Gibberellin Signaling Controls Cell Proliferation Rate in

Current Biology 19, 1188-1193 DOI: 10.1016/j.cub.2009.05.059

Citation Report

#	Article	IF	CITATION
1	Gibberellin Signaling in the Endodermis Controls Arabidopsis Root Meristem Size. Current Biology, 2009, 19, 1194-1199.	1.8	360
2	Hormonal input in plant meristems: A balancing act. Seminars in Cell and Developmental Biology, 2009, 20, 1149-1156.	2.3	33
3	Control of division and differentiation of plant stem cells and their derivatives. Seminars in Cell and Developmental Biology, 2009, 20, 1134-1142.	2.3	27
4	Increased Leaf Size: Different Means to an End Â. Plant Physiology, 2010, 153, 1261-1279.	2.3	222
5	Plant primary meristems: shared functions and regulatory mechanisms. Current Opinion in Plant Biology, 2010, 13, 53-58.	3.5	119
6	More from less: plant growth under limited water. Current Opinion in Biotechnology, 2010, 21, 197-203.	3.3	427
7	Gibberellic acid mediated co-ordination of calcium and magnesium ameliorate physiological activities, seed yield and fibre yield of Linum usitatissimum L.—a dual-purpose crop. Physiology and Molecular Biology of Plants, 2010, 16, 333-341.	1.4	7
8	The integration of cell division, growth and differentiation. Current Opinion in Plant Biology, 2010, 13, 66-74.	3.5	97
9	Selective proteolysis sets the tempo of the cell cycle. Current Opinion in Plant Biology, 2010, 13, 631-639.	3.5	62
10	Plant Development: Size Matters, andÂlt's All Down to Hormones. Current Biology, 2010, 20, R511-R513.	1.8	31
11	The Rate of Cell Differentiation Controls the Arabidopsis Root Meristem Growth Phase. Current Biology, 2010, 20, 1138-1143.	1.8	327
12	AtBBX21 and COP1 genetically interact in the regulation of shade avoidance. Plant Journal, 2010, 64, 551-562.	2.8	92
13	The Arabidopsis SMO2, a homologue of yeast TRM112, modulates progression of cell division during organ growth. Plant Journal, 2010, 61, 600-610.	2.8	31
14	Variability in the Control of Cell Division Underlies Sepal Epidermal Patterning in Arabidopsis thaliana. PLoS Biology, 2010, 8, e1000367.	2.6	263
15	Non-cell-autonomously coordinated organ size regulation in leaf development. Development (Cambridge), 2010, 137, 4221-4227.	1.2	89
16	Root Development—Two Meristems for the Price of One?. Current Topics in Developmental Biology, 2010, 91, 67-102.	1.0	134
17	Role of Ethylene and Bacterial ACC Deaminase in Nodulation of Legumes. , 2010, , 103-122.		6
18	The root cap at the forefront. Comptes Rendus - Biologies, 2010, 333, 335-343.	0.1	55

#	ARTICLE	IF	CITATIONS
19	Root apex transition zone: a signalling–response nexus in the root. Trends in Plant Science, 2010, 15, 402-408.	4.3	245
20	Control of Tissue and Organ Growth in Plants. Current Topics in Developmental Biology, 2010, 91, 185-220.	1.0	73
21	Orchestration of Floral Initiation by APETALA1. Science, 2010, 328, 85-89.	6.0	454
22	Brassinosteroids control meristem size by promoting cell cycle progression in <i>Arabidopsis</i> roots. Development (Cambridge), 2011, 138, 849-859.	1.2	432
23	Manipulation of Ethylene Synthesis in Roots Through Bacterial ACC Deaminase for Improving Nodulation in Legumes. Critical Reviews in Plant Sciences, 2011, 30, 279-291.	2.7	23
24	Cell-Cycle Control and Plant Development. International Review of Cell and Molecular Biology, 2011, 291, 227-261.	1.6	61
25	An Updated GA Signaling â€~Relief of Repression' Regulatory Model. Molecular Plant, 2011, 4, 601-606.	3.9	61
26	Physiological, morphological and biochemical characteristics of the sexual propagation of Piper aduncum (Piperaceae). Revista Brasileira De Botanica, 2011, 34, 297-305.	0.5	12
27	Two Arabidopsis cytochrome P450 monooxygenases, CYP714A1 and CYP714A2, function redundantly in plant development through gibberellin deactivation. Plant Journal, 2011, 67, 342-353.	2.8	93
28	Proper gibberellin localization in vascular tissue is required to control auxinâ€dependent leaf development and bud outgrowth in hybrid aspen. Plant Journal, 2011, 67, 805-816.	2.8	71
29	Genetic control of plant organ growth. New Phytologist, 2011, 191, 319-333.	3.5	62
30	Alteration in expression of hormone-related genes in wild emmer wheat roots associated with drought adaptation mechanisms. Functional and Integrative Genomics, 2011, 11, 565-583.	1.4	74
31	Interaction of TCP4-mediated growth module with phytohormones. Plant Signaling and Behavior, 2011, 6, 1440-1443.	1.2	30
32	Both negative and positive G1 cell cycle regulators undergo proteasome-dependent degradation during sucrose starvation in Arabidopsis. Plant Signaling and Behavior, 2011, 6, 1394-1396.	1.2	6
33	Brassinosteroid perception in the epidermis controls root meristem size. Development (Cambridge), 2011, 138, 839-848.	1.2	302
34	The <i>Arabidopsis</i> D-Type Cyclin CYCD2;1 and the Inhibitor ICK2/KRP2 Modulate Auxin-Induced Lateral Root Formation. Plant Cell, 2011, 23, 641-660.	3.1	111
35	Combining Enhanced Root and Shoot Growth Reveals Cross Talk between Pathways That Control Plant Organ Size in Arabidopsis Â. Plant Physiology, 2011, 155, 1339-1352.	2.3	75
36	Funneling of gibberellin signaling by the GRAS transcription regulator SCARECROW-LIKE 3 in the <i>Arabidopsis</i> root. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2166-2171.	3.3	194

