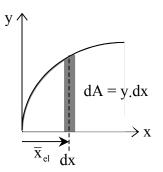
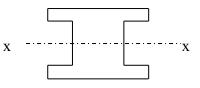
## **Moments of Inertia**


| $A$ = name for area $r_o$ = polar radius of gyratic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1011             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                |
| $b = \text{name for a (base) width}$ $r_x = \text{radius of gyration with}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | th respect to an |
| d = calculus symbol for differentiation x-axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |
| = name for a difference $r_y$ = radius of gyration with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | th respect to a  |
| = name for a depth y-axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| $d_x$ = difference in the x direction $t_f$ = thickness of a flange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |
| between an area centroid $(\bar{x})$ and $t_w$ = thickness of web of w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | wide flange      |
| the centroid of the composite shape $x =$ horizontal distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                |
| $(\hat{x})$ $\overline{x}$ = the distance in the x of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | direction from   |
| $d_y$ = difference in the y direction a reference axis to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e centroid of a  |
| between an area centroid $(\bar{y})$ and shape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |
| the centroid of the composite shape $\hat{x}$ = the distance in the x of $\hat{x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | direction from   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
| (y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |
| n – hand for a neight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| $\bar{I}$ = moment of inertia about the $y$ = vertical distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1: .: .          |
| $\overline{y}$ = the distance in the y distance in the | direction from   |
| $I_c$ = moment of inertia about the a reference axis to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e centroid of a  |
| centroid shape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |
| $\hat{\alpha}$ = the distance in the view                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | direction from   |
| $T_x$ – moment of mertia with respect to an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
| x-axis a reference axis to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e centrola or a  |
| $I_y$ = moment of inertia with respect to a composite shape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
| y-axis $P = plate symbol$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| $J_o$ = polar moment of inertia, as is $J$ = symbol for integration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n                |
| $O$ = name for reference origin $\Sigma$ = summation symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |

- The cross section shape and how it resists bending and twisting is important to understanding beam and column behavior.
- Definition: Moment of Inertia; the second area moment

$$I_y = \int x^2 dA \qquad \qquad I_x = \int y^2 dA$$


We can define a single integral using a narrow strip:

for  $I_{x,y}$ , strip is parallel to x for  $I_{y,y}$  strip is parallel to y



\*I can be negative if the area is negative (a hole or subtraction).

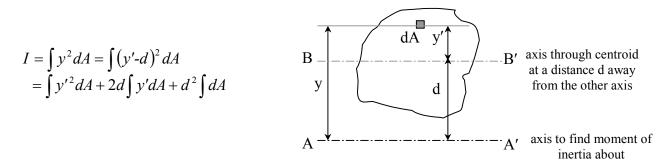
• A shape that has area at a greater distance away from an axis *through its centroid* will have a **larger** value of I.



- Just like for center of gravity of an area, the moment of inertia can be determined with respect to *any* reference **axis**.
- Definition: Polar Moment of Inertia; the second area moment using polar coordinate axes

$$J_o = \int r^2 dA = \int x^2 dA + \int y^2 dA$$
$$J_o = I_x + I_y$$

• *Definition*: <u>Radius of Gyration</u>; the distance from the moment of inertia axis for an area at which the entire area could be considered as being concentrated at.


$$I_{x} = r_{x}^{2} A \Longrightarrow r_{x} = \sqrt{\frac{I_{x}}{A}} \text{ radius of gyration in x}$$
  

$$r_{y} = \sqrt{\frac{I_{y}}{A}} \text{ radius of gyration in y}$$
  

$$r_{o} = \sqrt{\frac{J_{o}}{A}} \text{ polar radius of gyration, and } r_{o}^{2} = r_{x}^{2} + r_{y}^{2}$$

#### The Parallel-Axis Theorem

• The moment of inertia of an area with respect to any axis not through its centroid is equal to the moment of inertia of that area with respect to its own parallel centroidal axis plus the product of the area and the square of the distance between the two axes.



but  $\int y' dA = 0$ , because the centroid is on this axis, resulting in:

$$I_x = I_{cx} + Ad_y^2$$
 (text notation) or  $I_x = \bar{I}_x + Ad_y^2$   
where  $I_{cx}$  (or  $\bar{I}_x$ ) is the moment of inertia about the centroid of the area about an x axis and  $d_y$  is the y distance between the parallel axes

Similarly $I_y = \bar{I}_y + Ad_x^2$ Moment of inertia about a y axis $J_o = \bar{J}_c + Ad^2$ Polar moment of Inertia $r_o^2 = \bar{r}_c^2 + d^2$ Polar radius of gyration $r^2 = \bar{r}^2 + d^2$ Radius of gyration

