Europe PMC
Do data resources managed by EMBL-EBI and our collaborators make a difference to your work?
If so, please take 10 minutes to fill in our survey, and help us make the case for why sustaining open data resources is critical for life sciences research.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Agaric fungi are an important group of macromycetes with diverse ecological and functional properties, yet are poorly studied in many parts of the world. Here, we comprehensively analyzed 558 agaric species in Iran to reveal their resources of edible and poisonous species as well as their ecological guilds and luminescence potential. We also made a thorough survey of the antioxidant activity of the species. Phylogenetic relationships were reconstructed based on nuclear ribosomal LSU and ITS sequences. Our results reveal that agarics of Iran comprise about 189 edible, 128 poisonous, 254 soil saprotrophic, 172 ectomycorrhizal, 146 wood-inhabiting, 18 leaf/litter-inhabiting, 9 parasitic, and 19 luminescent species. Twenty percent of the Iranian agaric species possess antioxidant activity, phylogenetically distributed in four orders and 21 agaric families. About 5% of the antioxidant species can be considered strong antioxidants, many of which are also edible and could be utilized to develop functional foods. This is the first study combining phylogeny and antioxidant potential of agaric mushrooms in a large scale, and the obtained results would guide the selection of agaric taxa to be examined in the future for taxonomic revisions, biotechnological applications, and applied phylogeny studies.

Free full text 


Logo of frontmicrobioLink to Publisher's site
Front Microbiol. 2022; 13: 1015440.
Published online 2022 Oct 28. https://doi.org/10.3389/fmicb.2022.1015440
PMCID: PMC9650231
PMID: 36386711

Resources of Iranian agarics (Basidiomycota) with an outlook on their antioxidant potential

Masoomeh Ghobad-Nejhad,corresponding author 1 , * , Vladimír Antonín, 2 , Mohaddeseh Moghaddam, 1 , and Ewald Langer 3 , * ,

Associated Data

Supplementary Materials
Data Availability Statement

Abstract

Agaric fungi are an important group of macromycetes with diverse ecological and functional properties, yet are poorly studied in many parts of the world. Here, we comprehensively analyzed 558 agaric species in Iran to reveal their resources of edible and poisonous species as well as their ecological guilds and luminescence potential. We also made a thorough survey of the antioxidant activity of the species. Phylogenetic relationships were reconstructed based on nuclear ribosomal LSU and ITS sequences. Our results reveal that agarics of Iran comprise about 189 edible, 128 poisonous, 254 soil saprotrophic, 172 ectomycorrhizal, 146 wood-inhabiting, 18 leaf/litter-inhabiting, 9 parasitic, and 19 luminescent species. Twenty percent of the Iranian agaric species possess antioxidant activity, phylogenetically distributed in four orders and 21 agaric families. About 5% of the antioxidant species can be considered strong antioxidants, many of which are also edible and could be utilized to develop functional foods. This is the first study combining phylogeny and antioxidant potential of agaric mushrooms in a large scale, and the obtained results would guide the selection of agaric taxa to be examined in the future for taxonomic revisions, biotechnological applications, and applied phylogeny studies.

Keywords: basidiomycetes, diversity, gilled mushrooms, ABTS assay, phylogeny

Introduction

Agarics are mushroom-forming fungi also called euagarics and their hymenium is formed on gills. They belong to the subdivision Agaricomycotina, class Agaricomycetes (Moncalvo et al., 2002; Bauer et al., 2006). They produce important natural substances used in agriculture (e.g., strobilurines), medicine (e.g., pleuromutilines), and biotechnology (e.g., polysaccharides; Pointing et al., 2001; Webster and Weber, 2007; Kück et al., 2014; Hyde et al., 2019; Sandargo et al., 2019). Agaricales is the largest fungal order of agaric mushrooms comprising ca. 13,000 known species (Kirk et al., 2008). Thorough investigations of the agarics phylogeny have recently been provided by He et al. (2019) and Varga et al. (2019). Some agarics are important model organisms for research in genetics and basidiome development such as Coprinopsis cinerea and Cyclocybe cylindrica (Herzog et al., 2019). Among agarics, there are some of the most poisonous mushrooms such as Amanita phalloides, Cortinarius Subgen. Orellani, and Inosperma erubescens, frequently mixed up with edible mushrooms during culinary collecting and thus causing severe fatalities. Nevertheless, there is a large number of edible agaric mushrooms highly prized for culinary purposes such as Agaricus campestris, Coprinus comatus, Cyclocybe cylindrica, Macrolepiota procera, and the worldwide cultivated white button mushroom Agaricus bisporus. Several edible agaric species are saprotrophs and possible to cultivate, but there are also many edible species such as Russula spp. and Lactarius spp. which belong to the ectomycorrhizal ecological guild and thus not cultivable in artificial synthetic media. A number of species such as Lentinula edodes and Flammulina velutipes have culminated as functional mushrooms for developing mushroom-based functional foods and other valued mycochemicals (Chang, 1996; Cateni et al., 2022; Rodríguez-Seoane et al., 2022).

Numerous agarics have also been recognized as sources of antioxidant compounds (e.g., Ferreira et al., 2009; Asatiani et al., 2010; Guo et al., 2012; Wang and Xu, 2014; Sánchez, 2017; Islam et al., 2019; Thu et al., 2020). Antioxidant properties, or the ability to defend against and scavenge/reduce excess free radicals in biological systems, is among the important properties of living organisms and crucial for their survival (Xiao et al., 2020). Mushrooms as one of the most diverse natural antioxidant resources, have received attention in recent decades and are advantageous compared to plants because of their high diversity, fast growth, and culture possibilities (Gargano et al., 2017; Buswell, 2018).

A preliminary checklist of Iranian mushrooms appeared by Ghobad-Nejhad et al. (2020) listing 556 agaric and 29 bolete species. However, the species remain largely unexplored in terms of various important properties. Information about the edible, poisonous, and mycorrhizal agarics in Iran is principally lacking and currently, the antioxidant properties of Iranian agarics have remained largely unexplored.

Due to the lack of knowledge about the diversity of edible, poisonous, and mycorrhizal agarics in Iran, as well as their antioxidant properties, our study aimed to: (i) investigate Iranian agarics and reveal their resources of edible and poisonous species, (ii) present their ecological guilds and bioluminescence potential, and to (iii) explore the antioxidant properties of Iranian agarics and combine it with phylogenetic reconstructions. We believe our results would benefit a wide range of researchers involved in the study of agaric mushrooms.

Materials and methods

Sampling and molecular study

Taxon sampling for the molecular study was primarily done based on the list by Ghobad-Nejhad et al. (2020), supplemented by additional data in the present study. Species current names and species authorities follow Index Fungorum1 and MycoBank.2 Microscopy and morphological studies followed Ghobad-Nejhad et al. (2020). Sequences of the 28S rRNA (nLSU) and the ITS region (covering ITS1, 5.8, and ITS2) were carefully selected from GenBank, with special attention to the quality-controlled sequences (Nilsson et al., 2012) as well as to the authentic sequences obtained from Iranian specimens. For DNA extraction, we sampled more than 20 specimens and 12 samples were successfully sequenced and used in this paper. Genomic DNA was extracted from dried basidiomata using the DNA Extraction Mini Kit (FAVORGEN, Taiwan). The primers used for the amplification cycles were ITS1F/ITS4B or ITS1F/ITS4 (White et al., 1990; Gardes and Bruns, 1993) for the ITS region and LR0R/LR7 or LR0R/LR5 (Hopple and Vilgalys, 1999) for partial nLSU region. All sequences used in the phylogenetic analyses are listed in Table 1.

Table 1

Resources of agarics of Iran and their edibility ([white smiling face], edible; [white smiling face], edible based on own observation in Iran; [white frowning face], poisonous; [white frowning face], poisonous based on own observation in Iran; [white smiling face]*, edible if well-cooked but poisonous if raw; X, inedible; ○, uncertain or unknown), ecological guild (♠, soil saprotroph; ☼, ectomycorrhizal; ▐, wood-inhabiting; ♣, leaf/litter-inhabiting; [white circle], parasitic), luminescence, and antioxidant potential (S, strong; M, moderate; W, weak; ND, not determined; full details provided in the text).