#	Article	IF	CITATIONS
37	A DELLA in Disguise: SPATULA Restrains the Growth of the Developing <i>Arabidopsis</i> Seedling Â. Plant Cell, 2011, 23, 1337-1351.	3.1	77
38	The root endodermis: A hub of developmental signals and nutrient flow. Plant Signaling and Behavior, 2011, 6, 1954-1958.	1.2	13
39	Function of B-BOX under shade. Plant Signaling and Behavior, 2011, 6, 101-104.	1.2	41
40	Expression profiling of cell cycle genes reveals key facilitators of cell production during carpel development, fruit set, and fruit growth in apple (Malus×domestica Borkh.). Journal of Experimental Botany, 2011, 62, 205-219.	2.4	56
41	Two Direct Targets of Cytokinin Signaling Regulate Symbiotic Nodulation in <i>Medicago truncatula</i> À Â. Plant Cell, 2012, 24, 3838-3852.	3.1	136
42	<i>STUNTED</i> mediates the control of cell proliferation by GA in <i>Arabidopsis</i> . Development (Cambridge), 2012, 139, 1568-1576.	1.2	41
43	Identification of a Protein Network Interacting with TdRF1, a Wheat RING Ubiquitin Ligase with a Protective Role against Cellular Dehydration Á Â. Plant Physiology, 2012, 158, 777-789.	2.3	27
44	DELLA Signaling Mediates Stress-Induced Cell Differentiation in Arabidopsis Leaves through Modulation of Anaphase-Promoting Complex/Cyclosome Activity Â. Plant Physiology, 2012, 159, 739-747.	2.3	100
45	Gibberellin Signaling: A Theme and Variations on DELLA Repression. Plant Physiology, 2012, 160, 83-92.	2.3	219
46	Control of the Plant Cell Cycle by Developmental and Environmental Cues. Plant and Cell Physiology, 2012, 53, 953-964.	1.5	134
47	Analysis of Arabidopsis <i>glucose insensitive growth</i> Mutants Reveals the Involvement of the Plastidial Copper Transporter PAA1 in Glucose-Induced Intracellular Signaling Â. Plant Physiology, 2012, 159, 1001-1012.	2.3	34
48	Gibberellin Signaling in Plants – The Extended Version. Frontiers in Plant Science, 2011, 2, 107.	1.7	84
49	Defence on demand: mechanisms behind optimal defence patterns. Annals of Botany, 2012, 110, 1503-1514.	1.4	165
50	Hormone symphony during root growth and development. Developmental Dynamics, 2012, 241, 1867-1885.	0.8	76
51	Auxin and ABA act as central regulators of developmental networks associated with paradormancy in Canada thistle (Cirsium arvense). Functional and Integrative Genomics, 2012, 12, 515-531.	1.4	20
52	Fruit Growth in <i>Arabidopsis</i> Occurs via DELLA-Dependent and DELLA-Independent Gibberellin Responses. Plant Cell, 2012, 24, 3982-3996.	3.1	129
53	Hormonal regulation of root growth: integrating local activities into global behaviour. Trends in Plant Science, 2012, 17, 326-331.	4.3	97
54	A Local Maximum in Gibberellin Levels Regulates Maize Leaf Growth by Spatial Control of Cell Division. Current Biology, 2012, 22, 1183-1187.	1.8	200

#	Article	IF	CITATIONS
55	Spatial control of flowering by DELLA proteins in <i>Arabidopsis thaliana</i> . Development (Cambridge), 2012, 139, 4072-4082.	1.2	154
56	Hormonal Interactions in the Regulation of Plant Development. Annual Review of Cell and Developmental Biology, 2012, 28, 463-487.	4.0	480
57	Cell expansion and microtubule behavior in ray floret petals of Gerbera hybrida: Responses to light and gibberellic acid. Photochemical and Photobiological Sciences, 2012, 11, 279-288.	1.6	15
58	Patterns of Cell Division, Cell Differentiation and Cell Elongation in Epidermis and Cortex of Arabidopsis pedicels in the Wild Type and in erecta. PLoS ONE, 2012, 7, e46262.	1.1	20
59	Patterning the primary root in <i>Arabidopsis</i> . Wiley Interdisciplinary Reviews: Developmental Biology, 2012, 1, 675-691.	5.9	30
60	Towards mechanistic models of plant organ growth. Journal of Experimental Botany, 2012, 63, 3325-3337.	2.4	32
61	Spatially distinct regulatory roles for gibberellins in the promotion of flowering of <i>Arabidopsis</i> under long photoperiods. Development (Cambridge), 2012, 139, 2198-2209.	1.2	193
62	Control of <i>Arabidopsis</i> Root Development. Annual Review of Plant Biology, 2012, 63, 563-590.	8.6	558
63	Leaf size control: complex coordination of cell division and expansion. Trends in Plant Science, 2012, 17, 332-340.	4.3	446
64	Î ¤ e Role of a Gibberellin 20-Oxidase Gene in Fruit Development in Pepper (Capsicum annuum). Plant Molecular Biology Reporter, 2012, 30, 556-565.	1.0	13
65	Characterization of grape Gibberellin Insensitive1 mutant alleles in transgenic Arabidopsis. Transgenic Research, 2012, 21, 725-741.	1.3	11
66	A molecular framework for the inhibition of <i>Arabidopsis</i> root growth in response to boron toxicity. Plant, Cell and Environment, 2012, 35, 719-734.	2.8	97
67	Control of Organ Size in Plants. Current Biology, 2012, 22, R360-R367.	1.8	162
68	Growth and development of the root apical meristem. Current Opinion in Plant Biology, 2012, 15, 17-23.	3.5	183
69	RAB5 Activation is Required for Multiple Steps in Arabidopsis thaliana Root Development. Plant and Cell Physiology, 2013, 54, 1648-1659.	1.5	16
70	Genomic Analysis of DELLA Protein Activity. Plant and Cell Physiology, 2013, 54, 1229-1237.	1.5	108
71	DELLA-Interacting SWI3C Core Subunit of Switch/Sucrose Nonfermenting Chromatin Remodeling Complex Modulates Gibberellin Responses and Hormonal Cross Talk in Arabidopsis. Plant Physiology, 2013, 163, 305-317.	2.3	98
72	Proper gibberellin localization in vascular tissue is required to regulate adventitious root development in tobacco. Journal of Experimental Botany, 2013, 64, 3411-3424.	2.4	46

#	Article	IF	CITATIONS
73	Brassinosteroid production and signaling differentially control cell division and expansion in the leaf. New Phytologist, 2013, 197, 490-502.	3.5	151
74	Hormonal regulation of stem cell maintenance in roots. Journal of Experimental Botany, 2013, 64, 1153-1165.	2.4	57
75	Strigolactones Stimulate Internode Elongation Independently of Gibberellins Â. Plant Physiology, 2013, 163, 1012-1025.	2.3	157
76	Interactive Effect of GA3, N and P Ameliorate Growth, Seed and Fibre Yield by Enhancing Photosynthetic Capacity and Carbonic Anhydrase Activity of Linseed: A Dual Purpose Crop. Journal of Integrative Agriculture, 2013, 12, 1183-1194.	1.7	7
77	The bHLH transcription factor SPATULA regulates root growth by controlling the size of the root meristem. BMC Plant Biology, 2013, 13, 1.	1.6	293
78	Flowering time control in ornamental gloxinia (Sinningia speciosa) by manipulation of miR159 expression. Annals of Botany, 2013, 111, 791-799.	1.4	83
79	Crosstalk between GA and JA signaling mediates plant growth and defense. Plant Cell Reports, 2013, 32, 1067-1074.	2.8	145
80	A DELLA gene, RhGAI1, is a direct target of EIN3 and mediates ethylene-regulated rose petal cell expansion via repressing the expression of RhCesA2. Journal of Experimental Botany, 2013, 64, 5075-5084.	2.4	49
81	The Agony of Choice: How Plants Balance Growth and Survival under Water-Limiting Conditions. Plant Physiology, 2013, 162, 1768-1779.	2.3	385
82	Jasmonate Controls Leaf Growth by Repressing Cell Proliferation and the Onset of Endoreduplication while Maintaining a Potential Stand-By Mode À Â. Plant Physiology, 2013, 161, 1930-1951.	2.3	160
83	ETHYLENE RESPONSE FACTOR6 Acts as a Central Regulator of Leaf Growth under Water-Limiting Conditions in Arabidopsis Â. Plant Physiology, 2013, 162, 319-332.	2.3	210
84	Mapping the site of action of the Green Revolution hormone gibberellin. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4443-4444.	3.3	10
86	Molecular Basis of Cytokinin Action during Root Development. , 2013, , 14-1-14-12.		0
87	Long-Distance Signaling in bypass1 Mutants: Bioassay Development Reveals the bps Signal to Be a Metabolite. Molecular Plant, 2013, 6, 164-173.	3.9	17
89	Roles of Gibberellin Catabolism and Signaling in Growth and Physiological Response to Drought and Short-Day Photoperiods in Populus Trees. PLoS ONE, 2014, 9, e86217.	1.1	96
90	Environmental, developmental, and genetic factors controlling root system architecture. Biotechnology and Genetic Engineering Reviews, 2014, 30, 95-112.	2.4	18
91	Arabidopsis JAGGED links floral organ patterning to tissue growth by repressing Kip-related cell cycle inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2830-2835.	3.3	94
92	Genetic interaction between rice PLASTOCHRON genes and the gibberellin pathway in leaf development. Rice, 2014, 7, 25.	1.7	14