\* I can be negative again if the area is negative (a hole or subtraction). \*\* If  $\overline{I}$  is not given in a chart, but  $\overline{x} \& \overline{y}$  are: YOU MUST CALCULATE  $\overline{I}$  WITH  $\overline{I} = I - Ad^2$ 

### Composite Areas:

 $I = \sum \overline{I} + \sum Ad^2$  where  $\overline{I}$  is the moment of inertia about the centroid of the component area d is the distance from the centroid of the component area to the centroid of the composite area (ie.  $d_v = \hat{v} - \overline{v}$ )

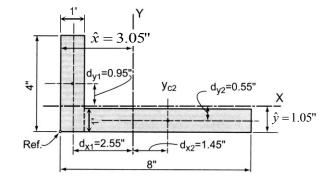
### **Basic Steps**

- 1. Draw a reference origin.
- 2. Divide the area into basic shapes
- 3. Label the basic shapes (components)
- 4. Draw a table with headers of

Component, Area,  $\bar{x}$ ,  $\bar{x}A$ ,  $\bar{y}$ ,  $\bar{y}A$ ,  $\bar{I}_x$ ,  $d_y$ ,  $Ad_y^2$ ,  $\bar{I}_y$ ,  $d_x$ ,  $Ad_x^2$ 

- 5. Fill in the table values needed to calculate  $\hat{x}$  and  $\hat{y}$  for the composite
- 6. Fill in the rest of the table values.
- 7. Sum the moment of inertia ( $\overline{I}$ 's) and  $Ad^2$  columns and add together.

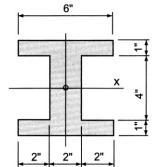
\_

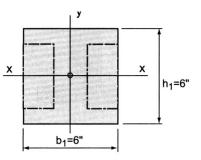

.

# Geometric Properties of Areas

|                                                 | sperves of meas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                       |                                                                                                                         |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Rectangle                                       | $\begin{array}{c c} y & y' \\ \hline \\ h \\ \hline \\ \hline$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\bar{I}_{x'} = \frac{1}{12}bh^{3}$ $\bar{I}_{y'} = \frac{1}{12}b^{3}h$ $I_{x} = \frac{1}{3}bh^{3}$ $I_{y} = \frac{1}{3}b^{3}h$ $J_{C} = \frac{1}{12}bh(b^{2} + h^{2})$ | Area = bh<br>$\overline{x}$ = b/2<br>$\overline{y}$ = h/2                                                               |
| Triangle<br>$\overline{x} \mid b \rightarrow b$ | $ \begin{array}{c}             h \\             \underline{c} \\             \underline{f} \\         $ | $\bar{I}_{x'} = \frac{1}{36}bh^3$ $I_x = \frac{1}{12}bh^3$ $\bar{I}_{y'} = \frac{1}{36}b^3h$                                                                            | Area = $\frac{bh}{2}$<br>$\overline{x} = \frac{b}{3}$<br>$\overline{y} = \frac{h}{3}$                                   |
| Circle                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\bar{I}_x = \bar{I}_y = \frac{1}{4}\pi r^4$ $J_O = \frac{1}{2}\pi r^4$                                                                                                 | Area = $\pi r^2 = \pi d^2 / 4$<br>$\frac{\overline{x}}{\overline{y}} = 0$<br>$\overline{y} = 0$                         |
| Semicircle                                      | y<br>C<br>C<br>$r \rightarrow x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\bar{I}_x = 0.1098r^4$<br>$\bar{I}_y = \pi r^4 / 8$                                                                                                                    | Area = $\pi r^2/2 = \pi d^2/8$<br>$\overline{x} = 0$ $\overline{y} = 4r/3\pi$                                           |
| Quarter circle                                  | $\begin{array}{c} y \\ \bullet C \\ \hline O \\ \bullet r \end{array} x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\bar{I}_x = 0.0549 r^4$<br>$\bar{I}_y = 0.0549 r^4$                                                                                                                    | Area = $\frac{\pi r^2}{4} = \frac{\pi d^2}{16}$<br>$\overline{x} = \frac{4r}{3\pi}$<br>$\overline{y} = \frac{4r}{3\pi}$ |
| Ellipse                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\bar{I}_x = \frac{1}{4}\pi ab^3$ $\bar{I}_y = \frac{1}{4}\pi a^3 b$ $J_o = \frac{1}{4}\pi ab(a^2 + b^2)$                                                               | Area = $\pi ab$<br>$\overline{x} = 0$<br>$\overline{y} = 0$                                                             |
| Parabolic area                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ar{I}_x$ = 16ah $^3/$ 175 $ar{I}_y$ = 4a $^3$ h $/$ 15                                                                                                                 | Area = $\frac{4ah}{3}$<br>$\overline{x} = 0$ $\overline{y} = \frac{3h}{5}$                                              |
| Parabolic span-<br>drel                         | $a = \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $ar{I}_x$ = 37ah $^3/$ 2100 $ar{I}_y$ = a $^3$ h $/$ 80                                                                                                                 | Area = $\frac{ah}{3}$<br>$\overline{x} = \frac{3a}{4}$ $\overline{y} = \frac{3h}{10}$                                   |

