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Given a finite algebra A, how hard is it to determine if A has a semilattice
term?
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@ There is a straightforward, but inefficient algorithm to settle this
question: Compute the free algebra in V((A) generated by {x,y} and
look for a binary term that satisfies these equations.
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Testing for semilattice terms

Given a finite algebra A, how hard is it to determine if A has a semilattice

v

term?

@ For the sake of completeness, a semilattice term is a binary term

X A y that satisfies:

XAxRX, XANyxRyAx, xN(yANz)=(xAy)Az.

@ There is a straightforward, but inefficient algorithm to settle this
question: Compute the free algebra in V((A) generated by {x,y} and
look for a binary term that satisfies these equations.

As a function of |A|, the run time of this algorithm grows

exponentially.
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Is there a better way?

Theorem (Freese-Val.)

Let A be a finite algebra. The problem of deciding if a finite algebra A has
a semilattice term is EXP-TIME complete.
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Let A be a finite algebra. The problem of deciding if a finite algebra A has
a semilattice term is EXP-TIME complete.
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@ The hardness is obtained by reducing the EXP-TIME complete Clone
Membership Problem (GEN-CLQO’) to the given problem.
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Theorem (Freese-Val.)

Let A be a finite algebra. The problem of deciding if a finite algebra A has
a semilattice term is EXP-TIME complete.

Remarks
@ The hardness is obtained by reducing the EXP-TIME complete Clone
Membership Problem (GEN-CLQO’) to the given problem.
@ An instance of GEN-CLO’ consists of a finite set A, a finite set of
finitary operations F on A, and a unary function h: A — A. The
problem is to decide if h is in the clone generated by F.
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finitary operations F on A, and a unary function h: A — A. The
problem is to decide if h is in the clone generated by F.
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such that:
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Is there a better way?

Theorem (Freese-Val.)

Let A be a finite algebra. The problem of deciding if a finite algebra A has
a semilattice term is EXP-TIME complete.

Remarks
@ The hardness is obtained by reducing the EXP-TIME complete Clone
Membership Problem (GEN-CLQO’) to the given problem.

@ An instance of GEN-CLO’ consists of a finite set A, a finite set of
finitary operations F on A, and a unary function h: A — A. The
problem is to decide if h is in the clone generated by F.

@ We provide a way to construct a finite algebra A, from an instance |
such that:

e Ifl is a yes instance, then A has a semilattice term, and
e If | is a no instance, then A, has no non-trivial idempotent terms.
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ldempotent Algebras

Remarks
@ Our reduction of clone membership to semilattice testing can be
applied to show that testing for many familiar Maltsev conditions will
be hard in general.
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@ In a number of special instances, things become much easier when
restricted to idempotent algebras.
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o Our reduction of clone membership to semilattice testing can be
applied to show that testing for many familiar Maltsev conditions will
be hard in general.

@ In a number of special instances, things become much easier when
restricted to idempotent algebras.

Definition

| A\

@ An operation f(x1,x2,...,X,) on a set A is idempotent if for all
acA f(aa,...,a)=a
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ldempotent Algebras

Remarks
o Our reduction of clone membership to semilattice testing can be
applied to show that testing for many familiar Maltsev conditions will
be hard in general.

@ In a number of special instances, things become much easier when
restricted to idempotent algebras.

Definition

| A\

@ An operation f(x1,x2,...,X,) on a set A is idempotent if for all
acA f(aa,...,a)=a

@ An algebra is idempotent if all of its basic operations are idempotent.
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ldempotent Algebras

Theorem (Freese-Val.)

For A a finite idempotent algebra, testing if A has a majority term or a
Maltsev term is in P.
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Theorem (Freese-Val.)

For A a finite idempotent algebra, testing if A has a majority term or a
Maltsev term is in P.

This theorem can be proved by showing that A will have the desired term
if and only if for each “small” subset of A, A has a term that acts as a
majority (or Maltsev) operation on the subset.
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ldempotent Algebras

Theorem (Freese-Val.)

For A a finite idempotent algebra, testing if A has a majority term or a
Maltsev term is in P.

This theorem can be proved by showing that A will have the desired term
if and only if for each “small” subset of A, A has a term that acts as a
majority (or Maltsev) operation on the subset.

Conjecture (Kazda-Val.)

For ¥ a idempotent, linear, strong Maltsev condition, there is a
polynomial-time test to determine if a finite idempotent algebra generates
a variety that satisfies X..
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Is everything easier for idempotent algebras?
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Is everything easier for idempotent algebras?

@ To test the bounds of the conjecture, we considered a relatively
simple and well known idempotent, non-linear strong Maltsev
condition, that of having a semilattice term.
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that is based on having enough “local” semilattice terms.
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simple and well known idempotent, non-linear strong Maltsev
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o We first determined that there can be no polynomial-time algorithm
that is based on having enough “local” semilattice terms.

Theorem

For each n > 2 there is a finite idempotent (conservative!) algebra A, of
size n such that
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Is everything easier for idempotent algebras?

