

DEPARTMENT OF THE ARMY UNITED STATES MILITARY ACADEMY WEST POINT, NEW YORK 10996

June 21, 1999

REPLY TO ATTENTION OF

Directorate of Housing and Public Works

SUBJECT: Resource Conservation Recovery Act – Subpart X Permit, Part B, Interim Status Resolution

Ms. Michelle Cheng New York State Department of Environmental Conservation 50 Wolf Road – Room 448 Albany, New York 12233-7251

Dear Mrs. Cheng:

As discussed during our conference telephone call on June 7, 1999, we are forwarding herein, a copy of our letter with enclosures dated July 30, 1992. We sent this to Mr. John Middlekoop, P.E. of your office, and to Mr. Andrew Bellina, P.E. of the US Environmental Protection Agency to resolve our Subpart X permit issue. The enclosed material includes a closure plan for the detonation area located inside our impact area. (Section I). Based on our October 28, 1992 meeting with the New York State Department of Environmental Conservation in Albany, and our subsequent submittal on December 11, 1992 of information requested at the meeting, we understand that this issue was resolved.

The United States Military Academy originally submitted a Resource Conservation and Recovery Act Part B permit application for its hazardous waste operations in November 1988. The original permit application covered container storage and open burning/open detonation. On January 28, 1991, we closed our container storage area and restricted storage of our hazardous waste operations to keeping hazardous waste on post for no more than 90 days. A copy of the New York State Department of Environmental Conservation's letter recognizing this, is at Enclosure 2. Use of our detonation area was discontinued in the winter of 1991-92, when the Explosive Ordnance Detachment assigned to the United States Military Academy relocated to Fort Monmouth, New Jersey. Since then, no routine detonations for the purpose of ordnance disposal have taken place at West Point. With the closure of our container storage and the cessation of open detonation, there was no longer a requirement for a permit to cover our hazardous waste operations. We began to communicate this to the US Environmental Protection Agency, Region II, and the New York State Department of Environmental Conservation through briefings and written correspondence in the spring of 1992.

JUN 2 2 1999

BUR. OF HAZARDOUS WASTE MANAGEMENT DIVISION OF SOLID & HAZARDOUS MATERIAL New York State Department of Environmental Conservation 50 Wolf Road, Albany, New York 12233

May 9, 1991

Thomas C. Jorling Commissioner

. Furl 2

Mr. Joseph Deschenes Acting Chief, Environmental Mgt. Office Dept. of the Army, U. S. Military Academy West Point, New York 10996

Dear Mr. Deschenes:

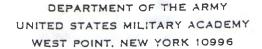
RE: Closure of RCRA Storage Areas at West Point EPA Identification Number: NY8210020915

This letter is to confirm the receipt of owner/operator and independent professional engineer's certification dated January 23, 1991, of RCRA closure for this facility. We now consider this facility officially closed. Your authority to operate as a Treatment, Storage, and Disposal Facility (TSDF) is terminated and you are released from the financial security requirements of Sections 373-2.3 and 373-3.3.

Please be advised that the United States Environmental Protection Agency has determined that the corrective action provisions of the Hazardous and Solid Waste Amendments (HSWA), Section 3008(h), apply to all TSDF's which have acquired interim status.

The New York State Department of Environmental Conservation has established a program to evaluate the corrective action measures necessary at closed and closing facilities within the State. Once the corrective action provisions of HSWA have been met by the facility or determined not to be necessary at the facility, the facility can have their interim status terminated.

If you have any questions regarding your closure or regulatory status, please contact Mr. Gary Belcher at (518) 457-9361.


Sincerely,

TINANDE HSIT

Salvatore J. Carlomagno, P.E. Chief, Regional Permit Section Bureau of Haz. Waste Facility Compliance Division of Haz. Substances Regulation

91

cc: J. Gorman J. Desai M. O'Neil M. Dominguez - Region 3 G. Belcher SJC:scy (deschene.gb)

REPLY TO ATTENTION OF

30 JUL 92

SUBJECT: EPA ID No. NY8210020915; United States Military Academy, West Point, New York, RCRA Subpart X Permit Application

Mr. John L. Middlekoop, P.E. Director, Bureau of Hazardous Waste Compliance New York State Department of Environmental Conservation 50 Wolf Road Albany, New York 12233-7252

Dear Mr. Middlekoop:

Pursuant to my telephone conversation with Ms. Ellen Parr-Doering on July 21, 1992, this letter is submitted to respond to (1) the Notice of Deficiency (NOD) received by the United States Military Academy (USMA) from the United States Environmental Protection Agency (USEPA), Region II, with respect to the Resource Conservation and Recovery Act (RCRA) Subpart X permit application previously submitted by USMA; and (2), the letter received by USMA from USEPA Region II, dated June 4, 1992, with respect to the RCRA Subpart K permit (the June letter). This letter is also being addressed to Mr. Andrew Bellina of the USEPA. USMA believes that none of the activities identified in the NOD and the June letter require a RCRA Subpart K permit; however, USMA submits with this letter a partial closure plan for the Open Detonation Area. USMA's reasoning for this belief is summarized in the Executive Summary, which is followed by a. more detailed explanation of each activity and USMA's reasoning with respect to each activity.

USMA believes that this letter may resolve all open issues regarding the RCRA Subpart X permit except the open burning of excess propellant. Therefore, USMA proposes that appropriate representatives of USEPA Region II, the New York State Department of Environmental Conservation (NYSDEC), USMA, and any other appropriate parties meet at a mutually agreeable time and place to discuss the issue of open burning. If a meeting is not possible, a conference call could be an alternative although face-to-face discussions would be more effective.

Encl 1

Executive Summary

The following chart summarizes the activities identified by USEPA Region II as requiring a RCRA Subpart X permit and USMA's position regarding the activity:

Activity	USMA POSITION
1. Open burning (OB) of excess propellant.	RCRA Subpart X permit not required, based on training exception. Further discussions with USEPA Region II and NYSDEC requested.
2. Open detonation (OD) of unexploded ordnance, pyrotechnics, etc.	RCRA Subpart X permit not required. In place detonations are not subject to permit requirements. Collection and OD of unexploded ordnance has been discontinued.
 OB and OD of explosives confiscated by civilian law enforcement agencies. 	RCRA Subpart X permit not required. This practice has been discontinued.
4. Emergency OD operations.	RCRA Subpart X permit not required at this time. No U.S. Army EOD unit is assigned to USMA. If the need arises, emergency permits will be requested as required by applicable USEPA regulations.
5. Partial closure and final closure of OD area.	A partial closure plan is enclosed. Final closure is not practical as the OD area is within the impact area.

Open Burning of Excess Propellant

USMA believes that the open burning of excess propellant is an integral part of training that does not constitute treatment/disposal of solid or hazardous waste and, therefore, is not subject to RCRA Subpart X permit requirements. USMA understands that its position on this matter is consistent with the position of the Department of the Army. USMA recognizes that it may not have clearly articulated it's reasoning with respect to this matter in previous correspondence and that modification to current open burning practices may be required. Since this matter is somewhat complex and is an important concern to USMA, we propose that further discussions be held, as described in the conclusion of this letter, prior to exchanging any additional written correspondence regarding this issue.

Open Detonation

USMA has ceased all activities in the Open Detonation Area which may require a RCRA Subpart X permit. The limited open detonation activities which will continue at USMA do not require a RCRA Subpart X permit based on the policy set forth in the June letter.

USEPA Region II stated the following regulatory interpretation on page 2 of the June letter:

"Current Environmental Protection Agency (EPA) policy holds that ordnances used during training does not constitute treatment/disposal of solid or hazardous waste.... This would also extend to the unexploded ordnance that falls to the ground during training exercises."

USEPA Region II further stated in the June letter:

"Since not all ordnances detonated when dropped, any unexploded ordnances are within the normal use pattern of training; subsequent in-place detonation is not subject to RCRA... On the other hand, if at any point unexploded ordnances are collected and brought to a place other than the training range to be burned or detonated, then that open burning/open detonation activity is subject to the full permitting requirements of RCRA."

USEPA Region II also stated in the June letter:

"Range waste, such as dud rounds, unexploded small arms ammunition, excess propellants and trip flares is commonly generated from military training. These types of waste were previously open detonated or open burned at the Open Detonation Unit or the Open Burning Unit and it appears that this activity is continuing."

4

The conclusion that the dud rounds are a waste is inconsistent with USEPA Region II's policy described above, which considers unexploded ordnance to be within the normal use pattern of training with subsequent in-place detonation not subject to RCRA. Since "duds" are defined as rounds which do not explode upon impact, USMA believes, based on USEPA Region II's policy, that the detonation of duds within the impact range is not subject to RCRA Subpart X permit requirements.

USEPA states a belief that the activity at the Open Detonation area is continuing. This is not the case. All activity at the Open Detonation area has ceased. The EOD unit which conducted activities at the OD facility is no longer present at USMA on a regular basis. An EOD unit will be detailed to USMA during artillery training and will be assigned to detonating duds in place on the range. Military items that were previously treated by the EOD unit are being returned to stores or shipped to other facilities. The only remaining detonation activity will be in-place detonation of duds resulting from training activities, exempt from RCRA.

Therefore, USMA believes that the OD area is not subject to RCRA Subpart X permit requirements, since the activity cited as requiring the permit is not taking place, and the only detonation activity taking place is not subject to RCRA.

OB/OD of Confiscated Explosives

USMA no longer conducts, and will not conduct, open burning or open detonation of explosives confiscated by civilian law enforcement agencies. Therefore, a RCRA Subpart X permit is not required.

Emergency OD Operations

As stated above under "Open Detonation" all activity at the OD area has ceased. An EOD unit will no longer be assigned to USMA, but will be temporarily detailed to USMA during training to detonate duds in-place on the range. Based on the June letter, this activity does not require a RCRA Subpart X permit. If circumstances arise which may require an emergency permit, USMA would request an emergency permit.

Closure of the OD Area

The June letter requires that a closure plan be submitted if the Open Detonation area will no longer be used to manage hazardous waste. Since the Open Detonation area is no longer being used, USMA's closure plan for the OD unit is included in Enclosure 2 as Section I.

USEPA Region II has acknowledged that the location of the OD area within the impact area makes it impractical to perform either "clean" or "landfill closure." Therefore, USMA is submitting a partial closure plan which would consist of detonation of any unexploded ordnances identified in the OD area. Final closure activities are not described at this time. The OD area is only a small portion of the impact zone and in terms of any contaminants is indistinguishable from the rest of the impact zone. It would be impractical to devise any closure activity for the OD area independent of any activities for the impact zone which would take place if USMA were to be closed and the impact zone no longer used.

Response to NOD

Responses to certain of the items listed in the NOD and to certain of the items normally associated with a RCRA Subpart: X permit application are enclosed as Enclosures 1 and 2, respectively. These responses have been provided to facilitate an exchange of information. Responses to the NOD which are related to procedures dictated by open burning permit requirements have not been provided, since USMA understands that this issue will be discussed in the near future and USMA believes that this activity is not subject to RCRA Subpart X permit requirements.

Interim Status

Based on my telephone conversation with Ms. Parr-Doering, USMA understands that USEPA Region II believes that USMA is proceeding in good faith with respect to this matter and will not terminate its interim status if a decision regarding its RCRA Subpart X permit has not been finalized by November 8, 1992. USMA requests that USEPA Region II inform USMA if this understanding is incorrect.

Conclusion

USMA greatly appreciates the cooperation of USEPA Region II with respect to this matter. USMA proposes that a meeting be held at a mutually convenient time and place to discuss the open burning of excess propellant. If USEPA Region II desires to discuss any other issues, USMA requests that you notify us of the need for such discussions.

Sincerely,

Konald FMassa Ronald F. Massey Colonel, U.S. Army Garrison Commander

Enclosures

- 1. Certain NOD Responses
- 2. Additional Information

SECTION B

#

٠

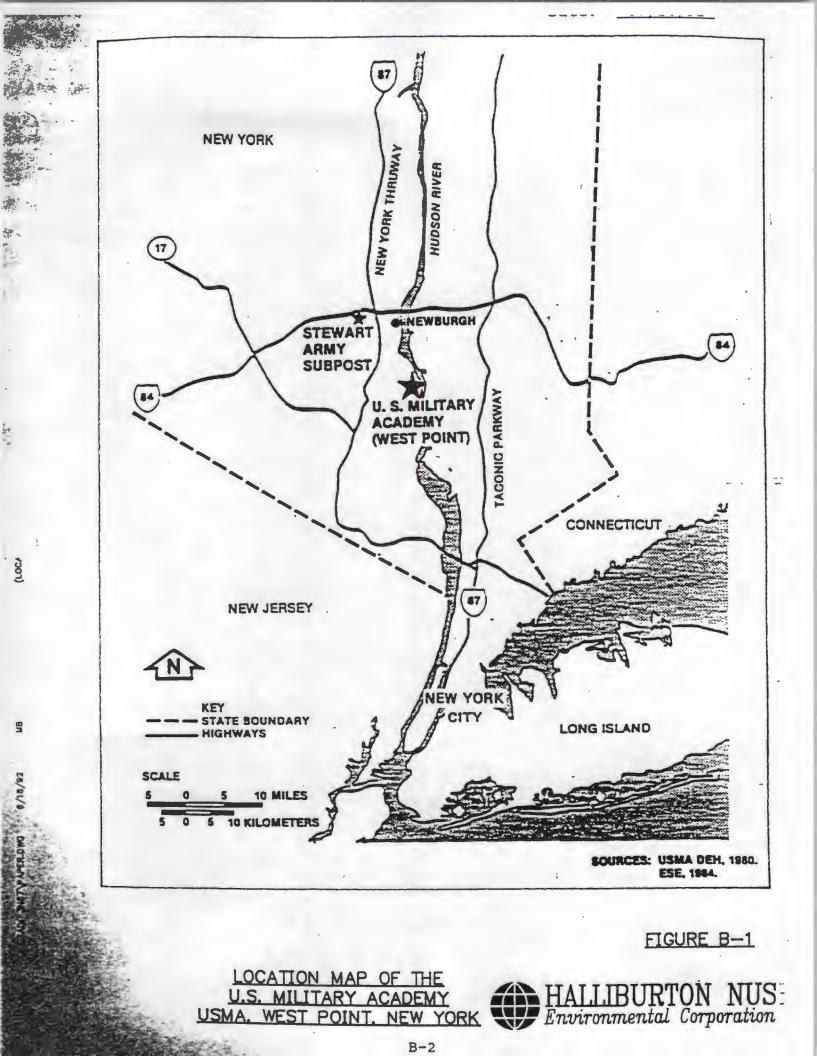
.

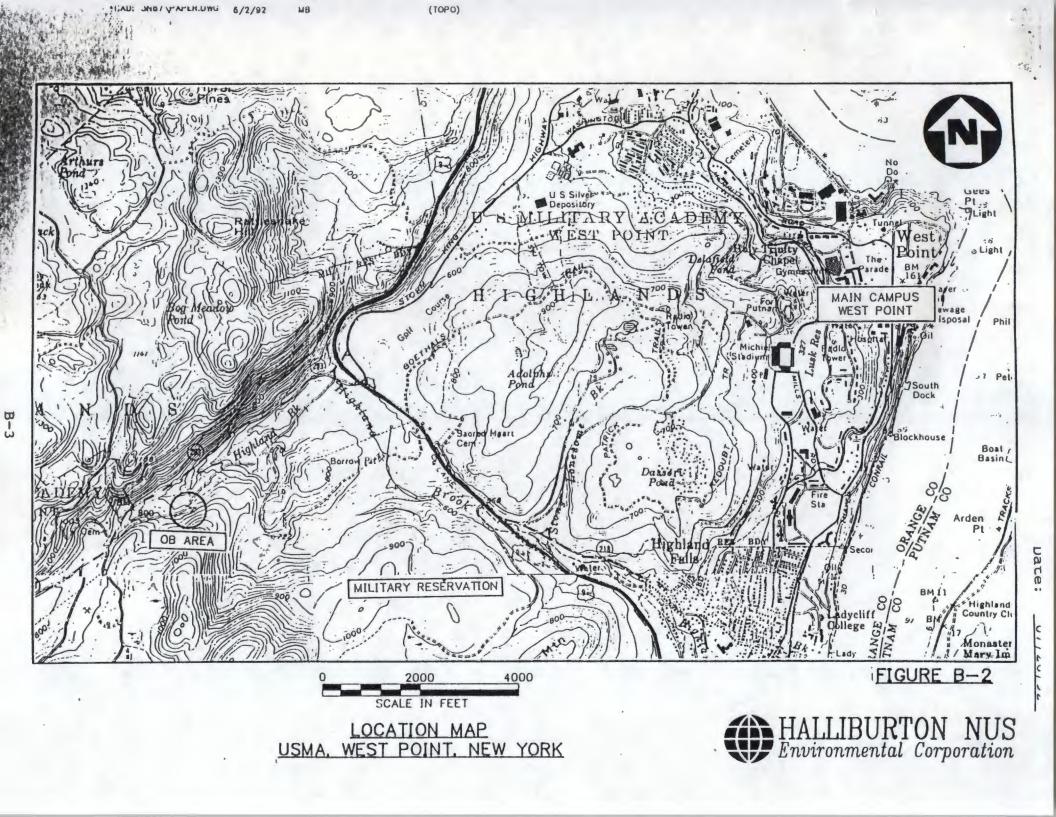
FACILITY LOCATION

SECTION B

This section provides information on the location, operation, and administration of the open burning (OB) unit at the United States Military Academy (USMA). It provides the information required by 40 CFR 270.14(b)(1),(10),(11), and (19), and the corresponding New York State regulations at Title 6, NYCRR 373-1.4(a), 373-1.5(a)(2) (i),(x),(xi), and (xix).

B-1 GENERAL DESCRIPTION [NYCRR 373-1.5(a)(2)(i)]

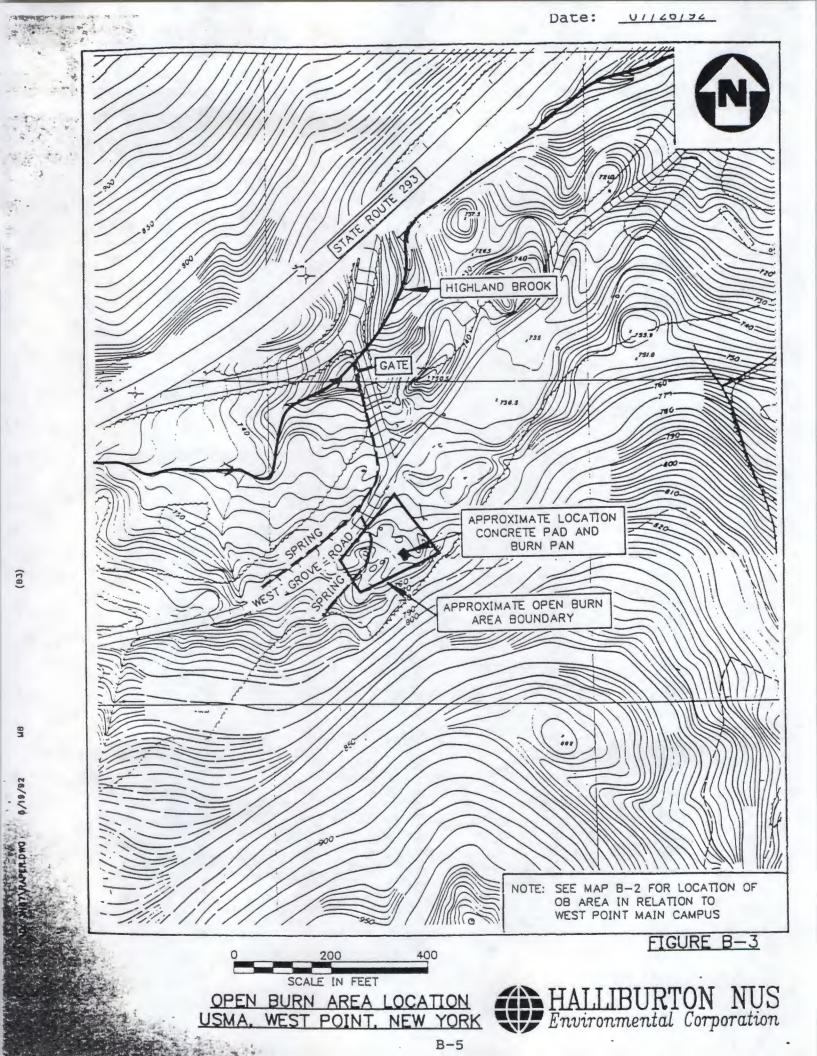

The USMA at West Point, New York, is located in the southeastern part of Orange County along the west bank of the Hudson River, approximately 80 km (50 mi.) north of New York City and 23 km (14 mi.) south of Newburgh. Refer to Figure B-1 for details. The installation consists of nearly 6,480 ha (15,000 acres), which includes the academy's campus area or Main Post of 1,020 ha (2.520 acres). The remaining 5,460 ha (13,480 acres) comprise the Military Reservation, which is a largely undeveloped tract consisting of firing ranges and bivouac areas. Open burning operations are conducted in a hilly part of the Military Reservation approximately 4.8 km (3 miles) west southwest of the Main Post (see Figure B-2).

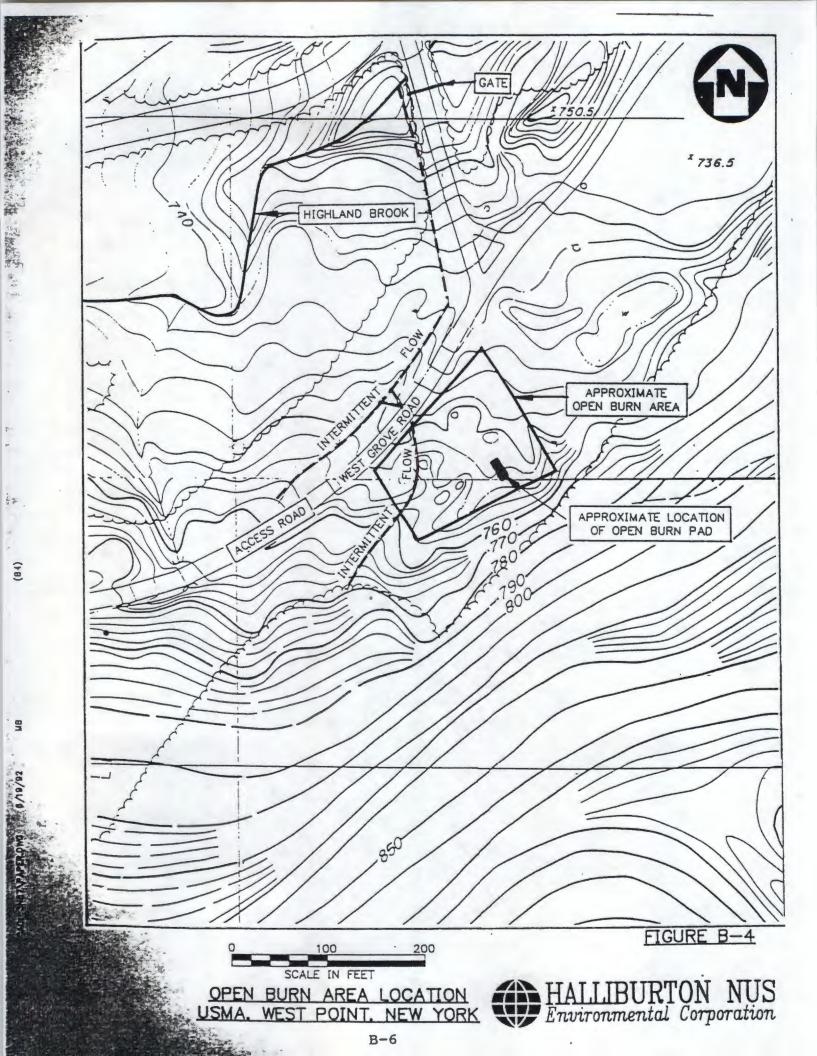

The primary mission of USMA, since its inception in 1802, has been the training and education of officers seeking careers in the United States Army. Among the activities involved in training are artillery firing exercises at ranges in the Military Reservation. Most firing exercises generate excess bags of propellant powders which are removed from 105-mm howitzer shells and 60, 31, and 105-mm mortar shells to limit the distances projectiles are hurled. These excess bags cannot be returned or otherwise recycled, so they are burned under carefully controlled conditions.

A concrete pad has been constructed to support a steel burn pan containing two removable sections in which propellants are burned. All residues remaining after each burn are retained in the pan until cool, and are then transferred to 55-gallon drums for proper disposal. Refer to Section C for additional details on the characteristics of the materials being burned. Details of the OB process itself are provided in Section D.

· · · · · ·

A series of photographs with accompanying legends has been provided as Appendix B to aid in developing an understanding of the OB area and its physical characteristics. Refer to Appendix B for views of the entrance gate into the OB area, the layout of the area itself from a number of different angles, the concrete pad and steel burn pan placement, and other features of the site and surrounding area.




B-2 TOPOGRAPHIC MAP [NYCRR 373-1.5(a)(2)(xix)]

Because of the need for different map scales, several topographic maps are necessary to provide all the information required by the regulations. Figure B-3 is provided to show the terrain in the vicinity of the OB area, and to locate the OB pad with respect to the nearby surface water bodies. An ephemeral stream crosses the corner of the OB site, fed by springs at the base of the high wall along the southern edge of the facility. These flows eventually reach Highland Brook near the access road to the site. Figure B-3 also indicates the approximate boundaries of the OB area, the gate which serves as access control, and the location of the OB pad and burn pan within the OB area. Figure B-4 shows the same information, but the map scale has been changed so that contours are more clearly visible for the immediate area around the OB site.

The topography of the USMA is very irregular, for the Hudson River has formed a gorge 0.4 to 0.8 km (0.15 to 0.5 ml) wide in the vicinity of the USMA. The land rises steeply from an elevation of 61 meters (200 ft) on the Main Post near the river to 435 meters (1,420 ft) at the highest point on the Military Reservation. Approximately one-third of the Military Reservation consists of slopes of 20% or greater. The reservation is heavily forested with deciduous trees and shrub, and dotted with numerous small swamps, marshes, and fresh water ponds.

Other required information related to the topographic maps is listed in NYCRR 373-1.5 (a)(2)(xix):

- a. Map scale and date: Scales are indicated on each topographic map provided for this application. The date is not shown on the figures, but all maps reflect present conditions as of July, 1992.
- b. 100-year floodplain area: The OB unit is not located within the 100-year floodplain. The 100-year floodplain elevations nearest to the OB area reach as high as 144 meter (472 ft) above MSL, according to Flood Insurance Administration maps for the Town of Highlands, of which much of the reservation is a part. As can be seen in Figure B-4, most of the OB site lies above the 229 m (750 ft) elevation, and all of it is above 227 meters (744 ft). This means that the OB operations take place at least 83 meters (272 ft) above the 100-year floodplain. Since the OB unit is immune from flooding, no floodproofing or flood protection measures such as those described in NYCRR 373-1.5(a)(2)(xi)(b) are required.
- c. Surface waters including intermittent streams: This information is provided on Figures B-2, 3, and 4.
- Surrounding land uses (residential, commercial, d. agricultural, recreation): Land uses in the area surrounding the USMA are strongly influenced by the rugged terrain which places severe limits on commercial and agricultural development. As a result most of the surrounding land is forest, most suitable for recreational purposes. Contiguous to the USMA's southern boundary is the extensive Palisades Interstate Park system, including Bear Mountain and the Anthony Wayne Recreation Area. To the north of the USMA lies another section of the Palisades Interstate Park which includes Storm King Mountain. The Hudson River forms the eastern boundary of USMA, and Constitution Island lies directly opposite the Main Post area. The western edge of the USMA abuts the Woodbury Creek valley where some residential communities and agricultural activities coexist. The towns of Central Valley, Cornwall, Highlands, Highland Falls, Highland Mills, Newburgh, New Windsor, and Woodbury are located near the USMA, and have a total population of about 130,000 people. Several light industries are based in some of these centers of population (particularly in Newburgh) but reportedly there are no heavy industrial activities anywhere near the vicinity of the USMA.

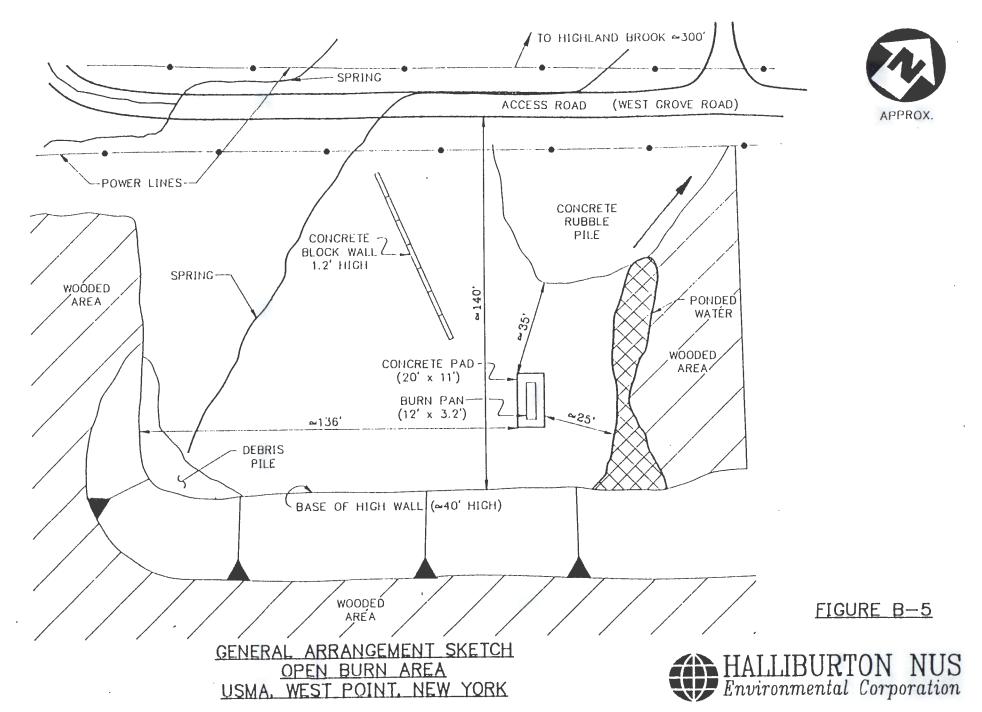
- e. A wind rose (i.e., prevailing wind speed and direction): This information is provided in Section E where the impact of OB operations on regional air quality is discussed.
- f. Orientation of the map (north arrow): Each map provides this information.
- g. Legal boundaries of the HWM facility site: The approximate boundaries of the OB area are shown on Figures B-3 and 4. No official "legal" boundaries have been defined for OB activities because the entire OB site represents only a small fraction of the USMA reservation, and lies entirely within USMA.
- h. Access control (fences, gates): The road leading into the OB area has a locked gate to control access, and has a number of warning signs posted in each direction of approach to notify unauthorized persons of the potential hazards.
- Injection and withdrawal wells both on-site and off-site: As stated above, the nearest known withdrawal wells are at least 1,590 m (5,200 ft) from the OB site. There are no injection wells anywhere on or near the reservation.
- j. Buildings; treatment, storage, or disposal operations: or other structures: There are no buildings in the vicinity of the OB site. The remains of the foundations of two abandoned buildings in the Highland Brook valley adjacent to the OB site have been overgrown with vegetation, and are of no archeological interest. Refer to Figure B-5 for a general arrangement sketch showing the pad and burn pan in relation to the other structures at the site (a rubble pile, a low concrete block wall, two sets of power lines overhead, utility poles, and access roads).

The waste residues generated by OB operation and from cleaning out the burn pans after a treatment cycle are placed in containers and handled as hazardous waste until sampling and analysis of the ash residues proves that the waste is not hazardous. Any precipitation which may have accumulated in the burn pans during the cool down period is also collected, sampled and analyzed in the same manner. Wastes that are verified as being nonhazardous are disposed of in permitted on-site facilities. If the analysis proved that the residues were still hazardous wastes (a situation

that has not occurred as yet) disposal would take place at an approved off-site facility contracted to handle such materials. No storage of hazardous wastes is involved because all waste propellants are treated and disposed of on the same day that they become excess. There are no sanitary facilities at the OB site, and no sewerage or water distribution systems.

onto New York State Route 293, a paved two-lane roadway with speed limits in the 35 to 50 MPH range. This roadway is more heavily traveled during morning and evening rush hours, as it connects West Point with US Route 6 and the New York State Thruway at Central Valley. Trucks carrying excess propellant would not be using this road during rush hours. Moreover, the total travel distances on NY 293 would never exceed 5 km (3 mi.), so there is limited risk to trucks while traveling this road. Again, trucks coming from NY 293 would exit onto West Grove Road to reach the OB site, but their travel distance along West Grove would be less than 300 meters (1,000 ft).

With respect to loading/unloading facilities, waste bags of propellants are brought to the site by truck directly from the firing range where they are discarded as excess. The bags are transferred manually to the concrete burn pad, cut open, and the powder is loaded directly into the burn pan. No temporary storage or separate unloading operations are involved. Refer to Section D for a description of the OB process.


- k. Barriers for drainage or flood control: Run-on/run-off controls at the Military Reservation are relatively undeveloped because of the rugged nature of the terrain. Unimproved roads are served by rudimentary drainage controls as necessary, but water from springs and seeps often runs down or across such roads. Flood controls at the OB site are non-existent because of its location far above the 100year floodplain.
- Location of operational units within the HWM site: Refer to Figure B-5 for details on this issue.

B-3 LOCATION INFORMATION [40 CFR 264.18 and NYCRR 373-1.5 and 2.2]

B-3 TRAFFIC INFORMATION [NYCRR 373-1.5(a)(2)(x)]

Traffic in and out of the OB area is limited to the trucks which bring excess propellant bags to the site for thermal treatment. Most of the materials will originate at Range 2 firing points (Buena Vista) which is connected to the OB site by an unimproved roadway, West Grove Road. Traffic on this portion of the road is strictly controlled, and is only present whenever range firing activities are scheduled at Range 2. A truck typically makes no more than two trips a day to the OB site carrying excess propellant. A typical daily schedule for Range 2 would be to fire up to 200 rounds in the morning, thus generating up to 1,000 excess bags. Those bags would then be brought to the OB area for burning. The afternoon exercise would fire up to another 200 rounds, yielding an additional 1,000 bacs for treatment. The truck would make a second trip in mid-afternoon. The process would be repeated only about 15 to 25 days a year, so the amount of traffic generated in this fashion is minimal.

Whenever waste propellants are transferred from other ranges to the OB unit for treatment, part of the route takes the trucks out

SECTION C

PROPELLANT CHARACTERISTICS 40 CFR 270.14(b)(2), 264.13(a), and NYCRR 373-1.5(a)(ii), 373-1.5(a)(iii)

SECTION C

C. PROPELLANT CHARACTERISTICS [40 CFR 270.14(b)(2), 264.13(a), and NYCRR 373-1.5(a)(ii) and 373-1.5(a)(iii)]

The physical and chemical characteristics of materials treated at the Open Burning (OB) area are described in this section of the permit application. All materials handled at the OB facility have the hazardous characteristic of reactivity (D003) and are potentially toxic. Reactive materials from ordnance can be classed as propellants, explosives, or pyrotechnics (PEP). Only propellants are treated at the OB area. The general chemical and physical characteristics of the PEP are described in Section C-1. Section C-2 contains a waste analysis plan that addresses procedures for sampling, testing, and evaluating the residue generated from OB activities. The information submitted has been developed in accordance with the requirements of NYCRR 373-1.5(a)(ii) and 373-1.5(a)(iii).

- C-1 CHEMICAL AND PHYSICAL ANALYSES [40 CFR 270.14(b)(2), 264.13(a) and NYCRR 373-1.5(a)(ii), 373-2.2(e)(1)]
- C-1a Containerized Waste [40 CFR 270.15 and NYCRR 373-1.5(b)]

USMA does not store containerized waste.

C-1b Waste in Tank Systems [40 CFR 270.16 and NYCRR 373-1.5(c)]

USMA does not use tanks to store or treat hazardous waste.

C-1c Waste in Piles [40 CFR 270.18 and NYCRR 373-1.5(e)]

USMA does not use waste piles to store or treat hazardous waste.

