860 // Serine 

carboxypeptidase S28 family protein // 

--- // 832349 / 

http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT4G37870
http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT5G10480
http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT5G20730


                                                                                                                                                  Chapter 5 

 

171 

 

97 13505359 DMR6 NM_122361 AT5G24530 2.36 Up-regulated NM_122361 // DMR6 // downy 

mildew resistance 6 protein / 

oxidoreductase // --- // 83252 

98 13532237 AT5G35480 NM_122939 AT5G35480 -2.65 Down-regulated NM_122939 // AT5G35480 // 

hypothetical protein // --- // 833512 /// 

AT5G35480.1 // AT5G 

99 13510281 AT5G44020 NM_123769 AT5G44020 -1.95 Down-regulated NM_123769 // AT5G44020 // HAD 

superfamily, subfamily IIIB acid 

phosphatase // --- // 83 

100 13337838 AT5G45720 NM_001203547 AT5G45720 -5.81 Down-regulated NM_001203547 // AT5G45720 // 

AAA-type ATPase family protein // --- 

// 834611 /// AT5G45 

101 13370341 AT5G45720 NM_001203547 AT5G45720 -5.81 Down-regulated NM_001203547 // AT5G45720 // 

AAA-type ATPase family protein // --- 

// 834611 /// AT5G45 

102 13494665 AT5G45720 NM_001203547 AT5G45720 -5.81 Down-regulated NM_001203547 // AT5G45720 // 

AAA-type ATPase family protein // --- 

// 834611 /// AT5G45 

103 13531589 AT5G45720 NM_001203547 AT5G45720 -5.81 Down-regulated NM_001203547 // AT5G45720 // 

AAA-type ATPase family protein // --- 

// 834611 /// AT5G45 

104 13544460 AT5G45720 NM_001203547 AT5G45720 -5.81 Down-regulated NM_001203547 // AT5G45720 // 

AAA-type ATPase family protein // --- 

// 834611 /// AT5G45 

105 13537205 ATSDI1 NM_124262 AT5G48850 2.02 Up-regulated NM_124262 // ATSDI1 // protein 

SULPHUR DEFICIENCY-INDUCED 

1 // --- // 834943 /// AT5G48 

106 13538937 FTSH11 NM_124696 AT5G53170 -1.53 Down-regulated NM_124696 // FTSH11 // ATP-

dependent zinc metalloprotease FTSH 

11 // --- // 835398 ///  

107 13516311 CER3 NM_125164 AT5G57800 -1.78 Down-regulated NM_125164 // CER3 // protein 

ECERIFERUM 3 // --- // 835889 /// 

AT5G57800.1 // CER3 // p 

http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT5G53170
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108 13387345 AT5G60280 AK221799 AT5G60280 -3.05 Down-regulated AK221799 // AT5G60280 // 

concanavalin A-like lectin kinase-like 

protein // --- // 83615 

109 13411454 AT5G60280 AK221799 AT5G60280 -3.05 Down-regulated AK221799 // AT5G60280 // 

concanavalin A-like lectin kinase-like 

protein // --- // 83615 

110 13413099 AT5G60280 AK221799 AT5G60280 -3.05 Down-regulated AK221799 // AT5G60280 // 

concanavalin A-like lectin kinase-like 

protein // --- // 83615 

111 13427522 AT5G60280 AK221799 AT5G60280 -3.05 Down-regulated AK221799 // AT5G60280 // 

concanavalin A-like lectin kinase-like 

protein // --- // 83615 

112 13442068 AT5G60280 AK221799 AT5G60280 -3.05 Down-regulated AK221799 // AT5G60280 // 

concanavalin A-like lectin kinase-like 

protein // --- // 83615 

113 13468093 AT5G60280 AK221799 AT5G60280 -3.05 Down-regulated AK221799 // AT5G60280 // 

concanavalin A-like lectin kinase-like 

protein // --- // 83615 

114 13499770 AT5G60280 AK221799 AT5G60280 -3.05 Down-regulated AK221799 // AT5G60280 // 

concanavalin A-like lectin kinase-like 

protein // --- // 83615 

115 13508977 AT5G60280 AK221799 AT5G60280 -3.05 Down-regulated AK221799 // AT5G60280 // 

concanavalin A-like lectin kinase-like 

protein // --- // 83615 

116 13517400 AT5G60280 AK221799 AT5G60280 -4.38 Down-regulated AK221799 // AT5G60280 // 

concanavalin A-like lectin kinase-like 

protein // --- // 83615 

117 13519435 AT5G60280 AK221799 AT5G60280 -3.05 Down-regulated AK221799 // AT5G60280 // 

concanavalin A-like lectin kinase-like 

protein // --- // 83615 

118 13521637 AT5G60280 AK221799 AT5G60280 -3.05 Down-regulated AK221799 // AT5G60280 // 

concanavalin A-like lectin kinase-like 

protein // --- // 83615 
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119 13542294 AT5G61820 AT5G61820.1 AT5G61820 1.54 Up-regulated AT5G61820.1 // AT5G61820 // 

hypothetical protein // --- // 836304 /// 

NM_125576 // AT5G 

120 13518334 NAC101 NM_125632 AT5G62380 1.56 Up-regulated NM_125632 // NAC101 // NAC-

domain transcription factor // --- // 

836359 /// AT5G62380.1 

121 13543310 AT5G64250 NM_125821 AT5G64250 1.62 Up-regulated NM_125821 // AT5G64250 // 

Aldolase-type TIM barrel family 

protein // --- // 836546 ///  

122 13543347 FKBP12 NM_125831 AT5G64350 1.53 Up-regulated NM_125831 // FKBP12 // peptidyl-

prolyl isomerase FKBP12 // --- // 

836556 /// AT5G64350. 

123 13519410 WRKY51 NM_125877 AT5G64810 1.66 Up-regulated NM_125877 // WRKY51 // putative 

WRKY transcription factor 51 // --- // 

836602 /// AT5G6 

124 13519853 XTH6 NM_125970 AT5G65730 -1.51 Down-regulated NM_125970 // XTH6 // probable 

xyloglucan 

endotransglucosylase/hydrolase protein 

6 // -- 

125 13544913 rpl32 ATCG01020.1 ATCG01020 -2.47 Down-regulated ATCG01020.1 // rpl32 // ribosomal 

protein L32 // --- // 844704 

126 13545262 nad6 ATMG00270.1 ATMG00270.1 -1.54 Down-regulated ATMG00270.1 // nad6 // NADH 

dehydrogenase subunit 6 // --- // 

814580 

127 13545283 ArthMp039 ATMG00470.1 ATMG00470 1.62 Up-regulated ATMG00470.1 // ArthMp039 // 

hypothetical protein // --- // 3371332 

128 13545359 ArthMp091 ATMG01040.1 ATMG01040 1.84 Up-regulated ATMG01040.1 // ArthMp091 // 

hypothetical protein // --- // 4024969 

129 13545411 ArthMp112 ATMG01410.1 ATMG01410 1.51 Up-regulated ATMG01410.1 // ArthMp112 // 

hypothetical protein // --- // 4024966 

 

http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT5G64810
http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT5G65730
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Table 5.5:  List of 50 uniquely expressed gene in non -induced (absence of aphid feeding) treatment: List of unique genes with significant 

differences in expression at FDR corrected p-value <0.05 and fold change ≥1.5 to  ≤-1.5. A positive FC indicates up regulation ;negative 

FC indicates down regulation 
S.No Transcript 

ID 

Gene 

Symbol 

RefSeq Locus ID Fold-

Change 

Fold-Change 

(Description) 

gene_assignment 

1 13383271 AT1G64850 NM_105159 AT1G64850 1.64165 Up-regulated NM_105159 // AT1G64850 // calcium-binding 

EF-hand-containing protein // --- // 842793 / 

2 13545217 AT2G07696 NM_126746 AT2G07696 1.62455 Up-regulated NM_126746 // AT2G07696 // ribosomal protein 

S7 // --- // 815372 /// AT2G07696.1 // rps7 

3 13437647 AT3G50123 NM_001125335 AT3G50123 1.54883 Up-regulated NM_001125335 // AT3G50123 // hypothetical 

protein // --- // 6240873 /// AT3G50123.1 //  

4 13442656 AT3G62510 NM_116116 AT3G62510 1.59736 Up-regulated NM_116116 // AT3G62510 // protein disulfide 

isomerase-like protein // --- // 825425 /// 

5 13530775 AT5G25190 NM_122428 AT5G25190 1.57433 Up-regulated NM_122428 // AT5G25190 // ethylene-responsive 

transcription factor ERF003 // --- // 832 

6 13423873 MS2 NM_180176 

AT3G03780 

1.61016 Up-regulated NM_180176 // MS2 // methionine synthase 2 // --- 

// 821147 /// NM_001125092 // MS2 // m 

7 13500896 NAC083 NM_121321 AT5G13180 2.04555 Up-regulated NM_121321 // NAC083 // NAC domain 

containing protein 83 // --- // 831157 /// 

AT5G13180. 

8 13536042 PTR3 NM_123973 AT5G46050 1.95149 Up-regulated NM_123973 // PTR3 // peptide transporter 3 // --- 

// 834646 /// AT5G46050.1 // PTR3 //  

9 13374451 RUB1 NM_102873 AT1G31340 1.52173 Up-regulated NM_102873 // RUB1 // ubiquitin-NEDD8-like 

protein RUB1 // --- // 840023 /// AT1G31340.1 

10 13345523 AT1G28307 NM_001123899 AT1G28307 -

1.55934 

Down-

regulated 

NM_001123899 // AT1G28307 // hypothetical 

protein // --- // 6241164 /// AT1G28307.1 //  

11 13347647 AT1G34041 NM_001123935 AT1G34041 -

1.50672 

Down-

regulated 

NM_001123935 // AT1G34041 // hypothetical 

protein // --- // 6241199 /// AT1G34041.1 //  
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12 13385899 AT1G70949 AT1G70949.1 AT1G70949 -

1.92252 

Down-

regulated 

AT1G70949.1 // AT1G70949 // hypothetical 

protein // --- // 6240811 /// NM_001124109 //  

13 13392218 AT2G07674 NM_126731 AT2G07674 -1.9804 Down-

regulated 

NM_126731 // AT2G07674 // hypothetical protein 

// --- // 815346 /// AT2G07674.1 // AT2G 

14 13421794 AT2G45860 NM_130149 AT2G45860 -

1.78321 

Down-

regulated 

NM_130149 // AT2G45860 // hypothetical protein 

// --- // 819194 /// AT2G45860.1 // AT2G 

15 13431841 AT3G22415 NM_202624 AT3G22415 -

1.67373 

Down-

regulated 

NM_202624 // AT3G22415 // hypothetical protein 

// --- // 2745889 /// AT3G22415.1 // AT3 

16 13353669 E1 NM_104682 

AT1G59900 

-

1.54269 

Down-

regulated 

NM_104682 // E1 ALPHA // pyruvate 

dehydrogenase complex E1 alpha subunit // --- // 

8422 

17 13355059 GH9C2 NM_105114 AT1G64390 -

1.93732 

Down-

regulated 

NM_105114 // GH9C2 // glycosyl hydrolase 9C2 

// --- // 842747 /// AT1G64390.1 // GH9C2  

18 13339000 GLX1 NM_001198039 AT1G11840 -

1.73548 

Down-

regulated 

NM_001198039 // GLX1 // glyoxalase I homolog 

// --- // 837731 /// AT1G11840.6 // GLX1 / 

19 13401542 SBE2.1 NM_129196 

AT2G36390 

-

1.52435 

Down-

regulated 

NM_129196 // SBE2.1 // 1,4-alpha-glucan 

branching enzyme 2-1 // --- // 818212 /// AT2G3 

20 13356178 URE NM_105422 AT1G67550 -1.5013 Down-

regulated 

NM_105422 // URE // urease // --- // 843076 /// 

AT1G67550.1 // URE // urease // --- //  
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5.5 Discussion  

5.5.1 Transcriptional responses of Brassica wild relatives and Landraces in 

absence and presence of aphid feeding. 

Plants show phenotypic changes when challenged with herbivorous insects. The 

mechanisms underlying these changes include the activation of transcriptional 

responses. Comparing transcriptional responses of wild and cultivated members of the 

same plant family may contribute to the understanding of the evolution of plant-

herbivore interactions. The results from this study show the variation in gene expression 

in resistant CWR and LR in response to presence or absence of aphid feeding. It was 

observed that aphid feeding plays a role in the change of gene expression when CWR 

were compared to LR which is evident by the fact that more genes were significantly 

differentially expressed as a response to aphid feeding in comparison to its absence. The 

significantly differentially expressed genes in categories like response to stress, 

response to stimulus, signalling, developmental processes can be good indicators of 

aphid resistance or tolerance in the CWR as compared to LR and may prove useful in 

the development of aphid resistant Brassica varieties in future. It was noted that in 

CWR, 24 h of B. brassicae feeding resulted in the induction of more defence-related 

genes in comparison to absence of aphid feeding, indicating the activation of certain 

defence mechanisms. Several photosynthesis- and/or development related genes were 

repressed upon aphid feeding (Table 5.2 and TableS5.6). Since defence activation has 

been shown to be costly (Wu & Baldwin 2010; Herms & Mattson 1992), it is likely that 

plants have reallocated resources for defence at the expense of growth and/or 

photosynthesis (Bilgin et al. 2010). 
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Some of the important transcripts are discussed which are thought to be playing a role in 

response to aphid feeding. AT5G46050 (PTR) was found to be 1.57 fold up-regulated in 

CWR suggesting that there is a higher level of protection to wounding present in wild 

plant species as compared to LR. In addition to this, another study showed that 

expression level of AtPTR3 was regulated by signalling compounds like  salicylic acid 

(SA), methyl jasmonate (MeJA) and abscisic acid and PTR3 mutants have increased 

susceptibility to virulent bacterial pathogens (Karim et al. 2005). AT1G08930 (ERD6) 

encodes a putative sucrose transporter whose gene expression is induced by dehydration 

and cold. AT1G70700 (TIFY7or JAZ9) protein is presumed to be involved in jasmonate 

signalling. TIFY7 transcript levels rise in response to a jasmonate stimulus which is a 

defence response 

(http://www.ncbi.nlm.nih.gov/gene?cmd=DetailsSearch&term=AT1G70700). The plant 

hormone jasmonate plays a crucial role in regulating plant responses to herbivorous 

insects and microbial pathogens and is an important regulator of plant growth and 

development (F. Zhang et al. 2015). AT1G80840 (WRKY40) is a pathogen-induced 

transcription factor, and binds W-box sequences in vitro and forms protein complexes 

with itself and WRKY60. Coexpression with WRKY18 or WRKY60 made plants more 

susceptible to both P. syringae and B. cinerea. WRKY18, WRKY40, and WRKY60 

have partially redundant roles in response to the hemibiotrophic bacterial pathogen 

Pseudomonas syringae and the necrotrophic fungal pathogen Botrytis cinerea, with 

WRKY18 playing a more important role than the other two 

(https://www.arabidopsis.org/servlets/TairObject?id=29182&type=locus).  

AT3G14210, also known as ESM1 or epithiospecifier modifier 1, is known as a semi-

dominant QTL, which has an epistatic effect on the epithiospecifier gene. This gene 
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represses nitrile formation and favours isothiocyanate production during glucosinolate 

hydrolysis, and its functional allele deters insect herbivory (Zhang et al. 2006).This 

gene was found up-regulated in CWR compared to LR in the presence of aphid feeding. 

AT5G46180 (DELTA-OAT) gene, encodes an ornithine delta-aminotransferase that is 

transcriptionally up-regulated in young seedlings and in response to salt stress 

(https://www.arabidopsis.org/servlets/TairObject?id=132945&type=locus). The gene 

AT4G33420, a peroxidase superfamily protein is also involved in oxidative stress, 

nitrate transport, and oxidation-reduction process. 