SpeciesEdibilityEcological guildLuminescentAntioxidant potentialGenBank accession no.
ITSnLSU
Agaricus arvensis Schaeff.[white smiling face]SMT535720MH872779
Agaricus bisporus (J.E. Lange) Imbach[white smiling face]SM ON952490 DQ071710
Agaricus bitorquis (Quél.) Sacc.[white smiling face]SMMT535709MT554302
Agaricus bresadolanus Bohus[white smiling face]MWDQ185569MK277477
Agaricus brunneolus (J.E. Lange) Pilát[white smiling face]NDKU975082KX083997
Agaricus campestris L.[white smiling face]SMNR_151745.1MH868030
Agaricus depauperatus (F.H. Møller) Pilát[white smiling face]NDDQ182530
Agaricus devoniensis P.D. Orton[white smiling face]NDEU363036AF059225
Agaricus gennadii (Chatin & Boud.) P.D. Orton[white smiling face]NDKT951318KR006606
Agaricus iodosmus Heinem.[white frowning face]SMT535702MT554295
Agaricus iranicus Mahdizadeh, Safaie, Goltapeh, L.A. Parra & CallacNDKY474556KY474559
Agaricus langei (F.H. Møller) F.H. Møller[white smiling face]NDJF797181
Agaricus litoralis (Wakef. & A. Pearson) Pilát[white smiling face]NDMT535711MT554304
Agaricus moelleri Wasser[white frowning face]NDKT824787
Agaricus nevoi WasserNDMH173866
Agaricus phaeolepidotus (F.H. Møller) F.H. Møller[white frowning face]NDMH862921MH874494
Agaricus pseudolutosus (G. Moreno, Esteve-Rav., Illana & Heykoop) G. Moreno, L.A. Parra, Esteve-Rav. & Heykoop[white smiling face]NDKT951329KT951453
Agaricus pseudopratensis (Bohus) Wasser[white frowning face]S ON952491 MT554325
Agaricus subrufescens Peck[white smiling face]MKT983412KT951461
Agaricus xanthodermus Genev.[white frowning face]NDKT824789KR006612
Agrocybe acericola (Peck) SingerNDMN860126MK277500
Agrocybe dura (Bolton) Singer[white smiling face]♠ ▐
(saprothrophic on soil, but on decaying woody remnants)
SMT535714MT554306
Agrocybe ochracea NautaX♠ ▐
(saprothrophic on soil, but on decaying woody remnants)
ND
Agrocybe paludosa (J.E. Lange) Kühner & Romagn. ex BonXND
Agrocybe pediades (Fr.) FayoXM ON952487, ON952488 AY293582
Agrocybe praecox (Pers.) Fayod[white smiling face]♠ ▐
(saprothrophic on soil, on decaying woody remnants)
WMT535701MT554294
Agrocybe pusiola (Fr.) R. HeimXNDDQ389732MK277505
Agrocybe tabacina (DC.) Konrad & Maubl.XND
Agrocybe vervacti (Fr.) SingerXNDMW425942MK277506
Alnicola escharioides (Fr.) Romagn.XNDMW243076
Amanita atkinsoniana CokerNDMZ668014MK277560
Amanita battarrae (Boud.) Bon[white smiling face]*NDMH508267MH486389
Amanita caesarea (Scop.) Pers.[white smiling face]MMZ005548AF024443
Amanita ceciliae (Berk. & Broome) Bas[white smiling face]*NDOK299150OK299170
Amanita crocea (Quél.) Singer[white smiling face]*MKJ638266
Amanita eliae Quél.[white frowning face]NDKF780872
Amanita excelsa (Fr.) Bertill.[white smiling face]NDMW258873MW258922
Amanita gemmata (Fr.) Bertill.[white frowning face]NDMK580689AF024457
Amanita lividopallescens (Secr. ex Boud.) Kühner & Romagn. agg.[white smiling face] [white frowning face]*NDMT535691MW013165
Amanita pantherina (DC.) Krombh.[white frowning face]MFR852274MH486743
Amanita phalloides (Fr.) Link[white frowning face]NDKX449212KX449230
Amanita rubescens Pers.[white smiling face]SFR852273MH486816
Amanita strobiliformis (Paulet ex Vittad.) Bertill.[white frowning face] XNDMH508614MH486895
Amanita umbrinolutea (Secr. ex Gillet) Bataille[white smiling face]*NDMH508641MH486937
Amanita vaginata (Bull.) Lam. s.l.[white smiling face]*MJF907756
Amanita verna (Bull.) Lam.[white frowning face]NDEU909448HQ539755
Ampulloclitocybe clavipes (Pers.) Redhead, Lutzoni, Moncalvo, and Vilgalys[white smiling face] [white frowning face]
(seems to be toxic after consumption with alcohol)
NDAY789080AY639881
Armillaria borealis Marxm. & Korhonen[white smiling face]*[white circle] Desjardin et al. (2008) NDKP960524FJ618728
Armillaria cepistipes Velen.[white smiling face]*[white circle] Mihail (2015) NDFJ903313KY418876
Armillaria gallica Marxm. & Romagn.[white smiling face]*[white circle] Kotlobay et al. (2018) NDMW418538AM269818
Armillaria mellea (Vahl) P. Kumm.[white smiling face]*[white circle] Kotlobay et al. (2018) SMAF163583AM269819
Arrhenia griseopallida (Desm.) WatlingXND
Asterophora lycoperdoides (Bull.) DitmarX[white circle]NDMZ159455MK277604
Atheniella flavoalba (Fr.) Redhead, Moncalvo, Vilgalys, Desjardin, and B.A. PerryXNDMH857185MH868723
Baeospora myosura (Fr.) SingerX
(on conifer cones)
NDMH856301MH867849
Battarrea stevenii (Libosch.) Fr.XNDAF215648
Bolbitius reticulatus (Pers.) RickenXNDJX968249JX968366
Bolbitius titubans (Bull.) Fr.X [white frowning face]NDKR425522KR425552
Calocybe carnea (Bull.) Donk[white smiling face]NDAF357028MK277666
Calocybe chrysenteron (Bull.) SingerXNDKP885639KP885628
Calocybe gambosa (Fr.) Donk[white smiling face]WMZ159691AM946414
Calocybe ionides (Bull.) Donk[white smiling face]NDJF907780MK277668
Calocybe persicolor (Fr.) SingerX
[white smiling face] [white frowning face]
(edible in the Czech Republic)
NDKP192564AF223176
Candolleomyces candolleanus (Fr.) D. Wächt. & A. MelzerSMT535718MT554309
Cantharellus alborufescens (Malençon) Papetti & S. Alberti [white smiling face] MMH463257MH463258
Cantharellus cibarius Fr. [white smiling face] SMKX907204KX828805
Cantharellus ferruginascens P.D. Orton [white smiling face] NDMH463294MH463295
Chlorophyllum brunneum (Farl. & Burt) Vellinga[white frowning face]NDMG742013MG742022
Chlorophyllum rhacodes (Vittad.) Vellinga[white smiling face]MAY081236AY176345
Clitocybe angustissima (Lasch) P. Kumm.[white frowning face]ND
Clitocybe barbularum (Romagn.) P.D. OrtonXND
Clitocybe diatreta (Fr.) P. Kumm.[white frowning face]ND
Clitocybe metachroa (Fr.) P. Kumm.XNDJF907806AY207155
Clitocybe nebularis (Batsch) P. Kumm.[white smiling face]SDQ149727AY586685
Clitocybe phyllophila (Pers.) P. Kumm.[white frowning face]NDMH856300MH867847
Clitocybe rufuloalutacea Métrod ex BonND
Clitocybe vibecina (Fr.) Quél.XNDJF907821AY207160
Clitopaxillus alexandri (Gillet) G. Moreno, Vizzini, Consiglio & P. Alvarado[white smiling face]WMG321345MG321393
Clitopilus prunulus (Scop.) P. Kumm.[white smiling face]♠ ☼MFJ770408GU384615
Clitopilus scyphoides (Fr.) SingerXNDMH856181MH867707
Collybia tuberosa (Bull.) P. Kumm.X[white circle] Malakauskienė (2018) NDAY854072AY639884
Conocybe albipes (G.H. Otth) Hauskn.XND
Conocybe apala (Fr.) Arnolds[white frowning face]NDMT535728MT554318
Conocybe dunensis T.J. WallaceXNDJX968227JX968345
Conocybe juniana (Velen.) Hauskn. & SvrčekXNDJX968191JX968307
Conocybe leucopus Kühner ex Kühner & WatlingXND
Conocybe macrocephala Kühner & WatlingXNDJX968182JX968298
Conocybe microspora (Velen.) DennisXNDJX968160JX968276
Conocybe ochracea Kühner ex SingerXND
Conocybe olivaceopileata E.F. Malyshevaa XND ON952486
Conocybe pilosella (Pers.) KühnerXNDJX968231JX968349
Conocybe rickenii (Jul. Schäff.) KühnerXNDAY194541AY293597
Conocybe subovalis Kühner & WatlingXNDJX968190JX968306
Conocybe tenera (Schaeff.) Fayod[white frowning face]MMH855754MH867266
Contumyces rosellus (M.M. Moser) Redhead, Moncalvo, Vilgalys, and LutzoniNDOL771755OL771796
Coprinellus angulatus (Peck) RedheadX♠ ▐
(on burnt ground/wood)
NDMN121285MH868315
Coprinellus disseminatus (Pers.) J.E. LangeXNDMK050584AY207180
Coprinellus domesticus (Bolton) Vilgalys, Hopple & Jacq. JohnsonX [white frowning face]SMH856480MH868019
Coprinellus flocculosus (DC.) Vilgalys, Hopple & Jacq. JohnsonX♠ ▐NDFN396138FN396208
Coprinellus impatiens (Fr.) J.E. LangeXNDMH856810MH868327
Coprinellus micaceus (Bull.) Vilgalys, Hopple & Jacq. JohnsonX [white frowning face]S ON952489 MT554289
Coprinellus radians (Desm.) Vilgalys, Hopple & Jacq. JohnsonXNDKU375662KM272009
Coprinellus silvaticus (Peck) GminderX♠ ▐NDHQ846986HQ847072
Coprinellus subimpatiens (M. Lange & A.H. Sm.) Redhead, Vilgalys, and MoncalvoX♠ ▐NDMH857001MH868522
Coprinellus truncorum (Scop.) Redhead, Vilgalys, and MoncalvoXSFM878007FM876263
Coprinellus xanthothrix (Romagn.) Vilgalys, Hopple & Jacq. JohnsonXNDJN943112JN159595
Coprinopsis atramentaria (Bull.) Redhead, Vilgalys, and Moncalvo[white smiling face] [white frowning face]
(toxic after consumption with alcohol)
SMMH259864FN396172
Coprinopsis brunneofibrillosa (Dennis) Redhead, Vilgalys, and MoncalvoXNDJX118664JX118817
Coprinopsis cinerea (Schaeff.) Redhead, Vilgalys, and MoncalvoXMMF161131KM272007
Coprinopsis ephemeroides (DC.) G. MorenoXND
Coprinopsis friesii (Quél.) P. Karst.XNDFN396191
Coprinopsis gonophylla (Quél.) Redhead, Vilgalys & MoncalvoXNDMH856188MH867714
Coprinopsis lagopides (P. Karst.) Redhead, Vilgalys & MoncalvoXNDMN892574AF041488
Coprinopsis lagopus (Fr.) Redhead, Vilgalys & MoncalvoX♠ ▐ ♣NDMH856194MH867720
Coprinopsis macrocephala (Berk.) Redhead, Vilgalys & MoncalvoX♠ ♣NDFN396126FN396175
Coprinopsis marcescibilis (Britzelm.) Örstadius & E. Larss.X♠ ▐ND ON952484 FM876278
Coprinopsis martinii (P.D. Orton) Redhead, Vilgalys & MoncalvoXNDGU234126
Coprinopsis nivea (Pers.) Redhead, Vilgalys & MoncalvoXNDHQ847032HQ847117
Coprinopsis patouillardii (Quél.) GminderXNDFN396150FN396197
Coprinopsis picacea (Bull.) Redhead, Vilgalys & MoncalvoX [white frowning face]SJN943110JQ045885
Coprinopsis sclerotiger (Watling) Redhead, Vilgalys & MoncalvoXNDMF161091MF161132
Coprinopsis scobicola (P.D. Orton) Redhead, Vilgalys & MoncalvoX♠ ▐NDHQ847021HQ847106
Coprinopsis urticicola (Berk. & Broome) Redhead, Vilgalys & MoncalvoX▐ ♣NDMH300615HQ847101
Coprinus comatus (O.F. Müll.) Pers.[white smiling face]
(considered edible in Europe and also cultivated)
SMMH817141MH997559
Coprinus sterquilinus (Fr.) Fr.XNDMH854689AF041530
Cortinarius bivelus (Fr.) Fr.XNDFR852016
Cortinarius caesiocortinatus Jul. Schäff.XNDFR852020
Cortinarius casimirii (Velen.) HuijsmanXNDFR851999
Cortinarius causticus Fr.XNDFJ157016FJ157016
Cortinarius cinnabarinus Fr.XNDKC842405KC842476
Cortinarius cinnamomeus (L.) Gray[white frowning face]NDNR_131816KC842483
Cortinarius cotoneus Fr.[white smiling face] XNDKC842423KC842493
Cortinarius decipiens Fr.XNDHE687043
Cortinarius diasemospermus LamoureXNDHE687042
Cortinarius erumpens Rob. HenryND
Cortinarius ferrugineovelatus Kytöv., Liimat. & NiskanenNDNR_131875MK277631
Cortinarius fluryi (M.M. Moser) M.M. MoserND
Cortinarius hildegardiae Schmidt-Stohn, Brandrud & DimaNDMT535704MT554297
Cortinarius hinnuleus Fr.XNDAY083183AF388779
Cortinarius infractus (Pers.) Fr.XNDNR_130225KC842497
Cortinarius olivaceofuscus Kühner[white frowning face]NDAY669585MK277762
Cortinarius paracephalixus BohusXNDKR080708
Cortinarius parvannulatus KühnerXNDHE687041
Cortinarius persoonianus BidaudSMT535741MT554330
Cortinarius pluviorum Jul. Schäff. ex M.M. MoserXNDFJ157038FJ157038
Cortinarius uraceonemoralis Niskanen, Liimat., Dima, Kytöv., Bojantchev & H. Lindstr.NDNR_131836MK277663
Cortinarius valgus Fr.XNDMT935583
Cortinarius vernus H. Lindstr. & MelotXNDMW263848MW263545
Cortinarius vespertinus (Fr.) Fr.XNDKC842457KC842527
Cortinarius vibratilis (Fr.) Fr.X [white frowning face]NDKC842440KC842510
Cortinarius violaceus (L.) Gray[white smiling face]WNR_173726MK277758
Craterellus cinereus (Pers.: Fr.) Maire[white smiling face]ND
Craterellus cornucopioides (L.) Pers.[white smiling face]SMJF907967MN227282
Craterellus tubaeformis (Fr.) Quél.[white smiling face]SHM468493MF797698
Crepidotus applanatus (Pers.) P. Kumm.XNDMH855941MH867439
Crepidotus caspari Velen.XNDMW722982AF205678
Crepidotus cesatii (Rabenh.) Sacc.XNDJF907962MK277881
Crepidotus crocophyllus (Berk.) Sacc.XNDFJ596825AF367939
Crepidotus mollis (Schaeff.) StaudeXNDAM882996AM882996
Crepidotus subverrucisporus PilátXNDMT535745AF367948
Crinipellis scabella (Alb. & Schwein.) MurrillXNDMH857177MH868716
Cuphophyllus virgineus (Wulfen) Kovalenko[white smiling face]NDMT535688MT554284
Cyclocybe cylindracea (DC.) Vizzini & Angelini[white smiling face]MW ON952480, ON952485 ON930146
Cystoderma aureum (Matt.) Kühner & Romagn.[white smiling face] X
(generally edible, but some health problems described after eating)
NDMH864957MH876401
Deconica coprophila (Bull.) P. Karst.[white frowning face] XNDMH855878MH867388
Deconica crobula (Fr.) Romagn.XNDMT535747MH867478
Delicatula integrella (Pers.) FayodXNDMZ159362MK277924
Dermoloma cuneifolium (Fr.) Singer ex BonXNDMW193843
Echinoderma asperum (Pers.) Bon[white frowning face]WMH856136MH867652
Entoloma clypeatum (L.) P. Kumm.[white smiling face]
(frequently eaten in the Czech Republic, considered poisonous in Chinab)
NDKC710059KC710136
Entoloma griseoluridum (Kühner) M.M. MoserXND
Entoloma griseorubellum (Lasch) Kalamees & UrbonasND
Entoloma hirtipes (Schumach.) M.M. MoserXNDMN088710MN088715
Entoloma incanum (Fr.) Hesler[white frowning face] XNDOK161249OK161276
Entoloma majaloides P.D. OrtonXNDMW633049MW633049
Entoloma mammosum (L.) HeslerND
Entoloma niphoides Noordel.XNDJF907999FJ794075
Entoloma rhodopolium (Fr.) P. Kumm.[white frowning face]NDLN850497LN850705
Entoloma sericellum (Fr.) P. Kumm.XNDKC898453GQ289190
Entoloma sinuatum (Bull. ex Pers.) P. Kumm.[white frowning face]NDKC710116KC710154
Entoloma subcollariatum (Kühner) BonNDMH453494
Entoloma vernum S. Lundell[white frowning face]NDMF476911MF487802
Flammula alnicola (Fr.) P. Kumm.[white smiling face] [white frowning face]
(considered edible in the Czech Republic)
NDMH862103MH873792
Flammulaster erinaceellus (Peck) WatlingXNDMF755278EF537889
Flammulaster ferrugineus (Maire) WatlingXNDMF039253
Flammulaster gracilis (Quél.) WatlingXND
Flammulaster granulosus (J.E. Lange) WatlingXND