### Example 1 (pg 257)


Find the moments of inertia ( $\hat{x} = 3.05$ ",  $\hat{y} = 1.05$ ").




| Component         | I <sub>xc</sub><br>(in. <sup>4</sup> ) | <i>d</i> <sub>y</sub><br>(in.) | $\frac{Ad_y^2}{(\text{in.}^4)}$ | I <sub>yc</sub><br>(in. <sup>4</sup> ) | <i>d<sub>x</sub></i><br>(in.) | $\frac{Ad_x^2}{(\text{in.}^4)}$ |
|-------------------|----------------------------------------|--------------------------------|---------------------------------|----------------------------------------|-------------------------------|---------------------------------|
| 4"X <sub>c1</sub> | $\frac{(1)(4)^3}{12} = 5.33$           | 0.95                           | 3.61                            | $\frac{(4)(1)^3}{12} = 0.33$           | 2.55                          | 26.01                           |
| 1"X_{c2}          | $\frac{(7)(1)^3}{12} = 0.58$           | 0.55                           | 2.12                            | $\frac{(1)(7)^3}{12} = 28.58$          | 1.45                          | 14.72                           |
|                   | $\sum I_{xc} = 5.91$                   |                                | $\sum A d_y^2 = 5.73$           | $\sum I_{yc} = 28.91$                  |                               | $\sum Ad_x = 40.73$             |

Example 2 (pg 253) Example Problem 7.6 (Figures 7.24 to 7.26)

Determine the *I* about the centroidal *x*-axis.



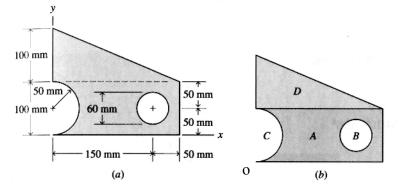


#### Example 3

Determine the moments of inertia about the centroid of the shape.

Solution:

There is no reference origin suggested in figure (a), so the bottom left corner is good.


In figure (b) area A will be a complete rectangle, while areas C and A are "holes" with negative area and negative moment of inertias.

Area A = 200 mm x 100 mm = 20000 mm<sup>2</sup>

Area B =  $-\pi(30 \text{ mm})^2$  =  $-2827.4 \text{ mm}^2$ 

Area C =  $-1/2\pi(50 \text{ mm})^2$  = 3927.0 mm<sup>2</sup>

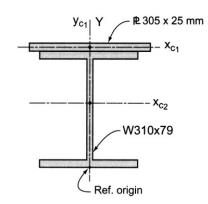
Area D = 100 mm x 200 mm x 1/2 = 10000 mm<sup>2</sup>



| $I_x = (200 \text{ mm})(100 \text{ mm})^3/12 = 16.667 \text{ x} 10^6 \text{ mm}^4$<br>$I_y = (200 \text{ mm})^3(100 \text{ mm})/12 = 66.667 \text{ x} 10^6 \text{ mm}^4$          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $I_x = I_y = -\pi (30 \text{ mm})^4/4 = -0.636 \text{ x} 10^6 \text{ mm}^4$                                                                                                       |
| I <sub>x</sub> = -π (50 mm) <sup>4</sup> /8 = -2.454 x 10 <sup>6</sup> mm <sup>4</sup><br>I <sub>y</sub> = -0.1098(50 mm) <sup>4</sup> = -0.686 x 10 <sup>6</sup> mm <sup>4</sup> |
| I <sub>x</sub> = (200 mm)(100 mm) <sup>3</sup> /36 = 5.556 x 10 <sup>6</sup> mm <sup>4</sup>                                                                                      |

 $I_y = (200 \text{ mm})^3(100 \text{ mm})/36 = 22.222 \text{ x} 10^6 \text{ mm}^4$ 

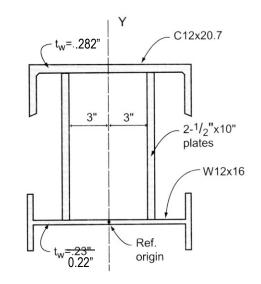
| shape | A (mm²)  | <u></u> x (mm) | ⊼A (mm³) | <u>y</u> (mm) | ӯА (mm³) | $\hat{x} = \frac{2159218 \text{mm}^3}{23245.58 \text{mm}^2} = 92.9 \text{ mm}$   |
|-------|----------|----------------|----------|---------------|----------|----------------------------------------------------------------------------------|
| А     | 20000    | 100            | 2000000  | 50            | 1000000  | 23245.58mm <sup>2</sup>                                                          |
| В     | -2827.43 | 150            | -424115  | 50            | -141372  | 1995612 mm <sup>3</sup>                                                          |
| С     | -3926.99 | 21.22066       | -83333.3 | 50            | -196350  | $\hat{y} = \frac{1995612 \text{ mm}^3}{23245.58 \text{ mm}^2} = 85.8 \text{ mm}$ |
| D     | 10000    | 66.66667       | 666666.7 | 133.3333      | 1333333  | 23245.50 11111                                                                   |
|       | 23245.58 |                | 2159218  |               | 1995612  |                                                                                  |