(https://www.arabidopsis.org/servlets/TairObject?name=AT4G33420&type=locus). 

AT3G05880 (RC12A) a RARE-COLD-INDUCIBLE 2A gene had repressed gene 

expression in CWR. AT1G55480 (ZKT), encodes a member of a novel plant protein 

family containing a PDZ, a K-box, and a TPR motif. mRNA but not protein levels 

decrease after wounding. ZKT is phosphorylated at Thr and Ser residues after 

wounding. Ishikawa et al 2005 reported a decrease level of ZKT mRNA in response to 

wounding in Arabidopsis. This gene was -1.6 fold down regulated in response to aphid 

feeding in CWR. All these genes and many others (table S5.3 and S5.6) showing 

significant changes in gene expression may yield valuable information and may be used 

as candidates for aphid resistance in Brassica. 

5.5.2 Crop Wild Relatives and their potential for crop improvement. 

Plant domestication and agronomic selection for increased yield may have had an 

associated effect of reducing plant defence against herbivorous insects, and evident in 

LR. Rosenthal & Dirzo( 1997)  proposed that for plants in which domestication and 

crop development constitute strong selection for increased growth and reproduction, 

reallocation of resources may result and indeed have resulted in, lower defence against 
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insects. This trade-off has been reported by (Wu & Baldwin 2010). It has frequently 

been observed that some domesticated plants have lower levels of defensive chemicals 

(and other structures interpretable as defensive) than do their wild relatives (Evans, 

1996).  Wild plant relatives or even less domesticated landraces are therefore a 

promising source of traits that could enable crop plants to withstand insect attack and 

other stressful conditions. Disease resistance genes have been reported in tomato wild 

relatives and used in commercial cultivars (Chetelat et al. 1995).  In millet Pyricularia 

grisea resistance was introgressed from its wild relative Pennisetum glaucum subsp. 

monodii  (Burton & Wilson 1995). Similarly in bananas, resistance against Black 

Sigatoka. caused by the fungus Mycosphaerella fijiensis has been developed from its 

wild relative Musa acuminata most commonly known as “Calcutta 4” (Hajjar & 

Hodgkin 2007). Finding new sources of resistance against insect pests by evaluating 

CWR and identifying candidate resistance genes may enable us to develop more 

resistant varieties in future.  

In the current study an effort has been made to identify the candidate genes which when 

fully evaluated for function, may result in a source of new insect resistance varieties. 

New strategies are required to identify resistance traits and introgress or engineer them 

into domesticated crop germplasm. Introgression lines of wild species into crop 

germplasm provide a powerful resource for bringing in the traits required. However, it is 

often difficult to cross crops with wild relatives when they are distantly related and there 

is the problem of ‘linkage drag’ during which undesirable genes genetically closely 

linked to the desired ones are brought across (Zamir 2001). Use of  Next generation 

sequencing (NGS) technologies to generate whole genome sequences for a wide range 

of crop species, when combined with precise phenotyping methods, can provide 
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powerful and rapid tools for identifying the genetic basis of agriculturally important 

traits and for predicting the breeding value of individuals in a plant breeding population 

(Varshney et al. 2014). These approaches will greatly facilitate the identification of 

useful traits. However the phenotyping is often more time consuming than the 

genotyping and it is not always possible to evaluate (Furbank & Tester 2011; Chen et al. 

2012). 

 In order to overcome the hurdle of large scale phenotyping, efforts are being made to 

develop computational models based on gene expression data from known or 

established crop phenotypes like known resistant and susceptible varieties against biotic 

stresses, tolerant and susceptible varieties against abiotic stress in crop germplasm. These 

models can facilitate the prediction of germplasm of unknown phenotype based on gene 

expression from known ones. This approach is now used in the case of disease 

prediction in many human diseases (Trevino et al. 2011; Bucca et al. 2004; Reis-Filho 

& Pusztai 2011; Cooper-Knock et al. 2012). In the next chapter an attempt will be made 

to develop a model for prediction using the data set obtained for the gene expression 

study between crop wild relatives and LR in absence of aphid feeding. 

In summary, this study has proved the usefulness of transcriptomics approaches for 

identifying significantly differentially expressing candidate genes in the absence and 

presence of aphid feeding in the plant. It should be borne in mind that the analysis 

indicated that all 75 genes in absence of aphid feeding and 261 genes in presence of 

aphid feeding in this experiment are potential candidates for resistance against aphid 

feeding.  Although this discussion has managed to cover only a few of the significantly 

differentially expressed  genes from the lists, the results presented here are able to 

facilitate the prioritization of  strong candidate genes for further detailed investigation 
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such as in functional genomics study. Perhaps most importantly, the study has also 

highlighted the fact that resistant genes may well have been lost during the 

domestication process and hence can only be found in crop wild relatives, and much 

less so in landraces. 

5.6 CONCLUSION 

This chapter presents the study of differences in the pattern of gene expression between 

crop wild relatives (CWR) and landraces (LR) of Brassica. An attempt has been made 

to explore the changes in gene expression patterns in response to aphid feeding in these 

genotypes representing wide natural genetic variation in CWR and LR crop. In addition 

to this, an attempt was made to look at variation in gene expression in the context of 

domestication of crops from wild to cultivated forms. It is often reported that 

domestication is predicted to reduce the resistance of plants against herbivores (Turcotte 

et al. 2014). There are several studies where comparisons have been made between the 

crop and their wild relatives to check the effect of domestication on plant defence. Most 

of the studies report reduced resistance in cultivated crops as compared to wild crop 

relative (Wink 1988; Benrey et al. 1998; Rosenthal & Dirzo 1997). Our study confirms 

the need to survey wild relatives for resistance, where their presence may be greater 

than that in landraces.  

Our results also indicate towards more changes in differential gene expression in CWR 

as compared to LR in response to aphid feeding. Aphid feeding response was compared 

in CWR and LR and was found to induce different transcriptional responses. The 

number of stress related genes  induced in CWR in response to aphid feeding were more 

than in the absence of aphid feeding. The uniquely up-regulated genes in induced plants 

and commonly up-regulated among induced and non-induced plants are expected to be 
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the strong candidates for insect resistance in Brassica. In addition, genes like PTR3, 

NAC083, TIFY7, HCHIB, RAP210 and ERD6 which are up regulated provide the 

strongest candidates for resistance against aphids in Brassica and are found in CWR. It 

is strongly suggested that identified candidate genes should be further investigated to 

confirm their association with aphid feeding in future. The way forward in first instance 

is to map these against the known aphid markers in Brassica QTL and also to create 

knock-outs with these candidate genes to study and confirm their function in resistance 

against aphids.  There are a large number of genes which are still not annotated but were 

found significant, leaving a future possibility to investigate their function but at this 

time no further investigations were undertaken.  
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6.1 Abstract 

The use of ‘Omics’ technologies like genomics, proteomics and metabolomics have 

reduced the time and expense of producing better quality food crops and enabled the 

consistency and predictability in plant breeding. The knowledge of resistance status of a 

plant is the first and most important requirement for any plant breeding programme and 

usually accomplished via morpho-physiological studies. These studies are time and 

highly resources consuming. So a better and effective tool to predict the resistance 

status is the need of today’s plant breeding programme. The current study is an attempt 

to develop a model based on the microarray gene expression data of known resistant and 

susceptible genotypes and then test this model to predict the status of known genotypes. 

Prediction analysis was performed using the model selection tool of Partek Genomics 

Suite version 6.6 (Partek Inc., St. Louis, MO, USA), software. The model is based on 

discriminant analysis as classification method; ANOVA as variable selection method; 

nearest centroid and K-nearest neighbour followed by 2-level 5x5 cross-validation was 

performed to get the best model for each species prediction.  The results from this study 

show that gene expression data can be successfully used in the prediction of resistance 

or susceptibility status in unknown genotypes present in the germplasm. Even though 

there is a strong separation of the resistant and susceptible group which is a proof of 

good model building, but still further validation is required before it can be used as a 

benchmark for the resistance and susceptibility for aphid feeding in Brassicas. The 

results from this study are promising, and can be further developed to have a single 

consistent model based on gene expression data in response to cabbage aphid feeding of 

established resistant and susceptible genotypes which can be applied to all datasets to 

test cabbage aphid resistance in Brassica plants. 
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6.2 Introduction 

With ever growing human population, it is estimated that we need to increase the 

agricultural production by 70% in the next four decades to feed world population (FAO 

2009). One way of doing this is by increasing the production of crops by developing 

new, more durable and resistant varieties of crops which can resist both biotic and 

abiotic stresses. The plant breeding programmes need to be re-oriented towards the need 

of these ‘smart’ crops which can protect themselves from environmental stresses (Mba 

et al. 2012).  Knowing the status of tolerance or resistance of plants to various biotic 

and abiotic stresses is the essential prerequisite for any crop improvement programmes 

and usually accomplished via morpho-physiological studies which require extensive 

planning and design, laborious experiments and collection of data for a number of 

different growth, physiological, metabolic and stress parameters etc. These screening 

techniques, although very time and labour consuming have served the purpose to 

recognise resistant and tolerant genotypes in many crops species e.g. Rice LR Pokkali is 

tolerant to salt, CWR B.fruticulosa reported resistant to insect pests (Singh et al. 2014; 

Kumar et al. 2011). The knowledge of known resistant and susceptible genotypes for 

various biotic and abiotic stresses in crop species is exploited for crop improvement. 

With the advances in the genomic and post-genomic technologies, it is now possible to 

have a better understanding of genomic, proteomic and metabolomic datasets to obtain a 

genome wider picture of molecular functions of various important genes.  In spite of 

these advances, there is still a lack of knowledge regarding the available source of 

resistance to many biotic and abiotic factors present in plants. Researchers use several 

phenomic, metabolomic, and proteomic techniques to know the status of resistance of 

plants to biotic and abiotic stresses.  
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Gene expression analysis is widely used these days to understand plant-insect 

interactions  (Hancock et al. 2015; Kerchev et al. 2012; Broekgaarden et al. 2007; 

Narusaka et al. 2006; Poelman et al. 2010; Poelman 2015). The whole genome 

microarray data is used to detect differentially expressed genes in organisms under 

different conditions (Torres-Avilés et al. 2014). Gene expression microarrays generate 

data for thousands of genes simultaneously (Duggan et al. 1999; Lockhart & Winzeler 

2000). Microarray data from several plants have been used to identify genes responsive 

to insect feeding (Reymond et al. 2004; Reymond 2000; Elzinga et al. 2014). Jaouannet 

et al. (2015) characterised Arabidopsis transcriptional response to different aphid 

species in order to reveal genes that contribute to host susceptibility and non-host 

resistance. Kettles et al. (2013) reported resistance of Arabidopsis to green peach aphid 

involves camalexin. Similarly, there are many studies in other crop species also where 

gene expression data is used to improve crop varieties. Recently the submergence 

tolerance genes sub1A, sub1B and sub1C were identified in some wild species O. 

rufipogon and O. nivara and landraces e.g., Kurkaruppan and Goda Heenati (Bailey-

Serres et al. 2010; Fukao et al. 2009) and were successfully utilized for developing 

submergence tolerant crop varieties such as FR13A and FR43B and breeding lines such 

as Thalavu, BKNFR76106-16-0-1-0 and IR49830-7-1-2-1-3. There is much evidence 

that transcriptional studies are helpful in finding the genes which can prove useful in 

generating more resistant crops to both biotic and abiotic stresses (Redden 2013; 

Yumurtaci 2015; Delp et al. 2009; Kuśnierczyk et al. 2008; Dubey et al. 2013; Poelman 

et al. 2010). 

Breeders are utilising this phenomic screening and genome expression information to 

look for candidate genes to improve the crop quality (Ashkani et al. 2015; Ray & Satya 
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2014; Pérez-de-Castro et al. 2012), but still large numbers of crop species remain 

unscreened for the levels of resistance present in them against biotic and abiotic 

stresses. To screen all the crop species against all stresses is almost an impossible task. 

It will require a huge investment in terms of resources and time to screen each and every 

accession for each species available in field or laboratory. So quick, better and reliable 

methods are needed to know the status of resistance against insects in plants. The use of 

transcriptomic data can potentially be exploited to predict the tolerance or resistance 

status of genotypes of unknown status by computational model-based comparisons with 

the genotypes where tolerance or resistance status is known (Gavaghan et al. 2002). 

More recently whole genome expression profiling is a highly accepted approach in 

classifying and performing class prediction in case of many human diseases. This 

approach is very popular especially in the case of prediction of various human cancers 

and neurodegenerative diseases (Bucca et al. 2004; Reis-Filho & Pusztai 2011; Cooper-

Knock et al. 2012).  Trevino et al. (2011) successfully demonstrated the use of gene 

expression data and statistical modelling in the prediction of prostate cancer and the use 

of this approach as a diagnostic tool. Proteomic alteration and transcriptomics data from 

a study of metastatic and clinically localised prostate cancer samples are used to 

develop disease predictor model (Varambally et al. 2005). Li et al. (2009) used 

unsupervised machine learning methods to genome-wide gene expression profiles of 

159 gliomas, thereby establishing a robust glioma classification model relying only on 

the molecular data. The classification based algorithm method is reported to predict 

toxicity between controls and treated liver samples of rats after repeated doses for 149 

compounds (Nagata et al. 2014). Despite the potentiality of the transcriptomics and 

proteomics data to be used for this prediction analysis, so far there is no such report for 



                                                                                                                                                  
Chapter 6 

 

189 

 

prediction of the biotic and abiotic stress responses of crop species. The use of gene 

expression data as a predictor of resistance or susceptibility to a biotic or abiotic stress 

can revolutionise discovery of new resistant crops, but it has yet to be used in the field 

of crop science. 

The current chapter describes the development of discriminant analysis prediction 

model based on gene expression data of the known resistant and susceptible genotypes 

of Brassica and the prediction of resistance/susceptible status of unknown genotypes 

using diagnostic and predictive modelling tool of Partek Genomic Suite version 6.6 

(Partek Inc., St. Louis, MO, USA), software. This predictive modelling tool used 

multivariate statistical analysis to classify the samples into distinct classes based on the 

various variables selected during the model generation. Unlike other prediction models 

where extensive programming and statistical skills are required, Partek predictive 

modelling tool is very simple, user-friendly method which was successfully used in 

developing classification model based on gene expression data in clinically defined 

dengue patients to predict disease severity (Sun et al. 2013). The gene expression data 

used in this chapter is same as generated in chapter 4. The same dataset was used in 

chapter 5 to analyse gene expression changes between CWR and LR in response to 

aphid feeding and now in this chapter to develop prediction model indicates towards 

different uses of ‘omics’ data to answer different research questions.  The dataset from 

10 Brassica genotypes under non-induced condition i.e. absence of aphid feeding is 

used to develop a model. The status of genotypes is classified as resistant or susceptible 

is based on aphid feeding preference in the field as described in chapter 2. This is the 

preliminary study, in an attempt to develop a prediction model for Brassica genotypes 

for classification of resistance status. The classification model was developed using 
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class prediction tool of Partek software, as it was a trial version so some of the 

functionalities like cross-validation of grouping with PCA analysis was not possible. 

The model developed is at its infant stage and requires further validations, but opens a 

new avenue for future research. 

6.2.1 Chapter aim 

The core aim of the study is the development of a prediction model based on the whole 

genome expression data available from genotypes of known resistance or susceptibility 

status to predict the resistance status of unknown genotypes.  

The prediction model developed will include 8 out of 10 genotypes at a time, leaving 

two to be tested. This way the gene expression data from 8 genotypes grouped as 

resistant or susceptible will be used to check the status of 2 blinded genotypes.  Leaving 

one species out (2 genotypes from same species) will provide an opportunity to test the 

accuracy of the model independently for 5 times. 