Flammulina velutipes (Curtis) Singer[white smiling face] Desjardin et al. (2008) SMMT535715MT554307
Galerina hypnorum (Schrank) Kühner[white frowning face]NDOL771728MK299406
Galerina marginata (Batsch) Kühner[white frowning face]NDMK346203MK346279
Galerina mniophila (Lasch) KühnerXNDAJ585456AJ871514
Galerina pumila (Pers.) M. LangeXNDAJ585477AJ871546
Galerina sphagnorum (Pers.) KühnerXNDAJ585455AJ871510
Gymnopilus penetrans (Fr.) Murrill[white frowning face] X
(considered inedible in the Czech Republic)
WKR011987KR011988
Gymnopilus spectabilis (Weinm.) A.H. Sm.[white frowning face] X
(considered inedible in the Czech Republic)
SMT535703MT554296
Gymnopus androsaceus (L.) J.L. Mata & R.H. PetersenX▐ ♣NDMH857176MH868715
Gymnopus aquosus (Bull.) Antonín & Noordel.[white smiling face]NDMT535700MT554293
Gymnopus brassicolens (Romagn.) Antonín & Noordel.X▐ ♠NDMZ088117MK278106
Gymnopus dryophilus (Bull.) Murrill[white smiling face]
(considered poisonous in China)
WMH589967MH589985
Gymnopus erythropus (Pers.) Antonín, Halling & Noordel.[white smiling face]NDJX536136AY207167
Gymnopus foetidus (Sowerby) J.L. Mata & R.H. PetersenXNDKY026682KY026682
Gymnopus fusipes (Bull.) Gray[white smiling face] X
(only young basidiomata edible)
[white circle]WKY026727KY026727
Gymnopus hybridus (Kühner & Romagn.) Antonín & Noordel.XNDMT535705MT554299
Gymnopus inodorus (Pat.) Antonín & Noordel.XND
Gymnopus terginus (Fr.) Antonín & Noordel.XNDMK278118
Hebeloma birrus (Fr.) GilletXNDJF908029
Hebeloma crustuliniforme (Bull.) Quél.[white frowning face]NDMH856151MH867674
Hebeloma hiemale Bres.XNDKT591536KT591556
Hebeloma incarnatulum A.H. Sm.XNDKX687211
Hebeloma mesophaeum (Pers.) Quél.XNDNR_173705MK880553
Hebeloma sinapizans (Paulet) Gillet[white frowning face]MKT591542KT591562
Hemimycena cucullata (Pers.) SingerX▐ ♠
(most frequently wood-inhabiting)
ND
Hodophilus hymenocephalus (A.H. Sm. & Hesler) Birkebak & AdamčíkXNDDQ484066DQ457679
Hohenbuehelia atrocoerulea (Fr.) SingerXNDKU355304KU355389
Hohenbuehelia auriscalpium (Maire) SingerXNDMT525860MT534052
Hohenbuehelia petaloides (Bull.) Schulzer[white smiling face]NDNR_173155KU355402
Homophron spadiceum (P. Kumm.) Örstadius & E. Larss.XNDMK968340MN028523
Hydropus marginellus (Pers.) SingerXNDDQ490627DQ457674
Hygrocybe acutoconica (Clem.) Singer[white frowning face]NDOK157438MK278174
Hygrocybe chlorophana (Fr.) Wünsche[white smiling face]NDJF908052MK278164
Hygrophorus eburneus (Bull.) Fr.[white smiling face]SMK088116AF430279
Hygrophorus mesotephrus Berk. & Broome[white smiling face]NDMT981695
Hygrophorus persoonii Arnolds[white smiling face]NDMN243172KF291213
Hymenopellis radicata (Relhan) R.H. Petersen[white smiling face]MMZ159452MT554280
Hypholoma capnoides (Fr.) P. Kumm.[white smiling face]WFJ596780AY207211
Hypholoma fasciculare (Huds.) P. Kumm.[white frowning face]SMMT535706MT554300
Hypholoma lateritium (Schaeff.) P. Kumm.[white frowning face] XSMMH856121MH866989
Hypholoma radicosum J.E. LangeX
(considered edible in China)
NDDQ071685
Hypholoma subericaeum (Fr.) KühnerXNDMK278215
Hypsizygus ulmarius (Bull.) Redhead[white smiling face]SAY265850AF042584
Infundibulicybe geotropa (Bull. ex DC.) Harmaja[white smiling face]
(considered poisonous in China)
MWKT122792KT122793
Infundibulicybe gibba (Pers.) Harmaja[white smiling face]NDMH856103MZ719010
Infundibulicybe trulliformis (Fr.) GminderXNDJF907809
Inocybe amethystina Kuyper[white frowning face]NDHE687066
Inocybe asterospora Quél.[white frowning face]NDHM060326HM060325
Inocybe castaneicolor A. La Rosa, Bizio, Saitta & Tedersoo[white frowning face]NDKY213954KY213954
Inocybe cincinnata (Fr.) Quél.[white frowning face]NDMG489949KC305372
Inocybe corydalina Quél.[white frowning face]NDMH216083MH220259
Inocybe decemgibbosa (Kühner) Vauras[white frowning face]NDHE687073
Inocybe flocculosa Sacc.[white frowning face]NDLT716045KY418861
Inocybe geophylla (Sowerby) P. Kumm.[white frowning face]NDKY990536JN974951
Inocybe godeyi Gillet[white frowning face]NDFN550897FN550897
Inocybe hirtella Bres.[white frowning face]NDEU523581EU307822
Inocybe huijsmanii Kuyper[white frowning face]NDFR852248
Inocybe ionolepis Cullington & E. Larss.c NDFR852270
Inocybe langei R. Heim[white frowning face]NDHE687072JN974962
Inocybe leptocystis G.F. Atk.[white frowning face]NDAM882801AM882801
Inocybe lilacina (Peck) Kauffman[white frowning face]NDKY990528KY990484
Inocybe mixtilis (Britzelm.) Sacc.[white frowning face]NDHQ586870HQ641113
Inocybe mystica Stangl & Glowinski[white frowning face]NDNR_158509
Inocybe napipes J.E. Lange[white frowning face]NDKP308784KP170955
Inocybe paludinella (Peck) Sacc.[white frowning face]NDJF908135
Inocybe praetervisa Quél.[white frowning face]NDKY033785KY033785
Inocybe pusio P. Karst.[white frowning face]NDFR852266AY388643
Inocybe subnudipes Kühner[white frowning face]NDFN550925FN550925
Inocybe tabacina Furrer-Ziogas[white frowning face]NDHQ586865HQ641106
Inocybe terrifera Kühner[white frowning face]ND
Inosperma adaequatum (Britzelm.) Matheny & Esteve-Rav.[white frowning face]NDNR_153149JQ815407
Inosperma bongardii (Weinm.) Matheny & Esteve-Rav.[white frowning face]NDFN550943FN550943
Inosperma cookei (Bres.) Matheny & Esteve-Rav.[white frowning face]NDAM882956AM882956
Inosperma erubescens (A. Blytt) Matheny & Esteve-Rav.[white frowning face]NDAM882951AM882951
Inosperma maculatum (Boud.) Matheny & Esteve-Rav.[white frowning face]NDMH578017MT228862
Laccaria amethystina Cooke[white smiling face]WKU685654KU685797
Laccaria bicolor (Maire) P.D. Orton[white smiling face]NDKM067831KU685788
Laccaria laccata (Scop.) Cooke[white smiling face]WKM067835KU685859
Laccaria tortilis (Bolton) Cooke[white smiling face]NDMG519533MG519576
Lacrymaria lacrymabunda (Bull.) Pat.[white smiling face] XNDMK968341MN031155
Lactarius acris (Bolton) GrayXNDJQ446084JQ446156
Lactarius circellatus Fr.XNDFR852038JN388995
Lactarius deliciosus (L.) Gray[white smiling face]MWKJ769672KF133305
Lactarius fulvissimus Romagn.XNDFR852027
Lactarius rubrocinctus Fr.XNDUDB005472 (UNITE)
Lactarius scrobiculatus (Scop.) Fr.[white frowning face] XNDKX441098KX441345
Lactarius serifluus (DC.) Fr.[white smiling face]NDKT165294
Lactarius subdulcis (Pers.) Gray[white smiling face] XNDKX395722MH872686
Lactarius tabidus Fr.[white smiling face]NDKT165309JN389012
Lactarius zonarius (Bull.) Fr.[white smiling face] [white frowning face]
(edible in Iran, inedible in Europe)
NDFR852035MT747331
Lactifluus glaucescens (Crossl.) VerbekenXNDMT535681MT554278
Lactifluus piperatus (L.) Roussel[white smiling face] [white frowning face]
(edible after special preparation)
SMKF220122KF220215
Lactifluus vellereus (Fr.) Kuntze[white smiling face] [white frowning face] X
(reported as edible in Turkey by Dogan and Aydin (2013); as inedible in Europe by Heleno et al. (2012))
SMKF220123KF220216
Lactifluus volemus (Fr.) Kuntze[white smiling face]WJQ753936JQ348387
Lentinellus cochleatus (Pers.) P. Karst.[white smiling face]NDAF506417AF506417
Lentinellus ursinus (Fr.) Kühner[white smiling face]
(inedible in Europe)
NDMH857168MH868705
Lentinellus vulpinus (Sowerby) Kühner & MaireXNDAY513230
Lentinus cyathiformis (Schaeff.) Bres.[white smiling face]
(inedible in Europe)
NDKM411461KM411477
Lentinus lepideus (Fr.) Fr.[white smiling face] [white frowning face]
(inedible in Europe)
MKM411454KM411478
Lentinus sajor-caju (Fr.) Fr.[white smiling face]MWOL771751OL771792
Lentinus strigosus Fr.XNDKM411451KM411468
Lentinus tigrinus (Bull.) Fr.[white smiling face]SM ON952481 MT554282
Lepiota anthomyces (Berk. & Broome) Sacc.ND
Lepiota brunneoincarnata Chodat & C. Martin[white frowning face]NDMK651615MK685374
Lepiota castanea Quél.[white frowning face]NDMK685380MK651688
Lepiota cristata (Bolton) P. Kumm.X
(considered poisonous in China)
NDLT716026KY418841
Lepiota echinella Quél. & G.E. BernardXNDAY176366AY176367
Lepiota felina (Pers.) P. Karst.[white frowning face]NDMK685381MK278264
Lepiota helveola Bres.[white frowning face]NDMH979466
Lepiota leprica (Berk. & Broome) Sacc.ND
Lepiota lilacea Bres.[white frowning face]NDAY176379AY176380
Lepiota metulispora (Berk. & Broome) Sacc.NDEU681778MK651673
Lepiota micropholis (Berk. & Broome) Sacc.XND
Lepiota subalba Kühner ex P.D. OrtonXNDAY176489
Lepiota subincarnata J.E. Lange[white frowning face]NDU85329U85294
Lepista irina (Fr.) H.E. Bigelow[white frowning face] [white smiling face]
(edible/inedible in the Europe)
NDMH862098MH873787
Lepista nuda (Bull.) Cooke[white smiling face]SMKU215619DQ071713
Lepista saeva (Fr.) P.D. Orton[white smiling face]NDMK785234MH878430
Leratiomyces squamosus (Pers.) Bridge & Spooner[white frowning face] XNDMH043620MH036179
Leucoagaricus americanus (Peck) Vellinga[white frowning face]NDMT573394AF482891
Leucoagaricus badhamii (Berk. & Broome) Singer[white frowning face]NDGQ329056
Leucoagaricus carneifolius (Gillet) WasserXND
Leucoagaricus holospilotus (Berk. & Broome) BonND
Leucoagaricus leucothites (Vittad.) Wasser[white smiling face] [white frowning face]
(reported edible in Turkey by Aslim and Ozturk (2011); edible but sometimes caused health problems)
SMMT535726MT554316
Leucoagaricus nympharum (Kalchbr.) Bon[white smiling face]NDEU416310EU416311
Leucoagaricus roseoalbus (Henn.) Heinem.ND
Leucoagaricus serenus (Fr.) Bon & Boiffard[white frowning face]NDAY176420AF482893
Leucocoprinus birnbaumii (Corda) Singer[white frowning face]NDMH861267MH873036
Leucocoprinus brebissonii (Godey) Locq.[white frowning face]NDAF482859AY176446
Leucocoprinus cepistipes (Sowerby) Pat.X [white frowning face]NDLT716023KY418838
Leucocoprinus magnusianus (Henn.) SingerND
Leucocybe candicans (Pers.) Vizzini, P. Alvarado, G. Moreno & Consiglio[white frowning face]NDKJ681027KJ681051
Leucocybe houghtonii (W. Phillips) Halama & PencakowskiXNDKY474108
Leucopaxillus compactus (P. Karst.) NeuhoffXND
Leucopaxillus giganteus (Sowerby) Singer[white smiling face]
(edible in Europe, considered poisonous in China)
MJQ639151JQ639152
Leucopaxillus pinicola J. FavreND
Lyophyllum atratum (Fr.) SingerXNDKJ461896KJ461895
Lyophyllum baeospermum Romagn.XND
Macrocybe gigantea (Massee) Pegler & Lodge[white smiling face]SMG867660AF042591
Macrolepiota excoriata (Schaeff.) Wasser[white smiling face] [white frowning face]
(edible in Europe)
MWU85313U85278
Macrolepiota mastoidea (Fr.) Singer[white smiling face]MWHM125532MH867678
Macrolepiota permixta (Barla) Pacioni[white smiling face]NDHQ412661
Macrolepiota procera (Scop.) Singer[white smiling face]
(poisonous in China)
SM ON952483 AM946456
Mallocybe dulcamara (Pers.) Vizzini [white frowning face]NDHQ604787EU569836
Mallocybe terrigena (Fr.) Matheny, Vizzini & Esteve-Rav.X
(edible in China)
NDAM882864AM882864
Marasmiellus candidus (Fr.) SingerXNDMT573397MH867503
Marasmiellus confluens (Pers.) J.S. OliveiraXND
Marasmiellus peronatus (Bolton) J.S. OliveiraX
(considered edible/poisonous in China)
SAY256706
Marasmiellus ramealis (Bull.) SingerXNDKY404985KY404980
Marasmius atrorubens (Berk.) Mont.XNDKP635207KP635160
Marasmius corrugatiformis SingerXNDKX148981
Marasmius epiphyllus (Pers.) Fr.XNDJN943599JN941147
Marasmius favoloides Henn.XND
Marasmius ferrugineus Berk. & M.A. CurtisXND
Marasmius haematocephalus (Mont.) Fr.XNDKX148986EF160083
Marasmius oreades (Bolton) Fr.[white smiling face]SMLT716048KY418864
Marasmius rotula (Scop.) Fr.XNDJN943598JN941146
Marasmius rubroflavus (Theiss.) SingerXND
Marasmius wynneae Berk. & Broome[white smiling face]NDFJ904979MH868580
Megacollybia platyphylla (Pers.) Kotl. & Pouzar[white frowning face] XNDMT535698MT554291
Melanoleuca cognata (Fr.) Konrad & Maubl.[white smiling face]NDJX429190JX429180
Melanoleuca exscissa (Fr.) Singer[white smiling face]SMT535742MT554331
Melanoleuca graminicola (Velen.) Kühner & Maire[white smiling face]NDJN616438
Melanoleuca grammopodia (Bull.) Fayod[white smiling face]NDJF908351MH868277
Melanoleuca strictipes (P. Karst.) Jul. Schäff.[white smiling face]NDJX429116JX429162
Melanoleuca subpulverulenta (Pers.) Métrod
Note: synonym to M. friesii (Bres.) Bon (Antonín et al., 2022) but identification probably tentative.
[white smiling face]NDJN616473
Montagnea arenaria (DC.) Zeller[white smiling face]NDNR_173482MK278380
Montagnea haussknechtii Rabenh.XND
Mycena acicula (Schaeff.) P. Kumm.X♣ ▐NDMW540677MK278389
Mycena clavicularis (Fr.) GilletXNDMW540674AF042637
Mycena crocata (Schrad.) P. Kumm.XNDJF908492MH868172
Mycena filopes (Bull.) P. Kumm.XNDOM473731
Mycena galericulata (Scop.) Gray[white smiling face]NDDQ404392MH866154
Mycena galopus (Pers.) P. Kumm.X
(edible in China)
Treu and Agerer (1990) NDFR846482AY207250
Mycena haematopus (Pers.) P. Kumm.[white frowning face] X Bermudes et al. (1992) NDLT716053KY418869
Mycena inclinata (Fr.) Quél.X Desjardin et al. (2008) NDMK532829MK278392
Mycena metata (Fr.) P. Kumm.XNDMZ315004
Mycena pearsoniana Dennis ex Singer[white frowning face]NDFN394614FN394633
Mycena pelianthina (Fr.) Quél.[white frowning face]NDFN394549FN394626
Mycena polygramma (Bull.) GrayX Treu and Agerer (1990) NDMH856239MH867768
Mycena pura (Pers.) P. Kumm.[white frowning face] Treu and Agerer (1990) NDKF913023FN394630
Mycena rapiolens J. FavreXND
Mycena sanguinolenta (Alb. & Schwein.) P. Kumm.X Desjardin et al. (2008) NDMH856662AY207257
Mycena xantholeuca KühnerXNDMT535719MT554310
Mycenastrum corium (Guers.) Desv.[white smiling face] X
(inedible in Europe)
