
Chapter 8

SEEPAGE

Omitted Section 8.10



SEEPAGE

One-dimensional flow

Flow Rate = q = v. A = k . i . A = k (h/L). A

Total head at any point can be found through linear interpolation

We need only Darcy’s law



SEEPAGE

Two-dimensional flow

In reality, the flow of water through soil is not in one direction

only, nor is it uniform over the entire area perpendicular to the

flow.



SEEPAGE



SEEPAGE

 As engineers, we will wish to examine and calculate the leakage

below the sheet pile or through or beneath the dam and find the

distribution of pore water pressure (p.w.p) and effective stress

throughout the soil.

 If the structure (sheet pile, dam, …etc.) is very long, we may

neglect the component of flow in the 3rd dimension and

consider only the flow through a slice of unit thickness.

 In the preceding chapter the flow of water for simple 1-D is

calculated through direct application of Darcy's law as already

we did in the case of the permeability tests.

 This corresponds to plane or two-dimensional flow and we will

consider only this case.



SEEPAGE

External cause like change in the head difference between

inlet or outlet due to any reason.

Internal cause like deformation of soil during the process

of seepage.

 If p.w.p varies with time the flow will be time-dependent. This is

what is so-called non-steady state flow or TRANSIENT

SEEPAGE. This may be due to:

 In the second case there is a complex interrelationships

between p.w.p, seepage, and deformation. This time-dependent

process is known as consolidation and is considered in CE 481

Geotechnical Engineering II.



SEEPAGE

 If p.w.p does not vary with time, the rate of flow will be

constant and the flow is known as STEADY-STATE-

SEEPAGE.

 During steady state seepage, p.w.p remains constant and no

soil deformation occur. Hence we will consider TWO-

DIMENSIONAL STEADY-STATE SEEPAGE.

 The soil may therefore be regarded as RIGID and stationary with

a steady flow of water through the pore spaces.

 Also in this course we will mostly consider the simple case of

CONFINED flow, where the seepage is confined between two

impervious surfaces, or boundaries.



Laplace’s Equation of Continuity



TWO-DIMENSIONAL SEEPAGE FLOW THEORY

The hydrodynamics steady-state fluid flow through porous media

follows the same basic laws as the problems of steady-state:

Heat flow

Current flow

In a continuous contactors

All can be represented by LAPLACE EQUATION.

In flow problems Laplace equation is the combination of the

equation of continuity and Darcy’s law.



Laplace’s Equation of Continuity

Steady-State Flow around an impervious Sheet Pile Wall



SEEPAGE
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SEEPAGE



Laplace’s Equation of Continuity
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Substituting Eq. (IV) into Eq. (III) and assuming kx= kz

This equation governs the steady flow

condition for a given point in the soil mass

(IV) 

(III) 

(V) 

Laplace’s Equation of Continuity



Solution of Laplace’s Equation

Laplace’s equation can be solved using different methods. The

most important are:

Analytical Methods
•Separation of variables

•Laplace transform

•Fourier transform

Graphical method

•Finite element

•Finite difference
Numerical Methods

Flow nets Trial-and-error sketching



 The analytical methods are exact, however they are

complicated and solutions are available only for simple

boundary conditions. Therefore they are less practical.

 Numerical methods vastly developed in the presence of digital

computer and a number of solutions are now available.

 Graphical method termed FLOW NET is preferred by many

because it is very versatile and simple.

 In this course we will limit discussion to flow net through trial-

and-error sketching.

 By constructing the flow net we can know the values of head

at any point in the soil and also find the flow rate.

Solution of Laplace’s Equation



FLOW NETS 



Basis of Flow Nets

 Consider flow through the constant head permeameter shown

below:

 We can see that there are two families of lines:

• Vertical lines which represent the direction of flow of water   

particles.

• Horizontal lines which represent lines of constant head.

 Note: As the water progress through the sample, head is lost at

constant rate (but we deal only with steady state, i.e. h is

constant)



 Consider the other way around (i.e. flow is horizontal)

We can see also that there are TWO families of lines:

Horizontal lines which represent the direction of flow of

water particles.

Vertical lines which represent lines of constant total head.

Basis of Flow Nets



 The governing equation is a 2nd order homogeneous, partial differential

equation with constant coefficients.

 The solution of this equation is represented by two functions which both

satisfies the equation and any relevant boundary conditions.