6.3 Material and methods  

6.3.1 Microarray Data 

The raw data (.CEL) files used in this study were obtained from microarray experiment 

to study the gene expression changes between the resistant and susceptible genotypes as 

described in chapter 4. The data set comprised of gene expression data of 10 genotypes 

from 5 Brassica species (B.incana, B.montana, B.villosa, B.oleracea acephala, 

B.fruticulosa). The RNA extracted from the leaf samples was hybridised to Affymetrix 

Arabidopsis Gene 1.0 ST array (Affymetrix, Santa Clara, CA, USA).The details of the 

experiment are already provided in chapter 4 (section 4.3).  For this study, the gene 

expression data from non-induced plants i.e. absence of aphid feeding is used. The 

genotypes are categorised as resistant or susceptible based on the field experiment as 
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described in chapter 2.  The classification was generated independently for B.incana, 

B.montana, B.villosa, B.oleracea acephala, B.fruticulosa. 

6.3.2 Classification Method 

The class prediction analysis was performed using the model selection tool of Partek 

Genomics Suite version 6.6 (Partek Inc., St. Louis, MO, USA), software. The 2 level 

nested, cross-validation approach was used to select the best classification model along 

with the accuracy estimation for the model to test new data set. At this level the inner 

cross validation was done to choose the predictor variables whereas an outer cross 

validation was done to estimate % accuracy for classifier. At level 1 cross –validation, 

evaluation of multiple models generated from test data was done and the best model to 

deploy was selected while 2 level cross-validations provided the accuracy estimate. For 

this study, Partek software’s saved specification for model selection, based on 

discriminant analysis as classification method; ANOVA as variable selection method; 

nearest centroid and K-nearest neighbour followed by 2-level 5x5 cross-validation was 

performed to get the best model for each species prediction. At the end of this step, an 

estimate of overall accuracy level (%) for models was generated. This % estimate 

indicated the correct rate at which the unknown sample will be predicted even when the 

best suited model is selected. In next step 1 level-cross validation is performed to select 

the best model from all the models generated to deploy in order to test unknown 

samples.  At this stage the model with 100% rating is selected from all the available 

models, 100% is not the actual estimate, exact estimate will always be the % accuracy 

generated in 2 level estimates. Here we may be presented with more than 1 model with 

100% correct rate, so one or all models can be tested. The best classification model 

selected for this study with highest % accuracy was based following classifiers: 100 
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variables (top 100 genes with differential gene expression between two classes), K-

nearest neighbour with Euclidean distance measure, and 1 neighbour with nearest 

centroid, Discriminant analysis and support vector machine.  

Table 6.1: Details of best Model with the classifiers for prediction resistance status of 

different Brassica species 

Experiment Description 

Input File Model 1 

Variable to Predict  2.Type 

# of Predictor Candidates 179298 

# of Samples 32 

# of Models 124 

Random Seed 10001 

Data Order  Randomly reordered 

Model Selection Criterion Normalized correct rate 

Cross-Validation 2-level Nested 

Outer Partitions 5 

Inner Partitions 5 

 Variable Selection 

 Variable Selection Method ANOVA 

Examine 1-way ANOVA p-value (Type) 

How many groups of variables 19 groups with manually specified sizes 1-10 10-100-10 

 Classification 

Classification Method  K-Nearest Neighbor 

Distance Measure  Absolute Value/City Block 

  Euclidean 

 # of Neighbors (K) : 1 1 

Classification Method Nearest Centroid 

Prior Probability Equal 

  Proportional 

Classification Method Discriminant Analysis 

Discriminant Function and Prior 

Probabilities 
Linear with Proportional Prior Probabilities 

Quadratic with Equal Prior Probabilities 

Quadratic with Proportional Prior Probabilities 

Positive Outcome Resistant 

 

Table 6.1 shows the generalised best classification model with classifiers. The selected 

model (based on gene expression from 8 genotypes) was then saved as test file (.pbb) 

format. To test independent unknown samples (2 remaining genotypes), the saved 
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(.pbb) model was deployed. The data set format for test and save model should be in the 

same format to run the test. In this study TYPE (Resistant /susceptible) column is used 

as prediction criteria. This column was defined (resistant or susceptible) in case of 

selected model whereas it is labelled unknown in the case of test data set. In order to test 

the unknown sample the saved model was deployed and run. This will invoke an HTML 

page with details of the test conducted and result of the run.  

To test the accuracy and validity of this model selection tool, the whole data set 

comprising of data from 10 genotypes was tested 5 times independently by leaving one 

species (2 genotypes) out at a time. For example to test status of B.fruticulosa, the saved 

test model was generated from gene expression data from 8 genotypes (BRA2856, 

K10373, K9404, BRA1644, K6926, K10259, BRS-0103 & CGN18468) and unknown 

prediction set contains gene expression data from B.fruticulosa (Bol2009-0080 & 

Bol2009-0081). Similarly this test was successfully performed for all species. To test 

status of B.incana, the saved test model was generated from gene expression data from 

8 genotypes  (K9404, BRA1644, K6926, K10259, BRS-0103, CGN18468, Bol2009-

0080 & Bol2009-0081) and unknown prediction set contains gene expression data from 

B.incana (BRA2856,K10373). To test status of B.montana, the saved test model was 

generated from gene expression data from 8 genotypes (BRA2856, K10373, K6926, 

K10259, BRS-0103, CGN18468, Bol2009-0080 & Bol2009-0081 ) and unknown 

prediction set contains gene expression data from B.montana (K9404, BRA1644).   To 

test status of B.villosa, the saved test model was generated from gene expression data 

from 8 genotypes (BRA2856, K10373, BRS-0103, CGN18468,K9404, BRA1644 

Bol2009-0080 & Bol2009-0081 ) and unknown prediction set contains gene expression 

data from B.villosa (K6926, K10259). To test status of B. oleracea acephala, the saved 
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test model was generated from gene expression data from 8 genotypes (BRA2856, 

K10373, K6926, K10259, K9404, BRA1644, Bol2009-0080 & Bol2009-0081 ) and 

unknown prediction set contains gene expression data from B.villosa (BRS-0103 & 

CGN18468,). 

6.4 Results  

Among the fifteen genotypes that were studied transcriptomically (chapter 4), 10 were 

used in this study to develop and test the prediction model generated using class 

prediction tool of Partek software. Ten genotypes used in the study were grouped as 

resistant (n=7) or susceptible (n=3) as per their performance against aphid feeding in the 

field experiment (chapter 2). They were further subjected to transcriptomics analysis to 

study the gene expression changes between two groups in the absence of aphid feeding.  

The microarray gene expression data of resistant and susceptible groups was then used 

to develop a prediction model. This model was used to validate the suitability of these 

genotypes to insect feeding (resistant/susceptible). The ‘leave one species out at time’ 

approach was adopted to test the status of resistance in genotypes of that species.  

6.4.1 Building of Classification model 

 For the purpose of this study, the focus was on genes which were significantly different 

in their expression in resistant and susceptible varieties. Based on model selection 

criteria, the top 100 genes significantly differentially expressing between 2 groups were 

selected for each model, which separate resistant genotypes from the susceptible ones.  

These 100 genes were used to build prediction models to test the unknown genotypes. 

The tables (table 6.2 to 6.5) show the list of genes (annotated) selected for developing 

the prediction model. The complete list of 100 variables (genes) selected for each model 
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is provided in supplementary table S6.1 (B.incana model), S6.2 (B.montana model), 

S6.3 (B.villosa model) S6.4 (B.fruticulosa model) and S6.5 (B.oleracea model). 

6.4.2 Testing and prediction of unknown samples using classification model with 

100 selected gene  

The gene expression data from the two genotypes left out during model generation is 

used as test dataset saved in the same format for rest of 8 genotypes used to develop the 

model. This data set is then tested against the model developed using in-house save the 

script in Partek software as previously described in section 6.3.3. The saved (.pbb) 

model was then deployed to create predictions. This procedure resulted in very good 

prediction for 8 genotypes out of 10. After cross-validation, the accuracy of the model 

was found to be varying in a range of 98-100% accuracy in predicting resistant versus 

susceptible genotypes with an error rate of ± 2%. This result indicates gene expression 

data can be successfully used to create a prediction model. However, as a very small 

number of samples were used to develop the model, it is difficult to determine whether 

this model is over-fit. 

It was observed that model predicted mismatch for two genotypes. The genotype 

Bol2009-008 (B.fruticulosa) which was found to be resistant in field assessment but 

model predicted it as susceptible and the second genotype was B.villosa K6926 

predicted as resistant was categorised as susceptible in the field experiment.
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Table 6.2: List of selected genes used to build the prediction model to test suitability to aphid feeding in two genotypes of B.incana 

species using the Partek model selection tool. 

S.no Probeset_id AGI_code Gene assignment 

1 13338945 AT1G11720 NM_101044 // SS3 /// NM_001198036 // SS3 /// AT1G11720.1 // SS3 /// AT1G11720.2 

// SS3 

2 13351724 AT1G53570 NM_001036104 // MAP3KA /// NM_104235 // MAP3KA /// NM_179472 // MAP3KA 

/// NM_001198282 // MAP3KA /// NM_001198283 // MAP3KA /// AT1G53570.1 // 

MAP3KA /// AT1G53570.2 // MAP3KA /// AT1G53570.5 // MAP3KA /// 

AT1G53570.3 // MAP3KA /// AT1G53570.4 // MAP3KA /// AY140005 // MAP3KA 

3 13361237 AT1G79840 NM_106633 // GL2 /// NM_001198514 // GL2 /// AT1G79840.2 // GL2 /// 

AT1G79840.1 // GL2 /// AF360294 // GL2 

4 13361240 AT1G79840 NM_106633 // GL2 /// NM_001198514 // GL2 /// AT1G79840.2 // GL2 /// 

AT1G79840.1 // GL2 /// AF360294 // GL2 

5 13361883 AT1G01140 NM_099996 // CIPK9 /// NM_179240 // CIPK9 /// NM_179239 // CIPK9 /// 

AT1G01140.1 // CIPK9 /// AT1G01140.2 // CIPK9 /// AT1G01140.3 // CIPK9 /// 

AF295664 // CIPK9 

6 13367998 AT1G14690 NM_101338 // MAP65-7 /// NM_001084068 // MAP65-7 /// AT1G14690.2 // MAP65-7 

/// AT1G14690.1 // MAP65-7 /// AY120768 // MAP65-7 

7 13368073 AT1G14810 NM_101350 // AT1G14810 /// AT1G14810.1 // AT1G14810 /// AY070759 // 

AT1G14810 

8 13370122 AT1G19660 NM_101822 // AT1G19660 /// NM_001035991 // AT1G19660 /// AT1G19660.2 // 

AT1G19660 /// AT1G19660.1 // AT1G19660 /// AK317508 // AT1G19660 

9 13370199 AT1G19835 NM_101838 // AT1G19835 /// NM_001198113 // AT1G19835 /// AT1G19835.1 // 

AT1G19835 /// AT1G19835.2 // AT1G19835 



                                                                                                                                                  Chapter 6 

 

197 

 

10 13374044 AT1G30280 NM_102767 // AT1G30280 /// AT1G30280.1 // AT1G30280 /// AY070092 // 

AT1G30280 

11 13377908 AT1G50490 NM_103932 // UBC20 /// AT1G50490.1 // UBC20 /// AK227382 // UBC20 

12 13380818 AT1G58200 NM_202317 // MSL3 /// NM_104601 // MSL3 /// AT1G58200.1 // MSL3 /// 

AT1G58200.2 // MSL3 /// AY125504 // MSL3 

13 13383170 AT1G64670 NM_105142 // BDG1 /// AT1G64670.1 // BDG1 /// BT005382 // BDG1 

14 13383173 AT1G64670 NM_105142 // BDG1 /// AT1G64670.1 // BDG1 /// BT005382 // BDG1 

15 13384286 AT1G67120 NM_105382 // AT1G67120 /// AT1G67120.1 // AT1G67120 

16 13384916 AT1G68410 NM_001036175 // AT1G68410 /// NM_105512 // AT1G68410 /// AT1G68410.2 // 

AT1G68410 /// AT1G68410.1 // AT1G68410 /// AY050881 // AT1G68410 

17 13386388 AT1G72430 NM_105902 // AT1G72430 /// AT1G72430.1 // AT1G72430 

18 13388178 AT1G76540 NM_106304 // CDKB2;1 /// AT1G76540.1 // CDKB2;1 /// AB047279 // CDKB2;1 

19 13390427 AT2G01340 NM_126195 // At17.1 /// AT2G01340.1 // At17.1 /// BT021987 // At17.1 

20 13395074 AT2G20570 NM_127617 // GPRI1 /// NM_001202633 // GPRI1 /// AT2G20570.1 // GPRI1 /// 

AT2G20570.2 // GPRI1 /// AB062489 // GPRI1 

21 13395076 AT2G20570 NM_127617 // GPRI1 /// NM_001202633 // GPRI1 /// AT2G20570.1 // GPRI1 /// 

AT2G20570.2 // GPRI1 /// AB062489 // GPRI1 
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22 13399152 AT2G30950 NM_179825 // VAR2 /// AT2G30950.1 // VAR2 /// AF135189 // VAR2 

23 13401267 AT2G35800 NM_179921 // AT2G35800 /// AT2G35800.1 // AT2G35800 /// AY063948 // 

AT2G35800 

24 13401269 AT2G35800 NM_179921 // AT2G35800 /// AT2G35800.1 // AT2G35800 /// AY063948 // 

AT2G35800 

25 13401305 AT2G35860 NM_179922 // FLA16 /// AT2G35860.1 // FLA16 /// AY093189 // FLA16 

26 13406073 AT2G47170 NM_130285 // ARF1A1C /// AT2G47170.1 // ARF1A1C /// M95166 // ARF1A1C 

27 13406530 AT2G47980 NM_130365 // SCC3 /// AT2G47980.1 // SCC3 /// AY063915 // SCC3 

28 13411231 AT2G21140 NM_127684 // PRP2 /// AT2G21140.1 // PRP2 /// AK117333 // PRP2 

29 13412816 AT2G25540 NM_128111 // CESA10 /// AT2G25540.1 // CESA10 

30 13413792 AT2G27450 NM_179770 // NLP1 /// NM_128305 // NLP1 /// AT2G27450.2 // NLP1 /// 

AT2G27450.1 // NLP1 /// AY072113 // NLP1 
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Table 6.3: List of selected genes used to build the prediction model to test suitability to aphid feeding in two genotypes of 

B.montana species using the Partek model selection tool. 