C-1d Landfilled Wastes [40 CFR 270.21 and NYCRR 373-1.5(d)]

USMA does not dispose of hazardous waste in landfills.

C-1e Wastes Incinerated and Wastes Used in Performance Tests [40 CFR 270.19 and NYCRR 373-1.5(f)]

USMA does not incinerate hazardous waste.

. .

C-1f Wastes to be Land Treated [40 CFR 270.20 and NYCRR 373-1.5(g)]

USMA does not use land treatment for hazardous materials.

C-1g Materials in Miscellaneous Treatment Units [40 CFR 270.23 and NYCRR 373-1.5(j)]

Following is a general discussion of the chemical and physical properties of propellants, explosives, and pyrotechnics. This general discussion is provided to give general information on PEP, although only propellants will be burned at the USMA OB area. Energetic materials are chemical compounds or mixtures of chemical compounds, and can be divided into three classes according to use: 1) propellants, 2) explosives, and 3) pyrotechnics (PEP). Burning of energetic materials from ordnance is an exothermic chemical reaction. The reaction is selfsustaining until completion, after an initial activating energy has been supplied. Propellants and explosives, when initiated, evolve large quantities of gas in a short time. The difference between propellants and explosives is the rate at which the reaction proceeds. In explosives, a fast reaction produces a very high pressure shock in the surrounding medium. This process is referred to as a detonation and is capable of shattering objects. In propellants a slower reaction produces lower pressure over a longer period of time. This process is referred to as a deflagration and is used to propel objects.

Classes of Energetic Materials

Propellants

When ignited, the propellant produces large quantities of hot, gaseous products. Complete combustion or deflagration of the propellant occurs in milliseconds in guns and the pressure produced accelerates the projectile down the barrel. In propellants, a slower reaction produces lower pressure over a longer period of time. This lower sustained pressure is used to propel objects or to power auxiliary devices. Propellants can be distinguished from high explosives by the chemical rate of reaction. Propellants characteristically react (burn) at a rate that is much slower than the reaction rate of explosives. It is difficult to distinguish between propellants and explosives based

on chemical composition alone. Propellants are characterized by their ability to burn at reproducible, controllable, and predetermined rates. When confined to the breech and barrel of a gun, the evolved gases produce high pressures, which provide the propulsion for the projectile. Under certain conditions, however, propellants can be made to detonate, and conversely, explosives that characteristically detonate may simply burn if the proper conditions of confinement, dimensions, degree of consolidation, and other factors are chosen. Propellants can be grouped into five classes. Division into these classes is on the basis of composition, not use. A given propellant composition may be suitable for use in several applications.

- Single-base propellant compositions are used in cannons, small arms, and grenades. These compositions contain the propellant nitrocellulose as their chief ingredient. In addition to containing a stabilizer, they may also contain inorganic nitrates, nitro-compounds, and nonexplosive materials such as metallic salts, metals, carbohydrates, and dyes. These are low cost propellants that have a low flame temperature and low energy content.
- 2. Double-base propellant compositions are used in cannons, small arms, mortars, rockets, and jet propulsion units. This term generally applies to compositions containing both nitrocellulose and nitroglycerine. They can also be defined as a propellant containing nitrocellulose and a liquid organic nitrate which will gelatinize nitrocellulose. The presence of an active gelatinizer makes double-base propellants more energetic than single-base propellants. The ballistic potential is increased correspondingly. The flame temperature and resulting barrel erosion is also increased. Additives are frequently used in addition to a stabilizer.
- 3. Triple-base propellant compositions are used in cannon units. This term is applied to propellants containing three explosive ingredients, with nitroguanidine as the major ingredient and the other two usually consisting of nitroglycerine and nitrocellulose. The nitroguanidine as an additional energizer increases the energy content of the formulation without raising the flame temperature. This reduces gun barrel erosion with no sacrifice in performance.

Mixed nitrate esters are a propellant composition developed to replace the triple-base composition during a time of nitroguanidine shortages. As an example, the XM35 composition contains nitrocellulose, TMETN (1,1,1trimethylolethane trinitrate), TEGDN (triethylene glycol dinitrate), and DEGN (diethylene glycol dinitrate). As another example, the XM34 composition contains nitrocellulose, BTTN (1,2,4-butanetriol trinitrate), TMETN, and TEGDN. The combination of mixed nitrate ester yields a higher gas volume and lower flame temperatures than the use of nitroglycerine alone.

- 4. Composite propellants contain neither nitrocellulose nor an organic nitrate. They are usually a physical mixture of a fuel such as metallic aluminum, a binder (which is normally a synthetic rubber that is also a fuel), and an inorganic oxidizing agent such as ammonium perchlorate. Composite propellants are used primarily in rocket assemblies and chemical fuel jet propulsion units.
- 5. Ball propellants are used for small arms. The main ingredients are nitrocellulose and nitroglycerin.

Ammunition cartridges and mortars used at USMA are shipped with a complete propelling charge, an ignition cartridge, and a primer. The propelling charge is contained in increments (known as charges) in bags. Firing tables are used to determine the correct number of bags or charges to be used for firing. The number of charges used depends upon the distance from the firing point to the impact point. Charges not needed are excess and must be burned. In combat and training situations these charges are burned in the field. At USMA the cartridges include seven bags of propellant. Only two bags are used. The remaining excess bags are burned in the burn pans.

Explosives

USMA does not treat explosives or pyrotechnics by OB. However, a discussion of explosives and pyrotechnics follows because this information is relevant to the closure of the OD unit that is discussed in Section I.

Explosives are substances or mixtures capable by chemical reaction, of producing gas at high temperature and pressure. Explosives can include high explosives, low explosives, propellants, igniters, primers, initiating, and pyrotechnic compositions. For explosives, a fast reaction produces a very high pressure shock in the surrounding medium capable of causing significant disruption or damage to the surrounding medium.

The variation in the properties of explosives is put to practical use in armaments by an arrangement referred to as an explosive train. An explosive train consists of elements arranged according to decreasing sensitivity and increasing potency. Normally, the following are the major energetic components of explosive ordnance.

The first element, the initiator or primary explosive, consists of a small quantity of highly sensitive material.

Primary explosives are often used in ordnance items in small quantities to initiate an explosive reaction. Primary explosives are very sensitive and relatively easy to detonate by heat, impact, or friction. In large quantities these materials are extremely hazardous because of their great sensitivity. Primary explosives can be used in combination with fuels and oxidizers in ordnance. Other ingredients are used to increase the sensitivity of the mixture to the desired property such as percussion or heat. These primary explosives are:

Lead azide $Pb(N_{a})_{a}$

- Lead azide is a salt of hydrazoic acid, is white, solid, and has a molecular weight of 291.26. The pure compound has two crystal forms: orthorhombic and monoclinic. The orthorhombic form is very sensitive and the formation of this crystal during manufacturing must be avoided. There are several forms of lead azide used for military purposes. These include: dextrinated lead azide, service lead azide, colloidal lead azide, polyvinyl alcohol lead azide, RD-1333 lead azide, and dextrinated colloidal lead azide.

Mercury fulminate Hg(ONC) a

Mercury fulminate is a salt of fulminic or paracyanic acid. The acid undergoes polymerization very rapidly in both aqueous and ethereal solutions, and so cannot be isolated, thus the structure is undetermined. Mercury fulminate is no longer used by the United States military because of poor stability. The usual stability tests are not applicable to mercury fulminate, due to explosion in a relatively short time at temperatures above 85°C. The products of deterioration are nonexplosive solids rather than gases.

DDNP (diazodinitrophenol)

This explosive is also known as 4,5dinitrobenzene-2-diazo-1-oxide, dinol, diazol, and DADNP. The compound is a greenish-yellow to brown solid with tabular crystals and a molecular weight of 210.108. DDNP is used as an ingredient in priming compositions and in commercial blasting caps. Tests indicate that DDNP is less sensitive to impact than lead azide or mercury fulminate.

Lead styphnate

- Two forms of lead styphnate are used as primary explosives: basic and normal. Basic lead styphnate has a molecular weight of 705.53 and has two crystal forms: yellow needles with a density of 3.878 grams per cubic centimeter and red prisms with a density of 4.059 grams per cubic centimeter. Normal lead styphnate has a molecular weight of 468.38 and is yellow-orange or reddish-brown, rhombic, needle-like crystals, with a density of 3.02 grams per cubic centimeter at 30°C. Normal lead styphnate is slightly less sensitive to impact than mercury fulminate or DDNP, but is more sensitive than lead azide.

Tetracene

Tetracene is also known as guanyldiazoguanyltetrazene and 4-guanyl-1-(nitrosoaminoguanyl)-1-tetrazene and is a colorless to pale yellow, fluffy material with needle-like crystals. Tetracene can be used in

detonators when initiated by another primary explosive. In such cases, the tetracene functions as an intermediate booster or as a sensitizer to flame or heat. In some cases, tetracene is used in primers where as little as two percent tetracene in the composition results in uniformity of percussion sensitivity. Tetracene is of the same order of sensitivity as mercury fulminate and DDNP.

KDNBF (potassium dinitrobenzofuroxane)

- KDNBF is a red crystalline solid with a molecular weight of 264.20. KDNBF is used in primary compositions. The sensitivity is between that of mercury fulminate and lead azide.

LMNR (lead mononitroresorcinate)

- LMNR has a molecular weight of 360.30 and forms microscopic reddish-brown crystals. The compound is used in electric detonators with dextrinated lead azide as the spot charge to initiate a pentaerythritol tetranitrate (PETN) base charge, as an upper charge, and as an ingredient in primary compositions.

Primary Compositions

Primary compositions are mixtures of primary explosives, fuels, oxidizers, and other ingredients used to initiate detonation in high explosive charges or to ignite propellants and pyrotechnics. Fuels commonly used in priming compositions are lead thiocyanate, antimony sulfide, and calcium silicide. The last two also serve to sensitize the composition to friction or percussion. Oxidizing agents include potassium chlorate and barium nitrate. Several other ingredients may include primary explosives and binders. The major determining factor in ingredient selection is the momentum which is needed to detonate the priming composition. The types of impetus commonly used are percussion and electrical. Percussion type primers are used

extensively for the ignition of propellant. Stab detonators are used to directly initiate secondary explosives. Electrical primers are used to ignite the charge which may then undergo a deflagration to detonation transfer. There are several types of electrical primers, these include: exploding bridge wire, hot wire bridge, film bridge, conductive mixture, and spark gap.

The second element in the explosive train is the booster, 2. which contains a larger quantity of less sensitive but more powerful material called a secondary high explosive. The booster is used either as an intermediate stage to detonate material that is too insensitive to be detonated by the relatively weak initiator, or to ensure complete deterioration of the main charge. The main charge is also a secondary explosive. It is the least sensitive material but comprises the bulk of the explosive charge. Secondary explosives differ from primary explosives in three major ways: 1) small uncombined charges of secondary explosives, even though ignited, do not transfer easily from a burning or deflagration reaction to a detonation; 2) ignition by electrostatic spark is difficult, except in the case of dust clouds; 3) the shock required for ignition is much greater for a secondary explosive. Secondary explosives can be divided into several classes that are less sensitive than primary explosives. These consist of the following:

Aliphatic nitrate esters

- There are several common compounds in this category. These compounds are prepared by attaching an oxygen atom to the compounds being nitrated.
 - * 1,2,4-Butanetriol Trinitrate (BTN) is a good gelatinizer for nitrocellulose and can be used is a substitute for nitroglycerin in double-based propellants.
 - * Diethyleneglycol Dinitrate (DEGN) can be used as an explosive and can be used in propellants as a colloiding agent for nitrocellulose. Propellants based on DEGN and nitrocellulose develop relatively low

temperatures and cause relatively little erosion of guns, but are unduly volatile.

Nitrocellulose (NC) is a mixture of nitrates obtained by nitrating cellulose. There are five recognized and used grades of nitrocellulose that include pyroxylin, pyrocellulose, guncotton, high nitrogen nitrocellulose, and blended nitrocellulose.

- Nitroglycerin (NG) is a clear, colorless, odorless, oily liquid with a sweet, burning taste and a molecular weight of 227.1. Nitroglycerin is used extensively in propellant compositions as a gelatinizing agent for nitrocellulose as well as in dynamites and for the shooting of oil wells.
 - Nitrostarch (NS) is a mixture of nitrates obtained by nitrating starch. The structure of nitrostarch is the same as for nitrocellulose, with the exception that the polymer chains are spiral rather than straight. Nitrostarch has a wide variety of gelatinizing agents and is used rather than nitrocellulose in explosive compositions chiefly as a substitute for nitroglycerin. These compositions have the major advantage of being nonfreezing and not subject to the desensitization that accompanies the freezing of nitroglycerin explosives. Nitrostarch explosives have been used as successfully in the Antarctic and Arctic regions as in temperate climates.
 - Pentaerythritol Tetranitrate (PETN) is a white solid with a molecular weight of 316.2. PETN is used in the explosive core of industrial detonating fuses, in the charge of commercial blasting caps, and as the entire explosive charge in exploding bridge wire detonators. PETN is also used in certain plastic bound explosives and in a mixture with 2,4,6-trinitrotoluene (TNT) called pentolite.

- Triethylene Glycoldinitrate (TEGN) is a light yellow, oily liquid with a molecular weight of 240.20. TEGN is used as a gelatinizing agent for nitrocellulose in propellants or as a component in a liquid explosive, a plasticizer in the fabrication of flexible explosive sheets, and as a plasticizer in pyrotechnic flares.
- 1,1,-Trimethylolethane Trinitrate (TMETN) is a slightly turbid, viscous oil with a molecular weight of 255.15. TMETN can be used as a flash and erosion reducing additive in propellants and an ingredient of commercial explosives.

Nitramines

Compounds in this class include: Cyclotetramethylenetetranitramine (HMX), Cyclotrimethylenetrinitramine (RDX), Ethylenediamine Dinitrate (EDDN), Ethylenedinitramine (Haleite), Nitroguanidine (NQ), and 2,4,6-Trinitrophenylmethylnitramine (Tetryl).

Nitroaromatics

Compounds in this class include: Ammonium Picrate, 1,3-Diamino-2,4,6-Trinitrobenzene (DATB), 2,2',4,4',6,6'-Hexanitroazobenzene (HNAB), Hexanitrostilbene (HNS), 1,3,5-Triamino-2,4,6-Trinitrobenzene (TATB), and TNT.

Ammonium nitrate

Ammonium nitrate is in the crystal form with a molecular weight of 80.05.

Compositions

Compositions are explosives in which two or more explosive compounds are mixed to produce an explosive with suitable characteristics for a particular application. Normally the characteristics of the

compositions are an intermediate between the characteristics of the individual explosive ingredients. Compositions can include binary mixtures, ternary mixtures, and quaternary mixtures.

Binary Mixtures

Amatols are mixtures of ammonium nitrate and TNT. Composition A consists of a series of formulations of RDX and a desensitizer. Composition B consists of mixtures of RDX and TNT. Composition C is a plastic demolition explosive that was used by the British and could be shaped by hand. Composition C contains about 88.3 percent RDX and 11.7 percent of a nonexplosive oily plasticizer. Composition CH6 is an explosive mixture containing RDX, calcium stearate, graphite, and polyisobutylene. Composition CH6 is primarily used for boosters and leads. Ednatols are mixtures of haleite and TNT. Ednatols are used for the satisfactory bursting of charges in ammunition.

Octols are mixtures of HMX and TNT. Octols are used as an oil well formation agent and in fragmentation and shaped charges.

Pentolites are castable explosive mixtures containing PETN and TNT.

Picratol 1s a mixture of ammonium picrate and TNT.

Tetrytols are mixtures of TNT and tetryl. The United States no longer uses tetrytols, however these mixtures are still used by other nations. Tetrytols are cast into munitions.

Tritonal is a mixture of TNT and flaked aluminum. Tritonal is used as a filler in bombs and shells.

Ternary Mixtures

Amatex 20 consists of RDX, TNT, and ammonium nitrate and is used as filler in ammunition items. Ammonals are mixtures containing as principle ingredients, ammonium

nitrate and powdered aluminum incorporated with high explosives such as TNT, DNT, and RDX. The major use of this composition 1s as a projectile filler.

High blast explosives have three compositions HBX-1, HBX-3, and H-6. HBX-1 and HBX-3 consist of RDX, TNT, aluminum, wax and lecithin. The formulation of H-6 is the same except for the deletion of TNT.

HMX, TNT, and aluminum mixture 3 (HTA-3) is cast as a munition.

Minol-2 consists of TNT, ammonium nitrate, and aluminum and is used in four types of ordnance: underwater depth bombs, block buster bombs, concrete fragmentation bomps, and general purpose bombs.

Torpex consists of RDX, TNT, aluminum powder, and wax and is cast into munitions.

Quaternary Mixtures

.

The depth bomb explosive (DBX) is the only explosive covered under this category and consists of TNT, RDX, ammonium nitrate, and aluminum.

Plastic bonded explosives (PBX)

PBX is the term applied to the group of explosive mixtures which have high mechanical strength, good explosive properties, excellent chemical stability, relative insensitivity to handling and shock, and high thermal input sensitivity.

Industrial explosives

Dynamites are commercial blasting explosives which have a composition of nitroglycerin and kieselguhr. Kieselguhr is a chemically inert, but porous, material.

Ammonium nitrate fuel oil explosives (ANFO) require a high explosive booster containing pentolite, composition B, or another similar high explosive.

Water gel and slurry explosives consist of ammonium nitrate with or without other oxidizing agents, explosive or nonexplosive sensitizers, fuels, and gelatin forming compounds in an aqueous medium. Slurry explosives contain the same ingredients with additional compounds that bond the solid particles and prevent water from defusing in and out of the slurry.

Pyrotechnics

Pyrotechnics is the technology of utilizing exothermic chemical reactions that, generally speaking, are non-explosive, relatively slow, sub-sustaining, and self-contained. All pyrotechnic compositions contain oxidizers and fuels. Additional ingredients present in most compositions may include binding agents, retardants, and waterproofing agents. Some compositions may also include smoke dyes and color intensifiers.

Pyrotechnics evolve large amounts of heat, noise, smoke, light, or infrared radiation but much less pressure than propellants or explosives.

Determination of Chemical Compositions

Routine Materials

Table C-1, General Chemical Composition of Propellants Burned at the United States Military Academy, gives the general chemical composition of typical propellants. The specific chemical composition of energetic propellant materials currently burned by OB are given in Appendix C-1, Chemical Composition of Propellants Currently Burned at the United States Military Academy.

The propellants requiring treatment by OB are not usually sampled and analyzed because of the large amount of information available concerning their physical and chemical characteristics. Sampling and analysis is not required to gather sufficient chemical and physical data to treat the propellants. This information comes from historical data, military specifications, and ordnance publications.

The propellants treated are contained in bags. Each round of artillery or mortar contains 3 - 7 bags of propellants known as charges. When used in training exercises at USMA only 2 bags are needed. The remaining bags of propellant must be burned. One bag of propellant burned for each round contains a lead foil weighing up to 3.4 ounces. This, lead-foil-lined bag is burned along with the propellant from that round.

· Friend

and prover the stands

* 5*

TABLE C-1 GENERAL CHEMICAL COMPOSITION OF PROPELLANTS BURNED AT THE UNITED STATES MILITARY ACADEMY

	Propellants
Name	Chemical Formula
Nitrocellulose	$C_{12}H_{16}(ONO_2)_4O_6$
Nitroglycerine	C3H5N3O9
Nitroguanidine	CH4N402

2.12

5.2

These three primary constituents can be used alone or in various combinations along with metals, metallic salts, and organic polymer binders.

Source: Military Explosives, Department of the Army, Technical Manual, TM9-1300-214, September 1984

Unidentifiable Materials

All materials treated at USMA are identifiable. Therefore, it is not necessary to address a procedure to identify unknown materials. Unidentified materials will not be treated.

Unusual Cases/Emergencies

In the event that a determination is made that an energeticcontaining item could cause substantial endangerment to human health and/or the environment, immediate treatment by OB or Open Detonation may be required. When treatment of an energeticcontaining item is required, a request will be made to the Director for a temporary emergency permit to allow treatment of items not covered by the permit. This request will be oral (by phone) and will be followed by a written notification of the emergency activity. If the emergency event occurs during a time when the Director is unavailable (e.g., during off-hours, weekends and holidays), the Director will be informed by phone during normal hours followed by a written notification.

New Propellants Requiring Burning

Items not included in Appendix C-1 must be shown to meet the environmental performance standards described in Section E. This process will consist of the following steps:

- The chemical composition of the energetic materials in the item will be determined. References used may include, but not be limited to, historical data, military specifications and ordnance publications. The new item will be characterized according to energetic constituents and their weight percents as in Appendix C-1.
- 2. Compare the chemical composition of the new item with the items in Appendix C-1. If the new item contains identical energetic constituents and weight percents as an existing item then the new item may be treated in quantities which comply with the allowable quantities established for that item.

- 3. If the new item is not identical to an existing item a POLU modelling run must be completed for the new item. Refer to Section E-3 for POLU modeling description and output analysis. The POLU output must be analyzed by comparing the combustion products to the table for air criteria in Section E-3. Combustion products and energetics other than those in Table E-3-17 must be reviewed to determine if Federal or state ambient air standards or guidelines exist for these compounds. If standards or guidelines are found they must be added to the Table of Air Criteria. Emission factors for all combustion products and energetics with air criteria will then be developed from the POLU output or by calculating emission factors for energetics using a 99.99% DRE.
- 4. Allowable treatment quantities will be calculated for each contaminant and its corresponding exposure periods using the following equation:

$$x = \frac{y}{x^2 y^2}$$

Where:

- x = allowable treatment quantity (ibs of propellant) per exposure period specified by V
- y = air criteria from Table E-3-17 (ug/m³ foreach exposure period)
- x^1 = dispersion factor from Table E-3-16 for exposure period corresponding to y
- y' = emission factor lb. pollutant/lb. propellant
- Construct a table similar to Table E-3-19. Review the 5. treatment quantities for each contaminant and exposure period and calculate which are the most restrictive quantities. These quantities will allow treatment of the propellant while complying with all ambient air standards and guidelines. Add the new item and its most restrictive short term treatment quantities to Table E-3-20.

Post-Burn Activities

After each burn, the immediate area surrounding the burn pan and concrete pad unit is inspected (see Section F). Any unburned propellant would be collected and held at USMA until the next scheduled burn. The OB unit containment pans are covered when not in use to prevent precipitation from entering the burn pans.

Prohibited Items

Certain items are prohibited from OB by Army regulation (AR-200-1). These include military chemical warfare agents or related compounds, or materials contaminated with these agents. Typical military chemical warfare agents and related compounds include, but are not limited to, the following classes of agents:

> choking agents nerve agents blood agents blister agents incapacitating agents vomiting compounds herbicides

A second group of items are prohibited from routine treatment but may be treated under emergency conditions.

Smokes

Titanium tetrachloride (FM) Sulfur trioxide - chlorosulfonic acid (FS) Hexachloroethane (HE) mixture (6.62% grained aluminum, 46.56% zinc oxide, and 46.66% hexachloroethane) White phosphorous (WP) Bulk red phosphorous (RP) Plasticized white phosphorous (PWP) Oil smoke Colored smokes (red, yellow, green, violet, white, etc.) Incendiaries

Eutectic white phosphorous (EWP)
Napalm B (50% polystyrene, 25% benzene, and 25%
gasoline by weight)
Thermite mixtures (i.e. TH3 which contains 68.7%
thermite, 29.0% barium nitrate, 2.0% sulfur, and 0.3%
oil as a binder)
Tear producing compounds

In some cases, treatment will be allowed with special itemspecific restrictions as necessary to meet the standards. Such restrictions would include identification of the appropriate treatment technology and OB quantity limits per event or over a period of time. As determined on an item-by-item basis, ordnance not meeting the environmental performance standards established in Section E will also be prohibited from treatment by OB. Finally, OB of any material that is not reactive (D003) is prohibited.

-

SECTION D

PROCESS INFORMATION

SECTION D

D. PROCESS INFORMATION

1. S. 1. T.

This section provides information on the facilities, equipment, and management practices pertaining to the burn unit at the USMA facility. The burn unit consists of the Open Burn (OB) unit on Range 2. Section D-8 provides details on the OB unit.

D-1 CONTAINERS [40 CFR 270.15 and NYCRR 373-1.5(b)]

USMA does not store hazardous waste in containers.

D-2 TANK SYSTEMS [40 CFR 270.16 and NYCRR 373-1.5(c)]

USMA does not manage hazardous waste in tank systems.

D-3 WASTE PILES [40 CFR 270.18 and NYCRR 373-1.5(e)]

USMA does not manage hazardous waste in waste piles.

D-4 SURFACE IMPOUNDMENTS [40 CFR 270.17 and NYCRR 373-1.5(d)]

USMA does not manage hazardous waste in surface impoundments.

D-5 INCINERATORS [40 CFR 270.19 and NYCRR 373-1.5(f)]

USMA does not manage hazardous waste in incinerators.

D-6 LANDFILLS [40 CFR 270.21 and NYCRR 373-1.5(h)]

USMA does not manage hazardous waste in landfills.

D-7 LAND TREATMENT [40 CFR 270.20 and NYCRR 373-1.5(g)]

- USMA does not manage hazardous waste in land treatment units. D-8 MISCELLANEOUS UNITS: OPEN BURNING (OB) [40 CFR 270.23 and NYCRR 373-1.5(j)]
- D-8a Description of Miscellaneous Units [40 CFR 270.23 and NYCRR 373-1.5(j)]

D-8a(1) Description of Burning Trays (Pans) and Materials Treated [40 CFR 270.23(a) and NYCRR 373-1.5(j)(1)]

. - :::::

USMA conducts thermal treatment of various propellant wastes using OB. All propellants treated are reactive materials. OB is the most effective and safe treatment available. A general description and historical summary of the OB area and operations are provided in Section B.

OB, as currently performed, is the controlled burning of propellant materials in metal pans located within the designated OB area of USMA. The burn pans are located inside of metal trays which serve as secondary containment. The pan is placed on top of a concrete pad to provide additional containment. The OB area consists of a gravel lot approximately 100 feet by 200 feet. The area is approximately 300 feet from Route 293 as shown in Figure B-1. A padlocked metal gate is located at the roadway entrance to the site. A sign reading "Danger - Range Area - Authorized Personnel Only" is posted behind the gate.

The frequency of burn and the quantity of propellants contained in, and the number of items treated annually at USMA varies from year to year. Future frequencies and quantities will depend on future DOD activities. The primary influencing factor is the level of training activities.

The burn pan assembly consists of an outer containment pan with a cover and an interior burn pan. The containment pan was constructed using 1/4-inch thick steel boiler plate. The containment tray is a simple rectangular box with the dimensions of 3-feet, 2-inches wide by 12-feet long by 1-foot high. The containment pan is fitted with an aluminum cover, equipped with handles. The cover can be manually lifted over the pan and fitted down over its sides. The interior burn pan SEW constructed using 1/4-inch thick steel boiler plate. TWO parallel steel beams, 5-inch in height, extending along the length of the underside of each pan, prevent the interior burn pan from contacting the floor of the containment pan. The interior burn pan is lined with 3-inch thick heat resistant fireclay anchored to the inside of the pan with stainless steel anchors. A drawing of the burn pan assembly is included in Appendix D-1. The condition of the pan will be determined before each use. Although highly unlikely, because of the nature of the burning pan construction, any leaks of material from the burning pan will be detected by visual inspection.

USMA conducts one type of burn. A brief description of this OB activity follows.

After the day's training exercises, the excess bags of propellant will be placed into the burn pan. The propellant will be ignited and allowed to burn. The burn will last from 5 to 20 seconds.

After the propellants are burned and the pans have cooled, operators will collect any remaining ash from the pan with a brush or whisk broom, shovels and a dust pan. The pan covers will be placed back on the pans and remain in place until the next use of the pans. Ash from each individual burn will be visually evaluated for any physical characteristics indicating that the propellant was not successfully treated. Items would be present as a plug or a granule of propellant. Treated propellant is present as an ash. The non-reactive burn pan ash will be emptied at least once per week during the active use of the burn site (summer months). TCLP analysis performed on the ash residue indicates this material is toxic due to it's lead content. The ash residue will be containerized into a steel container and plainly marked "Hazardous Waste". This drum will be retained at the OB ground. It will have a secure lid which will be kept closed unless ash is being added, removed, or sampled. After training the drum will be shipped to a permitted RCRA facility offsite for treatment and disposal according to the Land Disposal Restrictions in 6 NYCRR Part 376. If the ash does not exhibit the characteristic of toxicity, it will be disposed of in a suitable solid waste disposal facility. The handling of the asn residue is discussed in more detail in Section D-3a(1)2.5 and Section C.

D-8a(2) Documentation of Protection of Human Health and the Environment [40 CFR 270.23(c) and NYCRR 373-1.5(j)(3)]

The operating provisions that will be employed to protect human health and the environment during OB operations are described below. The analyses to be undertaken to demonstrate that these provisions are adequate to protect human health and the environment are contained in Section E of this permit application.

D-8a(2.1) Control of Ejected Material During Burning

This section addresses the possibility that ashes, embers, or other solid material derived during the burning of propellant will be ejected from the burn pan onto the ground during burning operations. This could potentially start an uncontrollable fire and/or cause environmental contamination via the soil, surfacewater, and groundwater pathways. This potential problem will be minimized by several preventive measures. The 1-foot depth of the pans is sufficient to prevent most stray particles from doing anything more than bouncing off the inside walls of the pans. The pans are placed on top of a concrete pad. This makes the detection and collection of any ejected propellant much easier to accomplish. Periodic cleaning of the pans following burning operations and the use of lids in between burns will reduce the potential for release of ash. Pre-burn inspections will be conducted of the burn pans to ensure that they have retained their structural integrity. Finally, post-burn inspections of the area surrounding the pan will reveal the presence of the larger sized ejected materials. These materials will be collected from the burn area and reburned if necessary, or managed as hazardous waste until testing can be done to determine the nature of the waste.

It is unsafe to approach the burn pans for ash removal and inspection until a sufficient period of time has passed, allowing all materials in the pan to cool to the touch. Approximately 30 minutes are allowed to pass before approaching the pans.

D-8a(2.2) Integrity of Burn Pans

· Shine the second states

A STATE STATE A

This section addresses the concern that ash residue or wastes may be released from burn pans if they should develop a leak, or should break or crack. Such releases will be minimized through pre-burn and post burn inspections to determine burn pan integrity. Any significant deterioration will result in

integrity. Any significant deterioration will result in cessation of burning operations. Double containment is provided for the burn pan. The burn tray is placed inside a second steel pan. This pan is located on top of a concrete pad. If the primary pan should develop a leak, it would be contained by the secondary pan.

D-8a(2.3) Deterioration or Malfunction Procedures

The most serious deterioration or malfunction during OB would be the loss of integrity of, or the development of a leak in, one of the burn pans. Should an accidental release occur, the released materials will be collected and either treated in the next burn (if reactive) or taken to a disposal site. All materials treated are solids, which can be easily collected if released. If the pre-burn inspection shows that the pan integrity has been compromised, it will not be used. Where post-burn inspections show that the pan is deformed or its integrity has been compromised, it will be taken out of service and repaired.

D-8a(2.4) Prevention of Accumulated Precipitation Within Burn Pans

The accumulation of precipitation within the burn pan could provide a means by which hazardous constituents in the ash could be released to the environment. Dampness in the pans would not inhibit the burning of the propellant because of its extremely reactive nature once reaction is initiated. During nonoperational periods the use of pan covers will prevent precipitation from accumulating in the burn pans. Each cover will be equipped with handles to allow operations personnel to move it easily on and off the pan. These covers, the specifications for which are given in Appendix D-1, are tight fitting and will remain on the pans during non-operational periods.

In the unlikely event that water accumulates in a burning pan and could inhibit treatment effectiveness, it will be removed either by pumping into a drum or it will be squeegeed into a drum, sampled and analyzed in accordance with procedures outlined in Section C, and disposed in accordance with appropriate regulations. Any accumulated precipitation would not be a reactive waste. If analyses determine that the water is contaminated with propellant constituents it will be disposed of in accordance with appropriate regulations.

der.

D-8a(1)2.5 Ash/Residue Management

Ash and untreated energetic material is potentially generated at two locations in and around the burn pan; within the pan as a result of the burning process, and surrounding the pan because of the potential ejection of propellant. Following a burn, the ash from the burn pan will be collected and placed in a labeled steel container with secured lids. If any untreated propellant is kicked out of the pan during treatment, it will be collected and treated in the next burn.

D-8a(1)2.6 Fire Hazard Minimization

Ejection of energetic material during the burn can result in the deposition of hot embers on the ground adjacent to the burn pan. The fire hazard will be minimized during open burning simply by the fact that the pan is in the OB area, located on top of a concrete pad, with the immediate surrounding area cleared of combustible material. In addition, during a burn operation, fire-fighting personnel and equipment are on alert and available. The fire department will wet down the area with water prior to burning in order to minimize any fire hazard and remain there with a fire truck during the burn. Procedures and equipment made available for protection, in the unlikely event that an uncontrolled fire starts, are discussed in Section G (Contingency Plan).

D-8a(1)2 Standard Operating Procedures

After the day's training exercises, the bags of propellant will be placed into the burn pan. The propellant shall be ignited and allowed to burn.

- OB operations will not be conducted during electrical storms or thunderstorms.
- OB operations will be restricted during periods of high wind velocity.
- No OB operation will be left unattended during the active portion of the operation (i.e., during the actual burn).
- OB operations will not be conducted during periods of local air quality advisories/alerts.

Dry grass, leaves, and other extraneous combustible material that has blown in or been brought inadvertently into the burn area will be removed from the concrete pad and the area adjacent to the pad. Then the burn pan will be inspected to ensure that it is in good condition and has been properly prepared for burn operations. In particular, the inspection will ensure that there is no excessive rust, no excessive buckling or warping of the pan because of excessive heat, no splitting or holes in the pan, no deterioration of welded seams, no evidence of metal fatigue, and that the pan is free of debris, trash, refuse, unburned or incompletely burned material or ordnance, or any other material that is not supposed to be there. If conditions are not otherwise safe, the burn pan will not be used until safe conditions are restored.

Once the burn pan has been prepared, operators will check to see that the materials placed in the burn pan are those specified, and that no other materials of any type are in the pan. The contents of the pan will be allowed to burn until combustible materials are consumed. This will take less than one minute.

OB operations are conducted in accordance with Department of Defense SOPs as well as Military Service-specific SOPs. The generic procedure for OB is documented in USMA REG 385-11. This reference is periodically reviewed and updated.

D-8b Propellant Characterization [40 CFR 264.601(a)(1), 264.601(b)(1), and 264.601(c)(1)]

The chemical and physical characteristics of materials typically burned in the OB area are presented in Section C of this permit application. The maximum weight of material burned at any one time in the burning pan is based on the net explosive weight of the material being burned. The net explosive weight limitations for open burning are set forth in Section E-3.

D-8c Burn Effectiveness

The initial evaluation of burning effectiveness is based on visual inspection. Successful burning of propellant is demonstrated by destruction of the physical form of the propellant from a granule or plug to a fine ash. If the physical form of propellant has not been changed, the burn would be considered to be ineffective and the material would be reburned in the next burn. After it is determined that the burn is

Date: <u>07/26/92</u> successful, the ash will be collected and placed into a container.

