Testing for a Semilattice Term

Ralph Freese J.B. Nation Matt Valeriote

University of Hawaii

McMaster University

May 2018

Question

Given a finite algebra **A**, how hard is it to determine if **A** has a semilattice term?

Question

Given a finite algebra **A**, how hard is it to determine if **A** has a semilattice term?

Question

Given a finite algebra **A**, how hard is it to determine if **A** has a semilattice term?

Remarks

For the sake of completeness, a semilattice term is a binary term x ∧ y that satisfies:

$$x \wedge x \approx x, \ x \wedge y \approx y \wedge x, \ x \wedge (y \wedge z) \approx (x \wedge y) \wedge z.$$

Question

Given a finite algebra **A**, how hard is it to determine if **A** has a semilattice term?

Remarks

For the sake of completeness, a semilattice term is a binary term x ∧ y that satisfies:

 $x \wedge x \approx x, \ x \wedge y \approx y \wedge x, \ x \wedge (y \wedge z) \approx (x \wedge y) \wedge z.$

• There is a straightforward, but inefficient algorithm to settle this question: Compute the free algebra in V(A) generated by $\{x, y\}$ and look for a binary term that satisfies these equations.

Question

Given a finite algebra **A**, how hard is it to determine if **A** has a semilattice term?

Remarks

For the sake of completeness, a semilattice term is a binary term x ∧ y that satisfies:

 $x \wedge x \approx x, \ x \wedge y \approx y \wedge x, \ x \wedge (y \wedge z) \approx (x \wedge y) \wedge z.$

• There is a straightforward, but inefficient algorithm to settle this question: Compute the free algebra in V(A) generated by $\{x, y\}$ and look for a binary term that satisfies these equations.

Question

Given a finite algebra **A**, how hard is it to determine if **A** has a semilattice term?

Remarks

For the sake of completeness, a semilattice term is a binary term x ∧ y that satisfies:

 $x \wedge x \approx x, \ x \wedge y \approx y \wedge x, \ x \wedge (y \wedge z) \approx (x \wedge y) \wedge z.$

There is a straightforward, but inefficient algorithm to settle this question: Compute the free algebra in V(A) generated by {x, y} and look for a binary term that satisfies these equations. As a function of |A|, the run time of this algorithm grows exponentially.

Is there a better way?

Theorem (Freese-Val.)

Let **A** be a finite algebra. The problem of deciding if a finite algebra **A** has a semilattice term is EXP-TIME complete.

Is there a better way?

Theorem (Freese-Val.)

Let **A** be a finite algebra. The problem of deciding if a finite algebra **A** has a semilattice term is EXP-TIME complete.

Let **A** be a finite algebra. The problem of deciding if a finite algebra **A** has a semilattice term is EXP-TIME complete.

Remarks

• The hardness is obtained by reducing the EXP-TIME complete Clone Membership Problem (GEN-CLO') to the given problem.

Let **A** be a finite algebra. The problem of deciding if a finite algebra **A** has a semilattice term is EXP-TIME complete.

- The hardness is obtained by reducing the EXP-TIME complete Clone Membership Problem (GEN-CLO') to the given problem.
- An instance of GEN-CLO' consists of a finite set A, a finite set of finitary operations F on A, and a unary function h : A → A. The problem is to decide if h is in the clone generated by F.

Let **A** be a finite algebra. The problem of deciding if a finite algebra **A** has a semilattice term is EXP-TIME complete.

- The hardness is obtained by reducing the EXP-TIME complete Clone Membership Problem (GEN-CLO') to the given problem.
- An instance of GEN-CLO' consists of a finite set A, a finite set of finitary operations F on A, and a unary function h : A → A. The problem is to decide if h is in the clone generated by F.
- We provide a way to construct a finite algebra **A**₁ from an instance I such that:

Let **A** be a finite algebra. The problem of deciding if a finite algebra **A** has a semilattice term is EXP-TIME complete.

- The hardness is obtained by reducing the EXP-TIME complete Clone Membership Problem (GEN-CLO') to the given problem.
- An instance of GEN-CLO' consists of a finite set A, a finite set of finitary operations F on A, and a unary function h : A → A. The problem is to decide if h is in the clone generated by F.
- We provide a way to construct a finite algebra **A**₁ from an instance I such that:
 - If I is a yes instance, then A_I has a semilattice term, and

Let **A** be a finite algebra. The problem of deciding if a finite algebra **A** has a semilattice term is EXP-TIME complete.

