
Real Analysis 1, MATH 5210, Fall 2018

Homework 6, Outer and Inner Approximation of Lebesgue

Measurable Sets and Countable Additivity, Continuity, and

the Borel-Cantelli Lemma, Solutions

2.18. (REVISED from the text’s version.) Let m∗(E) < ∞. Then if there exists Fσ set F and Gδ

set G with F ⊆ E ⊆ G and m∗(F ) = m∗(E) = m∗(G), then E is measurable. NOTE: The

text’s statement is incorrect since it does not assume that E is measurable. We know (from

page 3 of the class notes for Section 2.3) that there exist Fσ set F and Gδ set G, called the

inner approximation and outer approximation, such that λ∗(F ) = λ∗(E) ≤ λ∗(E) = λ∗(G)

(in terms of inner measure λ∗ and outer measure λ∗). So the text’s conclusion holds only if

set E is measurable (which it did not assume). HINT: You may assume this behavior of inner

and outer measure. Use the definition of Lebesgue measurable in terms of inner and outer

measure.

Proof. We know that for E of finite outer measure, such a set G exists by Exercise 2.7.

Similarly, Fσ set F exists with F ⊆ E and m∗(F ) = m∗(E) where m∗ is inner measure (as

given in the hint). Now an Fσ set is measurable and so m∗(F ) = m∗(F ). So, in general,

m∗(F ) = m∗(F ) = m∗(E) ≤ m∗(E) = m∗(G). But since we hypothesized m∗(F ) = m∗(G),

then it must be that m∗(E) = m∗(E) and hence E is measurable.

Note. If m∗(E) = ∞, then we can take G = R and still have m∗(E) = m∗(G). If m∗(E) = ∞

then we can construct Fσ set F with F ⊆ E and m∗(F ) = m∗(E) (by an argument similar to

the proof of the existence of G for m∗(E) < ∞). So the (corrected) result of this exercise also

holds for m∗(E) = ∞.

2.19. Let E have finite outer measure. Prove that if E is not measurable, then there is an open

set O containing E that has finite outer measure and for which

m∗(O \ E) > m∗(O) − m∗(E).

NOTE: This is our first encounter with the behavior of a (Lebesgue) non-measurable set. It

will get weirder.

Proof. We consider the contrapositive. That is, suppose E has finite outer measure and that

for any open O containing E where the outer measure of O is finite, that we have

m∗(O \ E) ≤ m∗(O) −m∗(E). (1)



Now, O = (O \ E) ∪· E and so by subadditivity,

m∗(O) ≤ m∗(O \ E) + m∗(E),

or (since m∗(E) < ∞)

m∗(O) − m∗(E) ≤ m∗(O \ E).

So by (1)

m∗(O) − m∗(E) = m∗(O \ E) (2)

for all open O ⊃ E. (Notice that you cannot use the Excision Property since E is not

measurable.)

Next, by the definition of outer measure and Theorem 0.3(b), we know that for all ε > 0,

there exists open Oε ⊃ E such that (since m∗(E) < ∞): m∗(E) + ε > m∗(Oε) —in fact,

O can be written as a countable union of bounded open intervals. So for open Oε, we have

m∗(Oε) − m∗(E) < ε. Since (2) holds for all open sets O, we have that for all ε > 0, there

exists open Oε ⊃ E such that

m∗(Oε \ E) = m∗(Oε) − m∗(E) < ε.

But then by Theorem 2.11(i), E ∈ M. Thus the contrapositive of the claim holds and hence

the claim holds.

2.28. Prove that continuity of measure together with finite additivity of measure implies countable

additivity.

Proof. Let {Ek}
∞

k=1
be a countable collection of disjoint measurable sets. Define An =

∪· n

k=1
Ek. Notice that ∪∞

n=1
An = ∪·∞

k=1
Ek. Then {An}

∞

n=1
is an ascending collection of measur-

able sets (measurable since M is closed under finite unions by Proposition 2.5). So

m (∪·∞k=1
Ek) = m (∪∞

n=1
An)

= lim
n→∞

m(An) by Continuity of Measure (Theorem 2.15(ii))

= lim
n→∞

m (∪· n

k=1
Ek) since An = ∪n

k=1
Ek

= lim
n→∞

n∑

k=1

m(Ek) by finite additivity (Proposition 2.6)

=
∞∑

k=1

m(Ek).