Main - SECTION E-3

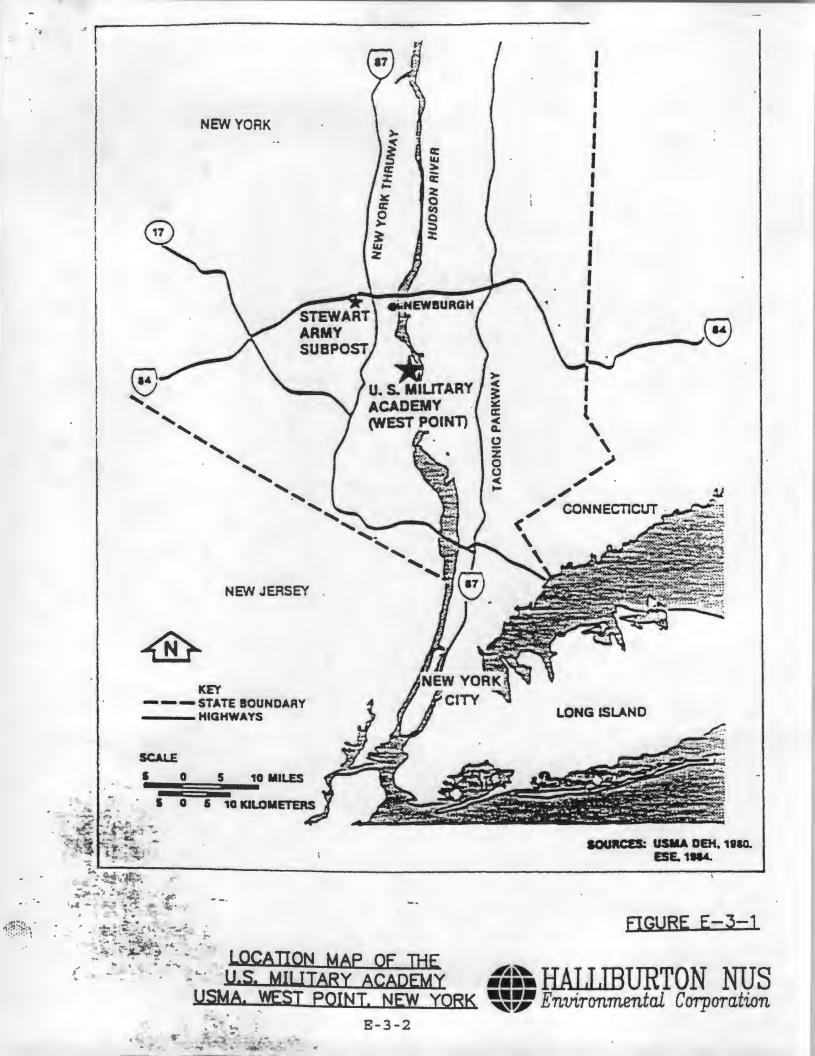
AIR PATHWAY

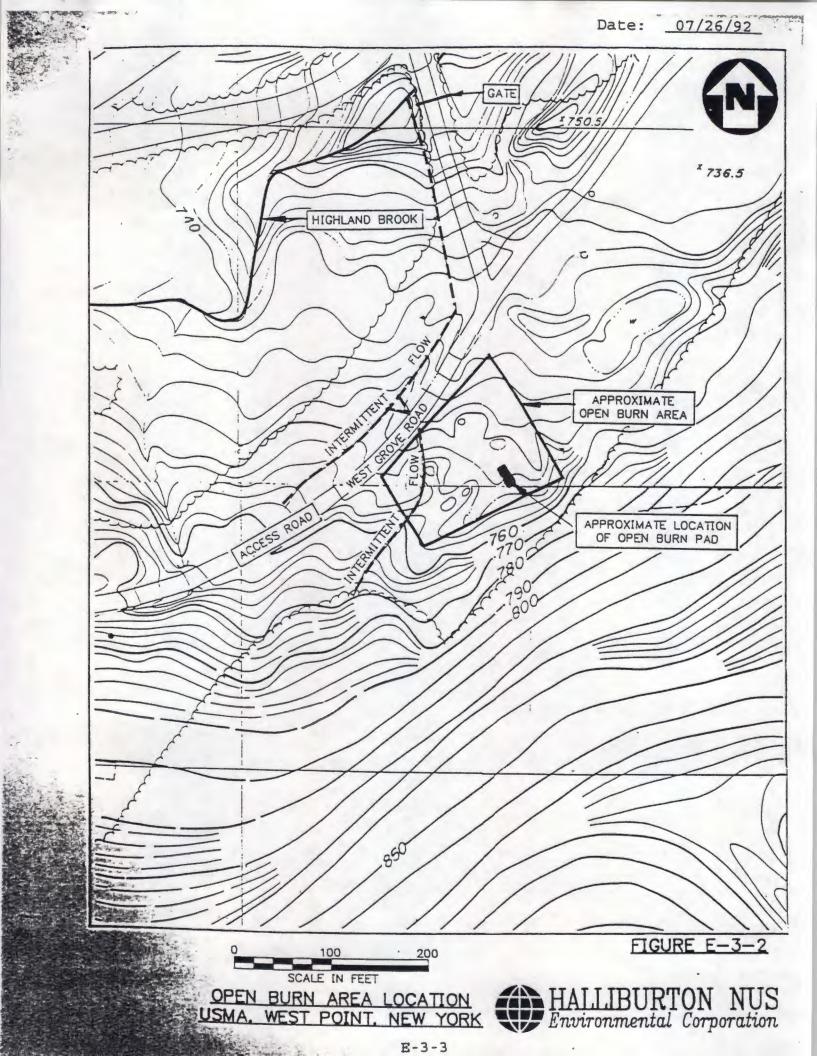
.

E-3 AIR PATHWAY

An air pathway analysis was conducted for open burning (OB) operations at the United States Military Academy (USMA) located in West Point, New York. The USMA is situated on the west bank of the Hudson River, approximately 50 miles north of New York City and 14 miles south of the town of Newburgh as shown in Figure E-3-1. Information regarding the OB air emissions and the components of the air pathway analysis are described in this section. The information is partitioned into two (2) principal subject areas. These areas are:

Environmental Setting OB Emissions


Each of these areas contain information addressing the existing environment at the USMA, the criteria used to develop the environmental performance standards, and an assessment of the air emissions and their impacts relative to establishing environmental performance standards for the USMA site.


E-3-1 ENVIRONMENTAL SETTING

E-3-1.1 Facility Description

The USMA installation consists of approximately 15,974 acres, which includes the Main Post or campus area and the Military Reservation which is a largely undeveloped area consisting of firing ranges and bivouac areas. Approximately 12,500 acres (73 percent) of the USMA is located in the Town of Highlands. The remainder of the USMA property is in the Town of Woodbury (approximately 2,300 acres), the Town of Cornwall (approximately 400 acres), and across the Hudson River in Putnum County on Constitution Island (280 acres). The OB unit is located within the Military Reservation portion of the installation at Range 2 which is shown in Figure E-3-2.

The primary mission of the USMA is the education and training of undergraduate cadets for careers as officers in the United States Army. Military training activities that are a part of the USMA education program include range activities which involve firing of various artillery. National Guard units are also trained in artillery at the USMA. As part of these training sessions, excess propellant powder is removed from the 105-mm shells. The excess propellant powder is thermally treated by OB in the Range 2 burn

area which is equipped with a burn pan. Excess propellant from mortar rounds fired at Range 6 is also transported to the Range 2 burn area for thermal treatment.

E-3-1.2 Topography

The USMA is located in the geologic formation known as the Hudson Highlands section of the New England physiographic province. These hills extend in a southwest to northeast direction and comprise about 14 miles of the river front between Cornwall and Stony Point, New York.

The topography of the Military Reservation is extremely irregular. The Hudson River has formed a gorge one-quarter to one-half mile wide through the Hudson Highlands. The land rises snarply from an elevation of 200 feet on the occupied area of the Main Post to an elevation of 1,420 feet within the Military Reservation at Bull Hill. Approximately one-third of the total area of the Military Reservation consists of slopes of 20 percent grade or steeper. Extensive forests, predominantly deciduous trees and shrubs, cover much of the rugged terrain. Small swamps, marshes, and fresh water ponds and lakes are also located on the Miltary Reservation.

The OB burn area is located within a narrow valley that runs northeast-southwest through the OB site. Terrain rises to the east, south and north of the site.

E-3-1.3 Land Use Classification

The USMA is located in an area characterized by rugged topography, with predominantly residential, agricultural and recreational land uses. Contiguous to the southern boundary of USMA is the extensive Palisades Interstate Park; to the north is the Storm King State Park; the Hudson River flows along the eastern boundary; and to the east of Constitution Island across the Hudson River is a 269 acre parcel marshland owned by the Taconic State Park Commission and administered by the National Audubon Society.

The towns of Woodbury, New Windsor, Newburgh, Cornwall, and Highlands, are located on the west side of the Hudson River, near the USMA. The combined population of these towns in 1980 was 102,500 or 38 percent of the total population of Orange County. Light industries exist in these population centers, but,

.

reportedly, no heavy industry occurs in the vicinity of the USMA installations in Orange County.

.

, . . .

.

E-3-1.4 Meteorology/Climatology

The climate of the USMA is primarily continental in character, but is subject to influence by the nearby Atlantic Ocean which lies approximately 50 miles to the east and south. The moderating effect on temperatures is more pronounced during the warmer months than in the winter when outbursts of cold air sweep down from Canada. In the warmer seasons, temperatures rise rapidly in the daytime. However, temperatures also fall rapidly after sunset so that the nights are relatively cool. Occasionally there are extended periods of oppressive heat up to a week or more in duration.

Winters are usually cold and sometimes fairly severe. Maximum temperatures during the colder winters are often below freezing and nighttime low temperatures are frequently below 15 degrees. Sub-zero temperatures occur about 8 times a year. Snowfall can be quite variable throughout the area and snow flurries are quite frequent during the winter months. Precipitation is evenly distributed throughtout the year and is sufficient to serve the needs of the area for most years and only occasionally do periods of drought exist. Most of the rainfall in the summer is from thunderstorms while large extratropical storms provide precipitation in the fall and winter months.

The USMA does not maintain an onsite meteorological monitoring station for the purpose of recording local meteorological conditions. The closest reporting surface weather observation station is at the Stewart Airfield in Newburgh, New York, which is located about 12 miles northwest of the OB treatment site. This site has been chosen to represent the climatological variations of wind speed, wind direction and temperature that exist at the USMA installation. Climatological data for the 27year period 1942 through 1969 are discussed below.

Temperatures for the area can be characterized as being moderate with the warmest month being July. Winters are reasonably cold with the coldest temperatures occurring in the month of January. Persistent northwesterly flow in the winter can produce periods of severe cold. During the climatological period of record the lowest temperature reported for the area was -20 degrees F in 1967. The warmest temperature recorded was 102 degrees F, which occurred in 1953. A summary of the mean monthly and annual temperatures are provided in Table E-3-1.

TABLE E-3-1

SUMMARY TABLE FOR MEAN MONTHLY AND ANNUAL TEMPERATURE FOR THE UNITED STATES MILITARY ACADEMY, WEST POINT, NEW YORK

Month	Temperature (°F)
January	26.1
February	27.7
March	36.4
April	48.2
May	58.5
June	68.2
July	. 72.8
August	70.7
September	63.5
October	53.3
November	41.7
December	29.4
Annual Mean	49.9

Based on observations for the period 1942-1969 at Stewart Airfield, Newburgh, New York.

Normal annual liquid precipitation for the area is approximately 45 inches and is well distributed throughout the year. The mean annual Class A pan evaporation for the area is about 40 inches per year. Approximately 75% of the annual pan evaporation takes place during the period May through October.

A summary of the annual wind frequency distribution for the 1942 throught 1969 period of record is given in Table E-3-2. The information is given for 16 directional sectors plus the calm category. The prevailing annual wind direction for the area is from the west with secondary prevailing direction of westsouthwest. The annual average wind speed for the area is 7.8 miles per hour.

E-3-1.5 Existing Air Quality

Information was obtained from the New York State Department of Environmental Conservation (NYSDEC) in an attempt to characterize the air quality in the vicinity of the USMA installation. The USMA is located in Orange County, New York. Unfortunately, the NYSDEC does not operate an extensive air quality monitoring network in Orange County in order to determine the attainment status for all pollutants regulated by the National Ambient Air Quality Standards (NAAQS). In 1990, the NYSDEC only operated a total of 3 ambient monitoring stations within a 20 mile radius of the USMA OB site.

The State of New York has adopted the Federal ambient air quality standards for sulfur dioxide. carbon dioxide, nitrogen dioxide, lead and PM10 (inhalable particulate). The state has developed its own ambient air quality standards for photochemical oxidants, total suspended particulates, and various other pollutants. The only pollutants monitored within a 20 mile radius of the USMA OB site in 1990 were sulfur dioxide, lead, PM10 and TSP.

As of 1990, the NYSDEC operated only one (1) monitoring station in Orange County which was located in Wallkill (Middletown), approximately 19 miles west-northwest of the USMA OB site. This site measured ambient concentrations of total suspended particulate (TSP) and lead. In 1990, this site reported no violations of the Federal and state air quality standards for both pollutants. Quarterly concentrations of lead reached a maximum concentration of 1.48 ug/m³, which is slightly below the Federal and state standard of 1.5 ug/m³. This site also collected 24-hour concentrations of TSP in 1990 for comparison to

the state's 24-hour and annual standards of 250 ug/m^3 and 55 ug/m^3 , respectively. The maximum 24-hour average concentration in 1990 was 99 ug/m^3 , while the annual average was reported at 37 ug/m^3 .

2.0

TABLE E-3-2

SUMMARY TABLE OF WIND FREQUENCY DISTRIBUTION FOR THE UNITED STATES MILITARY ACADEMY, WEST POINT, NEW YORK

Wind Sector	Percent Frequency (%)		
N	3.4		
NNE	3.4		
NE	5.1		
ENE	3.8		
E	3.6		
ESE	2.4		
SE	2.6		
SSE	2.9		
S			
SSW	3.9		
SW	9.0		
WSW	11.2		
W	11.5		
WNW	8.4		
NW	5.8		
NNW	3.0		
CALMS	16.6		

Annual Average Wind Speed: 7.8 mph

「「「「「「「「」」」

行きたいたけるに

Based on 238,655 observations for the period 1942-1969 at Stewart Airfield, Newburgh, New York.

Ambient concentrations of sulfur dioxide were collected at Bear Mountain State Park, which is located south-southeast of the USMA OB site in Rockland County. In 1990, 3-hour, 24-hour and annual concentrations of sulfur dioxide were well below the Federal and state air quality standards. The maximum 3-hour sulfur dioxide concentration was 376 ug/m³, which is 29% of the Federal standard and 58% of the New York standard. The maximum 24-hour sulfur dioxide concentration was 115 ug/m³, which is 32% of the Federal standard and 44% of the New York standard. The annual average sulfur dioxide concentration in 1990 was 27 ug/m³, which is 34% of both the Federal and State of New York standards.

The closest monitoring site to the USMA OB site that collects ambient PM10 concentration data is located in Mt. Ninham which is located 16 miles to the eastnortheast in Putnam County. The maximum 24-hour concentration reported in 1990 was 29 ug/m³, which is 19% of the 150 ug/m³ Federal and state standard. The 1990 annual average concentration was 14 ug/m³, which is only 28% of the Federal and state standard.

E-3-1.6 Local Emissions Data

Air emissions from the USMA OB operations will include various products of complete and incomplete combustion. Some of these same OB emission contaminants may be emitted by other sources in the local area.

In order to assess the potential contribution from other sources within the local area, emission inventory data was requested from the NYSDEC for all sources located within two (2) miles of the USMA OB site. Emissions data for other sources of criteria and volatile organic compounds within two miles of the USMA OB site as of June, 1992 are shown in Table E-3-3.

Table E-3-3 includes emission data in lbs/yr for sources of the criteria pollutants SO_2 , NO_m , CO, particulate matter, and volatile organic compounds. The only other sources inventoried by the NYSDEC within a 2 mile radius of the OB site are located at the USMA. These sources include build up boilers, a package boiler, paint spray booths, a sand blasting unit, tumble dryers and a sterilization unit.

A majority of the emissions from these sources are for the volatile organic group which totals 134,105.1 lbs/year. All of these

volatile organic emissions are associated with the paint spray booths and the tumble dryers. Indentification of the specific volatile organic compounds for these sources was not available. The second highest quantity of emissions for this group is

TABLE E-3-3

SUMMARY OF EMISSION SOURCES WITHIN TWO MILES OF THE UNITED STATES MILITARY ACADENY, WEST POINT, NEW YORK

Source		Pollutant Emiss			sions (lbs/yea	ons (lbs/year)	
Description/Facility	Location/County	Particulate Matter	Sulfur Dioxide	Nitrogen Oxide	Carbon Monoxide	Volatile Organics	Other
Build Up Boiler/USMA	West Point/Orange	1.3	1.2	8	1.2		
Build Up Boiler/USMA	West Point/Orange	1.3	1.2	6.4	6.4		
Package Boiler/USMA	West Point/Orange	7.5	6.8	5.1	3.1		
Build Up Boiler/USMA	West Point/Orange	3.4	3.1	1.9	3.8		
Build Up Boiler/USMA	West Point/Orange	241	28.97	326.34			
Build Up Boiler/USMA	West Point/Orange	- 241	28.97	326.34			
Paint Spray Booth/USMA	West Point/Orange	80.23				19236.8	
Paint Spray Booth/USMA	West Point/Orange	80.23				19236.8	
Sand Blasting Unit/USMA	West Point/Orange	1.04					
Tumble Dryer/USMA	West Point/Orange					70073.64	
Tumble Dryer/USMA	West Point/Orange					23357.83	
Paint Spray Booth/USMA	West Point/Orange	13.3				490	
Sterilization Unit/USMA	West Point/Orange						336*
Paint Spray Booth/USMA	West Point/Orange					1710	
TOTAL		670.3	70.24	674.08	14.5	134105.1	336*

*Other category for the Sterilization Unit includes 40 lb/yr of ethylene oxide and 296 lb/yr of Freon 12.

E-3-10

associated with particulate matter and nitrogen oxide. Annual emission levels for these pollutants are about 670 and 674 lbs/year, respectively, and are associated primarily with the operation of boilers at USMA.

E-3-2 Potential OB Air Emissions

The air pathway assessment conducted in this permit application considered the air emissions relative to the OB treatment processes. The air emissions from OB treatment processes include products of combustion, products of incomplete combustion, energetics, metals and inorganics. These sources of air emissions are discussed in further detail within Section E-3-3.1.1.

E-3-2.1 Products of Combustion and Incomplete Combustion

Energetic compounds are composed principally of carbon, hydrogen, nitrogen and oxygen. The primary air emissions from OB treatment operations are products of combustion, which typically include the following:

carbon monoxide carbon dioxide nitrogen and nitrogen oxides water sulfur dioxide methane ammonia

Secondary air emissions include various products of incomplete combustion (which can include energetic materials, organics and trace metals). A list of the potential OB products of combustion and incomplete combustion for propellants treated at the USMA OB site is given in Table E-3-7. This list represents a compilation of potential emission constituents (based on U.S. Army studies) considering the wide range of ordnance, munitions and propellants which are treated by the military services and the propellants to be treated at the USMA OB site. It is important to note that not all of these combustion products will be emitted from every OB treatment. The emission products will be a function of the actual propellants treated which are described in more detail below.

A primary list of all propellants which are subject to OB treatment at the USMA are listed in Table E-3-8. The list shows

9 propellants, the chemical or energetic constituent of each propellant, and the approximate weight percent composition of each constituent. This air pathway analysis used the POLU-11 combustion products model to calculate the emission products for the USMA OB propellants given in Table E-3-8.

TABLE E-3-8

ENERGETIC ITEMS TO BE TREATED BY OPEN BURNING AT THE UNITED STATES MILITARY ACADEMY, WEST POINT, NEW YORK

「ない」

Item Number	Item	Energetic Constituent	Weight (%)	
1 M720-HE 60 mm Mortar propellant charge		Nitrocellulose Diphenylamine Potassium Sulfate Graphite	97.9 1 1 0.1	
2	M83 Illum 60 mm Mortar propellant charge	Nitrocellulose Nitroglycerin Potassium Nitrate Ethyl Centralite Diethylphthalate	52.2 43.0 1.3 0.6 3.0	
3	H49A4 HE 60 mm Mortar propellant charge	Nitrocellulose Nitroglycerin Potassium Nitrate Ethyl Centralite Diethylphthalate	52.2 43.0 1.3 0.6 3.0	
4	M50A3 TP 60 mm Mortar propellant charge	Nitrocellulose Nitroglycerin Potassium Nitrate Ethyl Centralite Diethylphthalate	52.2 43.0 1.3 0.6 3.0	
5	M362 HE 81 mm Mortar propellant charge	Nitrocellulose Nitroglycerin Potassium Nitrate Graphite Barium Nitrate Ethyl Centralite	82.0 15.0 0.8 0.3 1.4 0.6	
6	H374A3 HE 81 mm Mortar propellant charge	Nitrocellulose Diphenylamine Potassium Sulfate Graphite	97.9 1.0 1.0 0.1	
7	M444 HE 105 mm Mortar propellant charge	Nitrocellulose Dinitrotoluene Diphenylamine Dibutylphthalate	84.16 9.90 0.99 4.95	
8	M548 HE 105 mm Howitzer propellant charge	Nitrocellulose Nitroglycerin Nitroguanidine Ethyl Centralite Cryolite	27.5 23.9 46.8 0.3 1.5	
9	Cartridge CTG 105 mm HE M1 propellant charge	Nitrocellulose Dinitrotoluene Diphenylamine Dibutylphthalate	85.0 10.5 1.0 4.0	

E-3-2.2 Combustion Products Model

The POLU-11 model was developed by the U.S. Navy to estimate air emissions from OB operations where energetic materials are treated (Baroody and Tominack, 1987). The model also has the capability of estimating air emissions for open detonation treatment. The POLU-11 model includes a file of heat capacity coefficients and enthalpy/entropy constants for numerous potential combustion products. Currently, there are over 1,400 chemical species in the file.

The POLU-11 model is designed to operate with up to nine (9) chemical constituents, plus air, per run. The model chooses the compounds to consider in the combustion calculations based on the elemental composition of the energetic material burned. If the energetic material burned contains the elements carbon, hydrogen, oxygen or nitrogen, the program considers the elements possible combustion products. The total number of combustion products and products of incomplete combustion considered for each calculation is listed in the output data. This combustion product library contains most of the species formed from energetic materials that are used by the Army.

Because the exact material/air ratio where complete oxidation occurs is not known for a given energetic material, the POLU-11 program predicts products of combustion at various material-toair ratios and displays these results in the output. Evaluation of these output data reveal the trend in composition of the combustion products as the material-to-air ratios vary. For most energetic materials, complete oxidation occurs at 60 to 70% air intake (1.e., material-to-air ratios of 40:60 and 30:70). This conclusion was reached based on a preliminary onsite evaluation of the POLU-11 program at the Dugway Proving Grounds, in Utan, on May 22, 1986. This compustion product evaluation was based on burning waste Navy explosives in 5,000- and 2,500-1b sections. A helicopter, passing through the gasecus clouds formed from these burns, sampled two major indicator gases, carpon monoxide and hydrogen chloride. The measured carbon monoxide concentration fell between the POLU-11 predicted values for the 40:60 and 30:70 material air ratios. For the purpose of this analysis, it has been assumed that the POLU-11 model output contained in the 40:60 and 30:70 material-to-air ratios is most representative of the OB treatment processes.

Additional technical information on the POLU-11 model is presented in Appendix E-3-A.

POLU-11 OB Modeling

when used for OB predictions, the POLU-11 model calculates emissions based on the energetic material first being mixed with air and then burned to form atmospheric pollutants. The necessary thermodynamic data for the various energetic ingredients and air; weight ratios of material/air; and two pressure values (1,000 and 14.7 psia), are read into the program as input data. The flame temperature; combustion products, moles of gas, entropy and other pertinent data are calculated for the material/air mixtures under a pressure of 1,000 psia. The volumes of the combustion products are then expanded to 14.7 psia, which causes the temperature of the combustion products to drop. At this lower temperature, referred to as the "frozen temperature" of the gas, the products may have a different composition than at 1,000 psia. The program goes through a similar routine to recalculate the combustion products, flame temperature, and other variables that were changed because of the expansion. The products calculated at 14.7 psia are then reported as the pollutants in the output data.

Even though the calculations are conducted at 1,000 and 14.7 psia, the energetic material does not have to be thermally treated at these conditions in order to predict the pollutants. The calculations are performed at these conditions based on the following assumptions:

- These pressures simulate the drop in temperature as the gases cool to ambient conditions.
- The combustion products "freeze" in composition before they reach ambient temperature.
- The combustion products of energetic materials formed during combustion calorimeter testing are in good agreement with the products predicted by POLU-11.
- The heats of explosion calculated from the program closely approximate the actual values determined from the calorimetric data.

The POLU-11 modeling output for OB treatment is provided in Appendix E-3-B. Summaries of emission factor results and other combustion data at 14.7 psia precede the POLU-11 output data. Specific combustion products having health criteria identified in

Tables E-3-4 to E-3-6 were used to establish the performance standards for the USMA.

. N. 27.

a start a start a

Other POLU-11 model output, such as the OB "frozen temperature" at 14.7 psia, was used to represent the gas temperature of the OB plume in the air quality dispersion modeling analysis. The POLU-11 emission factor output data were used in conjunction with the air quality modeling dispersion factors and health criteria to establish treatment limits for various pollutants and energetic compounds.

A compilation of the worst case POLU-11 emission factors for all pollutants are given in Table E-3-9. For the OB process at USMA, all particulate matter emissions were assumed to have diameters of 10 microns or less. The emission factors represent the maximum values calculated for either the 40:60 or 30:70 material-, to-air ratios. Also shown in Table E-3-9 are emission factors for various other pollutants.

To maintain the "worst case" conservative approach of this analysis, emission rates for metals were developed on the basis of a mass balance assumption (i.e., "what goes in also comes out") from the weight (lbs) data contained in Table E-3-9 for each propellant containing metals. For the USMA, only propellant number 5 contains the metal barium. Therefore, the emission factor for the metal barium given in Table E-3-9 represents a conservative evaluation of the potential impact from the USMA OB operation. All of the pollutants given in Table E-3-9 have applicable Federal and state health criteria (identified in Tables E-3-4 through E-3-6) and are combustion products from the 9 propellants modeled with POLU-11.

TABLE E-3-9

SUMMARY OF MAXIMUM AIR EMISSION FACTORS (POUNDS OF CONTAMINANT/ POUND OF MATERIAL) UNITED STATES MILITARY ACADEMY, WEST POINT, NEW YORK

	Treatment		
	OB	Propellant	
Carbon Monoxide	0.24690	7	
Nitrogen Oxide	0.000002	All	
Sulfur Dioxide	0.003153	1,6	
Ozone	0.000002	All	
Lead	0.21250	All**	
PM10	0.011024	8	
Hydrocarbons	0.00001	All	
Fluorides	0.0072	8	
Hydrogen Sulfide	0.001124	1,6	
Barium	0.00736	5	
Nitroguanidine*	0.000047	8	
Dinitrotoluene*	0.000010	9	

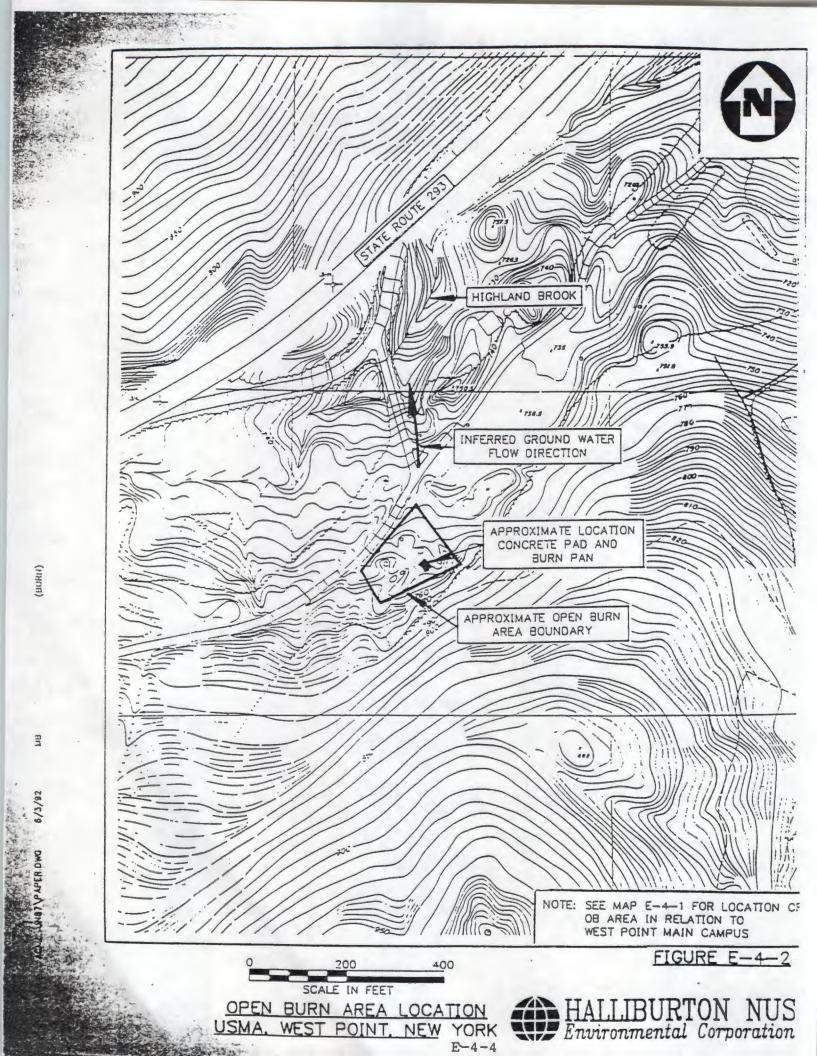
*Assume a 99.99% destruction efficiency **Maximum of 3.4 ounces of lead per propellant charge

SECTION E-4

GENERAL HYDROGEOLOGY INFORMATION

E-4. GENERAL HYDROGEOLOGY INFORMATION [40 CFR 270.14(c)(2) and NYCRR 373-2.6]

The information presented below describing the installation setting is from the Installation Assessment Study (ESE, 1984). This installation setting data was used in developing the proposed soil and surface water monitoring programs and will be used in evaluating the results of the program.


The USMA, West Point is located in Orange County, N.Y. on the west bank of the Hudson River, approximately 45 miles north of New York City and 13 miles south of Newburgh (Figure E-4-1). The reservation consists of 15,974 acres, of which 2,520 acres are the Main Post or "campus portion" of the Academy and contain the majority of the academic, residential, and support facilities. The remainder of the land area at USMA, known as the Military Reservation, is largely undeveloped and contains training facilities, such as the firing ranges and bivouac areas used during the summer to house and train cadets.

E-4.\ Physiography

USMA, West Point is located in the Hudson Highlands section of the New England physiographic province. The northeastern section of the installation is bounded by the Hudson River. This section contains the main cantonment area, which is situated on exposed bedrock and glacial alluvium. Much of the installation consists of erosion resistant granite and crystalline rocks, which form steep slopes in the southern and western sections. Elevations on USMA range from almost sea level (MSL) along the Hudson River to over 1450 feet in the northwestern section of the installation. Glaciers that once covered the area have deposited alluvium and till in the lowland areas and formed some relatively flat valley bottoms. Most building and development activities are restricted to these relatively flat-lying glacial valleys.

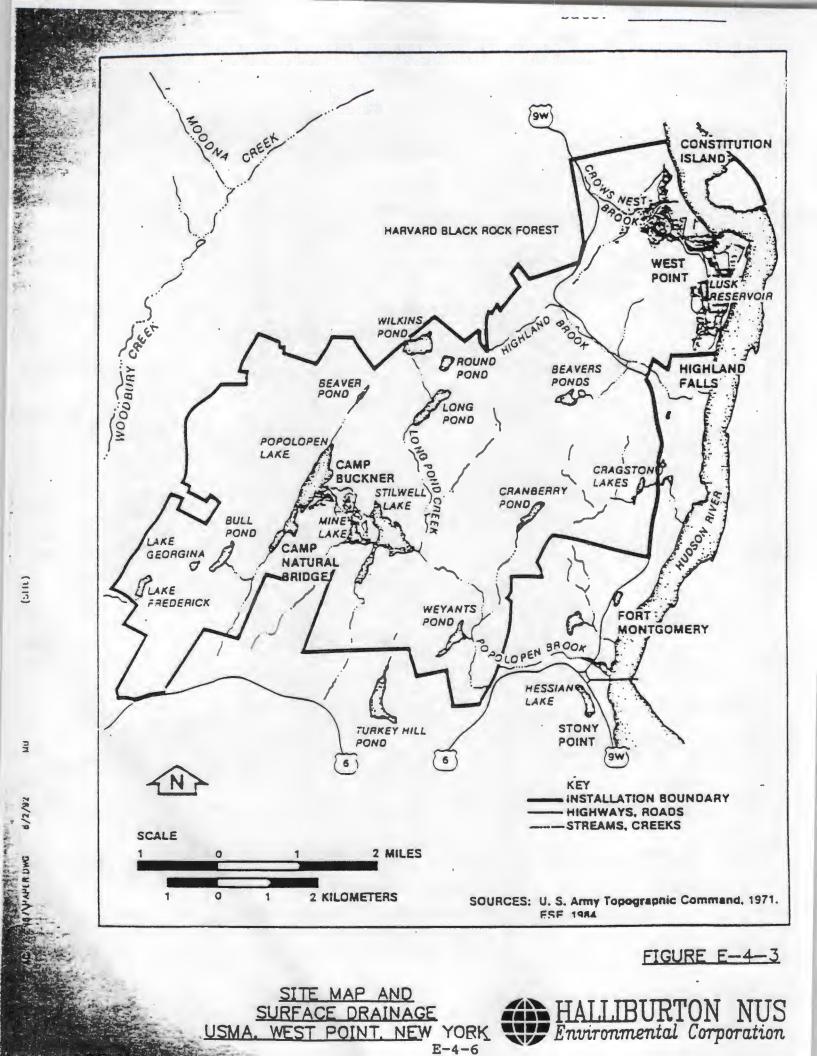
The Open Burn (OB) site is situated approximately 3 miles southwest of the main campus and approximately 500 feet southeast of state route 293 (Figure E-4-2). The OB area is approximately 160 x 140 feet and is located in a former quarry area. Highland Brook is located approximately 300 feet to the north of the OB area (Figure E-4-2).

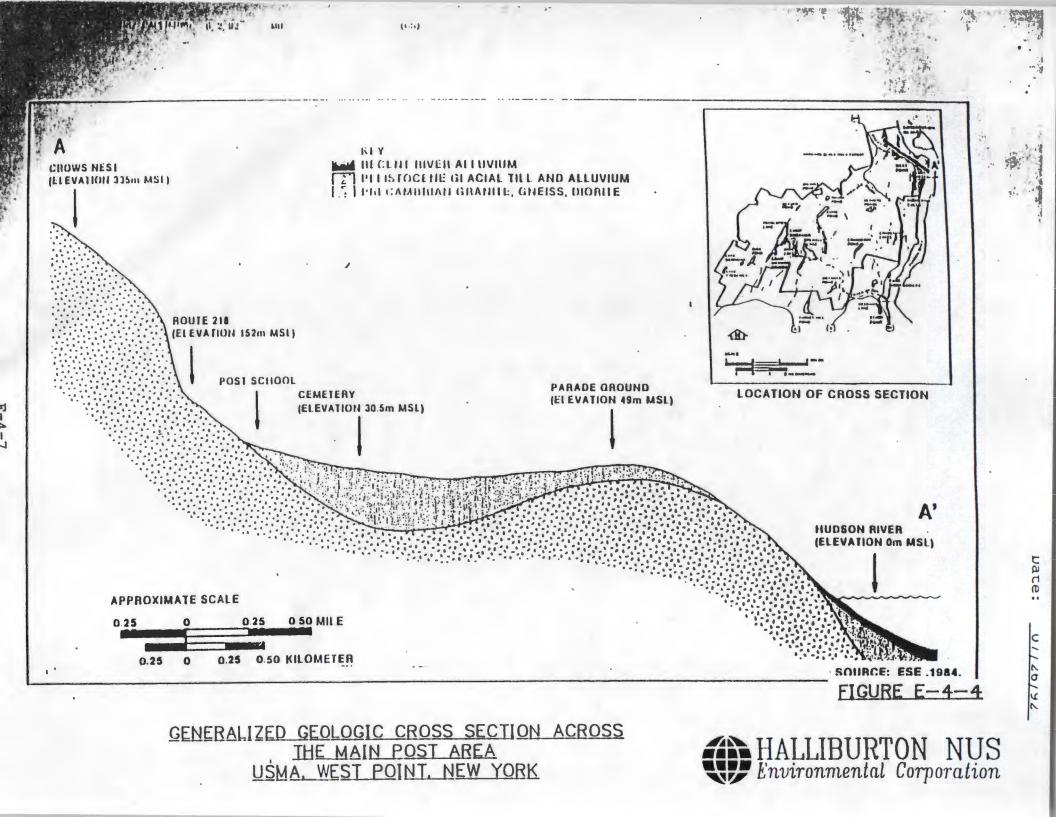
E-4.2 Surface Waters

USMA lies in the drainage basin of the Hudson River (Figure E-4-3), which flows along the eastern boundary of the installation. The installation is drained by many small tributaries which discharge into the Hudson River. Shallow soil, glacial geology, and abundant rainfall produce a regionally high water table, resulting in numerous swamps, lakes, and ponds. Most of the Main Post area is built on a Pleistocene terrace of the Hudson River and is not contained within the 100-year floodplain. The major surface water bodies are: Popolopen Lake, Stillwell Lake, Long Pond, Lusx Reservoir, Highland Brook, Long Pond Broox, and Deep Hollow Brook.