#	Article	IF	CITATIONS
93	Leaf development: a cellular perspective. Frontiers in Plant Science, 2014, 5, 362.	1.7	210
94	Genome-Wide Analysis of the Cyclin Gene Family in Tomato. International Journal of Molecular Sciences, 2014, 15, 120-140.	1.8	28
95	Hypocotyl adventitious root organogenesis differs from lateral root development. Frontiers in Plant Science, 2014, 5, 495.	1.7	122
96	Reduction of Gibberellin by Low Temperature Disrupts Pollen Development in Rice Â. Plant Physiology, 2014, 164, 2011-2019.	2.3	99
97	Growth responses to sulfate and chloride are related to different phytohormone profiles in the halophyte Prosopis strombulifera. Emirates Journal of Food and Agriculture, 2014, 26, 1097.	1.0	9
98	Regulation of plant lateral-organ growth by modulating cell number and size. Current Opinion in Plant Biology, 2014, 17, 36-42.	3.5	129
99	The role of gibberellin signalling in plant responses to abiotic stress. Journal of Experimental Biology, 2014, 217, 67-75.	0.8	779
100	DELLA protein functions as a transcriptional activator through the DNA binding of the INDETERMINATE DOMAIN family proteins. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7861-7866.	3.3	212
101	Endocycling in the path of plant development. Current Opinion in Plant Biology, 2014, 17, 78-85.	3.5	62
102	Postembryonic control of root meristem growth and development. Current Opinion in Plant Biology, 2014, 17, 7-12.	3.5	69
103	Hormonal control of cell division and elongation along differentiation trajectories in roots. Journal of Experimental Botany, 2014, 65, 2633-2643.	2.4	194
104	Gibberellins and DELLAs: central nodes in growth regulatory networks. Trends in Plant Science, 2014, 19, 231-239.	4.3	224
105	Interplay between cell growth and cell cycle in plants. Journal of Experimental Botany, 2014, 65, 2703-2714.	2.4	145
106	The cell-cycle interactome: a source of growth regulators?. Journal of Experimental Botany, 2014, 65, 2715-2730.	2.4	43
107	Leaf development and morphogenesis. Development (Cambridge), 2014, 141, 4219-4230.	1.2	199
108	Chloroplast Dysfunction Causes Multiple Defects in Cell Cycle Progression in the Arabidopsis <i>crumpled leaf</i> Mutant Â. Plant Physiology, 2014, 166, 152-167.	2.3	37
109	Shedding light on integrative GA signaling. Current Opinion in Plant Biology, 2014, 21, 89-95.	3.5	94
110	Gibberellin-Induced Expression of Fe Uptake-Related Genes in Arabidopsis. Plant and Cell Physiology, 2014, 55, 87-98.	1.5	43

#	ARTICLE	IF	Citations
111	Class I TCP-DELLA Interactions in Inflorescence Shoot Apex Determine Plant Height. Current Biology, 2014, 24, 1923-1928.	1.8	209
112	<i>Arabidopsis</i> DELLA and JAZ Proteins Bind the WD-Repeat/bHLH/MYB Complex to Modulate Gibberellin and Jasmonate Signaling Synergy Â. Plant Cell, 2014, 26, 1118-1133.	3.1	202
113	<i>Arabidopsis</i> SMALL ORGAN 4, a homolog of yeast NOP53, regulates cell proliferation rate during organ growth. Journal of Integrative Plant Biology, 2015, 57, 810-818.	4.1	14
114	Developmental mechanism underpinning leaf shape evolution. Plant Morphology, 2015, 27, 43-50.	0.1	0
115	Gene Networks Involved in Hormonal Control of Root Development in Arabidopsis thaliana: A Framework for Studying Its Disturbance by Metal Stress. International Journal of Molecular Sciences, 2015, 16, 19195-19224.	1.8	62
116	Endogenous hormonal equilibrium linked to bamboo culm development. Genetics and Molecular Research, 2015, 14, 11312-11323.	0.3	18
117	A Gibberellin-Mediated DELLA-NAC Signaling Cascade Regulates Cellulose Synthesis in Rice. Plant Cell, 2015, 27, 1681-1696.	3.1	233
118	E3 SUMO ligase AtSIZ1 positively regulates SLY1-mediated GA signalling and plant development. Biochemical Journal, 2015, 469, 299-314.	1.7	53
119	MYB3Rs, plant homologs of Myb oncoproteins, control cell cycle-regulated transcription and form DREAM-like complexes. Transcription, 2015, 6, 106-111.	1.7	23
120	GA3 enhances root responsiveness to exogenous IAA by modulating auxin transport and signalling in Arabidopsis. Plant Cell Reports, 2015, 34, 483-494.	2.8	33
121	Length and activity of the root apical meristem revealed in vivo by infrared imaging. Journal of Experimental Botany, 2015, 66, 1387-1395.	2.4	24
122	Rootin, a compound that inhibits root development through modulating PIN-mediated auxin distribution. Plant Science, 2015, 233, 116-126.	1.7	5
123	The tarani mutation alters surface curvature in Arabidopsis leaves by perturbing the patterns of surface expansion and cell division. Journal of Experimental Botany, 2015, 66, 2107-2122.	2.4	31
124	Growth versus immunity — a redirection of the cell cycle?. Current Opinion in Plant Biology, 2015, 26, 106-112.	3.5	49
125	Characterization and mapping of d13, a dwarfing mutant gene, in rice. Genes and Genomics, 2015, 37, 893-903.	0.5	7
126	Deep Sequencing of the <i>Medicago truncatula</i> Root Transcriptome Reveals a Massive and Early Interaction between Nodulation Factor and Ethylene Signals. Plant Physiology, 2015, 169, 233-265.	2.3	164
127	Genetic analyses of the interaction between abscisic acid and gibberellins in the control of leaf development in Arabidopsis thaliana. Plant Science, 2015, 236, 260-271.	1.7	4
128	TCP14 and TCP15 Mediate the Promotion of Seed Germination by Gibberellins in Arabidopsis thaliana. Molecular Plant, 2015, 8, 482-485.	3.9	139

