# Global Nonhydrostatic Atmospheric Modeling using Spherical Centroidal Voronoi Meshes

William C. Skamarock National Center for Atmospheric Research Meoscale and Microscale Meteorology Laboratory







### MPAS-Atmosphere Solves the Fully-Compressible Nonhydrostatic Equations



The MPAS integration scheme is similar to that in the Advanced Research WRF model

- split-explicit Runge-Kutta time integration
- C-grid spatial staggering MPAS differs from WRF in using
  - generalized height coordinate.
  - spherical centroidal Voronoi mesh
  - a *horizontally unstructured* mesh



## MPAS-Atmosphere Solves the Fully-Compressible Nonhydrostatic Equations



#### Topics for Today

- Centroidal Voronoi tessellation (horizontal mesh)
- High-resolution atmospheric simulations: Convection
- The C-grid problem with hexagons
- Transport on unstructured meshes
- MPAS vertical coordinate
- Strengths and weaknesses of this approach



## MPAS-Atmosphere Solves the Fully-Compressible Nonhydrostatic Equations

Unstructured spherical centroidal Voronoi

- Tesselation (SCVT)
- Mostly *hexagons*, some pentagons and 7-sided cells
- Cell centers are at cell center-of-mass (centroidal).
- Cell edges bisect lines connecting cell centers; perpendicular.
- Uniform resolution traditional icosahedral mesh.

(S)CVTs are generated using Lloyd's iteration method and a user-specified density function that controls the local cell-center spacing



#### MPAS Model for Prediction Across Scales

## MPAS and an Interesting Mesh

### IBM GRAF System mesh



The Weather Company An IBM Business IBM GRAF (Global High Resolution Forecast) System - MPAS mesh (3-15 km cell spacing) Physics: Scale aware nTiedtke CP, YSU PBL, NOAH LSM, WSM6 microphysics

## Atmospheric Convection and MPAS

MPAS was designed for global applications (e.g. SCVTs avoid pole problems)

MPAS was designed to simulate atmospheric convection with fidelity similar to state-of-the-art cloud models at

- Convection-permitting resolutions
- LES resolutions

MPAS was designed for variable resolution global and regional applications



## Spatial scales of convective updrafts

|                                |                   | Characteristic<br>diameter (km) |              |  |
|--------------------------------|-------------------|---------------------------------|--------------|--|
|                                |                   | a = avg                         |              |  |
| Dí                             | T                 | m = median                      | Max diameter |  |
| Reference                      | Type              | s = single case                 | (km)         |  |
| Browning et al. (1976)         | in situ and radar | 5 (a)                           | 8            |  |
| Brandes (1981)                 | radar             | 11 (s) —                        |              |  |
| Nelson $(1983)$                | radar             | $\sim \! 10 \ (s)$              |              |  |
| Musil et al. $(1986)$          | in situ           | 14 (s)                          |              |  |
| Kubesh et al. $(1988)$         | in situ and radar | $\sim 8 (s)$                    |              |  |
| Dowell and Bluestein (2002)    | radar             | 8 (s) —                         |              |  |
|                                |                   |                                 |              |  |
|                                |                   | Characteristic                  |              |  |
|                                |                   | diameter $(km)$                 |              |  |
|                                |                   | a = avg                         |              |  |
|                                |                   | m = median                      | Max diameter |  |
| Reference                      | Type              | s = single case                 | (km)         |  |
| Byers and Braham (1949)        | in situ           | $\sim 4$                        |              |  |
| Kyle et al. (1976)             | in situ           | 2.8 (m)                         | 4.6          |  |
| Heymsfield and Hjelmfelt (1981 | ) in situ         | 4 (m)                           | 6            |  |
| Musil et al. (1991)            | in situ           | 3(a)                            | 15           |  |
| Yuter and Houze (1995)         | radar             | $\sim 3 \text{ (m)}$            | 8            |  |

