

NIKON CORPORATION

Precision Equipment Company

Nikon EUVL Development Progress Update

Takaharu Miura Katsuhiko Murakami, Hidemi Kawai, Yoshiaki Kohama, Kenji Morita, Yukiharu Ohkubo

2nd Development Department Development Headquarters Precision Equipment Company NIKON CORPORATION

2009 EUVL Symposium @Prague, Czech Republic October 20, 2009 T. Miura

Slide 1

Outline

- Nikon EUVL roadmap
- EUV1 Imaging / Overlay capability
- EUVL technology readiness
- EUV HVM tool
- Summary

Nikon Lithography Roadmap

NIKON CORPORATION Precision Equipment Company

Nikon EUV Development Roadmap

NIKON CORPORATION Precision Equipment Company

2009 EUVL Symposium @Prague, Czech Republic October 20, 2009 T. Miura

Outline

Nikon EUVL roadmap

EUV1 Imaging / Overlay capability

EUVL technology readiness

EUV HVM tool development

Summary

EUV1 Development Status

Nikon

2009 EUVL Symposium @Prague, Czech Republic October 20, 2009 T. Miura

Overlay Evaluation on Actual Device Structure

Courtesy of Selete

Stable overlay performance achieved.

Slide 7

NA 0.25 Imaging Simulation (Conv. vs. Dipole)

Image Quality: Wavelength: 13.5 nm, NA: 0.25, Mask contrast: 1:100, DC-Flare: 11%

Refer to "Next Step for Beyond 22nm Node Application Using Full Field Exposure Tool" by K. Tawarayama, et al, on Oct. 20.

2009 EUVL Symposium @Prague, Czech Republic October 20, 2009 T. Miura

2009 EUVL Symposium @Prague, Czech Republic October 20, 2009 T. Miura

Outline

Nikon EUVL roadmap

EUV1 Imaging / Overlay capability

EUVL technology readiness

EUV HVM tool development

Summary

Evaluation of EUV Technology Readiness

Readiness classification for HVM implementation.

Manufacturable solutions exist, and are being optimized.

Manufacturable solutions are known but needing further development.

Manufacturable solutions are not known. Not ready for HVM.

	Item	Issue	Readiness	Remarks
Optics	PO	WFE		EUV1 PO data
		Flare		EUV1 PO data
		NA		High NA. Fabrication and metrology
Platform	Overlay	Optics stability		Thermal control
		Metrology stability		Thermal control
		Reticle stability		Chuck and particle control
	Imaging	CDU		Focus and dose control
	Throughput	PO and IU transmittance		Reflectivity and total efficiency
		Stages		New platform No air fluctuation
	CoO	Optics lifetime		Modeling, contamination control
		Optics consumable cost		Cleaning and refurbishment

Optics: PO Readiness

NIKON CORPORATION Precision Equipment Company

EUV1 PO: WFE and Flare Performance -0.15-0.10 -0.05 -0.00 -0.05 -0.10 -0.15 -0.22 WFE: 0.4 nm RMS (average) Min. 0.3nm RMS ~ Max. 0.5nm RMS LSFR MSFR HSFR 1.00E+12 **Kirk flare** Flare 1.00E+10 estimate/measure) 1.00E+08 70pmRMS **PO#1** EUV1 10% 15% / 16% ↓ 1.00E+06 66pmRMS Ĩ, 8%/8.5% EUV1 **PO#2** 6% 1.00E+04 27pmRMS 2µm Kirk pattern in bright field 1.00E+02 Expected WFE: 1.00E+00 0.2nm RMS

EUV1 PO performance reaching close to HVM requirements.

1.00E-08 1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01

1.00E-02

Optics: High NA Imaging Simulation

NIKON CORPORATION Precision Equipment Company

2009 EUVL Symposium @Prague, Czech Republic October 20, 2009 T. Miura

NIKON CORPORATION Precision Equipment Company

CoO: Contamination Control Strategy

- 1. Long-life anti-oxidation capping layer
- 2. Carbon contamination modeling
- 3. Carbon-film suppression and removal using EUV+O₂ in-situ cleaning
 - -Oxygen gas introduction under EUV irradiation can suppress carbon deposition onto mirrors.
- 4. Experimentation facilities
 - "New SUBARU" in Himeji (Univ. of Hyogo)
 - Currently shifted to new SLS facility "SAGA-LS" in Kyushu for experiments.