#	Article	IF	CITATIONS
129	Hormone activities and the cell cycle machinery in immunity-triggered growth inhibition. Journal of Experimental Botany, 2015, 66, 2187-2197.	2.4	20
130	Role of AINTEGUMENTA-like gene NtANTL in the regulation of tobacco organ growth. Journal of Plant Physiology, 2015, 189, 11-23.	1.6	19
131	Functional Conservation in the SIAMESE-RELATED Family of Cyclin-Dependent Kinase Inhibitors in Land Plants. Plant Cell, 2015, 27, 3065-3080.	3.1	79
132	Global Transcriptome Profiling Analysis of Inhibitory Effects of Paclobutrazol on Leaf Growth in Lily (Lilium Longiflorum-Asiatic Hybrid). Frontiers in Plant Science, 2016, 7, 491.	1.7	15
133	Maintenance of meristem activity under stress: is there an interplay of RSS1â€like proteins with the RBR pathway?. Plant Biology, 2016, 18, 167-170.	1.8	3
134	Gibberellin-Regulation and Genetic Variations in Leaf Elongation for Tall Fescue in Association with Differential Gene Expression Controlling Cell Expansion. Scientific Reports, 2016, 6, 30258.	1.6	29
135	Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. New Phytologist, 2016, 211, 225-239.	3.5	221
136	Improving agronomic water use efficiency in tomato by rootstock-mediated hormonal regulation of leaf biomass. Plant Science, 2016, 251, 90-100.	1.7	62
137	Tissue-Specific Regulation of Gibberellin Signaling Fine-Tunes Arabidopsis Iron-Deficiency Responses. Developmental Cell, 2016, 37, 190-200.	3.1	104
139	Cloning and characterization of CaGlD1s and CaGAl in Capsicum annuum L. Journal of Integrative Agriculture, 2016, 15, 775-784.	1.7	4
140	Characterization of dwarf mutants and molecular mapping of a dwarf locus in soybean. Journal of Integrative Agriculture, 2016, 15, 2228-2236.	1.7	14
141	How Plant Hormones and Their Interactions Affect Cell Growth. , 2016, , 174-195.		2
143	Genetic and molecular mechanisms of post-embryonic root radial patterning. Indian Journal of Plant Physiology, 2016, 21, 457-476.	0.8	1
146	Regulation of the WD-repeat/bHLH/MYB complex by gibberellin and jasmonate. Plant Signaling and Behavior, 2016, 11, e1204061.	1.2	13
147	Longitudinal zonation pattern in <i>Arabidopsis</i> root tip defined by a multiple structural change algorithm. Annals of Botany, 2016, 118, 763-776.	1.4	30
148	A SCARECROW-based regulatory circuit controls Arabidopsis thaliana meristem size from the root endodermis. Planta, 2016, 243, 1159-1168.	1.6	31
149	Gibberellin reactivates and maintains ovary-wall cell division causing fruit set in parthenocarpic Citrus species. Plant Science, 2016, 247, 13-24.	1.7	48
150	A Pivotal Role of DELLAs in Regulating Multiple Hormone Signals. Molecular Plant, 2016, 9, 10-20.	3.9	328

Cı	TAT	ON	REPOI	sт
<u> </u>				× .

#	Article	IF	CITATIONS
151	Nitric oxide is involved in the oxytetracycline-induced suppression of root growth through inhibiting hydrogen peroxide accumulation in the root meristem. Scientific Reports, 2017, 7, 43096.	1.6	16
152	<i><scp>WOX</scp>14</i> promotes bioactive gibberellin synthesis and vascular cell differentiation in Arabidopsis. Plant Journal, 2017, 90, 560-572.	2.8	62
153	Why do plants need so many cyclin-dependent kinase inhibitors?. Plant Signaling and Behavior, 2017, 12, e1282021.	1.2	24
154	What determines organ size differences between species? A metaâ€analysis of the cellular basis. New Phytologist, 2017, 215, 299-308.	3.5	52
155	Transcriptomic analysis of short-fruit 1 (sf1) reveals new insights into the variation of fruit-related traits in Cucumis sativus. Scientific Reports, 2017, 7, 2950.	1.6	26
158	In vivo gibberellin gradients visualized in rapidly elongating tissues. Nature Plants, 2017, 3, 803-813.	4.7	135
159	Role of Ethylene and Bacterial ACC-Deaminase in Nodulation of Legumes. , 2017, , 95-118.		2
160	DELLA1-Mediated Gibberellin Signaling Regulates Cytokinin-Dependent Symbiotic Nodulation. Plant Physiology, 2017, 175, 1795-1806.	2.3	45
161	Low-temperature stress: is phytohormones application a remedy?. Environmental Science and Pollution Research, 2017, 24, 21574-21590.	2.7	56
162	Plant-Specific Histone Deacetylases HDT1/2 Regulate <i>GIBBERELLIN 2-OXIDASE2</i> Expression to Control Arabidopsis Root Meristem Cell Number. Plant Cell, 2017, 29, 2183-2196.	3.1	69
163	Shade Inhibits Leaf Size by Controlling Cell Proliferation and Enlargement in Soybean. Scientific Reports, 2017, 7, 9259.	1.6	103
164	Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature. Nature Communications, 2017, 8, 309.	5.8	102
165	DELLA genes restrict inflorescence meristem function independently of plant height. Nature Plants, 2017, 3, 749-754.	4.7	82
166	Reactive oxygen species, abiotic stress and stress combination. Plant Journal, 2017, 90, 856-867.	2.8	1,759
167	The root growth of wheat plants, the water conservation and fertility status of sandy soils influenced by plant growth promoting rhizobacteria. Symbiosis, 2017, 72, 195-205.	1.2	69
168	Plant Cell Differentiation. , 2017, , 205-390.		0
169	F-Box Protein FBX92 Affects Leaf Size in Arabidopsis thaliana. Plant and Cell Physiology, 2017, 58, 962-975.	1.5	69
170	Transcriptomic Analysis Reveals Mechanisms of Sterile and Fertile Flower Differentiation and Development in Viburnum macrocephalum f. keteleeri. Frontiers in Plant Science, 2017, 8, 261.	1.7	30