@ To test the bounds of the conjecture, we considered a relatively
simple and well known idempotent, non-linear strong Maltsev
condition, that of having a semilattice term.

o We first determined that there can be no polynomial-time algorithm
that is based on having enough “local” semilattice terms.

V.

For each n > 2 there is a finite idempotent (conservative!) algebra A, of
size n such that

o for every proper subset S of A, there is a binary term operation of A,
whose restriction to S satisfies the semilattice identities, and

@ A, does not have a semilattice term.

A
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Description of A,

local semilattice terms
With A, ={0,1,2,...,n—1}, and i € A,, let bi(x, y) equal the minimum
of x and y, with respect to the ordering:

i<i+l<---<n—-1<0<1---<i—-1,

except that b;(i,i—1)=i—1.
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Description of A,

local semilattice terms

With A, = {0,1,2,...,n—1}, and i € A, let bj(x,y) equal the minimum
of x and y, with respect to the ordering:

i<i+l<---<n—-1<0<1---<i—1,

except that b;(i,i—1)=i—1.
A, is the algebra on A, with basic operations b;, for i < n.

Remarks

| A\

@ For each i, b; is a semilattice operation on A, \ {i}, but

@ it is not a semilattice operation on A,.

@ It can be shown that A, has no semilattice term in spite of this.

.
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Flat semilattices

o Call a semilattice flat if every pair of distinct non-zero elements are
incomparable.
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otherwise.
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o Call a semilattice flat if every pair of distinct non-zero elements are
incomparable.

@ So, the semilattice operation is just: x Ay =0 if x # y, and is x
otherwise.

@ In the hardness proof for testing for a semilattice term, we in fact
showed that testing for a flat semilattice term is EXP-TIME complete.
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Flat semilattices

o Call a semilattice flat if every pair of distinct non-zero elements are
incomparable.

@ So, the semilattice operation is just: x Ay =0 if x # y, and is x
otherwise.

@ In the hardness proof for testing for a semilattice term, we in fact
showed that testing for a flat semilattice term is EXP-TIME complete.

@ What about in the idempotent case?
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Flat semilattices

There is a polynomial-time test to determine if a given finite idempotent
algebra A has a flat semilattice term operation. In fact, A has a flat
semilattice term operation if and only if

for all a, b, ¢ # d € A, there is a term operation t(x,y) such that

t(a,0) = b(0, b) = t(c, d) = 0.
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Flat semilattices

Theorem

There is a polynomial-time test to determine if a given finite idempotent
algebra A has a flat semilattice term operation. In fact, A has a flat
semilattice term operation if and only if

for all a, b, ¢ # d € A, there is a term operation t(x,y) such that

t(a,0) = b(0, b) = t(c, d) = 0.

RENEILS

| A

So, to test if a finite idempotent algebra has a flat semilattice term
operation, we need to show that for all a, b, ¢ # d € A, the tuple (0,0,0)
is in the subalgebra of A3 generated by {(a,0,c), (0, b,d)}.

A\
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Bounded semilattices

@ It turns out that testing for slightly deeper semilattices is hard, even
in the idempotent case.
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Bounded semilattices

Remarks

@ It turns out that testing for slightly deeper semilattices is hard, even
in the idempotent case.

@ As an intermediate step, we consider bounded semilattices.

| A

Definition
A bounded semilattice is a (meet) semilattice (A, A) with a distinguished
element 1 such that 1 A a = a for all a € A.

.
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Bounded semilattices

Remarks

@ It turns out that testing for slightly deeper semilattices is hard, even
in the idempotent case.

@ As an intermediate step, we consider bounded semilattices.

Definition
A bounded semilattice is a (meet) semilattice (A, A) with a distinguished
element 1 such that 1 A a = a for all a € A.

| A

.

The problem of deciding if a finite idempotent algebra A, along with a
distinguished element 1, has a bounded semilattice term operation with
maximum element 1 is EXP-TIME complete.
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Bounded semilattices

@ To establish hardness, we present a procedure for building a finite
idempotent algebra A; from an instance | = (A, F, h(x)) of
GEN-CLO'.
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Bounded semilattices

@ To establish hardness, we present a procedure for building a finite
idempotent algebra A; from an instance | = (A, F, h(x)) of
GEN-CLO'.

@ The universe of A, A;, consists of A and two new elements 0 and 1
that will serve as the smallest and largest elements of the semilattice
that will arise if | is a yes instance.
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Bounded semilattices

@ To establish hardness, we present a procedure for building a finite
idempotent algebra A; from an instance | = (A, F, h(x)) of
GEN-CLO'.

