Assembly-Line Balancing

Assembly-Line Balancing

- Objective is to minimize the imbalance between machines or personnel while meeting required output
-Starts with the precedence relationships
- Determine cycle time
- Calculate theoretical minimum number of workstations
- Balance the line by assigning specific tasks to workstations

Assembly Line Balancing

1. Precedence diagram: circles=tasks, arrows show the required sequence.
2. Determine cycle time:

$$
C=\frac{P}{D}=\frac{\text { production /time_unit }}{\text { demand(out put)/time_unit }}
$$

3. Determine required workstations (theoretical minimum)

$$
N_{t}=\frac{T}{C}=\frac{\sum \text { task_times }}{\text { cycle_time }}
$$

4. Set rules for assigning tasks (number of following tasks, longest task time)

Assembly Line Balancing

5. Assign tasks to first workstation, using rules and staying within cycle time. Repeat for following workstations until all tasks are assigned.
6. Evaluate line efficiency:

$$
E=\frac{T}{N_{a} C} ; N_{a}-\text { actual_workstations }
$$

7. Rebalance if efficiency is not satisfactory.

A Flow Line for Production or Service

Flow Shop or Assembly Line Work Flow

A U-Shaped Production Line

Advantage: more compact, increased communication facilitating team work, minimize the material handling 6

Wing Component Example

TABLE 9.2	Precedence Data for Wing Component		
TASK	ASSEMBLY TIME (MINUTES)	TASK MUST FOLLOW TASK LISTED BELOW	
A	10	-	This means that tasks B and E cannot be done until task A has been completed
B	11	A	
C	5	B	
D	4		
E	11	A	
F	3	C, D	
G	7	F	
H	11	E	
1	3	G, H	
Total time 65			

Wing Component Example

Wing Component Example

TABLE 9.3

Layout Heuristics That May Be Used to Assign Tasks to Workstations in Assembly-Line Balancing

1. Longest task time	From the available tasks, choose the task
2. Most following tasks	From the available tasks, choose the task with the largest number of following tasks
3. namkeu postiolial weight	which the sum of following task times is the longest
4. Shortest task time	From the available tasks, choose the task with the shortest task time
5. Least number of following tasks	From the available tasks, choose the task with the least number of subsequent tasks

Wing Component Example

Figure 9.13
480 available mins per day
40 units required
Cycle time $=12 \mathrm{mins}$

Wing Component Example

TABLE 9.2	Precedence Data for Wing Component	
TASK	ASSEMBLY TIME (MINUTES)	TASK MUST FOLLOW TASK LISTED BELOW
A	10	-
B	11	A
C	5	B
D	4	B

480 available mins
per day
40 units required
Cycle time $=$ Minimum workstations$=5.42$ mins

Figure 9.12

Step 1: Identify Tasks \& Immediate Predecessors

Example 10.4 Vicki's Pizzeria and the Precedence Diagram			
		Immediate	Task Time
Work Element	Task Description	Predecessor	(seconds
A	Roll dough	None	50
B	Place on cardboard backing	A	5
C	Sprinkle cheese	B	25
D	Spread Sauce	C	15
E	Add pepperoni	D	12
F	Add sausage	D	10
G	Add mushrooms	D	15
H	Shrinkwrap pizza	E,F,G	18
I	Pack in box	H	15
		Total task time	165

Calculations

- Step 2: Determine output rate
- Vicki needs to produce 60 pizzas per hour
- Step 3: Determine cycle time
- The amount of time each workstation is allowed to complete its tasks

Cycle time $($ sec. $/$ unit $)=\frac{\text { available time }(\mathrm{sec} . / \mathrm{day})}{\text { desired output }(\text { units } / \mathrm{hr})}=\frac{60 \mathrm{~min} / \mathrm{hr} \times 60 \mathrm{sec} / \mathrm{min}}{60 \mathrm{units} / \mathrm{hr}}=60 \mathrm{sec} . / \mathrm{unit}$

- Limited by the bottleneck task (the longest task in a process):