 These functions are the potential function  (x,z) and the flow function

(x,z). These functions represent a family of equipotential lines and a

family of flow lines constituting what is referred to as a FLOW NET.

 These lines are proved to be orthogonal.

Theoretical Basis of Flow Nets

 What we actually do, we by following specific rules find the FLOW Net by

which we reach the solution of Laplace’s equation.

 In other word flow net is actually a graphical solution of Laplace’s

Equation in 2-D.



FUNDAMENTAL DEFINITIONS

 A line along which a water particle will travel from upstream to the down

stream side in the permeable soil medium is called a FLOW LINE (OR

STREAM LINE).

 A line along which the TOTAL HEAD at all points is the same is called

EQUIPOTENTIAL line.

 If piezometers are placed at different points along an equipotential line,

the water level will rise to the same elevation in all of them.

Datum

Different pressure heads 
but equal total heads



 The space between any two adjacent flow lines is called FLOW PATH,

FLOW TUBE, or FLOW CHANNEL.

 The space between any two equipotential lines is called EQUIPOTENTIAL

SPACE .

 The mesh made by a number of flow lines and equipotential lines is called

a FLOW NET.

 The “Phreatic surface” is the top flow line

Flow channel

Flow line

Equipotential 

line

FUNDAMENTAL DEFINITIONS



FLOW NETS

To complete the graphic construction of a flow net, one must draw 

the flow and equipotential lines in such a way that:

1. The equipotential lines intersect the flow lines at right angles.

2. The flow elements formed are approximate squares.



FLOW NETS

Boundary Conditions



FLOW NETS

Boundary Conditions

Blue : Flow line

Red :Equipotential line



Rules Followed in Sketching Flow Nets

1. Flow lines and equipotential lines must intersect at right angles.

2. Constant head boundaries represent initial or final equipotential.

3. Impermeable (no-flow) boundaries are flow lines.

4. Adjacent equipotentials have equal head loss (= h/Nd)

5. The same quantity of seepage flows between pairs of flow lines

(i.e. equal flow channels).



6. Geometric figures formed by pairs of flow lines and

equipotential lines must be essentially squares. This is the case

when we have a true flow net. In more practical case involving

curvilinear flow, the figures cannot be true squares. However

they must have right angles at the corners and the two median

dimensions of each figure must be equal.

Note:

Drawing of square elements  is 

convenient but not always 

necessary

Rules Followed in Sketching Flow Nets



STEPS IN CONSTRUCTING FLOW NETS

Step 1: Draw to a convenient scale a cross-section of the medium

and its boundaries.

Step 2: Establish the two boundary flow lines and the two

boundary equipotential lines.

Step 3: By trial and error sketch a network of flow lines and

equipotential lines, observing the right-angle intersection and the

space figures rules.

Step 4: At first attempt certainly there will be some

inconsistencies. Successive trials are made until the net is

reasonably consistent throughout.

Where flow direction is a straight line, flow lines are an equal
distance apart and parallel.



GENERAL SUGGESTIONS AND TIPS

Use as few flow lines (and resulting equipotential lines) as

possible. Generally THREE to FIVE lines will be sufficient.

Be practical in selecting a scale for the drawing. A scale that is too

large waste time and eraser.

Before starting the sketch a flow net look for important boundary

conditions.

Always watch the appearance of the entire flow net. Do not make

fine detail adjustments until the entire flow net is approximately

correct.

Try to keep the number of flow channels to a whole number.

Remember, flow lines do not intersect the lower boundary since

itself is a flow line.

Obtaining results from a rough flow net is considered adequate.

The error committed is relatively small in comparison to the

accuracy we obtain for the coefficient of permeability.



SEEPAGE CALCULATION 

FROM FLOW NETS



SEEPAGESEEPAGE CALCULATION FROM FLOW NETS

Let us first consider the case of straight flow and equipotential lines

(i.e. perfect squares) as shown in the figure below.

• In a flow net, the strip between any two adjacent flow lines is

called a flow channel.

• The drop in the total head between any two adjacent equipotential

lines is called the potential drop.

l

Soil

h

s

h



Since the potential drop between any two adjacent equipotential

lines is the same, then

dN

h
h  

Where Nd is the number of potential drops.

dN

h
kq   

If the number of flow channels is Nf, then the total discharge q

per unit depth (perpendicular to the paper) is

qNq f 
.......(*) 

d

f

N

N
khq 

Since the figures are squares (as must be the case in general) s/l

=1, and hence hkq 

Applying Darcy’s law, the flow in each flow channel is

kiAq   s) s.1A   ,  ( 



l

h
iBut s

l

h
kq


  

SEEPAGE CALCULATION FROM FLOW NETS



Equation (*) is the basic equation for computation of seepage

quantities from flow net.