| shape | l <sub>x</sub> (mm <sup>4</sup> ) | d <sub>y</sub> (mm) | Ad <sub>y</sub> <sup>2</sup> (mm <sup>4</sup> ) | l <sub>y</sub> (mm <sup>4</sup> ) | d <sub>x</sub> (mm) | $\mathrm{Ad_x}^2$ (mm <sup>4</sup> ) |
|-------|-----------------------------------|---------------------|-------------------------------------------------|-----------------------------------|---------------------|--------------------------------------|
| А     | 16666667                          | 35.8                | 25632800                                        | 66666667                          | -7.1                | 1008200                              |
| В     | -636173                           | 35.8                | -3623751.73                                     | -636173                           | -57.1               | -9218592.093                         |
| С     | -2454369                          | 35.8                | -5032988.51                                     | -686250                           | 71.67934            | -20176595.22                         |
| D     | 5555556                           | -47.5333            | 22594177.8                                      | 22222222                          | 26.23333            | 6881876.029                          |
|       | 19131680                          |                     | 39570237.5                                      | 87566466                          |                     | -21505111.29                         |

So, I<sub>x</sub> = 19131680 + 39570237.5 = 58701918 = 58.7 x 10<sup>6</sup> mm<sup>4</sup>

I<sub>x</sub> = 87566466 +-21505111.3 = 43572025 = 66.1 x 10<sup>6</sup> mm<sup>4</sup>

Example 4 (pg 258) Example Problem 7.10 (Figures 7.35 and 7.36)


Locate the centroidal x and y axes for the cross-section shown. Use the reference origin indicated and assume that the steel plate is centered over the flange of the wide-flange section. Compute the  $I_x$  and  $I_y$  about the major centroidal axes.



### Example 5 (pg 249)\*

Example Problem 7.5 (Figures 7.16 and 7.17)

A composite or built-up cross-section for a beam is fabricated using two  $\frac{1}{2}$ " × 10" vertical plates with a C12 × 20.7 channel section welded to the top and a W12 × 16 section welded to the bottom as shown. Determine the location of the major *x*-axis using the center of the W12 × 16's web as the reference origin. Also determine the moment of inertia about both major centroidal axes.



| shape       | A (in²) | ⊼ (in) | ⊼A (in³) | <u>y</u> (in) | ӯА (in³) |
|-------------|---------|--------|----------|---------------|----------|
| channel     | 6.09    | 0      | 0.00     | 9.694         | 59.04    |
| left plate  | 5       | -3.25  | -16.25   | 5.11          | 25.55    |
| right plate | 5       | 3.25   | 16.25    | 5.11          | 25.55    |
| wide flange | 4.71    | 0      | 0.00     | 0             | 0.00     |
|             | 20.80   |        | 0.00     |               | 110.14   |

$$\hat{x} = \frac{0 \text{ in}^3}{20.8 \text{ in}^2} = 0 \text{ in}$$
$$\hat{y} = \frac{110.14 \text{ in}^3}{20.8 \text{ in}^2} = 5.295 \text{ in}$$

| shape       | I <sub>x</sub> (in <sup>4</sup> ) | d <sub>y</sub> (in) | $\mathrm{Ad_y}^2$ (in <sup>4</sup> ) | l <sub>y</sub> (in <sup>4</sup> ) | d <sub>x</sub> (in) | $Ad_x^2$ (in <sup>4</sup> ) |
|-------------|-----------------------------------|---------------------|--------------------------------------|-----------------------------------|---------------------|-----------------------------|
| channel     | 3.880                             | -4.399              | 117.849                              | 129.000                           | 0.000               | 0.000                       |
| left plate  | 41.667                            | 0.185               | 0.171                                | 0.104                             | 3.250               | 52.813                      |
| right plate | 41.667                            | 0.185               | 0.171                                | 0.104                             | -3.250              | 52.813                      |
| wide flange | 2.800                             | 5.295               | 132.054                              | 103.000                           | 0.000               | 0.000                       |
|             | 90.013                            |                     | 250.245                              | 232.208                           |                     | 105.625                     |

I<sub>x</sub> = 90.013 + 250.245 = 340.259 = 340.3 in<sup>4</sup>

 $I_y = 232.208 + 105.625 = 337.833 = 337.8 \text{ in}^4$