- The hardness is obtained by reducing the EXP-TIME complete Clone Membership Problem (GEN-CLO') to the given problem.
- An instance of GEN-CLO' consists of a finite set A, a finite set of finitary operations F on A, and a unary function h : A → A. The problem is to decide if h is in the clone generated by F.
- We provide a way to construct a finite algebra **A**₁ from an instance I such that:
 - If I is a **yes** instance, then A_I has a semilattice term, and
 - If I is a **no** instance, then **A**_I has no non-trivial idempotent terms.

Remarks

• Our reduction of clone membership to semilattice testing can be applied to show that testing for many familiar Maltsev conditions will be hard in general.

- Our reduction of clone membership to semilattice testing can be applied to show that testing for many familiar Maltsev conditions will be hard in general.
- In a number of special instances, things become much easier when restricted to idempotent algebras.

Remarks

- Our reduction of clone membership to semilattice testing can be applied to show that testing for many familiar Maltsev conditions will be hard in general.
- In a number of special instances, things become much easier when restricted to idempotent algebras.

Definition

Remarks

- Our reduction of clone membership to semilattice testing can be applied to show that testing for many familiar Maltsev conditions will be hard in general.
- In a number of special instances, things become much easier when restricted to idempotent algebras.

Definition

An operation f(x₁, x₂,..., x_n) on a set A is idempotent if for all a ∈ A, f(a, a,..., a) = a.

Remarks

- Our reduction of clone membership to semilattice testing can be applied to show that testing for many familiar Maltsev conditions will be hard in general.
- In a number of special instances, things become much easier when restricted to idempotent algebras.

Definition

- An operation f(x₁, x₂,..., x_n) on a set A is idempotent if for all a ∈ A, f(a, a,..., a) = a.
- An algebra is idempotent if all of its basic operations are idempotent.

Theorem (Freese-Val.)

For **A** a finite idempotent algebra, testing if **A** has a majority term or a Maltsev term is in **P**.

Theorem (Freese-Val.)

For **A** a finite idempotent algebra, testing if **A** has a majority term or a Maltsev term is in **P**.

Remark

This theorem can be proved by showing that **A** will have the desired term if and only if for each "small" subset of A, **A** has a term that acts as a majority (or Maltsev) operation on the subset.

Theorem (Freese-Val.)

For **A** a finite idempotent algebra, testing if **A** has a majority term or a Maltsev term is in **P**.

Remark

This theorem can be proved by showing that A will have the desired term if and only if for each "small" subset of A, A has a term that acts as a majority (or Maltsev) operation on the subset.

Conjecture (Kazda-Val.)

For Σ a idempotent, linear, strong Maltsev condition, there is a polynomial-time test to determine if a finite idempotent algebra generates a variety that satisfies Σ .

5 / 15

Remarks

• To test the bounds of the conjecture, we considered a relatively simple and well known idempotent, non-linear strong Maltsev condition, that of having a semilattice term.

- To test the bounds of the conjecture, we considered a relatively simple and well known idempotent, non-linear strong Maltsev condition, that of having a semilattice term.
- We first determined that there can be no polynomial-time algorithm that is based on having enough "local" semilattice terms.

Remarks

- To test the bounds of the conjecture, we considered a relatively simple and well known idempotent, non-linear strong Maltsev condition, that of having a semilattice term.
- We first determined that there can be no polynomial-time algorithm that is based on having enough "local" semilattice terms.

Theorem

For each n > 2 there is a finite idempotent (conservative!) algebra \mathbf{A}_n of size n such that

Remarks

- To test the bounds of the conjecture, we considered a relatively simple and well known idempotent, non-linear strong Maltsev condition, that of having a semilattice term.
- We first determined that there can be no polynomial-time algorithm that is based on having enough "local" semilattice terms.

Theorem

For each n > 2 there is a finite idempotent (conservative!) algebra \mathbf{A}_n of size n such that

• for every proper subset S of A_n there is a binary term operation of A_n whose restriction to S satisfies the semilattice identities, and

Remarks

- To test the bounds of the conjecture, we considered a relatively simple and well known idempotent, non-linear strong Maltsev condition, that of having a semilattice term.
- We first determined that there can be no polynomial-time algorithm that is based on having enough "local" semilattice terms.

