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* split-explicit Runge
MPAS differs from WRF

the Advanced Research WRF model

The MPAS integration scheme
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Centroidal Voronoi tessellation

High-resolution atmospheric s
 The C-grid problem with hexagons
* Transport on unstructured meshes

MPAS vertical coordinate
e Strengths and weaknesses of this approach

Topics for Today
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M P S MPAS-Atmosphere Solves the
A Fully-Compressible Nonhydrostatic Equations

Mode for Prediction Across Scales

Unstructured spherical centroidal Voronoi
Tesselation (SCVT)

* Mostly hexagons, some pentagons and 7-sided cells

* Cell centers are at cell center-of-mass (centroidal).

* Cell edges bisect lines connecting cell centers;
perpendicular.

* Uniform resolution — traditional icosahedral mesh.

(S)CVTs are generated using Lloyd’s iteration method
and a user-specified density function that controls
the local cell-center spacing




Model for Prediction Across Scales

MPAS MPAS and an Interesting Mesh

IBM GRAF (Global High Resolution Forecast) System - MPAS mesh (3-15 km cell spacing)
Physics: Scale aware nTiedtke CP, YSU PBL, NOAH LSM, WSM6 microphysics




Atmospheric Convection and MPAS

MPAS was designed for global applications Reflectivity
(e.g. SCVTs avoid pole problems) z%?é\ﬁ)g;aééh&ec

MPAS was designed to simulate 6 h forecast _,
atmospheric convection with fidelity A | sanforecast <
similar to state-of-the-art cloud models at oo o o

oA

: _ : Cooh | %1 102 h forecast
* Convection-permitting resolutions EIRE 7 T
* LES resolutions AR - S-S

MPAS was designed for variable
resolution global and regional W
applications N

MPAS 1 km AGL reflectivity [ JRES | (
Forecasts valid 2015-05-17 6 UTC W) G




Spatial scales of convective updrafts

Supercells:

Midlatitude continental
(excluding supercells):

Characteristic
diameter (km)
a = avg

m = median  Max diameter
Reference Type s = single case (km)
Browning et al. (1976) in situ and radar 5 (a) 8
Brandes (1981) radar 11 (s)
Nelson (1983) radar ~10 (s)
Musil et al. (1986) in situ 14 (s)
Kubesh et al. (1988) in situ and radar ~8 (s)
Dowell and Bluestein (2002) radar 8 (s)

Characteristic

diameter (km)

a = avg
m = median  Max diameter

Reference Type s = single case (km)
Byers and Braham (1949) in situ ~4
Kyle et al. (1976) in situ 2.8 (m) 4.6
Heymsfield and Hjelmfelt (1981) in situ 4 (m) 6
Musil et al. (1991) in situ 3 (a) 15
Yuter and Houze (1995) radar ~3 (m) 8



Spatial scales of convective updrafts

Tropical
cyclones:

Tropical convection
(mostly maritime)
(excluding tropical
cyclones):

Characteristic
diameter (km)
a = avg

m = median  Max diameter
Reference Type s = single case (km)
Jorgensen et al. (1985) in situ 1.2 (m) 7
Black et al. (1996) radar 1 (m) 9
Eastin et al. (2005) - rainbands  in situ 1.5 (m) 3.0
Eastin et al. (2005) - eyewalls in situ 2.0 (m) 4.0

Characteristic

diameter (km)

a = avg

m = median  Max diameter
Reference Type s = single case (km)
LeMone and Zipser (1980) in situ 0.9 (m) 6
Warner and McNamara (1984) in situ 1.4 (m) 15
Jorgensen and LeMone (1989) in situ <1 (m) 8
Lucas et al. (1994) in situ 1.0 (m) 4
[gau et al. (1999) in situ 0.8 (m) 4
Anderson et al. (2005) in situ I (m 3

Large ( > 2 km) updrafts are “exceedingly rare”



Resolving Atmospheric Convection

Updraft diameter: D

Eddies responsible for
entrainment/detrainment:
diameter d < D

Mesh spacing needed to
resolve turbulent eddies:

“ h<<d, D

" P(‘* d<D D: Severe convection - 5-8 km
Typical midlatitude cells - 2-4 km
—~— Tropical cells - 1-2 km

Shallow convection - 0.1-1 km

/ / / / / /

Resolutions needed to resolve deep convection: h ~ O(100 m)

Resolutions needed to resolve shallow convection: h ~ O(10 m)



W spectra from global MPAS simulations

10

wavelength (km)

10°

Kinetic energy (m?/s?)