SMH855530
Mycenella salicina (Velen.) SingerXNDJF908497DQ071720
Mycetinis alliaceus (Jacq.) Earle[white smiling face]NDMH856155MH867679
Mycetinis scorodonius (Fr.) A.W. Wilson & Desjardin[white smiling face] X♣ ▐NDMH856330MH867884
Myxomphalia maura (Fr.) HoraXNDMH856673MH868189
Neofavolus suavissimus (Fr.) J.S. Seelan, Justo & HibbettXNDKM411460KM411476
Neolentinus adhaerens (Alb. & Schwein.) Redhead & Ginns[white smiling face] XNDHM536096KJ141188
Omphaliaster asterosporus (J.E. Lange) LamoureXNDMZ159333
Omphalina mutila (Fr.) P.D. OrtonXNDFJ770399
Omphalina pyxidata (Bull.) Quél.XNDMF319071MF318927
Omphalotus olearius (DC.) Singer[white frowning face] Kotlobay et al. (2018) SMAF525061AF042010
Ossicaulis lignatilis (Pers.) Redhead & Ginns[white smiling face]NDDQ825426AF261397
Ossicaulis salomii Siquier & BellangerNDMT535738MT554327
Panaeolus acuminatus (P. Kumm.) Quél.[white frowning face]NDMH856251MH867783
Panaeolus campanulatus (L.) Quél.[white frowning face]NDJF908522
Panaeolus fimicola (Fr.) Quél.[white frowning face]NDJF908519MK278431
Panaeolus olivaceus F.H. Møller[white frowning face]NDMH285992MK278433
Panaeolus papilionaceus (Bull.) Quél.[white frowning face]NDMH100681MK278435
Panaeolus plantaginiformis (Lebedeva) E.F. MalyshevaNDMK397579MK397601
Panaeolus rickenii Hora[white frowning face]NDJF908523
Panaeolus semiovatus (Sowerby) S. Lundell & Nannf.[white frowning face] XNDMH856675MH868191
Panaeolus speciosus P.D. Orton[white frowning face]ND
Panaeolus teutonicus Bride & Métrod[white frowning face]ND
Panellus stipticus (Bull.) P. Karst.[white frowning face] X Kotlobay et al. (2018) (chemiluminescence: Shimomura, 1991)NDMH855557MH867062
Panus conchatus (Bull.) Fr.[white smiling face]MOL477381OL477382
Paragymnopus perforans (Hoffm.) J.S. OliveiraXNDMH856221AJ406586
Paralepista flaccida (Sowerby) Vizzini[white smiling face]MMZ159662MZ675572
Parasola auricoma (Pat.) Redhead, Vilgalys & HoppleX♠ ▐NDMH855972MH867468
Parasola hemerobia (Fr.) Redhead, Vilgalys & HoppleX♠ ▐NDFM163189FM160720
Parasola leiocephala (P.D. Orton) Redhead, Vilgalys & HoppleX♠ ▐NDJN943113JQ045887
Parasola miser (P. Karst.) Redhead, Vilgalys & HoppleXNDKY928619KY928638
Parasola plicatilis (Curtis) Redhead, Vilgalys & HoppleXNDKY928625KY928643
Paraxerula caussei (Maire) Petersen[white smiling face]NDOL770198AM946473
Phaeomarasmius erinaceus (Fr.) Scherff. ex Romagn.XMMH856667MH868183
Phaeonematoloma myosotis (Fr.) BonXNDAF195599AF195599
Phellorinia herculeana (Pers.) KreiselXNDJX984569
Phloeomana speirea (Fr.) RedheadXNDMH856159MK278448
Pholiota adiposa (Batsch) P. Kumm.[white smiling face]SMMT535689MT554285
Pholiota astragalina (Fr.) SingerXNDMT187979MT228845
Pholiota gummosa (Lasch) Singer[white smiling face] XNDMH861987MH873679
Pholiota highlandensis (Peck) A.H. Sm. & HeslerXNDMH348872MH867483
Pholiota jahnii Tjall.-Beuk. & BasXNDMT535737MT554326
Pholiota populnea (Pers.) Kuyper & Tjall.-Beuk.[white smiling face] XNDMG735315
Pholiota scamba (Fr.) M.M. MoserXNDJF908585
Pholiota spumosa (Fr.) Singer[white smiling face] XNDMN209776MN251159
Pholiota squarrosa (Oeder) P. Kumm.[white smiling face]
(edible but very tough; considered poisonous in China)
NDMN209778MN251161
Pholiota squarrosoides (Peck) Sacc.X
(considered edible/poisonous in China)
NDJF908591AF261641
Pholiotina aporos (Kits van Wav.) ClémençonXNDJX968260JX968376
Pholiotina arrhenii (Fr.) SingerXNDJX968261JX968377
Pholiotina striipes (Cooke) M.M. MoserXNDJX968150JX968267
Pholiotina vexans (P.D. Orton) BonXNDJX968265JX968380
Phyllotopsis nidulans (Pers.) Singer[white smiling face]WMF686492AF042578
Pleurotellus chioneus (Pers.) KühnerXND
Pleurotus calyptratus (Lindblad ex Fr.) Sacc.[white smiling face]WEU424283EU365640
Pleurotus cornucopiae (Paulet) Rolland[white smiling face]SMMT535734MT554324
Pleurotus djamor (Rumph. ex Fr.) Boedijn[white smiling face]SMWEU424306EU365661
Pleurotus dryinus (Pers.) P. Kumm.[white smiling face]MEU424292MH872241
Pleurotus elongatipes PeckND
Pleurotus eryngii (DC.) Quél.[white smiling face][white circle]SMWMT535679MT554276
Pleurotus fossulatus (Cooke) Sacc.[white smiling face]WHM998828U04136
Pleurotus nebrodensis (Inzenga) Quél.[white smiling face][white circle]SMHM998835EU365659
Pleurotus ostreatus (Jacq.) P. Kumm. [white smiling face] SMW ON952482 MT554286
Pleurotus pulmonarius (Fr.) Quél.[white smiling face]SMWLT716061KY418877
Pluteus aurantiorugosus (Trog) Sacc.XNDJF908613AF261579
Pluteus cervinus (Schaeff.) P. Kumm.[white smiling face]SMMT535687MT554283
Pluteus chrysophaeus (Schaeff.) Quél.XNDMH010881MH010881
Pluteus cinereofuscus J.E. LangeXNDMH595963MK278491
Pluteus depauperatus Romagn.XND
Pluteus exiguus (Pat.) Sacc.XNDFJ774083
Pluteus leoninus (Schaeff.) P. Kumm.[white smiling face]NDHM562045HM562234
Pluteus nanus (Pers.) P. Kumm.XNDMH595974MK278504
Pluteus pellitus (Pers.) P. Kumm.[white smiling face]NDHM562037HM562225
Pluteus petasatus (Fr.) Gillet[white smiling face]NDHM562038HM562224
Pluteus punctipes P.D. OrtonXND
Pluteus romellii (Britzelm.) Sacc.[white smiling face]NDHM562062HM562238
Pluteus salicinus (Pers.) P. Kumm.[white frowning face]
(considered edible in China)
NDHM562051HM562233
Pluteus semibulbosus (Lasch) GilletXNDKR022021MH867792
Pluteus thomsonii (Berk. & Broome) DennisXNDHM562053HM562230
Pluteus umbrosus (Pers.) P. Kumm.[white smiling face]NDHM562140HM562232
Pogonoloma macrocephalum (Schulz.) Sánchez-GarcíaNDMH595847KJ417209
Psathyrella bivelata ContuXSMT535693MT554288
Psathyrella clivensis (Berk. & Broome) P.D. OrtonX♠ ▐NDDQ389683DQ389683
Psathyrella fatua (Fr.) Konrad & Maubl.XNDMT535695MT554290
Psathyrella hellebosensis D. Deschuyteneer & A. MelzerXNDMT535716MT554308
Psathyrella laevissima (Romagn.) SingerXND
Psathyrella microrhiza (Lasch) Konrad & Maubl.X♠ ▐NDMH856265MH867801
Psathyrella multipedata (Peck) A.H. Sm.X♠ ▐NDGQ249282GQ249291
Psathyrella obtusata (Fr.) A.H. Sm.X♠ ▐NDMH860428
Psathyrella pennata (Fr.) A. Pearson & DennisXNDAM712259AM712259
Psathyrella piluliformis (Bull.) P.D. Orton[white smiling face]NDFN396136FN396185
Psathyrella prona (Fr.) GilletX♠ ▐NDMH856268MH867805
Psathyrella pseudogracilis (Romagn.) M.M. MoserXNDMH856200MH867728
Psathyrella spadiceogrisea (Schaeff.) MaireX♠ ▐NDMK045737MK045738
Psathyrella squamosa (P. Karst.) A.H. Sm.X♠ ▐NDAM712250AM712250
Psathyrella tephrophylla (Romagn.) M.M. MoserX♠ ▐NDAM712270AM712270
Pseudoclitocybe cyathiformis (Bull.) Singer[white smiling face]NDMT535721MT554311
Pseudosperma perlatum (Cooke) Matheny & Esteve-Rav.[white frowning face]NDJQ408767JQ319698
Pseudosperma rimosum (Bull.) Matheny & Esteve-Rav.[white frowning face]NDMF278770EU600853
Psilocybe atrobrunnea (Lasch) GilletXNDHG423575HG423577
Psilocybe cyanescens Wakef.[white frowning face]NDNR_111478NG_069074
Psilocybe serbica M.M. Moser & E. Horak[white frowning face]NDMF958473MF958467
Resupinatus applicatus (Batsch) GrayXNDNR_171800NG_075208
Rhodocollybia maculata (Alb. & Schwein.) SingerX
(edible in China)
NDMH857674MH869212
Rhodocollybia prolixa (Fr.) Antonín & Noordel.XNDMK278563
Rhodotus palmatus (Bull.) MaireX [white frowning face]
(maybe poisonous; edibility considered unknown by Heleno et al. (2012))
MWMK287617MK287618
Russula acetolens Rauschert[white smiling face]ND
Russula alutacea (Pers.) Fr.[white smiling face]
(considered poisonous in China)
SMJF908676
Russula anthracina Romagn.[white smiling face](chemiluminescence: Bondar et al., 2012; Gitelson et al., 2012)SMW172321MW182481
Russula atropurpurea Peck [non R. atropurpurea (Krombh.) Britzelm. (= R. undulata Velen.)] [white smiling face] NDJF908691KU237550
Russula atrorubens Quél.XNDKX579812KX812877
Russula brunneoviolacea Crawshay[white smiling face]NDAM113956
Russula carminipes J. Blum[white smiling face]NDKU237523
Russula claroflava Grove[white smiling face]NDKT933997KT933858
Russula cyanoxantha (Schaeff.) Fr.[white smiling face](chemiluminescence: Bondar et al., 2012; Gitelson et al., 2012)SMW646981MW646993
Russula delica Fr. [white smiling face] (chemiluminescence: Bondar et al., 2012; Gitelson et al., 2012)WKX812842KX812864
Russula emetica (Schaeff.) Pers.[white smiling face] [white frowning face]
(European R. emetica extremely pungent and inedible/toxic; reported by Kaewnarin et al. (2016) as popular edible mushroom in Thailand)
MKX813352KX812896
Russula emeticolor J. Schaeffer[white smiling face]SMT535680MT554277
Russula farinipes RomellX
(edible/poisonous in China)
NDKY800361KU237561
Russula foetens Pers.[white frowning face] X
(may cause health problems)
(chemiluminescence: Gitelson et al., 2012)NDKT934016KT933877
Russula graveolens Romell[white smiling face]NDKU205298
Russula grisea Fr.[white smiling face]NDMT738286MT738262
Russula heterophylla (Fr.) Fr. [white smiling face] NDAF418609AF325309
Russula integra (L.) Fr.[white smiling face]MKY582682KX812899
Russula ionochlora Romagn.[white smiling face]NDMW683795KU237508
Russula lilacea Quél.[white smiling face]NDJN944005JN940592
Russula luteotacta ReaX
(edible/poisonous in China)
NDJF908652KU237512
Russula nigricans Fr.[white smiling face]S
Russula ochroleuca Pers.[white smiling face](chemiluminescence: Bondar et al., 2012; Gitelson et al., 2012)NDHM189900KU237519
Russula ochroleucoides KauffmanXND
Russula olivacea Pers.[white smiling face]MAF418635KU237492
Russula pectinata Fr.XNDMW355005
Russula pectinatoides Peck[white smiling face] X
(edible only when very young)
NDEU598185KU237462
Russula persicina Krombh.XNDHE687094KU237494
Russula perlactea MurrillND
Russula puellaris Fr.[white smiling face]NDAF418628KU237515
Russula queletii Fr.[white frowning face]NDKT934007KT933868
Russula risigallina (Batsch) Sacc.[white smiling face]NDJF908685
Russula romellii Maire[white smiling face]NDKT933987KT933848
Russula rosea Pers.[white smiling face]SJN944003JN940602
Russula silvestris (Singer) ReumauxXNDKX579800
Russula solaris Ferd. & WingeXNDAF418627JN940606
Russula sororia (Fr.) RomellXNDKF318053
Russula torulosa Bres.XNDMZ005531
Russula versicolor Jul. Schäff.[white smiling face]NDJN944009JN940594
Russula veternosa Fr.XNDFR852104AF325321
Russula vinosopurpurea Jul. Schäff.XNDFR852115
Russula virescens (Schaeff.) Fr. [white smiling face] SMWAY061727AF041548
Russula xerampelina (Schaeff.) Fr.[white smiling face]WAY061734AF218542
Saproamanita codinae (Maire) Redhead, Vizzini, Drehmel & Contu[white smiling face]NDMK277524
Sarcomyxa serotina (Pers.) V. Papp[white smiling face]NDMH856703MH868220
Simocybe centunculus (Fr.) P. Karst.XNDMT535746KT715786
Sphagnurus paluster (Peck) Redhead & V. Hofst.XNDKP192547MH873802
Strobilurus esculentus (Wulfen) Singer[white smiling face]WMH014049AY207299
Strobilurus tenacellus (Pers.) SingerXNDMF063166MF063102
Stropharia aeruginosa (Curtis) Quél.[white smiling face] [white frowning face] X
(edible in the Czech Republic)
NDMW492534MW492637
Stropharia coronilla (Bull.) Quél.[white smiling face]NDMH856747MH868269
Stropharia melanosperma (Bull.) Quél.[white smiling face]ND
Tricholoma acerbum (Bull.) Quél.[white smiling face] [white frowning face] X
(inedible in the Czech Republic)
MMH628231MK278598
Tricholoma argyraceum (Bull.) Gillet[white smiling face]NDGU060278MK278614
Tricholoma caligatum (Viv.) Ricken[white smiling face]NDKU058510KU058548
Tricholoma cingulatum (Almfelt ex Fr.) Jacobasch[white smiling face]NDMH620781AY207308
Tricholoma equestre (L.) P. Kumm.[white smiling face] [white frowning face]
(considered poisonous last years, but may include more species)
SMEU186278AM946471
Tricholoma fulvum (Fr.) Bigeard & H. Guill.[white smiling face] [white frowning face] X
(inedible in the Czech Republic)
NDKU058514KU058552
Tricholoma lascivum (Fr.) Gillet[white frowning face]
(considered edible in China)
NDLT000131
Tricholoma orirubens Quél.[white smiling face]NDDQ389734DQ389734
Tricholoma psammopus (Kalchbr.) Quél.XNDAF377241
Tricholoma robustum (Alb. & Schwein.) Ricken[white smiling face] X
(inedible in southern Europe)
NDAB699669
Tricholoma scalpturatum (Fr.) Quél.[white smiling face]
(considered poisonous in China)
NDJN389305JN389350
Tricholoma sulphureum (Bull.) P. Kumm.[white frowning face]MAY462032AY462040
Tricholoma terreum (Schaeff.) P. Kumm.[white smiling face]MWEU653301EU653305
Tricholoma ustale (Fr.) P. Kumm.[white frowning face] XMLC574882AY207306
Tricholoma ustaloides Romagn.XNDLT000094
Tricholoma vaccinum (Schaeff.) P. Kumm.[white smiling face] XNDAF062628GQ289219
Tricholomopsis formosa (Murrill) SingerXND
Tubaria confragosa (Fr.) HarmajaXNDMF039262EF051053
Tubaria conspersa (Pers.) FayodX♠ ▐NDMF039274AF205692
Tubaria furfuracea (Pers.) Gillet[white smiling face]♠ ▐WMZ159504MH867638
Tubaria pallidospora J.E. LangeX♠ ▐ND
Volvariella iranica (Fallahyan) Szczepka
(probably inedible)
ND
Volvariella bombycina (Schaeff.) Singer[white smiling face] XWMT913623MK278653
Volvariella hypopithys (Fr.) ShafferXNDMN738658MN738582
Volvariella murinella (Quél.) M.M. Moser ex Dennis, P.D. Orton & HoraXNDMK412400MK278657
Volvariella pusilla (Pers.) SingerXNDHM246494MK278658
Volvariella volvacea (Bull.) Singer[white smiling face]MOM417506OM373623
Volvopluteus gloiocephalus (DC.) Vizzini, Contu & Justo[white frowning face] [white smiling face]MMN738645MN738593
Xerula pudens (Pers.) Singer[white smiling face]SMT535743MT554333
Zhuliangomyces ochraceoluteus (P.D. Orton) Redhead[white smiling face]NDMT863767MT862275