The ratio Nf/Nd is called the shape factor.

Equation (*) for the case when the width of the cross-section of the

channel normal to the page is UNITY.

If it is not we have to multiply it by the given value of the width, or

b
N

N
khq

d

f
 Eq. (**)

SEEPAGE CALCULATION FROM FLOW NETS



CURVILINEAR FLOW AND EQUIPOTENTIAL LINES 

l
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 f













dN

N
hkq

equal median lengths.

Perfect square

SEEPAGE CALCULATION FROM FLOW NETS



SEEPAGE CALCULATION FROM FLOW NETS

1. Because there is no flow across the 

flow line, rate of flow through the flow 

channel per unit width perpendicular to 

the flow direction is the same, or

q1 = q2 = q3 = q

2. The potential drop is the same and 

equal to:

Flow channel

     433221

dN

h
hhhhhh 

Where h: head difference between the upstream and downstream sides.
Nd: number of potential drops. 

Case I: Square Elements (medians are equal)

CURVILINEAR FLOW AND EQUIPOTENTIAL LINES 



SEEPAGE CALCULATION FROM FLOW NETS

From Darcy’s Law, the rate of flow is equal to:

If the number of flow channels in a flow net is equal to Nf, the total rate

of flow through all the channels per unit length can be given by:

 
 

 f











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dN

N
hkq

Note: Here we took the median lengths, for perfect 

square we have side lengths

Instead of thinking of perfect square, we always consider the most general

curvilinear case and assuming equal median lengths.

Eq. (***) ….same as Eq. (*)



SEEPAGE CALCULATION FROM FLOW NETS

Case II: Rectangular Elements 

• Drawing of square elements is convenient but not always

necessary

• Alternatively, one can draw a rectangular mesh for a flow channel

provided that the width-to-length ratios for all the rectangular

elements in the flow net are the same



SEEPAGE CALCULATION FROM FLOW NETS

• In this case the rate of flow through the channel is expressed as

n 
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Case II: Rectangular Elements 



SEEPAGE CALCULATION FROM FLOW NETS

Three Cases:

1. Square

If not

2. Curvilinear square where Medians are equal

If not

3. Curvilinear rectangular with width-to-length ratio

being the same



SEEPAGE CALCULATION FROM FLOW NETS

• Case of unit depth (perpendicular to the 

paper) 

SUMMARY

b
N

N
khq

d

f
 

• Case when the width of the cross-section of 

the channel normal to the page is not UNITY.
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• Case of Square Elements 

(medians are equal)
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• Case of Rectangular

Elements (medians 

are not equal)



SEEPAGE CALCULATION FROM FLOW NETS

n 
 

 f











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dN

N
hkq . b

• The general case: 

oThe cross-section of the channel normal to the page is 

not UNITY

oMedians are not equal



EXAMPLE

If the horizontal cylinder of soil shown below has a

coefficient of permeability of 0.01 cm/sec. Calculate the

amount of flow through the soil.



q = vA = kiA = 0.01 X (5/10) X 10 = 0.05 cm3/s

Considering it as a 1-D problem

Considering it as a 2-D problem

b
N

N
khq

d

f
 

we can apply Darcy’s law directly

q =0.01 X 5 X 4/8 X 2 = 0.05 cm3/s

According to rule of square mesh the

height of the soil must equal 5 cm

and hence in the 3rd direction 2 cm.

EXAMPLE



EXAMPLE 8.1



EXAMPLE 8.1



EXAMPLE 8.2



If k = 10-7 m/sec, what would be the flow per day over a 100 m length of wall?