@ The universe of A, A;, consists of A and two new elements 0 and 1
that will serve as the smallest and largest elements of the semilattice
that will arise if | is a yes instance.

e Each function g : Ak — A can be expanded to an idempotent
operation g’ on A, in a natural way as follows:

glxt,...,xk) if{x,....xx} CAandy =1,
g, X6 y) =y if xi =y forall 1 <i<k;
0 otherwise.
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Bounded semilattices

@ A, is the algebra with universe AU {0, 1} and with basic operations f’
for each f € F, plus,

[y

A ((--))

o
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Bounded semilattices
@ A, is the algebra with universe AU {0, 1} and with basic operations f’

for each f € F, plus,

@ a ternary operation tx(x,y, z) from which a meet operation with
respect to the ordering pictured below, if h(x) is in the clone

generated by F.
1
| <>

0
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Bounded semilattices
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Bounded semilattices

e If | is a yes instance of GEN-CLO then A, has a bounded semilattice
term operation.
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Bounded semilattices

e If | is a yes instance of GEN-CLO then A, has a bounded semilattice
term operation.

e If | is a no instance, then A; does not have any term operation
b(x, y) such that b(1,x) = b(x,1) = x for all x € A,.
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Bounded semilattices

Lemma

e If | is a yes instance of GEN-CLO then A, has a bounded semilattice
term operation.

e If | is a no instance, then A; does not have any term operation
b(x, y) such that b(1,x) = b(x,1) = x for all x € A,.

| \

Corollary

The following two decision problems are EXP-TIME complete: for A a
finite idempotent algebra, and 1 € A,
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Corollary

| \

The following two decision problems are EXP-TIME complete: for A a
finite idempotent algebra, and 1 € A,

@ Does A have a bounded semilattice term operation with largest
element 17
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Bounded semilattices

e If | is a yes instance of GEN-CLO then A, has a bounded semilattice
term operation.

e If | is a no instance, then A; does not have any term operation
b(x, y) such that b(1,x) = b(x,1) = x for all x € A,.

4

Corollary

The following two decision problems are EXP-TIME complete: for A a
finite idempotent algebra, and 1 € A,

@ Does A have a bounded semilattice term operation with largest
element 17

@ Does A have a binary term operation b(x,y) such that
b(1,x) = b(x,1) = x for all x € A?
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The general case
@ To prove the main result, that testing for a semilattice term operation

is hard for idempotent algebras, we reduce the bounded semilattice
problem to this one.
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The general case

@ To prove the main result, that testing for a semilattice term operation
is hard for idempotent algebras, we reduce the bounded semilattice
problem to this one.

@ Given an instance A and 1 € A of the bounded semilattice problem,
we construct a new idempotent algebra A® from A by adding a new
element ¢ and extending the operations of A so that
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The general case

@ To prove the main result, that testing for a semilattice term operation
is hard for idempotent algebras, we reduce the bounded semilattice
problem to this one.

@ Given an instance A and 1 € A of the bounded semilattice problem,
we construct a new idempotent algebra A® from A by adding a new
element ¢ and extending the operations of A so that

e when restricted to {¢, 1}, ¢ is an absorbing element,

o when restricted to {a, ¢} for any a € A, a is an absorbing element, and

e applying an operation to any other combination of elements that
involves ¢ produces the value 1.
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problem to this one.

@ Given an instance A and 1 € A of the bounded semilattice problem,
we construct a new idempotent algebra A® from A by adding a new
element ¢ and extending the operations of A so that

e when restricted to {¢, 1}, ¢ is an absorbing element,

o when restricted to {a, ¢} for any a € A, a is an absorbing element, and

e applying an operation to any other combination of elements that
involves ¢ produces the value 1.

@ By construction, if A has a bounded semilattice operation with largest
element 1, then so will A®, and
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The general case

@ To prove the main result, that testing for a semilattice term operation
is hard for idempotent algebras, we reduce the bounded semilattice
problem to this one.

@ Given an instance A and 1 € A of the bounded semilattice problem,
we construct a new idempotent algebra A® from A by adding a new
element ¢ and extending the operations of A so that

e when restricted to {¢, 1}, ¢ is an absorbing element,

o when restricted to {a, ¢} for any a € A, a is an absorbing element, and

e applying an operation to any other combination of elements that
involves ¢ produces the value 1.

@ By construction, if A has a bounded semilattice operation with largest
element 1, then so will A®, and

@ if not, then A® will not have any semilattice operation.
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The general case

@ To prove the main result, that testing for a semilattice term operation
is hard for idempotent algebras, we reduce the bounded semilattice
problem to this one.

@ Given an instance A and 1 € A of the bounded semilattice problem,
we construct a new idempotent algebra A® from A by adding a new
element ¢ and extending the operations of A so that

e when restricted to {¢, 1}, ¢ is an absorbing element,

o when restricted to {a, ¢} for any a € A, a is an absorbing element, and

e applying an operation to any other combination of elements that
involves ¢ produces the value 1.

@ By construction, if A has a bounded semilattice operation with largest
element 1, then so will A®, and

@ if not, then A® will not have any semilattice operation.

The problem of deciding if a finite idempotent algebra has a semilattice
term is EXP-TIME complete.
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Beyond semilattice terms

Is it the case that testing for any non-linear, strong, idempotent Maltsev
condition is EXP-TIME hard, even for idempotent algebras?
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Beyond semilattice terms

Is it the case that testing for any non-linear, strong, idempotent Maltsev
condition is EXP-TIME hard, even for idempotent algebras?

2-semilattices

A natural example to consider is that of having a 2-semilattice term, i.e., a
binary term x A y that satisfies the equations

XAXRX, XAYyRYyAx, xN(xAy)=xAy.
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