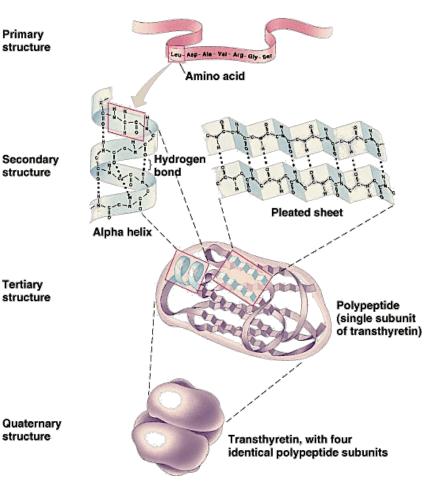
CLS 281

Basic Biochemistry and Biomolecules


Experiment 3

Precipitation of Protein

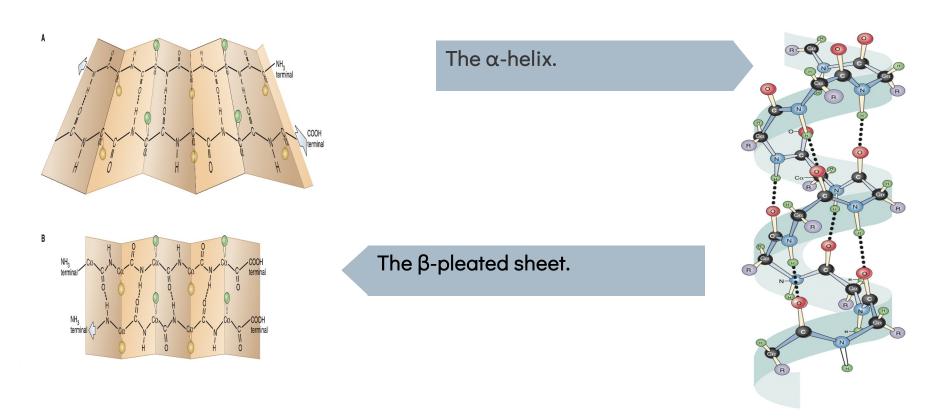
Levels of protein structure

There are four levels of protein structure:

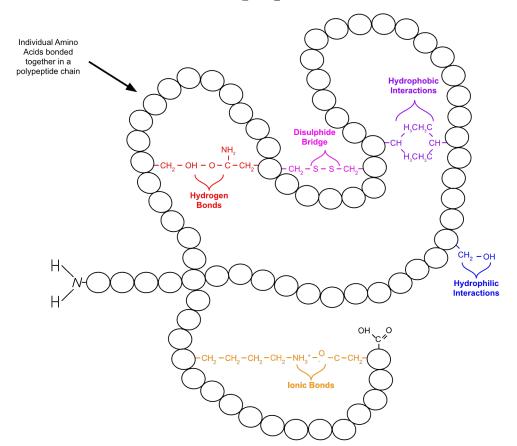
- The **primary structure** (<u>linear sequence</u> of a chain of amino acids within the protein)
- The **secondary structure** (a regular, repeating pattern of <u>hydrogen bonds</u> stabilizing a particular structure)
- The **tertiary structure** (the folding of the secondary structure elements into a three-dimensional conformation)
- The **quaternary structure** (the association of <u>subunits</u> within a protein)

Primary structure

structure


Tertiary

structure


structure

The four hierarchies of protein structure.

Secondary protein structure

Tertiary protein structure

Bond Types

Hydrophobic Interactions:

These amino acids orient themselves towards the center of the polypeptide to avoid the water

Disulphide Bridge: The amino acid cysteine forms a bond with another cysteine through its R group

Hydrogen Bonds: Polar "R" groups on the amino acids form bonds with other Polar R groups

Hydrophilic Interactions:

These amino acids orient themselves outward to be close to the water

lonic Bonds: Positively charged R groups bond together

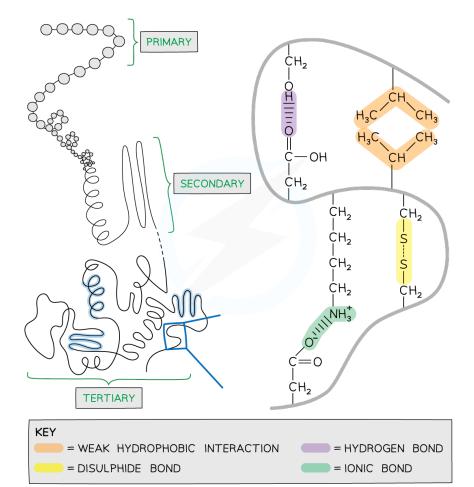
Protein denaturation

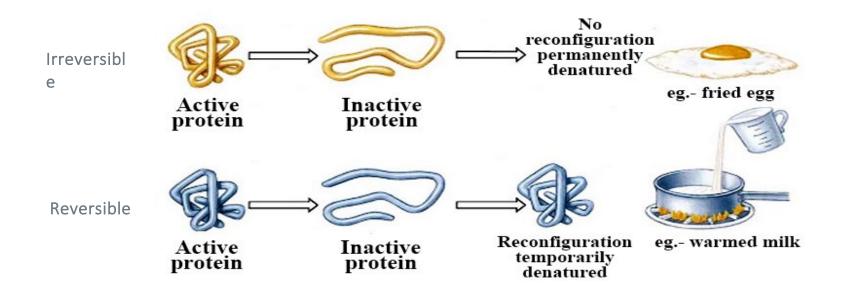
- When the structures of native proteins are altered by <u>chemical</u> or <u>physical</u> means, the protein molecules tend to <u>agglomerate</u> and <u>precipitate</u>, and the protein becomes <u>denatured</u>.
- Denaturation is accompanied by loss of protein biological activity.