S.no probeset_id AGI_code gene_assignment 

1 13335913 AT1G04778 NM_001083989 // AT1G04778 /// AT1G04778.1 // AT1G04778 

2 13338945 AT1G11720 NM_101044 // SS3 /// NM_001198036 // SS3 /// AT1G11720.1 // SS3 /// AT1G11720.2 // 

SS3 

3 13348001 AT1G35220 NM_103220 // AT1G35220 /// AT1G35220.1 // AT1G35220 

4 13356385 AT1G67900 NM_202374 // AT1G67900 /// NM_105460 // AT1G67900 /// NM_001198418 // 

AT1G67900 /// AT1G67900.2 // AT1G67900 /// AT1G67900.3 // AT1G67900 /// 

AT1G67900.1 // AT1G67900 /// AY120729 // AT1G67900 

5 13361160 AT1G79590 NM_001036224 // SYP52 /// NM_106607 // SYP52 /// AT1G79590.2 // SYP52 /// 

AT1G79590.1 // SYP52 /// AF355756 // SYP52 

6 13361883 AT1G01140 NM_099996 // CIPK9 /// NM_179240 // CIPK9 /// NM_179239 // CIPK9 /// AT1G01140.1 

// CIPK9 /// AT1G01140.2 // CIPK9 /// AT1G01140.3 // CIPK9 /// AF295664 // CIPK9 

7 13363988 AT1G05850 NM_100466 // POM1 /// AT1G05850.1 // POM1 /// AY034935 // POM1 

8 13367998 AT1G14690 NM_101338 // MAP65-7 /// NM_001084068 // MAP65-7 /// AT1G14690.2 // MAP65-7 /// 

AT1G14690.1 // MAP65-7 /// AY120768 // MAP65-7 

9 13368073 AT1G14810 NM_101350 // AT1G14810 /// AT1G14810.1 // AT1G14810 /// AY070759 // AT1G14810 

10 13370122 AT1G19660 NM_101822 // AT1G19660 /// NM_001035991 // AT1G19660 /// AT1G19660.2 // 

AT1G19660 /// AT1G19660.1 // AT1G19660 /// AK317508 // AT1G19660 
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11 13370199 AT1G19835 NM_101838 // AT1G19835 /// NM_001198113 // AT1G19835 /// AT1G19835.1 // 

AT1G19835 /// AT1G19835.2 // AT1G19835 

12 13373276 AT1G28320 NM_102597 // DEG15 /// AT1G28320.1 // DEG15 

13 13373676 AT1G29400 NM_179396 // ML5 /// NM_102680 // ML5 /// AT1G29400.1 // ML5 /// AT1G29400.2 // 

ML5 /// AY070368 // ML5 

14 13376554 AT1G47128 NM_103612 // RD21 /// AT1G47128.1 // RD21 /// AY072130 // RD21 

15 13377908 AT1G50490 NM_103932 // UBC20 /// AT1G50490.1 // UBC20 /// AK227382 // UBC20 

16 13380818 AT1G58200 NM_202317 // MSL3 /// NM_104601 // MSL3 /// AT1G58200.1 // MSL3 /// AT1G58200.2 

// MSL3 /// AY125504 // MSL3 

17 13383170 AT1G64670 NM_105142 // BDG1 /// AT1G64670.1 // BDG1 /// BT005382 // BDG1 

18 13383173 AT1G64670 NM_105142 // BDG1 /// AT1G64670.1 // BDG1 /// BT005382 // BDG1 

19 13390427 AT2G01340 NM_126195 // At17.1 /// AT2G01340.1 // At17.1 /// BT021987 // At17.1 

20 13395074 AT2G20570 NM_127617 // GPRI1 /// NM_001202633 // GPRI1 /// AT2G20570.1 // GPRI1 /// 

AT2G20570.2 // GPRI1 /// AB062489 // GPRI1 

21 13401267 AT2G35800 NM_179921 // AT2G35800 /// AT2G35800.1 // AT2G35800 /// AY063948 // AT2G35800 

22 13401305 AT2G35860 NM_179922 // FLA16 /// AT2G35860.1 // FLA16 /// AY093189 // FLA16 
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23 13405651 AT2G46140 NM_130176 // AT2G46140 /// AT2G46140.1 // AT2G46140 /// BT004206 // AT2G46140 

24 13406073 AT2G47170 NM_130285 // ARF1A1C /// AT2G47170.1 // ARF1A1C /// M95166 // ARF1A1C 

25 13406475 AT2G47890 NM_130356 // AT2G47890 /// NM_201983 // AT2G47890 /// AT2G47890.2 // AT2G47890 

/// AT2G47890.1 // AT2G47890 /// BT023413 // AT2G47890 

26 13406840 AT2G01450 NM_001035864 // MPK17 /// NM_001035863 // MPK17 /// NM_001035862 // MPK17 /// 

NM_126206 // MPK17 /// AT2G01450.2 // MPK17 /// AT2G01450.3 // MPK17 /// 

AT2G01450.4 // MPK17 /// AT2G01450.1 // MPK17 /// AK228266 // MPK17 

27 13411231 AT2G21140 NM_127684 // PRP2 /// AT2G21140.1 // PRP2 /// AK117333 // PRP2 

 

Table 6.4: List of selected genes used to build the prediction model to test suitability to aphid feeding in two genotypes of B.villosa 

species using the Partek model selection tool. 

S.no probeset_id AGI_code gene_assignment 

1 13342730 AT1G20760 NM_101928 // AT1G20760 /// AT1G20760.1 // AT1G20760 

2 13343517 AT1G22770 NM_102124 // GI /// AT1G22770.1 // GI /// AF105064 // GI 

3 13351638 AT1G53400 NM_104219 // AT1G53400 /// AT1G53400.1 // AT1G53400 /// AF370164 // AT1G53400 
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4 13351640 AT1G53400 NM_104219 // AT1G53400 /// AT1G53400.1 // AT1G53400 /// AF370164 // AT1G53400 

5 13357744 AT1G71220 NM_105791 // EBS1 /// NM_001198441 // EBS1 /// AT1G71220.1 // EBS1 /// 

AT1G71220.2 // EBS1 /// AK230327 // EBS1 

6 13361160 AT1G79590 NM_001036224 // SYP52 /// NM_106607 // SYP52 /// AT1G79590.2 // SYP52 /// 

AT1G79590.1 // SYP52 /// AF355756 // SYP52 

7 13361883 AT1G01140 NM_099996 // CIPK9 /// NM_179240 // CIPK9 /// NM_179239 // CIPK9 /// AT1G01140.1 

// CIPK9 /// AT1G01140.2 // CIPK9 /// AT1G01140.3 // CIPK9 /// AF295664 // CIPK9 

8 13364212 AT1G06460 NM_100526 // ACD32.1 /// AT1G06460.1 // ACD32.1 /// DQ403189 // ACD32.1 

9 13364215 AT1G06460 NM_100526 // ACD32.1 /// AT1G06460.1 // ACD32.1 /// DQ403189 // ACD32.1 

10 13365772 AT1G09730 NM_100845 // AT1G09730 /// NM_001198022 // AT1G09730 /// AT1G09730.1 // 

AT1G09730 /// AT1G09730.2 // AT1G09730 /// EU877962 // AT1G09730 

11 13366227 AT1G10550 NM_100930 // XTH33 /// AT1G10550.1 // XTH33 

12 13367998 AT1G14690 NM_101338 // MAP65-7 /// NM_001084068 // MAP65-7 /// AT1G14690.2 // MAP65-7 /// 

AT1G14690.1 // MAP65-7 /// AY120768 // MAP65-7 
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13 13369917 AT1G19050 NM_101763 // ARR7 /// AT1G19050.1 // ARR7 /// AB008490 // ARR7 

14 13370122 AT1G19660 NM_101822 // AT1G19660 /// NM_001035991 // AT1G19660 /// AT1G19660.2 // 

AT1G19660 /// AT1G19660.1 // AT1G19660 /// AK317508 // AT1G19660 

15 13370199 AT1G19835 NM_101838 // AT1G19835 /// NM_001198113 // AT1G19835 /// AT1G19835.1 // 

AT1G19835 /// AT1G19835.2 // AT1G19835 

16 13373676 AT1G29400 NM_179396 // ML5 /// NM_102680 // ML5 /// AT1G29400.1 // ML5 /// AT1G29400.2 // 

ML5 /// AY070368 // ML5 

17 13374044 AT1G30280 NM_102767 // AT1G30280 /// AT1G30280.1 // AT1G30280 /// AY070092 // AT1G30280 

18 13380818 AT1G58200 NM_202317 // MSL3 /// NM_104601 // MSL3 /// AT1G58200.1 // MSL3 /// AT1G58200.2 

// MSL3 /// AY125504 // MSL3 

19 13383170 AT1G64670 NM_105142 // BDG1 /// AT1G64670.1 // BDG1 /// BT005382 // BDG1 

20 13383173 AT1G64670 NM_105142 // BDG1 /// AT1G64670.1 // BDG1 /// BT005382 // BDG1 

21 13384916 AT1G68410 NM_001036175 // AT1G68410 /// NM_105512 // AT1G68410 /// AT1G68410.2 // 

AT1G68410 /// AT1G68410.1 // AT1G68410 /// AY050881 // AT1G68410 
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22 13388178 AT1G76540 NM_106304 // CDKB2;1 /// AT1G76540.1 // CDKB2;1 /// AB047279 // CDKB2;1 

23 13389639 AT1G79610 NM_106609 // NHX6 /// AT1G79610.1 // NHX6 /// AY091100 // NHX6 

24 13390427 AT2G01340 NM_126195 // At17.1 /// AT2G01340.1 // At17.1 /// BT021987 // At17.1 

25 13395074 AT2G20570 NM_127617 // GPRI1 /// NM_001202633 // GPRI1 /// AT2G20570.1 // GPRI1 /// 

AT2G20570.2 // GPRI1 /// AB062489 // GPRI1 

26 13395076 AT2G20570 NM_127617 // GPRI1 /// NM_001202633 // GPRI1 /// AT2G20570.1 // GPRI1 /// 

AT2G20570.2 // GPRI1 /// AB062489 // GPRI1 

27 13395517 AT2G21530 NM_127725 // AT2G21530 /// AT2G21530.1 // AT2G21530 /// AK118718 // AT2G21530 

28 13398162 AT2G28290 NM_179785 // SYD /// NM_001084502 // SYD /// NM_179786 // SYD /// AT2G28290.1 // 

SYD /// AT2G28290.2 // SYD /// AT2G28290.3 // SYD 

29 13399152 AT2G30950 NM_179825 // VAR2 /// AT2G30950.1 // VAR2 /// AF135189 // VAR2 

30 13401267 AT2G35800 NM_179921 // AT2G35800 /// AT2G35800.1 // AT2G35800 /// AY063948 // AT2G35800 
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31 13406073 AT2G47170 NM_130285 // ARF1A1C /// AT2G47170.1 // ARF1A1C /// M95166 // ARF1A1C 

32 13406530 AT2G47980 NM_130365 // SCC3 /// AT2G47980.1 // SCC3 /// AY063915 // SCC3 

33 13407933 AT2G05120 NM_126541 // AT2G05120 /// NM_001202582 // AT2G05120 /// AT2G05120.1 // 

AT2G05120 /// AT2G05120.2 // AT2G05120 

34 13409122 AT2G15890 NM_127149 // MEE14 /// AT2G15890.1 // MEE14 /// AF324713 // MEE14 

35 13409123 AT2G15890 NM_001084426 // MEE14 /// NM_127149 // MEE14 /// AT2G15890.1 // MEE14 /// 

AT2G15890.2 // MEE14 /// AF324713 // MEE14 

36 13410028 AT2G18300 NM_127388 // AT2G18300 /// NM_179645 // AT2G18300 /// NM_001202619 // 

AT2G18300 /// AT2G18300.1 // AT2G18300 /// AT2G18300.2 // AT2G18300 /// 

AT2G18300.3 // AT2G18300 /// AF412099 // AT2G18300 

37 13411231 AT2G21140 NM_127684 // PRP2 /// AT2G21140.1 // PRP2 /// AK117333 // PRP2 

38 13411869 AT2G23070 NM_127871 // AT2G23070 /// AT2G23070.1 // AT2G23070 /// AY062631 // AT2G23070 

39 13412228 AT2G24120 NM_127973 // SCA3 /// NM_201796 // SCA3 /// AT2G24120.1 // SCA3 /// AT2G24120.2 // 

SCA3 /// AK229652 // SCA3 
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40 13412230 AT2G24120 NM_127973 // SCA3 /// NM_201796 // SCA3 /// AT2G24120.1 // SCA3 /// AT2G24120.2 // 

SCA3 /// AK229652 // SCA3 

41 13412241 AT2G24120 NM_127973 // SCA3 /// NM_201796 // SCA3 /// AT2G24120.1 // SCA3 /// AT2G24120.2 // 

SCA3 /// AK229652 // SCA3 

 

Table 6.5: List of selected genes used to build the prediction model to test suitability to aphid feeding in two genotypes of 

B.fruticulosa species using the Partek model selection tool. 

S.No 
probeset_id AGI_code gene_assignment 

1 13335913 AT1G04778 NM_001083989 // AT1G04778 /// AT1G04778.1 // AT1G04778 

2 13341938 AT1G18730 NM_101731 // NDF6 /// NM_001123835 // NDF6 /// NM_001084090 // NDF6 /// 

NM_001123834 // NDF6 /// AT1G18730.1 // NDF6 /// AT1G18730.2 // NDF6 /// 

AT1G18730.3 // NDF6 /// AT1G18730.4 // NDF6 /// AY080701 // NDF6 

3 13353700 AT1G60060 NM_104698 // AT1G60060 /// AT1G60060.1 // AT1G60060 /// AY084785 // AT1G60060 

4 13353704 AT1G60060 NM_104698 // AT1G60060 /// AT1G60060.1 // AT1G60060 /// AY084785 // AT1G60060 

5 13356388 AT1G67900 NM_202374 // AT1G67900 /// NM_105460 // AT1G67900 /// NM_001198418 // 

AT1G67900 /// AT1G67900.2 // AT1G67900 /// AT1G67900.3 // AT1G67900 /// 

AT1G67900.1 // AT1G67900 /// AY120729 // AT1G67900 

6 13361883 AT1G01140 NM_099996 // CIPK9 /// NM_179240 // CIPK9 /// NM_179239 // CIPK9 /// AT1G01140.1 

// CIPK9 /// AT1G01140.2 // CIPK9 /// AT1G01140.3 // CIPK9 /// AF295664 // CIPK9 
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7 13362791 AT1G03475 NM_100230 // LIN2 /// AT1G03475.1 // LIN2 /// AB044394 // LIN2 

8 13363512 AT1G04980 NM_100376 // PDIL2-2 /// AT1G04980.1 // PDIL2-2 

9 13366745 AT1G11545 NM_101028 // XTH8 /// AT1G11545.1 // XTH8 /// AK228427 // XTH8 

10 13366783 AT1G11684 --- 

11 13367834 AT1G14410 NM_101308 // WHY1 /// AT1G14410.1 // WHY1 /// AF370156 // WHY1 

12 13374044 AT1G30280 NM_102767 // AT1G30280 /// AT1G30280.1 // AT1G30280 /// AY070092 // AT1G30280 

13 13375019 AT1G32900 NM_103023 // AT1G32900 /// AT1G32900.1 // AT1G32900 /// AY123983 // AT1G32900 

14 13383170 AT1G64670 NM_105142 // BDG1 /// AT1G64670.1 // BDG1 /// BT005382 // BDG1 

15 13383173 AT1G64670 NM_105142 // BDG1 /// AT1G64670.1 // BDG1 /// BT005382 // BDG1 

16 13385513 AT1G69840 NM_105652 // AT1G69840 /// NM_001084333 // AT1G69840 /// NM_202388 // 

AT1G69840 /// NM_001084334 // AT1G69840 /// NM_179539 // AT1G69840 /// 

NM_202387 // AT1G69840 /// NM_001198429 // AT1G69840 /// AT1G69840.7 // 

AT1G69840 /// AT1G69840.3 // AT1G69840 /// AT1G69840.2 // AT1G69840 /// 

AT1G69840.6 // AT1G69840 /// AT1G69840.4 // AT1G69840 /// AT1G69840.5 // 

AT1G69840 /// AT1G69840.1 // AT1G69840 /// AY099840 // AT1G69840 
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17 13386190 AT1G71830 NM_105841 // SERK1 /// AT1G71830.1 // SERK1 

