
Beyond Triplets: Hyper-Relational Knowledge Graph
Embedding for Link Prediction

Paolo Rosso
University of Fribourg, Switzerland

Dingqi Yang∗
University of Fribourg, Switzerland
University of Macau, SAR China
{firstname.lastname}@unifr.ch

Philippe Cudré-Mauroux
University of Fribourg, Switzerland

ABSTRACT
Knowledge Graph (KG) embeddings are a powerful tool for predict-
ing missing links in KGs. Existing techniques typically represent a
KG as a set of triplets, where each triplet (h, r , t) links two entities
h and t through a relation r , and learn entity/relation embeddings
from such triplets while preserving such a structure. However, this
triplet representation oversimplifies the complex nature of the data
stored in the KG, in particular for hyper-relational facts, where each
fact contains not only a base triplet (h, r , t), but also the associated
key-value pairs (k,v). Even though a few recent techniques tried to
learn from such data by transforming a hyper-relational fact into
an n-ary representation (i.e., a set of key-value pairs only without
triplets), they result in suboptimal models as they are unaware of
the triplet structure, which serves as the fundamental data structure
in modern KGs and preserves the essential information for link pre-
diction. To address this issue, we propose HINGE, a hyper-relational
KG embedding model, which directly learns from hyper-relational
facts in a KG. HINGE captures not only the primary structural
information of the KG encoded in the triplets, but also the correla-
tion between each triplet and its associated key-value pairs. Our
extensive evaluation shows the superiority of HINGE on various
link prediction tasks over KGs. In particular, HINGE consistently
outperforms not only the KG embedding methods learning from
triplets only (by 0.81-41.45% depending on the link prediction tasks
and settings), but also the methods learning from hyper-relational
facts using the n-ary representation (by 13.2-84.1%).

CCS CONCEPTS
• Computing methodologies → Natural language process-
ing; Knowledge representation and reasoning.
KEYWORDS
Knowledge graph embedding, Hyper-relation, Link prediction

ACM Reference Format:
Paolo Rosso, Dingqi Yang, and Philippe Cudré-Mauroux. 2020. Beyond
Triplets: Hyper-Relational Knowledge Graph Embedding for Link Prediction.
In Proceedings of The Web Conference 2020 (WWW ’20), April 20–24, 2020,
Taipei, Taiwan. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3366423.3380257

∗Corresponding author

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’20, April 20–24, 2020, Taipei, Taiwan
© 2020 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-7023-3/20/04.
https://doi.org/10.1145/3366423.3380257

1 INTRODUCTION
Knowledge Graphs (KGs), such as Freebase [2], Google’s Knowledge
Graph [12] or Wikidata [40], have become a key asset powering
a large range of Web applications ranging from semantic search
[41] to question-answering [46], query expansion [13], or recom-
mendation systems [48]. KGs are typically represented through a
set of triplets; each triplet head, relation, tail, or (h, r , t) for short,
encodes a relation connecting a head entity and a tail entity, such as
Switzerland (head) hasCurrency (relation) Swiss franc (tail). While
modern KGs typically contain rich and high-quality data, they are
also known to suffer from an incompleteness issue, i.e., missing
facts. For example, 71% of all people from Freebase have no place of
birth [26], even though this is a mandatory property of the schema
[39]. Against this background, Knowledge Graph completion prob-
lems have been widely studied. A central problem in this context is
to predict the missing links in a KG (a.k.a. link prediction). More
precisely, given two elements of a triplet, the task is to predict the
missing one, such as (?, r , t), (h, ?, t) or (h, r , ?), where the question
mark represents the missing entity/relation.

In the current literature, Knowledge Graph embeddings have
been shown as a powerful tool for such link predictions [35]. The
key idea of KG embeddings is to learn a latent (and low-dimensional)
vector representation of entities/relations (i.e., entity/relation em-
beddings) from a set of triplets in a KG, while preserving the es-
sential information for link prediction in the KG. For example,
TransE [3], a typical KG embedding technique, models a relation as
a vector-plus operation between two entitiesh+r ≈ t ; subsequently,
when predicting the missing links, a new fact can be asserted by
evaluating | |h + r − t | |.

Despite its broad adoption, the triple-based representation of a
KG often oversimplifies the complex nature of the data stored in
the KG, in particular for hyper-relational data (a.k.a. multi-fold [38]
or n-ary [14] relational data), where each fact contains multiple
relations and entities. Figure 1(a) shows an example about Marie
Curie’s education from Wikidata: it contains a base triplet: (h, r , t)
{Marie Curie, educated at, University of Paris}, as well as further
information associated with the triplet, represented as key-value
(relation-entity) pairs1 (k,v) including {academic major, physics},
{academic degree, Master of Science}, etc.

Such hyper-relational data is ubiquitous in KGs. Taking Free-
base as an example, more than 30% of its entities are involved in
such hyper-relational facts [38]. When learning KG embeddings,
those hyper-relational facts have to be transformed into triplets
by either 1) keeping the base triplet only from a hyper-relational

1We use the term key-value (k, v) denoting a relation-entity pair here to emphasize
its difference from the triplet (h, r, t), even though h, t and v are entities while r and
k are relations.

https://doi.org/10.1145/3366423.3380257
https://doi.org/10.1145/3366423.3380257
https://doi.org/10.1145/3366423.3380257

WWW ’20, April 20–24, 2020, Taipei, Taiwan Paolo Rosso, Dingqi Yang, and Philippe Cudré-Mauroux

(a) A hyper-relational fact (b) N-ary representation of the fact

Figure 1: An example of a hyper-relational fact and its cor-
responding n-ary representation

fact, e.g., (h, r , t) in the above example, causing irreversible infor-
mation loss; 2) creating additional triplets from a hyper-relational
fact via reification [4], where an artificial entity is used to represent
the base triplet q := (h, r , t) and additional triplets are created as
(q,k,v); or 3) creating additional triplets from a hyper-relational
fact via relation paths [38], where we link h to v via an artificial re-
lation r̂k representing a relation path r → k , resulting in additional
triplets (h, r̂k,v). Although the latter two transformations preserve
the complete information of a hyper-relational fact, the extra en-
tities/relations they artificially introduce confuse KG embeddings
methods, preventing them from capturing key structural properties
of the original input graph (see Section 4.3 for more detail).

Against this background, in this paper, we investigate the prob-
lem of hyper-relational Knowledge Graph embedding. In the cur-
rent literature, a few recent studies consider such hyper-relational
data [14, 38, 49]. These works consider a set of relations as a so-
called n-ary (or multi-fold) relation, while the associated entities
then become instances of that relation. Figure 1(b) shows an n-ary
representation of the above example about Marie Curie. An n-ary
relation “education” is extracted from the hyper-relational fact, con-
taining the following four relations: education_head, education_tail,
education_major and education_degree; the hyper-relational fact is
then represented as a set of key-value (relation-entity) pairs only,
i.e., {education_head:Marie Curie, education_tail:University of Paris,
education_major :Physics, education_degree:Master of Science}. Sub-
sequently, using such an n-ary representation, existing approaches
to link prediction either learn to model the relatedness of entities
[38, 49], or learn from the relatedness between entity/relation pairs
[14]. However, the n-ary representation of a hyper-relational fact
(as a set of key-value pairs without triplets) treats each key-value
pair in the fact equally, which is not compatible with the schema
used by modern KGs. Specifically, as triplets still serve as the fun-
damental data structure in modern KGs, they preserve the essential
information for link prediction. In other words, key-value pairs
(k,v) on a hyper-relational fact should not be treated identically
as base triplet (h, r , t). In our experiments, we conduct a hypothe-
sis test and experimentally show that embeddings learnt from the
original base triplets (from a set hyper-relational facts) consistently
and significantly outperform (by 58.3-125.27%) embeddings learnt
from the same number of triplets created by a null model, where
one triplet is extracted from the n-ary representation of each hyper-
relational fact (represented a set of key-value pairs) via a randomly
sampled relation path [38] (see Section 4.2 for more detail). Such an
observation suggests that it is highly beneficial to directly capture
the structure of the base triplets in hyper-relational facts.