E-4.3 Geology

USMA is situated on crystalline bedrock, which in some areas is overlain by younger glacial alluvium (Figures E-4-4 and E-4-5). Crystalline bedrock underlies all of USMA and consists of Precambrian-age granite and gneiss. The granite is usually medium grained, with the major components being quartz, feldspar, and mica. Minor amounts of coarse-grained granites or pegmatites, may also be included in the bedrock. Gneiss is the less prevalent rock type, with the granite underlying the majority of the installation. Small outcrops of the Pochunk diorite may also be found on USMA.


Several faults have been mapped on JSMA and are named as follows: Long Pond Fault and the Crown Ridge Fault, which are oriented northeast to southwest. Oriented northwest to southeast are the Highland Brook Fault and the Popolopen Fault. This information was taken from Military Geology of West Point, 1958 (Figure E-4-6).


Overlying the igneous and metamorphic bedrock is a thin veneer of Pleistocene-age glacial deposits. These deposits can be subdivided into unstratified and stratified drift. The instratified drift consists of glacial till material that was deposited directly from glacial ice as it progressed or regressed across the area. The till consists of large boulders and lesser amounts of clay, sand and gravel. The larger boulders in the till were derived mainly from the more resistant granites and gneisses in the immediate area. In some areas, the till may be cemented to form a fairly hard aggregate in the subsurface. The stratified drift consists primarily of sand and gravel that was deposited in glacial lakes and streams. These deposits are found

in the larger river valleys such as the Hudson River. The youngest unconsolidated sediment on USMA is Recent-age stream deposits, which are thin and consist of clay, silt and sand. These deposits are present along the Hudson River and in the smaller streams on the installation.

になるというという

*

-	E.e.	Formation		Thickness (a) 0.3-6.1	Lithology	Water-Bearing Characteristics Not major water source; limited extent and thickness	
ary .	Recent	Alluvium			Clay, silt, sand, gravel deposited by streams		
Quaternary	ene	rat i fied Drift	Sand and gravel	0-61	Sand and gravel from glacial streams	Good water source in major stream valleys; average well yield is about 151 1pm	
	Pleistocene	Str	Lacustrine deposits	0-30.5	Clay and silt from glacial lakes	Yield little water; acts as a confining bed	
	Ple	Unatratified Drift	Till	U-30.5	Boulders, gravel, sand, clay from glacial ice	Relatively thin and impermeable; low water yields	
	Middle Orduvician to Lower Cambelan	Stoc	kbridge limestone	305	Marble, dolumitic limestone	Not present on USNA; crops out to west and east of installation; no solution cavities; yields average 38 lpm	
Caubr Lan	Lover	Ches	hire quartzice	183	Cemented quarts grains	Not present on USMA; crops out to east and north of installation; limited extent, low well yields	
		Poch	uck diorite	Un kno vn	Feldspar, hornolence, pyroxene diorite	Limited extent; some yield in weathered and fractured sections	
		Granice and gneiss ungifferenciated		Un ione on	Granite with some schist, marbie, and quartz	Most extensive bedrock formation on USMA; well yields of 42 lpm in weathered and fractured sections	

SOURCES: Frimater, 1972. ESE, 1984.

FIGURE E-4-5

GENERALIZED STRATIGRAPHIC SEQUENCE USMA, WEST POINT, NEW YORK E-4-8 E-4-8

(SHAT)

ME

6/2/92

E-4.4 Soils

The soils found on USMA are classified as the Hollis-Rock Outcrop Association and are characterized by sloping to moderately steep, well-drained, medium texture soils that overlie crystalline bedrock. Areas of soil development are limited to the valley areas and flat-lying upland areas. The Hollis soils are gravel loams, with varying amounts of fine sand loam and sand loam. Permeability in this soil is fairly high, with values ranging from 1.2 to 12 feet per day. Figure E-4-7 shows three typical soil profiles from the Main Post area.

E-4.5 Hydrogeology

To date, there have been no major hydrogeology studies performed at the OB unit, thus the discussion presented here is based on limited site-specific and more facility-wide information. This information includes the ESE (1984) and the AEHA (1988) studies.

Groundwater underlying USMA is found in an unconsolidated aquifer of alluvial deposits and a consolidated bedrock aquifer. The aquifer systems are connected and both have low well yields and limited extent and are, therefore, incapable of large municipal supply.

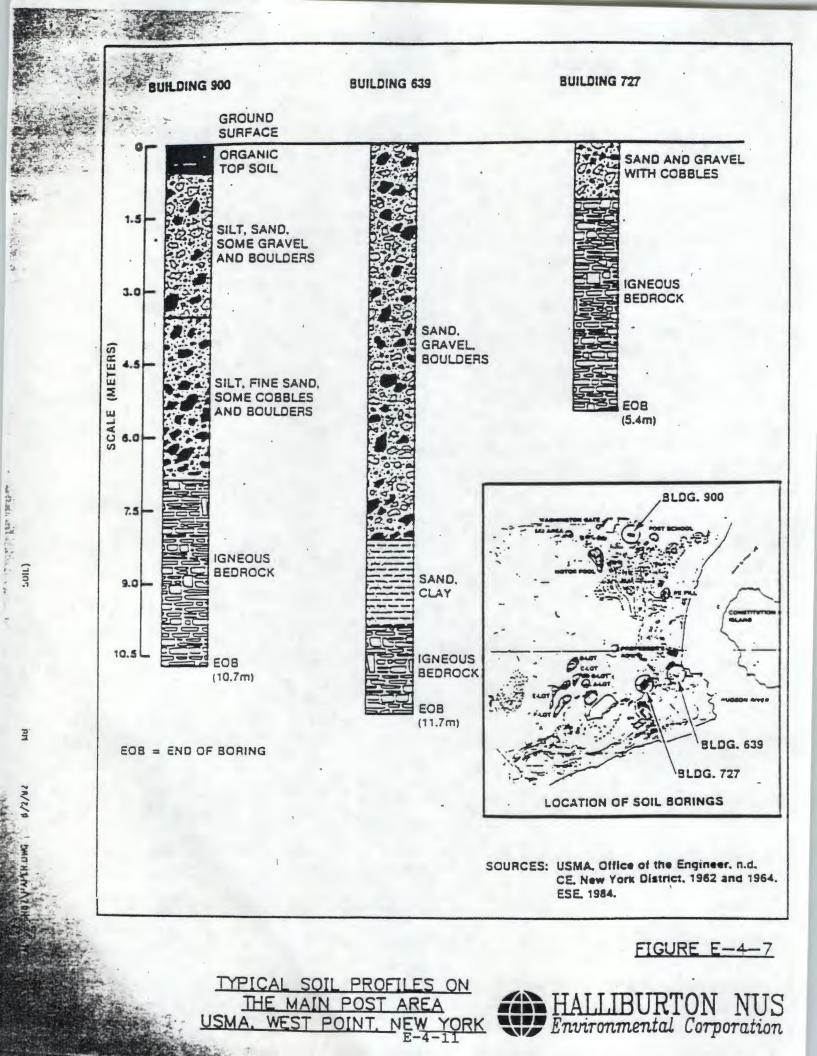
Unconsolidated Aquifer

Stratified sand and gravel deposits are the most prolific sources of groundwater at the installation. The deposits are relatively thin and are capable of domestic supply because of fairly small well yields averaging 40 gallons per minute (gpm). Water in the unconsolidated aquifer usually occurs under water table conditions. Recharge to this aquifer is primarily because of local precipitation, although some upward seepage from bedrock does occur in the lowland areas. Glacial till deposits exhibit poor sorting and a high clay content that results in low porosity and permeability, making the unstratified till a poor aquifer system. Well yields are low, with an average of 1 gpm.

Consolidated Aquifer

Consolidated rocks underlie all of USMA and contain recoverable quantities of water in the upper weathered and fractured portions. Wells open to the consolidated bedrock have sufficient yield for domestic and other small demands. Groundwater is found in the jointed, fractured, and weathered portion of the bedrock

ente parte and is under water-table conditions. Recharge occurs in the upland


14 · · ·

2.10

14.4

See.

No. March

sections by precipitation and discharges in the lowlands by springs and upward seepage. Permeability and groundwater movement in the consolidated bedrock is extremely slow because of limited joint and fracture systems.

Aquifer Summary

の変化のない

In most cases, the unconsolidated aquifer recharges the local streams with some percolation into the consolidated aquifer. Groundwater may be vulnerable to contamination in some areas because of the permeability of the soils and the shallow depth of the unconsolidated aquifer. However, because the majority of the groundwater from the unconsolidated aquifer recharges the surface water, the first indication of contamination in the groundwater will more than likely be a decline in the surface water quality in the immediate area of contamination (AEHA, 1988).

Existing Wells

There are no wells, active or inactive within close proximity to the OB area. The majority of potable water for USMA is supplied by surface water sources with treatment at the water treatment plant. Seventeen small diameter, shallow wells are used to supply potable water to outlying range, bivouac, and recreational facilities. Table E-4-1 gives information regarding these wells. Well logs were not available at USMA. The wells most likely draw from the sand and gravel alluvium and possibly the top of weathered bedrock. Well depths range from 25 to 40 feet, with fairly low yields of between 3.4 and 5.8 gpm.

TABLE E-4-1

USMA WELL INFORMATION UNITED STATES MILITARY ACADEMY WEST POINT, NEW YORK

Area	Building No.	Type Source	Capacity (gpm)
Stony Lonesome	1265	Drilled Well	NA
	1200	Drilled Well	4
•	1235	Drilled Well	NA
	1280	Drilled Well	NA
Round Pond	1354	Drilled Well	5
	1340	Drilled Well	NA
	1330	Drilled Well	NA
Long Pond	1400	Drilled Well	4
	1404	Drilled Well	3.4
	1412	Drilled Well	NA
Popolopen	1652	Hand Dug Well	5.8
	1656	Drilled Well	NA
	1666	Drilled Well	. 4
Morgan Farm	2010	Drilled Well	5
	2020	Drilled Well	NA
Constitution Island	1182	Drilled Well	NA
Popolopen Intake	1970	Drilled Well	NA

NA = Not available or unknown.

Source: USAEHA, 1976.

いたちたちょう

E-4-13

SECTION E-6

1. . . .

1.44

1.20

SURFACE ENVIRONMENT

E-6 PROTECTION OF SURFACE WATERS, WETLANDS, AND SOIL SURFACES; [64.601(b), 270.23(b) and (c)]

E-6.1 HYDROLOGIC CHARACTERISTICS OF THE UNIT AND SURROUNDING AREA

85

The major surface water system potentially impacted by OB operations at the USMA is the Highland Brook system, which originates just west of the military reservation's boundary. Its headwaters include two large impoundments - Bog Meadow Pond and Jim's Pond - along with a small subsidiary pond -Little Bog Meadow Pond - into which both large ponds drain. These features are shown on Figure E-6-1. The capacities and catchment areas of these three bodies of water are given in Table E-6-1.

Augmented by the flow from Cascade Brook (see Figure E-6-1), Highland Brook is the major source of raw water for the production of potable water at the Highland Falls Water Treatment Plant, which serves the community of Highland Falls, New York. Highland Brook drains the network of ponds, flowing southward from the Little Bog Meadow Pond overflow for about 320 meters (1,050 feet). It then turns northeastward and passes between the OB area and NY State Route 293. After flowing another 1,520 meters (5,040 feet), the brook turns southeast and merges with Cascade Brook. From that merge point Highland Brook flows 1,220 meters (4,000 feet) to the Highland Falls Water Treatment Plant intake structure. The water plant withdraws anywhere from 300,000 to 1,200,000 gallons per day. averaging 410,000 gallons per day. The remaining flow of Highland Brook continues southeast through the Town of Highland Falls, entering the Hudson River after flowing 2,440 meters (8,000 feet) beyond the water plant's intake.

The OB pad and burn pans are approximately 100 meters (330 feet) from the nearest point on Highland Brook. However, several springs and seeps that approach within 30 meters (100 feet) of the burn pad eventually discharge into Highland Brook. As a result, there is a potential pathway for OB-generated contaminants to reach the Highland Brook system and the Highland Falls Water Treatment Plant. A limited amount of data currently exists on the amounts of metals, nitrates, or chlorides in the surface streams which tend to show no measurable impact from OB operations. There are no similar data on surface water concentrations of explosives or other energetic materials, but the absence of any effects from nitrates tends to indicate that such contaminants are not present either.

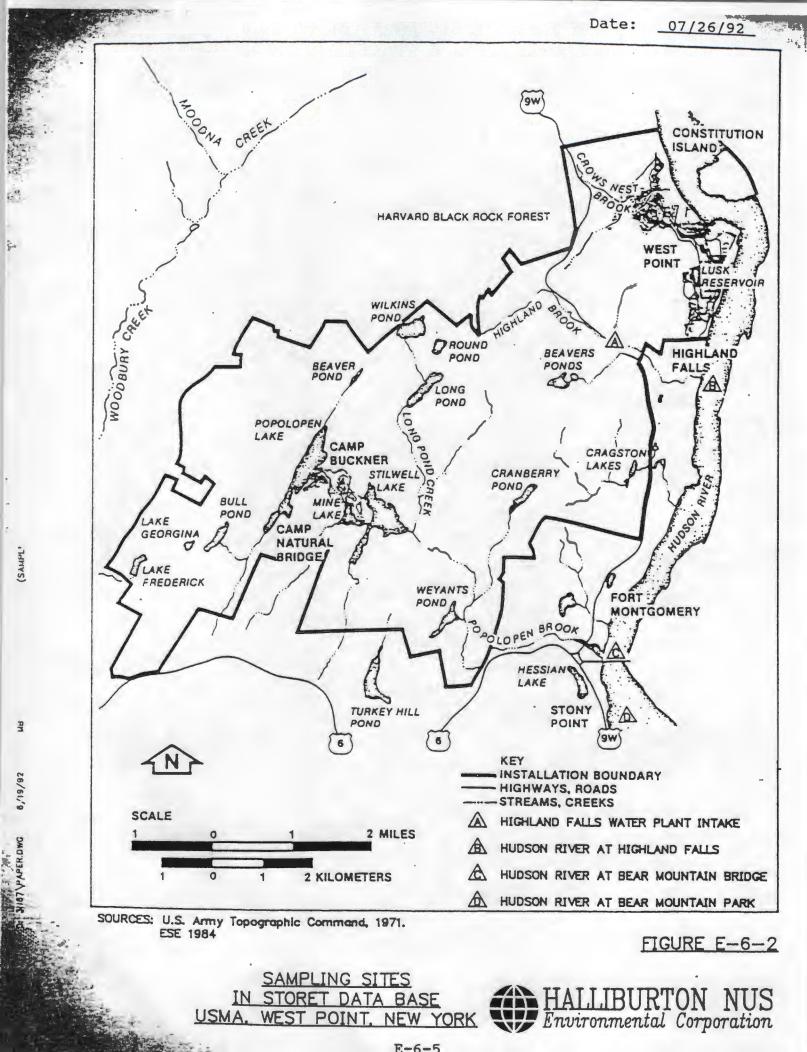
(e61)

TABLE E-6-1

UNITED STATES MILITARY ACADEMY - WEST POINT DIMENSIONS OF PONDS ON HIGHLAND BROOK SYSTEM

Identity	Nominal Capacity (gallons)	Catchment Area (square miles)
Bog Meadow Pond	100,000,000	0.45
Jim's Pond	20,000,000	0.14
Little Bog Meadow Pond	5,000,000	0.71
TOTAL	125,000,000	1.30

いたがないない


Source: Water Supply Report, Town of Highland Falls, Hazen & Sawyer, August 1965.

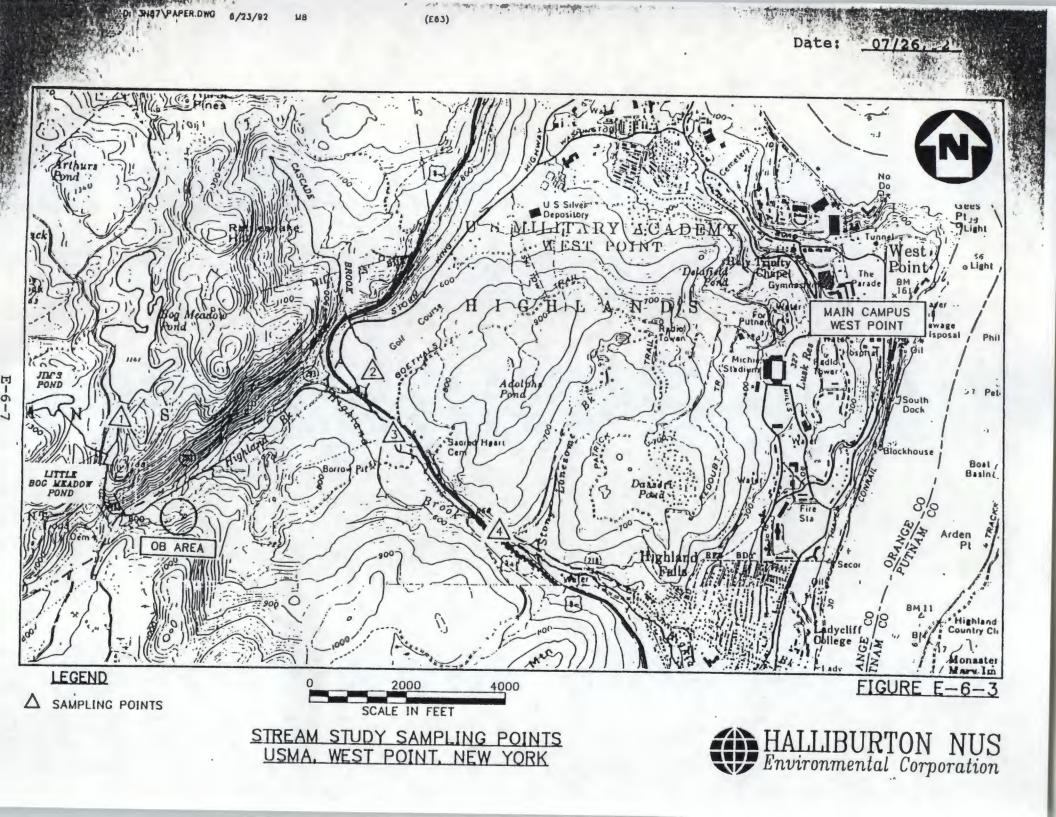
E-6.2 EXISTING QUALITY OF SURFACE WATERS IN THE OB AREA AND DOWNSTREAM

Two studies of surface water concentrations have been conducted. The USEPA's STORET data base contains data for four points of interest - the Highland Falls Water Treatment Plant intake and three Hudson River locations. The Hudson River samples were taken from the river at Highland Falls, in midstream under the Bear Mountain Bridge, and in midstream at Bear Mountain State Park. Refer to Figure E-6-2 for specific locations.

Table E-6-2 summarizes the STORET data, supplemented with a few data points from the December 1984 Installation Assessment Report Number 346. The sample point most likely to be affected by OB operations at USMA is the Highland Falls Water Treatment Plant intake. That sample point yielded average concentrations of nitrate-nitrogen, total Kjeldahl nitrogen, chlorides, iron, and lead that were lower than the Hudson River samples. Mercury concentrations were below detectable levels at all points sampled, while manganese concentrations were slightly higher in Highland Brook than in the Hudson River, probably due to natural causes. Manganese is not a constituent normally found in any of the materials treated at the OB burn pad. Note that the Highland Falls Water Treatment Plant intake samples are collected prior to treatment. All metals are treated to less than detectable levels by the treatment plant operations. An interview with the treatment plant manager who has operated the plant for 24 years revealed that he has had no problems using the quality of water in Highland Brook as his primary source of raw water. The three ponds hold back up to a year's supply of water, and the transfer to the intake via Highland Brook does not degrade the water quality to any measurable extent.

Figure E-6-3 provides locations and Table E-6-3 shows USMA data on surface water quality for four locations: one point upstream of the OB site (the Little Bog Meadow Pond outlet); and three points downstream, including the Highland Falls Water Treatment Plant's intake. As before, most.contaminant concentrations appear to be unaffected during their passage downstream towards Highland Falls. The pH values are lowest at the reservoir outlet, then they improve with the addition of flows from Cascade Brook. Nitrate-nitrogen appears to increase slightly, partly due to increased biological activity as temperatures rise, but more likely impacted by Cascade Brook's higher nitrate concentrations. Nitratenitrogen could be a potential contaminant released from the OB site, but this survey seems to indicate that there is little or no effect on nitrate concentration until Cascade Brook enters Highland Brook.

TABLE E-6-2


UNITED STATES MILITARY ACADEMY - WEST POINT DOWNSTREAM SURFACE WATER QUALITY CHARACTERISTICS (all data given as mg/l)

Contaminants	Highland Falls Water Plant	Hudson River Locations				
	Intake	Highland Falls	Bear Mountain Bridge	Bear Mountain Park		
Nitrate Nitrogen Tests Mean Range	4 0.15 <0.05-0.21	0	8 0.95 0.46-1.41	16 0.66 0.24-0.97		
TKN, as NO ₃ Tests Mean Range	0.06	2 0.545 0.53-0.56	0	18 0.355 0.20-0.65		
Chlorides Tests Mean Range	3 19.3 12-27	0	22 760 130-10,000	66 257 5.6-1,800		
Iron Tests Mean Range	3 0.26 0.25-0.27	6 - 2.0 0.8-5.0		17 0.83 0.09-1.40		
Manganese Tests Mean Range	3 0.144 0.073-0.25	6 0.105 0.060-0.140	0	35 0.046 ND-0.170		
Lead Tests Mean Range	1 <0.004	6 0.013 0.005-0.040	11 0.0056 0.003-0.015	2 0.0275 0.004-0.051		
lercury Test Mean Range	<0.0005	0	8 0.000075 0.00005-0.0002	; <0.0005 <0.0005-0.0005		

Source: STORET Data Base, USEPA; Installation Assessment Report No. 346, December 1984.

TKN = Total Kjeldahl nitrogen

ND = None detected (detection limit not specified)

: 5

TABLE E-6-3

	Location	DO	pH (S.U.)	Nitrates as N	TSS	BCD5	TDS	Temperature (°C)	Date of Sampling
1.	Highland Brook at Little Bog Meadow Pond Outlet	12.9 12.7 11.8	6.0 6.0 5.8	<0.05 <0.05 0.08	2 10 5	1.1 2.6 1.1	44 36 30	2.0 2.5 	12/20/79 3/4/80 4/8/80
2.	Cascade Brook just above confluence with Highland Brook	13.3 13.1 12.8 10.4	7.7 7.7 6.6 6.2	<0.05 0.16 0.25	4 46 24 6	<5.0 2.5 2.3 <1.0	74 28 72	3.0 0.0 1.0 11.3	10/78 12/19/79 3/4/80 4/8/80
3.	Highland Brook below confluence with Cascade Brook	12.5	7.9		<2	<5.0		5.5	10/78
4.	Highland Brook at Highland Falls Water Plant intake	13.7 13.3 12.1	7.0 6.6 4.3	<0.05 0.21 0.13	93 14 2	<1.0 1.9 <1.0	78 54 74	0.5 2.0 - 9.2	12/20/79 3/4/80 4/8/80

UNITED STATES MILITARY ACADEMY - WEST POINT (all data except pH and temperature as mg/l)

Source: Installation Assessment Report No. 346, December 1984

DO = Dissolved Oxygen

TSS = Total Suspended Solids

BOD5 = Five-day Biochemical Oxygen Demand

TDS = Total Dissolved Solids

NOTE: All samples were also analyzed for Nitrites as N and total phosphorus; All results were reported as below the detection units as 0.01 mg/l for nitrates and 0.1 mg/l for total phosphorus.

In any case, nitrate-nitrogen appears at the Highland Falls Water Treatment Plant intake at about 2% of the 10 mg/l concentration normally used as a reference standard for that contaminant.

na an tha an t

4

N.K.

-

SECTION I

CLOSURE PLAN

.

SECTION I

CLOSURE PLAN I-1 CLOSURE PLAN [40 CFR 264.112(a) AND 270.14(b)(13); NYCRR 373-2.7 AND 373-1.5(a)(2)(xiii)]

This Closure Plan has been prepared in accordance with the requirements of 40 CFR Part 264 Subparts G and X and NYCRR 373-2.7. The Closure Plan is incorporated into the Part B permit application in accordance with the requirements of 40 CFR 270.14(b)(13) and 270.23 and NYCRR 373-1.5(a)(2)(Xiii).

Open Detonation Facility

The Open Detonation (OD) facility consisted of a series of pits located within the impact area of the USMA training range. These pits were used for treatment by open detonation of various explosive items such as artillery and mortar rounds.

The location of the CD treatment facility within the impact area makes clean closure of the open detonation area impractical. Any contaminants resulting from OD treatments would be indistinguishable from those contaminants resulting from the rounds exploding in the rest of the impact area. During periods of training, the OD area also receives impacts of training rounds. The OD area will continue to serve as part of the impact area. Thus, if clean closure was conducted, the OD area would immediately be recontaminated as a result of training activities.

Furthermore, no practical purpose could be served by clean closure. The CD area is only a small portion of the impact area and could not be used for any other purposes, even if clean closure was conducted. As long as the USMA conducts training activities, the OD area will be used as an impact area.

The location of the OD area within the impact area also presents practical problems for normal post-closure activities. If a RCRA cap were to be installed over the OD area, its integrity would be destroyed as soon as an artillery round impacted in the OD area. Similarly, the integrity of any monitoring wells would be destroyed by explosions of rounds impacting nearby. It would be

impractical to devise any closure strategy for the OD unit independent of any activities for the impact zone which would take place if USMA were to be closed and the impact area no longer used.

111日日 二

Because of the impracticality of conducting normal closure activities, USMA intends only to conduct a partial closure activity at this time. This partial closure will consist of detonation of any unexploded ordnance identified at the OD unit. This activity will be conducted as part of normal post training range clearance activities. After clearance of any unexploded ordnance the CD unit will continue to be used as part of the impact area.

APPENDIX E-3-A

POLU-11 COMBUSTION PRODUCTS MODEL

COMPUTER PREDICTIONS OF POLLUTION PRODUCTS FROM OPEN BURN AND OPEN DETONATION OF NAVY EXPLOSIVES AND PROPELLANTS

EDWARD E. BAROODY

NAVAL SURFACE WEAPONS CENTER/WHITE OAK

and

IVAN L. TOMINACK

HEAD, ORDNANCE ENVIRONMENTAL SUPPORT OFFICE NAVAL ORDNANCE STATION, INDIAN HEAD, MD

JANUARY 1987

TABLE OF CONTENTS

~

Page

Heading Title	Page
Abstract	ii
Background	1
Theory and Assumptions for Open Burn/Open Detonaction Calculations	2
Limitations in Open Burn/Open Detonation (OB/OD) Calculations	5
Description and Operation of the Pollution Computer Program	7
Identification of Numbers on Sample of Output Data	14
Sample of Output Data	16
Limitations	18
Disposal of Navy Waste (at Dugway, Utah 22 May 1986)	20
Calculated Emissions of Individual Navy Propellant and Explosives	23
References	30

TABLES

Table

1	-	Navy Waste Burned	23
2	-	Elemental Composition of Navy Waste	24
3	-	Navy Manufacturers Waste	25
4	-	Gaseous Emissions Detectd by Heliocopter from 500 Pounds of Navy Manufacturers Waste, Burned 22 May 1986	29

APPENDICES

Appendix

A -	OB/OD	Calculations	32
-----	-------	--------------	----

- -

.

1

٠

ABSTRACT

There is a growing need to predict the pollution products at open burn sites. Under the sponsorship of the Ordnance Environmental Support Office, Naval Ordnance Station, Indian Head, a computer program has been developed to predict the combustion products when explosives or like materials are openly burned or detonated. This report explains the theory, assumptions, problem/solution applications of the computer program written for this purpose.

-

The computer model was challenged using production wastes. The actual data closely followed the predicted data proving the validity of the predictive model.

BACKGROUND

Under the sponsorship of the Ordnance Environmental Support Office at the Naval Ordnance Station, Indian Head, Maryland, a computer program has bee developed to predict the pollution products caused by the open burning or ope detonation (OB/OD) of explosives and like materials. Since the program is a modification of the Propellant Evaluation Program (PEP), written at the Naval Weapons Center, China Lake¹, a brief history of the PEP program is discussed below. The PEP program was designed and written by the collaboration of many contributors. Work on the program started in 1951 at NWG and continued until 1968.

Combustion products are calculated from high temperature chemical equilibria. To accomplish this, a large set of nonlinear algebraic equations must be simultaneously solved and computer codes must be general enough to handle any particular system. There have been three historic approaches to the problem.

One approach, presented by White et al^2 , is the free-energy criterion for chemical equilibrium. This procedure is the method of steepest descent, which is a general method for the numerical solution of nonlinear algebraic equations.

The second approach by Brinkley³ uses equilibrium constants. For this approach, a basis of subset molecular species is chosen that has as many species as there are chemical elements. From this basis all other species ar formed by chemical reaction. A set of equations then establishes the equilibrium relationship of each nonbasis species to the basis. Another set of equations establishes the gram-atom amount of each chemical element. Both sets of equations are solved simultaneously by the Newton-Raphson method, which is a general method for the numerical solution of nonlinear algebraic equations. Huff et al⁴ and Browne⁵ later introduced the concept of optimized basis, in which the components are present in the greatest possible molar amounts.

The reaction-adjustment method of Villars^{6,7} is the third approach. In theory, the chemical system is divided into a number of subsystems, each relating a nonbasis species to the basis. The subsystem with the greatest discrepancy in its equilibrium relationship is corrected stoichiometrically. In this way the gram-atom amounts do not change. Villars' method does not require the inversion of large matrices which simplifies coding. Its speed is greatly dependent on the choice of the basis which is quite slow. The PEP program is a combination of Villars' method and Browne optimum basis method.

The pollution computer program uses many of the PEP program's routines. Modifications of this program were made to calculate pollution products under the special conditions encountered in open burns and open detonations of explosives and propellants. These modifications are described under the general description of the pollution computer program.

THEORY AND ASSUMPTIONS FOR OPEN BURN/OPEN DETONATION CALCULATIONS

The computer program calculates the pollution combustion products under two different conditions:

1. Open Burn (OB) - under these conditions the material is mixed with air and they burn together to form the pollution products.

2. Open Deconation (OD) - under these conditions the material is deconated first, after which air is mixed with the deconation products that react to form the pollution products.

Open Burn

The necessary thermodynamic data for the material's ingredients and air, the weight ratios of material/air and the two pressure values of 1000 and 14.7 psi are read into the computer as input data. The flame temperature, combustion products, moles of gas, entropy, and other pertinent data are calculated for the material/air mixtures under a pressure of 1000 psi. The volume of the combustion products are then expanded to 14.7 psi which causes a temperature drop in the products. At this lower temperature, the products have a different composition from that at 1000 psi. The computer procedure goes through a similar routine it did at 1000 psi to recalculate the combustion products, flame temperature and other variables that changed because of expansion. The products calculated at 14.7 psi are reported as the pollution products in the output data.

Even though the calculations are conducted at 1000 and 14.7 psi, the material does not have to be disposed of under these conditions to predict the pollution products. The calculations are conducted in this manner for the following reasons:

- 1. It simulates the drop in temperature as the gases cool to ambient conditions.
- 2. The combustion products "freeze" in composition before they reach ambient temperature.
- 3. The combustion products of explosives and propellants formed in the combustion calorimeter are in good agreement with the products calculated by the computer⁸.
- 4. The heats of explosion calculated from the PEP computer program closely approximates the actual values determined from calorimetric data⁸.

2

Simulating a Drop in Temperature

Initially, flame temperatures above 3500 K (5840 F) at the burn site can be reached by some materials burned alone or with air. The temperature then cools to the ambient temperature of the surroundings. It is important to account for this drop in temperature, because the composition of the combustion products for the initial high temperature at the burn site will be different from the composition cooled to ambient temperature.

In effect, the combustion product's temperature change can be simulated by calculating the temperature of the material burning under a pressure of 1000 psi and after the combustion products have expanded to 14.7 psi.

Frozen Combustion Products

The composition of the combustion products will continually change with temperature until a "freeze" temperature is reached. Afterwards, the composition of the products remain constant, both quantitatively and qualitatively, even though they continue to cool to ambient temperature. The products are said to "freeze" when they no longer change with temperature. This freeze temperature is unknown and varies with each material burned. In his detonation calorimetric work, 'Ornellas⁹ reported that the frozen temperature is between 1500 to 1800 K for most explosives. The frozen temperature for the combustion products in this study is assumed to be the temperature that is calculated when the products are expanded to 14.7 psi. For most of the explosives and propellants used by the services, this compute: program calculates this temperature to be in the range of 1200 to 1500 K.

Calculated Versus Determined Combustion Products

In this laboratory approximately a dozen explosives and propellants have been burned in a combustion calorimeter under an atmosphere of 450 psi of helium. The combustion products analyzed were in good agreement with the calculated composition of the products after they had been expanded from 1000 to 14.7 psi.

Calculated Versus Determined Heats of Erologion

The heats of explosion have been calculated from the composition of the combustion products, expanding from 1000 to 14.7 psi, from the PEP program fo: numerous explosives and propellants. In general, there is good agreement between the experimental and calculated values using the PEP output data⁸. The close agreement between the calculated and the determined values for both the combustion products and heats of explosion determined at the NSWC laboratory, is the basis for using the pressure values of 1000 and 14.7 psi.

Detonation Burn

The same input data is used for both the open burn and open detonation calculations. In open burn, the material and the air are mixed and burned together at 1000 psi and then the combustion products of this mixture are expanded to 14.7 psi. In detonation burns, the following conditions are assumed:

- 1. The material explodes first, forming combustion products that do not initially react with the surrounding air.
- 2. During the explosion, the hot gases expand, shock waves are created, etc., causing an energy loss of the combustion products.
- 3. The combustion products at the reduced energy are then reacted with the surrounding air to form the pollution products.

Materials Emolode First

In the open burn calculations, the air is mixed with the air initially at 1000 psi and allowed to react together. In open detonations the material explodes, forming combustion products without mixing with air.

Loss of Energy

When an explosive detonates, shock waves and other processes occur that cause a loss of energy and a drop in temperature. The program assumes that this energy is lost before the combustion products react with air at the burn site.

Combustion Products at Reduced Energy

The calculated energy loss is subtracted from the total energy of the explosive before the combustion products are reacted with air. The calculations then follow the open burn procedure discussed above. That is, the combustion products at a reduced energy level are mixed with air at 1000 psi and allowed to expand to 14.7 psi. This is the major difference between open burn and open detonation calculations.

Δ

LIMITATIONS IN OPEN BURN/OPEN DETONATION (OB/OD) CALCULATIONS

Material/Air Weight Ratios

A major problem in calculating pollution products is the material/air weight ratio that burns at the site. The weather, quantity of material to dispose of, wind speed, location, etc., are factors that greatly influence t: material/air weight ratios.

To circumvent this uncontrollable variable, a series of material/air weight ratios from 100/0 to 10/90 in increments of -10/10 were calculated. The output data shows the trend in the composition of the pollution products as the ratios vary. Even though the approximate ratio isn't known, the calculations show the extremes expected of the products' compositions for disposal of materials by burning.

