Assembly-Line Balancing

Assembly-Line Balancing

- Objective is to minimize the imbalance between machines or personnel while meeting required output
- ► Starts with the precedence relationships
 - ► Determine cycle time
 - Calculate theoretical minimum number of workstations
 - Balance the line by assigning specific tasks to workstations

TABLE 9	.2 Precedence D	Precedence Data for Wing Component		
TASK	ASSEMBLY TIME (MINUTES)	TASK MUST FOLLOW TASK LISTED BELOW		
А	10	_	This means that	
В	11	A	tasks B and E cannot be done until task A has been completed	
С	5	В		
D	4	В		
E	11	A		
F	3	C, D		
G	7	F		
Н	11	E		
I	3	G, H		
	Total time 65			

• ·	euristics That May Be Used to Assign Tasks to
Worksta	tions in Assembly-Line Balancing
1. Longest task time	From the available tasks, choose the task with the largest (longest) task time
2. Most following tasks	From the available tasks, choose the task with the largest number of following tasks
э. капкео positional weight	which the sum of following task times is the longest
4. Shortest task time	From the available tasks, choose the task with the shortest task time
5. Least number of following tasks	From the available tasks, choose the task with the least number of subsequent tasks

Task	Imm. predecessor	Task time (sec)
Α	None	55
В	A	30
С	A	22
D	В	35
E	B, C	50
F	С	15
G	F	5
Н	G	10
	TOTAL	222

Draw precedence diagram

- Determine cycle time—demand = 50 units/hr
- Theoretical minimum no. of work stations
- Assign tasks to workstations using cycle time
- Efficiency and balance delay of line?
- Bottleneck?
- · Maximum output?

Example 5 Golf Club mfg/assy firm • Customer demand requires production volume of 24 finished clubs in an 8 hour shift				
	task	task description	operation	must
			time (min)	follow
	Α	inspection	5	-
	В	trim the shaft to length	4	А
	С	weight the head	13	A
	D	finish the shaft	9	В
	E	gel coat the head	7	С
	F	assemble the head to the shaft	6	D, E
		total work content	44	

the customer demand required?
Exclude initial start-up
 Cycle time = (480 min/shift)/(24 clubs/shift) = 20 min/club
 Takt time (for this example, same as cycle time as defined above)
 Takt time = available work time/customer demand
 Aligns output of a process with customer demand (or the pull of the customer)
 "Takt" is a German word referring to the rhythm or beat of music
 Theoretical minimum number of workstations for this operation
 Total work content/cycle time
 44 min/20 min per workstation = 2.2 workstations → 3 workstations

• How often does a club need to come off the line in order to meet

stations	1	2	3
tasks	A, C	E, B, D	F
time per club	18 min	20 min	6 min
time available per unit	20 min	20 min	20 min
idle time	2 min	0 min	14 min

· Efficiency of the line

= (total work content)/(# of workstations x cycle time)

= (44 min)/(3 workstations x 20 min/workstation) = 0.733 (73.3%)

- Where is the bottleneck?
 - · Capacity fully utilized
 - · Work-in-process inventory builds up in front of workstation 2

Example 6 Balancing manufacturing line

· For a manufacturing line, the data below on the task precedence relationships exist (assume the tasks cannot be split)

task	performance time (min)	must follow
A	3	-
В	6	А
С	7	А
D	2	А
E	2	А
F	4	C, B
G	5	С
Н	5	D, E, F, G

Example 6 continue

- Construct the precedence diagram for the tasks.
- What is the theoretical minimum cycle time?
- To balance the line to the cycle time determined above, what is the minimum number of work stations?
- Use the "longest-operation-time" rule to balance the line to the theoretical minimum cycle time determined above.
- Calculate the efficiency of the balanced line.