10* 10° 102 10!
IIIIIIII | IIIIIIII | IIIIIIII | IIIIII
w spectra, troposphere — 15 km with cp
| (8.5-10.5 km) —— 15 km without cp
— 7.5 km with cp

— 7.5 km without cp
— 3 km without cp

10°®
10°

10’ 10° 10°
spherical wavenumber

Peaks in the tails of the W spectra
shift to higher wavenumbers with
increasing resolution — solutions
are not converged

W spectra peaks at around 4 dx



Linearized shallow-water equations ¢, = —gh.., h; = —Hu,

A —grid C—grid
Ut = —@g (ha:—l—Am — m Ax /2A£E — g h:L'—I—A:I:/2 — h:L'—Aac/2 /ACE
. N s\ e
2AX wave in A
~~~~~ 6zh =0 e Ouh # 0N
=—H (U:IH—A:L' Uy —Ax /QAZC :B+Am/2 Uy —Ax/2 /AZE
| . S -" . @ =P .2




Linearized shallow-water equations u; = —qghy, hy = —Hu,

g = —
phase speed group velocity
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Why Use the C-Grid?

e Critical phenomena (convection) are at the
margins of the mesh resolution

e C-grid has twice the effective resolution of
the A-grid for divergent modes

* The timestep restriction of the C-grid can
be addressed using forward-backward
differencing (pressure-gradient —
divergence)

* Integration cost scales as Ax3, so using a
C-grid staggering arguably produces the
most efficient solver




Intermission

Main points from the first half

Convection permitting resolution is not convection resolving resolution

The C-grid staggering is used in most convective-scale models because
it better represents divergent motions at the margins of the resolution.

C-grids are arguably more efficient than other configurations for
convection.



Operators on the Voronoi Mesh
M PAS ‘Nonlinear” Coriolis force

Mode for Prediction Across Scales

Linear piece f kx Vy, consider u;; —>

We need to reconstruct the tangential velocity @

Simplest approach: Construct tangential velocities
from weighted sum of the four nearest neighbors.

Result: Physically stationary geostrophic modes
(geostrophically-balanced flow) will not be stationary
in the discrete system; the solver is unusable.

(see Nickovic et al MWR 2002)



Hexagonal C-Grid Problem:
Non-Stationary Geostrophic Mode

Most obvious tangential velocity reconstruction

f Initial Conditions 6 days - Traditional Coriolis Averaving
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Hexagonal C-Grid Problem:

Non-Stationary Geostrophic Mode

New tangential velocity reconstruction (Thuburn, 2008 JCP)

Oru1 + géz h + %(USI —up1) =0
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Operators on the Voronoi Mesh
I I PAS ‘Nonlinear” Coriolis force
Mode for Prediction Across Scales

Linear piece: f kx V,

We construct tangential velocities from a weighted sum of
normal velocities on edges of the adjacent cells.

— I 7.2y
—E wi L u;

We choose the weights such that the divergence in
the triangle is the area-weighted sum of the
divergence in the Voronoi cells sharing the vertex.

Result: geostrophic modes are stationary; local and
global mass and PV conservation is satisfied on the

dual (triangular) mesh (for the SW equations).

Thuburn et al (2009 JCP)
Ringler et at (2010, JCP)

The general tangential velocity reconstruction also
allows for PV, enstrophy and energy™* conservation
in the nonlinear SW solver.



Operators on the Voronoi Mesh
I I PAS ‘Nonlinear” Coriolis force
Mode for Prediction Across Scales

Linear piece: f kx V,

We construct tangential velocities from a weighted sum of
normal velocities on edges of the adjacent cells.

— I 7.2y
—g wi L u;

We choose the weights such that the divergence in
the triangle is the area-weighted sum of the
divergence in the Voronoi cells sharing the vertex.

Why does this work?
Consider the linearized SW equations

Divergences on primary
hi = HV -V and dual meshes must be Thuburn et al (2009 JCP)

Ct — —f V -V consistent to maintain Ringler et at (2010, JCP)
stationarity



Operators on the Voronoi Mesh
M PAS ‘Nonlinear” Coriolis force

Mode for Prediction Across Scales

OV Pd P OZyp
o [ (2) - 2] -
ot Pm Cz dC

dQVH
Tangential _VHVC -V — dC —/)dVCI(—FFV”

velocity l
reconstruction:  ve, = Y we, ke,

Nonlinear term:

nkx‘fi Z nel+nel] weszez]uezj

The general tangential velocity