Motivated by the above observation, we propose in this paper
HINGE, a Hyper-relatIonal kNowledge Graph Embedding model.
HINGE is designed to directly learn from hyper-relational facts in
a KG, capturing not only the primary structural information of the
KG encoded in the triplets, but also the correlation between each
triplet and its associated key-value pairs (if any). More precisely, for
each hyper-relational fact, we first design two convolutional neu-
ral network pipelines, which learn 1) from the base triplet (h, r , t),
generating a triple-wise relatedness feature vector for h, r and t ,
and 2) from each key-value pair (k,v) associated with the triplet
together with the triplet itself, generating a quintuple-wise related-
ness feature vector between h, r , t , k andv , respectively. Afterward,
we compute the overall relatedness feature vector for the hyper-
relational fact by taking the minimum value along each feature
dimension over the triple-wise relatedness feature vector and all
the quintuple-wise relatedness feature vectors. The basic assump-
tion behind this operation is that for a valid hyper-relational fact,
both the relatedness for the base triplet (h, r , t) and the relatedness
between each key-value pair (k,v) and the base triplet should be
high; subsequently, the minimum relatedness along each feature
dimension is expected to be high. Finally, we use a fully connected
projection to output the predicted score from the overall relatedness
feature vector for the input hyper-relational fact.

Our contributions are hence four-fold:

• We investigate the problem of hyper-relational Knowledge Graph
embedding, where each fact contains not only a base triplet, but
also associated key-value pairs;

• We discuss a key limitation of a commonly used representation
scheme for hyper-relational data (i.e., using a set of key-value
pairs only). We empirically verify its limitation, showing that
triplets serve as the fundamental data structure underpinning
modern KGs and indeed encode the essential information for link
prediction;

• We introduce HINGE, a Hyper-relatIonal kNowledge Graph
Embeddingmodel, designed to directly learn fromhyper-relational
facts in a KG, capturing not only the primary structural informa-
tion of the KG encoded in the triplets, but also the correlation
between each triplet and its associated key-value pairs;

• We conduct a thorough evaluation of our method compared to
a sizable collection of baselines on two real-world KG datasets.
Our results show that compared to nine state-of-the-art KG em-
bedding methods learning from triplets only, HINGE consistently
achieves better performance, yielding an improvement of 0.81-
41.45% on various link prediction tasks (i.e., head/tail or relation
prediction) with different data transformation settings (e.g., keep-
ing base triplet only, via reification or relation paths) over the
best-performing baseline methods on individual tasks. Moreover,
compared to methods learning from hyper-relational facts us-
ing an n-ary representation, HINGE shows improvements of
13.2-84.1% across different link prediction tasks over the best-
performing baseline methods on individual tasks.

2 RELATEDWORK
Graph embeddings have become a key paradigm to learn repre-
sentations of nodes in a graph and facilitate downstream graph
analysis tasks [5, 16, 45]. As a specific type of graphs, Knowledge

Beyond Triplets: Hyper-Relational Knowledge Graph Embedding for Link Prediction WWW ’20, April 20–24, 2020, Taipei, Taiwan

Graphs contain both semantic-enriched nodes (entities) and edges
(relations). Therefore, KG embedding techniques learn representa-
tions of entities and relations in a KG by preserving the relations
between entities [35]. In the following, we briefly discuss existing
KG Embedding techniques learning from 1) triplets only, 2) triplets
with other data, and 3) hyper-relational facts.

2.1 KG Embeddings from Triplets
In the current literature, most of the existing KG embedding tech-
niques learn from a set of triplets (h, r , t) extracted from an input
KG. These techniques can be classified into two broad categories,
i.e., translational distance models and semantic matching models
[28]. First, translational distance models exploit distance-based
scoring functions to create the embeddings. One representative
model of this family is TransE [3], which creates embeddings from
triplets (h, r , t) such that the relation between the head and tail
entities are preserved as h + r ≈ t . Several works further improve
TransE to capture richer KG structures—such as multi-mapping
relations (one-to-many, many-to-one, or many-to-many)—using
more sophisticated scoring function involving relation-specific hy-
perplanes [37] or spaces [9, 18, 22], for example. Second, semantic
matching models exploit similarity-based scoring functions. One
typical model in that context is RESCAL [27]. It represents each
entity as a vector and each relation as a matrix, and uses a bilin-
ear function to model the relation between two entities. Several
works also extend RESCAL by putting a specific focus on reduc-
ing the model complexity [44], by capturing asymmetric relations
[34], or by modeling non-linear relations using neural networks
[1, 7, 25, 30, 31].

However, representing a KG using triplets only often oversimpli-
fies the complex nature of the data stored in the KG, in particular for
hyper-relational data, where each fact contains multiple relations
and entities (see example above). Even though a hyper-relational
fact can be transformed to triplets by either keeping the base triplets
only or creating additional triplets via reification [4] or relation
paths [38], none of these transformations is ideal for knowledge
graph embeddings, as the former transformation setting incurs irre-
versible information loss in the KG embeddings while the latter two
settings generate additional entities/relations distracting the KG
embedding method from capturing the essential information for
link prediction (see our experimental results in Section 4.3 for more
detail on this). Therefore, it would be highly beneficial to learn KG
embeddings directly from such hyper-relational facts.

2.2 KG Embeddings from Triplets with other
Data

We also note that there are a few works on KG embeddings consid-
ering other data together with the triplets. According to the sources
of such data, these works can be classified into two categories, i.e.,
data in the KG and third-party data. First, except triplets linking en-
tities via relations, other data contained in a KG can be incorporated
into KG embeddings. For example, multi-modal attributes associ-
ated with entities (a.k.a. literals), such as non-discrete numerical
literals [11, 32] or text literal [20], have been shown to improve the
KG embeddings on various tasks; images associated with entities
have also been used to improve entity matching tasks (matching

entities across different KGs) [24]. These works mainly focus on us-
ing multi-modal data to enrich the representation of entities, while
triplets remain the only relational representation between entities,
which differs from our work focusing on hyper-relational facts. Sec-
ond, some related techniques learn entity/relation embeddings from
triplets in a KG jointly with third-party data sources, in particular
with text (e.g., Wikipedia articles) [6, 10, 15, 29, 33, 36, 42, 43, 47, 50].
These works focus on combining the advantages of a KG with fur-
ther (textual) data sources to learn both entity/relation and word
embeddings simultaneously, which is different from our work learn-
ing from a KG only while considering hyper-relational facts.

2.3 KG Embeddings from Hyper-Relational
Facts

Some recent works on KG embeddings started to consider hyper-
relational data (a.k.a. multi-fold or n-ary relational data) [14, 38, 49].
More precisely, these works transform a hyper-relational fact into
an n-ary representation, i.e., a set of key-value (relation-entity)
pairs while completely avoiding triplets. For example, in [14], a
hyper-relational fact (h, r , t) with (k,v) is transformed into {rh :h,
rt :t , k :v} by converting the relation r into two keys rh and rt , asso-
ciated with head h and tail t , respectively. Using this representation,
these works learn the relatedness between entity/relation pairs for
predicting missing links in KGs. Specifically, m-TransH [38] models
the interaction between entities involved in each fact in order to
perform link prediction on missing entities. RAE [49] further ex-
tends m-TransH by considering the relatedness between entities
in each fact for performing instance reconstruction, i.e., predict-
ing one or multiple missing entities in a fact. As these two works
capture only the relatedness between entities and can thus only
predict missing entities, NaLP [14] was later proposed to model
the relatedness between key-value (relation-entity) pairs contained
in each fact, which enables the prediction of either a missing key
(relation) or a missing value (entity).

However, transforming a hyper-relational fact into an n-ary
representation (i.e., as a set of key-value pairs) is inherently in-
compatible with the schema used by modern KGs, where triplets
still serve as the fundamental data structure. In other words, key-
value pairs (k,v) on a hyper-relational fact should not be treated
identically to base triplets (h, r , t), as the latter actually preserves
the essential information for link prediction in the KGs. We also
empirically verify this point in our experiments (see Section 4.2 for
more detail). Therefore, in this paper, we design HINGE to directly
learn from the base triplets even for hyper-relational facts, while
simultaneously learning from the associated key-value pairs also.

3 LEARNING FROM HYPER-RELATIONAL
FACTS

In this section, we introduce HINGE, a hyper-relational KG em-
bedding model learning directly from hyper-relational facts. We
introduce a couple of formal definitions:

Definition 3.1. Hyper-relational fact: A hyper-relational fact
contains a base triplet (h, r , t) and a set of associated key-value
pairs (ki ,vi), i = 1, ...,n.

WWW ’20, April 20–24, 2020, Taipei, Taiwan Paolo Rosso, Dingqi Yang, and Philippe Cudré-Mauroux

Definition 3.2. Triple fact: A triple fact contains a triplet (h, r , t)
only.