Dam

cutoff

Low permeability rock

50 m of water

5 m of water

Dam

cutoff

Low permeability rock

50 m of water

5 m of water

Solution

Nf = 5

Nd = 14

h = 45 m

k = 10-7 m/sec

q = 10-7 x 45x(5/14)x 100

= 0.000161 m3/sec

= 13.9 m3/day

b
N

N
khq

d

f
 

EXAMPLE



FLOW NETS



Calculation of Heads

impervious strata

concrete dam
datum

X

z

h

HT = 0

Total head = h - # of drops from upstream x h

h

Elevation head = -z

Pressure head = Total head – Elevation head
dN

h


+ve

-ve

Consider Point X



Uplift pressure under hydraulic structures

H = 7m    Nd = 7     

Head Loss at each equipotential line 

= 7/7 = 1 m

)( Zhu w  

wwau  8))2(6()( 

wwbu  7))2(5()( 

Recall

h(a) = 6 m, h(b) = 5 m, ……h(f) = 1m

Datum

EXAMPLE



)( Zhu w  

wwau  8)816()( 

wwbu  7)815()( 

Datum

H = 7m    Nd = 7     

Head Loss at each 

equipotential line = 7/7 = 1 m

Consider the datum at the bottom border of the drainage layer

8m

EXAMPLE



A stiff clay layer underlies a 12 m thick silty sand deposit. A sheet

pile is driven into the sand to a depth of 7 m, and the upstream and

downstream water levels are as shown in the figure below.

k = 8.6x 10-6 m/sec

Estimate

a) The seepage beneath the sheet pile in m3/day per meter. 

b) What is the pore water pressure at the tip of the sheet pile? 

Datum

EXAMPLE



Solution

tiptip z
w

tipu
h



b
N

N
khq

d

f
 

h

EXAMPLE



Let us try and take the datum at the bottom of the layer

DATUM

tiptip z
w

tipu
h


5

81.9

u
5.15

tip
 kPaxutip  0.10381.9)55.15( 

Total head  at the tip = 17- 4 x 3/8 =15.5 m

Elevation head =  5 m

h

EXAMPLE



EXAMPLE (2
nd

Midterm Exam Fall 40-41)



ℎ𝑎 =
𝑢𝑎

𝛾𝑤
+ 𝑧𝑎

𝑢𝑎 = 𝛾𝑤(ℎ − 𝑛 × ∆h − 𝑧𝑎)

ℎ𝑎 = (ℎ − 𝑛 × ∆h)

∆h =
ℎ

𝑛𝑑

𝑢𝑎 = 𝛾𝑤(ℎ𝑎 − 𝑧𝑎)

𝒖𝒂 = 𝜸𝒘(𝒉 − 𝒏 ×
𝒉

𝒏𝒅
−𝒛𝒂)

This is valid only if the

DATUM is taken at the

downstream water level.

Common Mistake



ℎ𝑎 =
𝑢𝑎

𝛾𝑤
+ 𝑧𝑎

ℎ𝑎 = (ℎ − 𝑛 × ∆h)

∆h =
ℎ

𝑛𝑑

h = the distance from datum to the

upstream water level.

h = the head difference

All times correct Steps

h and h are the same if and only if the datum is taken

at downstream water level.

FLOW NETS



A river bed consists of a layer of sand 8.25 m thick overlying impermeable

rock; the depth of water is 2.5 m. A long cofferdam 5.50 m wide is formed

by driving two lines of sheet piling to a depth of 6.0 m below the level of

the river bed and excavation to a depth of 2.0 m below bed level is carried

out within the cofferdam. The section through a dam is shown in Figure 1.

EXAMPLE (Final Exam Fall 38-39)



a) The coefficient of permeability of the sand if the flow of water into the

cofferdam is 0.25 m3/h per unit length.

b) The hydraulic gradient immediately below the excavated surface? (i.e.

line AB).

c) The pore water pressure at point C.

d) The effective stress at point D (located 1.8 m below line AB) if the unit

weight of the sand is 18.0 kN/m3.

e) Repeat part (d) if the water level behind the wall is lowered to the ground

surface and the water level rises 2.0 above the river bed.

Required:

EXAMPLE 6 (Final Exam Fall 38-39)



Flow Nets in Anisotropic Soil



Flow Nets in Anisotropic Soil

The Laplace’s equation is based on the assumption that

permeability are equal in the horizontal and vertical directions.

However, most compacted embankments and many natural

soil deposits are more or less stratified, often with horizontal

bedding that make horizontal permeability much greater than

the vertical.

The differential equation in 2-D for seepage through

anisotropic soil is

 0 
2

2

z2

2

x 









z

h
k

x

h
k (*)



Flow Nets in Anisotropic Soil

Eq. (*) is not a Laplace equation and we can no longer obtain solutions to

plane seepage problems by drawing “square flow nets”. In this case, Eq.