GenBank accessions in bold were generated in this study. (For species synonyms and distribution data of the species consult Ghobad-Nejhad et al., 2020).

aNew to Iran. Voucher: Iran, Tehran, Latmalkan, on soil, IV.2021, Ghobad-Nejhad 4404.
bInformation on edibility of the species in China from Wu et al. (2019).
cOccurrence in Iran shown by Crous et al. (2020).

Two concatenated datasets of nLSU + ITS were constructed, one representing the taxa belonging to the order Agaricales (dataset 1), and the other dataset for taxa of Cantharellales, Polyporales, and Russulales (dataset 2). Contumyces rosellus, the single Iranian agaric Hymenochaetales, was used as an outgroup for both datasets.

Sequences were aligned using MUSCLE (Madeira et al., 2019). To optimize the alignment, problematic columns were reduced with Noisy 1.5.12 (Dress et al., 2008) and were further identified and removed after careful visual inspection. Special attention was paid to excluding the poorly aligned columns of the ITS region and keeping the finely aligned parts. (Sequences of Amanita eliae, Mycena xantholeuca, Pluteus semibulbosus, and Tricholoma ustale were deleted from the final dataset due to poor alignment.)

Phylogenetic analyses

The sequence datasets were analyzed using Bayesian inference (BI) executed in MrBayes v. 3.2.7a (Ronquist et al., 2012). MrModeltest 2.3 was implemented to infer the best-fit model of nucleotide evolution for each alignment partition in each dataset (Nylander, 2004). Bayesian analyses were run for 40 (dataset 1) and 20 (dataset 2) million generations for four Markov chain Monte Carlo simulations, in two independent runs at the CIPRES Science Gateway (Miller et al., 2010), with the trees and parameters sampled every 5,000 generations, and the first 25% of the generations were discarded as burn-in. Posterior probabilities (PPs) were calculated from the posterior distribution of the retained trees. Maximum likelihood analyses were executed in raxmlGUI v.1.3 (Silvestro and Michalak, 2010) with the same parameters as used by Ghobad-Nejhad et al. (2021). The Bayesian phylograms were retained for tree visualizations and annotations.

Edibility, ecological guild and luminescence

The edibility rank of the species (edible, poisonous, inedible) and the ecological guilds (soil saprotrophic, ectomycorrhizal, leaf/litter-inhabiting, wood-inhabiting, parasitic) were assigned based on published literature as well as authors’ knowledge. The edibility of many species is highly subjective and evaluated differently in various countries. Here, the majority of our data are based on central and southern European literature, but even this literature was not necessarily confirmative. Therefore, for some species, more than one rank assignment was inevitably used. Besides the categories “edible” or “poisonous,” category “inedible” was also recognize (noted with symbol X in Table 1) for the species with an unpleasant taste, very small and tiny basidiomata and not usually collected for culinary purposes. Luminescence (bio/chemiluminescent) data were extracted from published literature as mentioned in Table 1 for each species.

Antioxidant properties

Antioxidant properties of the species were obtained via published references as well as own experiments performed in the present study (Tables 1, ,2;2; Supplementary Table 1). A thorough literature survey was performed to extract and summarize the available data on the antioxidant properties of the agaric species. Published references were searched via Google Scholar, PubMed, and other standard repositories. Each literature was scrutinized carefully, avoiding poor quality and ambiguous data. Disqualified literature, unpublished data, and papers published in non-standard journals were removed from our analyses. In total, ca. 300 literature were surveyed and ca. 170 references were cited in this work and in Supplementary material. The majority of studies reported the antioxidant potential as EC50 values, i.e., half maximal effective concentration, based on DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2, 2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid) assays. To have an approximate comparison of the antioxidant potential of the species, we tentatively categorized the EC50 values as strong, moderate, and weak. For this, the EC50 values less than 1 mg/ml were considered as “strong” (S), EC50 values ranging from 1 to 10 mg/ml as “moderate” (M), and EC50 values more than 10 mg/ml were tentatively considered as “weak” (W) antioxidants (Table 1). For several species, we found different EC50 values reported in different studies. We preferred to keep the data as is for any future reference so that we assigned more than one code to classify the antioxidant potential of these species (e.g., SM standing for strong to moderate). (In a number of studies the antioxidant potential had been expressed only as radical scavenging activity% (RSA %). For these, the RSAs >80% were hesitantly considered as strong, RSA 50%–80% as moderate, and RSA < 50% were tentatively considered as weak, paying careful attention also to the values from the antioxidant standards; see Supplementary Table 1). In the cases where the antioxidant potential values were contrasting in different studies, we preferred to keep the data as is for any future reference, and therefore the antioxidant potential of the corresponding species are shown here with the combined codes SM, MW, and SMW, where applicable (Table 1).

Table 2

The EC50 values and the percentage of radical scavenging activity (RSA) obtained by ABTS assays in this study.

SpeciesVoucherRSA % at different concentrationsEC50 mg/ml
0.01 mg/ml0.025 mg/ml0.05 mg/ml0.075 mg/ml0.1 mg/ml
Agaricus arvensis Ghobad-Nejhad 429514.2222.0732.3543.6354.920.10 ± 0.003
Agaricus bitorquis Ghobad-Nejhad 428416.6022.7535.6747.5859.100.08 ± 0.003
Agaricus iodosmus Ghobad-Nejhad 427726.8529.7837.3343.8850.430.09 ± 0.021
Agaricus pseudopratensis Ghobad-Nejhad 427838.9439.5443.2045.8648.130.11 ± 0.004
Agrocybe dura Ghobad-Nejhad 429926.3227.4830.4131.3433.270.31 ± 0.004
Armillaria mella Ghobad-Nejhad 439414.2515.2516.7918.5320.110.55 ± 0.016
Cantharellus alborufescens Ghobad-Nejhad 440811.4512.0712.8313.7914.661.09 ± 0.06
Coprinopsis atramentaria Ghobad-Nejhad 4406 7.54 9.4212.1515.6818.810.34 ± 0.021
Coprinus comatus Ghobad-Nejhad 4407 8.1710.1513.4516.7419.030.34 ± 0.028
Cortinarius persoonianus Ghobad-Nejhad 420617.4419.2423.2525.2528.260.27 ± 0.019
Gymnopilus spectabilis Ghobad-Nejhad 420718.7621.1325.6229.9133.200.20 ± 0.001
Hymenopellis radicata Ghobad-Nejhad 420420.1920.7021.5022.0922.781.05 ± 0.06
Hypholoma fasciculare Ghobad-Nejhad 4201a29.4735.5748.4160.2572.090.05 ± 0.007
Lentinus tigrinus Ghobad-Nejhad 4397 7.148.09 9.6811.2612.160.75 ± 0.01
Leucoagaricus leucothites Ghobad-Nejhad 4279 427619.4620.8022.9025.1027.500.35 ± 0.001
Melanoleuca exscissa Ghobad-Nejhad 437528.2729.6131.5034.0736.900.24 ± 0.009
Pholiota aurivella Ghobad-Nejhad 60038.8339.4840.6141.5442.840.26 ± 0.016
Pleurotus cornucopiae Ghobad-Nejhad 430824.7525.6027.2328.7730.320.41 ± 0.001
Pleurotus eryngii Ghobad-Nejhad 106832.3033.1435.2637.1138.400.26 ± 0.011
Pleurotus ostreatus Ghobad-Nejhad 44036.66 8.2010.5812.8515.330.46 ± 0.003
Pluteus cervinus Ghobad-Nejhad 427113.1418.1627.1134.9644.830.11 ± 0.002
Psathyrella bivelata Ghobad-Nejhad 4303 431036.3437.1138.4039.6940.180.31 ± 0.062
Russula emeticcolor Ghobad-Nejhad 414944.4545.1946.4247.6648.010.14 ± 0.028
Xerula pudens Sohrabi 3061931.7833.5535.8037.5539.550.22 ± 0.002
Trolox0.023 ± 0.011

Dried basidiomata from 24 species were sampled and examined for their antioxidant potential via ABTS assay following Re et al. (1999). Voucher samples were deposited at the Iranian Cryptogamic Herbarium (ICH) herbarium (acronym by Index Herbariorum) or at MG personal collection. The ABTS solution (7 mM) was prepared in 2.45 mM potassium sulfate and was kept at room temperature in the dark for 16 h. The mixture was then mixed with phosphate-buffered saline (PBS) as a control, and the absorbance reached 0.7 ± 0.02 at 734 nm. The extract samples with final concentrations of 0.01, 0.025, 0.05, 0.075, and 0.1 mg/ml were mixed with 980 μl of ABTS solution. The absorbance at 734 nm was measured after 6 min. The percentage of radical scavenging activity was calculated by the following equation, where A stands for absorbance (Öztürk et al., 2011):

Scavenging activity%=AcontrolAsample/Acontrol×100

The EC50 values were obtained through interpolation from linear regression analysis (Supplementary Figure 1). Trolox was used as a positive control at different concentrations (0.005, 0.01, 0.015, 0.02, 0.025, and 0.03 mg/ml).

Results

The results of our survey on the resources of agaric species in Iran are summarized in Table 1. Altogether, 558 agaric species from five orders were surveyed for their resources of edible and poisonous species, their ecological guilds, bioluminescence, and antioxidant potential. The two species Conocybe olivaceopileata and Inocybe ionolepis were added here to the Iranian mycota (see Table 1).

Phylogeny

The Agaricales dataset consisted of 428 taxa and 1,341 characters of which, 243 characters were constant, 144 variable, and 954 characters were informative. The best-fit evolutionary model suggested by MrModeltest was GTR + I + G for each of the LSU and ITS partitions. The Agaricales phylogram is shown in Figure 1. Nineteen families were phylogenetically retrieved with moderate to good posterior probabilities (PPs) and were shown in colored boxes, while the rest of the taxa were incertae sedis or received low to moderate branch support.