Based on these definitions, we start below by discussing our
main design principle and goals, before presenting our proposed
model in detail.

3.1 Design Principle and Goals
As triplets are indeed the fundamental data structure in modern
KGs and thus preserve the essential information for link prediction
in the KGs, our main design principle is to, on one hand, learn
embeddings directly from this primary data source (triplets) in
order to preserve the essential information for link prediction in
the KG to a maximum extent, while on the other hand also learning
the relatedness between a triplet and its associated key-value pairs
(if any). Following this principle, we set the three following goals:

I) Effectively learning from both triple facts and hyper-relational
facts. Specifically, as not all facts are hyper-relational in a KG
(e.g., 30% of entities are involved in such hyper-relational
facts in Freebase [38]), the embedding model should be
highly effective at learning both from triple facts and from
hyper-relational facts. In other words, the incorporation of
key-value pairs from hyper-relational facts should not dis-
tract the main learning process from the triplets.

II) Leveraging key-value pairs when learning from the base triplets
in hyper-relational facts. For each hyper-relational fact, the
base triplet is associated with a set of key-value pairs provid-
ing further information about the base triplet. As the base
triplet remains the primary data source for modeling the
hyper-relational fact, the embedding model should be de-
signed to leverage key-value pairs to improve the learning
process from the triplet.

III) Learning from an arbitrary number of key-value pairs from a
hyper-relational fact. As the number of key-value pairs in-
volved in hyper-relational facts varies, the embedding model
should be able to effectively handle an arbitrary number of
key-value pairs in a hyper-relational fact.

We built HINGE with those goals in mind, in order to effectively
learn embeddings from both triple and hyper-relational facts.

3.2 HINGE
Figure 2 illustrates our proposed model HINGE. It is designed to
directly learn from hyper-relational facts in a KG, capturing not
only the primary structural information of the KG encoded in the
triplets, but also the relatedness between each triplet and its as-
sociated key-value pairs (if any). More precisely, HINGE consists
of three parts. For each hyper-relational fact containing a base
triplet (h, r , t) and associated key-value pairs (ki ,vi), i = 1, ...,n,
it 1) learns from the base triplet (h, r , t), generating a triple-wise
relatedness feature vector for h, r and t , and 2) learns from each
key-value pair (k,v) associated with the base triplet together with
the triplet itself, generating the quintuple-wise relatedness feature
vector between h, r , t , k andv , respectively. Afterward, it 3) merges
these relatedness feature vectors to generate a final prediction score
for the input hyper-relational fact. In the following, we present the
details of these three modules.

3.2.1 Learning from Triplets. In both triple or hyper-relational
facts, (base) triplets encode the primary structural information of a
KG, and thus capture essential information for link prediction in
the KG. To learn from a (base) triplet (h, r , t), we resort to a Convo-
lutional Neural Network (CNN) to model the intrinsic interaction
between the three elements in the triplet, i.e., head h, relation r and
tail t , in order to generate a triple-wise relatedness feature vector.

More precisely, as shown in Figure 2, we start by concatenating
the three corresponding embedding vectors ®h, ®r , ®t ∈ RK (K is the
embedding dimension) into an “image” T ∈ R3×K , which is the
input for a 2D convolutional layer with nf filters of size 3 × 3.
The filter of size 3 is chosen to capture the triple-wise relatedness
between ®h, ®r and ®t . This layer returns nf feature maps of size K − 2,
which are then flattened into a triple-wise relatedness vector ®ϕ ∈

R1×nf (K−2). This relatedness vector ®ϕ can be used to characterize
the plausibility of a (base) triplet (h, r , t) of being true.

3.2.2 Learning from Key-Value Pairs. Key-value pairs contain fur-
ther information describing the associated base triplet in a hyper-
relational fact, which suggests that learning from key-value pairs
should be coupled with the corresponding triplet. Therefore, for
each key-value pair (ki ,vi) associated with the base triplet (h, r , t)
in a hyper-relational fact, we also resort to a CNN to capture the
interaction between each elements in the triplet and the key-value
pair, i.e., h, r , t , ki and vi , in order to generate a quintuple-wise
relatedness feature vector.

As shown in Figure 2 and similar to the case of learning from
triplets, we first concatenate the five corresponding embedding
vectors ®h, ®r , ®t , ®ki , ®vi ∈ RK into an “image” H ∈ R5×K , and feed
H to a 2D convolutional layer with nf filters of size 5 × 3. The
first dimension size 5 of the filter here is chosen to capture the
quintuple-wise relatedness between ®h, ®r , ®t , ®ki and ®vi ; the second
dimension size 3 is chosen to match the filter size of the CNN for
base triplets, in order to merge the resulting relatedness feature
vectors (see below). This layer returns nf feature maps of size
K − 2, which is then flattened into the quintuple-wise relatedness
vector ®ψi ∈ R

1×nf (K−2). This relatedness vector ®ψi can be used to
characterize the plausibility of the base triplet (h, r , t) associated
with the key-value pair (ki ,vi) being a true fact. This process is
repeated for each key-value pair (ki ,vi), i = 1, ..,n, in the input
hyper-relational fact containing n key-value pairs, resulting in n

quintuple-wise relatedness vectors ®ψi , i = 1, ..,n. Note that this
module is not used for triple facts, as they do not contain any
key-value pair.

3.2.3 Merging Relatedness Feature Vectors for Prediction. In the
previous two modules, for each hyper-relational fact, one triple-
wise relatedness vector ®ϕ is generated from the base triplet (h, r , t)
while n quintuple-wise relatedness vectors ®ψi are generated from
the n key-value pairs together with the base triplet. We now wish
to merge these relatedness feature vectors in order to return a final
score for the input hyper-relational facts.

To achieve this goal, we first compute the overall relatedness
feature vector by taking the minimum value along each feature
dimension over the triple-wise relatedness feature vector and all
the quintuple-wise relatedness feature vectors. We concatenate the

Beyond Triplets: Hyper-Relational Knowledge Graph Embedding for Link Prediction WWW ’20, April 20–24, 2020, Taipei, Taiwan

Figure 2: Overview of our proposed method HINGE

triple-wise relatedness feature vectors ®ϕ and the n quintuple-wise
relatedness vectors ®ψi into a matrix of size (n + 1) × nf (K − 2),
and compute the minimum value of this matrix along each column,
resulting in the overall relatedness feature vector. The underlying
assumption for this operation is that for a valid hyper-relational fact,
both 1) the relatedness for the base triplet (h, r , t) and 2) the related-
ness between each key-value pair (k,v) and the base triplet (h, r , t)
should be high. While each entry of a triple-wise (or quintuple-
wise) relatedness feature vector actually measures the relatedness
between h, r , t (or between h, r , t , ki vi) under a certain filter, the
minimum relatedness along each feature dimension is expected to
be high. Similar ideas have also been successfully applied by pre-
vious works to merge relatedness scores in a neural network [14].
Finally, we use a fully connected projection to output the predicted
score σ from the overall relatedness feature vector for the input
hyper-relational fact.

3.3 HINGE and Design Goals
In this section, we discuss how our proposed model HINGE fits the
goals we set above in Section 3.1.

First, to fit goal I, we adopt two separate neural network pipelines
to learn from 1) the base triplet, and from 2) the key-value pairs
together with the base triplet. In case of triple facts, only the first
module is used while the second module is not activated. In case of
hyper-relational facts (with key-value pairs), both the first and the
second modules are used. Subsequently, the CNN for base triplets
(used in the first module) is independent from the key-value pairs,
which allows it to capture the primary structural information of
the KG encoded in the triplets, and thus to preserve the essential
information for link prediction in a KG to a maximum extent.

Second, to fit goal II, we merge, via a “min” operation, the re-
latedness feature vectors learnt from 1) the base triplet, and 2) the
key-value pairs together with the base triplet. Such an operation en-
sures that the CNN for key-value pairs (used in the second module)
effectively help to evaluate the plausibility of a hyper-relational
fact. More precisely, considering a hyper-relational fact containing
a base triplet and an associated key-value pair, we obtain a triple-
wise relatedness vector ®ϕ and a quintuple-wise relatedness vectors

®ψ . If the key-value pair are highly related to the base triplet (i.e., ®ψ
has high values), the merge operation (via the “min”) ensures that
the values in the overall relatedness feature vector are determined
mostly by the values of ®ϕ (i.e., relatedness for the base triplet). In
other words, the final predicted score depends mostly on the base
triplet. In contrast, if the key-value pair is poorly related to the
base triplet (i.e., ®ψ has low values), the merge (“min”) operation
ensures that the values in the overall relatedness feature vector are
low (i.e., they are determined mainly based on the values of ®ψ). In
other words, the overall relatedness of the hyper-relational fact is
low, because the key-value pair is poorly related to the base triplet,
which further implies that this fact is less probably a true fact.