(*) represents two families of curves that do no meet at 90o
.

Eq. (*) can be written as  0 
)/( 2

2

2

2











z

h

xkk

h

xz

(**)

xxkkLet xz ./    

 0 
2

22

2











z

h

x

h
(***)

The x direction is scaled to transform a given anisotropic flow region into

a fictitious isotropic flow region in which the Laplace equation is valid.

Eq. (***) expresses the anisotropic seepage condition as a Laplace

equation. Here x is replaced by x-Bar which is the new transformed

coordinate. This equation can be solved exactly as before by square flow

nets.



Flow Nets in Anisotropic Soil

To construct the flow net, the following procedures may be followed:

The flow through the anisotropic soil is given by

d

f

N

N
hkq / 

k/ = Equivalent coefficient of permeability given by:

zxkkk  /

The final flow net can be obtained by transforming the cross-section

including the flow net back to the natural scale.



Flow Nets in Anisotropic Soil

Remarks

In transformed section the flow lines and equipotential

lines are orthogonal and the figures are squares. However

when they redrawn in a true section, they will not intersect

at right angles, nor will the figures will be squares.

If the horizontal permeability is greater than the vertical,

the transformed section will always be shrunk to a

narrower horizontal dimension. If the reverse were true, it

will be longer than horizontally.



A single row of sheet pile structure is shown below. Draw a flow

net for the transformed section. Replot this flow net in the

natural scale also. The relationship between the permeabilities

is given as kx = 6 kz.

EXAMPLE



Flow net constructed to a transformed

scale.

EXAMPLE



Flow net constructed to the natural scale.

EXAMPLE



A dam section is shown below. The coefficients of permeability of the

permeable layer in the vertical and horizontal directions are 2 × 10−2 and

4 × 10−2 mm/s, respectively.

Draw a flow net and calculate the seepage loss of the dam in m3/(day. m).

EXAMPLE



EXAMPLE



EXAMPLE 8.4



Mathematical Solution for Seepage



Seepage Around a Single Row of Sheet Piles

Mathematical Solution for Seepage



Mathematical Solution for Seepage



EXAMPLE 8.5



Uplift Pressure under Hydraulic Structures



Example

A stiff clay layer underlies a 12 m thick silty sand deposit. A sheet

pile is driven into the sand to a depth of 7 m, and the upstream

and downstream water levels are as shown in the figure below.

k = 8.6x 10-6 m/sec

Estimate

a) The seepage beneath the sheet pile in m3/day per meter. 

Datum



H = 3 m

S = 7 m 

T’ = 12 m

S/T’ =0.58

k = 8.6x 10-6 m/sec

= 0.743 m/day

Recall from flow net q = 0.836 m3/ day

= 0.47q = 0.743 x 3 x 0.47

q = 1.05 m3/day

Difference = ?

Example



FLOW THROUGH EARTH DAMS 

RESTING ON AN IMPERVIOUS BASE



Confined Flow



Earth fill dam with flow through both the dam and the foundation

Seepage through earth dams is an example of

unconfined seepage.

Impervious boundary

Pervious foundation

Unconfined Flow



Earth fill dam with flow through the dam only

What we will consider?

We will consider a section of a trapezoidal dam of

homogeneous soils.

For simplicity it is assumed that the dam rests on impervious

foundation and that all seepage water therefore flows through

the dam. (opposite of concrete dam).

Then the line of contact with the foundation is one boundary

flow line.

Impervious foundation



The major problem is to establish the shape of the top

line of seepage.

The location of the free surface depends on the flow

regime and the flow regime depends on its turn on the

position of the free surface.

Several procedures for obtaining the top flow line are

available.

Unconfined flow problems are often considered more

difficult to analyze because the determination of the

location of the phreatic surface.

FLOW THROUGH EARTH DAMS 



Considering the triangle cde, we can give 

the rate of seepage per unit length of the

dam (at right angles to the cross section 

shown in Figure) as:

Rate of seepage (per unit length of the 

dam) through the section bf is

For continuous flow,

(*)

(**)

Eq (*) = Eq (**)

FLOW THROUGH EARTH DAMS 

(***)

Schaffernak’s (1917), Casagrande (1937) 

Consider Plane ce



FLOW THROUGH EARTH DAMS 

Following is a step-by-step procedure to obtain the seepage rate q 

(per unit length of the dam):

Step 1. Obtain a.