#	Article	IF	Citations
171	High Concentration of Melatonin Regulates Leaf Development by Suppressing Cell Proliferation and Endoreduplication in Arabidopsis. International Journal of Molecular Sciences, 2017, 18, 991.	1.8	28
172	Plum Fruit Development Occurs via Gibberellin–Sensitive and –Insensitive DELLA Repressors. PLoS ONE, 2017, 12, e0169440.	1.1	14
173	Distinct gibberellin functions during and after grapevine bud dormancy release. Journal of Experimental Botany, 2018, 69, 1635-1648.	2.4	64
174	Impacts of exogenous pollutant bisphenol A on characteristics of soybeans. Ecotoxicology and Environmental Safety, 2018, 157, 463-471.	2.9	25
175	Revealing critical mechanisms of BR-mediated apple nursery tree growth using iTRAQ-based proteomic analysis. Journal of Proteomics, 2018, 173, 139-154.	1.2	13
176	Insights into Pivotal Role of Phytohormonal Cross Talk in Tailoring Underground Plant Root System Architecture. Soil Biology, 2018, , 1-41.	0.6	0
177	An R2R3-MYB transcription factor, SIMYB28, involved in the regulation of TYLCV infection in tomato. Scientia Horticulturae, 2018, 237, 192-200.	1.7	20
178	Downregulating aspen xylan biosynthetic <scp>GT</scp> 43 genes in developing wood stimulates growth via reprograming of the transcriptome. New Phytologist, 2018, 219, 230-245.	3.5	43
179	Gibberellic acid enhances postharvest toon sprout tolerance to chilling stress by increasing the antioxidant capacity during the short-term cold storage. Scientia Horticulturae, 2018, 237, 184-191.	1.7	29
180	The reduction in maize leaf growth under mild drought affects the transition between cell division and cannot be restored by elevated gibberellic acid levels. Plant Biotechnology Journal, 2018, 16, 615-627.	4.1	73
181	Activation of gibberellin 20-oxidase 2 undermines auxin-dependent root and root hair growth in NaCl-stressed Arabidopsis seedlings. Plant Growth Regulation, 2018, 84, 225-236.	1.8	53
182	Peptide signaling molecules <scp>CLE</scp> 5 and <scp>CLE</scp> 6 affect Arabidopsis leaf shape downstream of leaf patterning transcription factors and auxin. Plant Direct, 2018, 2, e00103.	0.8	19
183	Jasmonate Zim-Domain Protein 9 Interacts With Slender Rice 1 to Mediate the Antagonistic Interaction Between Jasmonic and Gibberellic Acid Signals in Rice. Frontiers in Plant Science, 2018, 9, 1866.	1.7	27
185	Mechanisms Underlying the Environmentally Induced Plasticity of Leaf Morphology. Frontiers in Genetics, 2018, 9, 478.	1.1	58
186	Phenotypic and transcriptomic characterization of a wheat tall mutant carrying an induced mutation in the C-terminal PFYRE motif of RHT-B1b. BMC Plant Biology, 2018, 18, 253.	1.6	15
187	Impact of Salicylic Acid and PGPR on the Drought Tolerance and Phytoremediation Potential of Helianthus annus. Frontiers in Microbiology, 2018, 9, 2507.	1.5	127
189	Constitutive Expression of miR408 Improves Biomass and Seed Yield in Arabidopsis. Frontiers in Plant Science, 2017, 8, 2114.	1.7	78
190	Isolation and Role of PmRGL2 in GA-mediated Floral Bud Dormancy Release in Japanese Apricot (Prunus) Tj ETQq	1 1.0.7843 1.7	314 rgBT /O

#	Article	IF	CITATIONS
191	OLIGOCELLULA1/HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES15 Promotes Cell Proliferation With HISTONE DEACETYLASE9 and POWERDRESS During Leaf Development in Arabidopsis thaliana. Frontiers in Plant Science, 2018, 9, 580.	1.7	30
192	Regulation of Seed Germination and Abiotic Stresses by Gibberellins and Abscisic Acid. Frontiers in Plant Science, 2018, 9, 838.	1.7	197
193	Getting leaves into shape: a molecular, cellular, environmental and evolutionary view. Development (Cambridge), 2018, 145, .	1.2	61
194	Early Events in Plant Abiotic Stress Signaling: Interplay Between Calcium, Reactive Oxygen Species and Phytohormones. Journal of Plant Growth Regulation, 2018, 37, 1033-1049.	2.8	78
195	Molecular Mechanisms of Leaf Morphogenesis. Molecular Plant, 2018, 11, 1117-1134.	3.9	171
196	Controlled Environment Horticulture. , 2019, , .		13
198	Histone Deacetylase HDT1 is Involved in Stem Vascular Development in Arabidopsis. International Journal of Molecular Sciences, 2019, 20, 3452.	1.8	6
199	Effect of Gibberellic Acid on Growth, Yield, and Quality of Leaf Lettuce and Rocket Grown in a Floating System. Agronomy, 2019, 9, 382.	1.3	74
200	The Coordination of Ethylene and Other Hormones in Primary Root Development. Frontiers in Plant Science, 2019, 10, 874.	1.7	84
201	Effect of High-Temperature Stress on the Metabolism of Plant Growth Regulators. , 2019, , 485-591.		4
202	Physiological and Transcriptomic Analyses Elucidate That Exogenous Calcium Can Relieve Injuries to Potato Plants (Solanum tuberosum L.) under Weak Light. International Journal of Molecular Sciences, 2019, 20, 5133.	1.8	8
203	STO and GA negatively regulate UV-B-induced Arabidopsis root growth inhibition. Plant Signaling and Behavior, 2019, 14, 1675471.	1.2	7
204	Endophytic Pseudomonas fluorescens induced sesquiterpenoid accumulation mediated by gibberellic acid and jasmonic acid in Atractylodes macrocephala Koidz plantlets. Plant Cell, Tissue and Organ Culture, 2019, 138, 445-457.	1.2	20
205	Elevated CO2 induces age-dependent restoration of growth and metabolism in gibberellin-deficient plants. Planta, 2019, 250, 1147-1161.	1.6	8
206	Elevated gibberellin altered morphology, anatomical structure, and transcriptional regulatory networks of hormones in celery leaves. Protoplasma, 2019, 256, 1507-1517.	1.0	7
207	Proteomic Profiling for Metabolic Pathways Involved in Interactive Effects of Elevated Carbon Dioxide and Nitrogen on Leaf Growth in a Perennial Grass Species. Journal of Proteome Research, 2019, 18, 2446-2457.	1.8	8
208	Genome-Wide Analysis of the D-type Cyclin Gene Family Reveals Differential Expression Patterns and Stem Development in the Woody Plant Prunus mume. Forests, 2019, 10, 147.	0.9	9
209	Effects of Exogenous GA3 and DPC Treatments on Levels of Endogenous Hormone and Expression of Key Gibberellin Biosynthesis Pathway Genes During Stem Elongation in Sugarcane. Sugar Tech, 2019, 21, 936-948.	0.9	16