Third, goal III is automatically fulfilled with our merge operation.
For the case of multiple key-value pairs (ki ,vi), i = 1, ...,n, associ-
ated with the base triplet, each key-value pair (ki ,vi) is combined
with the base triplet to generate the corresponding quintuple-wise
relatedness feature vector ®ψi . Subsequently, our merging (via the
“min”) operation is able to take an arbitrary number of quintuple-
wise relatedness feature vectors as input.

3.4 Model Training Process
To train the model parameters, we minimize a softplus loss. More
precisely, following [14, 34], our loss function is defined as the
negative log-likelihood of the logistic model:∑

ω ∈Ω

loд(1 + e−σ (ω)) + loд(1 + eσ (ω
′)) (1)

where Ω is the input set of hyper-relational facts. For each hyper-
relational fact ω containing (h, r , t) and the associated (ki ,vi), i =
1, ...,n, one negative sampleω ′ is generated by randomly corrupting
one entity (h, t , or vi) or relation (r or ki). σ (ω) and σ (ω ′) denote
the predicted score of our HINGE model for the true fact ω and the
negative fact ω ′, respectively.

The loss function 1 is minimized using the Adam stochastic
optimizer [19], and the model parameters are learnt via back prop-
agation. Specifically, we use rectified linear units (ReLU) as the
non-linearity activation function [21] and batch normalization [17]
after the two CNN layers for fast training.

WWW ’20, April 20–24, 2020, Taipei, Taiwan Paolo Rosso, Dingqi Yang, and Philippe Cudré-Mauroux

Table 1: Statistics of the datasets

Dataset JF17K WikiPeople
#Entity 28,645 34,839
#Relation 322 375

#Fact
(training)

Only triple 44,210 57.8% 280,520 97.4%
Only hyper-relational 32,169 42.2% 7,389 2.6%
Total 76,379 100% 287,918 100%

#Fact
(test)

Only triple 10,417 42.4% 36,597 97.4%
Only hyper-relational 14,151 57.6% 971 2.6%
Total 24,568 100% 37,586 100%

4 EXPERIMENTS
In this section, we evaluate our proposed model HINGE on various
link prediction tasks. In the following, we start by presenting our
experimental setup, followed by our results and discussions.

4.1 Experimental Setup
4.1.1 Dataset. We conduct experiments on two hyper-relational
datasets JF17K [38] andWikiPeople [14], extracted from two pop-
ular KGs, i.e., Freebase andWikidata, respectively. Each of these two
datasets contains both triple facts and hyper-relational facts. While
JF17K was filtered from Freebase to have a significant presence
of hyper-relational facts (see [38] for more detail), WikiPeople is
extracted fromWikidata and focuses on entities of type humanwith-
out any specific filtering to improve the presence of hyper-relational
facts [14]. As the original WikiPeople dataset also contains literals
(used as tails) in some facts, we filter out these non-entity literals
and the corresponding facts. Table 1 shows the main statistics of
these datasets.

4.1.2 Baselines. We compare HINGE against a sizable collection
of state-of-the-art Knowledge Graph embedding techniques from
two categories.

The first category includes models learning from triplets only.
• Translational distance models: TransE [3] learns to preserve
the relation between two entities as h + r ≈ t . TransH [37]
extends TransE to better capture multi-mapping relations by
introducing relation-specific hyperplanes. TransR [22] intro-
duces relation-specific projections to also better capture multi-
mapping relations. TransD [18] extends TransR by decomposing
the projection matrix into a product of two vectors. These models
minimize a margin-based ranking objective function, where we
empirically set the margin b = 1 with the L2-norm. In addition,
we set the learning rate to 0.001 with a stochastic gradient de-
scent optimizer, the number of negative samples to 1, and the
batch size to 128.

• Semantic matching models: Rescal [27] represents each entity
as a vector and each relation as a matrix, and uses a bilinear func-
tion to model the relation between a pair of entities. DistMult
[44] simplifies Rescal by representing each relation embedding
as a diagonal matrix. ComplEx [34] further extends DistMult in
the complex space in order to better model both symmetric and
asymmetric relations. Analogy [23] models explicitly analogical
structures in multi-relational KG embeddings. ConvE [7] adopts
a 2D CNN to capture richer interactions between entity and rela-
tion embeddings. We set the margin b = 1 with the L2-norm for

Rescal. For DistMult, ComplEx and Analogy, we set the learning
rate to 0.1 with Adagrad optimizer [8], the number of negative
samples to 1, and the batch size to 128. For ConvE, we set the
learning rate to 0.003, the batch size to 128, the dropout to 0.2,
and the label smoothing value to 0.1.

The second category includes models learning from the n-ary
representation of hyper-relational facts.

• m-TransH [38] models the interaction between entities involved
in each n-ary fact. Specifically, each hyper-relational fact (h, r , t)
with (ki ,vi), i = 1, ...,n is associated with a so-called meta-
relation, represented as an ordered list of keys (relations), such as
R := (rh , rt ,k1, ...,kn); the fact is then represented as a list of or-
dered values associatedwith themeta-relation {R, (h, t ,v1, ...,vn)}.
Using this representation, m-TransH is built on top of TransH to
capture multi-fold relations between entities in a meta-relation.
As it learns only from sets of entities in meta-relations (without
considering the exact relations in each meta-relation), it can be
applied to perform the link prediction task on missing entities
only. Following suggestions from the original paper, we empiri-
cally set its hyper-parameters as follows: the margin to 0.5, the
weight to 0.001, and the threshold to 0.01.

• RAE [49] extends m-TransH by explicitly considering the pair-
wise relatedness between entities in n-ary facts. Using the same
n-ary representation of hyper-relational facts, RAE further learns
from the pairwise relatedness between entities in each n-ary fact
in order to perform instance reconstruction, i.e., predicting one
or multiple missing entities. Similar to m-TransH, RAE can only
be used to predict missing entities. We search for optimal pa-
rameters by adopting the techniques described in [14] on each
dataset, and report the results with the optimal settings.

• NaLP [14] models the relatedness between key-value (relation-
entity) pairs contained in each n-ary fact. It represents each
hyper-relational fact (h, r , t) with (ki ,vi), i = 1, ...,n, as a set of
key-value pairs {rh :h, rt :t , ki :vi }, i = 1, ...,n by converting the
relation r into two keys rh and rt , associating with head h and
tail t , respectively. Using this representation, NaLP learns from
the pairwise relatedness between key-value pairs via a neural
network pipeline, which enables the prediction of both missing
keys (relations) or missing values (entities). Note that in NaLP,
a commonly adopted negative sampling process is used, which
randomly corrupts one key or value in a true fact. However, this
process is not fully adaptable to its n-ary represention of hyper-
relational facts, in particular for keys rh and rt . For example,
when corrupting the key rh by a randomly sampled r ′h (r , r ′),
the negative fact becomes {r ′h :h, rt :t , ki :vi }, i = 1, ...,n. This is
unrealistic as r ′h is not compatible with rt while only one relation
r (or r ′) can be assumed between h and t in a hyper-relational
fact. Therefore, we propose a variant of NaLP fixing this issue.
Following the suggestion from the original paper, we adopt the
optimal hyper-parameters reported on each dataset.

• NaLP-Fix is a variant of NaLP with a fixed negative sampling
process. Specifically, when corrupting the key rh by a randomly
sampled r ′h (r , r ′), we also corrupt rt by r ′t , resulting in a
negative fact {r ′h :h, r

′
t :t , ki :vi }, i = 1, ...,n. Subsequently for this

negative fact, only a single relation r ′ links h and t , which is a
realistic case. Similarly, when corrupting rt , we also corrupt rh

Beyond Triplets: Hyper-Relational Knowledge Graph Embedding for Link Prediction WWW ’20, April 20–24, 2020, Taipei, Taiwan

in the same way. We keep using the same hyper-parameters as
for NaLP.
For our HINGE model, we empirically set the number of filters

nf in both CNNs to 400, the batch size to 128, and the learning
rate to 0.0001. The embedding size is set to 100 for all methods, if
not specified otherwise. The implementation of HINGE and used
datasets are available here2.