18 13386388 AT1G72430 NM_105902 // AT1G72430 /// AT1G72430.1 // AT1G72430 

19 13387951 AT1G76110 NM_106260 // AT1G76110 /// AT1G76110.1 // AT1G76110 /// AY099630 // AT1G76110 

20 13388178 AT1G76540 NM_106304 // CDKB2;1 /// AT1G76540.1 // CDKB2;1 /// AB047279 // CDKB2;1 

21 13388517 AT1G77330 NM_106382 // AT1G77330 /// AT1G77330.1 // AT1G77330 /// BT026444 // AT1G77330 

22 13390427 AT2G01340 NM_126195 // At17.1 /// AT2G01340.1 // At17.1 /// BT021987 // At17.1 

23 13390961 AT2G02740 NM_001084403 // WHY3 /// NM_126329 // WHY3 /// AT2G02740.1 // WHY3 /// 

AT2G02740.2 // WHY3 /// BT015336 // WHY3 

24 13391436 AT2G04030 NM_126439 // CR88 /// NM_179601 // CR88 /// AT2G04030.1 // CR88 /// AT2G04030.2 // 

CR88 /// AF436826 // CR88 

25 13394435 AT2G18960 NM_127453 // HA1 /// AT2G18960.1 // HA1 /// BT008692 // HA1 

26 13399882 AT2G32487 NM_001084525 // AT2G32487 /// AT2G32487.1 // AT2G32487 

27 13401267 AT2G35800 NM_179921 // AT2G35800 /// AT2G35800.1 // AT2G35800 /// AY063948 // AT2G35800 
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28 13401269 AT2G35800 NM_179921 // AT2G35800 /// AT2G35800.1 // AT2G35800 /// AY063948 // AT2G35800 

29 13401305 AT2G35860 NM_179922 // FLA16 /// AT2G35860.1 // FLA16 /// AY093189 // FLA16 

30 13406073 AT2G47170 NM_130285 // ARF1A1C /// AT2G47170.1 // ARF1A1C /// M95166 // ARF1A1C 

31 13407793 AT2G04540 NM_126485 // AT2G04540 /// AT2G04540.1 // AT2G04540 /// AB073746 // AT2G04540 

32 13410413 AT2G19560 NM_127514 // EER5 /// AT2G19560.1 // EER5 /// AK118897 // EER5 

33 13411231 AT2G21140 NM_127684 // PRP2 /// AT2G21140.1 // PRP2 /// AK117333 // PRP2 

34 13413792 AT2G27450 NM_179770 // NLP1 /// NM_128305 // NLP1 /// AT2G27450.2 // NLP1 /// AT2G27450.1 // 

NLP1 /// AY072113 // NLP1 

 

Table 6.6: List of selected genes used to build the prediction model to test suitability to aphid feeding in two genotypes of 

B.oleracea acephala species using the Partek model selection tool. 

S.no probeset_id AGI_code gene_assignment 

1 13361883 AT1G01140 NM_099996 // CIPK9 /// NM_179240 // CIPK9 /// NM_179239 // CIPK9 /// AT1G01140.1 

// CIPK9 /// AT1G01140.2 // CIPK9 /// AT1G01140.3 // CIPK9 /// AF295664 // CIPK9 

2 13335913 AT1G04778 NM_001083989 // AT1G04778 /// AT1G04778.1 // AT1G04778 

3 13366227 AT1G10550 NM_100930 // XTH33 /// AT1G10550.1 // XTH33 



                                                                                                                                                  Chapter 6 

 

210 

 

4 13366314 AT1G10740 NM_100950 // AT1G10740 /// NM_202077 // AT1G10740 /// NM_001198027 // 

AT1G10740 /// NM_001198026 // AT1G10740 /// AT1G10740.3 // AT1G10740 /// 

AT1G10740.4 // AT1G10740 /// AT1G10740.1 // AT1G10740 /// AT1G10740.2 // 

AT1G10740 /// AY120749 // AT1G10740 

5 13338945 AT1G11720 NM_101044 // SS3 /// NM_001198036 // SS3 /// AT1G11720.1 // SS3 /// AT1G11720.2 // 

SS3 

6 13367434 AT1G13350 NM_101206 // AT1G13350 /// NM_001198053 // AT1G13350 /// AT1G13350.1 // 

AT1G13350 /// AT1G13350.2 // AT1G13350 

7 13370122 AT1G19660 NM_101822 // AT1G19660 /// NM_001035991 // AT1G19660 /// AT1G19660.2 // 

AT1G19660 /// AT1G19660.1 // AT1G19660 /// AK317508 // AT1G19660 

8 13370199 AT1G19835 NM_101838 // AT1G19835 /// NM_001198113 // AT1G19835 /// AT1G19835.1 // 

AT1G19835 /// AT1G19835.2 // AT1G19835 

9 13370635 AT1G20820 --- 

10 13374044 AT1G30280 NM_102767 // AT1G30280 /// AT1G30280.1 // AT1G30280 /// AY070092 // AT1G30280 

11 13348001 AT1G35220 NM_103220 // AT1G35220 /// AT1G35220.1 // AT1G35220 

12 13377908 AT1G50490 NM_103932 // UBC20 /// AT1G50490.1 // UBC20 /// AK227382 // UBC20 

13 13351724 AT1G53570 NM_001036104 // MAP3KA /// NM_104235 // MAP3KA /// NM_179472 // MAP3KA /// 

NM_001198282 // MAP3KA /// NM_001198283 // MAP3KA /// AT1G53570.1 // 

MAP3KA /// AT1G53570.2 // MAP3KA /// AT1G53570.5 // MAP3KA /// AT1G53570.3 // 

MAP3KA /// AT1G53570.4 // MAP3KA /// AY140005 // MAP3KA 

14 13379358 AT1G54100 NM_104287 // ALDH7B4 /// NM_179476 // ALDH7B4 /// AT1G54100.2 // ALDH7B4 /// 

AT1G54100.1 // ALDH7B4 /// AY091032 // ALDH7B4 

15 13380818 AT1G58200 NM_202317 // MSL3 /// NM_104601 // MSL3 /// AT1G58200.1 // MSL3 /// AT1G58200.2 

// MSL3 /// AY125504 // MSL3 

16 13383170 AT1G64670 NM_105142 // BDG1 /// AT1G64670.1 // BDG1 /// BT005382 // BDG1 

17 13383173 AT1G64670 NM_105142 // BDG1 /// AT1G64670.1 // BDG1 /// BT005382 // BDG1 

18 13386388 AT1G72430 NM_105902 // AT1G72430 /// AT1G72430.1 // AT1G72430 

19 13386986 AT1G73700 NM_106029 // AT1G73700 /// AT1G73700.1 // AT1G73700 
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20 13388178 AT1G76540 NM_106304 // CDKB2;1 /// AT1G76540.1 // CDKB2;1 /// AB047279 // CDKB2;1 

21 13360672 AT1G78480 NM_106495 // AT1G78480 /// NM_001198497 // AT1G78476 /// AT1G78480.1 // 

AT1G78480 /// AT1G78476.1 // AT1G78476 

22 13361160 AT1G79590 NM_001036224 // SYP52 /// NM_106607 // SYP52 /// AT1G79590.2 // SYP52 /// 

AT1G79590.1 // SYP52 /// AF355756 // SYP52 

23 13390427 AT2G01340 NM_126195 // At17.1 /// AT2G01340.1 // At17.1 /// BT021987 // At17.1 

24 13411231 AT2G21140 NM_127684 // PRP2 /// AT2G21140.1 // PRP2 /// AK117333 // PRP2 

25 13412416 AT2G24550 NM_128016 // AT2G24550 /// AT2G24550.1 // AT2G24550 /// AF411794 // AT2G24550 

26 13413792 AT2G27450 NM_179770 // NLP1 /// NM_128305 // NLP1 /// AT2G27450.2 // NLP1 /// AT2G27450.1 // 

NLP1 /// AY072113 // NLP1 

27 13401267 AT2G35800 NM_179921 // AT2G35800 /// AT2G35800.1 // AT2G35800 /// AY063948 // AT2G35800 

28 13401305 AT2G35860 NM_179922 // FLA16 /// AT2G35860.1 // FLA16 /// AY093189 // FLA16 

29 13405494 AT2G45790 NM_130142 // PMM /// AT2G45790.1 // PMM /// AY050806 // PMM 

30 13405651 AT2G46140 NM_130176 // AT2G46140 /// AT2G46140.1 // AT2G46140 /// BT004206 // AT2G46140 

31 13406073 AT2G47170 NM_130285 // ARF1A1C /// AT2G47170.1 // ARF1A1C /// M95166 // ARF1A1C 

32 13406530 AT2G47980 NM_130365 // SCC3 /// AT2G47980.1 // SCC3 /// AY063915 // SCC3 
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For both these accessions, the results from the feeding behaviour study (chapter 3) were 

also found to be different from field assessment. The B.villosa accession was found to 

be resistance while B.fruticulosa was categories as moderately resistant in EPG study 

(chapter 3). The mismatch in the case of B.fruticulosa may be the result of differences 

in the genetic bases of model where all genotypes used to develop model had genome C 

whereas the test data had genome B.  

Even though 80% of the unknown samples were predicted correct, it is still not the 

exact match to the field experiment. This might be due to the fact that sample size used 

to develop the model is insufficient and unbalanced with 7 resistant and 3 susceptible 

genotypes. Moreover, it was also felt that field classification from chapter 2 may not be 

the best way for grouping the samples as resistant or susceptible as these genotypes still 

need further validation for their resistance status and are genuinely intermediate in their 

resistance status.  Even though there is a strong separation of the resistant and 

susceptible group which is a proof of good model building, the best option to develop a 

prediction model would have been to use genotypes which are well characterised and 

can be used as the benchmark for the resistance and susceptibility to aphid feeding in 

Brassicas. The results for all 5 models are shown in table 6.7. 

6.5 Discussion 

The results from this study show that gene expression data can be successfully used in 

the prediction of resistance or susceptibility status in unknown genotypes present in the 

germplasm. The advances in the molecular technologies have enabled the use of 

available data in better and more advanced ways. Whole genome microarray expression 

profiling for prediction of disease classes in humans is a widely accepted approach (K. 
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Kim et al. 2014; Nagata et al. 2014; Cooper-Knock et al. 2012; Swanson et al. 2012)but 

not used in plants as yet to screen for resistance and susceptibility to insect pests in crop 

plants. 

 

There are several studies where this approach is used to classify the disease state of a 

human patient, especially in the case of cancer (Mazzanti et al. 2004; Trevino et al. 

2011). Cheng et al. (2010) reported the successful use of expression data to identify 

expression biomarkers associated with the patient’s clinical response and to forecast 

various human disease outcomes. Ford-Lloyd et al. (2011) have urged for a need of new 

genetic recourses in plant breeding to increase the rate of gene discovery within 

available germplasm. It is very important that the available germplasm should be 

screened quickly and efficiently so as to come up with new improved varieties to keep 

pace with increasing population and food demand. The traditional phenotyping methods 

are time-consuming and also require more resources whereas the use of new 

technologies can provide better solutions to these problems. The need is to develop 

Table 6.7 : Details of 5 best Model run with the classifiers for prediction resistance status 

of different Brassica species 

S.no Species Seed 

no. 

Accession no/ 

cultivar name 

Result from 

prediction 

Expected 

result 

Match 

1 B.incana 24 BRA 2856 Resistant Resistant Yes 

26 K 10373 Resistant Resistant Yes 

2 B.montana 37 K 9404 Susceptible Susceptible Yes 

38 BRA 1644 Resistant Resistant Yes 

3 B.villosa 398 K 6926 Resistant Susceptible No 

401 K 10259 Resistant Resistant Yes 

4 B.fruticulosa 453 Bol2009-0080 Susceptible Resistant No 

454 Bol2009-0081 Susceptible Susceptible Yes 

5 B.oleracea 

acephala 

54 BRS-0103 Resistant Resistant Yes 

116 CGN18468 Resistant Resistant Yes 
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more user-friendly and reliable methods for potential gene prediction and subsequent 

models for prediction of resistance status of the plant.   

The use of ‘omics’ technology to develop such models in the case of human disease is 

advancing very fast. Amar et al. (2015) reported an integrated analysis of numerous 

heterogeneous gene expression profiles for detecting robust disease-specific biomarkers 

and proposing drug targets. The use of latest technologies like RNA-seq and its 

comparison to microarray-based models is currently applied for clinical 

endpoint prediction (Xu et al. 2016; De la Blétière et al. 2012; Huang et al. 

2015; W. Zhang et al. 2015). The plant science is somewhat lacking in coming 

up tools and methods which can speed up the characterization of vast 

germplasm recourses.  

The current study was an attempt to address this issue, and prove that such 

methods can be developed and successfully used in case of plants as well.  

The model selection tool of Partek Genomics Suite version 6.6 (Partek Inc., St. Louis, 

MO, USA), software is one such way which can be used in an effective way to classify 

the material into groups based on a test model designed from the known species to 

predict the unknown species. The idea behind this approach (i.e., creating the 

model with the differentially expressed significant genes in resistant vs. 

susceptible samples and then validating the unknown samples against this 

model) was that this model can be used by other researchers to directly predict 

the resistance status of unknown genotypes by validating the transcriptomic 

response of unknown samples.This tool has been successfully used in studying 

transcriptomics profile and development of prediction models for human disease 

condition (Ding et al. 2013; Swanson et al. 2012). Although, in the current study the 
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model developed could not yield the 100% results as expected and could not be 

completed validated due to the restricted usage and time constrains of using a trial 

version of software. The fully functional version of software provides an opportunity to 

cross-validate model developed by using PCA analysis method, which can provide a 

more satisfactory and confirmatory result. In addition to this there were other limitations 

noticed in this model as the small and unbalanced sample size. This issue can be easily 

addressed in any further study, but was not addressed in current study due to time and 

financial constrains. The success of any such model depends on the data set used to 

develop the classification model. So the gene expression data from confirmed, bench-

marked cabbage aphid resistant and susceptible Brassica genotypes will be ideal for 

developing the model in future.  The present study is the first to use this approach to 

develop and test the model based on the gene expression (in the absence of aphid 

feeding) differences of resistant and susceptible groups with respect to aphid feeding 

preference in the field. The model selection tool was successfully used to develop the 

prediction model and test the genotypes grouped as unknown. The use of Partek 

Genomics Suite version 6.6 has made it very easy to choose the variable and design the 

model for prediction and number of models can be generated and tested within a short 

duration of time.  Also, as this study is the part of bigger PGR consortium, the use of 

metabolomic and proteomic data can be further incorporated into this model which can 

make it a very robust model for prediction of resistance status. As mentioned earlier 

also, it is again emphasized that the class prediction model used in this study is just a 

preliminary study and requires more validation before being used on a large scale by 

future researchers. It opens up avenues for future researchers to explore the use of 

microarray data to develop prediction models. The latest development in ‘omics’ field 
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with NGS, proteomics and metabolomics a huge amount of data is produced and 

analysed for better understanding but still the large amount of microarray data stored in 

public databases can be still used and applied in new ways to develop new tools to take 

plant research on a further advanced stage.  

6.6 Conclusion 

To conclude, this study indicates that the variation in the gene expression of  resistant 

and susceptible genotypes can be explored and used as the basis for developing a 

prediction model to identify pest resistant plant genetic material for plant breeding 

programmes. The 5 models developed in this study using gene expression data from 

resistant and susceptible genotypes were successful in grouping the test genotypes into 

resistant or susceptible. However, still the prediction did not match exactly with the 

field results which were considered as the base of characterizing resistant and 

susceptible genotypes. Among many reason for this imperfect prediction most important 

may be the small, unbalanced sample size, use of genotypes from different genome 

types. The inclusion of more samples of the similar subspecies group to build the 

model may improve the prediction of insect resistance status of the Brassica 

genotypes using the transcriptomics data which then may serve as a genomic 

database tool to screen the Brassica genotypes. The use of advanced molecular, 

genomic and transcriptomics techniques along with the statistical bioinformatics could 

provide a better understanding and prediction capability to detect various biotic and 

abiotic stress responses in plants also. 
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Table S6.1: List of 100 selected genes used to build the prediction model to test 

suitability to aphid feeding in two genotypes of B.incana species using the 

Partek model selection tool. 