#### Supercells:

# Midlatitude continental (excluding supercells):

## Spatial scales of convective updrafts

|                                | Characteristic                     |                        |                 |                 |  |
|--------------------------------|------------------------------------|------------------------|-----------------|-----------------|--|
|                                |                                    |                        | diameter (km)   |                 |  |
|                                |                                    |                        | a = avg         |                 |  |
|                                |                                    |                        | m = median      | Max diameter    |  |
|                                | Reference                          | Type                   | s = single case | $(\mathrm{km})$ |  |
| Tropical                       |                                    |                        |                 |                 |  |
|                                | Jorgensen et al. $(1985)$          | in situ                | 1.2 (m)         | 7               |  |
| cyclones:                      | Black et al. $(1996)$              | $\operatorname{radar}$ | 1 (m)           | 9               |  |
|                                | Eastin et al. $(2005)$ - rainbands | in situ                | 1.5 (m)         | 3.0             |  |
|                                | Eastin et al. $(2005)$ - eyewalls  | in situ                | 2.0 (m)         | 4.0             |  |
|                                |                                    |                        |                 |                 |  |
|                                |                                    |                        | Characteristic  |                 |  |
|                                |                                    |                        | diameter (km)   |                 |  |
|                                |                                    |                        | a = avg         |                 |  |
| - · · ·                        |                                    |                        | m = median      | Max diameter    |  |
| Iropical convection            | Reference                          | Type                   | s = single case | $(\mathrm{km})$ |  |
| (mostly maritime)              |                                    |                        |                 |                 |  |
|                                | LeMone and Zipser $(1980)$         | in situ                | 0.9 (m)         | 6               |  |
| (excluding tropical cyclones): | Warner and McNamara $(1984)$       | in situ                | 1.4 (m)         | 15              |  |
|                                | Jorgensen and LeMone $(1989)$      | in situ                | < 1 (m)         | 8               |  |
|                                | Lucas et al. $(1994)$              | in situ                | 1.0 (m)         | 4               |  |
|                                | Igau et al. $(1999)$               | in situ                | 0.8 (m)         | 4               |  |
|                                | Anderson et al. $(2005)$           | in situ                | 1 (m)           | 3               |  |

Large ( > 2 km) updrafts are "exceedingly rare"

### Resolving Atmospheric Convection



Updraft diameter: D

Eddies responsible for entrainment/detrainment: diameter d < D

Mesh spacing needed to resolve turbulent eddies: h << d, D

D: Severe convection - 5-8 km Typical midlatitude cells - 2-4 km Tropical cells - 1-2 km Shallow convection - 0.1-1 km

Resolutions needed to *resolve* deep convection:  $h \sim O(100 \text{ m})$ Resolutions needed to *resolve* shallow convection:  $h \sim O(10 \text{ m})$ 

## W spectra from global MPAS simulations



Peaks in the tails of the W spectra shift to higher wavenumbers with increasing resolution – solutions are not converged

W spectra peaks at around 4 dx

#### Linearized shallow-water equations

$$u_t = -gh_x, \quad h_t = -Hu_x$$





normalized wavenumber

normalized wavenumber

## Why Use the C-Grid?

- Critical phenomena (convection) are at the margins of the mesh resolution
- C-grid has twice the effective resolution of the A-grid for divergent modes
- The timestep restriction of the C-grid can be addressed using forward-backward differencing (pressure-gradient – divergence)
- Integration cost scales as  $\Delta x^3$ , so using a C-grid staggering arguably produces the most *efficient* solver



# Intermission

Main points from the first half

*Convection permitting* resolution is not *convection resolving* resolution

The C-grid staggering is used in most convective-scale models because it better represents divergent motions at the margins of the resolution.

C-grids are arguably *more efficient* than other configurations for convection.



#### Operators on the Voronoi Mesh *'Nonlinear' Coriolis force*

$$\frac{\partial \mathbf{V}_{H}}{\partial t} = -\frac{\rho_{d}}{\rho_{m}} \left[ \nabla_{\zeta} \left( \frac{p}{\zeta_{z}} \right) - \frac{\partial \mathbf{z}_{H} p}{\partial \zeta} \right] - \left( \eta \mathbf{k} \times \mathbf{V}_{H} \right) \\ - \mathbf{v}_{H} \nabla_{\zeta} \cdot \mathbf{V} - \frac{\partial \Omega \mathbf{v}_{H}}{\partial \zeta} - \rho_{d} \nabla_{\zeta} K - eW \cos \alpha_{r} - \frac{uW}{r_{e}} + \mathbf{F}_{V_{H}},$$

Linear piece  $f \mathbf{k} \times \mathbf{V}_{H}$ , consider  $u_{13} \rightarrow \mathbf{V}_{H}$ 

We need to reconstruct the tangential velocity

Simplest approach: Construct tangential velocities from weighted sum of the four nearest neighbors.

Result: Physically stationary geostrophic modes (geostrophically-balanced flow) will not be stationary in the discrete system; the solver is unusable.