4.1.3 Dataset Configuration. As discussed in the introduction, hyper-
relational facts need to be transformed into triplets for the models
that can learn from triplets only. There are three common settings
for such a transformation.
• Basic: Only the base triplet (h, r , t) from a hyper-relational fact
is kept, while removing all its associated key-value pairs. This
setting causes irreversible information loss.

• Relation Path [38]: For each hyper-relational fact containing a
base triplet (h, r , t) and associated key-value pairs (ki ,vi), i =
1, ...,n, each pair of entities are linked via an artificially created
relation path. For example, h is linked to vi via a virtual relation
r̂ki representing a relation path r → ki , resulting in an additional
triplet (h, r̂ki ,vi). This setting creates extra relations and facts.

• Reification [4]: For each hyper-relational fact containing key-
value pairs (ki ,vi), i = 1, ...,n, an artificial entity is used to
represent the base triplet q := (h, r , t), and then additional triplets
are created as (q,ki ,vi), i = 1, ..,n. This setting also creates extra
entities and triplets.
In addition, we denote the original hyper-relational facts as the

Original setting.

4.1.4 Evaluation Tasks and Metrics. Link prediction is a typical
task for Knowledge Graph completion. Given two elements of a
triplet in a (hyper-relational) fact, the task is to predict the missing
one, such as (?, r , t), (h, ?, t) or (h, r , ?), where the question mark
represents the missing entity/relation. In this paper, we conduct
experiments in all of these three cases, i.e., predicting a missing
head, relation, or tail. We describe our evaluation protocols below
by taking the case of predicting missing heads (?, r , t) as an exam-
ple. For the triplet (?, r , t) in one test (hyper-relational) fact, we
replace the missing head with all the entities, resulting in a set of
candidate (hyper-relational) facts. Among those candidate facts,
in addition to the testing fact itself, other corrupted facts might
also be true facts (i.e., existing in the training/test datasets); these
facts are thus removed from the candidate facts. Afterward, the
resulting candidate facts are fed into an embedding model to out-
put predicted scores. By ranking the candidate facts according to
their corresponding scores, we generate a predicted ranking list of
entities for the missing head. By repeating the evaluation process
over all test facts in the test dataset, we report Mean Reciprocal
Rank (MRR), Hits@10 and Hits@1, which are widely used metrics
for link prediction tasks [14]. The same evaluation protocol and
metrics also apply to predicting missing relations (h, ?, t) and tails
(h, r , ?). As predicting missing heads or tails is essentially predicting
missing entities, we report average results on these two cases (de-
noted as “Head/Tail Prediction”), while we report individual results
for relation prediction.

2https://github.com/eXascaleInfolab/HINGE_code/

4.2 Limitation of N-Ary Representation
In this experiment, we experimentally show the limitation of the
n-ary representation of a hyper-relational fact (represented as a
set of key-value pairs without triplets). Specifically, most of the
existing works on learning KG embeddings from hyper-relational
facts [14, 38, 49] transform a hyper-relational fact into a set of key-
value (relation-entity) pairs while completely avoiding triplets. For
example, NaLP [14] transforms a hyper-relational fact (h, r , t) with
(ki ,vi), i = 1, ...,n, into a set of key-value pairs {rh :h, rt :t , ki :vi }, i =
1, ...,n by converting relation r into two keys rh and rt , associated
with head h and tail t , respectively. Subsequently in the embedding
learning process, these key-value pairs are treated equally. However,
we argue that as triplets still serve as the fundamental data structure
in the modern KGs, they preserve the essential information for link
prediction in KGs. In other words, key-value pairs (k,v) on a hyper-
relational fact should not be treated equally as base triplets (h, r , t).

To verify this point, we define an extra setting, the null model,
for dataset transformation. The null model reconstructs one triplet
from each n-ary relational fact {rh :h, rt :t , ki :vi }, i = 1, ...,n, via a
randomly sampled relation path [38], such as (h, r̂hki ,vi). Note that
if we only sample the relation path r̂hrt , we reconstruct the original
base triplet (h, r̂hrt , t) (corresponding to the Basic setting). With
this null model, we make a null hypothesis: The information for link
prediction encoded by the original base triplets is not greater than
the triplets created by the null model.We test this null hypothesis
by performing link prediction tasks using all nine baseline models
learning from triplets on the two sets of triplets, i.e., on the original
basic triplets and the triplets created by the null model.

Table 2 shows the results on both datasets. Comparing the results
from the two data transformation settings basic and null model, we
clearly observe that the performance from the original base triplets
is consistently and significantly better than the performance from
the triplets created by the null model, with an average improve-
ment3 of 77.5% in head/tail prediction and 58.3% in relation pre-
diction on the WikiPeople dataset (125.2% and 114.9% on JFK17K,
respectively). To further verify this point, we conduct one-tailed
paired t-test on the results using the original base triplets and the
results using the triplets created by the null model from the same
set of nine baselines, for each metric and each link prediction task.
The test results consistently reject the null hypothesis at the 0.01
significance level (p-value ≪ 0.01). Therefore, we verify that the
information encoded by the original base triplets is significantly
greater than the triplets created by the null model for link predic-
tion. In other words, compared to the key-value pairs, the base
triplets in hyper-relational facts preserve the essential information
for link prediction in KGs; this finding indeed corresponds to the
fundamental design principle behind our new technique HINGE.

4.3 Link Prediction Performance Comparison
In this experiment, we compare the link prediction performance of
HINGE against all baselines under different dataset transformation
settings. Table 2 shows the results on both datasets. For each dataset
transformation setting, we highlight the best-performing method
on each task and for each dataset. In the following, we discuss the
results and highlight our key findings.
3referring to the average improvement on different metrics throughout this paper.

WWW ’20, April 20–24, 2020, Taipei, Taiwan Paolo Rosso, Dingqi Yang, and Philippe Cudré-Mauroux

Table 2: Link prediction performance on both WikiPeople and JF17K.

Dataset
Transformation
Setting

Method
WikiPeople JF17K

Head/Tail Prediction Relation Prediction Head/Tail Prediction Relation Prediction
MRR Hit@10 Hit@1 MRR Hit@10 Hit@1 MRR Hit@10 Hit@1 MRR Hit@10 Hit@1

Null Model

TransE 0.2021 0.4377 0.1031 0.2060 0.2626 0.1683 0.1916 0.3553 0.1079 0.6240 0.7356 0.5522
TransH 0.1998 0.4400 0.0992 0.2203 0.2909 0.1785 0.1916 0.3529 0.1093 0.6382 0.7543 0.5623
TransR 0.2009 0.4355 0.1015 0.1485 0.1972 0.1196 0.1921 0.3603 0.1085 0.6201 0.7207 0.5543
TransD 0.1083 0.3416 0.0074 0.2985 0.4816 0.2089 0.0626 0.1890 0.0028 0.2155 0.2894 0.1718
Rescal 0.1325 0.2986 0.0626 0.6561 0.8174 0.5474 0.1095 0.2031 0.0630 0.5679 0.6781 0.4954
DistMult 0.1144 0.3083 0.0385 0.4281 0.5520 0.3315 0.0997 0.2145 0.0475 0.0512 0.2255 0.0323
ComplEx 0.1050 0.2932 0.0329 0.3719 0.4467 0.3093 0.0828 0.1824 0.0382 0.1283 0.3277 0.0474
Analogy 0.1144 0.2991 0.0406 0.4178 0.4903 0.3535 0.0917 0.1952 0.0438 0.1167 0.2495 0.0581
ConvE 0.2383 0.4548 0.1470 N/A 0.2270 0.4174 0.1357 N/A

Basic

TransE 0.3242 0.6064 0.1216 0.3482 0.4200 0.2734 0.2556 0.4529 0.1576 0.8574 0.9064 0.8270
TransH 0.3206 0.6029 0.1155 0.3724 0.4448 0.2980 0.2570 0.4564 0.1619 0.8618 0.9134 0.8328
TransR 0.3264 0.6090 0.1236 0.2446 0.4996 0.1651 0.2806 0.4974 0.1791 0.8431 0.8924 0.8137
TransD 0.2200 0.5414 0.0205 0.5657 0.8804 0.4160 0.1343 0.3105 0.0501 0.6803 0.7872 0.6189
Rescal 0.2772 0.4915 0.1404 0.7936 0.9023 0.7306 0.1709 0.3340 0.0952 0.7887 0.8491 0.7480
DistMult 0.2468 0.5087 0.0645 0.6008 0.6776 0.5479 0.1752 0.3531 0.0955 0.2779 0.5340 0.1381
ComplEx 0.2466 0.4944 0.0648 0.5676 0.6135 0.5367 0.1669 0.3307 0.0906 0.2380 0.3445 0.1765
Analogy 0.2521 0.5033 0.0688 0.5984 0.6386 0.5699 0.1776 0.3471 0.0996 0.2667 0.4247 0.1773
ConvE 0.4781 0.6533 0.3666 N/A 0.3190 0.5470 0.2129 N/A