An external file that holds a picture, illustration, etc.
Object name is fmicb-13-1015440-g001.jpg

Phylogram from the combined nLSU + ITS sequence dataset representing the phylogenetic relationships of Iranian Agaricales. Posterior probabilities (PPs)  0.8 are shown as light lilac dots on the nodes. Terminals in red are species with antioxidant activity and the letters inside brackets are the tentative antioxidant codes: S, strong; M, moderate; W, weak (see the text for full details).

The species with antioxidant data were distributed in all the families shown in colored boxes except for the two families Entolomataceae and Inocybaceae (Figure 1). For some families such as Bolbitiaceae, Marasmiaceae, and Tubariaceae, there was only a single species with antioxidant activity, while other families such as Agaricaceae, Psathyrellaceae, and Pleurotaceae contained several antioxidant species.

Dataset 2 (Cantharellales, Polyporales, Russulales) consisted of 71 taxa and 1,528 characters of which, 279 characters were constant, 347 variable, and 902 characters were informative. The best-fit evolutionary model as suggested by MrModeltest was GTR + G for each of the LSU and ITS partitions. The phylogram obtained from the analyses of dataset 2 is presented in Figure 2. The orders Polyporales, Russulales, and Cantharellales were retrieved as moderate to well-supported monophyletic clades (PPs 0.75, 0.94, and 1.00, respectively). (For Polyporales, the two families Panaceae and Polyporaceae were not retrieved. Moreover, Panellus stipticus found a position close to the outgroup Contumyces rosellus, and we could not solve this.) The species with antioxidant data were distributed within the three orders in the phylogram (Figure 2). Out of six Cantharellales agaric members in Iran (Ghobad-Nejhad et al., 2020), four species have antioxidant data (Figure 2; Craterellus cinereus had no good LSU/ITS, so is missing in the phylogeny here). Polyporales has nine agaric species in Iran, four of which possess antioxidant activity (Figure 2). Russulales has 60 agaric species in Iran (Ghobad-Nejhad et al., 2020) from which, 16 species have antioxidant data (Figure 2; Table 1). Contumyces rosellus is the only Hymenochaetales agaric in Iran and has no antioxidant data.

An external file that holds a picture, illustration, etc.
Object name is fmicb-13-1015440-g002.jpg

Phylogram from the combined nLSU + ITS sequence dataset representing phylogenetic relationships of the Iranian Cantharellaeles, Russulales, and Polyporales. Posterior probabilities are shown below branches. Terminals in red are species with antioxidant activity and the letters inside brackets are the tentative antioxidant codes: S, strong; M, moderate; W, weak (see the text for full details).

Altogether, there were 50 agaric species lacking both ITS and LSU sequences and so did not appear in the phylogenetic analyses (Table 1); these species also lacked antioxidant data, except for Russula nigricans which was scored as a “strong” antioxidant species (Table 1).

Edibility, ecological guild, and luminescence

Results of the survey on edibility, ecological guilds, and luminescence of agaric species occurring in Iran are shown in Table 1 and Figures 3, ,4.4. It is revealed that about 189 species of agarics in Iran can be classified as edible, 128 species as poisonous, and 271 species as inedible (Table 1; Figure 3). Moreover, 10 species can be assigned as edible only if well-cooked, whereas the edibility of 30 species is uncertain or unknown.

An external file that holds a picture, illustration, etc.
Object name is fmicb-13-1015440-g003.jpg

The number of Iranian agaric species in each edibility category.

An external file that holds a picture, illustration, etc.
Object name is fmicb-13-1015440-g004.jpg

The number of Iranian agaric species in each ecological guild.

Concerning ecological guilds, our results show that about 254 species of agarics in Iran are soil saprotrophic, 172 species ectomycorrhizal, 146 species wood-inhabiting, 18 species leaf/litter-inhabiting, and nine species are parasitic (Table 1; Figure 4). Parasitic species include Armillaria borealis, A. cepistipes, A. gallica, A. mellea, Collybia tuberosa, Pleurotus eryngii, P. nebrodensis which are sapro-parasitic, Gymnopus fusipes which is wood-inhabiting parasitic, and Asterophora lycoperdoides which grows on basidiomata of Lactarius and Russula species (Table 1).

Among 558 agaric species in Iran, 19 species are categorized as luminescent (Table 1). These include Armillaria (four spp.), Collybia tuberosa, Flammulina velutipes, Mycena (six spp.), Omphalotus olearius, Panellus stipticus, and Russula (five spp.). The six species with chemiluminescence include Russula anthracina, R. cyanoxantha, R. delica, R. foetens, R. ochroleuca, as well as Panellus stipticus.

Antioxidant potential

Results of our survey on the antioxidant potential of agaric species occurring in Iran are shown in Table 1 and Figure 5 (see also Supplementary Table 1 for details on the antioxidant potential of the species and the corresponding references). According to the results, antioxidant activity data is available for 113 species phylogenetically distributed in four orders (Agaricales, Cantharellales, Russulales, Polyporales) and 21 agaric families including 17 families in the Agaricales (Strophariaceae, Hymenogastraceae, Tubariaceae, Bolbitiaceae, Cortinariaceae, Lyophyllaceae, Tricholmataceae, Psathyrellaceae, Agaricaceae, Omphalotaceae, Marasmiaceae, Physalacriaceae, Amanitaceae, Pluteaceae, Mycenaceae, Pleurotaceae, Hydnangiaceae; Figure 1), as well as Hydnaceae (=Cantharellaceae), Russulaceae, Polyporaceae, and Panaceae (Figure 2, families not shown on the tree). However, 445 species still lack information on their antioxidant potential (for a handful of species, the available antioxidant values in the literature had been expressed only by other methods such as TEAC and FRAP; as far as these cases were very few, they were not taken into account here, to keep the rest of the data comparable). The antioxidant potential of 24 species was assayed in this study and their EC50 values are reported in Table 2. Species assayed for the first time in this study included: Agaricus iodosmus, A. pseudopratensis, Agrocybe dura, Cantharellus alborufescens, Cortinarius persoonianus, Hymenopellis radicata, Melanoleuca exscissa, Psathyrella bivelata, Russula emeticolor, and Xerula pudens (Table 2; Supplementary Table 1). In general, the EC50 values of the agaric species ranged between 0.0015 mg/ml (for Psathyrella candolleana) up to 31.42 mg/ml (for Tricholoma terreum).

An external file that holds a picture, illustration, etc.
Object name is fmicb-13-1015440-g005.jpg

Categorization of antioxidant potential of Iranian agaric species. S, strong; M, moderate; W, weak; ND, not determined. See the text for full details.

Among the 113 species having antioxidant data, 27 species could roughly be classified as “strong,” 25 species as “strong to moderate,” 27 species as “moderate,” nine species as “moderate to weak,” and 20 species could be tentatively regarded as “weak” antioxidants (Figure 5). Some of the species in the S category are Agaricus arvensis, Agrocybe dura, Amanita rubescens, Candolleomyces candolleanus, Clitocybe nebularis, Coprinellus micaceus, Coprinopsis picacea, Craterellus tubaeformis, Gymnopilus spectabilis, Hygrophorus eburneus, Hypsizygus ulmarius, Macrocybe gigantean, Marasmiellus peronatus, Mycenastrum corium, Russula anthracina, Russula cyanoxantha, Russula emeticolor, Russula nigricans, Russula rosea, and Xerula pudens (Table 1).

The overall phylogenetic distribution of the agaric species with antioxidant data is shown in Figures 1, ,2.2. Russula nigricans was the only species in our dataset with antioxidant data but lacked LSU/ITS DNA sequences in GenBank, so could not be used in our phylogenetic analyses.

Discussion

In this study, we comprehensively investigated the resources of agarics in Iran. Indeed, no published data have yet been available on number of recorded edible, poisonous, and other agarics in Iran, so the present work fills in these gaps. It is shown that there are currently about 189 edible, 128 poisonous, 254 soil saprotrophic, 172 ectomycorrhizal, 146 wood-inhabiting, 18 leaf/litter-inhabiting, 9 parasitic, and 19 luminescent agaric species in the country. The two species Conocybe olivaceopileata and Inocybe ionolepis were newly added to the Iranian mycota, new DNA sequences were obtained from Iranian samples, and the first phylogenetic reconstruction was provided for agarics of Iran. Evidently, this work is not final and therefore further studies of Iranian fungal diversity would add new species to the list presented here. About 500 agaric species belonging to the five orders Agaricales, Cantharellales, Polyporales, Russulales, and Hymenochaetales were phylogenetically analyzed based on nLSU + ITS sequence datasets. Thorough analyses with additional gene regions and vouchered samples must be utilized in the future to resolve the phylogenetic relationships of Iranian agarics. Yet, the preliminary phylogenetic analysis of agaric species presented here would help to inspire the investigation of many taxa in need of taxonomic revision. Phylogeny backbones can be used for visualization of the phylogenetic distribution of species possessing particular characteristics, herein, antioxidant potential, but also other features in the future. For instance, phylogenetic assessments have been used to screen the pleuromutilin-producing basidiomycete species (Hartley et al., 2009), fungal strains capable of degrading industrial compounds (Navarro et al., 2021), or other natural products (Adamek et al., 2019).

For a few species, the edibility assignment was based on own observation in Iran, but as stated earlier, most of the species were categorized based on available knowledge on central and southern European species. (It might be relevant to note that a number of previous studies have shown a high similarity of the Iranian mycota to that of Europe, e.g., Ghobad-Nejhad et al., 2012; Ghobad-Nejhad and Bernicchia, 2019.) Basically, edibility assignments should always be regarded with caution and it is generally recommended to avoid consuming raw or insufficiently identified mushrooms. There are still noticeable gaps in the knowledge of edible/poisonous mushrooms identification in Iran and the level of education, public awareness, and citizen science is far from medium standards. Concerning usage of edible fungi in Iran, published references are lacking, and our available data is fragmentary. In the reports and statistics on mushroom poisoning in Iran, there is no proper documentation of the species involved or at best, the species are only ambiguously characterized (Kiarsi et al., 2019).

The present work calculated as many as about 172 ectomycorrhizal agaric species for Iran. Ectomycorrhizal fungi are essential components of forest ecosystems to supply the symbiont trees with water and nutrients such as phosphorus and nitrogen, and therefore are highly important in forest sustainability (Varma and Hock, 2013). A large number of ectomycorrhizal agarics are also edible and may be harvested in the wild for culinary use, so they are in need of immediate conservation actions (Vaario and Matsushita, 2021); this is the case, especially with the Cantharellus species in northern Iran (Parad et al., 2018, 2020).

In this study, we listed 146 wood-inhabiting agaric species for Iran. There have been several studies on the diversity and taxonomy of wood-inhabiting aphyllophoroid fungi in Iran (e.g., Hallenberg, 1981; Ghobad-Nejhad and Hallenberg 2012; Amoopour et al., 2016; Ghobad-Nejhad and Langer, 2017; Nazari Mahroo et al., 2018; Ghobad-Nejhad and Bernicchia, 2019) but agarics growing on wood in Iran have not been studied systematically. Wood rotting fungi play a key role in terrestrial carbon cycling and have high potential in biotechnology, enzyme industry, biorefinery, and bioremediation of waste material and recalcitrant compounds (Gadd, 2001; Nguyen et al., 2018; Mäkelä et al., 2021). While Polyporales members are best known for their wood decomposition ability, genomic studies have revealed that several Agaricales taxa have evolved the enzymatic machinery comparable to the white-rot Polyporales (Floudas et al., 2020; Ruiz-Dueñas et al., 2020).

Another aspect surveyed in this study for the Iranian agaric species was bioluminescence. Bioluminescence, i.e., the ability of organisms to emit visible light, has been developed independently in the evolution of different organisms. Concerning fungi, 109 fungal taxa are known to exhibit bioluminescence all of which (except one Xylariales) are white-spored saprotrophic Basidiomycota distinguished in four phylogenetic lineages (Chew et al., 2015; Ke and Tsai, 2022) all sharing the same type of luciferin and luciferase (Oliveira et al., 2012). Interestingly, it has been shown that luminescence could be linked to the antioxidant/radical scavenging defense mechanism against some environmental stress factors (Vydryakova and Bissett, 2016; Oba et al., 2017). Moreover, the fungal bioluminescence capacity can be used in environmental biomonitoring of metals or organic compounds and to develop toxicity tests (Ke and Tsai, 2022).

In this work, a thorough survey was done to reveal the antioxidant potential of 558 agaric species and a new approach was used to combine antioxidant data with phylogeny of the species. Ten species were subjected to antioxidant analyses for the first time, belonging to the genera Agaricus, Agrocybe, Cantharellus, Cortinarius, Hymenopellis, Melanoleuca, Psathyrella, Russula, and Xerula. ABTS assay is one of the most frequently used method for quantification of antioxidant activity of mushrooms. Numerous antioxidant assays have been introduced which are usually classified into two groups based on the mechanism of action: single electron transfer and hydrogen atom transfer (Tan and Lim, 2015; Xiao et al., 2020). Compared to other methods, ABTS has the advantage of involving more or less both mechanisms (Prior et al., 2005). Yet, more examinations are required to fully investigate the antioxidant capacity of the species studied here, and to quantify and characterize the underlying bioactive compounds. Here, we could resume antioxidant data for 20% of agaric species (113 spp.), but noted that 80% of the species (445 spp.) have no antioxidant data. This is noteworthy compared to the fact that antioxidant tests are among the most popular bioactivity assays and it may show that macrofungi have remained little studied in this regard. The highest antioxidant capacities (the lowest EC50 values) were shown by the species categorized as S (27 spp.) and then as SM (25 spp.; Table 1; Figure 5). As noted earliers, in several cases, various EC50 values had been reported in different studies for some species, so that we assigned more than one code for them. We emphasize that such classification is approximate and for detailed comparisons, more precise methods are recommended to be applied. For five species, the EC50 measures ranged significantly, in a way that the code assignment could only be expressed as SMW: Pleurotus djamor, P. eryngii, P. ostreatus, P. pulmonarius, and Russula virescens. Of course, differences in the solvents, standards, modifications in the assays procedures, and even identification issues can account for the different measures under the same species name. Ideally, the identity of the voucher specimens should be fully characterized and the species should be assayed with exactly the same procedure so as to be able to have the best quality comparisons. In general, for the studies where both ABTS and DPPH assays had been conducted, ABTS values seemed to slightly outperform the DPPH values, showing lower EC50 measures. Many of the species in the S or “strong” antioxidant category are edible: Agaricus arvensis, Agrocybe dura, Amanita rubescens, Candolleomyces candolleanus, Clitocybe nebularis, Craterellus tubaeformis, Hygrophorus eburneus, Hypsizygus ulmarius, Macrocybe gigantea, Russula anthracina, R. cyanoxantha, R. emeticolor, R. nigricans, R. rosea, and Xerula pudens (Table 1). Oxidative stress is the root of a cascade of numerous acute and chronic human diseases (Kosanic et al., 2013). Diets rich in natural antioxidants enforce the native defense system and protect against oxidative damage (Ferreira et al., 2009). Mushroom species that are edible and possess high level of biological activities with perspectives on promoting human health are considered noteworthy candidates for developing functional foods and nutra-pharmaceutical products (Kozarski et al., 2015; Lu et al., 2020; Niego et al., 2021; Shaffique et al., 2021; El Sheikha, 2022). It is evident that thorough analyses are needed to fully characterize the mycochemical constitutes of such species and their various bioactivities.