(see Nickovic et al MWR 2002)



#### Hexagonal C-Grid Problem: Non-Stationary Geostrophic Mode

Most obvious tangential velocity reconstruction

$$\partial_t u_1 + g \delta_{x_1} h + \frac{f}{\sqrt{3}} (u_{31} - u_{21}) = 0$$
  
$$\partial_t u_2 + g \delta_{x_2} h + \frac{f}{\sqrt{3}} (u_{12} - u_{32}) = 0$$
  
$$\partial_t u_3 + g \delta_{x_3} h + \frac{f}{\sqrt{3}} (u_{23}) (u_{13}) = 0$$
  
$$\partial_t h + \frac{2}{3} H (\delta_{x_1} u_1 + \delta_{x_2} u_2 + \delta_{x_3} u_3) = 0$$





(see Nickovic et al MWR 2002)

#### Hexagonal C-Grid Problem: Non-Stationary Geostrophic Mode

New tangential velocity reconstruction (Thuburn, 2008 JCP)

$$\partial_t u_1 + g \delta_{x_1} h + \frac{f}{\sqrt{3}} (u_{31} - u_{21}) = 0$$
  
$$\partial_t u_2 + g \delta_{x_2} h + \frac{f}{\sqrt{3}} (u_{12} - u_{32}) = 0$$
  
$$\partial_t u_3 + g \delta_{x_3} h + \frac{f}{\sqrt{3}} (u_{23} + u_{13}) = 0$$
  
$$\partial_t h + \frac{2}{3} H (\delta_{x_1} u_1 + \delta_{x_2} u_2 + \delta_{x_3} u_3) = 0$$



$$egin{aligned} &u_{21}=rac{1}{3}\,\overline{u_2}^{x_3}+rac{2}{3}\,\overline{\overline{u_2}^{x_1}}^{x_2}, &u_{31}=rac{1}{3}\,\overline{\overline{u_3}}^{x_2}+rac{2}{3}\,\overline{\overline{u_3}}^{x_1}^{x_3}, \ &u_{12}=rac{1}{3}\,\overline{\overline{u_1}}^{x_3}+rac{2}{3}\,\overline{\overline{\overline{u_1}}}^{x_1}^{x_2}, &u_{32}=rac{1}{3}\,\overline{\overline{u_3}}^{x_1}+rac{2}{3}\,\overline{\overline{\overline{u_3}}}^{x_2}^{x_3}, \ &u_{13}=rac{1}{3}\,\overline{\overline{u_1}}^{x_2}+rac{2}{3}\,\overline{\overline{\overline{u_1}}}^{x_1}^{x_3}, &u_{23}=rac{1}{3}\,\overline{\overline{u_2}}^{x_1}+rac{2}{3}\,\overline{\overline{\overline{u_2}}}^{x_2}^{x_3}. \end{aligned}$$





#### Operators on the Voronoi Mesh 'Nonlinear' Coriolis force

Linear piece:  $f k \times V_H$ 

We construct tangential velocities from a weighted sum of normal velocities on edges of the adjacent cells.

$$d_e \, u_e^\perp = \sum_j w_e^j \, l_j \, u_j$$

We choose the weights such that the divergence in the triangle is the area-weighted sum of the divergence in the Voronoi cells sharing the vertex.

Result: geostrophic modes are stationary; local and global mass and PV conservation is satisfied on the dual (triangular) mesh (for the SW equations).

The general tangential velocity reconstruction also allows for PV, enstrophy and energy\* conservation in the nonlinear SW solver.



Thuburn et al (2009 JCP) Ringler et at (2010, JCP)



#### Operators on the Voronoi Mesh 'Nonlinear' Coriolis force

Linear piece:  $f k \times V_H$ 

We construct tangential velocities from a weighted sum of normal velocities on edges of the adjacent cells.

$$d_e \, u_e^\perp = \sum_j w_e^j \, l_j \, u_j$$

We choose the weights such that the divergence in the triangle is the area-weighted sum of the divergence in the Voronoi cells sharing the vertex.

*Why does this work?* Consider the linearized SW equations



Divergences on primary and dual meshes must be consistent to maintain stationarity



Thuburn et al (2009 JCP) Ringler et at (2010, JCP)

## MPAS Model for Prediction Across Scales

Operators on the Voronoi Mesh *'Nonlinear' Coriolis force* 

$$\frac{\partial \mathbf{V}_{H}}{\partial t} = -\frac{\rho_{d}}{\rho_{m}} \left[ \nabla_{\zeta} \left( \frac{p}{\zeta_{z}} \right) - \frac{\partial \mathbf{z}_{H} p}{\partial \zeta} \right] - \left( \eta \, \mathbf{k} \times \mathbf{V}_{H} \right)$$
Tangential
$$- \mathbf{v}_{H} \nabla_{\zeta} \cdot \mathbf{V} - \frac{\partial \Omega \mathbf{v}_{H}}{\partial \zeta} - \rho_{d} \nabla_{\zeta} K + \mathbf{F}_{V_{H}}$$
velocity
reconstruction:
$$\mathbf{v}_{e_{i}} = \sum_{j=1}^{n_{e_{i}}} w_{e_{i,j}} u_{e_{i,j}}$$