Theorem

For each n > 2 there is a finite idempotent (conservative!) algebra \mathbf{A}_n of size n such that

- for every proper subset S of A_n there is a binary term operation of **A**_n whose restriction to S satisfies the semilattice identities, and
- **A**_n does not have a semilattice term.

local semilattice terms

With $A_n = \{0, 1, 2, ..., n-1\}$, and $i \in A_n$, let $b_i(x, y)$ equal the minimum of x and y, with respect to the ordering:

$$i < i + 1 < \cdots < n - 1 < 0 < 1 \cdots < i - 1,$$

except that $b_i(i, i-1) = i - 1$.

local semilattice terms

With $A_n = \{0, 1, 2, ..., n-1\}$, and $i \in A_n$, let $b_i(x, y)$ equal the minimum of x and y, with respect to the ordering:

$$i < i + 1 < \cdots < n - 1 < 0 < 1 \cdots < i - 1,$$

except that $b_i(i, i-1) = i - 1$.

local semilattice terms

With $A_n = \{0, 1, 2, ..., n-1\}$, and $i \in A_n$, let $b_i(x, y)$ equal the minimum of x and y, with respect to the ordering:

$$i < i + 1 < \cdots < n - 1 < 0 < 1 \cdots < i - 1$$

except that $b_i(i, i - 1) = i - 1$. **A**_n is the algebra on A_n with basic operations b_i , for i < n.

local semilattice terms

With $A_n = \{0, 1, 2, ..., n-1\}$, and $i \in A_n$, let $b_i(x, y)$ equal the minimum of x and y, with respect to the ordering:

$$i < i + 1 < \cdots < n - 1 < 0 < 1 \cdots < i - 1$$

except that $b_i(i, i-1) = i - 1$. **A**_n is the algebra on A_n with basic operations b_i , for i < n.

Remarks

• For each i, b_i is a semilattice operation on $A_n \setminus \{i\}$, but

local semilattice terms

With $A_n = \{0, 1, 2, ..., n-1\}$, and $i \in A_n$, let $b_i(x, y)$ equal the minimum of x and y, with respect to the ordering:

$$i < i + 1 < \dots < n - 1 < 0 < 1 \dots < i - 1,$$

except that $b_i(i, i-1) = i - 1$. **A**_n is the algebra on A_n with basic operations b_i , for i < n.

- For each i, b_i is a semilattice operation on $A_n \setminus \{i\}$, but
- it is not a semilattice operation on A_n.

local semilattice terms

With $A_n = \{0, 1, 2, ..., n-1\}$, and $i \in A_n$, let $b_i(x, y)$ equal the minimum of x and y, with respect to the ordering:

$$i < i + 1 < \dots < n - 1 < 0 < 1 \dots < i - 1,$$

except that $b_i(i, i - 1) = i - 1$. **A**_n is the algebra on A_n with basic operations b_i , for i < n.

- For each *i*, *b_i* is a semilattice operation on $A_n \setminus \{i\}$, but
- it is not a semilattice operation on A_n.
- It can be shown that **A**_n has no semilattice term in spite of this.

• Call a semilattice flat if every pair of distinct non-zero elements are incomparable.

- Call a semilattice flat if every pair of distinct non-zero elements are incomparable.
- So, the semilattice operation is just: $x \land y = 0$ if $x \neq y$, and is x otherwise.

- Call a semilattice flat if every pair of distinct non-zero elements are incomparable.
- So, the semilattice operation is just: $x \land y = 0$ if $x \neq y$, and is x otherwise.
- In the hardness proof for testing for a semilattice term, we in fact showed that testing for a flat semilattice term is EXP-TIME complete.

- Call a semilattice flat if every pair of distinct non-zero elements are incomparable.
- So, the semilattice operation is just: $x \land y = 0$ if $x \neq y$, and is x otherwise.
- In the hardness proof for testing for a semilattice term, we in fact showed that testing for a flat semilattice term is EXP-TIME complete.
- What about in the idempotent case?

Theorem

There is a polynomial-time test to determine if a given finite idempotent algebra **A** has a flat semilattice term operation. In fact, **A** has a flat semilattice term operation if and only if for all a, b, $c \neq d \in A$, there is a term operation t(x, y) such that

$$t(a,0) = b(0,b) = t(c,d) = 0.$$

Theorem

There is a polynomial-time test to determine if a given finite idempotent algebra **A** has a flat semilattice term operation. In fact, **A** has a flat semilattice term operation if and only if for all a, b, $c \neq d \in A$, there is a term operation t(x, y) such that

$$t(a,0) = b(0,b) = t(c,d) = 0.$$

Remark

So, to test if a finite idempotent algebra has a flat semilattice term operation, we need to show that for all a, b, $c \neq d \in A$, the tuple (0,0,0) is in the subalgebra of \mathbf{A}^3 generated by $\{(a,0,c),(0,b,d)\}$.

Remarks

• It turns out that testing for slightly deeper semilattices is hard, even in the idempotent case.