Our results pave the avenue for advanced studies on edible, poisonous, saprotrophic, ectomycorrhizal, wood-inhabiting, parasitic, luminescent, and antioxidant species of agarics of Iran. Twenty percent of the Iranian agaric species possess antioxidant activity, phylogenetically distributed in four orders and 21 agaric families. About 5% of the antioxidant species can be considered strong antioxidants, many of which are also edible and could be utilized for the development of functional foods. Various edible agaric species are grown commercially in the world, while only 1–2 are commonly grown in Iran (personal comm.). Ectomycorrhizal and wood-inhabiting species are important components of forest sustainability. Forests in Iran are very scanty, comprising less than 10% of the total country area, and are on the verge of severe depletion due to numerous anthropological and environmental threats. Yet, Iranian old-growth forests, categorized as part of the northern hemisphere glacial refugia (Ghobad-Nejhad et al., 2012, 2020), harbor a rich reservoir of agaric fungi with diverse characteristics and beneficial aspects. Resources of Iranian agarics provide valuable opportunities for biotechnology and mycochemistry, and should be regarded for preservation and habitat conservation. Our preliminary phylogenetic trees would guide the selection of agaric taxa to be examined in the future for taxonomic revisions, biotechnological applications, and applied phylogeny studies. The thorough survey of antioxidant data of 558 agaric species would provide the state of the knowledge on agarics examined so far and the remaining gaps to be filled in the future.

Data availability statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary material.

Author contributions

MG-N conceptualized and designed the study, performed the molecular study and provided the first draft. VA contributed to the trait assignments. MG-N, VA, and EL wrote the manuscript. MG-N and MM performed the experiments. All authors contributed to the article and approved the submitted version.

Funding

This work was supported by the Center for International Scientific Studies & Collaboration (CISSC), Ministry of Science, Research, and Technology of Iran. The studies of VA were enabled by the support provided to the Moravian Museum by the Ministry of Culture of the Czech Republic as part of its long-term conceptual development program for research institutions (DKRVO, ref. MK000094862).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2022.1015440/full#supplementary-material