Table S6.2: List of 100 selected genes used to build the prediction model o test 

suitability to aphid feeding in two genotypes of B.montana species using the 

Partek model selection tool. 

Table S6.3: List of 100 selected genes used to build the prediction model to test 

suitability to aphid feeding in two genotypes of B.villosa species using the 

Partek model selection tool. 

Table S6.4: List of 100 selected genes used to build the prediction model to test 

suitability to aphid feeding in two genotypes of B.fruticulosa species using the 

Partek model selection tool. 

Table S6.5: List of 100 selected genes used to build the prediction model to test 

suitability to aphid feeding in two genotypes of B.oleracea acephala species 

using the Partek model selection tool. 
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7.1 Introduction 

To accommodate the increased demand for food, a 70% increase in food production is 

required over the next four decades to feed an ever-increasing population (FAO 2009). 

Under the threat of food shortages and global climatic changes, it is crucial for us to 

understand plant defence mechanisms against different biotic and abiotic stresses faced 

by crop plants (Mba et al. 2012; Barah et al. 2013). The advances in plant genetics 

remain a key component of global food security and have always provided new 

knowledge and technologies needed to address these challenges (Ronald 2011). Insect 

pests often result in a huge loss of crop yield and quality (Brown et al. 1999; 

Schoonhoven et al. 2005). Aphids are most serious insect pests of Brassica crops and 

reported to cause 30% to 80% crop yield loss annually worldwide (Dedryver et al. 2010; 

Razaq et al. 2011; Isik & Görür 2009). Cabbage Aphid (B.brassicae) is a specialist, 

Brassica feeding insect which causes severe leaf fouling due to its tendencies to 

colonise, transmit plant pathogenic viruses like cauliflower and turnip mosaic viruses 

and causing huge crop losses (Bush et al. 2006; Harvey et al. 2007; García-Palacios et 

al. 2013; Martinière et al. 2009). Currently, insecticides and pesticides are used to 

control this insect pest. However, due to number of growing concerns like insect 

resistance to these chemicals, pesticide residues in food and ill effects on humans and 

environment, decline in number of effective insecticides, as a result of non-availability 

due to more stringent health and safety criteria as part of European pesticide legislation 

(Directive EC1107/09), alternative methods of pest control are highly needed. Plant 

phenomics is a somewhat new term (Finkel 2009; Schilling et al. 1999) used to define 

the phenotypic features of a plant in relation to its functions (Saint Pierre 2012). The 

plant breeders are constantly looking for traits within the crop species to develop new 
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insect resistant varieties of crops. Therefore, identification of insect resistant genotypes 

present in the germplasm is often considered as the starting point of the breeding 

process. High throughput phenotyping along with phenomics tools helps to determine 

useful traits like insect resistance which can be used for breeding new varieties. For 

example, to study variation in levels of antixenosis and antibiosis in hundreds of 

ecotypes of Arabidopsis, use of automated video tracking of the green peach aphid on 

leaf discs of Arabidopsis thaliana is reported by Kloth et al. (2012). The development of 

high-throughput SNP discovery in common beans, cassava using next generation 

sequencing is already reported by many researchers (Hyten et al. 2010; Varshney et al. 

2009; Varshney et al. 2006; Ferguson et al. 2012). Pawełkowicz et al. (2016) reported 

the use of “omics” techniques in research conducted in cucumber plant breeding 

programmes on the ripening process, phloem transport, disease resistance, cold 

tolerance and fruit quality traits. 

In this study, a combination of phenomics and transcriptomics tools was used to 

determine insect resistant plant material and candidate genes for insect resistance. The 

field assessment (Chapter 2), feeding behaviour assessment (Chapter 3) and gene 

expression analysis (Chapter 4 & 5) of Brassica accessions (both CWR and LR) were 

conducted to identify the insect resistant (non-preferred) material in response to aphid 

feeding. The integrated approach of using field assessment (Chapter 2) of 200 Brassica 

accessions to identify the cabbage aphid feeding preference on these accessions and 

then using 15 accessions to further study feeding behaviour using EPG technique 

(Chapter 3) and gene expression changes (chapter 4 & 5) in response to presence and 

absence of aphid feeding in resistant (preferred) and susceptible (non-preferred) 

accessions has generated very useful information in terms of presences of variable 
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levels of resistance to cabbage aphid feeding and, also revealed candidate genes which 

can form the basis for further research investigations. 

7.2 Screening of Brassica Germplasm Based on Field Assessment to Identify 

Insect Resistance 

In this study, 200 Brassica accessions (CWR and LR) with no or very limited 

information regarding the level of resistance against cabbage aphid were tested in the 

field (Chapter 2). The field based germplasm phenotyping is considered more realistic 

as plants are present in their natural habitat (Pierre 2012).  This study provided vital 

information about differences in colonisation levels of cabbage aphid on Brassica 

genotypes used which may be due to host-specific resistance in Brassica germplasm. 

The presence of resistance against aphid resistance in CWR is already reported in the 

literature (Singh et al. 1994; Ellis et al. 1996; Ellis et al. 1998). In this study, the 

accessions from B.incana, B.fruticulosa, and B.villosa were noted to have low the level 

of aphid infestation as compared to LR (B.oleracea) species. The CWR belonging to 

B.incana, B.fruticulosa and B.villosa are reported to possess resistance to cabbage aphid 

(Ellis et al. 2000; Nayidu et al. 2014; Nayidu et al. 2015). Singh et al. (1994) reported 

the presence of resistance to cabbage aphid through antibiosis in wild species, 

B.fruticulosa, B.insularis and B.villosa. Antixenosis, antibiosis and tolerance are three 

categories to define the host plant resistance against insect pests. Antixenosis or non-

preference arises from host plant’s own characters which make them unattractive to 

insect pests. Antibiosis is a type of resistance in which host plant causes injury; reduce 

reproduction or death of pest. It is often noticed that both resistant and susceptible 

plants respond in a similar way to insect pest but resistant varieties response is more 

quick and dramatic. Tolerance is the third category to define resistance, where host 
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plant develops a capacity to grow and yield well despite damage caused by insect pests. 

The tolerant plants are often described to have better wound healing and disease 

fighting capacity (Leon 2001). The resistance mechanism in the selected accessions was 

further explored by way of studying feeding behaviour by means of EPG (Chapter 3).  

Although, field screening is highly used technique to characterise resistant and 

susceptible accessions, but in our study it not used to its maximum potential as it was 

used to narrow down the number of accessions and selection Brassica accessions to be 

investigated for the feeding behaviour assessment (Chapter 3) and gene expression 

studies (Chapter 4) as it was not possible to test as many as 200 accessions for 

subsequent experiments due to financial and time constrains. 

7.3 Intraspecific and interspecific variation in feeding performance of cabbage 

aphid (B.brassicae) in Brassicas 

The EPG technique is a widely used method to study the detailed feeding behaviour of 

phloem feeding insects and localisation of resistance factors in plant tissue (Tjallingii, 

W. F. and Mayoral 1992). EPG studies have produced reliable information concerning 

the location of the resistance mechanisms (Verdugo et al. 2012). For example, the 

resistance mechanism against M.persicae in the “Malo Konare” peach cultivar was 

located in the vascular system and was found to provide antibiosis resistance (Monet et 

al. 1998; Sauge et al. 1998; Sauge 1998a). Broekgaarden et al. (2012) reported 

antibiosis based phloem specific resistance in B.oleracea cultivars against the whitefly. 

EPG studies are the highly preferred way of studying feeding behaviour of insect pests 

to compare interspecies and intraspecies variations as well (Ghaffar et al. 2011; Gabryś 

& Pawluk 1999; Soffan & Aldawood 2015). The electronic monitoring of feeding 

behaviour suggests that cabbage aphid is capable of feeding on a wide range of Brassica 
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species. The results from this study (chapter 3) revealed the presence of variable levels 

of feeding suitability among Brassica accessions as a host. For the EPG results, varying 

resistance or susceptibility statuses were defined according to the plant factor involved 

(Table 3.2). Because EPG parameters can be useful in identifying the tissues containing 

putative resistance factors (van Helden & Tjallingii 1993; Tjallingii 1995), a detailed 

analysis of the EPG results may help elucidate the location of the resistance 

mechanisms. The results from our study indicated the presence of antibiosis component 

of resistance mechanism rather than antixenosis, as cabbage aphid’s presence was noted 

on all the accessions tested in this study. The analysis of waveforms Non-Penetration, 

Pathway, xylem, derailed stylet, E2 and time to E2 were used to classify three tier 

responses to aphid feeding by plants. The plants offer resistance to phloem feeding 

insects at surface level, pathway level and in phloem. EPG analysis of non-penetration 

pathway (Figure 3.3a) indicated the presence of surface resistance in two accessions 

BRA2856 (B.incana) and K6926 (B.villosa), as aphids could not penetrate the leaf 

tissue and spent all 6 h in non-penetration phase. This strongly suggests that some sort 

of resistance factor is present on the surface of these two accessions. The presence of 

resistance due to the high density of trichomes is reported in B.villosa (Nayidu et al. 

2014; Nayidu et al. 2015). It is particularly interesting to note that this accession was 

found susceptible in field assessment (chapter 2), suggesting that despite the initial 

inability to feed (for first 6h), aphids are likely able to develop induced susceptibility 

under natural environment, as shown in other aphid-plant systems (Karban & Baldwin 

1997; Prado & Tjallingii 1997).  The analysis of time to E2 and E2 parameters (Table 

3.3) showed that B.oleracea accession (BRA 2401) had more sustained phloem feeding 

as compared B.incana (K10373). It was also noted that difference in response to aphid 
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feeding, exists between accessions of the same species as well as different species 

which makes the analysis of insect defence system even more complex. The analysis by 

Electrical Penetration Graph of aphid probing behaviour during penetration of stylets 

into the plant tissues showed that resistance was mainly linked to difficulties either to 

reach the phloem or to initiate sap uptake or to sustain food ingestion. This study clearly 

demonstrates the existence of different mechanisms of resistance among the genotypes 

tested, and therefore their individual importance in a Brassica breeding programme for 

resistance. 

7.4 Gene expression study: An approach to identify genes of interest 

Microarrays are the most extensively used transcriptomics tool to investigate the gene 

expression changes of plants in response to biotic or abiotic stresses (Duggan et al. 

1999; Lee et al. 2008; Meyers et al. 2004; Couldridge et al. 2007). Analysis of the 

expression of thousands of genes in a single experiment has made the microarray unique 

and highly preferred technology for studying transcriptional changes in plants in 

response to insect feeding.  This study focused on the comparison of gene expression 

changes of insect resistant (non-preferred) and susceptible (preferred) accessions in 

response to presence or absence of aphid feeding. The selection of both induced 

(presence of aphid feeding) and non-induced (absence of aphid feeding) conditions to 

compare resistant vs. susceptible accessions provided the opportunity to look at both 

constitutive gene expression and induced transcriptional changes in response to aphid 

feeding. Constitutive gene expressions are often considered more durable, as they are 

always present and do not change easily (Karban & Baldwin 1997).  
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This study adopted a unique and novel approach to evaluate gene expression data from 

induced (presence of aphid feeding) and non-induced (absence of aphid feeding) 

experiments based on different group classifications (chapter 4). The whole data was 

analysed four times, based on resistant and susceptible grouping of Brassica accessions 

according to field performance (chapter 2) and feeding behaviour assessment (chapter 

3). This approach provided valuable results in terms of localising the gene expression 

changes with respect to surface, pathway or phloem based resistance in addition to 

overall changes based on the field experiment. 

 It was observed that in field based comparison of resistant and susceptible accessions, 

more genes were regulated constitutively. Fifty-four significant gene probes were found 

expressing differentially where 43 were down-regulated and 11 up-regulated. In 

contrast, aphid feeding for 24h induced significant changes in gene expression of only 7 

gene probes (4 up-regulated and 3 down-regulated). Overall a very small number of 

gene probes (section 4.4.1) showed changes in gene expression between resistant and 

susceptible accessions in response to presence or absence of aphid feeding. The 

occurrence of  a higher number of constitutively expressed genes in comparison to only 

7 significant differentially expressed genes in response to aphid feeding could most 

likely be due to the taxonomic differences as genotypes belonging to different species 

were used in the study and may have nothing to do with the resistance against aphids. 

Moreover, another factor for getting a low number of significant genes may be due to 

the use of Arabidopsis array used in this study, where we may be losing on Brassica 

specific genes which is one drawback of using an interspecies array. 

The results from EPG based classifications (section 4.4.2) showed some major changes 

in gene expression patterns of gene probes which may be linked to the location of 
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resistance factors at surface, pathway or phloem. This study clearly indicated that 

different set of gene probes in response to aphid feeding were induced or repressed in 

all three comparisons based on EPG assessment. The significant gene probes  like 

NPC6 and PDCB3 were found expressing in Non-penetration based assessment and can 

be linked directly to surface resistance  whereas PP2-A10 – At1g10155; At3g56240; 

At5g09650 were found significant in their differential gene expression in phloem based 

classification. The Gene Ontology (GO) enrichment analysis showed that the gene 

probes having significant transcriptional changes mainly belong to GO terms response 

to biotic stress, response to insect, defence response, signalling, transport activity, cell 

wall, transcription factors, protein kinases and hormone induced pathways. In addition 

to these, a large set of gene probes encoding hypothetical proteins with unassigned 

functions were found.  The proteins of unidentified functions have been identified in 

other similar studies as well (Kuśnierczyk et al. 2008; Broekgaarden et al. 2007). The 

up-regulation of these hypothetical proteins in response to aphid feeding indicates 

towards their possible role in defence mechanisms and need further investigation. Also 

due to lack of available annotation, a large set of significant gene probes could not be 

analysed which may be playing important roles in defence against insects 

Comparative transcriptional profiling is reported to be successfully used to profile 

contrasting genotypes in the aphid-plant system previously also (Walia et al. 2005; 

Voelckel & Baldwin 2004; Moran & Thompson 2001; Moran et al. 2002; Thompson & 

Goggin 2006). The variation in gene expression between induced and non-induced 

plants were found in this study. This is also reported in other studies where plant 

response to sap feeding insects is investigated  (De Vos et al. 2005; Broekgaarden et al. 

2008; Pelgrom et al. 2014). The insect resistance in B.villosa due to the presence of 
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trichomes is studied using transcriptional response (Nayidu et al. 2015). The reports 

about involvement of genes enriched under GO categories like cell wall modifications, 

response to stress, response to jasmonic acid and ethylene are always linked to play role 

in resistance against herbivores (Broekgaarden, Snoeren, et al. 2011; Delp et al. 2009; 

Appel et al. 2012; Mewis et al. 2006; Reymond 2000).The gene probe AT3G24190, 

AT1g01141and AT5G1218 belong to SNF1/AMPK/SnRK1/CPK protein kinases 

family, which typically respond to biotic  stress in plants (Schwachtje & Baldwin 2008; 

Crozet et al. 2014; Polge et al. 2008). These were found to be down-regulated in our 

study. Appel et al. (2014) reported down-regulation of SnRk1, (member of protein 

kinases family) in Arabidopsis in response to aphid feeding. The result from 

transcriptional analysis of Brassica genotypes in this study provides strong evidence that 

aphid faces resistance at different levels in response to aphid feeding. The genes like 

NPC6 ,PDCB3 PP2-A10, IIL1, At3g56240; At5g09650, are strong candidates to be 

tested for their specific role against cabbage aphid resistance and  testing the hypothesis 

using more advanced “omics” technology that they are source of surface level resistance 

and for phloem based resistance in plants against aphid feeding 

7.5 Impact of domestication: Variation in gene expression patterns in crop wild 

relative (CWR) and landrace (LR) genotypes 

This study (Chapter 5) explored the differences in the gene expression between resistant 

CWR and resistant LR of Brassica. Both CWR and LR are regarded as important 

resources for crop improvement and may possess resistance against insect feeding. 