#	Article	IF	CITATIONS
210	Gibberellins negatively regulate the development of Medicago truncatula root system. Scientific Reports, 2019, 9, 2335.	1.6	23
211	A Network-Guided Genetic Approach to Identify Novel Regulators of Adventitious Root Formation in Arabidopsis thaliana. Frontiers in Plant Science, 2019, 10, 461.	1.7	15
212	A Crucial Role of GA-Regulated Flavonol Biosynthesis in Root Growth of Arabidopsis. Molecular Plant, 2019, 12, 521-537.	3.9	105
213	Gibberellins Inhibit Nodule Senescence and Stimulate Nodule Meristem Bifurcation in Pea (Pisum) Tj ETQq1 1 0.7	784314 rg 1.7	BT JOverlock
214	Data Analysis of Bioassay of tea plant soil on endogenous hormone of tea seedlings. , 2019, , .		1
215	Elevated gibberellin enhances lignin accumulation in celery (Apium graveolens L.) leaves. Protoplasma, 2019, 256, 777-788.	1.0	23
216	Root phenotypes of dwarf and "overgrowth―SLN1 barley mutants, and implications for hypoxic stress tolerance. Journal of Plant Physiology, 2019, 234-235, 60-70.	1.6	11
217	Ethylene regulates post-germination seedling growth in wheat through spatial and temporal modulation of ABA/GA balance. Journal of Experimental Botany, 2020, 71, 1985-2004.	2.4	26
218	How grass keeps growing: an integrated analysis of hormonal crosstalk in the maize leaf growth zone. New Phytologist, 2020, 225, 2513-2525.	3.5	13
219	Molecular networks regulating cell division during Arabidopsis leaf growth. Journal of Experimental Botany, 2020, 71, 2365-2378.	2.4	83
220	New insights into gibberellin signaling in regulating flowering in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2020, 62, 118-131.	4.1	175
221	Adventitious root formation is dynamically regulated by various hormones in leaf-vegetable sweetpotato cuttings. Journal of Plant Physiology, 2020, 253, 153267.	1.6	15
222	Regulation of Cell Type-Specific Immunity Networks in Arabidopsis Roots. Plant Cell, 2020, 32, 2742-2762.	3.1	59
223	Interplay between Hormones and Several Abiotic Stress Conditions on Arabidopsis thaliana Primary Root Development. Cells, 2020, 9, 2576.	1.8	22
224	Molecular and Hormonal Regulation of Leaf Morphogenesis in Arabidopsis. International Journal of Molecular Sciences, 2020, 21, 5132.	1.8	24
225	Nitrogen modulates cotton root morphology by affecting abscisic acid (ABA) and salicylic acid (SA) content. Archives of Agronomy and Soil Science, 2020, , 1-17.	1.3	10
226	â€~Green revolution' dwarf gene <i>sd1</i> of rice has gigantic impact. Briefings in Functional Genomics, 2020, 19, 390-409.	1.3	12
227	Arabidopsis primary root growth: let it grow, can't hold it back anymore!. Current Opinion in Plant Biology, 2020, 57, 133-141.	3.5	19

ARTICLE IF CITATIONS # Arabidopsis O-fucosyltransferase SPINDLY regulates root hair patterning independently of gibberellin 228 1.2 13 signaling. Development (Cambridge), 2020, 147, . Effects of Foliar Application of Gibberellic Acid on the Salt Tolerance of Tomato and Sweet Pepper 229 1.2 Transplants. Horticulturae, 2020, 6, 93. Effect of coconut water and banana hump extract on the growth of binahong (Anredera cordifolia) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 230 0.2 0 2020, 591, 012004. Fertigation Management and Growth-Promoting Treatments Affect Tomato Transplant Production and Plant Growth after Transplant. Agronomy, 2020, 10, 1504. Effect of polar auxin transport and gibberellins on xylem formation in pine cuttings under 232 0.3 11 adventitious rooting conditions. Israel Journal of Plant Sciences, 2020, 67, 27-39. Gibberellin Promotes Bolting and Flowering via the Floral Integrators RsFT and RsSOC1-1 under Marginal Vernalization in Radish. Plants, 2020, 9, 594. 1.6 The role of salicylic acid and gibberellin signaling in plant responses to abiotic stress with an 234 1.2 70 emphasis on heavy metals. Plant Signaling and Behavior, 2020, 15, 1777372. Improving Strategic Growth Stage-based Drought Tolerance in Quinoa by Rhizobacterial Inoculation. 0.6 24 Communications in Soil Science and Plant Analysis, 2020, 51, 853-868. Soybean <i>AP1</i> homologs control flowering time and plant height. Journal of Integrative Plant 236 4.1 74 Biology, 2020, 62, 1868-1879. Cell Cycle Regulation in the Plant Response to Stress. Frontiers in Plant Science, 2019, 10, 1765. 1.7 109 SMALL LEAF AND BUSHY1 controls organ size and lateral branching by modulating the stability of BIG 238 3.5 24 SEEDS1 in <i>Medicago truncatula</i>. New Phytologist, 2020, 226, 1399-1412. Comparative transcriptomics of stem bark reveals genes associated with bast fiber development in 1.2 Boehmeria nivea L. gaud (ramie). BMC Genomics, 2020, 21, 40. Same same, but different: growth responses of primary and lateral roots. Journal of Experimental 240 2.4 61 Botany, 2020, 71, 2397-2411. Phytohormonal signaling under abiotic stress., 2020, , 397-466. 241 Origin and evolution of gibberellin signaling and metabolism in plants. Seminars in Cell and 242 2.378 Developmental Biology, 2021, 109, 46-54. Mitigating Strategies of Gibberellins in Various Environmental Cues and Their Crosstalk with Other 243 1.0 Hormonal Pathways in Plants: a Review. Plant Molecular Biology Reporter, 2021, 39, 34-49. Underground gibberellin activity: differential gibberellin response in tomato shoots and roots. New 244 3.5 10 Phytologist, 2021, 229, 1196-1200. Mapping sites of gibberellin biosynthesis in the Arabidopsis root tip. New Phytologist, 2021, 229, 245 34 1521-1534.