Relation Path

TransE 0.3191 0.6067 0.1160 0.2773 0.3379 0.2444 0.2832 0.4826 0.1832 0.8251 0.8940 0.7814
TransH 0.3198 0.6084 0.1155 0.2399 0.3267 0.1906 0.2863 0.4899 0.1850 0.8179 0.8897 0.7738
TransR 0.3214 0.6086 0.1167 0.1593 0.2154 0.1272 0.3075 0.5170 0.2051 0.6866 0.7779 0.6383
TransD 0.2083 0.5228 0.0146 0.3344 0.5053 0.2443 0.1279 0.3204 0.0362 0.4333 0.5561 0.3676
Rescal 0.2637 0.4780 0.1255 0.7535 0.8673 0.6895 0.1692 0.3188 0.0966 0.8336 0.8957 0.7914
DistMult 0.2400 0.4987 0.0588 0.5787 0.6429 0.5360 0.2261 0.4084 0.1368 0.2817 0.5551 0.1574
ComplEx 0.2415 0.4861 0.0672 0.4975 0.5415 0.4716 0.2193 0.3930 0.1352 0.2126 0.3361 0.1477
Analogy 0.2443 0.4936 0.0688 0.5139 0.5555 0.4887 0.2244 0.3986 0.1413 0.2523 0.4308 0.1625
ConvE 0.4700 0.6537 0.3527 N/A 0.3665 0.5876 0.2574 N/A

Reification

TransE 0.3207 0.5977 0.1224 0.3253 0.3850 0.2747 0.2285 0.3806 0.1503 0.8793 0.9187 0.8559
TransH 0.3244 0.6011 0.1242 0.3160 0.3873 0.2694 0.2302 0.3815 0.1538 0.8774 0.9218 0.8506
TransR 0.3225 0.6002 0.1225 0.2396 0.2968 0.1817 0.2838 0.4722 0.1914 0.8751 0.9157 0.8510
TransD 0.2123 0.5253 0.0195 0.5293 0.8611 0.3821 0.0950 0.2121 0.0366 0.5562 0.6610 0.5010
Rescal 0.2751 0.4815 0.1430 0.7684 0.8816 0.7053 0.1354 0.2608 0.0759 0.6958 0.7620 0.6556
DistMult 0.2276 0.4867 0.0519 0.5902 0.6611 0.5422 0.1523 0.2888 0.0875 0.1135 0.3251 0.0332
ComplEx 0.2365 0.4795 0.0614 0.5375 0.5882 0.5039 0.1325 0.2552 0.0760 0.1311 0.2451 0.0717
Analogy 0.2478 0.4901 0.0718 0.5838 0.6277 0.5562 0.1329 0.2594 0.0742 0.1548 0.2983 0.0852
ConvE 0.4657 0.6434 0.3559 N/A 0.3469 0.5410 0.2500 N/A

Original

m-TransH 0.0633 0.3006 0.0633 N/A 0.2060 0.4627 0.2060 N/A
RAE 0.0586 0.3064 0.0586 N/A 0.2153 0.4668 0.2153 N/A
NALP 0.4084 0.5461 0.3311 0.4818 0.8516 0.3198 0.2209 0.3310 0.1650 0.6391 0.8215 0.5472
NALP-Fix 0.4202 0.5564 0.3429 0.8200 0.9757 0.7197 0.2446 0.3585 0.1852 0.7469 0.8921 0.6665
HINGE 0.4763 0.5846 0.4154 0.9500 0.9977 0.9159 0.4489 0.6236 0.3611 0.9367 0.9894 0.9014

4.3.1 Comparison with Baselines Learning from Triplets Only. We
observe that our HINGE model consistently outperforms all base-
lines learning from triplets only, for all three dataset transformation
settings. Specifically, the Basic setting simply discards the key-value
pairs, causing irreversible information loss, while the Relation Path
and Reification settings create extra entities/relations which indeed
distract the embedding models from capturing the essential in-
formation for link prediction from the input KG. We compute the
average improvement of HINGE over the best-performing baselines
for each dataset transformation settings in Table 3. We observe that

HINGE yields significant improvement in most cases, showing im-
provements of up to 41.45% on head/tail prediction and of up to
24.65% on relation prediction.

One exception is for the head/tail prediction on WikiPeople with
the Basic setting, where the improvement is marginal (0.81%). We
further find that the best-performing baseline in this case is ConvE,
which is indeed the most competitive baseline in head/tail predic-
tion in all cases (see Table 2). Note that similar to our HINGE, ConvE
also uses a 2D CNN layer for feature extraction from entity/relation
embeddings in triplets, yielding good performance on head/tail pre-
diction. The marginal improvement can be explained by the domi-
nance of triple facts in WikiPeople dataset (97.4% triple facts vs 2.6%

Beyond Triplets: Hyper-Relational Knowledge Graph Embedding for Link Prediction WWW ’20, April 20–24, 2020, Taipei, Taiwan

Table 3: Improvement of HINGE over the best-performing
baselines learning from triplets only. The best performing
baselines are highlight in Table 2. The Null Model setting is
excluded due to its very low performance.

Dataset
Transformation
Setting

WikiPeople JF17K
Head/Tail
Prediction

Relation
Prediction

Head/Tail
Prediction

Relation
Prediction

Basic 0.81% 18.55% 41.45% 8.41%
Relation Path 2.85% 24.65% 22.96% 12.24%
Reification 3.28% 22.22% 29.71% 6.52%

hyper-relational facts in both training and test datasets), where both
HINGE and ConvE perform well. In contrast, on the JF17K dataset,
which contains a significant portion of hyper-relational facts (57.8%
triple facts vs 42.2% hyper-relational facts in the training dataset
and 42.4% triple facts vs 57.6% hyper-relational facts in the test
dataset), HINGE significantly outperforms ConvE by leveraging
key-value pairs in the hyper-relational facts (while ConvE learns
from a transformed dataset using one of our data transformation
settings). In addition, we also highlight that ConvE is specifically
designed for head/tail prediction only, and is not applicable to the
relation prediction task.

Another interesting observation is that, compared to the Basic
setting, the Relation Path and Reification settings yield worse results
in general. For example, on WikiPeople, compared to the Basic
setting, the Relation Path setting shows an average performance
drop of 3.4% on head/tail prediction and 20.5% on relation prediction
(the Reification setting shows 2.2% and 5.7% performance drop,
respectively). This further verifies that even though the Relation
Path and Reification settings preserve the complete information of
a hyper-relational fact, the extra created entities/relations indeed
distract the KG embeddings from capturing essential information
for link prediction in the input KG.

4.3.2 Comparison with Baselines Learning from Hyper-Relational
Facts. We observe that our proposedmodel HINGE consistently out-
performs all other baselines learning from hyper-relational facts.
Among the methods learning from the n-ary representation of
hyper-relational facts (i.e., m-TransH, RAE and NaLP), NaLP shows
the best performance, as it learns the relatedness between key-
value (relation-entity) pairs while m-TransH and RAE learn from
entities only. Note that m-TransH and RAE result in very low perfor-
mance on WikiPeople, which is probably due to the weak presence
of hyper-relational facts in WikiPeople while and m-TransH and
RAE are designed for hyper-relational facts. Moreover, compared to
NaLP, NaLP-Fix (with our fixed negative sampling process) consis-
tently shows better performance, with a slight improvement of 2.8%
in head/tail prediction, and a tremendous improvement of 69.9%
in relation prediction on WikiPeople (10.4% and 15.8% on JFK17K,
respectively). This verifies the effectiveness of our fixed negative
sampling process, in particular for relation prediction. Finally, com-
pared to the best-performing baseline NaLP-Fix, HINGE shows a
13.2% improvement on the head/tail prediction task, and a 15.1%
improvement on the relation prediction task on WikiPeople (84.1%
and 23.8% on JF17K, respectively).