Formation of Carbon Dioride and Water

How much carbon goes to carbon dioxide and hydrogen to water would depend upon a number of factors. Two main factors would be the presence of other elements and the freeze temperature. For example, boron carbide, HCl, and HF would form if boron, chlorine and fluorine were present. Some hydrocarbons would likely form in many cases. Above the freeze temperature, most of the residual carbon and hydrogen would form carbon dioxide and water if enough oxygen were present. The ideal conditions would be for this to occur in OB/OD burns.

If analyses of future OB/OD burns could verify that this does occur, then the material/air weight ratios could be varied until all of the residual carbon and hydrogen went to those two products. That particular material/air weight ratio would then be used to predict the combustion products formed.

Even if not verified, the material/air weight ratios should be varied until all the residual carbon and hydrogen are burned to carbon dioxide and water. It would predict what combustion products are formed under ideal conditions for OB/OD burns.

Calculating Temperature Change

As discussed above, the temperature change is simulated by calculating the material burning at 1000 psi and allowing the combustion products to expand to 14.7 psi. These two pressure values chosen were based on experimental data determined at this laboratory. As mentioned, the theoretical combustion products and heats of explosion calculated under these conditions were in good agreement with the experimental calorimetric data for

the gases formed and the heats of explosion determined. Since temperature is a function of both gases formed and heat released, the calculated temperature change between the pressures of 1000 and 14.7 psi is used for predicting pollution products.

The temperature calculated at 1000 psi simulates the initial high flame temperature of the material at the burn site before it expands. This calculated temperature is slightly higher than the calculated flame temperature if ambient pressure were used instead. For example, the flame temperature for TAT is 1992K at 1000 psi, and 1976 K at 14.7 psi (with no expansion). With such close agreement at these two pressures, it wasn't felt necessary to program the computer to obtain an initial flame temperature at ambient pressure before calculating the temperature drop. This is especially true when the initial flame temperature is subject to the conditions of the environment.

Homeeneity of Materials

Often different types of materials are burned together. In such cases, all of the ingredients in the materials are combined and treated as one homogeneous material in the calculations.

Deconation of Materials in Different Containers

Materials come in many types of containers. Those contained in shells, grenades and other metallic casings will be more difficult to predict than in paper containers. Such containers will influence the chemical reactions at the burn site.

DETONATION REACTIONS BEFORE REACTING WITH AIR

Detonation burn calculations are less accurate than open burn calculations. The material explodes before it reacts with the air. For this reason two assumptions concerning pressure changes and loss of energy were made. They are discussed below.

Pressure Changes in Detonations

Unlike an open burn, there is an initial high pressure from the detonation. It is difficult to calculate what products are formed under high pressures. This computer program uses the ideal equations of state for the combustion products that would not apply to gases under such conditions.

Since the objective is to predict pollution products at ambient conditions, these gases would not be of interest. As the combustion products decrease in pressure, their behavior is assumed to obey the ideal equations of state for gases.

Loss of Emergy

The detonation of the explosives sets up shock waves, does work agains: the environment that expends energy. Since energy is a major factor in determining what products are formed, the calculations assume a loss of energy by the combustion products before they react with air. The loss for each material is at best an estimation. The energy consumed in shock waves is reported by Price¹⁰ and Dyson¹¹ to be 20% to 25% of the total energy of an explosive. The computer program estimates the energy loss to be 25%, plus of minus 5%, depending on the explosive. This percentage can be modified later if and when better experimental data becomes available. As discussed under detonation burn, the combustion products are then calculated at a reduced energy level by the same procedures used in open burn calculations.

DESCRIPTION AND OPERATION OF THE POLLUTION COMPUTER PROGRAM

Modifications of Propellant Evaluation Program

The Propellant Evaluation Program (PEP) was designed for rocket calculations and could not be used in its present form. Since many of PEP's subroutines were compatible for pollution calculations, it was easier to modify this program than to start from scratch. The following major changes were made:

- 1. INPUT DATA FORMAT A different format was used for the special type of calculations for pollution work. This format is described below.
- 2. OUTPUT FORMAT The PEP output was designed for data important to rocket designs. An example of the output format and data for pollution data is described below.
- 3. REACTION WITH AIR The OB/OD burns are mixed with air. the program is designed to automatically mix the materials with air and calculate the results.
- 4. EMERGY LOSS IN DETONATIONS The OD burns are assumed to lose energy before they react with air. A modification of several subroutines was made to account for this loss.
- 5. OB/OD CALCULATIONS To facilitate the use of the program, it was designed to do either an OB or OD calculation using the same input data. As described below, only one variable must be changed to accomplish this.

General Description

The main computer program, POLUIO, has two auxiliary programs to handle the necessary input data for its operation. The three programs are described as follows:

- A. POLUIO This is the source file for the main program. It is written in the FORTRAN IV language. An explanation of the input data and format is included below. The program was purposely written in FORTRAN IV to facilitate its transfer to other types of computers with the least amount of trouble.
- B. PEPAUX This is the auxiliary source file program that manages the thermodynamic data for the combustion species. The JANNAF Thermochemical Tables¹² is the source for most of this data. Heat capacity equations, entropy and enthalpy constants are stored in this program for over 1400 combustion species. Gases, liquids and solids are included. Thus, the program can predict solids and liquids as well as gaseous pollution products. When this program is run, a binary file of the data is compiled that POLU10 calls in and searches for the appropriate combustion species. The compiled form of the data must be assigned to TAPE 12 when running POLU10.
- C. INGDATA This is the auxiliary source file program that manages the ingredients that compose the propellants, explosives or other materials that are disposed of by burning. The names, heats of formation, densities, and the elemental compositions of the ingredients are included as part of the data handled by this program. The ingredients are selected from numbers by the main program. This eliminates reading in the necessary data for the ingredients every time they are used. Two data files are generated by this program:
 - 1. File on TAPE 11 This file has the ingredients data arranged in the format used by the main program. the data from this file must be assigned to TAPE 11 before POLU10 is run.
 - 2. File on TAPE 6 The INGDATA program also prints the ingredients data on TAPE 6. A copy of this file is obtained for reference by the users of the pollution program. It lists the ingredients by numbers. When a particular ingredient is used in the calculations, this number is entered as input data. The data for that ingredient will then be called in by POLUIO.

Explanation and Format Data

The data must be entered in the following sequence:

ς.

٠.....

Line 1

Column No.	Data	Description of Data
3	0	This is always 0. It controls the specie: data coming from PEPAUX.
4	. 1	l or 0. When set to 1, the pressure is entered as lb/sq. in (psi). When set to 0, the pressure is entered in atmospheres
9	1	l or 0. When set to 1, all of the ingredients are read from TAPE 11 by numbers. When set to 0, some or all of the ingredients are read in directly. This is explained in Line 4.
20	3	0,1,2,3 or 4. This controls what decimal place the concentrations of the combuscies

9

place the concentrations of the combustio: products are printed in the output data. Three is recommended.

setting	decimal place
0	<u>1xE</u> -5*
1	lrE-10
2	<u>lxE-17</u>
3	1xE-4
4	lxE-25

*E = the exponential of 10

This is the number of ingredients in the propellant or explosive, plus 1 for air. For example, if an explosive has 3 ingredients, this value must be 4 (right adjusted). Ten ingredients is the limit. If more than 10, two or more of the ingredients must be combined into one.

29-30

1-10

This is the number of calculations or runs 39-40 1-10 to be made. The output format limits this number to 10 (right adjusted). When all of the ingredients are read in by. 46-47 -20 numbers, this is set to 20. If any of the ingredients are not read in by numbers. this number (right adjusted) must equal the number of ingredients not read in by numbers. 48-50 1.2 When set to 1 (right adjusted), the computer does open detonation calculations. When set to 2, the computer does open burn calculations. They both use the same input data and format.

> When set to 1, the output data for the pollution products are given in grams products/100 g material. When set to 2, the products are also given (both units) in grs products/liter of gases formed at STP (273.15 degrees Kelvin and 1 atmosphere pressure).

Line 2

This line is for naming of the material burned and other identifying information.

51-53

1,2

Line 3

In a sequence of calculations, the weight percent of air is changed. This line is for the different weights of air that changes with each calculation. As many as ten different weights of air can be entered. Starting at column 1, each weight has a field of 6 columns. Weight 1 goes into columns 1 - 6; weight 2, into columns 7 - 12, etc.

Line 4

The INGDATA file contains data for many of the ingredients that are used in propellants and explosives. If this file does not have the ingredients needed for the calculations, the data for these ingredients can be read in. In Line 1, column 9 must have a value of 0 and columns 46 - 47 must have the number of ingredients (right adjusted) that are read in under the format below. When adding new ingredients to the INGDATA data file, this same format is used. The INGDATA data can also be entered under the foramt adopted by Cruise at China Lake. The postion of the data under Cruise's format is marke in the data file.

Column No.	Description of Data
1 - 20	Name of the ingredient
21 - 27	-Heat of formation of the ingredient in cal/g.
28 - 32	Density of ingredient in lb/cubic inch.
33 - 38	Number of atoms of the first element in the ingredients.
39 - 40	Symbol of the first element (left adjusted).
41 - 46	Number of atoms of the second element in the ingredients.
47 - 48	Symbol of the second element (left adjusted). This sequence continues for a limit of six elements.
49 - 54 55 - 56	Atoms of third element. Symbol of third element.
57 - 62 63 - 64	Atoms of fourth element. Symbol of fourth element.
65 - 70 71 - 72	Atoms of fifth element. Symbol of fifth element.
73 – 78 7.9 – 80	Atoms of sixth element. Symbol of sixth element.

Line 5

The numbers assigned to the ingredients by the INGDATA file are entered here. Starting at column 1, each field has 5 columns. The number for the first ingredient goes into columns 1 - 5, the second ingredient into columns 6 - 10, etc. For example, if 23 is assigned to aluminum by the INGDATA file, 23 should go in columns 1 - 5 (right adjusted). Aluminum is the first ingredient in the material. It is imperative that the ingredient number for air always be the last number in this line. If it is desired to burn the materials in pure oxygen, then the ingredient number for oxygen is used

. . --

Line 6

•

.

	Column No.	Data	Description of Data**
	1 - 6	1000.	This is the pressure of the chamber in which the material is initially burned. This value is normally 1000 psi for pollution calculations. Atmospheres can be used (see explanation in Line 1). The data in this line is for the first calculation.
	7 - 12	14.7	This is the pressure that the combustion products expand to in the calculations. The value 14.7 psi is normally used here. It can also be expressed in atmospheres.
	13 - 18		This is the weight of the first ingredient. The field for each successive ingredient is 6 columns long. For the second ingredient, columns 19 - 24; the third, columns 25 - 30, etc. The tenth and last ingredient is in columns 67 - 72.
•			The weights of the ingredients are entered with air as the last ingredient. Air is normally set at zero weight percent. Under some circumstances, the initial weight of oxygen is not zero. This is discussed later. The weight of air is automatically increased and the material weights decreased by the same increments in Line 3.
•	73 - 80		This is optional. Additional information can be entered here to help identify the output data. Such information is normally entered in Line 2.
			<u>Lines 7 - 15</u>
	1 - 6	1000.	The data is the same as in columns $1 - 6$ in Line 5.

12

...

.

•]

7 - 12

14.7

Ϊ.

The data is the same as in columns 7 - 12 in Line 5. It isn't necessary to enter the weights of the material or air again. The program automatically adjusts these weights with the data in Line 3. The number of these lines is always one less than the total number of calculations made. If 10 calculations are to be computed, enter 9 of these lines with just these two values on each line.

.

** All numerical data must have a decimal point.

IDENTIFICATION OF NUMBERS ON SAMPLE OF OUTPUT DATA

NO.

- 1. Identifies the type of calculation. This is either open burn or open deconation.
- 2. Name of the material burned is identified here.
- 3. Name of the ingredients in the material.
- 4. Symbol for the elements in the ingredients. Also, the number of atoms for that element divided by 1000. This number is often in decimal form when the elements are expressed in gram-atoms.
- 5. Weight of the ingredient in the material.
- 6. Heat of formation of the ingredient in cal/gr.
- 7. Density of the ingredient in lbs/cu in.
- 8. Symbol for the elements that compose the material. Also, the elemental composition of the elements that compose the material. If the atomic wt. of the element is multiplied by the elemental composition, the total mass of the element in the material can be calculated (example: 12.01 x 3.081786 = 37.01 grs of carbon).
- 9. Weights of the material and air used in the calculations.
- 10. For open burn calculations: This is the initial flame temperature of the material/air burned before the gases start to cool. The enthalpy of the combustion products is given in kcal/gfw (gfw = gram formula weight). The temperature is expressed in both Kelvin and Fahrenheit degrees.

For open detonation calculations: This is the temperature of the combustion products after there is a loss of energy due to detonation. The detonation products cool to this temperature before they react with air.

- 11. The temperature of the combustion products (for both OD/OB burns) after they have expanded from 1000 to 14.7 psi. This is also the "frozen" temperature of the products.
- 12. The computer can calculate the weights of the combustion products to 1.00E-17. For this work the concentration is rounded off to the value shown.

Symbols for the combustion products formed. They are identified in the JANNAF Thermochemical Tables12

14.

13.

Weights of the products formed in grams products/100 grams of material burned (or 1bs products/100 lbs material burned).

15

15.

Total combustion products considered in the calculations. Of the 73 products listed, 12 with concentrations 1.00E-04 or higher are listed above.

SAFLE OF OUTPUT DATA

MINTELLENT CONTRACTOR ONE OF DETOMATE DEFONE ALACTIMO MITH ALR--- (1)

ئن	€.,				:				41					
Θ	00570 00001 1.0000	18.848 78.848		1543.744 2319.330 277	14.70 151	543.412 554.238 - 28.722 758.498	•	0000°	115.4125 Pava.	1420.41			1295.011 0000	
•	- 70.	29.010 00.010		2587.340 4053.049 -1.552	01 154 0	1004.252 104.255 -473.104 -472.259 340.200		6000'. 2149.555	82C4.2C1	1420.41			10.4290	
\odot		30.000		2621.200 4258.901 -2.327	M 1010.0	11100.200 1535.203 -51.207 -254.010	t	31.9719	1042.20	10-01				
		÷.;		801.6- 154.62545 154.625	AND ING FR	119-1100 119-110 119-22-249 116-205		52.4555	52. 835) . 0000	1.5239				
		54.64	1966.86 PSI	4/0°5- 115-077E 907-E-	N TER EX	949.644 945.575 945.52- 945.171		2412.14	1020.15	1.7745	1212.	2004		
	. 693 . 77142. 6943. 6000. 6000. 6016. 6018. 6049. 5040. 600 . 604 . 6019. 6069. 6000. 6040. 6040. 6040. 6040. 6040 . 164. 604	10.000	DETHER AT	2147.154 3370.274 -4.455	CONVUSTION PROMICIS FROM MAIERIAL AND AIR AFTER EXFANDING FROM 1000.00 FST 10	94.039 110.9101 110.110 110.110	3	42.4153	1.2324	1.0171	2162.			
		70.000	PURINE TH	2001.171 3142.740 5442.	AON MAIENI	1946.010 1355.071 -52.521 135.090		42.1414		2.1545	1200 1200	Ĩ		5.01/3
• •			MAIERIM. AND AIR ARE PURNED TOOETHER AT	442.8EAL 445.8EAL 445.8EAL	PHONICLE F	1.000 - 000	AND (09/BINATERIAL DUNED	40.5270	15.2770	1.023	1422.	1000		4.7263
			MIERIAL A	1747.200 3401.240 -4.902	Comustion	1.5.	101/01/01	54.000		1.9451	CICC.		į	0.1110
	INICATAL IN 1		Ħ	105.1111 216.2516 216.2516	H	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	EIVUN HEI	57.4357	1.23.0	16457.1 1644.1	5107 - 5109 -			
ł	INIMINDININ M(8 AIR -(8 4(24) AIR ANOMIS FOU MALE 1 (1) (2) (1) (1)		Comusiton Compitens	11 AME 11 MP. 11 (1) 11 AME 11 MP. 11 (1) 11 IME 11 KCAL/UKU	LONDITON CONDITIONSI	FLANC TENT. FERT / 1813.4 11.446 TENL, 111) (1) 1421.4 EMELIN / 111) (1) 1421.4 EMELIN / 111.4 1.440, 24345 -1111.4 1.440, 24345 -1111.4 E-999451104 1400UC15 MeUMDE	BRANS FRODUCTS/100 UR	C.0 M.2	C 0 2		Ð E	E		5
	- ¥_			545		-				16				

.

•

:

()

21.1

X

-

на — 3 21 г.

1 23

LIMITATIONS

Thermodynamic Data for Combustion Products

The program contains an auxiliary data file (PEPAUX) for the combustion products. Heat capacity coefficients, enthalpy and entropy constants are stored for each of the combustion products. Most of the data in this file is from the JANNAF Thermochemical Tables¹². Currently, there are over 1400 species in this file. It contains compounds in the gaseous, liquid and solid states. The program chooses the compounds to consider in the calculations from the elemental composition of the material burned. If the material contains the elements C, H, O, N, the program searches the library for all species containing these elements and considers them as possible pollution products. The total number of combustion products considered for each calculation is listed in the output data. Obviously, any products formed at the burn site and not in this file cannot appear in the calculations. This library contains most of the species that are formed from explosives and propellants used by the armed services.

The file does not contain a large number of species for the metallic additives that are used in military explosives. There will probably be some products formed from metals that are not in the file. Since aluminum is used extensively, there is an adequate amount of species for this metal under most circumstances.

Most of the species in the thermodynamic file consist of solids and gases. The liquids and solids are identified by asterisks and dollar signs, respectively, in the output data. The PEP program is designed to calculate combustion products at high temperatures. The file does not include organic solvents or other organic compounds that cannot survive high temperatures.

High Temperature Species

ŧ

Some of the species formed only exist at high temperatures. These species would disappear as ambient temperature is approached. For example, ions would be in this catagory. These species normally disappear in the calculations as more air is added. In evaluating the pollution products, these species are assumed to disappear. For most explosives and propellants these high temperature species comprise only a small percentage of the total.

Temperature Limitations

If the materials burned do not obtain a flame temperature above 300 K, the computer will issue a warning. For example, if a hydrocarbon without oxygen is attempted there will be no reaction above 300 K. This can occur with a mixture of material and air if there is not sufficient amount of oxygen or fuel to properly react. In such cases several trial runs can be made by changing the material/air ratios until the program runs.

Mixing Air With Materials

In most calculations, the first material/air weight ratios start with 100/0. The computer will accept this ratio as long as the material contains the elements oxygen and nitrogen. If a material, such as a hydrocarbon is burned with zero weight percent of air, the program cannot run. With air as an ingredient, the computer will select those species from the PEPAUX library composed of these two elements. The concentrations of these species cannot be calculated as the elemental composition of oxygen and nitrogen will be zero. When burning hydrocarbons and similar materials, the percent of air cannot be zero.

Precautions With Detonation Calculations

The first material/air weight ratios in a series of detonation calculations must be 100 g material/0 g air, or the material burned alone. The program must use the data from this first calculation to determine the energy loss from the detonation. Since most explosives and propellants contain nitrogen and oxygen, the problem discussed in the paragraph above does not apply. Some materials, (tetrazoles, azides, etc.) do not contain oxygen or nitrogen. For detonation calculations, a small amount of air must be included in the first calculation. The air would be considered as part of the explosive's composition in the first calculation. A minimum percent of air should be used that can be determined by trial and error.

Combustion Products Printed Twice

The thermodynamic data covers a wide temperature range. In some species (notably solid carbon and aluminum oxide), the data is stored as two heat capacity equations to properly cover the temperature range. Therefore, some species appear twice in the output data. When this occurs, one or the other of the symbols representing that species is zero. This does not affect the results.

DISPOSAL OF HAVY WASTE

On 22 May 1986, approximately 7500 lbs of Navy waste propellants were disposed of by openly burning the propellants at Dugway, Utah. The pollution products were investigated by two methods, evaluation by computer calculation: and on-site evaluation.

Comparative Analyses. Computer Predictions Versus Actual Emission Data

The composition of the Navy waste that was disposed of at Dugway is given in Table I. Combined, this waste consisted of eight elements. The percentage and total weight of each element is listed in Table II. For example, 2.97% or 222.7 lb of the combined waste consisted of the hydrogen element. Metals are usually a concern at waste disposal sites. The amounts of Al, Zn and Pb in the waste material are also listed. Tables III and IV contain the computer output data for the Navy waste burned in air. The combined composition is read into the computer as Navy waste 1, Navy waste 2, zinc and lead. Since the waste/air weight ratio burned at the site was not known, a series of ten waste/air weight ratios were calculated. The output data lists the pollution products formed and their changes in concentrations for the various waste/air ratios. The fate of the elements is discussed below

- a. HYDROGER Most of the hydrogen goes to the formation of H2O, H2, and HCL. As the percentage of air increases, the percentage of water increases at the expense of H2. The HCL concentration remains fairly constant until 30% waste/70% air is reached.
- b. CARBON CO and CO2 are formed with carbon. As the percentage of air increases, the percentage of CO2 increases at the expense of CO.
- c. NITROGEN the predominate product is N2. Some traces of NO2 may exist in the 20% waste/80% air ratio.
- d. OXYGEN Oxygen combines with all of the elements except zinc.
- e. ALUMINUM From the first to the last calculation, all of the aluminum goes to Al203\$ (\$ stands for solid). In most propellants oxygen reacts with aluminum first to completely oxidize it. The Al203\$ concentration is constant throughout the series. Note that Al203\$ is shown twice in the output data (the 5th and 27th products). This compound has its thermodynamic data stored in two heat capacity equations. Which equation is used depends upon the temperature.

- f. CHLORINE HCl and the chlorides of zinc and lead are formed. HCl is the most prominent of the chlorine products formed. HCl will immediately be absorbed in any moisture present to form hydrochloric acid.
- g. ZINC Most of the zinc metal will form its chlorides. The chlorides increase with increase in the air weight and at the expense of HCL. The zinc products will be mostly solids.
- h. LEAD Lead reacts similarly to zinc and will form chlorides.

At the end of the output data is a list of the total combustion species considered by the computer. There are 155 (some species listed twice) shown that the computer considered as possible combustion products. Those whose concentrations equaled or were greater than 0.0001 are listed above.

On-Site Evaluation at Dugway, Utah, 22 May 1986

The waste was burned in 5000- and 2500-1b sections. The gaseous ite formed from these burns were sampled by a helicopter passing through the clouds.

The interscan instruments used to detect the gaseous emissions in the plume were not specific for each individual gas. As a result, some instruments suffered from interferences and would give indications of the presence of a measured gas when it actually was responding to an interferent gas. This was the case for the apparent detection of SO2 and H2S when there were no sulfur compounds in the Navy waste that was burned. The responses on these instruments were due to the presence of HCl which produces a positive reponse on these two instruments. Since the chemical reactions of the detector cells in the instrument are either oxidative or reductive, depending on the instruments, it is possible for an interferent to produce a negative interferent gas. It is likely that the negative values recorded by the Cl2 instrument resulted from a negative interferent gas. Based on the theory that there should be no NO, the response was probably also due to an interferent. (Explanation of the data in Table V is based upon a letter and private communication by Mark Zaugg, Director for Ammunition Equipment, Tooele Army Depot, Tooele, Utah.)

Only a limited amount of the on-site data collected, Table V, was useful for evaluation. The helicopter sampled the two major indicator gases as emissions from the Navy waste:

 Carbon Monoxide - In Table V, the concentration of CO is 0.07 and .06 lb CO/100 lb Navy waste for the 5000 and 2500 lbs respectively. This concentration of CO falls between the computer values of 40/60 and 30/70 Navy waste/air weight ratios (Tables III and IV). 2. Hydrogen Chloride - In Table V, the concentration of HCl is 1.19-and 1.21 lb HCl/100 lb Navy waste for 5000 and 2500 lbs respectively. This concentration of HCl falls between the computer values of 20/30 and 10/90 Navy waste/air weight ratios (Tables III and IV).

Based on the above data, the climatic conditions experienced and the burn pan configuration at the Dugway site allowed for sufficient oxygen to completely oxidize the Navy manufacturing waste. The composition/ concentrations remained constant above the 60-70% air intake. It is at this point where all of the residual carbon and hydrogen atoms are oxidized to carbon dioxide and water. It is expected that most of the PEP "mixes" of Navy manufacturing waste will be completely oxidized to these two products. For most of the individual Navy propellants, the calculations below show complete oxidation at the 60-70% air intake. Some, like the AA2 and the HEN-12, are completely oxidized with 50-60% air intake. The percentage of air consumed depends upon the initial oxygen content of the material.

In the predictive mode, the metals that are present are considered to be completely oxidized early in the burn, and the remaining oxygen is used to oxidize the residual carbon and hydrogen.

In the interest of a proof continium, a comparative analyses predicted vs actual emission should be made of future burns/detonations of both Army and Navy PEP waste.

CALCULATED ENISSIONS OF INDIVIDUAL NAVY PROPELLANTS AND EXPLOSIVES

Emissions from each individual propellant and explosive were calculated in a manner similar to those in Table III. These calculations predict the pollution emissions of the individual material. They were done for open burn and open detonation conditions. A list of these calculations is given below.

TABLE I

RAVY WASTE BURNED

Propellant

Weight (lbs)

Weight 7

NOWIH-80-1 (MK 23)	70	2.8
X256 (MK 12)	1200	48,0
N-60 (Smokey Sam)	20	0.8
N-50 (5", G.P.)	100	4.0
AA2 (MK 90)	410	16.4
AA6 (ZUNI)	. 240	9.6
N-5 (ASROC and MK 22)	190	7.6
BX-180/BX 185 (MK 18)	5	0.2
BX-180 H (CKU-5/A)	15	0.6
TPH-9001 (CKU-7/A)	30	1.2
PBXN-106 (MK 115)	40	1.6
PBXW-109 (MK 83)	20	0.8
NOSIH 9 BC-10) (MQM-107)	40	1.6
XM39 (LOVA)	70	2.8
PBXN-103	50	2.0

TABLE II

Elemental Composition of Navy Waste

<u>Element</u>	Z of Element	Wt. Element in 7500 Lbs
H	2.97	222.7
C	23.28	1746.0
N	13.45	1008.8
0	52.88	3966.0
Al	3.83	287.2
Cl	2.25	168.8
Zn	0.32	24.0
РЪ	1.02	76.5

 $\sum_{i=1}^{n} (i) = \sum_{i=1}^{n} (i)$

DI'LN BURN---NATERIAL DOES NOT DETONATE BEFORE REACTING WITH AIR---NATERIAL- NAVY MANUFALTURERS WASTE(OPENLY BURNED MAY 22,1986)

.

.

.

-

H C H O AL CL ZH PB

TAUY WASTE 1 TAUY WASTE 2 TINC .EAD ATR -(0 BRAN ATON ANOLWITS 5		.801 .00 .002 .00 0.0000.00 0.0000.00 0.0000.00	1 .999 .99 1 .999 .99 99.9999.99 89.9999.99	1 .000 .00 2 .000 .00 00.0009.00 00.0000.00	98.000.00 80.000.00 8.0010.00 80.000.00	99.8099.99 99.0000.99 99.0000.09 19.0000.09	90.0990.09 90.0990.09 90.0990.09 90.0990.09 90.0990.000	41.890 54.771 .322 1.817	-208. 0.	.4883
(H) (C) 2.949434 1.938628 II. MATERIAL II. AIR	(N) .959393 199.089 8.089	(0) 3.305857 70.000 10.000	100.000 (AL) .141947 80.889 20.080	(CL) .063549 70.089 30.000	(ZH) .004725 40.000 40.000	(P8) .004998 50.009 50.000	. (. 49.089 . 49.089		9. 1.(20.849 89.849	.0224 9990 10.200 70.080
CONCUSTION CONDI	TIONS: THE	MATERIAL A	HO AIR ARE	BURNED TO	GETHER AT	199 0. 80 f	PSI			
I.ARE LENP. T(K) LAME LENP. T(F) MIHALPY KCAL/GFW CONBUSTION CONDIT	3348.384 5547.491 -20.372	3323,983 5523,749 -10,335	3295.411 5472.499 -14.298	3241.034 5410.441 -14.240	3215.564 5320.419 -12.223	3147.747 5284.544 ~10.186	3023.902 4903.424 -8.149	4458.025	3376.471	1901.552
LANE TENP. T(K) LANE TENP. T(F) NTHALPY KCAL/GFW .VOL.DASESLITERB GASES AT SIP) ONDUSTION PRODUCTS R	1401.304 2547.095 -102.139 09.072	1444.449 2540,245 -97.153 94.000	1451.255 2512.059 -92.177 105.457	1635.966 2485.339	1421.148 2458.444	1608.430 2435.789	1484.435	1272.028	868.94 2	462.684
DRANS PRODUCTS/	IOH DRANS	08/0)MATER	RIAL BURNEI)	.*					
•	41.9956					19.2366	5.4997	.0900	. 9499	Nonn .

.

۰.

C02 N2 H20 AL2031 HCL H2 PB ZN	19.353 13.4391 12.8509 7.2345 2.2410 1.4713 .7733 .3113	22.7259 22.2002 14.1242 .0000 2.2570 1.3299 .7402 .3090	27.1750 33.1517 15.4105 .0000 2.2524 1.1430 .7441 .3078	33.1385 33.2536 47.2321 17.3747 .0800 2.2454 .7466 .7239 .3940	27.4104 41,9391 44.0057 19.4092 .0009 2.2344 .7303 .4925 .2998 [ABLE 111	19.2366 55.0963 92.2096 22.0410 .0900 2.2129 .4454 .6390 .2090	5.4997 74.4799 131.7144 25.1093 .0000 2.1222 .1045 .4661 .2338	.0900 85.3209 197.3985 24.1722 .0090 1.6010 .0090 .0090 .0090	.9899 85.3219 328.8379 26.1092 .6089 1.5713 .9099 .9099 .8889	.0800 05.3210 723.0911 26.4900 .0900 .2019 .0000 .0000 .0000
---	--	--	--	--	---	--	--	---	---	--

• • • •

.

.

ן ר ר

i.

TABLE 'III CONTINUED

144 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16
. 6128 . 6713 . 6713 . 6203 . 6888 . 6888 . 6888 . 6888 . 6888 . 8812 . 8888 . 88888 . 888888 . 88888 . 888888 . 888888 . 888888 . 888888 . 8888888 . 888888 . 88888888
.5367 .1838 .8567 .0541 .00800 .0080 .0080 .0080 .0080 .00800 .0080 .0080 .0080 .0080 .0080 .008
2285. 2286. 2286. 2888. 2988. 2988. 2999. 2000. 200. 2000. 2
172. 172.
PBCL ZMCL2 ZMCL2 FRO FRO FRO FRO FRO CL2 HO CL2 PRCL4 HO CL2 PRCL4 HO CL2 PRCL2 FRCL28 ZMCL28 ZMCL28 AL2038 MO2

CL CL CL2 CL2 CL2 C2H2 C2H2 C2H2 C2H2 C2
78H ALOCL ALOCL ALOC ALOC ALOC ALOC ALOC AL
PB0 ALCL3 CCN0 ALH02 CH0 AL202 H130 PB08 ZN6 C2H4
FBCL2 COCL H202 ALH ALCL2 H0 MH03 FB09 NLOCL0 C2H6
ZHCL2 CH4 OCL CH2 OCL2 CH2 OCL2 CH ZH09 N2H5+
PBCL ALCL2 CH3CL CH3CL CC30 CC30 CC30 CC30 CC30 CC30 CC30 C
ZN CHO CHO CMCL N2H2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2
FB NIO NIO NIO NI CI ALN ALN CIL2 NL2036 CIL2 NL2036 CIL2
H2 ENHO MH MH02 M2H4 C2CL2 CH2 FBCL26 AL2036 C3H8
- HCL CH20 CH3 AL0 M10 M10 CCL M20 CCL M20 CCL M20 CCL M20 CCL M20 CCL M20 CCL M20 CCL M20 CCL M20 CCH
AL 201 AL 201 AL 202 AL 02 AL 02 AL 02 AL 04 AL 02 AL 201 AL
H20 CMH 0 MOCL FBCL4 C H1205 F13040 ALCL3 M44CL3 C
N2 N13 N13 N13 N102 CHCL N120 CCL2 CCL2 CCL2 CCL2 CCL2 CCL2 CCL2 CC
C02 10 10 10 10 10 10 10 10 10 10 10 10 10
· · · · · ·

OPEN BURN----NATERIAL DOES NOT DETONATE BEFORE REACTIND WITH AIR----

	. 0556 . 0576 . 2566 . 4883 . 4883 . 4884
	-245. -288. 6. 1.8886 1.8886 1.8886
	16.337 22.141 .126 .397 61.488
	HAVY MASIE 1 .891 .811 .891 .812 .890 .891 .891 .891 .891 .891 .891 .891 .812 .891 .221/11
14 1	
- 24	N21
С	
z	
•	188 6688 6888 6888 6888 6888 6888 6888
x	
U.	
Η .	.002 .002 .002 .003 .003 .003 .003 .003
	(H) (H) 3.607818 39.888
	165 FOR
	1001MI
	A AN
	H J J J J J J J J J J J J J J J J J J J
	LEAD LEAD

----CONBUSTION CONDITIONSI THE MATERIAL AND AIR AKE BURNED TOGETHER AT 1988.88 PSI .---.

2774.828 4535.276 -6.315
2814.855 4685.988 -4.519
2849.794
2002.277 4720.679 -6.926
2911.771
2938.558 4838.958 4828.7-
2962.917 4873.858 -7.538
2985.107
3865.342
FLANE TENP. T(K) FLANE TENP. T(F) FNIHALPY KCAL/GFU

-- 154 AL. 31 ---CONBUSTION CONDITIONS! THE CONBUSTION PRODUCTS FROM MATERIAL AND AIR AFTER EXPANDING FROM 1948.88 PSI 10

021.022 100.15- 109.15- 108.15- 210.22
1179.839 2024.111 242.625 230.295
1424.374 2104.477 -44.749 222.919
1469.463 2185.433 -44.154 215.992
1515.302 2240.141 -47.494 289.445
1542.240 2352.447 -60.775 203.275
174 1410.440 17 2439.787 19 -49.944 141 197.456
19.241 19.241 19.241 19.241
1408.489 2434.239 -71.440 188.401 Rounded off
I LANE I ENV. I (K) I 408.480 I LANE I ENV. I (F) 2434.239 I LANE I ENV. I (F) 2434.239 ENTHALITY K CAL/OF W -71.440 -71.440 I.VOL.0ASE9LITERS 188.601 (Consult 10M PRODUCTS ROUNDED OFF

-----GRANS PRODUCTS/188 GRANS (08/0)NATERIAL BURNED-----

.