#	Article	IF	CITATIONS
246	Integration of reactive oxygen species and hormone signaling during abiotic stress. Plant Journal, 2021, 105, 459-476.	2.8	186
247	Morphological and anatomical changes in Lilium cv. Arcachon in response to plant growth regulators. Horticulture Environment and Biotechnology, 2021, 62, 325-335.	0.7	6
248	Interaction between the MtDELLA–MtGAF1 Complex and MtARF3 Mediates Transcriptional Control of MtGA3ox1 to Elaborate Leaf Margin Formation in <i>Medicago truncatula</i> . Plant and Cell Physiology, 2021, 62, 321-333.	1.5	8
249	The <i>Arabidopsis</i> GRAS-type SCL28 transcription factor controls the mitotic cell cycle and division plane orientation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	30
250	Transcriptome analysis reveals major transcriptional changes during regrowth after mowing of red clover (Trifolium pratense). BMC Plant Biology, 2021, 21, 95.	1.6	10
252	Post-translational modifications regulate the activity of the growth-restricting protease DA1. Journal of Experimental Botany, 2021, 72, 3352-3366.	2.4	24
253	Roles of Phytohormones and Their Signaling Pathways in Leaf Development and Stress Responses. Journal of Agricultural and Food Chemistry, 2021, 69, 3566-3584.	2.4	74
254	Hormonal Regulation of Stem Cell Proliferation at the Arabidopsis thaliana Root Stem Cell Niche. Frontiers in Plant Science, 2021, 12, 628491.	1.7	5
255	Integrative Roles of Phytohormones on Cell Proliferation, Elongation and Differentiation in the Arabidopsis thaliana Primary Root. Frontiers in Plant Science, 2021, 12, 659155.	1.7	30
257	From genes to networks: The genetic control of leaf development. Journal of Integrative Plant Biology, 2021, 63, 1181-1196.	4.1	36
259	Discovery and modulation of diterpenoid metabolism improves glandular trichome formation, artemisinin production and stress resilience in <i>Artemisia annua</i> . New Phytologist, 2021, 230, 2387-2403.	3.5	18
260	OsGRF6 interacts with SLR1 to regulate OsGA2ox1 expression for coordinating chilling tolerance and growth in rice. Journal of Plant Physiology, 2021, 260, 153406.	1.6	16
262	Phenotypic Characterization and Differential Gene Expression Analysis Reveal That Dwarf Mutant dwf Dwarfism Is Associated with Gibberellin in Eggplant. Horticulturae, 2021, 7, 114.	1.2	5
264	Genetic regulators of leaf size in Brassica crops. Horticulture Research, 2021, 8, 91.	2.9	23
265	Role and activity of jasmonates in plants under in vitro conditions. Plant Cell, Tissue and Organ Culture, 2021, 146, 425-447.	1.2	20
266	VipariNama: RNA viral vectors to rapidly elucidate the relationship between gene expression and phenotype. Plant Physiology, 2021, 186, 2222-2238.	2.3	16
267	Overexpression of MeH1.2 gene inhibited plant growth and increased branch root differentiation in transgenic cassava. Crop Science, 2021, 61, 2639-2650.	0.8	1
268	Comprehensive transcriptome profiling to identify genes involved in pistil abortion of Japanese apricot. Physiology and Molecular Biology of Plants, 2021, 27, 1191-1204.	1.4	9

#	Article	IF	CITATIONS
270	The converging path of protein SUMOylation in phytohormone signalling: highlights and new frontiers. Plant Cell Reports, 2021, 40, 2047-2061.	2.8	3
271	Regulation of the Plant Cell Cycle in Response to Hormones and the Environment. Annual Review of Plant Biology, 2021, 72, 273-296.	8.6	63
273	Effects of exogenous phytohormones on chlorogenic acid accumulation and pathway-associated gene expressions in sweetpotato stem tips. Plant Physiology and Biochemistry, 2021, 164, 21-26.	2.8	7
274	Coordination between growth and stress responses by DELLA in the liverwort Marchantia polymorpha. Current Biology, 2021, 31, 3678-3686.e11.	1.8	28
275	Seed Treatment With Jasmonic Acid and Methyl Jasmonate Induces Resistance to Insects but Reduces Plant Growth and Yield in Rice, Oryza sativa. Frontiers in Plant Science, 2021, 12, 691768.	1.7	11
276	Nitrogen stress inhibits root growth by regulating cell wall and hormone changes in cotton (<i>GossypiumÂhirsutum</i> L.). Journal of Agronomy and Crop Science, 2021, 207, 1006-1023.	1.7	10
277	Stomatal response to drought is modulated by gibberellin in tomato. Acta Physiologiae Plantarum, 2021, 43, 1.	1.0	5
278	Hormonal orchestration of root apical meristem formation and maintenance in Arabidopsis. Journal of Experimental Botany, 2021, 72, 6768-6788.	2.4	20
279	Gibberellin Induced Transcriptome Profiles Reveal Gene Regulation of Loquat Flowering. Frontiers in Genetics, 2021, 12, 703688.	1.1	4
280	An Anecdote on Prospective Protein Targets for Developing Novel Plant Growth Regulators. Molecular Biotechnology, 2022, 64, 109-129.	1.3	0
281	Pesticide Tolerant Rhizobacteria: Paradigm of Disease Management and Plant Growth Promotion. , 2020, , 221-239.		5
282	Root Apical Meristem Pattern: Hormone Circuitry and Transcriptional Networks. Progress in Botany Fortschritte Der Botanik, 2010, , 37-71.	0.1	4
283	Growth rate regulation is associated with developmental modification of source efficiency. Nature Plants, 2019, 5, 148-152.	4.7	9
284	Nocturnal gibberellin biosynthesis is carbon dependent and adjusts leaf expansion rates to variable conditions. Plant Physiology, 2021, 185, 228-239.	2.3	10
286	Spatiotemporal changes in the role of cytokinin during root development. New Phytologist, 2013, 199, 324-338.	3.5	50
287	Evolution of Plant Hormone Response Pathways. Annual Review of Plant Biology, 2020, 71, 327-353.	8.6	169
288	Genome Wide Binding Site Analysis Reveals Transcriptional Coactivation of Cytokinin-Responsive Genes by DELLA Proteins. PLoS Genetics, 2015, 11, e1005337.	1.5	99
289	SHOEBOX Modulates Root Meristem Size in Rice through Dose-Dependent Effects of Gibberellins on Cell Elongation and Proliferation. PLoS Genetics, 2015, 11, e1005464.	1.5	51