These results showed that gene expression is highly regulated and aphid feeding 

induced 216 gene probes in contrast to only 75 non-induced plants. The significantly 

differentially expressed genes in categories like response to stress, response to stimulus, 
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signalling, developmental processes can be good indicators of aphid resistance or 

tolerance in the CWR as compared to LR and may prove useful in the development of 

aphid resistant Brassica varieties in future. Several photosynthesis- and/or development 

related genes were repressed upon aphid feeding (Table 5.2 and TableS5.6) which 

indicated towards the likelihood that plants have reallocated resources for defence at the 

expense of growth and/or photosynthesis as reported earlier (Bilgin et al. 2010; Wu & 

Baldwin 2010; Herms & Mattson 1992). The number of stress related genes induced in 

CWR in response to aphid feeding was more than in the absence of aphid feeding. The 

gene probes like PTR3, NAC083, TIFY7, RAP210 and EDR6 found up-regulated in 

CWR plants are strong candidates for resistance against cabbage aphid. The further 

investigation of these candidates is highly recommended in order to confirm their role 

and further use in the breeding new more resistant varieties. In the first instance, an 

immediate way forward will be to do RT-PCR to confirm their function followed by 

mapping these genes against known QTL’s. In addition, doing the knock-in/knock-out 

studies using these candidates in model plant Arabidopsis can help in confirming the 

role of these candidate genes.   

The phenotyping of all available accessions in plant genetic resources to test for aphid 

resistance is a nearly impossible task. It will demand a huge investment in terms of 

time, man-power and other resources. To overcome this problem plant researchers are 

working towards the development of new high-throughput techniques using “omics” 

tools to screen germplasm for their resistance status. It was attempted in this study 

(chapter 6) for the first time, to use gene expression data generated from microarray 

experiment (chapter 4) to develop a class prediction model based on already defined 

genotype classifications (resistant or susceptible) to predict genotypes of unknown 
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status. This approach is successfully used in disease prediction in humans especially in 

case of cancer (Bucca et al. 2004; Reis-Filho & Pusztai 2011; Cooper-Knock et al. 

2012). Trevino et al. (2011) successfully demonstrated the use of gene expression data 

and statistical modelling in prediction of prostate cancer and use of this approach as a 

diagnostic tool. The results from this study showed that this approach can be used in 

plant studies also. Currently, this approach is in its infant stage and requires a lot of 

further validations before it can be successfully used as a prediction model. 

Nevertheless, the results from this study are promising.   

7.6 Limitations and future perspective 

Although efforts were made to design a perfect study, due to constraints in available 

resources and time scale the scope of this research project was limited. There were a 

few limitations noticed during the course of study. Generally, field trials are conducted 

2 or 3 times before drawing any conclusions (as they are not easily reproducible) to 

account for environmental variations and other climatic changes. In this study, field 

assessment (chapter 2) was conducted only once (in 2011) due to unavailability of field 

space and available funds. This may be considered as a limitation by some, but the main 

aim of conducting the field trial to narrow down the number of accessions for feeding 

behaviour (chapter 3) and gene expression studies (Chapter 4 & 5) was achieved. There 

were some contradictions noticed in the results from field assessment (chapter 2) and 

feeding behaviour assessment (chapter 3) about the level of resistance in some 

accessions for example K6926 which was found susceptible in the field but highly 

resistant in feeding assessment which may be due to initial resistance offered by plant, 

but then eventually plant became susceptible to aphid feeding (Karban & Baldwin 1997; 

Prado & Tjallingii 1997) and accession 57071 which was found resistant in field 
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(chapter 2) but had sustained phloem feeding (table 3.2) in feeding behaviour 

assessment (chapter 3). In explanation to this, it is hypothesised that cabbage aphid 

induced a delayed resistance response to feeding in this particular accession. This type 

of response is also noticed in other aphid-plants studies also (Will & van Bel 2006; 

Aidemark et al. 2009; Will et al. 2007; Knoblauch 1998).  It is worth noting that the 

lack of agreement between field assessment and EPG experiments may be because of 

the large difference in the time windows involved between in two experiments. It is not 

uncommon to notice disagreement between studies.   

The gene expression study was conducted using Arabidopsis chips to test Brassica 

crops. Although use of model plant arrays to study non model plants has been 

successfully used previously (Broekgaarden et al. 2007; Broekgaarden et al. 2008; Lee 

et al. 2004), it may also lead to loss of species specific information. The presence of low 

numbers of significant differentially expressing genes in some comparisons in (chapter 

4) in this study may be result of this cross-species array use, where we may have lost 

the Brassica specific genes. In addition the candidate gene selection from microarray 

data is based on mRNA abundance but do not account for post translational 

modifications. So the further proteomic and/or metabolomic analysis of these candidate 

genes can be very useful to confirm the stress response role of these genes.  The use of 

qRT-PCR in validation of gene expression data is the most accepted method. 

Microarray data only suggest the candidate genes which are helpful in creating 

hypothesis around the putative function of that gene. The function of these candidates 

should be confirmed by using knockouts, T-DNA insertion lines, tilling mutants and 

using transgenic approaches. The use of sequence based techniques like RNA-seq can 

be used to get more precise estimation of gene expression. 
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As this study was part of a bigger PGR secure project, the results from this study i.e. 

feeding behaviour assessment and candidate genes, along with the results from RNA-

seq analysis of B.oleracea and its relatives conducted by another partner, resulted in 

development of publicly available, the 90k Affymetrix Axiom array containing 40,000 

SNPs selected from a set of broccoli varieties, 21,000 polymorphic SNPs from a set of 

heading cabbages, 4200 already validated B. oleracea SNPs and 5000 SNPs that are 

polymorphic between B.oleracea and the wild relative B.incana, as well as 5000 that are 

polymorphic between B.oleracea and B.montana. The array also contains 5000 SNPs 

that are polymorphic within B.fruticulosa. This array will be very useful in a number of 

applications including QTL mapping in B. oleracea and CWR, association mapping in 

B.oleracea, as well as relationship analysis among species, subspecies, varieties and 

landraces. 

To conclude, the recent advances in ‘omics’ technology and development of 

bioinformatics tools is providing more opportunities and opening  avenue of system 

biology to a better understating of underlying biological and molecular processes 

involved in insect resistance in plants. Identification of genes networks playing role in 

resistance mechanisms by sensing the stress, activating the response to it, will be very 

helpful in developing an effective breeding programme. The findings from this study 

will contribute to ongoing and future research in investigating cabbage aphid resistance 

in Brassica for a broad spectrum and durable insect resistant cultivars. The development 

of crop plants which can cope with biotic and abiotic stresses will significantly 

contribute in achieving global food security. 
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Appendix I: List of accessions used in the field experiment to explore the level of resistance in the brassica germplasm 

 

S.no Seed 

nr 

cwr/ 

lr 
INSTCODE ACCENUMB GENUS SPECIES SUBTAXA SUBTAUTHOR CROPNAME ORIGCTY 

1 1 cwr DEU146 BRA 2850 Brassica balearica         

2 2 cwr DEU146 K 7557 Brassica balearica         

3 3 cwr DEU146 BRA 2848 Brassica bourgeaui       ESP 

4 4 cwr DEU146 K 9825 Brassica bourgeaui       ESP 

5 5 cwr DEU146 K 6501 Brassica cretica         

6 6 cwr GRC005 639 Brassica cretica aegaea     GRC 

7 7 cwr GRC005 1964 Brassica cretica aegaea     GRC 

8 8 cwr DEU146 K 10120 Brassica cretica       TUR 

9 9 cwr DEU146 K 6631 Brassica cretica       GRC 

10 10 cwr GBR004 3252 Brassica cretica         

11 11 cwr GRC005 657 Brassica cretica       GRC 

12 12 cwr JPN059 Cr-5 Brassica cretica         

13 13 cwr JPN059 Cr-6 Brassica cretica       TUR 

14 14 cwr JPN059 Cr-7 Brassica cretica       TUR 

15 15 cwr JPN059 Cr-8 Brassica cretica       TUR 

16 16 cwr JPN059 Cr-9 Brassica cretica       TUR 

17 17 cwr DEU146 BRA 1810 Brassica fruticulosa fruticulosa     ESP 

18 18 cwr JPN059 Fr-401 Brassica fruticulosa mauritanica (Coss.) Maire   DZA 

19 19 cwr JPN059 Fr-301 Brassica fruticulosa radicata     DZA 

20 20 cwr JPN059 Fr-503 Brassica fruticulosa       MAR 

21 21 cwr GBR006 HRIGRU 

12483 

Brassica hilarionis     st hilarion 

cabbage 

CYP 

22 22 cwr DEU146 BRA 1166 Brassica incana         

23 23 cwr DEU146 BRA 1262 Brassica incana         
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24 24 cwr DEU146 BRA 2856 Brassica incana       ITA 

25 25 cwr DEU146 BRA 2918 Brassica incana       ITA 

26 26 cwr DEU146 K 10373 Brassica incana       UKR 

27 27 cwr DEU146 K 9238 Brassica incana         

28 28 cwr GBR006 HRIGRU 

6691 

Brassica incana     wild species ITA 

29 29 cwr JPN059 Inc-1 Brassica incana         

30 30 cwr DEU146 K 5997 Brassica insularis         

31 31 cwr JPN059 Ins-1 Brassica insularis       TUN 

32 32 cwr DEU146 K 7635 Brassica macrocarpa         

33 33 cwr JPN059 O-502   Brassica macrocarpa       ITA 

34 34 cwr JPN059 O-503 Brassica macrocarpa       ITA 

35 35 cwr DEU146 K 8824 Brassica maurorum         

36 36 cwr DEU146 BRA 2920 Brassica maurorum         

37 37 cwr DEU146 K 9404 Brassica montana       ITA 

38 38 cwr DEU146 BRA 1644 Brassica montana         

39 39 cwr DEU146 K 6675 Brassica montana       ITA 

40 40 cwr DEU146 K 7220 Brassica montana         

41 41 cwr DEU146 K 7223 Brassica montana         

42 42 cwr DEU146 K 8380 Brassica montana         

43 189 cwr DEU146 BRA 2411 Brassica oleracea botrytis italica   broccoli DEU 

44 199 cwr DEU146 BRA 2401 Brassica oleracea capitata   cabbage TUR 

45 200 cwr DEU146 BRA 2476 Brassica oleracea capitata   cabbage TUR 

46 275 cwr DEU146 K 8793 Brassica oleracea costata     ESP 

47 313 cwr DEU146 K 9249 Brassica oleracea       ESP 

48 320 cwr GBR004 22785 Brassica oleracea       GBR 

49 321 cwr GBR004 57071 Brassica oleracea       GBR 

50 322 cwr GBR004 70373 Brassica oleracea       GBR 
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51 323 cwr GBR004 70410 Brassica oleracea       GBR 

52 324 cwr GBR004 70421 Brassica oleracea       GBR 

53 325 cwr GBR004 70432 Brassica oleracea       GBR 

54 326 cwr GBR004 70465 Brassica oleracea       GBR 

55 327 cwr GBR004 70476 Brassica oleracea       GBR 

56 328 cwr GBR004 70498 Brassica oleracea       GBR 

57 329 cwr GBR004 70502 Brassica oleracea       GBR 

58 330 cwr GBR004 70513 Brassica oleracea       GBR 

59 331 cwr GBR004 75194 Brassica oleracea       GBR 

60 332 cwr GBR004 75208 Brassica oleracea       GBR 

61 333 cwr GBR004 75219 Brassica oleracea       GBR 

62 334 cwr GBR004 75220 Brassica oleracea       GBR 

63 335 cwr GBR004 75231 Brassica oleracea       GBR 

64 336 cwr GBR004 75242 Brassica oleracea       GBR 

65 337 cwr GBR004 92483 Brassica oleracea       GBR 

66 342 cwr GBR006 HRIGRU 

2075 

Brassica oleracea     wild species GBR 

67 343 cwr GBR006 HRIGRU 

7234 

Brassica oleracea     white flowered 

kale 

ZIM 

68 344 cwr GBR006 HRIGRU 

7338 

Brassica oleracea     wild cabbage NZL 

69 345 cwr GBR006 HRIGRU 

7343 

Brassica oleracea     wild species   

70 346 cwr GBR006 HRIGRU 

7795 

Brassica oleracea     wild cabbage GBR 

71 347 cwr GBR006 HRIGRU 

7796 

Brassica oleracea     wild cabbage GBR 

72 348 cwr GBR006 HRIGRU 

7797 

Brassica oleracea     wild cabbage GBR 

73 349 cwr GBR006 HRIGRU Brassica oleracea     wild cabbage GBR 
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8694 

74 350 cwr GBR006 HRIGRU 

8705 

Brassica oleracea     wild cabbage GBR 

75 351 cwr GBR006 HRIGRU 

8707 

Brassica oleracea     wild cabbage GBR 

76 352 cwr GBR006 HRIGRU 

8714 

Brassica oleracea     wild cabbage GBR 

77 353 cwr GBR006 HRIGRU 

8724 

Brassica oleracea     wild cabbage GBR 

78 354 cwr GBR006 HRIGRU 

9156 

Brassica oleracea     wild species GBR 

79 363 cwr DEU146 Bra 2922 Brassica bivoniana       ITA 

80 386 cwr SWE002 NGB16241 Brassica oleracea     cabbage DEU 

81 387 cwr SWE002 NGB21657 Brassica oleracea       DNK 

82 391 cwr JPN059 Ro-101 Brassica robertiana       ESP 

83 392 cwr DEU146 K 7690 Brassica rupestris       ITA 

84 393 cwr DEU146 K 6877 Brassica rupestris       ITA 

85 394 cwr DEU146 BRA 2851 Brassica rupestris       ITA 

86 395 cwr DEU146 K 8823 Brassica spinescens         

87 396 cwr DEU146 K 9402 Brassica villosa   drepanensis   ITA 

88 397 cwr DEU146 BRA 2923 Brassica villosa   drepanensis   ITA 

89 398 cwr DEU146 K 6926 Brassica villosa drepanensis     ITA 

90 399 cwr GBR006 HRIGRU 

6848 

Brassica villosa     wild species ITA 

91 400 cwr JPN059 Vill-1 Brassica villosa       ITA 

92 401 cwr DEU146 K 10259 Brassica         ITA 

93 402 cwr DEU146 K 10260 Brassica         ITA 

94 404 cwr DEU146 K 8025 Brassica         GEO 

95 466 cwr NLD037 CGN06903 Brassica oleracea       FRA 
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96 467 cwr NLD037 CGN18947 Brassica oleracea       DEU 