188.9158 85.3288 85.3288 24.1499 .8888 1.4409 1.4409 1.4409 1.4409 1.4409 1.4409 1.4403 1.440	
188.9638 85.3286 26.1656 .8888 .9882 1.6239 .8421 .8421 .8421 .8421	
173.4727 1921.59 1989. 1989. 1989. 1989. 1989. 1989. 1989.	
85.3199 85.3199 85.3198 85.45 869.1 8588 8588 1188 1188 1188 1188 1281 1188 1281 1188 1281 1188 1281	
159.0349 05.3141 24.1372 .0000 .0031 1.7250 .1500 .1500 .1500 .1500 .1500	
153.5839 85.3883 85.3883 84.1243 8484 12704 12704 14845 14845	a a a a a a a a a a a a a a a a a a a
147.4831 85.2531 24.1074 .0432 .0432 .0432 .0432 .12254 .3254 .6522	
142.0892 82.4392 82.4392 8400 1.7048 8407 1.7048 2.0139 2.0139 2.0139 2.0138 2.	
134.7489 79.5772 25.4479 7.2345 3.4554 2.0859 2.8858 .5458 .5458 .5458 .5458	
N2 C02 H20 M12036 M12036 HCL PBCL PBCL PBCL	

1		
ŧ		-
1		
Ł	1	. न ्
i.		
t.	-	
÷.		
-		

ZH	.2096	.1571	.001	100.	1848.	1000.		.8889	
480	.0754	.1297	5007	E444-	.3423	.2501	.1534	.0855	.0432
PACI 2	-0716	.1052	1926.	9355.	.7370	1024.	1.9741	1.2100	1.2034
211	6477	1020		.0002	1000.		.0690	.8888	.0888
10	5100	.0000			.0000	.000	. 9989	. 8999	1980.
011	1000	\$100.	1888.	.0102		1900-	1100.	.0010	.0020
01	1000		. 0000	.000		.000.	. 8000	. 8989	0000.
		1000	.2274	1.7597	3.4278	5.2033	7.0985	9.0972	11.2340
HOLI			1000-	.0003	. 8883	1000.	.8085	200A.	.0894
212			1999.	. 0002	. 8984	.0005		. 6998	. 8619
	ane.			. 1990.	1000-	1000.	. 9989	. 6990	. 0448
		1200	9519.	1/10.	. 0157	4610.	.0112	.0892	.0874
R	0000		.6312		.6823	. 6827	1110.	.9744	.8616
AL 2036		7.2365	7.2365	7.2345	7.2345	7.2345	7.2365	1.2365	7.2365

----LIST OF TOTAL CONBUSTION FRODUCTS CONSIDERED----

NO COLL CHILD OCL CHILL
CL CHO CHO CHO CCH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH
H2 ALCL3 COCL2 C2CL2 C2CL2 H2H6 F18 F18 F18 F18 F18 F18 F18 F18 F18 F18
PBCL2 MLOCL MLOCL MLOCL3 MLOCL3 MLOCL3 MLOCL3 MLOCL3 PAD0 PAD0 PAD0 C2H6
FB0 COCL ALCL ALCL ALCL ALCL CIO FIO FIO FIO FIO FIO FIO FIO FIO FIO F
ZH MI02 MI02 M102 N3 N202 P806 P806 C3 C3
ZHCL2 NOCL CHJCL CCL CCL CCL CCL CCL M200
FB MH MH M102 M102 M120 CI CI CI CI CI CI CI CI CI CI CI CI CI
FBCL HOCL HOCL AL0 AL0 AL0 CH C2H40 C2H40 C1H AL2036 C3H80 C3H80 C3H80 C3H80 C2H40 C2H40 C2H40 C2H40 C2H40 C2H40 CCH
HCL HIJ HI202 CCI3 N205 CCL2 AL202 AL202 HI1404C H02
P C0
AL2030 02 NHO N2112 05 05 05 05 05 05 05 05 05 05 05 05 05
1120 HI CHI CHI PBCL4 ALCL2 0J N204 FB3049 C4N2 HH4CL9 H208
C02 PRII CH20 CH4 AL AL AL C2HCL ALC ZNCL2* C4HB
H2 H0 M CL2 M CL2 M 02 M 02 C20 C20 M 10 C20 M 10 M 10 M 10 M 10 M 10 M 10 M 10 M 1

52

TABLE V

Gaseous Emissions Detected by Helicopter from 5000 Lbs of

Navy Manufactureres Waste, Burned 22 May 1986*

Emissions from 5000 Lbs Open Burn

Pass N	0. 1	2	3	4	5	6	7
GAS		lb gas /	5000 lb Nav	y Waste		lb gas/ Navy Wa	
S02	31.19	24.85	17.48	9.65	10.92	22.12	0.3
C12	-8.63	-10.65	-8.30	-2.67	0.00	-24.49	0.1
HCl		76.65	61.84	46.770	43.50	69.25	1.1
NO	23.80	22.53	12.87	6.78	10.23	20.73	0.3
NO 2	1.35	5.18	4.48	6.93	13.07	11.92	0.1
H2S	7.01	2.98	3.32	0.00	0.00	0.00	0.0
CO	3.88	2.45	4.37	0.00	0.00	0.00	· · 0.0
		Emiss	ions from 2	500 Lbs of R	lavv Waste		
S02	3.07	23.59	17.64	4.52	2.22		0.4

	5.07		11.04	4.54	4.44	 0.4.
C12 .	-4.15	-20.12	-13.02	-2.50	0.00	 -0.3.
HC1	8.44	38.08	65.26	26.98	11.40	 1.2
NO	2.88	9.96	5.51	1.06	1.56	 0.11
NO2	0.37	1.94	3.52	4.05	0.00	 9.08
H2S	0.45	2.06	1.04	0.60	- 0.00	 0.01
со			1.29		1.95	 0.06

* The open burning of the PEP military wastes, collection of pollution products and cloud sampling was conducted under the direction of Mark M. Zaugg, Ammuniton Equipment Directorate (AED), Tooele Army Depot, Tooele, Utah. This table (Table V) is from the reduction of the helipcopter data by the program SUMMARIZ developed by AED. The columns represent the analyses of six passes made by the helicopter through the cloud plume after the Navy waste was burned.

** The average of total runs.

 Donna Price, <u>Energy Partition in Underwater Explosions of Organic</u> <u>Explosives: Applications to Waxed and Aluminized Explosives</u> (U) Chemistry Research Department, U.S. Naval Ordnance Laboratory, Wh Oak, Silver Spring Maryland, NAVORD Report 6829, 8 March 1960.

S Server 2

- E. Swift and J. C. Decius, <u>Measurement of Bubble Pulse Phenomenia</u> <u>Radius and Period Studies</u>. Underwater Researach laboratory, Woods Oceanographic Institution, 11 Sept 1947.
- 12. D. R. Stull, H. Prophet, Project Directors, <u>JANNAF Thermochemical</u> <u>Tables</u>. Office of Standard Reference Data, National Bureau of Standards, Washington, D.C., NSRDS-NBS 37.

APPENDIX E-3-B

1 L 14

POLU-11 MODEL OUTPUT FOR OB TREATMENT

• ~

.

.•									-	_	_					•	-					-			2					
											_	_							••••	-						 	-	-	-	
	Lourat	Tupuels (1011)	1070	455	555	335	998	0101	101	846	1		6 11		-											 				
		R.	1	1	1		98200-	1			1																			
	א עיניים אין לייי געוזה א	Levid						i		1			1											-						-
	(10/10) × usi	- 1.	1001124	[}		221100.						• • •									_							-
,	INCE (II	Fleer Just		1	1	1]	1		0200.]	1																	
	SUBSTAN	C D Hoden den	, etes -	a 5'-' + +	100001		1.0.01		• 00.55	100000		• OUNT 6	10000																	-
	56	C P		1	1					1		-	{					-			-									
	105	°,	200000	10000	7				. כנט בר			י כמנגי בייי	20000.	•												 				-
	Lich Part	² ب	124130.		١	1		3153					1																	-
	النابا	د ^ا ن ا	-01010		. course	2:3-00		•	2			- Jamos	. Outer 2		• •															
		C C	100125		•	11111		• • • • • • •	4747.	• Cotto	-12683	· 2474	. 2 321					-												
	11	7 / 7	_	, L	1.	11		1	1	2	j	۵1.				I								-			i		+	

.*

OPEN BURN---MATERIAL DOES NOT DETONATE BEFORE REACTING WITH AIR---MATERIAL=H720 HE 60== MORTAR

HCNOSK

NITROCELLULOSE(12.6 DIPHENYLAHINE - DPA POTASSIUM SULFATE CARBON (GRAPHITE) AIR -(G		.011 .012	6 .002 .011 2 .001 .000 0 .000 .004 1 .000 .000 0 .006 .001	00. 000. 00 00. 001. 00 00. 000. 00	00.000.00 20.000.00 00.000.00	00. 000. 0 00. 000. 0 00. 000. 0	00. 000. 0 00. 000. 0 00. 000. 0	0 1.000 0 1.000 0 .100	178. -1966. 0.	.0419 .0962 .0816
GRAM ATOM AMOUNTS F	OR MATERIAL	WEIGHT OF	100.000						1.1	0000
2.778496 2.235656		3.581045	.005738		(
WT. MATERIAL WT. AIR	100.000		80.000 20.000	70.000 30.000	60.000 40.000	50.000 50.000	40.000		20.000	10.000
COMBUSTION COND	ITTONS: THE	MATERIAL A	NU AIR ARE	BURNED TO	GETHER AT	1000.00 6	I2			
FLAME TEMP. T(K)	2393.249	2450.426	2510.721	2574.620	2641.668	2705.540	2718,260	2434.207	1852 052	1149.821
FUMIL LEAP. ITFI	3545.445	3751.367	4059.898	4174.916	4295.603	4416 571	AA77 4:0	2022 172	2874.293	
ENTHALPY KCAL/GFW	-62.960	-56.664	-50.368	-44.072	-37.776	-31.480	-25.184	-12.863		-6.296
COMBUSTION CONDI	TIONS: THE	COMBUSTION	PRODUCTS I	RON HATER	TAL AND AT	R AFTER EX	PANDING FR	0m 1000.0	O PSI TO	14.70 PSI
FLAME TEMP. T(K)	1063.824	1091.934	1122.740	1156.115	1192.398	1232.487	1070 077	1070 717	700 770	
FLAME TEMP. T(F)				1621.607	1685.916		1278.873		729.779	394.570
	-115.997				-00 706	1759.077	1842.571	1467.163	854.203	256.825
T. VOL. GASESLITERS		00 400	103.044	-77.215	-92.120	-86.192	-79.601			-26.820
(GASES AT STP)	11.001	98.429	107.210	115.494	155.552	154.583	186.200	247.743	377.725	767.660
COMBUSTION PRODUCTS	ROUNDED OFF	TO 1.00	5-04							
	1100 00000	10010100000								

-----GRAMS PRODUCTS/100 GRAMS (GS/G)MATERIAL BURNED-----

65	38.8197	36.8515	34.2867	30.8148	25.5944	18.4169	6.1286	.0001	.0001	.0003	
602	37.3440	40.4000	44.5042	49.9607	57.6908	69.4374	38.7484	98.3883	98.3860		
H.	12.4160	21.1774	32.1291	46.2097	64.9837	91.2673	130.6923	196.3967	327.8174	98.3785	
#20	8.7764	10.1333	11.7846	13.8030	16.3085	19.4363	23.3636	24.9233		722.0681	
22 Å	1.7929	1.6435	1.4599	1.2344	.9541	.6042	. 1654		24.9223	24.9194	
140	.5986	.5967	.5949	.5937	. 5940	.5931	.6141	.0000	.0000	.0000	
825	.1859	.1855	.1850	.1843	.1932	.1808		.6423	.0007	.000£	
ň	.0301	.0318	.0334	.0344	.0343	.0313	.0200	0001 .0001	.0002	.0003	
150	.0163	.0169	.0176	.0187	.0203	.0226			.0002	.0064	
1.54	.0143	.0042	.0010	.0002	.0000	.0000	.0000		.0003	-000s	
ALA	.0021	.0013	.0007	.0003	.0001	.0001		.0001	.0001	.0002	
an3	.0009	.0009	.0007	.0005	.0003	.0001	.0002	.0002	.0003	.0007	
1204	.0001	.0001	.0001	.0001	.0002		.0000	.0001	.0001	.0002	
\$26	.0001	.0001	.0001	.0001	.0001	.0002	.0002	.0003	.0005	.0009	
503	.0001	.0001	.0001	.0001		.0002	.0002	. 6063	.0004	.0003	
632	.0001	.0001	.0001	.0001	.0001	.0002	.0002	.0620	.0004	.0008	
52	.0001	.0001	.0001	.0001	.0001	.0002	.0002	.0003	.0004	.0008	
502	.0001	.0001	.0001		.0001	.0004	.0048	.0002	.0003	.0006	
C4H10	.0001	.0001		.0001	.0001	.0011	.1253	.3153	.3631	.3587	
CARS	.0601	.0001	.0001	.0001	.0001	.0001	.0001	.0002	.0003	.0006	
KnOZ	.0001		. 6001	.0001	.0001	.0001	.0001	.0002	.0003	.000c	
KHOL		.0001	.0001	.0001	.0001	.0001	.0001	.0002	.0003	.6389	
KHOT	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0002	.0003	.0006	
XG	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0002	.0410	.0006	
50	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0002	.0003	.0006	
63	.0000	.0001	.0001	.0001	.0001	.0001	.0005	.0002	.0002	.0005	
65	.0000	.0001	.0001	.0001	.0001	.0001	.0001	.0002	.0002	0005	

			and the state of the								
Ling										.0004	
CS .	.0000	.0000	.0001	.0001	.0001	.0001	.0001	.0001	.0002	.0004	
C3H6	.0000	.0000	.0001	.0001	.0001	.0001	.0001	.0001	.0002	.0004	
KH	.0000	.0000	.0001	.0001	.0001	.0001	.0001	.0001	.0002	.0004	
CNR	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0001	.0001	.0003	
RS	.0000	.0000	.0000	.0001	.0002	-0004	.0008	.0001	.0002	.0003	
H02	.0000	.0000	.0000	.0000	.0001	.0001	.0001	.0001	.0002	.0003	
S	.0000	.0000	.0000	.0000	.0001	.0001	.0001	.0001	.0002		
62	.0000	.0000	.0000	.0000	.0001	.0001	.0001	12.5908	47.8604	.0003	
NHO	.0000	.0000	.0000	.0000	.0001	.0001	.0001			153.6181	
C2H6	. 0000	.0000	. 0000	.0000	.0001	.0001		.0001	.0002	.0003	
CH20	.0000	.0000	.0000	.0000	.0001	.0001	.0001 .0001	.0001	.0002	.0003	
NÛ	.0000	.0000	.0000	.0000	.0001			.0001	.0002	.0003	
СНО	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0089	.0002		•
C2H4	.0000	.0000	.0000	.0000	.0000		.0001	.0001	. 0001	.0003	
0282	.0000	.0000	.0000	.0000		.0001	.0001	.0001	.0001	.0003	
K20T	.0000	.0000	- 0000		.0000	.0001	.0001	.0001	.0001	.0003	
HQ HQ	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0002	
hû	.0000			.0000	.0000	.0000	.0000	.0001	.0001	.0002	
6 6	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0002	
0 86		.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0002	
	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0002	
CH2	.0000	.0000	.0000	.0000	.0000	-0000	.0000	.0000	.0001	.0001	
ħ.	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	10001	.0001	
СH А	.0006	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001	
Û.	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001	
CB Sa	.0000	.0000	. 0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001	
Ĉ4	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001	

---LIST OF TOTAL COMBUSTION PRODUCTS CONSIDERED---

.

ŰŨ	002	R2	820	82	KHO	825	Ł	CS0	CH4	KON	ннз	K204	\$20	203
062	52	882	C4H10					Kð			KS		6388	
C3Re	6.5	СhН	H5	862	S	02	nnû	0285	CH20	NG		0284		
нů	Нċ	6	117	CH2	h.	Ċп	Č.	Ċ ŭ	64	a				

.

-

OPEN BURN---MATERIAL DOES NOT DETONATE BEFORE REACTING WITH AIR---MATERIAL=MS3 ILLUMINATION 60 == MORTAR

H Ć N O K

NITROCELLULOSE(12.6) NITROGLYCERIN - NG DIETHYL PHTHALATE ETHYL CENTRALITE-EC POTASSIUM NITRATE	.005 .003 .014 .012 .020 .017 .000 .000	.003 .009 .000 .004 .002 .001 .001 .003	.000 .000 .000 .000 .000 .000 .001 .000	000.000. 000.000. 000.000.	.000 .000 .000 .000 .000 .000 .000 .000	000.000 000.000 000.000 000.000 000.000 000.000	43.000 3.000 .600	-625. -392. -810. -117. -1165. C.	.0600 .0578 .0406 .0451 .0762 .0000
ATR -(G	.000 .000	.006 .001	.000 .000	.000 .000	.000 .000	000 .000	.000	•••	

GRAM ATOM AMOUNTS FOR MATERIAL WEIGHT OF 100.000

-

(H-)	(0)	(8-)	(0)	(K)	i						
2.825871	1.916727	1.053924	3.692784	.012363				40.000	76 000	20.000	10.000
WT. HATERI	A:	100.000	90.000	80.000						20.000 80.000	90.000
WT. ATÉ		.000	10.000	20.000	36.000	40.000	50.000	801000	10.000	50.000	

1.0000

---COMBUSTION CONDITIONS: THE MATERIAL AND AIR ARE BURNED TOGETHER AT 1000.00 PSI---

FLAME TEMP. T(K) 3017.782 3016.111 3010.297 2995.698 2961.120 2876.896 2667.465 2253.009 1704.459 1064.185 FLAME TEMP. T(F) 4972.608 4969.600 4959.134 4932.855 4870.617 4719.013 4342.036 3596.017 2608.626 1456.133 ENTHALP: KCAL/GFW -53.411 -48.070 -42.729 -37.388 -32.047 -26.705 -21.365 -16.023 -10.682 -5.341

----COMSUSTION CONDITIONS: THE COMBUSTION PRODUCTS FROM MATERIAL AND AIR AFTER EXPANDING FROM 1000.00 PSI TO 14.70 PSI---

FLAME TEMP, T(N) 1456.077 1459.348 1463.259 1468.316 1475.901 1493.145 1259.726 955.484 653.474 358.513 FLAME TEMP, T(F) 2161.539 2167.426 2174.466 2183.568 2197.221 2228.260 1808.107 1260.472 716.854 185.923 ENTMALPT ACALIGER -122.141 -115.217 -108.299 -101.379 -94.425 -87.223 -74.614 -58.997 -42.222 -24.242 T.VOL.GASES--LITERS 84.463 91.479 100.249 111.525 126.558 147.602 185.041 250.033 380.011 769.952 (GASES AT STP)

COMBUSTION PRODUCTS ROUNDED OFF TO 1.00E-04

-----_{ปละสตร์} พิศษ์ของโรงโซง นิศิศษร์ เนียงใบไฟค์โอกิโคม ซิปิศิทธิบี-----

				55.2393	65.0530	75.6145	84.3537	84.3525	84.3503	84.3434
462	38.9520	42.9879	48.2255		12.2847	3.0167	.0001	.0001	.0001	.0003
CD	28.8974	25.3287	22.9951	18.5309			23.5407	23.5406	23.5397	23.5368
K DÚ	15.8723	10.8038	18.0242	19.4015	21.0483	23.0130	133.0250	198.7451	330.1636	724.4139
1.C	14.7631	23.3243	34.4758	48.5561	57.3300	93.6134		.0000	.0000	.0000
в <u>2</u>	. 3505	.7495	.6195	.4651	.2805	.0599	.0000		.0003	.0006
NHC -	.5614	.5691	. 5789	.5919	.6110	.6503	.6924	.2835	.0003	.0004
t .	.0918	. 0265	.0796	.0705	.0571	.6296	.0001	.0001	.0002	.0004
ແມ່ນີ້ພ	.000:	.0001	.0001	.0001	.0002	.0002	.0002_	.0003		.0002
n:ti	.0001	.0001	.0001	.0000	.0000	.0000	.0000	.0001	.0001	.0007
NUN	. 0001	.0001	.0001	.0001	.0001	.0001	.0002	.0002	.0003	-
5.7	.0001	.0001	.0001	.0601	.0001	.0001	.0001	.0001	.0002	.0004
		.0001	.0001	.0001	.0001	.0001	.0001	.0002	.0003	.0005
2453	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0002	.0003	.000¢
1000	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0002	.6911	. 6886
	0001	.0001	.0001	.0001	.0001	.0001	.0001	.0002	.0003	.0006
	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.4087	.0003	.0006
1.mul	. 6663	.0001	.0001	.0001	.0001	.0001	.0001	.0002	.0003	.000 <i>i</i> .
1.Ú			.0001	.0001	.0001	.0001	.0001	.0002	.0002	.0005
ΰΞ	.0000	.0001	.0001	.0001	.0001	10001	.0001	.0002	.0002	.0005
ສະມີຊີ	. 6666	.0001		.0001	.0001	.0001	.0001	.0001	.0002	. 0004
6382	.0000	.0000	.0001		.0001	.0001	.0001	.0001	.0002	.0004
6340	. 0000	.0000	.0001	.0001		.0001	.0001	.0001	.0002	.0003
húí	.0000	.0000	.0000	.0000	.0001		5.3525	25.9952	61.2491	167.0046
02	.0000	.0000	.0000	.0000	.0001	.0001		.0001	.0002	.0003
HHĊ	.0000	.0000	.0000	.0000	.0001	.0001	.0001		.0002	.0003
ปรีสบ	.0000	.0000	,0000	.0000	.0001	.0001	.0001	.0001	.0002	.0000

					·····································					5 (CA)	
	CHU	.0000	.0000	. 0000	.0000	.0000	.0001	.0001	.0001	.0001	.0002
	C2H4	.0000	.0000	.0000	-0000	.0000	.0001	.0001	.0001	.0001	.0003
	CHH	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0001	.0001	.0003
	C2H2	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0001	.0001	.0003
	H20×	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001	
•	HO	.0000	.0000	.0000	.0000	.0000	.0001	.0007			.0002
	ដ	.0000	.0000						.0001	.0001	.0002
	-			.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0002
	ĈH4	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0002
	C	.0000	.0000	.0000	.0000	-0000	.0000	.0000	.0001	.0001	.0002
	NH	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0002
	CH2	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001
	N	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001
	CH .	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	
	ĉ	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000		.0001
	Ċŭ.	.0000	.0000	.0000	.0000	.0000				.0001	.0001
	Ca	.0000					.0000	.0000	.0000	.0001	.000i
	υü	.0000	.0000	.0000	.0000	.0000	-0000	.0000	.0000	.0001	.0001

. .

-

.

----LIST OF TOTAL COMBUSTION PRODUCTS CONSIDERED---

٠

•

.*

-

CG2	Ċů	820	R2	Н2	KHG	ł.	K208	HH3	KCR	К Н	C4810	C4H8	KH02	KHOL
VH01	¥0	03	H02	C3H8	C3H6	805	02	NHO	C2H6	CH20	NO	CH0	0084	Chin
GENT	11201	110	nu	0.54	U	ñ.:	CH2	11 13	CH	h	C	ĊIJ	CI.	

OPEN BURN---MATERIAL DOES NOT DETOMATE BEFORE REACTING WITH AIR---MATERIAL=M49A4 HE 60 mm MORTAR

H C N O K

HITROCELLULOSE(12.6) NITROCLYCERIN - NG		3 .005 5 .003												-625. -392.	.0600
DIETHYL PHTHALATE ETHYL CENTRALITE-EC	.01-	012 017	.000	.004	.000	.000	.000	.000	.000	.000	.000	.000	3.000	-310.	.0406
POTASSIUM NITRATE AIR -(G	.000	000. 000.	.001	.003	.001	.000	.000	.000	.000	.000	.000	.000	1.250	-1165. 0.	.0431 .0762 .0000

GRAH ATOH AMOUNTS FOR MATERIAL WEIGHT OF 100.000

1.0000

- ----

---COMBUSTION CONDITIONS: THE MATERIAL AND AIR ARE BURNED TOGETHER AT 1000.00 PSI---

 FLAME TEMP. T(K)
 3017.782
 3016.111
 3010.297
 2995.698
 2961.120
 2876.896
 2667.465
 2253.009
 1704.459
 1064.185

 FLAME TEMP. T(F)
 4972.608
 4959.134
 4932.856
 4870.617
 4719.013
 4342.036
 3596.017
 2603.626
 1456.133

 ENTHALPY KOAL/OFW
 -53.411
 -48.070
 -42.729
 -37.388
 -32.047
 -26.706
 -21.365
 -16.023
 -10.682
 -5.341

---COMBUSTION CONDITIONS: THE COMBUSTION PRODUCTS FROM MATERIAL AND AIR AFTER EXPANDING FROM 1000.00 PSI TO 14.70 PSI---

 FLAME TEMP. T(K)
 1450.077
 1459.348
 1463.259
 1468.316
 1475.901
 1493.145
 1259.726
 955.484
 653.474
 358.513

 FLAME TEMP. T(F)
 2161.539
 2167.426
 2174.466
 2183.568
 2197.221
 2228.260
 1808.107
 1260.472
 716.854
 185.923

 EnTMALP: NCAL/GF#
 -122.141
 -115.217
 -108.299
 -101.379
 -94.425
 -87.223
 -74.614
 -58.997
 -42.222
 -24.242

 T.VOL.GASES--LITERS
 84.463
 91.479
 100.249
 111.525
 126.558
 147.602
 185.041
 250.033
 380.011
 769.952

 COMBUSTION PRODUCTS ROUNDED OFF TO
 1.00E-04
 1.00E-04
 1.00E-04
 1.00E-04
 1.00E-04

-----GRAMS PRODUCTS/100 GRAMS (GS/GIMATERIAL BURNED-----

002	36.9520	42.9879	48.2255	55.2393	65.053Û	79.0140	84.3537	64.3525	84.3503	64 7474	
CO.	28.8974	26.3287	22.9951	18.5309	12.2847	3.0167	.0001	.0001	.0001		
n20	15.8723	15.8538	15.0242	19.4015	21.0483	23.0130	23.5407	23.5406	23.5397	.0003	
61 ¹¹ 89 6	14.7632	23.5243	34.4758	48.5551	67.3300	93.6134	133.0255	198.7451			
82	. 3606	.7493	.6195	.4051	.2805	.0349	.0000	.0000	.0000		
KHO	.5614	.5891	15789		.6110	.6503	.6924	. 2835		.0000	· · · · · · · · · · · · · · · · · · ·
ł.	.0918	.0865	.0796	.0705	.0571		.0001	.0001	.0003		
1261	.0001	.0001	.0001	.0001	.0002				.0002	.0004	
nr.3	.0001	.0001	.0001	.0000	.0000	.0000	.0001	.0001		.0009	
NGN -	.0001	.0001	.0001	.0001	.0001	.0000	.00002	.0001	.0001	.0002	
Kπ.	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0003	.0007	
C4810	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0002	.0064	
0488	.0001	.0001	.0001	.0001	.0001	.0:01	.0001			.0005	
KH33	.0001	.0001	.0001	.0001	.0001	. 6661	.0001	.0002	.0003	.0006	
វីតមិន	.0001	.0001	.0001	.6001	.0001			.6002	.6911	. 6835	
8401	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0002	.0003	.0005	
KO	.0001	.0001	.0001	.0001		.0001	.0001	.4027	.0003	.000£	
63	.0000	.0001			.0001	.0001	.0061	.0002	.0003	.000t	
NG2			.0001	.0001	.0001	.0001	.0001	.0002	.0002	.0005	
03#8	.0000	.0001	.0001	.0001	.0001	.0001	.0001	.0002	.0002	.0005	
	.0000	.0000	.0001	.0001	.0001	.0001	.0001	10001	.0002	.0004	
C3Ho	.6666	.0000	.0001	.0001	.0001	.0001	.0001	.0001	.0002	.0004	
862 862	.0000	.0000	.0000	.0000	.0001	.0001	.0001	.0001	.0002	.0003	
82	.0000	.0000	.0000	.0000	.0001	.0001	8.3505	25.9952	61.2491	167.0046	
hHÚ	.0000	.0000	.0000	.0000	.0001	.0001	.0001	.0001	.0002	.0003	
0280	.0000	.0000	.0000	0000	0001	A551	0001		.0002	.0000	

	CH0	.0000	.0000	.0000	.0000	.0000	.0001					Î
	C2H4	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0001	.0001	.0003	
	CNH	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0001	.0001	.0003	
	C2H2	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0001	.0001	.0003	
	H20#	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0002	
•	HO	.0000	.0000	.0000	.0000	.0000	.0001	.0007	.0001	.0001	.0002	
	KO	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0002	
	CH4	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0002	
	0	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0002	
	NH	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0002	
	CH2	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001	
	X	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001	
	CH	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001	
	2	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001	
	C4	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001	
	C1	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001	

---LIST OF TOTAL COMBUSTION PRODUCTS CONSIDERED---

C02	CO	H20	H2	82	KHO	K	x203	NH3	KCN	KH	C4H10	C4HS	KHOZ	KHOŁ
KHOT	KO	03	NC2	C3HS	C3H6	H02	02	NHO	C2H6	CH20	6M	CHO	C2H4	CHH
0282	H20T	HO	Hũ	CH4	0	NH	CH2	k	CH	H	C	CZ	CL	

OPEN BURN---MATERIAL DOES NOT DETONATE BEFORE REACTING WITH AIR---MATERIAL=M50A3 TP 60 mm MORTAR

•

HCHOK

-					000 000	000 000	000 000	52.150	-625.	.0600
NITROCELLULOSE(12.6)		300. 800.	.002 .010	.000 .000	.000 .000		000 .000	43.000	-392.	.0578
NITROGLYCERIN - NG		.005 .003	.003 .009	.006 .000	.000.000	.000 .000	.000 .000	3.000	-310.	.0406
DISTHYL PHTHALATE		.014 .012	.000 .004	.000 .000	.000 .000	.000 .000	.000 .000	.600	-117.	.0451
ETHYL CENTRALITE-EC		.020 .017	.002 .001	.000 .000	.000.000	.000 .000	.000 .000	1.250	-1165.	.0762
POTASSIUM NITRATE		.000 .000	.001 .003	.001 .000	.000 .000	.000 .000	.000 .000		-1165. Û.	.0000
AIR -(G		.000 .000	.006 .001	.000 .000	.000.000	.000 .000	.000 .000	.000	۷.	.0000
GRAM ATCH AMOUNTS FOR	MATERIAL M	ETGHT OF	100.000						1.00	00
		1. 1	1. 3	1						
·(R) (C)	(N)	(0)	(k)	ł						
2.625871 1.916727		.692784	.012363	74 444	60.000	50.000	40.000	30,000	20.000	10.000
HT. HATERTAL	100.000	90.000		70.000	40.000	50.000	60.000	70.000	80.000	90.000
WT. AIR	.000	10.000	20.000	30.000	40.000	30.000	00.000			
COMBUSTION CONCIT	TONS: THE M	ATERIAL AN	IO ATR ARE	BURNED TO	GETHER AT	1000.00 PS	1			
				AAAF 100	00/1 100	107: 004	2467 465	2253.009	1704.459	1064.185
FLAME TEMP. T(K)	3017.782	3016.111	3010.297	2995.698	2951.120	1710 017	1749 67:	3596.017	2608.626	1456.133
a a ment mint	1070 100	1516 100	1959 111	4931.330	43/0.01/	4/17.013	4945.000			-5.341
ENTHALPY KCAL/GFW	-53.411	-43.070	-42.729	-31.388	-32.047	-10.100	21.005			
COMBUSTION CONDIT	TIONS: THE	COMBUSTION	PRODUCTS	FROM MATER	TAL AND AT	R AFTER EX	PANDING FRO	0H 1000.00) PSI TO	14.70 PSI
									653.474	
FLAME TEMP. T(K)	1456.077	1459.348	1463.259	1468.316		1493.145	1808.107			185.923
FLAME TEMP. T(F)	2161.539	2167.426	2174 444	110	191.441	2228.260	1303.107	-52 007		-24.242
ENTHALPY KCAL/GFW	-122.141	-115.217	-108.299	-101.319	-74.413	-01.664	-74.614	250.033	380.011	769.952
T.VOL.GASESLITERS (GASES AT STP)	84.463	91.479	100.249	111.525	126.558	147.602	185.041	230.000	JGV.VII	
COMBUSTION PRODUCTS									_	
ukans skobucts	FIOD GRAME	(CS/G)mATE	RIAL SURNE	6						A. 1/1
602	38.9520	42.9879	48.2255	55.2393	65.0530		84.3537	84.3525	84.3503	84.3434
ie	28.8974	26.3267	22.9951	18.5309	12.2847	3.0167		.0001		.0003
n20	15.8723	16.8633	18.0242	19.4015	21.0493	23.0136				23.5369
1120 112	14.7032	23.5243	34.4758	48.5561	67.3300			198.7451		724.4139
*1 4 *1 4	. 8365		.5195	.4651	.2605	.0599	.0000	.0000	.0000	.0000
XHO	.3614	.5691	5789	.5919	.6110		.6924	.2935	.0003	.0006
K.	.0915	.0365	.0796	.0705	.0571	.0295	.0001	.0001	.0002	.0004
k200	.0001	.0001	.0001	.0001	.0002		.0002	.0003	.0005	.0009
	.0001	.0001	.0001	.0000	.0000			0001	.0001	.0002
8 t. m.	.0001	.0001	.0001		.0001			.0002		.0007
65	.0001	.0001	.0001	.0001	.0001		.0001	.0001	.0002	.0004
Cantó	.0001	.0001	.0001	.0001	.0001					
C4nž	.0001			.0001	.0001					.0006
1.nü4	.6001			.000	.0001	.0001				.6996
KHGG	.0001			.000	.0001					
100	.0001			.000	.0001	.0001				
1.0 ×	.0001				.0001	.0001				
83	.0000					.000				
N02	.0000					.000				
C3#8	. 0000									
û3Ho	.0000									
n0?	.0000									
62	.0000									
hin0	.0000						1 .000			
	.000						.000			
ú?ho	.0001							: 000	1 0601	.0003

CHO	.0000	.0000	.0000	.0000		.0001	.0001	.0001	.0001	.0003
C2H4	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0001	.0001	.0003
CNH	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0001	.0001	.0003
C2H2	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0002
H20*	.0000	.0000	.0000	.0000	.0000	.0001	.0007	.0001	.0001	.0002
HO	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0002
HC	.0000	.0000	.0000	.0000		.0000	.0000	.0001	.0001	.0002
CH4	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0002
C	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0002
HH	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001
CH2	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001
N	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001
CH	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001
Û	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001
CZ	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001
ĆI.	.0000	.0000	.0000			•				

---LIST OF TOTAL COMBUSTION PRODUCTS CONSIDERED---

					FUO	K	K204	NHE	KCN	KH	C4H1G	C4H2	KHOL	KHOT
002	00	K20	N2	H2	ANU	A	64.00	NUA	0244	0580	NO	CHO	C284	CHH
#HOT	KD	C3	N02	C3KS	C3He	K02	02 .	nnu	000	H	1.	CL	C1	
2000	8201	НÛ	HO	CH4	C	Nii	CH2	N	CH	n	~	C.a.	04	

IPEN BURN---MATERIAL DOES NOT DETONATE BEFORE REACTING WITH AIR---MATERIAL: M362 HE BING MORTAR

.

....