Maximum output $=\frac{\text { available time }}{\text { bottleneck task time }}=\frac{3600 \mathrm{sec} . / \mathrm{hr} .}{50 \mathrm{sec} . / \mathrm{unit}}=\mathbf{7 2}$ units $/ \mathrm{hr}$, or pizzas per hour

- Step 5: Assign tasks to workstations
- Start at the first station \& choose the longest eligible task following precedence relationships
- Continue adding the longest eligible task that fits without going over the desired cycle time
- When no additional tasks can be added within the desired cycle time, begin assigning tasks to the next workstation until finished

Workstation	Eligible task	Task Selected	Task time	Idle time
1	A	A	50	10
	B	B	5	5
2	C	C	25	35
	D	D	15	20
	E, F, G	G	15	5
3	E, F	E	12	48
	F	F	10	38
	H	H	18	20
	I	I	15	5

Calculation

- Step 6: Compute efficiency and balance delay
- Efficiency (\%) is the ratio of total productive time divided by total time
Efficiency (\%) $=\frac{\sum \mathrm{t}}{\mathrm{NC}}=\frac{165 \mathrm{sec} \text {. }}{3 \text { stations } \times 60 \mathrm{sec} .}(100)=91.7 \%$
- Balance delay (\%) is the amount by which the line falls short of 100\%

Balance delay $=100 \%-91.7 \%=8.3 \%$

Sample Problem

Task	Imm. predecessor	Task time (sec)
A	None	55
B	A	30
C	A	22
D	B	35
E	B, C	50
F	C	15
G	F	5
H	G	10
	TOTAL	222

- Draw precedence diagram
- Determine cycle time-demand $=50$ units $/ \mathrm{hr}$
- Theoretical minimum no. of work stations
- Assign tasks to workstations using cycle time
- Efficiency and balance delay of line?
- Bottleneck?
- Maximum output?

Example 5 Golf Club mfg/assy firm

- Customer demand requires production volume of 24 finished clubs in an 8 hour shift

task	task description	operation time (min)	must follow
A	inspection	5	-
B	trim the shaft to length	4	A
C	weight the head	13	A
D	finish the shaft	9	B
E	gel coat the head	7	C
F	assemble the head to the shaft	6	D, E
	total work content	44	

- How often does a club need to come off the line in order to meet the customer demand required?
- Exclude initial start-up
- Cycle time $=(480 \mathrm{~min} / \mathrm{shift}) /(24$ clubs $/ \mathrm{shift})=20 \mathrm{~min} / \mathrm{club}$
- Takt time (for this example, same as cycle time as defined above)
- Takt time = available work time/customer demand
- Aligns output of a process with customer demand (or the pull of the customer)
- "Takt" is a German word referring to the rhythm or beat of music
- Theoretical minimum number of workstations for this operation
- Total work content/cycle time
- $44 \mathrm{~min} / 20 \mathrm{~min}$ per workstation $=2.2$ workstations $\rightarrow 3$ workstations

stations	1	2	3
tasks	A, C	$\mathrm{E}, \mathrm{B}, \mathrm{D}$	F
time per club	18 min	20 min	6 min
time available per unit	20 min	20 min	20 min
idle time	2 min	0 min	14 min

- Efficiency of the line
= (total work content)/(\# of workstations x cycle time)
$=(44 \mathrm{~min}) /(3$ workstations $\times 20 \mathrm{~min} /$ workstation $)=0.733$ (73.3\%)
- Where is the bottleneck?
- Capacity fully utilized
- Work-in-process inventory builds up in front of workstation 2

Example 6
 Balancing manufacturing line

- For a manufacturing line, the data below on the task precedence relationships exist (assume the tasks cannot be split)

task	performance time (min)	must follow
A	3	-
B	6	A
C	7	A
D	2	A
E	2	A
F	4	C, B
G	5	C
H	5	$\mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}$

Example 6 continue

- Construct the precedence diagram for the tasks.
- What is the theoretical minimum cycle time?
- To balance the line to the cycle time determined above, what is the minimum number of work stations?
- Use the "longest-operation-time" rule to balance the line to the theoretical minimum cycle time determined above.
- Calculate the efficiency of the balanced line.