- It turns out that testing for slightly deeper semilattices is hard, even in the idempotent case.
- As an intermediate step, we consider bounded semilattices.

Remarks

• It turns out that testing for slightly deeper semilattices is hard, even in the idempotent case.

• As an intermediate step, we consider bounded semilattices.

Definition

A bounded semilattice is a (meet) semilattice $\langle A, \wedge \rangle$ with a distinguished element 1 such that $1 \wedge a = a$ for all $a \in A$.

Remarks

• It turns out that testing for slightly deeper semilattices is hard, even in the idempotent case.

• As an intermediate step, we consider bounded semilattices.

Definition

A bounded semilattice is a (meet) semilattice $\langle A, \wedge \rangle$ with a distinguished element 1 such that $1 \wedge a = a$ for all $a \in A$.

Theorem

The problem of deciding if a finite idempotent algebra \mathbf{A} , along with a distinguished element 1, has a bounded semilattice term operation with maximum element 1 is EXP-TIME complete.

 To establish hardness, we present a procedure for building a finite idempotent algebra A_I from an instance I = (A, F, h(x)) of GEN-CLO'.

- To establish hardness, we present a procedure for building a finite idempotent algebra A_I from an instance I = (A, F, h(x)) of GEN-CLO'.
- The universe of **A**₁, A₁, consists of A and two new elements 0 and 1 that will serve as the smallest and largest elements of the semilattice that will arise if *I* is a **yes** instance.

- To establish hardness, we present a procedure for building a finite idempotent algebra A_I from an instance I = (A, F, h(x)) of GEN-CLO'.
- The universe of **A**₁, A₁, consists of A and two new elements 0 and 1 that will serve as the smallest and largest elements of the semilattice that will arise if *I* is a **yes** instance.
- Each function g : A^k → A can be expanded to an idempotent operation g' on A_l in a natural way as follows:

$$g'(x_1,\ldots,x_k,y) = \begin{cases} g(x_1,\ldots,x_k) & \text{if } \{x_1,\ldots,x_k\} \subseteq A \text{ and } y = 1; \\ y & \text{if } x_i = y \text{ for all } 1 \le i \le k; \\ 0 & \text{otherwise.} \end{cases}$$

A_I is the algebra with universe A ∪ {0,1} and with basic operations f' for each f ∈ F, plus,

- A₁ is the algebra with universe A ∪ {0,1} and with basic operations f' for each f ∈ F, plus,
- a ternary operation $t_h(x, y, z)$ from which a meet operation with respect to the ordering pictured below, if h(x) is in the clone generated by \mathcal{F} .

Lemma

Lemma

• If I is a **yes** instance of GEN-CLO' then **A**₁ has a bounded semilattice term operation.

Lemma

- If I is a **yes** instance of GEN-CLO' then **A**₁ has a bounded semilattice term operation.
- If I is a **no** instance, then A_I does not have any term operation b(x, y) such that b(1, x) = b(x, 1) = x for all $x \in A_I$.

Lemma

- If I is a **yes** instance of GEN-CLO' then **A**₁ has a bounded semilattice term operation.
- If I is a **no** instance, then A_I does not have any term operation b(x, y) such that b(1, x) = b(x, 1) = x for all $x \in A_I$.

Corollary

The following two decision problems are EXP-TIME complete: for **A** a finite idempotent algebra, and $1 \in A$,

Lemma

- If I is a **yes** instance of GEN-CLO' then **A**₁ has a bounded semilattice term operation.
- If I is a **no** instance, then A_I does not have any term operation b(x, y) such that b(1, x) = b(x, 1) = x for all $x \in A_I$.

Corollary

The following two decision problems are EXP-TIME complete: for **A** a finite idempotent algebra, and $1 \in A$,

• Does **A** have a bounded semilattice term operation with largest element 1?

Lemma

- If I is a **yes** instance of GEN-CLO' then **A**₁ has a bounded semilattice term operation.
- If I is a **no** instance, then A_I does not have any term operation b(x, y) such that b(1, x) = b(x, 1) = x for all $x \in A_I$.

Corollary

The following two decision problems are EXP-TIME complete: for **A** a finite idempotent algebra, and $1 \in A$,

- Does **A** have a bounded semilattice term operation with largest element 1?
- Does A have a binary term operation b(x, y) such that b(1, x) = b(x, 1) = x for all $x \in A$?

• To prove the main result, that testing for a semilattice term operation is hard for idempotent algebras, we reduce the bounded semilattice problem to this one.