BA K Û R 0 N

		. 008 .006 .	A10 010	000 000	000 000	000 000 .	000 .000	81.950	-625.	.0600
ITROCELLULOSE(12.6)		. 300. 800.	002 .010 .	000.000	000 .000	000 000	000 .000	15.000	-392.	.0578
ITROGLYCERIN - NG		.005 .003 .	003 .009 .	.000 .000	.000 .000		000 000	.600	-117.	.0451
THYL CENTRALITE-EC		.020 .017 .	002 .001 .	000 .000	.000 .000	.000 .000 .	000 .000	1.400	-912.	.1171
BARTUM NITRATE		.000 .000 .	002 .006	.000 .001	.000 .000	.000 .000 .	000 .000	.750	-1165.	.0762
POTASSIUM NITRATE		.000 .000 .	001 .003	.001 .000	.000 .000	.000.000	000 .000	.300	0.	.0816
CARBON (GRAPHITE)		.000 .001 .	000.000	.000 .000	.000 .000	.000 .000 .	000 .000	.000	0.	.0000
AIR -(G		.000 .000 .	006 .001	.000 .000	.000 .000	.000 .000	.000 .000	.000	۷.	
									1.000	00
GRAM ATOM AMOUNTS FOR	MATERIAL	NEIGHT OF 1	00.000							
1. 1. 1. 1. 1.	(N)	(0)	(K)	(8A)	(
(H) (C)		1 - 0	.007418	.005356						
2.646379 2.066231		90.000	80.000	70.000	60.000	50.000	40.000	30.000	20.000	10.000
WT. MATERIAL	100.000	10.000	20.000	30.000	40.000	50.000	60.000	70.000	80.000	90.000
WT. AIK	• .000	10.000	10.000							
COMBUSTION CONDIT	TONS: THE	MATERIAL AN	D AIR ARE	BURNED TO	GETHER AT	1000.00 PS	I			
						2832.431		2319.136	1761.121	1095.853
FLAME TEMP. T(1)	2728.982			2818.277	2840.076	1270 077	AA17 944	3715.045	2710.619	1513.135
FLOME TEMP. T(F)	4452.587		4561.189			4638.977	-23.724		-11.862	-5.931
ENTHALPY KCAL/GFR	-59.310	-53.379	-47.448	-41.517	-35.586	-29.655	-20.724	11,110		
						A ACTED EVI	NANDTHE FRE	1000.00	D PSI TO	14.70 PSI
COMBUSTION CONDI	TIONS: THE	CONBUSTION	PRODUCTS	FROM MATER	IAL AND AI	R AFIER EN	MANJAG IN	AI 1000101		
					1329.915		1327.191	993.367	682.062	371.792
FLAME TEMP. T(L)	1253.165	1270.140		1308.052			1929.543		768.312	209.826
T. ANT TEND TICK	1795.298	1826.952		1895.093				-62.194	-44.444	-25.412
ENTHALPY KCAL/GFm	-121.265	-114.441	-101.628	-100.829	-94.041		183.398	248.392	375.366	768.302
T.VOL.GASESLITERS	37.017	94.034	102.806	114.085	129.121	150.171	100.070	140.071	0.01000	
(GASES AT STP)										
COMBUSTION PRODUCTS	ROUNDED OF	F TO 1.0	02-04							
GRANS PRODUCTS	1100 GRAMS	(GS/G)HATE	RIAL BURNE							
					(A. 0.11	74.2458	90.9333	90.9324	90.9301	90.9233
602	37.6378	41.2123	45.8551				.0002	.0001	.0001	.0003
Čů.	33.9213	31.6465	28.6915				131.6819	197.3984	328.8177	723.0679
H2	13.4171		33.1296	47.2100				23.7699	23.7639	23.7661
n20	12.5433		15.1325	10.8209			.0000	.0000	.0000	.0000
82	1.2573		.9675	.7785			.3211	.3209	.8207	.8199
5200	.821.		.8212				.4149	.4145	.0003	.0006
1.50	.354.	3 .3050	.3663					.0001	.0002	.0004
0 55	.035	9 .0354	.0344					.0001	.0001	.0002
na:	.000	2 .0002	.0002					.0005		.0014
ża	.000	1 .0002	.0002					.0003		
kûn	.000	.0001	.0001							
1206	.000	.0001	.0001							
034	.000	1 .0000	.0000							
14:10	.000		.0001	.000						
14 1 0	.000		.0001	.000						
00000 0000	.000				.000					
2.500 2.500	.000				1 .000					
1800 1800	.000					1 .0001		1 m f .		
LÛ	.000					1 .000				1.11.11.11
ÛŠ	.000						.000			
	.000									
NG2	.000									
. 1888 6346 24	.000							.000	1 .000	.0004

.0001

.0001

.0001

.0001

.0000

.0000

.0000

.0000

63ne

6 m

.0001

.0001

.0001

....

.0004

.0003

.0002

0000

.0001

80.51

.0001

AAA

	1H0 2H6	.0000	.0000	.0000	.0000	.0001	.0001	.0001	.0001	.0002	.0003
		.0000	.0000	-0000	.0000	.0001	.0001	.0001	.0001	.0002	.0003
	H20	.0000	.0000	-0000	.0000	.0001	.0001	.0001	.0001	.0002	.0003
N	-	.0000	.0000	.0000	.0000	.0001	.0001	.0224	.0054	.0002	
	HC	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0001	.0001	.0003
	284	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0001		.0003
CI	NH	.0000	.0000	.0000	.0000	.0000	.0001	.0001		.0001	.0003
Ca	282	.0000	.0000	.0000	.0000	.0000	.0001		.0001	.0001	.0003
82	201	.0000	.0000	.0000	.0000	.0000		.0001	.0001	.0001	.0003
KO)	.0000	.0000	.0000	.0000		.0000	.0000	.0001	.0001	.0002
HO)	.0000	.0000	.0000		.0000	.0000	.0011	.0001	.0001	.0002
0		.0000	.0000		.0000	.0000	.0000	.0000	.0001	.0001	.0002
NH		.0000		.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0002
CH		.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0002
h	16		.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001
		.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001
CH		.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001
C		.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001
Cz		.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001
Ċ2		.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001

---LIST OF TOTAL COMBUSTION PRODUCTS CONSIDERED---

002	CC	H2	H20	H2	ÉaCs	KHO	K	NH3	ka	KCS	\$205	CHA	C4H10	CANO
1402	KHOL	KHOT	Ke	03	H02	CIHO	C3H6	KE	HO2	62	NHO	C2RA	06820	NO
CHO	C2H4	CNH	C2H2	H201	HÛ	HG	0	NH	CH2	N	CH	C	Ci	CL

76

OPEN BURN---MATERIAL DOES NOT DETONATE BEFORE REACTING WITH AIR---MATERIAL=H374A3 HE SIME MORTAR

. •

.

S 0 K k H C

					000 000	. 000. 000.	000 .000	97.900	-625.	.0500
NITROCELLULOSE(12.6)	.00	. 300. 90	002 .010 .	000 .000 .	000 .000	.000 .000 .	000 000	1.000	178.	.0419
DIPHENYLAMINE - DPA	.01	1 .012 .0	001 .000 .	.000 .000 .	000 .000 .	. 000 .000 .	000 .000	1.000	-1966.	.0962
POTASSIUM SULFATE	.00	. 000. 00	000 .004 .	001 .002 .	000 .000	.000 .000 .	600 .000	.100	0.	.0316
CARBON (GRAPHITE)	.00	. 100. 00	000.000.	000 .000 .	000 000	.000.000 .	000.000	.000	0.	.0000
AIR -(G	.06	00.000.	006 .001	.000 .000 .						
			00.000						1.000	0
GRAN ATON ANOUNTS FOR	MATERIAL WEIT	GRI UP I	00.000							
(n.) (n.)	(н) (0)	(\$)	(x)	(
		81045	005738	.011477				73 666	20.000	10.000
2.778496 2.235656		90.000	80.000	70.000	60.000	50.000	40.000	30.000	80.000	90.000
WT. MATERIAL	100.000	10.000	20.000	30.000	40.000	50.000	60.000	70.000	50.000	
WI. AIK										
COMBUSTION CONDIT	TONS: THE MAT	ERTAL AND	D ATR ARE	BURNED TOG	ETHER AT	1000.00 PS				
						2705.540	0710 046	702 474 0	1852.052 1	149.821
STANS TEND T(E)	2393.249 24	150.426	2510.721	2574.620	2641.668	2705.540	4477 440	2000 173	2874.293	610.275
FLAME TEMP. T(K) FLAME TEMP. T(F)	2045 440 34	951.367	4059.898	4174.916	4295.603	-31.490	-25 184	-18.888	-12.592	-6.296
ENTHALD: KCAL/GFW	-62.960 *	-36.004	-30.300	44.015						
Cutinici i dene, a					TA ANA AT	-	ANDTHE FRO	H 1000.00	PSI TO	14.70 PSI
COMBUSTION CONDI	TIONS: THE CON	HEUSTION	PRODUCTS	FROM MAILER	IAL AND HI	R HEIGH GAR	Ano Tho The			
					1100 700	1222 107	1278.873	1070.313	729.779	394.570
FLAME TEMP. T(K)	1063.824 1	091.934	1122.740	1156.115	1636.915	1759.077	1842.571	1467.163	254.203	250.825
ALLE TENE TIES	1465 407 1	506.051	1301.334	TOFFICE	-92.726		-79.601	-65.781	-47.044	-26.820
ENTHALPY KCAL/GFW	-119.997 -	117 418	-105.844				196.200	247.743	377.725	767.660
T. VOL. GASESLITERS	91.381	98.429	107.210	118.494	100.001	134.300				
IDADES AT STON										
CONSUSTION PRODUCTS	ROUNDED OFF T	1.00	02-04							
GRAME PRODUCTS	S/100 GRAMS (6	GS/G)MATE	KIAL SUKAL							
			34.2367	30.8148	25, 8944	18.4169	6.1285	.0001	.0001	.0003
00	38.8197	36.8515	44.5042		57.6968		88.7484	98.3895	98.3860	98.3785
CO 2	37.3446	40.4660	32.1291		-		130.6923	196.3957	327.8174	722.0681
82	12.4160	21.1774	11.7346				23.3636	24.9233	24.9223	24.9194
#20	8.7764	10.1333	1.4599		.9541	.6042	.1684	.0000	.0000	.0000
H2		1.6438	. 5949			.5991	.6141	.6423	.0007	3000.
180 H.	. 5986	.1855	.1850			.1808	.1124	.0001	.0002	.0003
265	. 6301	.0318	.0334				.0200	.0001	.0002	.0004
N 050	.0163	.0169	.0176				.0169	.0002	.0003	.0002
000 (H4	.0149	.0042	.0010	.0003			.0000		1	.0007
108	.0021	.0013	.0007				.0002			.0002
11.2	.0009	.0008	.0007				and the second se			.0009
K264	.0001	.0001	.0001							.0008
520	.0001	.0001	.000							
503	.0001	.0001								
632	.0001	.0001								
52	. 0001	.0001								
582	.0001	.0001								
C4810	.0001	.0001								
C4H8	.0001	.0001								389
LHG4	.0001	.0001								
KHOL	.0001	.000							2 .6411	
KHOT	.0001	.000							2 .000.	
KO	.0001	.000						5 .000		
50	.0000	.000						.000		
63	.0000	.000	1 .000					1 000	000	.0005

	C3H8	.0000	. 0000	.0001	.0001	.0001	.0001	.0001			
	CS	.0000	.0000	.0001	.0001	.0001	.0001	.0001	.0001	.0007	.0004
	C3H6	.0000	.0000	.0001	.0001	.0001	.0001	.0001	.0001	.0002	.0004
	KH	.0000	.0000	.0001	.0001	.0001	.0001		.0001	.0002	.0004
	CNH	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0001	.0002	.0004
•	HS	.0000	.0000	.0000	.0001	.0002		.0001	.0001	.0001	.0003
	HC2	.0000	.0000	. 0000	.0000		. 0004	.0008	.0001	.0002	.0003
	S	.0000	.0000	. 0000		.0001	.0001	.0001	.0001	.0002	.0003
	02	.0000			.0000	.0001	.0001	.0001	.0001	.0002	.0003
	NHO		.0000	.0000	.0000	.0001	.0001	.0001	12.5908	47.8604	153.6181
	C2H6	.0000	.0000	.0000	.0000	.0001	.0001	.0001	.0001	.0002	.0003
	CH20	.0000	.0000	.0000	.0000	.0001	.0001	.0001	.0001	.0002	.0003
		.0000	.0000	.0000	.0000	.0001	.0001	.0001	.0001	.0002	.0003
	NC	.0000	.0000	.0000	.0000	.0001	.0001	.0001	.0088	.0002	.0003
	CHO	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0001	. 0001	.0003
	C2H4	.0000	.0000	.0000	.0000	.0000	.000i	.0001	.0001	.0001	.0003
	C2H2	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0001	.0001	.0003
	H207	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0002
	KO	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0002
	HO	.0000	.0000	.0006	.0000	.0000	.0000	.000ĉ	.0001	.0001	.0002
	0	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0002
	NH	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0002
	CH5	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001
	k	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001
	CH	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001
	C	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001
	Ca	.0000	.0000	.0000	.0006	.0000	.0000	.0000	.0000	.0001	.0001
	C2	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001

---LIST OF TOTAL COMBUSTION PRODUCTS CONSIDERED---

CG	C02	H2	H20	#2	KHG	H25	5	CSO	CH4	KCH	NH3	\$201	620	502
082	52	SG2	C4H10	C4H2	KHCZ	KHOS	XHOT	KO	SO	C3	NS	NO2	CSHS	000
03Hb	2.11	CNn	HS	K02	S	02	NHO	C2He	CH20	NO	CHO	C2H4	C2#2	H201
	80	C	推出	CH2	N	ĈĦ	C	ČL.	CS	5				

GPEN BURN---MATERIAL DEES NOT DETONATE BEFORE REACTING WITH AIR---MATERIAL=M444 HE 1050% HOWITZER

H C N D

										A/A3
			010 010	000 000	000.000	. 000.000.	000.000	54.160	-625,	.0600
WTEDELULDSEI12.6)	.06	. 200. 50	002 .01V ·	000 1201	000 000	.000.000 .	000. 000	9.900	-52.	.0419
DINITROTOLUENE - DAT	.0	06.007.	002.004.	000 .000	.000 .000	.000 .000	000 000	.990	178.	.0417
SIPHENYLAMINE - PPA	.0	11 .012 .	001 .000 .	000.000	.000 .000	.000.000	.000 .000		-727.	.0378
	A*	nn 611	000 004	000, 000	.000. 000	.000 .000	.000 .000	4.750	-121+	
IIBUTYLPHTHALATE-DEF		AA AAA	004 001	000000	.000 .000	.000.000	.000.000	.000	¥+	.:00:
AIS -(3	• V		000 1011							
									:.000	2
BRAN ATON AMOUNTS FOR	MATERIAL WEL	BHT DF - B	00.000							
BURN BIRN A REALESS AND										
	(N.) (0.1								
(+) (2.2										
3.114366 5.566473	.571514 0.3				60.000	50.000	40.000	30.000	20.000	10.000
B. MATTERIA	100.000	76.000	30.000	70.000			60.000	70.000	E0.000	96.000
	.000	10.000	20.000	30.000	40.000	50.000	80.000	14.34.		
				AURNES TO:	ETHER AT	1000.00 FS				
	JHOI INI UNI	iinine na	2 Dels 1998							
					2249.433	2396.E1B	2532.215	2623.585	2122.524	210.371
FLAME TEMP. T(+)	1678.110 1			2150.724				4260.058	3357.127	875.273
	1347.216 3	025.755	1017.076	e	3525.580	3854.873				-5.355
		-50.921	-45.264	-39.605	-33.948	-22.290	-22.632	-10.7/-		
ENTHALPS KOAL SPA										14.70 781
ange saving, angener and saving and and the		VENETTON		TONY MATER	TAL AND AT	R AFTER EX	PANDING FRO	M 1000.00	PSI TU	14./0 721
and	123331 172 U.S.	1200.100	- Ingenere							
						1031.526	1101.332	1162.882	858.285	-61.844
	755.467	752.634	949.258	742.445	973.365			1569.758		371.919
		1-1.141	1219.215	1138.802	1292.657	1397.525	1522.977			-23.225
		-==. 378	-77.735	-98.597	-83.595	-78.641	-73.707	-48.755	-51.387	
			11:.:43	125.713	:44.836	:45.955	197.551	250.131	376.755	766.760
		107.330								
		1.0	05-04							
			te im all inte	-						
					2(,1421	74.2774	24.6947	5.7571		*****
		15.1117	44,9726				75.1373	104.5434	::3.7270	117 7701
			TE.:==:		50.1120			19:.1717	117.6079	721.3391
• • •			11.7176	45, 7778	54.7724		123.4829			25.0421
1a 		1.7751	2.1112		1.133	17 380	15.4257	25.7117	25.0512	-
				1300			.0000	.0000	.0001	.0001
-								.1945	.0000	.0000
-:			1.2775	2.2401				.0301	.1001	
				.5411	.::00			.0001	.000:	.0001
			.007:							
****	6464	0001			.0001			.:::1		0011
	••••	 					.00011	.0002	.0013	.0035
.**	* * * * *	*****	*****	4.6.5	010		.0001	.0002		.000e
	** **			1.5.				.0002		.0315
**	****	* 5 + 5 4	.0301					.0002		.0005
4 · • •	* * * *	****	.3601		a 46° a 's					.000-
****		• • • •			a trid					.0004
***	* * * * *	A+ 44		A13		: .)???				
	* * * * *	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 3.6				: .000:			.3003
-11		*****						.000.	30.175:	
a : 	* * * * *								.0002	.0303.
	***				· edd					
	* * *			6 64	"e				-	
· · · · · · · · · · · · · · · · · · ·	Pape									
,100	*****	4000	P.A.*.	5 A*P	n	.000	: .000			
1	*****							: .000		
	a						-		: .0001	
****	****			6			-			
	****	.000								
-111		.000							-	
* *		A SA				11 .003	.000	0	· · · · · · · ·	

					*****		** ***	*****			
1	NH	.0000	.0000	. 2000	.0000	.0000	AAAA		3930	ene.	8 4 2 4 M
	012	.0000.	.0000	.0000	.0000	.0000	.0000	.0000	.0000	0.01	566.
	N	.0000	.0000	.0000	.0006	.0000	.0000	.0000	A367		1.00-
	Au	0000							*****	8024 #VV14	
	22	.0000	.000:	.0000.	.0000	.0000	.0000	.0000	.0000	.0001	.0001
•	S	.000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0005
	21	.0000	6666	0000						thevia	erten
		*****	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001

....

.....

		N.	H20	55	ET	CHA	NHT	CNH	C4H10	2453	53	No.	27:52	2372
	••	NHE	52Hé	Shar	ND	282	0244	2282	H201	HO	HD	-	NH	P117
14. 14.	25	0	SŁ	E										

CPEN BURN---KHIERIAL DEES NCT DEIDNAIE SEFORE REACTING WITH AIR----MATERIAL-TS4E HE 105mm HOWITIER

.

٠. .

12 展 11. co 22 1.1

: 12

•

							t.	
2090					-184 02.41		· · · · · · · · · · · · · · · · · · ·	
		000 00 00 00		1244 1244 1244 1244 1244 1244 1244 1244	01 15a			
11112 1112 1112 1112 1112 1112 1112 11		10.000			100.000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
500 000 500 000 500 000 500 000		000°04 90°00°4	.!.		XOFT EXTENS			
900, 900, 900, 900, 900, 900,		50.000 50.000						
000- 200- 000- 200- 000- 200-		(A1) 			TTY CAL T			
	AAA.	(MA) -011502 70.001 30.010			A COLORED			
	100.5	.51) 647430 20.000 20.000			1. 01000000			
200, 200, 200, 200, 200, 200, 200, 200,		600 600 600 600 600 600 600 600 600 600					3	
		10-00 10-00 11-00 11-00000000					3	
NITROCLLULCEEKCL61 NITROCLULCEEKCL61 NITROEURNIDINE ETWL CENTRALITE-EC CRV2LITE 245	ALL BLANDONG NOLA NEED				seaver verena			onnus Uysyyyyyynaliskuchy

1

.

1

12*	.0001	.0001	.0001	.0001	.0001	. 0001	.0001	1		1988-
.#13F		.0001	.0001	.0001	.0001	.0001	.0001	.0002	.0003	.0005
A1962	.0001			.0001	.0001	.0001	.0001	.0:02	.0003	.0002
24810	.0001	.0001	.0001			.0001	.0001	.0005		.0005
2472	.0001	.0001	.0001	.0001	.9992			.0002	.0003	. 0005
CH2F2-	.0001	.0001	.0001	.0001	.0001	.0001	.0001			.0005
	.0001	.0001	. 2001	.0001	.0061	.0001	.000:	.0002	.0003	
		.0001	.00011	.0001	.0001	.0001	.0001	.0002	.0003	.0005
552	.0001			.0001	.0001	.0001	.0001	.0001	.0052	.0005
NaCN	.0000	.0001	.0001		.0001	.0001	.0001	.0002	.0002	.0005
NACNA	.0000	.0001	.0001	.0031		.0001	.0001	.0002	.0002	.0005
NaCNI	.0009	.0001	.0001	.0001	.0001		.0001	.0002	.0001	.0005
CHOP	. 2000	.0001 ·	.0001	.0001	.0001	.0001		.0002	.0002	.0005
50	.0000	.0001	.0001	.0001	.0001	.0001	.0001			.0005
	.0000	.0001	.0001	.0001	.0001	.0001	.0001	.0002	.0001	
NCC	.0000	.0001	.0001	.0001	.0001	.0001	.0001	.0002	.0002	
A17			.0001	.0001	.0001	.0001	.000:	.0001	.0002	.0004
2386	.000:	.0000.	.0001	.0001	.0001	.0001	.0001	.0001	2000.	.0004
***	.0000	.0000				.0001	.0001	.0:01	.0007	.0004
	.0000	.0000	.0001	.0011			.0001	.0001	.0002	.0004
MaFt	.0000	.0000		.0001	.3031		.0001	.0001	.0:02	.0004
NaFt	.0000	.0000		.0001	.0001	.0061		.0001	.0002	. 2004
415	.0000	.0000	.0001	.0001		.0001	.0001		.0001	.0014
AINE	.0000	.0000	.0001	.0001	.0001	.0001	.0001	.2001		.0034
	.0000	.0000	.0000	.0001	.0001	.0001	.1001	.0001	.0002	
NERCE		.0001	.:000	.0001	.0001	.0000	.0001	.0001	.0001	.0004
NaHDI	.0:00		.0000	.0001	.0001	.0001	.0001	.0001	.0002	.0004
52	.0000	0000.		.0001	.0001	.000:	.0001	.0001	E000.	.0000
11=	.0000	.0000	.0000.		.:001	.0001	.0001	.0001	.0002	.0003
n a martina	.0000	.0000	.0000	. 2000		.0001	7.9177	25.5482	50.8010	103.5535
	.0000	.0000	.0000	.0000	.0001		.0001	.0001	.0002	.0003
247	.0000	.0000	.0000	.0000	.0001	. 0001		.0001	.0002	.0003
	.0000	.0000	.0000	.0000	.0001	.0001	.0001	.0001	.0002	.0003
	.0000	. 2000	0000.	.0000	. 3034	.0001	.0001		.0002	.0003
		.0000	.0000	.0000	.0001	.0001	.906é	. 9005		
8100 13 m		4444	.0001		.2007	.2011	.0001	.0001	.0001	
`•ê	1444	.0003.	.0000	.0000	0000.	.0001	.0001	.0001	.0001	.0011
	-5100 		10000		. 0000	.0001	.0001	.0001	.:00:	
	4 + 24 +	.0000		.0000	.0000	.0001	.0001	.000:	.0001	.0007
÷1+	.0000	.0001	.0000	140V.	. 2000	.0001	.:00:	****	.0001	
254	****		10000		. 20VV	.0001	.0301			.0007
			1.17	* 5 = + +	4.5° 4.5°.	1804	A 3 A 4			
113			4 1 4 2	2040		4 + 5 + 4				
111	A		20000	.1011	AAA*	.0221	.0001			
		.0000	A.A.* *	10.55			.0001			*****
	6571	Acas	10001	. 3060	10.00	.0000	.0001	0 × × + -		
11-	· · · · ·	1. V. V.	4414	11112	·	****		****	1 + + + #	
-	8 • • • • ,• • • 5		1.2.1	4444	.000	. 3001	.2000	AAP-		1 - 1 - 1
-121		.0000	6 AASA					* * * * * *		1
-1	.3030	44444 AAA*	+ 4044 1001	90.51		. 2000	.6502	6 7 V		
		8 A 1 A 2		*****	*****	.0011	17 A.S.	****		* 5 9.M 8 + + 5 M
-	4 * 1 * * 4 * * *	* * * * *			6000	****				
47 _	10000		*****	1.4.5	*****	84444 - * * *	0300			
1-1	****	****	2 * * * *			8++++ 8865	.0011	0305	- ^ ^ ·	
	* * * *	.0000	****	****		·		4-1-6- 5-AA		****
			****	4 * * * *						
-	58.61	:000.	. 2000		A.5.5.*				*****	A * * +
•	A*/ 5		40.55	* 4 4 4 * * * * *	* * * * *			14446	0.000	
	A***			.0001		10000	. 2005			

••		 	······································		9.200 77. 17.	1451	NaF 2111	NFT.	NARE VALLA	074 Valit	Nation Hitte	3 Na222	CANCODE CANON
		 ..	177 - Na ⁴ 1	7 5378%	NECHS			1	A17	1371	:::		NEFT
		 				-				an - 1 mm m	- e		
		 	ALL	211	¥."	N=-	:	211	H.	ED.	5	15.	
	-	-2	-2	-									

. OPEN BURH---MATERIAL DOES NOT DETONATE BEFORE REACTING WITH AIR---MATERIAL:CARTRIDGE CTG 103 == HE M-1 PROPELLING CHARGE

. .

н с н С

	5	6 N	û						
NTTROCELLULOSE(12.6) DINITROTOLUENE - DHT DIPHENYLAMINE - DPA DTBUTYLPHTHALATE-DBP	.008 . 011	006 .002 .010 .007 .002 .004 .012 .001 .000 .016 .000 .004 .000 .006 .001	000.000. 000.000. 000.000.	0.000.00	0. 000. 0	000.000.000 AA.000.000	85.000 10.000 1.000 4.000 .000	-625. -58. 178. -727. 0.	.0419 .0419 .0378 .0378
ATK -16	.000	.000 .000 .000	-					1.00	00
		0F 100.000							
GRAN ATOM AMOUNTS FOR									
(+) (0)	(14.) (6.)						30.000	20.000	10.000
3.066508 2.557427	.880226 3.366	344	70.00	10 60.0	<u>00 50.0</u>		70.000	20.000	96.000
WI. MATERIAL	100.000	.000 80.000			- ·	600 60.000	10.000	001011	
		.000 20.00	-						
NT. AIR COMBUSTION CONDIT			nt enousi	TOGETHER	AT 1000.0	50 PSI			
COMPLICATION CONDIT	TORS: THE MATER	RTAL AND AIR H	RE BURALD	1000000			0.0/ 777	2101.369	1296.317
			a 2201.7	91 2314.0	571 4900.		2526.737 4268.726		
FLAME TEMPL T(K)		7.100 2096.25			054 3925.	223 4154.661			
アと名言と 「モロケィート・ワイ	2967.630 313	5.380 3313.80	-			209 -22.55	-10.923	, ,,,,,,,	
FLAME TEMP. T(F)		0.776 -45.1	34 - 59.9					AA 501 TO	14.70 05
ENTHALPY KCAL/GF#				ATCOTAL ON	es atr afti	ER EXPANDING	FROM 1000	.00 951 10	1
	TTORS - THE COME	SUSTICN PRODUC	TS FROM M	RIERING NO	0			0	7 455.945
0085051108 00001	110031			007 003	.826 1052			9 955.18	6 361.301
	956.777 9	52.654 949.4				191 1556.09	1 1700.25	8 1081.73	-
FLAME TEMP, TIKE		00.177 1249.5	524 1261.			.147 -74.19)7 -69.01		
FLAME TEMP, TEP)		99.797 -94.				196.4	34 - 249.03	576.90	2 765.743
ENTRALPY REAL/GF#	103.000	06.763 115.	557 127	.793 143	1.647 164				
T. VOL. GASESLITERS	99.722	00.100					-	,	
1 11 KEN AT 270 P		1.002-04							
ເຜີ້ລະວະ ລະ ວະດາ ບໍ່ບໍ່ແຮ່ນວ່າເບິ່ນ ຊີ່ສີ່ບໍ່ບໍ່ບໍ່ເຮັ	, ROUNDLO UPP II								
-		AL SEATCRIA. (ะแห่งยัง	-					
URAME PRODUC	15/100 GRANS 16	5/ G INRICHTIC				0782 23.2	140 3.82	290 .00	
			0302 43	1958 39				346 112.5	483 112.54
66	43.4002	43.01.10	5762 43			V. 2370		139 327.7	294 151.42
C02	31.6433	34.03.5	0397 40	.1202 64		1.1.1.1.4	-	315 27.6	260 27.81
	12.3281	11.0000	VU · · ·	.2430	1.0000	0.1200 -		219 .0	000 .00
520	5,4238	3.1046		2.1954	1.9817	1.0040			.001 .01
#1	2,3021		.3725	.0000	.0000			001 .0	-1001 . Û ^s
üü	2.0353			.3359	.0446			0001 .()001 .Û
ំក្នុង	. č÷33		.0035	.0035	.0024		•••	0001 .1	0001 .0
nn3	.0024	1 • •	.0001	.0001	.0001				0003 2000
UNT	. 0001	.0001	.0001	.0001	.0001			0002 -	0003 .0
ja <u>4</u> 11	.6001	.6001	10001	.0001	.0001			0000	0002 .
Canë	.0001	.0001		,0001	1.0001			.0002	.0002
ប់ទំ	.0000	,0001	10001	.0001	.0001				.0002 -
n02	.0000	. 6001	.0001	.0001	.0001	1006			.0002
	. 6000	.0000	.0001	.0001	.0001	.0001		.0001	.0002
(3m	0.2.1.2	.0000	.0001	.0000	.0001	.0001	.0001		.0965 137
	, _0000	.0000	.0000	.0000	.0001	.0001	.0001		.0002
02	ູບໍ່ບໍ່ບໍ່ບໍ່	.0000	.0000	.0000	.0001	.0001	.0001	.0001	.0002
	.0000	.0000	_0000	.0000	.0001	.0001	.0001	.0001	.0002
028	A * 1.5		.0000		.0001	,0001	.0001	.0001	.0014
U20 UR2		1 · · ·	.0000	.0000	.0001	.0001	.0001	.0001	.0014
	.0001		.0000	.0000	20000	10001	.0001	.0001	.0001
	A.A.A.		,000ù	10000	.0000	.0001	.0001	.0001	.000.
UK (21)	A	6 5 A F	,000u	í.0000					

C2H2	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0001	.0001	.0003
K201	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0002
KO	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0005
HO	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0002
C	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0002
NH NH	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001	.0002
CH2	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001
N	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001
CH	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001
C	.0000	.0000	.0000	.0000 .	.0000	.0000	.0000	.0000	.0001	.0001
CL	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0001

---LIST OF TOTAL COMBUSTION PRODUCTS CONSIDERED---

cn.	C02	#2	H2C	82	CL	CH4	HH3	CNH	C4H10	C4H9	03	N02	C3H8	CJHE
KC2	02	NHO	C2h6	CH20	NO	CHO	C2H4	C5K5	H201	HO	HO	0	NH	CH2
			CL											

-

APPENDIX C-2

4 · · ·

TCLP RESULTS FOR ASH RESIDUE FROM BURN

-

Paga 1

ALL WARDINGER MAEN-EV MAEN-EV Westpoint, NY 10996 DESCRIPTION (2KE EXTRACT SAMPLED ON (10/25/91) DATE RECEIVED (11/04/91) PWS D (Contract # DAAG60-91) * Key Method 1 SW346/3010/3020/3015/5030 Date No Analyst PC (11/10/91) 91 * Key Method 1 SW346/3010/3020/3015/5030 Date No PC (11/10/91) 91 * Key Method 1 SW346/3010/3020/3015/5030 Date No PC (11/10/91) 91 * Key Method 1 SW346/3010/3020/3015/5030 Mailyst PC (11/10/91) 91 * Key Meth	0 - 54
Compound Detected Concentration Units Key Method Sanzens ND(0.02 mg/L 1 Samzens ND(0.02 mg/L 1 Chlorobenzene ND(0.02 mg/L 1)	0 - 54
R.E. Warringer MAEN-EV Westpoint, NY 10996 * Key Method 1 SW246/3010/3020/3015/5030 Samen- Trichlorosthene Tetrachlorosthene Chlorobenzene ND<0.02 Mag/L 1 SW240/2020 Concentestion ND<0.02 Mg/L Concentestion ND<0.02 Mg/L Concentestion ND<0.02 Mg/L Concentestion ND<0.02 Mg/L Concentestion ND<0.02 Mg/L Concentestion ND<0.02 Mg/L Concentestion ND<0.02 Mg/L Concentestion ND<0.02 Mg/L Concentestion ND<0.02 Mg/L Concentestion ND<0.02 Mg/L Concentestion ND<0.02 Mg/L Concentestion ND<0.02 Mg/L Concentestion ND<0.02 Mg/L Concentestion ND<0.02 Mg/L Concentestion ND<0.02 Mg/L Concentestion ND<0.02 Mg/L Concentestion Concentestion ND<0.02 Mg/L Concentestion Concente	
MALK-EV Westpoint, NY 10996 * Key Method 1 SW346/3010/3020/3015/5030 Samene Trishloroethene Trishloroethene Chlorobenzene ND<0.02 Mg/L 1 SW3/Lorobenzene ND<0.02 Mg/L 1 SW3/L 1	-M-7362
Westpoint, NY 10996 DATE RECEIVED : 11/04/91 PWSID : Contract # DAAG60-91 PWSID : Contract # DAAG60-91 Date No Analyst Analyzed Re 1 SW346/3010/3020/3015/5030 PC : 11/10/91 91 Support Received Units Ke Sanzens ND(0.02 mg/L 1 Tetrachloroethene ND(0.02 mg/L 1 Chlorobenzene ND(0.02 mg/L 1 Chlorobenzene ND(0.02 mg/L 1 1.4-Dictlorobenzene ND(0.02 mg/L 1	-M-7362
PWSID Contract # DAAG60-91 * Key Method Bate No 1 SW346/3010/3020/3015/5030 PC 11/10/91 SW346/3010/3020/3015/5030 PC 11/10/91 91 * Key Method Analyst Analyzed Re 1 SW346/3010/3020/3015/5030 PC 11/10/91 91 * Sw346/3010/3020/3015/5030 Mpc0.02 mg/L 1 * Sw346/3010/3020/3015/5030 Npc0.02 mg/L 1 * Sw346/3010/3020/3015/5030 Npc0.02 mg/L 1 * Sw346/3010/3020/3015/5030 Npc0.02 mg/L 1	-M-7362
Impound Retected Concentration Units Ke Swa46/3010/3020/3015/5030 PC 11/10/91 91 Concentration Units Ke Banzens ND<0.02 mg/L 1 Trichloroethene ND<0.02 mg/L 1 Chlorobenzene ND<0.02 mg/L 1 Chlorobenzene ND<0.02 mg/L 1 Units Ke	
Concentration Units Ke Sonzens ND<0.02 mg/L 1 Trichloroethene ND<0.02 mg/L 1 Chlorobenzene ND<0.02 mg/L 1 Chlorobenzene ND<0.02 mg/L 1 Chlorobenzene ND<0.02 mg/L 1 ND<0.02 mg/L 1 ND<0.02 mg/L 1	tebook ference
SenzeneND<0.02mg/L1TrichloroetheneND<0.02	-229-054
SenseneND<0.02	
TrichloroetheneND<0.02mg/L1TetrachloroetheneND<0.02	·말 *
Initialion det heneND<0.02mg/L1Tetrachion det heneND<0.02	
TetrachloroetheneND<0.00mg/L1ChlorobenzeneND<0.00	
Chlorobenzene ND<0.02 mg/L 1 1.4-Dichlorobenzene ND<0.02 mg/L 1	
1.4-Ultriorobenzene ND<0.02 mg/L 1	
NDKO_02 maxima	
ND<0.02 ma/L 1	
waroon (estachlotide ND<0.02 ma/L (
NDCO_02 ma/L 1	
Methyl ethyl ketore NDCO.10 mg/L 1	

For questions regarding this report, please call and ask for Linda Shoemaker, Manager, Customer/Technical Services,

The reported concentrations are those in the leachate resulting from the extraction procedure. This material X KIS NOT Loxic APPROVED BY according to EPA 1311 for the listed analytes.

MACAGER

00 1

The information in this report is accurate to the best of our knowledge and ability, in no event shall our liability exceed The sast of mase services. Your samples will be discarded at er 14 days unless we are advised otherwise.

Y LAB	PA LAB	NJ LAB	MA LAE		
10250	= 2918A	# 70100		ORIGINAL	RI LAE

EPA LAE

NVLAE

LAB SAMPLE ID : 40862

U.S.M.A. Westpoint R.E. Warringer MAEN-EV Westpoint, NY 10996 DATE : Nov 18, 1991

SAMPLE SOURCE	RESIDUE FROM GUN POWDER
ORIGIN	: 40861
DESCRIPTION	TCLP EXTRACT
SAMPLED ON	: 10/25/91
DATE RECEIVED	: 11/04/91
PWS ID	Contract # DAAG60-91-M-7362

AWALYSIS	RESULT	ONITS	DATE	ANALYSIS DONE BY	-
RETROD 3270					
Pyridine	ND<0.1	ng/l	11/11/91	LAB ID 10145	
1,4-Dichlorobenzene	ND<0.05	ng/l			
o-Cresol	ND<0.1	mg/l			-
a,p-Cresol	ND<0.1	mg/l			•
<i>Bexachloroethane</i>	ND<0.05	ng/1			
Nitrobenzene	ND<0.05	ng/I			
Bexachlorobutadiene	ND<0.05	#g/1			
2,4,5-Trichlorophemol	ND<0.1	ng/l			
2,4,5-Trichlorophenol	ND<0.1	ng/l			
2,4-Dinitrotoluene	ND<0.05	#g/1			,
lexachlorobenzene	ND<0.05	mg/1			
Pentachlorophenol	ND<0.2	mg/I			

For questions regarding this report, please call and ask for Linda Shoemaker, Manager, Customer/Technical Services.

cc :

APPROVED BY

The information in this report is accurrite to the best of our knowledge and curlits in the event shall our hability excluses the cost of chece services. Your pamples will be discorded after 14 days whese we circulatised otherwise.