#	Article	IF	CITATIONS
290	STERILE APETALA modulates the stability of a repressor protein complex to control organ size in Arabidopsis thaliana. PLoS Genetics, 2018, 14, e1007218.	1.5	45
291	Transcriptome Analysis of Gerbera hybrida Ray Florets: Putative Genes Associated with Gibberellin Metabolism and Signal Transduction. PLoS ONE, 2013, 8, e57715.	1.1	28
292	New Approach to Increasing Rice Lodging Resistance and Biomass Yield Through the Use of High Gibberellin Producing Varieties. PLoS ONE, 2014, 9, e86870.	1.1	126
293	Gibberellin Is Involved in Inhibition of Cucumber Growth and Nitrogen Uptake at Suboptimal Root-Zone Temperatures. PLoS ONE, 2016, 11, e0156188.	1.1	39
294	Involvement of Pyridoxine/Pyridoxamine 5'-Phosphate Oxidase (PDX3) in Ethylene-Induced Auxin Biosynthesis in the Arabidopsis Root. Molecules and Cells, 2018, 41, 1033-1044.	1.0	17
295	Shading of mature leaves systemically regulates photosynthesis and leaf area of new developing leaves via hormones. Photosynthetica, 2019, 57, 303-310.	0.9	8
296	Regulation of shoot meristem shape by photoperiodic signaling and phytohormones during floral induction of Arabidopsis. ELife, 2020, 9, .	2.8	30
297	Application of NPAÂRestrained Leaf Expansion by Reduced Cell Division in Soybean Under Shade Stress. Journal of Plant Growth Regulation, 2022, 41, 3345-3358.	2.8	2
298	Nitrate signaling promotes plant growth by upregulating gibberellin biosynthesis and destabilization of DELLA proteins. Current Biology, 2021, 31, 4971-4982.e4.	1.8	25
299	Tecnologia de sementes de Sebastiania membranifolia Mull Arg (Euphorbiaceae). Cerne, 2013, 19, 669-675.	0.9	0
305	Editor Profile: Pascal Genschik. Plant Cell, 2020, 32, 2446-2448.	3.1	0
307	Treatment of Glycine max seeds with gibberellins alters root morphology, anatomy, and transcriptional networks. Biologia Plantarum, 0, 64, 32-42.	1.9	0
310	Overexpression of Liriodendron tulipifera JAG Gene (LtuJAG) Changes Leaf Shapes in Transgenic Arabidopsis thaliana. International Journal of Molecular Sciences, 2022, 23, 1322.	1.8	3
311	Recognizing the Basics of Phytochrome-Interacting Factors in Plants for Abiotic Stress Tolerance. Plant Stress, 2022, 3, 100050.	2.7	11
312	ORESARA 15, a PLATZ transcription factor, controls root meristem size through auxin and cytokinin signalling-related pathways. Journal of Experimental Botany, 2022, 73, 2511-2524.	2.4	8
313	Spatial control of cell division by GAâ€OsGRF7/8 module in a leaf explaining the leaf length variation between cultivated and wild rice. New Phytologist, 2022, 234, 867-883.	3.5	9
316	Past accomplishments and future challenges of the multi-omics characterization of leaf growth. Plant Physiology, 2022, 189, 473-489.	2.3	6
317	Insights Into MicroRNA-Mediated Regulation of Flowering Time in Cotton Through Small RNA Sequencing. Frontiers in Plant Science, 2022, 13, 761244.	1.7	7

#	Article	IF	CITATIONS
318	Nitric oxide negatively regulates gibberellin signaling to coordinate growth and salt tolerance in Arabidopsis. Journal of Genetics and Genomics, 2022, 49, 756-765.	1.7	26
350	Action of Salicylic Acid on Plant Growth. Frontiers in Plant Science, 2022, 13, 878076.	1.7	19
352	It's Time for a Change: The Role of Gibberellin in Root Meristem Development. Frontiers in Plant Science, 2022, 13, 882517.	1.7	9
353	A cell wall-associated gene network shapes leaf boundary domains. Development (Cambridge), 2022, 149, .	1.2	3
354	The translatability of genetic networks from model to crop species: lessons from the past and perspectives for the future. New Phytologist, 0, , .	3.5	2
355	Modeling reveals posttranscriptional regulation of CA metabolism enzymes in response to drought and cold. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	3
356	Whole-genome resequencing identified QTLs, candidate genes and Kompetitive Allele-Specific PCR markers associated with the large fruit of Atlantic Giant (Cucurbita maxima). Frontiers in Plant Science, 0, 13, .	1.7	5
357	Genotypic-specific hormonal reprogramming and crosstalk are crucial for root growth and salt tolerance in bermudagrass (Cynodon dactylon). Frontiers in Plant Science, 0, 13, .	1.7	2
359	Heterologous expression of a lycophyte protein enhances angiosperm seedling vigor. Development (Cambridge), 0, , .	1.2	0
360	Predicted landscape of <scp>RETINOBLASTOMAâ€RELATED LxCxE</scp> â€mediated interactions across the Chloroplastida. Plant Journal, 0, , .	2.8	1
361	Plant Development and Crop Yield: The Role of Gibberellins. Plants, 2022, 11, 2650.	1.6	36
362	Development specifies, diversifies and empowers root immunity. EMBO Reports, 2022, 23, .	2.0	4
363	GhAP1â€D3 positively regulates flowering time and early maturity with no yield and fiber quality penalties in upland cotton. Journal of Integrative Plant Biology, 2023, 65, 985-1002.	4.1	2
364	Insight of PBZ mediated drought amelioration in crop plants. Frontiers in Plant Science, 0, 13, .	1.7	7
365	Genome-Wide Identification of Wheat KNOX Gene Family and Functional Characterization of TaKNOX14-D in Plants. International Journal of Molecular Sciences, 2022, 23, 15918.	1.8	4
366	Physiological Control and Genetic Basis of Leaf Curvature and Heading in Brassica rapa L. Journal of Advanced Research, 2023, 53, 49-59.	4.4	1
367	ROS-hormone interaction in regulating integrative dé—'ense signaling of plant cell. Biocell, 2023, 47, 503-521.	0.4	2
368	Mutation in the GA3ox gene governs short-internode characteristic in a korean cucumber inbred line. Horticulture Environment and Biotechnology, 2023, 64, 485-495.	0.7	1

#	Article	IF	CITATIONS
369	Leaf-size control beyond transcription factors: Compensatory mechanisms. Frontiers in Plant Science, 0, 13, .	1.7	3
370	Understanding the mode of action of AgroGain®, a biostimulant derived from the red seaweed Kappaphycus alvarezii in the stimulation of cotyledon expansion and growth of Cucumis sativa (cucumber). Frontiers in Plant Science, 0, 14, .	1.7	3
371	High responsiveness to nitrogen supply in modern maize cultivars is contributed to gibberellin-dependent leaf elongation. Environmental and Experimental Botany, 2023, 210, 105339.	2.0	1
372	Characterization of the soybean KRP gene family reveals a key role for GmKRP2a in root development. Frontiers in Plant Science, 0, 14, .	1.7	1
374	Effects of arbuscular mycorrhizal fungus inoculation on the growth and nitrogen metabolism of Catalpa bungei C.A.Mey. under different nitrogen levels. Frontiers in Plant Science, 0, 14, .	1.7	5
375	Deciphering the physiological and molecular functions of phytohormones. , 2023, , 15-40.		0
376	Morphogenesis of leaves: from initiation to the production of diverse shapes. Biochemical Society Transactions, 0, , .	1.6	0
377	Three CYCDs positively regulate plant height of crape myrtle by increasing cell division. Scientia Horticulturae, 2023, 315, 111954.	1.7	2
378	Whole transcriptome analysis and construction of a ceRNA regulatory network related to leaf and petiole development in Chinese cabbage (Brassica campestris L. ssp. pekinensis). BMC Genomics, 2023, 24, .	1.2	0
379	DELLA functions evolved by rewiring of associated transcriptional networks. Nature Plants, 2023, 9, 535-543.	4.7	4
380	Shoot differentiation from <i>Dendrocalamus brandisii</i> callus and the related physiological roles of sugar and hormones during shoot differentiation. Tree Physiology, 2023, 43, 1159-1186.	1.4	2
381	Moderate Salinity Stress Increases the Seedling Biomass in Oilseed Rape (Brassica napus L.). Plants, 2023, 12, 1650.	1.6	4
383	Antioxidant Phytochemicals as Novel Therapeutic Strategies against Drug-Resistant Bacteria. Biochemistry, 0, , .	0.8	0