- To prove the main result, that testing for a semilattice term operation is hard for idempotent algebras, we reduce the bounded semilattice problem to this one.
- Given an instance A and 1 ∈ A of the bounded semilattice problem, we construct a new idempotent algebra A[◊] from A by adding a new element ◊ and extending the operations of A so that

- To prove the main result, that testing for a semilattice term operation is hard for idempotent algebras, we reduce the bounded semilattice problem to this one.
- Given an instance A and 1 ∈ A of the bounded semilattice problem, we construct a new idempotent algebra A[◊] from A by adding a new element ◊ and extending the operations of A so that
 - when restricted to $\{\diamond,1\}$, \diamond is an absorbing element,

- To prove the main result, that testing for a semilattice term operation is hard for idempotent algebras, we reduce the bounded semilattice problem to this one.
- Given an instance A and 1 ∈ A of the bounded semilattice problem, we construct a new idempotent algebra A[◊] from A by adding a new element ◊ and extending the operations of A so that
 - when restricted to $\{\diamond,1\}$, \diamond is an absorbing element,
 - when restricted to $\{a,\diamond\}$ for any $a \in A$, a is an absorbing element, and

- To prove the main result, that testing for a semilattice term operation is hard for idempotent algebras, we reduce the bounded semilattice problem to this one.
- Given an instance A and 1 ∈ A of the bounded semilattice problem, we construct a new idempotent algebra A[◊] from A by adding a new element ◊ and extending the operations of A so that
 - when restricted to $\{\diamond,1\}$, \diamond is an absorbing element,
 - when restricted to $\{a,\diamond\}$ for any $a \in A$, a is an absorbing element, and
 - applying an operation to any other combination of elements that involves ◊ produces the value 1.

- To prove the main result, that testing for a semilattice term operation is hard for idempotent algebras, we reduce the bounded semilattice problem to this one.
- Given an instance A and 1 ∈ A of the bounded semilattice problem, we construct a new idempotent algebra A[◊] from A by adding a new element ◊ and extending the operations of A so that
 - when restricted to $\{\diamond,1\},\,\diamond$ is an absorbing element,
 - when restricted to $\{a,\diamond\}$ for any $a \in A$, a is an absorbing element, and
 - applying an operation to any other combination of elements that involves ◊ produces the value 1.
- By construction, if **A** has a bounded semilattice operation with largest element 1, then so will \mathbf{A}^{\diamond} , and

- To prove the main result, that testing for a semilattice term operation is hard for idempotent algebras, we reduce the bounded semilattice problem to this one.
- Given an instance A and 1 ∈ A of the bounded semilattice problem, we construct a new idempotent algebra A[◊] from A by adding a new element ◊ and extending the operations of A so that
 - when restricted to $\{\diamond,1\},\,\diamond$ is an absorbing element,
 - when restricted to $\{a,\diamond\}$ for any $a \in A$, a is an absorbing element, and
 - applying an operation to any other combination of elements that involves ◊ produces the value 1.
- By construction, if **A** has a bounded semilattice operation with largest element 1, then so will \mathbf{A}^{\diamond} , and
- if not, then \mathbf{A}^{\diamond} will not have any semilattice operation.

- To prove the main result, that testing for a semilattice term operation is hard for idempotent algebras, we reduce the bounded semilattice problem to this one.
- Given an instance A and 1 ∈ A of the bounded semilattice problem, we construct a new idempotent algebra A[◊] from A by adding a new element ◊ and extending the operations of A so that
 - when restricted to $\{\diamond,1\},\,\diamond$ is an absorbing element,
 - when restricted to $\{a,\diamond\}$ for any $a \in A$, a is an absorbing element, and
 - applying an operation to any other combination of elements that involves ◊ produces the value 1.
- By construction, if **A** has a bounded semilattice operation with largest element 1, then so will \mathbf{A}^{\diamond} , and
- if not, then \mathbf{A}^{\diamond} will not have any semilattice operation.

Theorem

The problem of deciding if a finite idempotent algebra has a semilattice term is EXP-TIME complete.

R. Freese, J.B. Nation, M. Valeriote

Question

Is it the case that testing for any non-linear, strong, idempotent Maltsev condition is EXP-TIME hard, even for idempotent algebras?

Question

Is it the case that testing for any non-linear, strong, idempotent Maltsev condition is EXP-TIME hard, even for idempotent algebras?

2-semilattices

A natural example to consider is that of having a 2-semilattice term, i.e., a binary term $x \wedge y$ that satisfies the equations

$$x \wedge x \approx x$$
, $x \wedge y \approx y \wedge x$, $x \wedge (x \wedge y) \approx x \wedge y$.