reconstruction produces a consistent

_ _ _ Thuburn et al (2009 JCP)
divergence on the primal and dual grids, and Ringler et at (2010, JCP)
allows for PV, enstrophy and energy*

conservation in the nonlinear SW solver.



Flux divergence, transport, and
‘I ' IPAS Runge-Kutta time integration
Model for Prediction Across Scales

o(py), l ne )y
(at i L(V.p.p) = _deei(p\/'ne")w

Scalar transport equation for cell /:

1. Scalar edge-flux value wis the weighted sum
of cell values from cells that share edge and all
their neighbors.

2. Anindividual edge-flux is used to update the
two cells that share the edge.

3. Three edge-flux evaluations and cell updates
are needed to complete the Runge-Kutta
timestep.

4. Monotonic constraint requires checking the
cell-value update and renormalizing edge-
fluxes if the cell updates are outside specific
bounds (on the final RK3 update).

()2 =(p)! + At L(V, p, ™)
(Skamarock and Gassmann, MWR 2011)



Conservative Transport with
M PAS RK3 Time Integration: Examples

Mode for Prediction Across Scales

* The quality of solutions for
convection-permitting integrations
s strongly dependent on the
transport schemes for scalars
employed in the solver.

* We employ flux operators similar
to those used in WRF but adapted
to the unstructured Voronoi mesh
using least-squares fit
polynomials.

Slotted Cylinder Test Case
10242 cells

2nd order scheme 3rd order scheme, p=0.25 4th order scheme
27/ 1 T AN
[N J I
N | | I Y
\ v o J/////llll
N |
\ /
\ [/

40962 cells
2nd order scheme 3rd order scheme, =0.25 4th order scheme

Solid-body rotation, 1 revolution around the sphere
(Skamarock and Gassmann, MWR 2011)



M P S Conservative Transport with
A RK3 Time Integration: Examples
Mode for Prediction Across Scales
163842 cells, ~ 60 km cell spacing (~ 1/2 deg), Cr max ~ 0.8

90N ——= 90N ——=33
60N 60N
30N 30N
0 0
30S 30S
60S 60S
90S 90S
90N 90N
,__————""—"-"‘_‘\>
60N 60N
30N 30N
0 0
30S 30S
60S g i 60S
monotonic, t=T/2 L monotonic, t=T
gos I T T I T T I T T I T T I T T I gos I T T I T T I T T I T T I T T

0 30E 60E 90E 120E 150E 180 150W 120W 90W 60W 30W 0 0 30E 60E 90E 120E 150E 180 150W 120W 90W 60W  30W 0

T 0.1 02 03 04 05 06 0 1 1.1 (I—aurltzen et al, GMD 2014)



M PAS MPAS Vertical Mesh

Mode for Prediction Across Scales

Specification of terrain:

* High resolution terrain data (30 arcsec) averaged over grid-cell area

* Terrain smoothing with one pass of a 4th order Laplacian

Smoothed Terrain-Following (STF) hybrid Coordinate

z(z,y,¢) = ¢+ A(Q)hs(z,y,Q)

(C) Controls rate at which terrain influences are
attenuated with height

A (:L‘ C) Terrain influence that represents increased
Y smoothing of the actual terrain with height

Multiple passes of simple Laplacian smoother at each ( level:

P = hD + Q)R

Oh...l ......... | R ST W T T S N | YN T T T T T
140 210 280 (km)

STF progressively smooths coordinate surfaces while
transitioning to a height coordinate



MPAS -Tibetan Plateau, 28° N

Model for Prediction Across Scales

(Model top is at 30 km)

following (STF) coordinate
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MPAS

Mode for Prediction Across Scales

MPAS was designed to
simulate atmospheric
convection with fidelity
similar to state-of-the-art
cloud models.

At what mesh spacing does
MPAS reproduce observed
convective structures?

Midlatitude convection:
3 km mesh spacing.

Atmos

54 h forecast

oheric Convection and MPAS

LT} ST
[

e

MPAS 3 km

Reflectivity
NOAA SPC archive
2015-05-17 06 UTC




M PAS The MPAS SCVT approach

Mode for Prediction Across Scales

Strengths

e Convection-permitting simulations

Flexibility

- global

- regional

- variable-resolution

- 2D and 3D Cartesian planes

* (Conservation properties

* Explicit solver is easy to configure

* Solver scales well, easily adaptable to
accelerators (GPUs)

Weaknesses

Mesh generation is very expensive

Novelty of an unstructured mesh

- Standard pre- and post-processors
are not unstructured-mesh friendly

Perceived high integration cost

- More than balanced by increased
accuracy at convection—permitting
resolutions (?)