Nonlinear term:

$$[\eta \, \mathbf{k} \times \mathbf{V}_{H}]_{e_{i}} = \sum_{j=1}^{n_{e_{i}}} \frac{1}{2} (\eta_{e_{i}} + \eta_{e_{i,j}}) \, w_{e_{i,j}} \rho_{e_{i,j}} u_{e_{i,j}}$$

The general tangential velocity reconstruction produces a consistent divergence on the primal and dual grids, and allows for PV, enstrophy and energy\* conservation in the nonlinear SW solver.



Thuburn et al (2009 JCP) Ringler et at (2010, JCP)



### Flux divergence, transport, and Runge-Kutta time integration

Scalar transport equation for cell *i*:

- 1. Scalar edge-flux value  $\psi$  is the weighted sum of cell values from cells that share edge and all their neighbors.
- 2. An individual edge-flux is used to update the two cells that share the edge.
- 3. Three edge-flux evaluations and cell updates are needed to complete the Runge-Kutta timestep.
- 4. Monotonic constraint requires checking the cell-value update and renormalizing edge-fluxes if the cell updates are outside specific bounds (on the final RK3 update).

$$\frac{\partial(\rho\psi)_{i}}{\partial t} = L(\mathbf{V},\rho,\psi) = -\frac{1}{A_{i}}\sum_{n_{e_{i}}}d_{e_{i}}(\rho\mathbf{V}\cdot\mathbf{n}_{e_{i}})\overline{\psi}$$



 $(\rho\psi)^{t+\Delta t} = (\rho\psi)^t + \Delta t L(\mathbf{V}, \rho, \psi^{**})$ 



### Conservative Transport with RK3 Time Integration: *Examples*

- The quality of solutions for convection-permitting integrations is strongly dependent on the transport schemes for scalars employed in the solver.
- We employ flux operators similar to those used in WRF but adapted to the unstructured Voronoi mesh using least-squares fit polynomials.



Solid-body rotation, 1 revolution around the sphere

(Skamarock and Gassmann, MWR 2011)

#### Conservative Transport with RK3 Time Integration: *Examples*

163842 cells, ~ 60 km cell spacing (~ 1/2 deg), Cr max ~ 0.8

Model for Prediction Across Scales



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

(Lauritzen et al, GMD 2014)



## MPAS Vertical Mesh

Specification of terrain:

- High resolution terrain data (30 arcsec) averaged over grid-cell area
- Terrain smoothing with one pass of a 4<sup>th</sup> order Laplacian

Smoothed Terrain-Following (STF) hybrid Coordinate

 $z(x, y, \zeta) = \zeta + A(\zeta)h_s(x, y, \zeta)$ 

 $A(\zeta)$ 

Controls rate at which terrain influences are attenuated with height

 $h_s(x,y,\zeta)$ 

Terrain influence that represents increased smoothing of the actual terrain with height

Multiple passes of simple Laplacian smoother at each  $\,\zeta$  level:

 $h_{s}^{(n)} = h_{s}^{(n-1)} + \beta(\zeta) d^{2} \nabla_{\zeta}^{2} h_{s}^{(n-1)}$ 



STF progressively smooths coordinate surfaces while transitioning to a height coordinate



#### MPAS -Tibetan Plateau, 28° N





MPAS was designed to simulate atmospheric convection with fidelity similar to state-of-the-art cloud models.

At what mesh spacing does MPAS reproduce observed convective structures?

Midlatitude convection: 3 km mesh spacing.

## Atmospheric Convection and MPAS





## The MPAS SCVT approach

#### **Strengths**

- Convection-permitting simulations
- Flexibility
  - global
  - regional
  - variable-resolution
  - 2D and 3D Cartesian planes
- Conservation properties
- Explicit solver is easy to configure
- Solver scales well, easily adaptable to accelerators (GPUs)

#### <u>Weaknesses</u>

- Mesh generation is very expensive
- Novelty of an unstructured mesh
  - Standard pre- and post-processors are not unstructured-mesh friendly
- Perceived high integration cost
  - More than balanced by increased accuracy at convection-permitting resolutions (?)