Step 2. Calculate  (from Figure) and then 0.3.

Step 3. Calculate d.

Step 4. With known values of a , H and d, calculate L from Eq. (***)

Step 5. With known value of L, calculate q from Eq. (*).

(*)

(***)



FLOW THROUGH EARTH DAMS 

Equation (***) is derived on the basis of Dupuit’s assumption

(i.e., i < dz/dx).

when the downstream slope angle becomes greater than 30o,

deviations from Dupuit’s assumption become more

noticeable

Eq. (*) becomes

L. Casagrande’s Solution for Seepage through an Earth Dam

(****)



L. Casagrande’s Solution for Seepage through an Earth Dam

𝒒 𝑬𝒒 ∗∗ = 𝒒(𝑬𝒒∗∗∗∗)

With about a 4–5% error, the dimension s differs only slightly from the

straight line a’c. Therefore, the distance s is approximated as

where s is the length of the curve a’bc

FLOW THROUGH EARTH DAMS 



Alternative graphical procedure for obtaining L

Solution by L. Casagrande’s method based on Gilboy’s solution



L. Casagrande’s (1932) Solution

o Approximate solution for L

o Graphical solution for L



Piping Failures



Piping Failures



Exit Hydraulic Gradient



o The critical hydraulic gradient (ic), is given by

Consequences:

no stress to hold granular soils together

 soil may flow 

“boiling” or “piping” = EROSION

o If exit gradient is greater than critical hydraulic gradient:

Critical Hydraulic Gradient



exit

c
piping

i

i
F  Typically 5 to 6Factor against piping

Note: we use high value for the factor of safety because of the

disastrous consequences of failure.

Critical Hydraulic Gradient



[h / Nd] = 45/14 = 3.2 m head per drop

Average length of last element is about 3 m

For most soils  0.9 < ic < 1.1 with an average of 1.0.

Fpiping = 1/1.1  0.9 Very dangerous

Is the arrangement 

safe against piping?

Iexit = 3.2/3  1.1

Example



A stiff clay layer underlies a 12 m thick silty sand deposit. A sheet

pile is driven into the sand to a depth of 7 m, and the upstream and

downstream water levels are as shown in the figure below.

k = 8.6x 10-6cm/sec

e =0.72

Gs= 2.65

Required

Is the arrangement safe against piping?

Example



e =0.72

Gs= 2.65

Example



Preventing Piping

As mentioned previously, piping and erosion are a

possibility if, somewhere in the porous medium, the

gradient exceeded the critical gradient.

Piping can occur any place in the system, but usually it

occurs where the flow is concentrated.

We may have:

o Washing of the fine material or

o Clogging of voids and buildup of p.w.p.



There are several methods to control seepage and to

prevent erosion and piping, one of which is to use a

protective filter.

A filter consists of one or more layers of free-draining

granular materials placed in less pervious foundation or

base materials to:

• Prevent the movement of soil particles that are

susceptible to piping.

• While at the same time allowing the seepage water

to escape with relatively little head loss.

A properly designed coarser material is called a FILTER.

Filters



Filters used for:

• Facilitating drainage

• preventing fines from being washed away

Used in:

• Earth dams 

• Retaining walls 

Filter Materials:

•Granular soils

•Geotextiles

Filters



Filters

Dams with Triangular Toe Drain

Dams with Drainage Blanket

Drainage Blanket



Filter Design



Filters

SSLS DDIf 5.6  

The small sphere can move through

the void spaces of the larger one.

Large spheres with diameters of 6.5 times

the diameter of the small sphere;

For proper selection of the filter material, two conditions should be 

kept in mind:

Condition 1. The size of the voids in the filter material should be small 

enough to hold the larger particles of the protected material in place.

Condition 2. The filter material should have a high hydraulic 

conductivity to prevent buildup of large seepage forces and hydrostatic 

pressures in the filters.



Filters

Terzaghi and Peck (1948)



soil used for the

construction of

the earth dam

The acceptable grain-size 

distribution of the filter 

material will have to lie 

within the shaded zone.



The US Navy (1948)

The following conditions are required for the design of filters:

Recall Terzagh&Peck Criteria

Extra



The US Navy (1948)

The following conditions are required for the design of filters:



Slots

Holes

The US Navy (1948)



Example 8.8



Example 8.8



THE END