SR-beam: SAGA-LS BL18 Light intensity:70mW/mm²

CoO: Carbon Contamination Modeling

Carbon contamination growth rate depends on photon supply and contaminant material supply.

•The lesser of two supplies determines the growth rate.

•Such a behavior was confirmed with experimental data using a synchrotron source.

Cleaning

Ru capping layer

Mitigation 1.01 Reflectance relative change Hexadecane Oxygen 1.00 50 100 50 100 0.99 CH:4e-6Pa without O2 CH:4e-6Pa with O2 Dose/(J/mm²) 0.98 $Dose/(J/mm^2)$

Carbon contamination deposition is suppressed by O2 injection. Deposited carbon can be removed by O2 injection.

CoO: Anti-oxidation Capping Layer

NIKON CORPORATION Precision Equipment Company

EUVΛ

Supported by NEDO

Capping layer Mo/Si multilayer

	Cap	$(\Delta R/R_0)/(1kJ/mm^2)$
1	Nb ₂ O ₅	-0.19 ×10 ⁻²
2	TiO ₂	-0.07 ×10 ⁻²
3	Cr ₂ O ₃	0.43×10^{-2}
4	CeO ₂	0.53×10^{-2}
5	V ₂ O ₅	0.59×10^{-2}
6	Rh ₂ O ₃	1.12×10^{-2}
7	Mn ₂ O ₃	2.48×10^{-2}
8	RuO ₂	2.67 ×10 ⁻²
9	WO ₃	2.73 ×10 ⁻²
10	С	3.55 ×10 ⁻²

Higher durability to Oxidation

In EUV irradiation test of oxide materials, Nb2O5 and TiO2 showed good durability to oxidation.

2009 EUVL Symposium @Prague, Czech Republic

CoO: UV Dry Carbon Cleaning

NIKON CORPORATION Precision Equipment Company

Contaminated mirror recovered its initial reflectivity after UV dry cleaning.

2009 EUVL Symposium @Prage, Czech Republic October 20, 2009 T. Miura

Outline

Nikon EUVL roadmap

- EUV1 Imaging / Overlay capability
- EUVL technology readiness
- EUV HVM tool development

Summary

EUV Development Scenario

Throughput Evolution

Total Number of Mirrors vs. Throughput

Throughput: High-efficiency RET

Specially designed RET fly's eye mirror system minimizes photon loss.
Small etendue of source is preferable.

2009 EUVL Symposium @Prague, Czech Republic October 20, 2009 T. Miura

EUV Light Source Status

Up to EUV Source WS, May 2009

	CYMER	GIGAPHOTON	Philips/Xtreme
Туре	LPP	LPP	DPP
	Sn, Droplet	Sn, Droplet	Sn, Rotating disc
Rep. rate	50 kHz	100 kHz	12 kHz Demonstrated 40 kHz Feasibility of 100 kHz
Drive laser	12 kW	13kW	
power	CO2	CO2	-
EUV power*	100W @IF 1ms burst, CE=3.0% 51 hours run 20W@IF, duty 80% 400ms on	60W@IF burst, CE=2.5% 4 hours run Magnetic field DMT Double pulse	500W@plasma 50W@IF, duty 100% Increased CE to 3-4% 1 hour run
Plasma size	210 um (1/e2)	(~100 um)	< 1.3 mm Possible ~ 0.5 mm
Collector mirror	Multilayer	Multilayer	Grazing incidence

* Estimated IF power based on a transmissibility of a collector mirror.

System integrated performance with long term operation must be demonstrated.

Joint requirement: >115W@IF(5mJ/cm2), >180W@IF(10mJ/cm2)

Reticle Particle Protection

- Reticle in Cassette (RC) in Carrier (RSP200). 1.
- 2. Cassette protects the reticle in load locks.
- Top cover stays with reticle during in-tool handling. 3.
- Reticle remains in RC in library to protect against vacuum accidents 4. and contamination.

Dual Pod Concept by Canon and Nikon

SEMI standardization completed.

EUVL HVM Development Issues

NIKON CORPORATION Precision Equipment Company

Optics improvement

- NA, WFE, flare, RET, distortion

Throughput improvement

- Optical transmittance
- Mirror contamination control
- High speed platform

CoO issue

- Consumable cost and lifetime

Overlay improvement

- Thermal stability, heat rejection and cooling
- Mask and chuck (OPD and IPD)

Facility issues

Light source utility and space

