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The MPAS integration scheme is similar to that in 
the Advanced Research WRF model

• split-explicit Runge-Kutta time integration
• C-grid spatial staggering 

MPAS differs from WRF in using
• generalized height coordinate.
• spherical centroidal Voronoi mesh
• a horizontally unstructured mesh

MPAS-Atmosphere Solves the 
Fully-Compressible Nonhydrostatic Equations



Topics for Today

• Centroidal Voronoi tessellation (horizontal mesh)
• High-resolution atmospheric simulations: Convection
• The C-grid problem with hexagons
• Transport on unstructured meshes
• MPAS vertical coordinate
• Strengths and weaknesses of this approach

MPAS-Atmosphere Solves the 
Fully-Compressible Nonhydrostatic Equations



Unstructured spherical centroidal Voronoi 
Tesselation (SCVT)
• Mostly hexagons, some pentagons and 7-sided cells
• Cell centers are at cell center-of-mass (centroidal).
• Cell edges bisect lines connecting cell centers; 

perpendicular.
• Uniform resolution – traditional icosahedral mesh.

(S)CVTs are generated using Lloyd’s iteration method 
and a user-specified density function that controls 
the local cell-center spacing

MPAS-Atmosphere Solves the 
Fully-Compressible Nonhydrostatic Equations



MPAS and an Interesting Mesh

IBM GRAF (Global High Resolution Forecast) System - MPAS mesh (3-15 km cell spacing)
Physics: Scale aware nTiedtke CP, YSU PBL, NOAH LSM, WSM6 microphysics

IBM GRAF System mesh



Atmospheric Convection and MPAS

MPAS was designed for global applications 
(e.g. SCVTs avoid pole problems)

Reflectivity
NOAA SPC archive

2015-05-17 06 UTC

MPAS 1 km AGL reflectivity
Forecasts valid 2015-05-17 6 UTC

6 h forecast

54 h forecast

102 h forecast

MPAS was designed to simulate 
atmospheric convection with fidelity 
similar to state-of-the-art cloud models at
• Convection-permitting resolutions
• LES resolutions

MPAS was designed for variable 
resolution global and regional 
applications



Spatial scales of convective updrafts

Supercells:

Midlatitude continental 
(excluding supercells):



Spatial scales of convective updrafts

Tropical 
cyclones:

Tropical convection  
(mostly maritime)      
(excluding tropical 
cyclones):

Large ( > 2 km) updrafts are “exceedingly rare”



Resolving Atmospheric Convection

D

d < D

Updraft diameter: D

Eddies responsible for 
entrainment/detrainment:
diameter d < D

Mesh spacing needed to 
resolve turbulent eddies: 
h << d, D

D:  Severe convection - 5-8 km
Typical midlatitude cells - 2-4 km
Tropical cells - 1-2 km
Shallow convection - 0.1-1 km

Resolutions needed to resolve deep convection: h ~ O(100 m)
Resolutions needed to resolve shallow convection: h ~ O(10 m)



W spectra from global MPAS simulations

w spectra, troposphere 
(8.5 -10.5 km)
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Peaks in the tails of the W spectra 
shift to higher wavenumbers with 
increasing resolution – solutions 
are not converged

W spectra peaks at around 4 dx



A – grid C – grid

Linearized shallow-water equations

2Dx wave in h

2Dx wave in u



0 0.25 0.5 0.75 1.0

0

0.2

0.4

0.6

0.8

1.0

exact
C grid
A grid

exact
C grid
A grid

0 0.25 0.5 0.75 1.0

Linearized shallow-water equations



Why Use the C-Grid?

• Critical phenomena (convection) are at the 
margins of the mesh resolution
• C-grid has twice the effective resolution of 

the A-grid for divergent modes
• The timestep restriction of the C-grid can 

be addressed using forward-backward 
differencing (pressure-gradient –
divergence)
• Integration cost scales as Dx3, so using a 

C-grid staggering arguably produces the 
most efficient solver



Intermission
Main points from the first half

Convection permitting resolution is not convection resolving resolution

The C-grid staggering is used in most convective-scale models because 
it better represents divergent motions at the margins of the resolution.

C-grids are arguably more efficient than other configurations for 
convection.
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Simplest approach: Construct tangential velocities 
from weighted sum of the four nearest neighbors.

Operators on the Voronoi Mesh
‘Nonlinear’ Coriolis force

Linear piece  f  k x VH , consider u13

We need to reconstruct the tangential velocity 

Result: Physically stationary geostrophic modes 
(geostrophically-balanced flow) will not be stationary 
in the discrete system; the solver is unusable.

(see Nickovic et al MWR 2002)



Hexagonal C-Grid Problem:
Non-Stationary Geostrophic Mode

Most obvious tangential velocity reconstruction

(see Nickovic et al MWR 2002)



New tangential velocity reconstruction (Thuburn, 2008 JCP)

Hexagonal C-Grid Problem:
Non-Stationary Geostrophic Mode



We construct tangential velocities from a weighted sum of 
normal velocities on edges of the adjacent cells.