Y LAB	PA LAB	NU LAB	MALAB
10252	# 68180	# 7016R	# AACCOO46

ORIGINAL

SILAE EPALAB

NVL-F

LAB SAMPLE ID : 40852

DATE : Nov 14, 1991

U.S.M.A. Westpoint R.E. Warringer MAEN-EV Westpoint, NY 10996

SAMPLE SOURCE	PECTORE FOOM CHINA
ORIGIN	RESIDUE FROM GUN POWDEL 40861
DESCRIPTION	TCLP EXTRACT
SAMPLED ON	10/25/91
DATE RECEIVED	11/04/91
PWS ID	: Contract # DAAG60-91-M-7362

Analysis Performed Arsenic	Result ND<1.22	<u>Doits</u> ng/L	Baxinum Contaminant Level 5.0	Date Analyzed 11/11/91	Rethod EPA 5010	Notebook Reference 91-230-3	
Barium	0.040	ng/L	100.0	11/11/91	EPA 5010	91-230-3	
Cadmium	0.134	mg/L	1.0	11/11/91	EPA 6010	91-230-3	
Chromium	ND<0.300	mg/L	5.0	11/11/91	EPA 5010	91-230-3	
Lead	497	mg/L	5.0	11/11/91	EPA 6010	91-230-3	
Nercury	ND<0.02	ng/L	0.2	11/06/91	EPA 7470	91-081-11	
Selenium	ND<0.700	ng/L	1.0	11/11/91	EPA 6010	91-230-3	
Silver	ND<0.060	mg/L	5.0	11/11/91	EPA 5010	91-230-3	

The reported concentrations are those in the leachate resulting from the extraction procedure. This material IS 7 13 HOT toxic according to EPA 1311 for the listed analytes.

MA LAE

110000.

w questions regarding this report, please call and ask for Linda Shoemaker, Manager, Customer/Technical Services. cc :

MED AND AN AN

The information in this report is accurate to the best of nurshowledge and ability on no event shall our liability exceed the cost of these services. Your semples this be distincted attent of General Mess we are attensed otherwise.

	PALAE	NJ LAZ
0252	# 58180	# 73162

ORIGINIAL

R. 148 EPA LAS

long

MANAGER

NULLI

LAB SAMPLE ID : 40861

DATE : Nov 7, 1991

U.S.M.A.	Westo	oint
R.E. Warr	inger	
MAEN-EV		
Westpoint	. NY	10996

Printer.

SAMPLE SOURCE	RESIDUE FROM GUN POWDER
ORIGIN .	92-54
DESCRIPTION :	GRAB
SAMPLED ON :	10/25/91
DATE RECEIVED	11/04/91
PWS ID	Contract # DAAG60-91-M7362

Analysis Performed TCLP Extraction	Result *	Naits	Date Analyzed 11/05/91	Nethod EPA 1311	Notebook Reference 91-158-119	
ZHE Extraction	*		11/06/91	EPA 1311	91-111-25	
t Total Solids	100	percent	11/05/91	EPA 1311	91-158-119	

or questions regarding this report, please call and ask for Linda Shoemaker, Manager, Customer/Technical Services.

cc :

APPROVED SY

plan

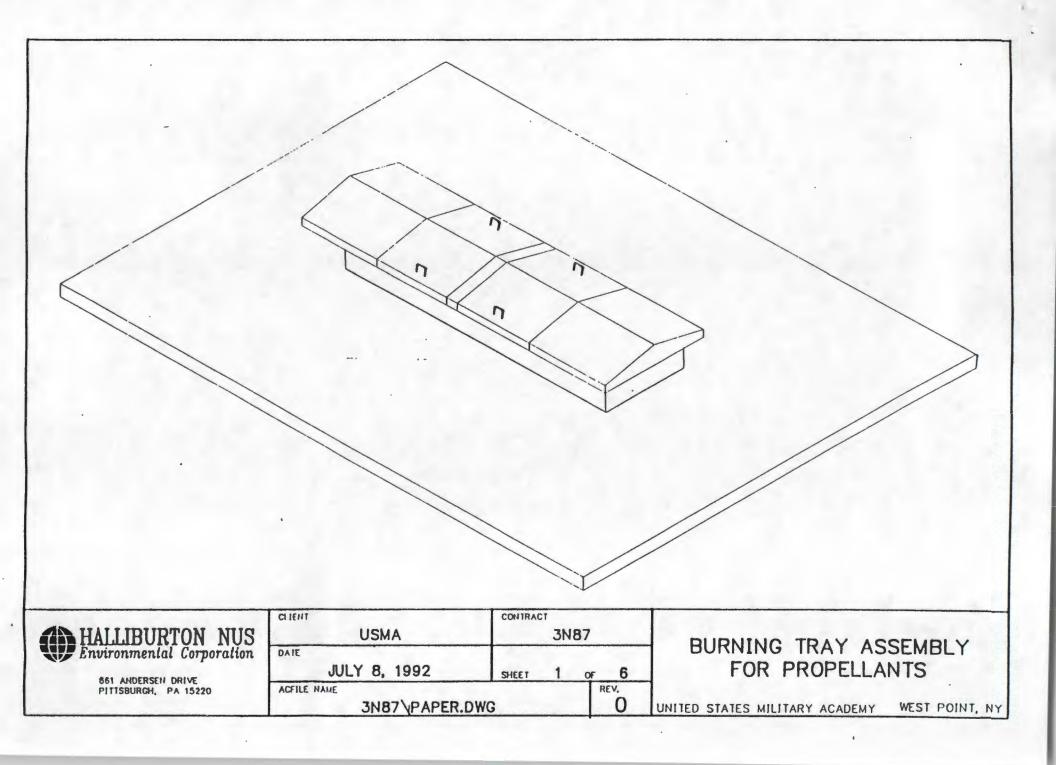
MANAGER

MULLER.

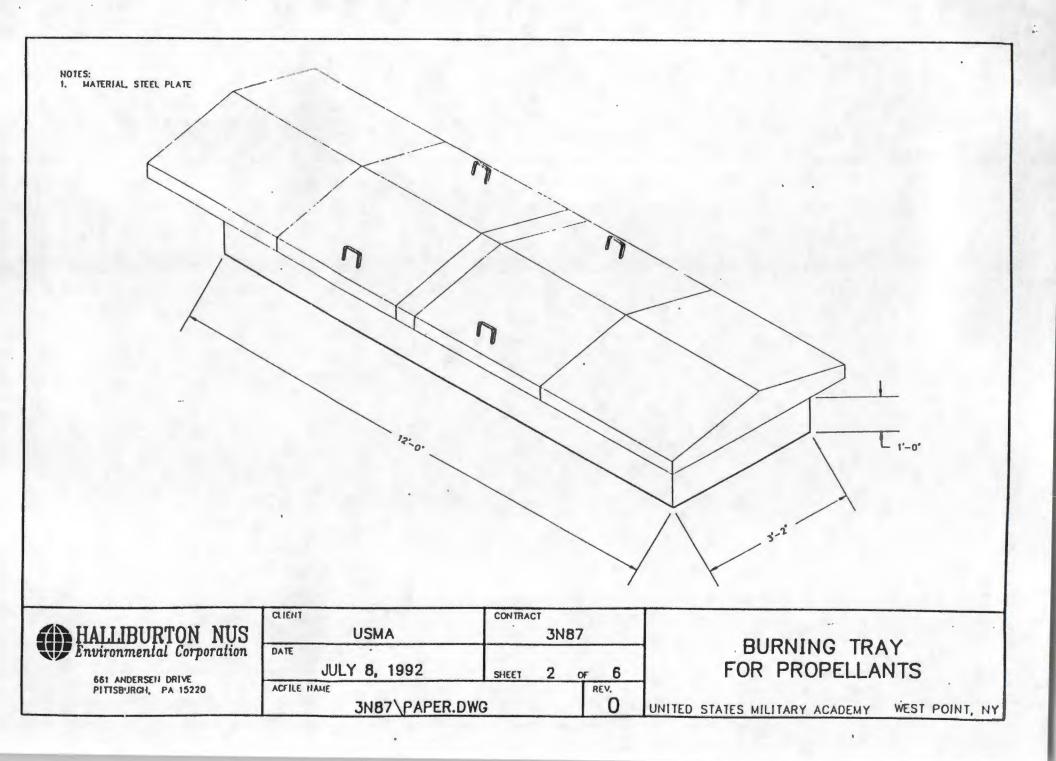
1969

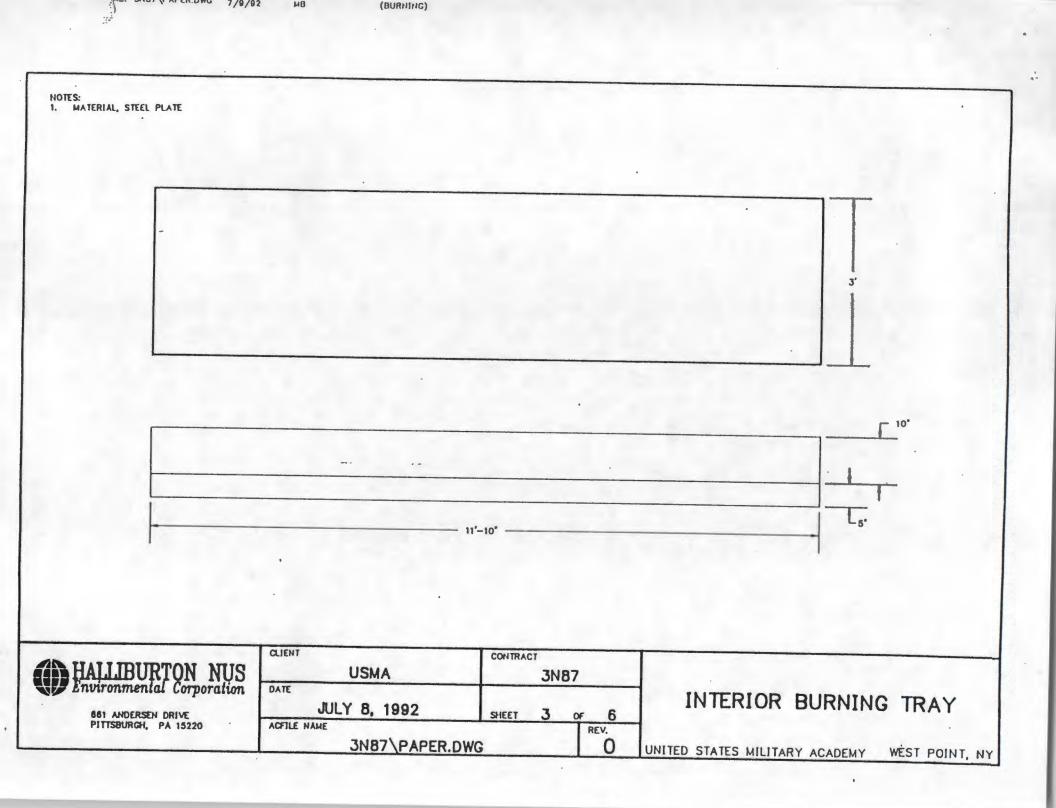
The information in this report is accurate to the best of our knowledge and obility in no event shall our liability exceede the cost of these services. Your samples will be discarded after 14 days unless we are advised otherwise.

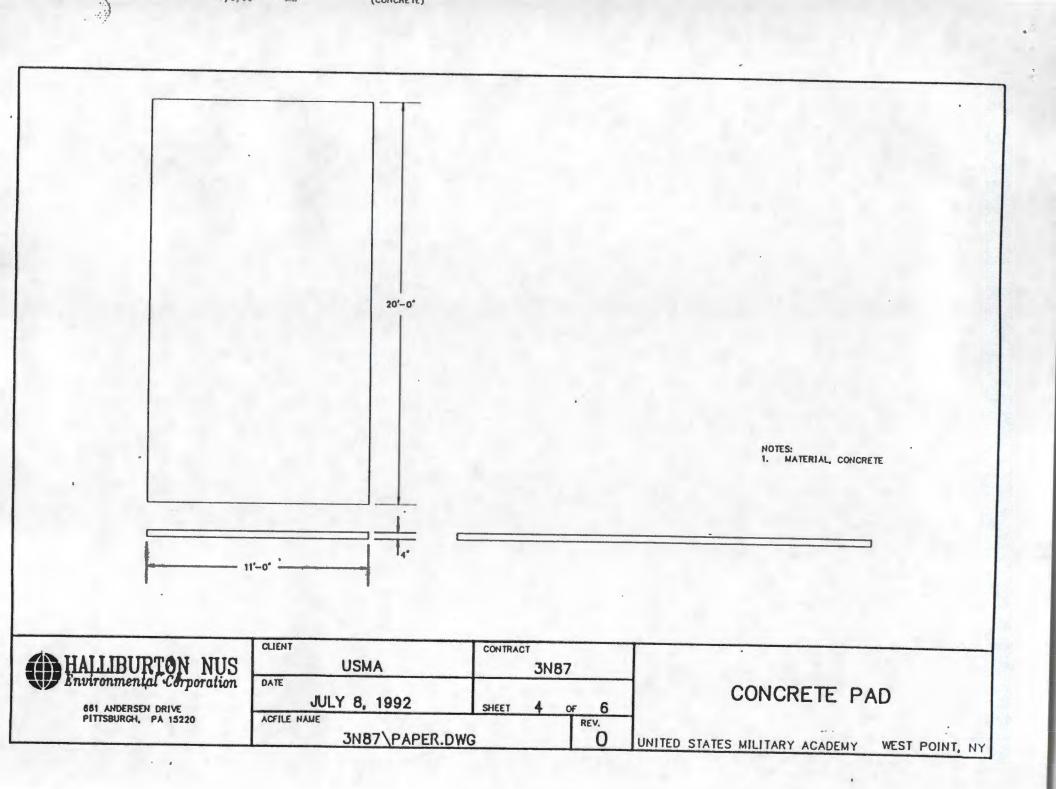
 LAB
 PA LAB
 NJ LAB
 MA LAB
 RI LAB
 EPA LAB

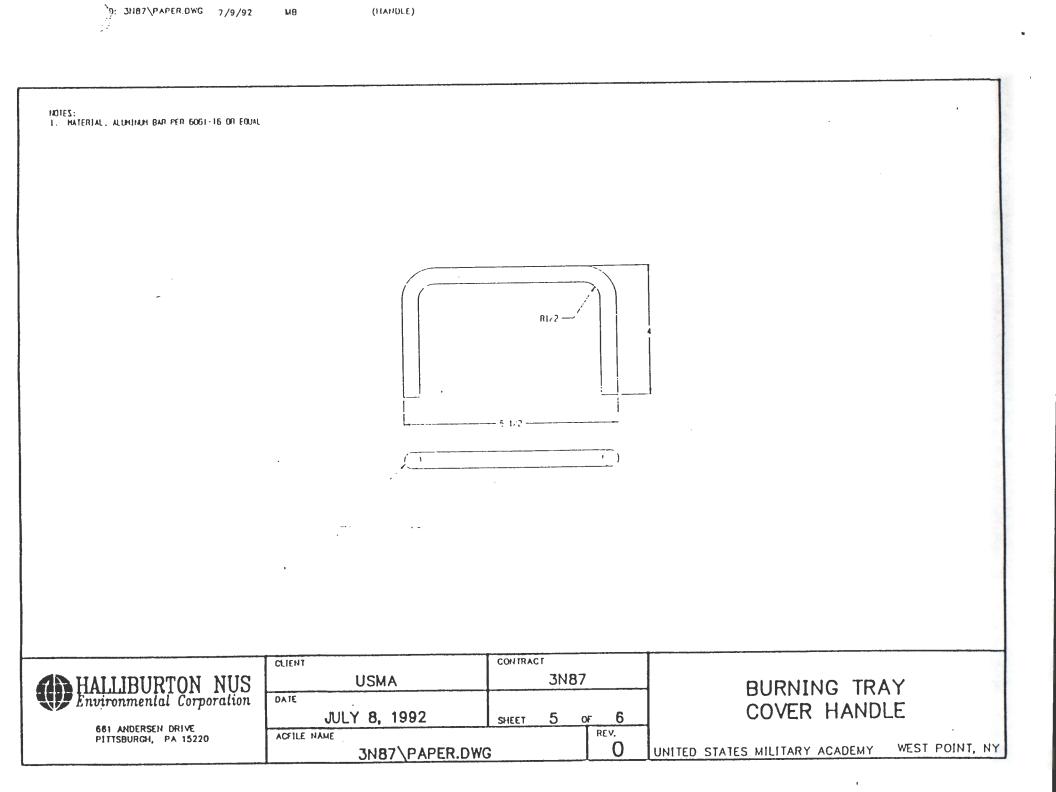

 10252
 # 68180
 # 73168
 # AA000046
 ORIGINAL
 # AAL-049C3
 # NY 033

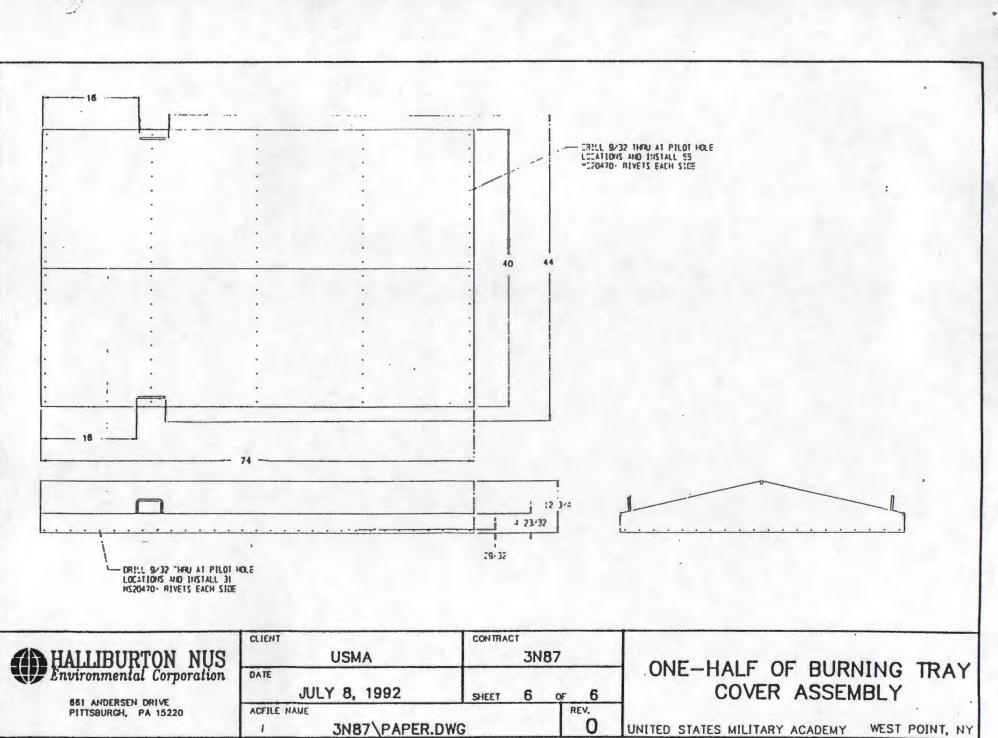
APPENDIX D-1


· ····


BURN ASSEMBLY DRAWING







more for merene 1/8/85 MU COMPUTER PREDICTIONS OF POLLUTION PRODUCTS FROM OPEN BURN AND OPEN DETONATION OF NAVY EXPLOSIVES AND PROPELLANTS

· · ·

EDWARD E. BAROODY NAVAL SURFACE WEAPONS CENTER/WHITE OAK

and

IVAN L. TOMINACK HEAD, ORDNANCE ENVIRONMENTAL SUPPORT OFFICE NAVAL ORDNANCE STATION, INDIAN HEAD, MD

JANUARY 1987

APPENDIX F-1

USMA FIRE DEPARTMENT EQUIPMENT LIST

- Andrewski

COMPARTMENT 1	1 - 6" Hard Suction Strainer
	2 - Hose Straps
	1 - Manhole Hook
	2 - 4" Spanner Wrenches
	2 - 2-1/2" Spanner Wrenches
	1 - Hydrant Wrench
(187)	1 - Rubber Mallet
COMPARTMENT 2	1 - Air Pack
	1 - Manhole Hook
	1 - Wire Cutter
	1 - Bolt Cutter
	1 - Underground Hyd Wrench
COMPARTMENT 3	3 - 2-1/2" Dbl Females
•	2 - 2-1/2" Dbl Males
	2 - 2-1/2" Nozzles
	1 - 1-1/2" Nozzle
	1 - Bressnen Distributor
	1 - Chimney Nozzle
	1 - Master Stream Set (Straight)
COMPARTMENT 4	4 - Air Pack Bottles
COMPARIMENT 5	1 - 4" Stortz to 2-1/2" Gated Manifold
	4 - 1-1/2" Dbl Males
	5 - 1-1/2" Dbl Females
	1 - 50' Section 2-1/2" Hose
COMPARIMENT 6	1 - Smoke Ejector/Adaptor
	1 - Ejector Hanging Bracket
	1 - Triple Twist

á-

COMPARTMENT 7	1 - Standpipe Pack
	1 - 2-1/2 Gal. AFFF Ext.
	1 - Box Road Flares
	1 - Sprinkler Kit
	1 - Closet Hook
	1 - Hose/Air Inflation Device
COMPARTMENT 8	1 - Standpipe Adaptor Bag
	1 - 2-1/2" Gal. Water Ext.
	1 - Dry Chemical Ext.
	1 - 10 lb. CO ₂ Ext.
	1 - Tool Box
	1 - 50' Utility Rope
COMPARTMENT 9	1 - 5 Gal. Can of Speedi Dry
	2 - 5 Gal. Can of AFFF
	1 - Foam Eductor
	1 - 4" Hose Roller

Dated: 9/18/90

REAR MIDDLE COMPARTMENT ABOVE WHEEL WELL	<pre>1 - 2-1/2" 250 GPM Variable Nozzle 2 - 1-1/2" 250 GPM Variable Nozzle 2 - 2-1/2" x 1-1/2" x 1-1/2" Gate</pre>
TOP COMPARTMENT REAR OF PUMP PANEL	<pre>1 - 1-1/2" Akron Pistol Grip Home Made Nozzle 1 - 4.5 Scott Pak 1 - Lifeguard</pre>
BOTTOM COMPARTMENT REAR OF PUMP PANEL	<pre>1 - Bileguard 1 - 4" to 2-1/2" x 2-1/2" x 2-1/2" Manifold 1 - Wooden Wheel Chock 1 - Hose Roller 1 - Hydrant Wrench 1 - 100' 3" Hose</pre>
LEFT FRONT COMPARTMENT	<pre>2 - Spanner Mounted on Interior of Door 2 - 4-1/2" Female x 4" Female 1 - 4-1/2" Intake Cap 1 - 2-1/2" Female to 2-1/2" Male Gate 1 - 1-1/2" 250 GPM Variable Nozzle 2 - 1-1/2" x 1-1/2" Double Female 1 - 1-1/2" x 1-1/2" Double Male</pre>

ENGINE 5 - INVENTORY 1000 GPM PUMP

and the second and the

REAR STEP AREA	1 - 2-1/2" Gallon AFFF Ext.	
	<pre>1 - 2-1/2" x 1-1/2" x 1-1/2" Gated Wye Mounted to Discharge #7</pre>	
	<pre>1 - Canvas Hydrant Bag Containing: • 2 - 4" Spanner Wrenches • 1 - Hydrant Wrench • 3 - 4" x 4" Stortz • 2 - Hose Straps • 1 - 18" Pipe Wrench</pre>	
HOSE REEL COMPARTMENT	1 - Short Spade	
	1 - Hose Reel Manual Crank Handle	
	1 - 1-1/2" Variable Nozzle on 200'	
	1 - 1" Booster Line	
	1 - Hose Clamp Mounted	
LEFT REAR TOP COMPARTMENT	4 - 4.5 Scott Bottles	
	1 - Adjustable Rod for Hanging Exhaust Fans	
LEFT REAR LOWER COMPARTMENT	1 - Electric Reel	
	1 - Extension Cord 110V Twist	
	1 - Exhaust Fan (Electric) with Twist 110V Plug	
	1 - 110 Standard to 110 Twist	
	1 - 110V Twist to 110 Standard	
	1 - Electric Junction Box	
FRONT RIGHT COMPARTMENT	1 - 5/8" Line	
	1 - 1/2" Line	
	1 - Blue Tarp	
	1 - Box Containing Sprinkler Heads, Clamps, Chocks, and Various Wrenches	
	1 - Canvas Bag Containing Lineman Gloves	
	1 - Wooden Box Containing Flares	
	1 - Burlap Bag Containing Hose Inflation Equipment for Water or Ice Rescue	

5 12 4

NIDDLE RIGHT COMPARTMENT	1 - 15 lb. CO, Extinguisher
	1 - 2-1/2 Gal. AFFF Ext.
	1 - 10 lb. Dry Powder Ext.
	1 - 2-1/2 Gal. Pressurized Water Ext.
a contraction of the second se	1 - 2-1/2 Gal. Biosolve Ext.
REAR RIGHT COMPARTMENT	1 - Portable 0,
	1 - First Aid Kit
	1 - Ambulance Bag Kit
	1 - Bottle Oxygen
	1 - 5 Gal. Can Speedi Dry
MOUNTED ON RIGHT SIDE	1 - 16' Extension Ladder
	1 - 12' Roof Ladder
	1 - Attic Ladder
•	1 - 12' Pike Pole
	1 - Sheet Rock Hook
FRONT BUMPER AREA	1 - Stortz 4" to 4-1/2" to 4-1/2" x 4"
	1 - Stortz 4" on Intake
	<pre>1 - Pony Length 4" with Stortz Couplings</pre>
	1 - 4" Spanner
	1 - Rubber Mallet
	1 - Hydrant Wrench in Tray
	1 - Hydrant Wrench in Holder on Bumper
BEHIND CAB JUMP SEAT AREA/DRIVER'S	1 - Scott Pak
	1 - Lifeguard
	1 - Handlight
	1 - Flat Hand Ax
	1 - Halogen Tool
	1 - Standpipe Pack

BEHIND CAB JUMP SEAT/PASSENGER SIDE	1 - Scott Pak	
	1 - Lifeguard	
	1 - Handlight	
	1 - Pik Head Ax	
CANVAS BAG CONTAINING STANDPIPE TOOLS & FITTINGS	1 - 1-1/2" Adjustable Nozzle	
TOOLS & FITTINGS	2 - 1-1/2" x 1-1/2" Reducer	
	1 - 1-1/2" x 1-1/2" Double Female	
	1 - 1-1/2" x 1-1/2" Double Male 2 - Standpipe Wrenches	
	1 - 14" Pipe Wrench	
	1 - 1-1/2" Female to 1-1/2" Male Reducer - Brass	
	1 - 2-1/2" Female to 2-1/2" Male Reducer - Brass	
	2 - Spanner Wrenches	
	1 - 2-1/2" to 1-1/2" x 1-1/2" Gated Wye	

FRONT LEFT COMPARTMENT	2 - 2 - 1/2" Double Female	
	1 - 2-1/2" Male Cap	
	1 - Hack Saw	
	1 - Closet Hook	
	1 - Ripping Bar	
	1 - Large Bolt Cutter	
	1 - Manhole Hook	
	1 - Gas Shutoff Key	
	1 - Hydrant Ratchett Wrench	
	1 - Hydrant Wrench	
	1 - Rubber Mallet	
	1 - Wire Cutter	
	4 - 4" Spanner with Mounting	
	1 - Spanner	
•	1 - Double End Box Wrench	
	1 - Tool Box Containing 1 - 4' Stortz Intake 200 PSI	
CAB AREA	1 - 2-1/2 lb. Purple K Extinguisher	
	1 - Handlight	
	1 - 4.5 Scott Pak	
	1 - Lifeguard	
· ·	1 - Set Rubber Gloves	
	1 - Pair Goggles	
	1 - Roll Barrier Tape	
	1 - Hazmat Book	
	2 - Sets Keys	
	1 - Seatbelt Cutter	
HOSE BED AREA	3 - Garden Rakes	
	1 - Brush Rake	
	1 - 2 - 1/2" x $2 - 1/2$ " x $1 - 1/2$ " Gate	

Dated: 05/15/92 -

APPENDIX B

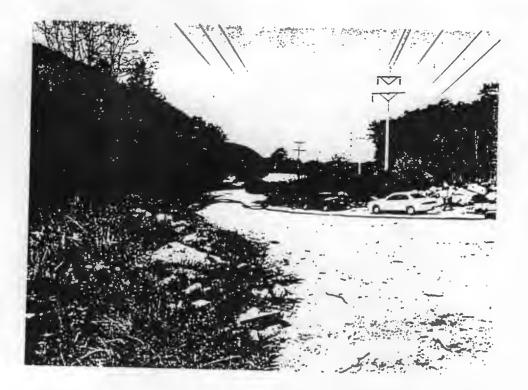
PHOTOGRAPHS TAKEN IN THE OB AREA MAY 20, 1992

1.1

. . .

INDEX TO APPENDIX B

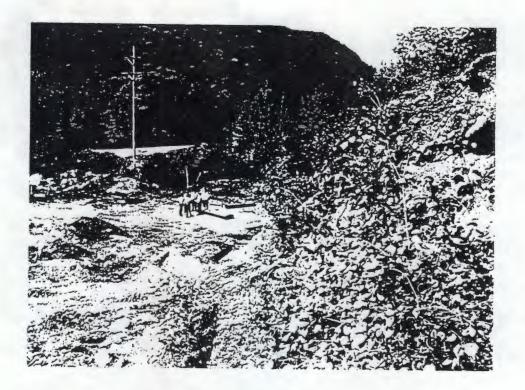
Photograph Number	Description
AB-1	Access Road, locked gate, and warning sign
AB-2	Access Road inside gate, note warning sign and surface water drainage
AB-3	West Grove Road adjacent to OB site
AB-4	West Grove Road upgradient of OB site
AB-5	West Grove Road 200 feet southwest of OB site. Note flow from spring upgradient of OB site.
AB-6	General view of OB site's parking area and pathway to pad. Note rubble pile near center of picture
AB-7	View of OB pad and Burn Pan from top of high wall
AB-8	View of OB pad and Burn Pan from gravel pile. Note flow from spring crossing site.
AB-9	View of OB pad and Burn Pan from parking area. Note flow rom spring crossing site
AB-10	Closer view of OB pad and Burn pan from parking area
AB-11	Close-up view of OB pad and Burn Pan looking northeast toward wooded area
AB-12	Close-up view of OB pad and Burn Pan looking southeast toward high wall
AB-13	Close-up view of rubble pile. Barricade is moved to block roadway when OB activity begins.
AB-14	Close-up of pooled water along eastern edge of OB site
AB-15	Close-up of pooled water in wooded area adjacent to OB site
AB-16	Spring flow originating in southwest corner of OB site, flowing north across site
AB-17	Spring flow in southwest corner of OB site, near spring
AB-18	Spring flow in southwest corner of OB site, near its point of origin
AB-19	Close-up of rock strata along high wall. Note 83

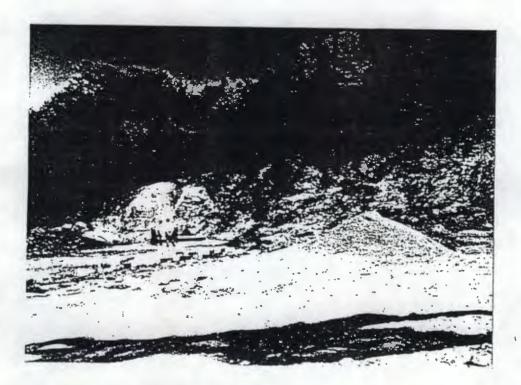

x 11 inch notebook sheet for size comparison

AB-1 - Access Road, Locked Gate, and Warning Sign

AB-2 - Access Road Inside Gate - Note warning sign and surface water drainage.

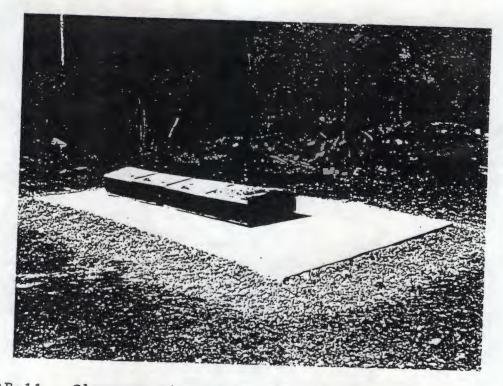
AB-3 - West Grove Road adjacent to OB Site

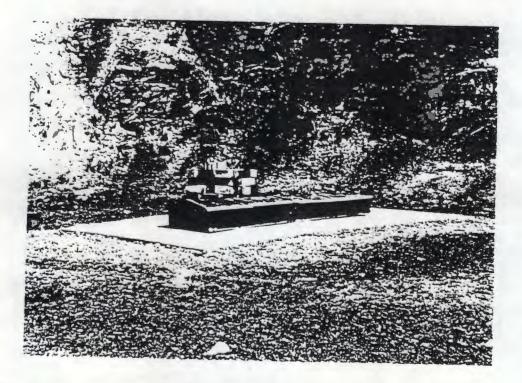

AB-4 - West Grove Road upgradient of OB Site


AB-5 - West Grove Road 200 feet southwest of OB Site. Note flow from spring upgradient of OB Site.

AB-6 - General view of OB Site's parking area and pathway to pad. Note rubble pile near center of picture.

AB-7 - View of OB Pad and Burn Pan from top of highwall.

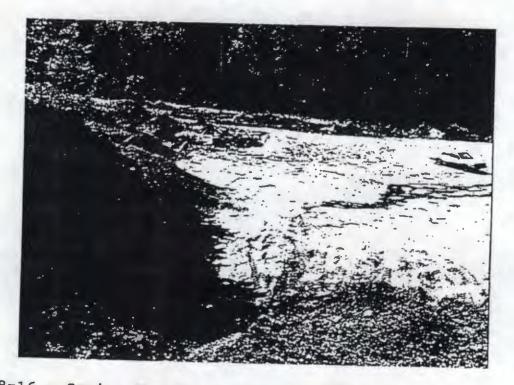

AB-8 - View of OB Pad and Burn Pan from gravel pile. Note flow from spring crossing site.


AB-9 - View of OB Pad and Burn Pan from parking area. Note flow from spring crossing site.

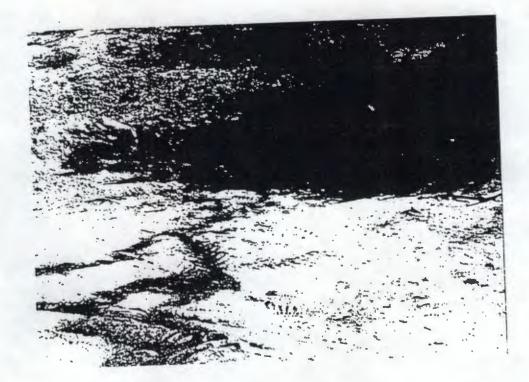
AB-10 - Closer vièw of Pad and Burn Pan from parking area.

AB-11 - Close-up view of OB Pad and Burn Pan, looking northeast toward wooded area.

AB-12 - Close-up view of OB Pad and Burn Pan, looking southeast toward high wall.


AB-13 - Close-up view of rubble pile, barricade is moved to block roadway when OB activity begins.

AB-14 - Close-up of pooled water along eastern edge of OB site.


AB-15 - Close-up of pooled water in wooded area adjacent to OB site.

AB-16 - Spring flow originating in southwest corner of OB site and flowing north across site.

AB-17 - Wall along southwest corner of OB site near spring.

AB-18 - Spring flow in southwest corner of OB site near its point of origination.

AB-19 - Close-up of rock strata along highwall. Note: 8½ x 11 inch notebook sheet for size comparison.