97 468 cwr NLD037 CGN07149 Brassica           

98 469 cwr NLD037 CGN14116 Brassica villosa         

99 43 lr BIH039 GB00039 Brassica oleracea acephala   kale   

100 47 lr ESP009 BRS-0158 Brassica oleracea acephala   kale ESP 

101 53 lr ESP009 BRS-0166 Brassica oleracea acephala   kale ESP 

102 54 lr ESP009 BRS-0103 Brassica oleracea acephala   kale ESP 

103 56 lr ESP009 BRS0410 Brassica oleracea acephala   kale   

104 59 lr ESP009 BRS-0064 Brassica oleracea acephala   kale ESP 

105 61 lr ESP009 BRS-0161 Brassica oleracea acephala   kale ESP 

106 63 lr ESP009 BRS-0160 Brassica oleracea acephala   kale ESP 

107 66 lr ESP009 BRS-0201 Brassica oleracea acephala   kale ESP 

108 67 lr ESP009 BRS0555 Brassica oleracea acephala   kale   

109 69 lr ESP009 BRS-0292 Brassica oleracea acephala   kale ESP 

110 74 lr FRA010 10 Brassica oleracea acephala   fodder kale FRA 

111 75 lr FRA010 364 Brassica oleracea acephala   fodder kale FRA 

112 77 lr FRA010 17 Brassica oleracea acephala   fodder kale FRA 

113 82 lr FRA010 320 Brassica oleracea acephala   fodder kale FRA 

114 87 lr GBR006 HRIGRU 

12261 

Brassica oleracea acephala   portuguese 

kale 

PRT 

115 96 lr GBR006 HRIGRU 

10000 

Brassica oleracea acephala   kale ESP 

116 97 lr GBR006 HRIGRU 

9994 

Brassica oleracea acephala   kale ESP 

117 100 lr GBR006 HRIGRU 

4502 

Brassica oleracea acephala   fodder kale IRL 

118 101 lr GBR006 HRIGRU 

12092 

Brassica oleracea acephala   portuguese 

kale 

PRT 

119 105 lr GBR006 HRIGRU Brassica oleracea acephala   portuguese PRT 
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9591 kale 

120 111 lr HRV044 A Brassica oleracea acephala   kale HRV 

121 113 lr NLD037 CGN14111 Brassica oleracea acephala   kale ESP 

122 115 lr NLD037 CGN18466 Brassica oleracea acephala   kale TUR 

123 116 lr NLD037 CGN18468 Brassica oleracea acephala   kale TUR 

124 119 lr POL003 PL173503 Brassica oleracea acephala   kale POL 

125 121 lr DEU271 CR 2361 Brassica oleracea acephala  viridis     EGY 

126 122 lr DEU271 CR 2364 Brassica oleracea acephala  viridis     GEO 

127 125 lr DEU271 CR 2384 Brassica oleracea acephala  viridis     GEO 

128 127 lr DEU271 CR 2378 Brassica oleracea acephala  viridis     ITA 

129 128 lr DEU271 CR 2370 Brassica oleracea acephala  viridis     GEO 

130 131 lr DEU271 CR 2390 Brassica oleracea acephala  viridis     YUG 

131 132 lr DEU271 CR 2590 Brassica oleracea acephala  viridis     ESP 

132 133 lr DEU271 CR 2363 Brassica oleracea acephala  viridis     GEO 

133 134 lr DEU271 CR 2388 Brassica oleracea acephala  viridis     GEO 

134 135 lr DEU271 CR 2371 Brassica oleracea acephala  viridis     YUG 

135 136 lr DEU146 K 4699 Brassica oleracea acephala medullosa   marrow stem 

kale 

POL 

136 137 lr DEU271 CR 2181 Brassica oleracea acephala medullosa   marrow stem 

kale 

POL 

137 139 lr DEU271 CR 1288 Brassica oleracea acephala medullosa   marrow stem 

kale 

FRA 

138 144 lr DEU146 BRA 1493 Brassica oleracea acephala sabellica   borecole   

139 145 lr DEU146 BRA 1840 Brassica oleracea acephala sabellica   borecole DEU 

140 146 lr NLD037 CGN15120 Brassica oleracea acephala sabellica   borecole NLD 

141 150 lr NLD037 CGN14037 Brassica oleracea alboglabra   chinese kale THA 

142 152 lr GBR006 HRIGRU 

4495 

Brassica oleracea botrytis   winter 

cauliflower 

IRL 

143 156 lr ESP026 A-B-14 Brassica oleracea botrytis botrytis   cauliflower ESP 
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144 162 lr FRA010 638 Brassica oleracea botrytis botrytis   cauliflower FRA 

145 166 lr FRA010 634 Brassica oleracea botrytis botrytis   cauliflower FRA 

146 167 lr FRA010 633 Brassica oleracea botrytis botrytis   cauliflower FRA 

147 169 lr NLD037 CGN11982 Brassica oleracea botrytis botrytis   cauliflower IDN 

148 174 lr NLD037 CGN14026 Brassica oleracea botrytis botrytis   cauliflower ITA 

149 179 lr DEU146 BRA 114 Brassica oleracea botrytis italica   broccoli ITA 

150 188 lr DEU146 K 6599 Brassica oleracea botrytis italica   broccoli ITA 

151 190 lr DEU146 BRA 1559 Brassica oleracea capitata   cabbage GEO 

152 198 lr DEU146 BRA 379 Brassica oleracea capitata   cabbage CHE 

153 201 lr ESP009 BRS-0083 Brassica oleracea capitata   cabbage ESP 

154 203 lr ESP009 BRS-0152 Brassica oleracea capitata   cabbage ESP 

155 208 lr ESP026 CL-B-5 Brassica oleracea capitata   cabbage ESP 

156 211 lr FRA010 383 Brassica oleracea capitata   cabbage FRA 

157 212 lr FRA010 396 Brassica oleracea capitata   cabbage FRA 

158 217 lr GBR006 HRIGRU 

7824 

Brassica oleracea capitata   jersey cabbage GBR 

159 218 lr GBR006 HRIGRU 

12478 

Brassica oleracea capitata   cabbage TUR 

160 219 lr GBR006 HRIGRU 

12477 

Brassica oleracea capitata   cabbage TUR 

161 220 lr GBR006 HRIGRU 

11615 

Brassica oleracea capitata   savoy cabbage PRT 

162 223 lr GBR006 HRIGRU 

7826 

Brassica oleracea capitata   pickling 

cabbage 

YUG 

163 226 lr GBR006 HRIGRU 

9978 

Brassica oleracea capitata   fodder 

cabbage 

ESP 

164 227 lr GBR006 HRIGRU 

12429 

Brassica oleracea capitata   drumhead x 

pickling 

GBR 

165 229 lr GBR006 HRIGRU 

6568 

Brassica oleracea capitata   white cabbage EGY 
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166 231 lr POL003 PL174885 Brassica oleracea capitata   cabbage UKR 

167 232 lr POL003 PL174868 Brassica oleracea capitata   cabbage POL 

168 234 lr YUG002 NS-K-1 Brassica oleracea capitata   white cabbage SRB 

169 235 lr ESP026 AN-B-14 Brassica oleracea capitata alba   white cabbage ESP 

170 237 lr ESP026 V-B-46 Brassica oleracea capitata alba   white cabbage ESP 

171 245 lr NLD037 CGN07007 Brassica oleracea capitata alba   white cabbage HUN 

172 250 lr NLD037 CGN11060 Brassica oleracea capitata alba   white cabbage EGY 

173 254 lr NLD037 CGN14114 Brassica oleracea capitata alba   white cabbage RUS 

174 257 lr NLD037 CGN23712 Brassica oleracea capitata alba   white cabbage KGZ 

175 259 lr DEU146 BRA 1919 Brassica oleracea capitata rubra   red cabbage ITA 

176 260 lr DEU146 BRA 915 Brassica oleracea capitata rubra   red cabbage GBR 

177 261 lr NLD037 CGN18436 Brassica oleracea capitata rubra   red cabbage DEU 

178 262 lr NLD037 CGN18438 Brassica oleracea capitata rubra   red cabbage ROU 

179 265 lr DEU146 BRA 2722 Brassica oleracea capitata sabauda   savoy cabbage ITA 

180 266 lr DEU146 K 9015 Brassica oleracea capitata sabauda   savoy cabbage ITA 

181 269 lr NLD037 CGN07121 Brassica oleracea capitata sabauda   savoy cabbage NLD 

182 272 lr NLD037 CGN18456 Brassica oleracea capitata sabauda   savoy cabbage SUN 

183 276 lr DEU271 CR 2558 Brassica oleracea costata     ESP 

184 282 lr DEU146 BRA 1465 Brassica oleracea gongylodes   kohl rabi GEO 

185 285 lr DEU146 BRA 1460 Brassica oleracea gongylodes   kohl rabi GEO 

186 289 lr DEU146 BRA 1452 Brassica oleracea gongylodes   kohl rabi DEU 

187 293 lr PRT001 06033-BPGV Brassica oleracea oleracea     PRT 

188 297 lr GBR006 HRIGRU 

9490 

Brassica oleracea tronchuda   tronchuda 

cabbage 

PRT 

189 307 lr GBR006 HRIGRU 

11604 

Brassica oleracea tronchuda   tronchuda 

cabbage 

PRT 

190 308 lr GBR006 HRIGRU 

11612 

Brassica oleracea tronchuda   tronchuda 

cabbage 

PRT 
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191 310 lr DEU146 K 9403 Brassica oleracea       FRA 

192 311 lr DEU146 K 8788 Brassica oleracea       ESP 

193 316 lr ESP026 A-B-15 Brassica oleracea       ESP 

194 317 lr ESP026 AN-B-11 Brassica oleracea       ESP 

195 340 lr GBR006 HRIGRU 

4520 

Brassica oleracea     cabbage x 

cauli 

GRC 

196 355 lr GBR165 SASASC1726 Brassica oleracea     shetland 

cabbage 

GBR 

197 356 lr GBR165 SASASC1348 Brassica oleracea     shetland 

cabbage 

GBR 

198 357 lr GBR165 SASASC1365 Brassica oleracea     shetland 

cabbage 

GBR 

199 361 lr GRC005 2680 Brassica oleracea       GRC 

200 362 lr GRC005 2687 Brassica oleracea       GRC 

201 364 lr GRC005 2697 Brassica oleracea       GRC 

202 368 lr POL003 PL174872 Brassica oleracea       SVK 

203 371 lr PRT001 03631-BPGV Brassica oleracea     portuguese 

kale 

PRT 

204 373 lr PRT001 03653-BPGV Brassica oleracea     portuguese 

kale 

PRT 

205 379 lr PRT001 07435-BPGV Brassica oleracea     portuguese 

kale 

PRT 

206 382 lr PRT001 02756-BPGV Brassica oleracea     portuguese 

kale 

PRT 

207 384 lr PRT001 04031-BPGV Brassica oleracea     portuguese 

kale 

PRT 

208 408 lr RUS001 502201734 Brassica oleracea   capitata alba white cabbage RUS 

209 409 lr RUS001 502201826 Brassica oleracea   capitata alba white cabbage RUS 

210 410 lr RUS001 502201894 Brassica oleracea   capitata alba white cabbage RUS 

211 413 lr RUS001 502202043 Brassica oleracea   capitata alba white cabbage RUS 
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212 415 lr RUS001 502202047 Brassica oleracea   capitata alba white cabbage RUS 

213 416 lr RUS001 502202048 Brassica oleracea   capitata alba white cabbage RUS 

214 417 lr RUS001 502202053 Brassica oleracea   capitata alba white cabbage RUS 

215 418 lr RUS001 502202086 Brassica oleracea   capitata alba white cabbage RUS 

216 421 lr RUS001 502202113 Brassica oleracea   capitata alba white cabbage RUS 

217 422 lr RUS001 502202120 Brassica oleracea   capitata alba white cabbage RUS 

218 427 lr RUS001 502202357 Brassica oleracea   capitata alba white cabbage RUS 

219 429 lr RUS001 502202452 Brassica oleracea   capitata alba white cabbage RUS 

220 430 lr RUS001 502202504 Brassica oleracea   capitata alba white cabbage RUS 

221 434 lr ROM007 ROM007-

13708 

Brassica oleracea capitata   cabbage ROU 

222 436 lr ROM007 ROM007-

14938 

Brassica oleracea       ROU 

223 438 lr ROM007 ROM007-

4656 

Brassica oleracea     Wild cabbage ROU 

224 449 cwr Plantbreeding Bol2009-0076 Brassica fruticulosa Cirillo subsp 

fruticulosa 

  wild   

225 450 cwr Plantbreeding Bol2009-0077 Brassica fruticulosa Cirillo subsp 

fruticulosa 

  wild   

226 451 cwr Plantbreeding Bol2009-0078 Brassica fruticulosa Cirillo subsp 

fruticulosa 

  wild Italy 

227 452 cwr Plantbreeding Bol2009-0079 Brassica fruticulosa Cirillo subsp 

fruticulosa 

  wild Spain 

228 453 cwr Plantbreeding Bol2009-0080 Brassica fruticulosa Cirillo subsp 

fruticulosa 

  wild   

229 454 cwr Plantbreeding Bol2009-0081 Brassica fruticulosa Cirillo subsp 

fruticulosa 

  wild   

230 455 cwr Plantbreeding Bol2009-0082 Brassica fruticulosa Cirillo subsp 

fruticulosa 

  wild   

231 456 cwr Plantbreeding Bol2009-0083 Brassica fruticulosa Cirillo subsp 

fruticulosa 

  wild   
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232 457 cwr Plantbreeding Bol2009-0084 Brassica fruticulosa Cirillo subsp 

fruticulosa 

  wild   

233 458 cwr Plantbreeding Bol2009-0085 Brassica fruticulosa Cirillo subsp 

fruticulosa 

  wild   

234 459 cwr Plantbreeding Bol2009-0086 Brassica fruticulosa Cirillo subsp 

fruticulosa 

  wild   

235 460 cwr Plantbreeding Bol2009-0087 Brassica fruticulosa Cirillo subsp 

fruticulosa 

  wild   

236 461 cwr Plantbreeding Bol2009-0088 Brassica villosa     wild B villosa 

CGN14116 

237 462 cwr Plantbreeding Bol2009-0089 Brassica incana     wild B incana 

CGN18470 

238 463 cwr Plantbreeding Bol2009-0090 Brassica incana     wild B incana 

CGN18471 

239 464 cwr Plantbreeding Bol2009-0091 Brassica montana     wild B montana 

CGN18472 

240 465 cwr Plantbreeding BOL2010-

0437 

Brassica     IPK BRA1810     



                                                                                                                                                  
Appendices 

 

 

271 

 

 

Appendix II   MIAME/ Plant data   

MIAME/PLANT frame work  Experiment information 

Array Design Description   

Manufacturer Affymetrix 

Chip type Arabidopsis Gene 1.0 ST array  

No. of Probes 28,501 gene level probesets  

Genome build TAIR 10 

Experimental design   

1. Plant Experiment Design   

A) Pooling of samples   

Number of plants in each pool 4 leaf discs 

When pooled 12 weeks age 

Genotype pooled individual 

Planted on the same day  Yes 

B) Experimental design   

Number of blocks  4 

Randomised between blocks  Yes 

2. Plant sample used, extract preparation and labelling 

1) Biosource properties   

Germplasm Accession  15 

Starting material  Seed 

Development stage 12 weeks old (vegetative stage) 

Organism part  Leaf tissue 

Growth substrate  Multipurpose compost (HUMAX) 

2) Biomaterial manipulations   

Growth environment  Control growth room 

Light duration  16L: 8D 

3) Environmental conditions   

Light intensity  250-280 μmmol.m-²s-¹ 

Light source  Fluorescent lamps 

Humidity  60 ± 10% 

Watering conditions  Manually 

Temperature  24 ± 3
0
C

 

Pots  11 cm diameter
 

Growth/Control agents  None 

Harvesting conditions  Growth room temperature 

Treatment type  Aphid induction 

Degree of stress 15 adult aphid, per clip cage  

Stress duration 24 hrs 

Isolation techniques Leaf tissue under clip cage removed by scalpel and flash frozen 

in liquid nitrogen 

Extraction Method    

Quantity extracted 100mg 

Extraction source Fresh sample 

Extraction method  Invitrogen TRIzol and Qiagen  RNeasy Plant Mini kit (see 

chapter 4) 

Labelling  As per manufacturer's instructions (see chapter 4) 

  