Linear piece: f k x VH

We choose the weights such that the divergence in 
the triangle is the area-weighted sum of the 
divergence in the Voronoi cells sharing the vertex. A

B

u11 u 1

u13

u10

u14u15
u 9

u 2

u 3

u 5

u 4

u 6

u 7

u 8

C

Result: geostrophic modes are stationary; local and 
global mass and PV conservation is satisfied on the 
dual (triangular) mesh (for the  SW equations).

The general tangential velocity reconstruction also 
allows for PV, enstrophy and energy* conservation 
in the nonlinear SW solver.

Thuburn et al (2009 JCP)
Ringler et at (2010, JCP)

Operators on the Voronoi Mesh
‘Nonlinear’ Coriolis force



Why does this work?
Consider the linearized SW equations

Divergences on primary 
and dual meshes must be 
consistent to maintain 
stationarity
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Thuburn et al (2009 JCP)
Ringler et at (2010, JCP)

Operators on the Voronoi Mesh
‘Nonlinear’ Coriolis force

We construct tangential velocities from a weighted sum of 
normal velocities on edges of the adjacent cells.

Linear piece: f k x VH

We choose the weights such that the divergence in 
the triangle is the area-weighted sum of the 
divergence in the Voronoi cells sharing the vertex.



Nonlinear term:

The general tangential velocity 
reconstruction produces a consistent 
divergence on the primal and dual grids, and 
allows for PV, enstrophy and energy* 
conservation in the nonlinear SW solver.

Tangential 
velocity 
reconstruction:

Operators on the Voronoi Mesh
‘Nonlinear’ Coriolis force
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Thuburn et al (2009 JCP)
Ringler et at (2010, JCP)
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Flux divergence, transport, and 
Runge-Kutta time integration

1. Scalar edge-flux value y is the weighted sum 
of cell values from cells that share edge and all 
their neighbors.

2. An individual edge-flux is used to update the 
two cells that share the edge.

3. Three edge-flux evaluations and cell updates 
are needed to complete the Runge-Kutta
timestep. 

4. Monotonic constraint requires checking the 
cell-value update and renormalizing edge-
fluxes if the cell updates are outside specific 
bounds (on the final RK3 update).
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(Skamarock and Gassmann, MWR 2011)



• The quality of solutions for 
convection-permitting integrations 
is strongly dependent on the 
transport schemes for scalars 
employed in the solver.
• We employ flux operators similar 

to those used in WRF but adapted 
to the unstructured Voronoi mesh 
using least-squares fit 
polynomials.

10242 cells
2nd order scheme 3rd order scheme, β=0.25 4th order scheme

2nd order scheme 3rd order scheme, β=0.25 4th order scheme
40962 cells

Slotted Cylinder Test Case

0 200 400 600 800 1000

Solid-body rotation, 1 revolution around the sphere
(Skamarock and Gassmann, MWR 2011)

Conservative Transport with 
RK3 Time Integration: Examples



basic scheme t=T/2 basic scheme t=T

monotonic, t=T/2 monotonic, t=T

163842 cells, ~ 60 km cell spacing (~ 1/2 deg), Cr max ~ 0.8

Conservative Transport with 
RK3 Time Integration: Examples

(Lauritzen et al, GMD 2014)



Multiple passes of simple Laplacian smoother at each     level:

Smoothed Terrain-Following (STF) hybrid Coordinate

STF progressively smooths coordinate surfaces while 
transitioning to a height coordinate

BTF

STF

Specification of terrain:

• High resolution terrain data (30 arcsec) averaged over grid-cell area
• Terrain smoothing with one pass of a 4th order Laplacian

Controls rate at which terrain influences are 
attenuated with height

Terrain influence that represents increased 
smoothing of the actual terrain with height

MPAS Vertical Mesh



MPAS -Tibetan Plateau, 28o N

Basic terrain-following (BTF) coordinate

Smoothed hybrid  terrain-following (STF) coordinate (Model top is at 30 km)

15 km grid 7.5 km grid 3 km grid



Atmospheric Convection and MPAS

Reflectivity
NOAA SPC archive

2015-05-17 06 UTC

MPAS 3 km
54 h forecast

MPAS was designed to 
simulate atmospheric 
convection with fidelity 
similar to state-of-the-art 
cloud models.

At what mesh spacing does 
MPAS reproduce observed 
convective structures?

Midlatitude convection:
3 km mesh spacing.



Strengths

• Convection-permitting simulations
• Flexibility 

- global 
- regional
- variable-resolution 
- 2D and 3D Cartesian planes

• Conservation properties
• Explicit solver is easy to configure
• Solver scales well, easily adaptable to 

accelerators (GPUs)

The MPAS SCVT approach

Weaknesses

• Mesh generation is very expensive
• Novelty of an unstructured mesh

- Standard pre- and post-processors 
are not unstructured-mesh friendly

• Perceived high integration cost
- More than balanced by increased 

accuracy at convection–permitting 
resolutions (?)