In addition, we also find that the baseline methods learning from
hyper-relational facts (i.e., m-TransH, RAE, NaLP and our NaLP-
Fix) yield, surprisingly, worse performance in many cases than
the best-performing baselines learning from triplets only. This can
be explained by the fact that their n-ary representation of hyper-
relational facts indeed ignores the triplet structure, by converting a
hyper-relational fact (h, r , t) with (ki ,vi), i = 1, ...,n, into a set of
key-value pairs {rh :h, rt :t , ki :vi }, i = 1, ...,n. However, as the triplet
structure serves as the fundamental data structure in KGs and thus
preserves essential information for link prediction in the KGs, even
though these methods can learn from key-value pairs associated
with triplets in hyper-relational facts, their ignorance of the triplet
structure results in subpar performance.

4.4 Link Prediction Performance on Triple and
Hyper-Relational Facts

In this experiment, we look into the breakdown of link predic-
tion performance on triple and hyper-relational facts. We compare
HINGE with NaLP-Fix only, as it is the best-performing baseline
learning from hyper-relational facts.

Table 4 shows the results. We observe that HINGE consistently
achieves the best performance on both types of facts. In addition, we
also find that while the performance of both methods on triple facts
is higher than on hyper-relational facts on WikiPeople, we have a
completely opposite observation on JF17K, i.e., the performance on
triple facts is obviously lower than on hyper-relational facts. This
can be explained by the dataset statistics. Where the JF17K dataset
has a significant presence of hyper-relational facts (42.2% and 73.6%
in the training and test datasets, respectively), WikiPeople contains
much fewer hyper-relational facts (2.6% in both the training and
test datasets).

4.5 Key/Value Prediction Performance
In this experiment, we study the performance of HINGE on a
key/value prediction task. Specifically, as a hyper-relational fact
may contains a set of key-value pairs (ki ,vi), with i = 1, ...,n, as-
sociated with the base triplet (h, r , t), this task tries to predict a
missing key (?,vi) or a missing value (ki , ?) in a hyper-relational
fact. Our evaluation protocol is similar to the one from the link pre-
diction task. Taking the case of predicting a missing key (?,vi) as an
example, we first replace the missing key with all possible relations,
resulting in a set of candidate hyper-relational facts. After filtering
out the other true facts (existing in the training/test datasets) except
the test fact itself, we feed the remaining candidate hyper-relational
facts to an embedding model to output predicted scores. By rank-
ing the candidate facts according to their scores, we report MRR,
Hits@10 and Hits@1. The same evaluation protocol and metrics
also apply to predicting a missing value (ki , ?). Similar to the previ-
ous experiment, we compare HINGE only with NaLP-Fix, which is
the best-performing baseline learning from hyper-relational facts.

Table 5 shows the results. We observe that HINGE consistently
outperforms NaLP-Fix, showing a 6.0% improvement on the value
prediction task, and a 29.4% improvement on the key prediction
task on WikiPeople (28.7% and 28.6% on JF17K, respectively).

WWW ’20, April 20–24, 2020, Taipei, Taiwan Paolo Rosso, Dingqi Yang, and Philippe Cudré-Mauroux

Table 4: Link prediction performance on triple and hyper-relational facts.

Fact Type Method
WikiPeople JF17K

Head/Tail Prediction Relation Prediction Head/Tail Prediction Relation Prediction
MRR Hit@10 Hit@1 MRR Hit@10 Hit@1 MRR Hit@10 Hit@1 MRR Hit@10 Hit@1

Triple
Fact

NaLP-Fix 0.4216 0.5592 0.3436 0.8057 0.9728 0.7022 0.0901 0.1802 0.0464 0.6005 0.8253 0.4806
HINGE 0.4765 0.5874 0.3937 0.9493 0.9979 0.9145 0.2641 0.4965 0.1572 0.8723 0.9846 0.7965

Hyper-relational
Fact

NaLP-Fix 0.3050 0.4757 0.2154 0.7605 0.9476 0.6517 0.3420 0.4760 0.2693 0.8542 0.9381 0.8067
HINGE 0.3213 0.4888 0.2322 0.9432 1.0000 0.8876 0.5850 0.7172 0.5112 0.9841 0.9929 0.9785

Table 5: Key/Value prediction performance on hyper-relational facts.

Method
WikiPeople JF17K

Value Prediction Key Prediction Value Prediction Key Prediction
MRR Hit@10 Hit@1 MRR Hit@10 Hit@1 MRR Hit@10 Hit@1 MRR Hit@10 Hit@1

NaLP-Fix 0.5301 0.6377 0.4581 0.7121 0.8713 0.6317 0.4251 0.5789 0.3426 0.7643 0.8970 0.6945
HINGE 0.5552 0.6647 0.5000 0.9402 0.9910 0.9007 0.5506 0.6880 0.4714 0.9986 0.9996 0.9978

Figure 3: Impact of the number of filters nf

4.6 Parameter Sensitivity Study
Finally, we study the impact of two key parameters in HINGE, i.e.,
the number of filters nf used in the CNNs, and the embedding
dimension K . First, by fixing the embedding dimension K = 100,
we vary the number of filters nf from 10 to 800 on a log scale, and
show its impact on the link prediction tasks for both datasets in
Figure 3. We observe that when increasing nf , the performance
starts to increase, and then flatten out when nf ≥ 400 in most
cases. Second, by fixing the number of filters nf = 400, we vary
the embedding dimension K from 5 to 200 on a log scale, and show
its impact on the link prediction tasks for both datasets in Figure 4.
Similar to the case of nf , we observe that when increasing K , the
performance starts to increase, and then flatten out when K ≥ 100
in most cases. Therefore, we set the number of filters nf = 400 and
the embedding dimension K = 100, in all previous experiments.

5 CONCLUSION
Existing Knowledge Graph embedding techniques mostly represent
a KG as a set of triplets, and then learn entity/relation embed-
dings from such triplets while preserving the essential information
for link prediction in the KG. However, this triplet representation
oversimplifies the complex nature of the data stored in the KG,
in particular for hyper-relational facts, where each fact contains
not only a base triplet (h, r , t), but also its associated key-value

Figure 4: Impact of the embedding dimension K

pairs (k,v). Even though a few recent techniques learn from such
data using an n-ary representation (i.e., a set of key-value pairs
only without any triplet), they result in suboptimal models due to
their ignorance of the triplet structure, which, as we show in this
paper, is the fundamental structure in modern KGs and encodes
essential information for link prediction. Against this background,
we proposed HINGE, a hyper-relational KG embedding model. It
captures not only the primary structural information of the KG
from the triplets, but also the correlation between each triplet and
its associated key-value pairs. Our extensive evaluation shows the
superiority of HINGE on various link prediction tasks over KGs
using two real-world KG datasets. In particular, HINGE consistently
outperforms not only the KG embedding methods learning from
triplets only (by 0.81-41.45% depending on the link prediction tasks
and settings), but also the methods learning from hyper-relational
facts using n-ary representations (by 13.2-84.1%).

In the future, we plan to investigate the hyper-relational KG
embedding problem further by taking into consideration other
types of data in a KG, such as numerical and text literals, or multi-
modal data such as images.

6 ACKNOWLEDGEMENT
This work was supported by the Swiss National Science Foundation
under grant number 407540_167320.

Beyond Triplets: Hyper-Relational Knowledge Graph Embedding for Link Prediction WWW ’20, April 20–24, 2020, Taipei, Taiwan

REFERENCES
[1] Ivana Balazevic, Carl Allen, and Timothy M Hospedales. 2018. Hypernetwork

Knowledge Graph Embeddings. arXiv preprint arXiv:1808.07018 (2018).
[2] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.

2008. Freebase: a collaboratively created graph database for structuring human
knowledge. In ACM SIGMOD/PODS. ACM, 1247–1250.

[3] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. In NIPS. 2787–2795.

[4] Dan Brickley, Ramanathan V Guha, and Brian McBride. 2014. RDF Schema 1.1.
W3C recommendation 25 (2014), 2004–2014.

[5] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. 2018. A com-
prehensive survey of graph embedding: Problems, techniques, and applications.
IEEE Transactions on Knowledge and Data Engineering 30, 9 (2018), 1616–1637.

[6] Jianpeng Cheng, ZhongyuanWang, Ji-RongWen, Jun Yan, and Zheng Chen. 2015.
Contextual text understanding in distributional semantic space. In CIKM. ACM,
133–142.

[7] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. 2017.
Convolutional 2d knowledge graph embeddings. In AAAI. 1811–1818.

[8] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research 12, Jul (2011), 2121–2159.