References

  • Adamek M., Alanjary M., Ziemert N. (2019). Applied evolution: phylogeny-based approaches in natural products research. Nat. Prod. Rep. 36, 1295–1312. 10.1039/C9NP00027E, PMID: [Abstract] [CrossRef] [Google Scholar]
  • Amoopour M., Ghobad-Nejhad M., Khodaparast S. A. (2016). New records of polypores from Iran, with a checklist of polypores for Gilan Province. Czech Mycol. 68, 139–148. 10.33585/cmy.68203 [CrossRef] [Google Scholar]
  • Antonín V., Ďuriška O., Jančovičová S., Para R., Kudláček T., Tomšovský M. (2022). Multilocus phylogeny and taxonomy of European Melanoleuca subgenus Melanoleuca. Mycologia 114, 114–143. 10.1080/00275514.2021.1966246 [Abstract] [CrossRef] [Google Scholar]
  • Asatiani M. D., Elisashvili V., Songulashvili G., Reznick A. Z., Wasser S. P. (2010). “Higher basidiomycetes mushrooms as a source of antioxidants” in Progress in Mycology. eds. Rai M., Kövics G. (Springer: Dordrecht; ), 311–326. [Google Scholar]
  • Aslim B., Ozturk S. (2011). Phenolic composition and antimicrobial and antioxidant activities of Leucoagaricus leucothites (Vittad.). Wasser. J. Med. Food 14, 1419–1424. 10.1089/jmf.2010.0259, PMID: [Abstract] [CrossRef] [Google Scholar]
  • Bauer R., Begerow D., Sampaio J. P., Weiss M., Oberwinkler F. (2006). The simple-septate basidiomycetes: a synopsis. Mycol. Prog. 5, 41–66. 10.1007/s11557-006-0502-0 [CrossRef] [Google Scholar]
  • Bermudes D., Petersen R. H., Nealson K. H. (1992). Low-level bioluminescence detected in Mycena haematopus basidiocarps. Mycologia 84, 799–802. 10.2307/3760392 [CrossRef] [Google Scholar]
  • Bondar V. S., Shimomura O., Gitelson J. I. (2012). Luminescence of higher mushrooms. J. Siberian Univ. Biol. 5, 331–351. 10.17516/1997-1389-0127 [CrossRef] [Google Scholar]
  • Buswell J. A. (2018). “Mushroom-mediated protection from oxidative damage to DNA” in Biol. Macrofungi. eds. Singh B., Lallawmsanga, Passari A. (Cham: Springer; ), 115–127. [Google Scholar]
  • Cateni F., Gargano M. L., Procida G., Venturella G., Cirlincione F., Ferraro V. (2022). Mycochemicals in wild and cultivated mushrooms: nutrition and health. Phytochem. Rev. 21, 339–383. 10.1007/s11101-021-09748-2 [CrossRef] [Google Scholar]
  • Chang R. (1996). Functional properties of edible mushrooms. Nutr. Rev. 54, S91–S93. 10.1111/j.1753-4887.1996.tb03825.x [Abstract] [CrossRef] [Google Scholar]
  • Chew A. L. C., Desjardin D. E., Tan Y. S., Musa M. Y., Sabaratnam V. (2015). Bioluminescent fungi from peninsular Malaysia – a taxonomic and phylogenetic overview. Fung. Divers. 70, 149–187. 10.1007/s13225-014-0302-9 [CrossRef] [Google Scholar]
  • Crous P. W., Cowan D. A., Maggs-Kölling G., Yilmaz N., Larsson E., Angelini C., et al. . (2020). Fungal planet description sheets: 1112–1181. Persoonia 45, 251–409. 10.3767/persoonia.2020.45.10, PMID: [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Desjardin D. E., Oliveira A. G., Stevani C. V. (2008). Fungi bioluminescence revisited. Photochem. Photobiol. Sci. 7, 170–182. 10.1039/b713328f, PMID: [Abstract] [CrossRef] [Google Scholar]
  • Dogan H. H., Aydin S. (2013). Some biological activities of Lactarius vellereus (Fr.) Fr. In Turkey. Pakistan. J. Biol. Sci. 16, 1279–1286. 10.3923/pjbs.2013.1279.1286 [Abstract] [CrossRef] [Google Scholar]
  • Dress A. W., Flamm C., Fritzsch G., Grünewald S., Kruspe M., Prohaska S. J., et al. . (2008). Noisy: identification of problematic columns in multiple sequence alignments. Algorithms Mol. Biol. 3, 1–10. 10.1186/1748-7188-3-7 [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • El Sheikha A. F. (2022). Nutritional profile and health benefits of Ganoderma lucidum “Lingzhi, Reishi, or Mannentake” as functional foods: current scenario and future perspectives. Foods 11:1030. 10.3390/foods11071030, PMID: [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Ferreira I. C., Barros L., Abreu R. (2009). Antioxidants in wild mushrooms. Curr. Med. Chem. 16, 1543–1560. 10.2174/092986709787909587 [Abstract] [CrossRef] [Google Scholar]
  • Floudas D., Bentzer J., Ahrén D., Johansson T., Persson P., Tunlid A. (2020). Uncovering the hidden diversity of litter-decomposition mechanisms in mushroom-forming fungi. ISME J. 14, 2046–2059. 10.1038/s41396-020-0667-6, PMID: [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Gadd G. M. (2001). Fungi in Bioremediation Cambridge University Press. [Google Scholar]
  • Gardes M., Bruns T. D. (1993). ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhizae and rusts. Molec. Ecol. 2, 113–118. 10.1111/j.1365-294X.1993.tb00005.x, PMID: [Abstract] [CrossRef] [Google Scholar]
  • Gargano M. L., van Griensven L. J., Isikhuemhen O. S., Lindequist U., Venturella G., Wasser S. P., et al. . (2017). Medicinal mushrooms: valuable biological resources of high exploitation potential. Plant Biosyst. 151, 548–565. 10.1080/11263504.2017.1301590 [CrossRef] [Google Scholar]
  • Ghobad-Nejhad M., Bernicchia A. (2019). An outlook on the diversity of polypores shared between Iran and the Mediterranean area. Mycol. Iran. 6, 33–39. 10.22043/MI.2020.121099 [CrossRef] [Google Scholar]
  • Ghobad-Nejhad M., Hallenberg N. (2012). Checklist of Iranian non-gilled/non-gasteroid hymenomycetes (Agaricomycotina). Mycotaxon 119, 1–41. 10.5248/119.493 [CrossRef] [Google Scholar]
  • Ghobad-Nejhad M., Hallenberg N., Hyvönen J., Yurchenko E. (2012). The Caucasian corticioid fungi: level of endemism, similarity, and possible contribution to European fungal diversity. Fung. Divers. 52, 35–48. 10.1007/s13225-011-0122-0 [CrossRef] [Google Scholar]
  • Ghobad-Nejhad M., Langer E. (2017). First inventory of aphyllophoroid basidiomycetes of Zagros forests, W Iran. Plant Biosyst. 151, 844–854. 10.1080/11263504.2016.1211199 [CrossRef] [Google Scholar]
  • Ghobad-Nejhad M., Langer E., Antonín V., Gates G., Noroozi J., Zare R. (2020). The gilled fungi and boletes of Iran: diversity, systematics, and nrDNA data. Mycol. Iran. 7, 1–43. 10.22043/MI.2021.123456 [CrossRef] [Google Scholar]
  • Ghobad-Nejhad M., Langer E., Nakasone K., Diederich P., Nilsson R. H., Rajchenberg M., et al. . (2021). Digging up the roots: taxonomic and phylogenetic disentanglements in Corticiaceae s.s. (Corticiales, Basidiomycota) and evolution of nutritional modes. Front. Microbiol. 12:704802. 10.3389/fmicb.2021.704802, PMID: [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Gitelson J. I., Bondar V. S., Medvedeva S. E., Rodicheva E. K., Vydryakova G. A. (2012). Chemiluminescent emission of tissues of fruit bodies of higher fungi. Dokl. Biochem. Biophys. 443, 105–108. 10.1134/S1607672912020123, PMID: [Abstract] [CrossRef] [Google Scholar]
  • Guo Y. J., Deng G. F., Xu X. R., Wu S., Li S., Xia E. Q., et al. . (2012). Antioxidant capacities, phenolic compounds, and polysaccharide contents of 49 edible macrofungi. Food Func. 3, 1195–1205. 10.1039/c2fo30110e, PMID: [Abstract] [CrossRef] [Google Scholar]
  • Hallenberg N. (1981). Synopsis of wood-inhabiting Aphyllophorales (basidiomycetes) and heterobasidiomycetes from N. Iran. Mycotaxon 12, 473–502. [Google Scholar]
  • Hartley A. J., de Mattos-Shipley K., Collins C. M., Kilaru S., Foster G. D., Bailey A. M. (2009). Investigating pleuromutilin-producing Clitopilus species and related basidiomycetes. FEMS Microb. L. 297, 24–30. 10.1111/j.1574-6968.2009.01656.x [Abstract] [CrossRef] [Google Scholar]
  • He M. Q., Zhao R. L., Hyde K. D., Begerow D., Kemler M., Yurkov A., et al. . (2019). Notes, outline and divergence times of Basidiomycota. Fung. Divers. 99, 105–367. 10.1007/s13225-019-00435-4 [CrossRef] [Google Scholar]
  • Heleno S. A., Barros L., Martins A., Queiroz M. J., Santos-Buelga C., Ferreira I. C. (2012). Phenolic, polysaccharidic, and lipidic fractions of mushrooms from northeastern Portugal: chemical compounds with antioxidant properties. J. Agric. Food Chem. 60, 4634–4640. 10.1021/jf300739m, PMID: [Abstract] [CrossRef] [Google Scholar]
  • Herzog R., Solovyeva I., Bölker M., Lugones L. G., Hennicke F. (2019). Exploring molecular tools for transformation and gene expression in the cultivated edible mushroom Agrocybe aegerita. Mol. Gen. Genomics. 294, 663–677. 10.1007/s00438-018-01528-6, PMID: [Abstract] [CrossRef] [Google Scholar]
  • Hopple J. S., Jr., Vilgalys R. (1999). Phylogenetic relationships in the mushroom genus Coprinus and dark-spored allies based on sequence data from the nuclear gene coding for the large ribosomal subunit RNA: divergent domains, outgroups, and monophyly. Molec. Phylogen. Evol. 13, 1–19. 10.1006/mpev.1999.0634, PMID: [Abstract] [CrossRef] [Google Scholar]
  • Hyde K. D., Xu J., Rapior S., Jeewon R., Lumyong S., Niego A. G. T., et al. . (2019). The amazing potential of fungi, 50 ways we can exploit fungi industrially. Fung. Divers. 97, 1–136. 10.1007/s13225-019-00430-9 [CrossRef] [Google Scholar]
  • Islam T., Ganesan K., Xu B. B. (2019). New insight into mycochemical profiles and antioxidant potential of edible and medicinal mushrooms: a review. Int. J. Med. Mushrooms 21, 237–251. 10.1615/IntJMedMushrooms.2019030079, PMID: [Abstract] [CrossRef] [Google Scholar]
  • Kaewnarin K., Suwannarach N., Kumla J., Lumyong S. (2016). Phenolic profile of various wild edible mushroom extracts from Thailand and their antioxidant properties, anti-tyrosinase and hyperglycaemic inhibitory activities. J. Funct. Foods 27, 352–364. 10.1016/j.jff.2016.09.008 [CrossRef] [Google Scholar]
  • Ke H. M., Tsai I. J. (2022). Understanding and using fungal bioluminescence–recent progress and future perspectives. Curr. Opin. Green Sust. Chem. 33:100570. 10.1016/j.cogsc.2021.100570 [CrossRef] [Google Scholar]
  • Kiarsi M., Ostadtaghizadeh A., Aghababaeian H., Khaleghy M., Araghi L. (2019). Mushroom poisoning of 1151 people in Iran, the lessons learnt: a brief report of cases and the literature review. Iran Red Crescent Med J 21:e91977. 10.5812/ircmj.91977 [CrossRef] [Google Scholar]
  • Kirk P. M., Cannon P. F., Minter D. W., Stalpers J. A. (2008). Dictionary of the Fungi, 10th ed.; CABI: Wallingford, p. 12. [Google Scholar]
  • Kosanic M., Rankovic B., Dasic M. (2013). Antioxidant and antimicrobial properties of mushrooms. Bulg. J. Agric. Sci. 19, 1040–1046. [Google Scholar]
  • Kotlobay A. A., Sarkisyan K. S., Mokrushina Y. A., Marcet-Houben M., Serebrovskaya E. O., Markina N. M. (2018). Genetically encodable bioluminescent system from fungi. Proc. Natl. Acad. Sci. 115, 12728–12732. 10.1073/pnas.1803615115, PMID: [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Kozarski M., Klaus A., Jakovljevic D., Todorovic N., Vunduk J., Petrović P., et al. . (2015). Antioxidants of edible mushrooms. Molecules 20, 19489–19525. 10.3390/molecules201019489, PMID: [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Kück U., Bloemendal S., Teichert I. (2014). Putting fungi to work: harvesting a cornucopia of drugs, toxins, and antibiotics. PLoS Pathog. 10:e1003950. 10.1371/journal.ppat.1003950, PMID: [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Lu H., Lou H., Hu J., Liu Z., Chen Q. (2020). Macrofungi: a review of cultivation strategies, bioactivity, and application of mushrooms. Compr. Rev. Food Sci. Food Saf. 19, 2333–2356. 10.1111/1541-4337.12602, PMID: [Abstract] [CrossRef] [Google Scholar]
  • Madeira F., Park Y. M., Lee J., Buso N., Gur T., Madhusoodanan N., et al. . (2019). The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47, W636–W641. 10.1093/nar/gkz268, PMID: [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Mäkelä M. R., Hildén K. S., Kuuskeri J. (2021). Fungal lignin-modifying peroxidases and H2O2-producing enzymes. Encycl. Mycol. 2, 247–259. 10.1016/B978-0-12-809633-8.21127-8 [CrossRef] [Google Scholar]
  • Malakauskienė A. (2018). Reported and potential bioluminescent species in Lithuania. Biologija 64, 181–190. 10.6001/biologija.v64i3.3823 [CrossRef] [Google Scholar]
  • Mihail J. D. (2015). Bioluminescence patterns among north American Armillaria species. Fung. Biol. 119, 528–537. 10.1016/j.funbio.2015.02.004, PMID: [Abstract] [CrossRef] [Google Scholar]
  • Miller M. A., Pfeiffer W., Schwartz T. (2010). “Creating the CIPRES science gateway for inference of large phylogenetic trees,” in Proceedings of the Gateway Computing Environments Workshop (GCE), 14 November 2010, New Orleans, LA, 1–8.
  • Moncalvo J. M., Vilgalys R., Redhead S. A., Johnson J. E., James T. Y., Catherine Aime M., et al. . (2002). One hundred and seventeen clades of euagarics. Mol. Phyl. Evol. 23, 357–400. 10.1016/S1055-7903(02)00027, PMID: [Abstract] [CrossRef] [Google Scholar]
  • Navarro D., Chaduli D., Taussac S., Lesage-Meessen L., Grisel S., Haon M., et al. . (2021). Large-scale phenotyping of 1,000 fungal strains for the degradation of non-natural, industrial compounds. Comm. Biol. 4, 1–10. 10.1038/s42003-021-02401-w [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Nazari Mahroo S., Ghobad-Nejhad M., Khodaparast S. A. (2018). A survey on Peniophora (Russulales, Basidiomycota) species in Iran. Nova Hedwig. 107, 257–270. 10.1127/nova_hedwigia/2018/0468 [CrossRef] [Google Scholar]
  • Nguyen K. A., Wikee S., Lumyong S. (2018). Brief review: lignocellulolytic enzymes from polypores for efficient utilization of biomass. Mycosphere 9, 1073–1088. 10.5943/mycosphere/9/6/2 [CrossRef] [Google Scholar]
  • Niego A. G., Rapior S., Thongklang N., Raspé O., Jaidee W., Lumyong S., et al. . (2021). Macrofungi as a nutraceutical source: promising bioactive compounds and market value. J. Fungi 7:397. 10.3390/jof7050397, PMID: [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Nilsson R. H., Tedersoo L., Abarenkov K., Ryberg M., Kristiansson E., Hartmann M. (2012). Five simple guidelines for establishing basic authenticity and reliability of newly generated fungal ITS sequences. MycoKeys 4, 37–63. 10.3897/mycokeys.4.3606 [CrossRef] [Google Scholar]
  • Nylander J. A. A. (2004). MrModeltest v2. Program Distributed by the Author Sweden: Evolutionary Biology Centre, Uppsala University. [Google Scholar]
  • Oba Y., Suzuki Y., Martins G. N., Carvalho R. P., Pereira T. A., Waldenmaier H. E., et al. . (2017). Identification of hispidin as a bioluminescent active compound and its recycling biosynthesis in the luminous fungal fruiting body. Photochem. Photobiol. Sci. 16, 1435–1440. 10.1039/C7PP00216E, PMID: [Abstract] [CrossRef] [Google Scholar]
  • Oliveira A. G., Desjardin D. E., Perry B. A., Stevani C. V. (2012). Evidence that a single bioluminescent system is shared by all known bioluminescent fungal lineages. Photochem. Photobiol. Sci. 11, 848–852. 10.1039/c2pp25032b, PMID: [Abstract] [CrossRef] [Google Scholar]
  • Öztürk M., Duru M. E., Kivrak Ş., Mercan-Doğan N., Türkoglu A., Özler M. A. (2011). In vitro antioxidant, anticholinesterase and antimicrobial activity studies on three Agaricus species with fatty acid compositions and iron contents: a comparative study on the three most edible mushrooms. Food Chem. Toxic. 49, 1353–1360. 10.1016/j.fct.2011.03.019, PMID: [Abstract] [CrossRef] [Google Scholar]
  • Parad G. A., Ghobad-Nejhad M., Tabari M., Yousefzadeh H., Esmaeilzadeh O., Tedersoo L., et al. . (2018). Cantharellus alborufescens and C. ferruginascens (Cantharellaceae, Basidiomycota) new to Iran. Cryptogam. Mycol. 39, 299–310. 10.7872/crym/v39.iss3.2018.299 [CrossRef] [Google Scholar]
  • Parad G. A., Tabari M., Ghobad-Nejhad M., Esmailzadeh O., Yousefzadeh H. (2020). Environmental factors affecting the presence of edible Zarde-Kija mushroom (Cantharellus alborufescens) in plain forest of Noor (Mazandaran). Iran. J. Forest 12, 1–15. [Google Scholar]
  • Pointing S. B., Pelling A. L., Smith G. J. D., Hyde K. D., Reddy C. A. (2001). Screening of basidiomycetes and xylariaceous fungi for lignin peroxidase and laccase gene-specific sequences. Mycol. Res. 109, 115–124. 10.1017/S0953756204001376 [Abstract] [CrossRef] [Google Scholar]
  • Prior R. L., Wu X., Schaich K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 53, 4290–4302. 10.1021/jf0502698, PMID: [Abstract] [CrossRef] [Google Scholar]
  • Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231–1237. 10.1016/S0891-5849(98)00315-3, PMID: [Abstract] [CrossRef] [Google Scholar]
  • Rodríguez-Seoane P., Torres Perez M. D., Fernández de Ana C., Sinde-Stompel E., Domínguez H. (2022). Antiradical and functional properties of subcritical water extracts from edible mushrooms and from commercial counterparts. Int. J. Food Sci. Technol. 57, 1420–1428. 10.1111/ijfs.15383 [CrossRef] [Google Scholar]
  • Ronquist F., Teslenko M., Van Der Mark P., Ayres D. L., Darling A., Höhna S., et al. . (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542. 10.1093/sysbio/sys029, PMID: [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Ruiz-Dueñas F. J., Barrasa J. M., Sánchez-García M., Camarero S., Miyauchi S., Serrano A., et al. . (2020). Genomic analysis enlightens Agaricales lifestyle evolution and increasing peroxidase diversity. Mol. Biol. Evol. 38, 1428–1446. 10.1093/molbev/msaa301, PMID: [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Sánchez C. (2017). Reactive oxygen species and antioxidant properties from mushrooms. Synth. Syst. Biotechnol. 2, 13–22. 10.1016/j.synbio.2016.12.001, PMID: [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Sandargo B., Chepkirui C., Cheng T., Chaverra-Muñoz L., Thongbai B., Stadler M., et al. . (2019). Biological and chemical diversity go hand in hand: basidiomycota as source of new pharmaceuticals and agrochemicals. Biotechnol. Adv. 37:107344. 10.1016/j.biotechadv.2019.01.011, PMID: [Abstract] [CrossRef] [Google Scholar]
  • Shaffique S., Kang S. M., Kim A. Y., Imran M., Aaqil Khan M., Lee I. J. (2021). Current knowledge of medicinal mushrooms related to antioxidant properties. Sustainability 13:7948. 10.3390/su13147948 [CrossRef] [Google Scholar]
  • Shimomura O. (1991). Superoxide-triggered chemiluminescence of extract of luminous mushroom Panellus stipticus after treatment with methylamine. J. Exp. Bot. 42, 555–560. 10.1093/jxb/42.4.555 [CrossRef] [Google Scholar]
  • Silvestro D., Michalak I. (2010). raxmlGUI: a graphical front-end for RAxML. Available at: http://sourceforge.net/projects/raxmlgui/ (Accessed July 15, 2022).
  • Tan J. B., Lim Y. Y. (2015). Critical analysis of current methods for assessing the in vitro antioxidant and antibacterial activity of plant extracts. Food Chem. 172, 814–822. 10.1016/j.foodchem.2014.09.141, PMID: [Abstract] [CrossRef] [Google Scholar]
  • Thu Z. M., Myo K. K., Aung H. T., Clericuzio M., Armijos C., Vidari G. (2020). Bioactive phytochemical constituents of wild edible mushrooms from Southeast Asia. Molecules 25:1972. 10.3390/molecules25081972, PMID: [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Treu R., Agerer R. (1990). Culture characteristics of some Mycena species. Mycotaxon 38, 279–309. [Google Scholar]
  • Vaario L. M., Matsushita N. (2021). Conservation of edible ectomycorrhizal mushrooms: understanding of the ECM fungi mediated carbon and nitrogen movement within forest ecosystems. Nitrogen Agric.-Physiol. Agric. Ecol. Aspects. 10.5772/intechopen.95399 [CrossRef] [Google Scholar]
  • Varga T., Krizsán K., Földi C., Dima B., Sánchez-García M., Sánchez-Ramírez S., et al. . (2019). Megaphylogeny resolves global patterns of mushroom evolution. Nat. Ecol. Evol. 3, 668–678. 10.1038/s41559-019-0834-1, PMID: [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
  • Varma A., Hock B. (2013). Mycorrhiza: Structure, Function, Molecular Biology and Biotechnology. Germany: Springer Science & Business Media. [Google Scholar]
  • Vydryakova G. A., Bissett J. (2016). Differential regulation of proteins and a possible role for manganese superoxide dismutase in bioluminescence of Panellus stipticus revealed by suppression subtractive hybridization. Adv. Microbiol. 06, 613–626. 10.4236/aim.2016.69061 [CrossRef] [Google Scholar]
  • Wang Y., Xu B. (2014). Distribution of antioxidant activities and total phenolic contents in acetone, ethanol, water and hot water extracts from 20 edible mushrooms via sequential extraction. Austin J. Nutr. Food Sci. 2:5. [Google Scholar]
  • Webster J., Weber R. W. S. (2007). Introduction to Fungi; Cambridge University Press: Cambridge. [Google Scholar]
  • White T. J., Bruns T., Lee S., Taylor J. W. (1990). “Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics” in PCR Protocols: A Guide to Methods and Applications. eds. Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. (New York, NY: Academic Press; ), 315–322. [Google Scholar]
  • Wu F., Zhou L. W., Yang Z. L., Bau T., Li T. H., Dai Y. C. (2019). Resource diversity of Chinese macrofungi: edible, medicinal and poisonous species. Fung. Divers. 98, 1–76. 10.1007/s13225-019-00432-7 [CrossRef] [Google Scholar]
  • Xiao F., Xu T., Lu B., Liu R. (2020). Guidelines for antioxidant assays for food components. Food Front. 1, 60–69. 10.1002/fft2.10 [CrossRef] [Google Scholar]

Articles from Frontiers in Microbiology are provided here courtesy of Frontiers Media SA

Citations & impact 


This article has not been cited yet.

Impact metrics

Jump to Data

Alternative metrics

Altmetric item for https://www.altmetric.com/details/138295066
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/138295066

Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.