[9] Takuma Ebisu and Ryutaro Ichise. 2018. Toruse: Knowledge graph embedding
on a lie group. In AAAI.

[10] Wei Fang, Jianwen Zhang, Dilin Wang, Zheng Chen, and Ming Li. 2016. Entity
disambiguation by knowledge and text jointly embedding. In CoNLL. 260–269.

[11] Alberto Garcia-Duran and Mathias Niepert. 2017. Kblrn: End-to-end learning of
knowledge base representations with latent, relational, and numerical features.
arXiv preprint arXiv:1709.04676 (2017).

[12] Google. 2014. https://www.google.com/intl/bn/insidesearch/features/search/
knowledge.html.

[13] Jens Graupmann, Ralf Schenkel, and Gerhard Weikum. 2005. The SphereSearch
engine for unified ranked retrieval of heterogeneous XML and web documents.
In VLDB. VLDB Endowment, 529–540.

[14] Saiping Guan, Xiaolong Jin, Yuanzhuo Wang, and Xueqi Cheng. 2019. Link
Prediction on N-ary Relational Data. In The World Wide Web Conference. ACM,
583–593.

[15] Xu Han, Zhiyuan Liu, and Maosong Sun. 2018. Neural knowledge acquisition
via mutual attention between knowledge graph and text. In AAAI.

[16] Rana Hussein, Dingqi Yang, and Philippe Cudré-Mauroux. 2018. Are Meta-Paths
Necessary? Revisiting Heterogeneous Graph Embeddings. In Proceedings of the
27th ACM International Conference on Information and Knowledge Management.
437–446.

[17] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167 (2015).

[18] Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun Zhao. 2015. Knowledge
graph embedding via dynamic mapping matrix. In ACL and IJCNLP, Vol. 1. 687–
696.

[19] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[20] Agustinus Kristiadi, Mohammad Asif Khan, Denis Lukovnikov, Jens Lehmann,
and Asja Fischer. 2018. Incorporating literals into knowledge graph embeddings.
arXiv preprint arXiv:1802.00934 (2018).

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[22] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning
entity and relation embeddings for knowledge graph completion.. InAAAI, Vol. 15.
2181–2187.

[23] Hanxiao Liu, Yuexin Wu, and Yiming Yang. 2017. Analogical inference for multi-
relational embeddings. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70. 2168–2178.

[24] Ye Liu, Hui Li, Alberto Garcia-Duran, Mathias Niepert, Daniel Onoro-Rubio, and
David S Rosenblum. 2019. MMKG: Multi-modal Knowledge Graphs. In European
Semantic Web Conference. Springer, 459–474.

[25] Dai Quoc Nguyen, Thanh Vu, Tu Dinh Nguyen, Dat Quoc Nguyen, and Dinh
Phung. 2018. A Capsule Network-based Embedding Model for Knowledge Graph
Completion and Search Personalization. arXiv preprint arXiv:1808.04122 (2018).

[26] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. 2015.
A review of relational machine learning for knowledge graphs. Proc. IEEE 104, 1
(2015), 11–33.

[27] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. 2011. A Three-Way
Model for Collective Learning on Multi-Relational Data.. In ICML, Vol. 11. 809–
816.

[28] Paolo Rosso, Dingqi Yang, and Philippe Cudré-Mauroux. 2019. Knowledge Graph
Embeddings. In Encyclopedia of Big Data Technologies. https://doi.org/10.1007/

978-3-319-63962-8_284-1
[29] Paolo Rosso, Dingqi Yang, and Philippe Cudre-Mauroux. 2019. Revisiting Text

and Knowledge Graph Joint Embeddings: The Amount of Shared Information
Matters!. In Proceedings of the 2018 IEEE International Conference on Big Data (Big
Data).

[30] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolutional
networks. In European Semantic Web Conference. Springer, 593–607.

[31] Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. 2013.
Reasoning with neural tensor networks for knowledge base completion. In NIPS.
926–934.

[32] Yi Tay, Luu Anh Tuan, Minh C Phan, and Siu Cheung Hui. 2017. Multi-Task
Neural Network for Non-discrete Attribute Prediction in Knowledge Graphs.
In Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management. ACM, 1029–1038.

[33] Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choud-
hury, and Michael Gamon. 2015. Representing text for joint embedding of text
and knowledge bases. In EMNLP. 1499–1509.

[34] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume
Bouchard. 2016. Complex embeddings for simple link prediction. In ICML. 2071–
2080.

[35] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. 2017. Knowledge graph
embedding: A survey of approaches and applications. TKDE 29, 12 (2017), 2724–
2743.

[36] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge
graph and text jointly embedding. In EMNLP. 1591–1601.

[37] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge
Graph Embedding by Translating on Hyperplanes.. In AAAI, Vol. 14. 1112–1119.

[38] Jianfeng Wen, Jianxin Li, Yongyi Mao, Shini Chen, and Richong Zhang. 2016. On
the representation and embedding of knowledge bases beyond binary relations.
In IJCAI. AAAI Press, 1300–1307.

[39] Robert West, Evgeniy Gabrilovich, Kevin Murphy, Shaohua Sun, Rahul Gupta,
and Dekang Lin. 2014. Knowledge base completion via search-based question
answering. In Proceedings of the 23rd international conference on World wide web.
ACM, 515–526.

[40] Wikidata. 2012. http://wikidata.org/.
[41] Chenyan Xiong, Russell Power, and Jamie Callan. 2017. Explicit semantic rank-

ing for academic search via knowledge graph embedding. In Proceedings of the
26th international conference on world wide web. International World Wide Web
Conferences Steering Committee, 1271–1279.

[42] Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda, and Yoshiyasu Takefuji. 2016.
Joint learning of the embedding of words and entities for named entity disam-
biguation. In CoNLL. 250–259.

[43] Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda, and Yoshiyasu Takefuji. 2017.
Learning Distributed Representations of Texts and Entities from Knowledge Base.
TACL 5 (2017), 397–411. https://www.transacl.org/ojs/index.php/tacl/article/
view/1065

[44] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2015. Em-
bedding entities and relations for learning and inference in knowledge bases. In
ICLR.

[45] Dingqi Yang, Paolo Rosso, Bin Li, and Philippe Cudre-Mauroux. 2019. NodeSketch:
Highly-Efficient Graph Embeddings via Recursive Sketching. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 1162–1172.

[46] Scott Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jianfeng Gao. 2015.
Semantic parsing via staged query graph generation: Question answering with
knowledge base. In ACL and IJCNLP. 1321–1331.

[47] Mo Yu and Mark Dredze. 2014. Improving lexical embeddings with semantic
knowledge. In ACL, Vol. 2. 545–550.

[48] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma.
2016. Collaborative knowledge base embedding for recommender systems. In
Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining. ACM, 353–362.

[49] Richong Zhang, Junpeng Li, Jiajie Mei, and Yongyi Mao. 2018. Scalable instance
reconstruction in knowledge bases via relatedness affiliated embedding. In Pro-
ceedings of the 2018 World Wide Web Conference. International World Wide Web
Conferences Steering Committee, 1185–1194.

[50] Huaping Zhong, Jianwen Zhang, Zhen Wang, Hai Wan, and Zheng Chen. 2015.
Aligning knowledge and text embeddings by entity descriptions. In EMNLP.
267–272.

https://www.google.com/intl/bn/insidesearch/features/search/knowledge.html
https://www.google.com/intl/bn/insidesearch/features/search/knowledge.html
https://doi.org/10.1007/978-3-319-63962-8_284-1
https://doi.org/10.1007/978-3-319-63962-8_284-1
http://wikidata.org/
https://www.transacl.org/ojs/index.php/tacl/article/view/1065
https://www.transacl.org/ojs/index.php/tacl/article/view/1065

	Abstract
	1 Introduction
	2 Related Work
	2.1 KG Embeddings from Triplets
	2.2 KG Embeddings from Triplets with other Data
	2.3 KG Embeddings from Hyper-Relational Facts

	3 Learning from Hyper-Relational Facts
	3.1 Design Principle and Goals
	3.2 HINGE
	3.3 HINGE and Design Goals
	3.4 Model Training Process

	4 Experiments
	4.1 Experimental Setup
	4.2 Limitation of N-Ary Representation
	4.3 Link Prediction Performance Comparison
	4.4 Link Prediction Performance on Triple and Hyper-Relational Facts
	4.5 Key/Value Prediction Performance
	4.6 Parameter Sensitivity Study

	5 Conclusion
	6 Acknowledgement
	References