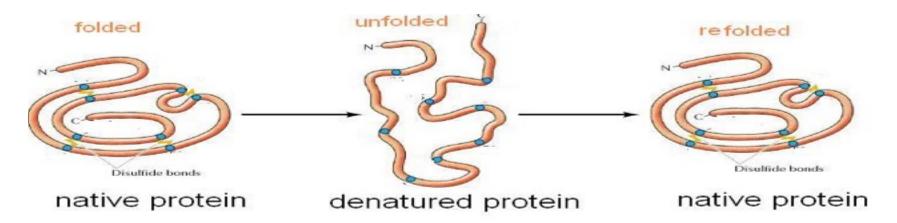
Denaturation definition

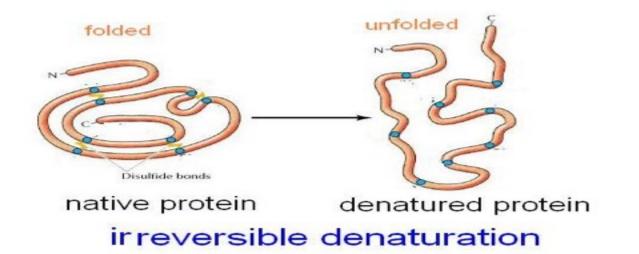
• It is a process in which proteins or nucleic acids lose the quaternary structure, tertiary structure, and secondary structure which is present in their native state, by application of <a href="mailto:some external stress or compound such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., Alcohol or chloroform), radiation or heat.

Indication of Denaturation


- Turbidity
- Agglomerate
- Precipitate


Disruption of bonds causing protein to denature

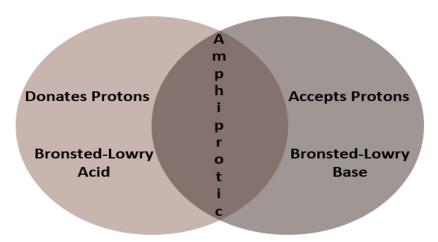

 Protein precipitation is due to a disruption of hydrogen bonds, ionic bonds, and sometimes the stronger covalent disulfide bonds.


Types of Denaturation

- 1. Irreversible (excessive heating or extreme PH changes).
- 2. Reversible (treatment with ammonium sulfate).

reversible denaturation

Today's experiments


Study protein denaturation by applying different denaturing agents:

- 1. Strong Mineral Acids
- 2. Alkaloidal Reagent
- 3. Metallic Salts

Influence of Strong Mineral Acids

- Proteins are amphiprotic substances (can accept or give protons).
- The protein will precipitate because the ionic bonds and hydrogen bonds are disrupted.

Amphiprotic species can accept and donate protons.

Amino acids as bases

In strongly acidic conditions a positive ion forms:

- an amino acid behaves as a base
- the COO⁻ ion gains a proton.

$$H_3N - C - C = 0$$
 $H_3N - C - C = 0$
 $H_3N - C -$

Amino acids as acids

In strongly alkaline conditions a negative ion forms:

- an amino acid behaves as an acid
- the NH₃⁺ ion loses a proton.

$$H_3N - C - C = 0$$
 $H_2N - C - C = 0$
 $H_2N - C -$

01 Procedure

Steps		Tube 1	Tube 2	Tube 3
1	Add the protein	3 ml of 1% egg albumin	3 ml of 1% egg albumin	3 ml of 1% egg albumin
2	Add the Acid	2 ml of con. HCL	2 ml of con. HNO3	2 ml of con. H2SO4

3- Mix, and describe any color change that occurred

02 Precipitation by Alkaloidal Reagent

- Alkaloidal reagents are acids that can combine with alkaloids (Alkaloids are organic bases from plants).
- Examples of alkaloidal reagents:
 - 1. Trichloroacetic acid
 - 2. Tannic acid
 - 3. Phosphotungstic acid
 - 4. Picric acid
 - 5. Sulfosalicylic acid
- Certain acidic reagents (alkaloidal reagents) combine with protein to form insoluble protein salts (e.g., Protein tannate).

02 Procedure

Steps		Tube 1	Tube 2	Tube 3	Tube 4	Tube 5	Tube 6
1	Sample	3 ml of 1% egg albumin	3 ml of 1% egg albumin	3 ml of 1% egg albumin	3 ml of 1% egg albumin	3 ml of 1% urea	3 ml of 1% alanine
2	Denaturing Reagent	5 drops of 10% Trichloroacet ic acid	5 drops of 5% aqueous tannic acid	5 drops of 20% Phosphotun gstic acid	5 drops of 20% sulfosalicyli c acid	5 drops of 10% Trichloroa cetic acid	5 drops of 10% Trichloroac etic acid

3- Mix, and describe any color change that occurred

03 Precipitation by Metallic Salts

• Principle:

When heavy metal cations (positive ions) (e.g. Pb, Cu, Hg, Ag) are added to a protein solution, the metal ions combine with the negatively charged groups to form insoluble metal ion proteinate.

03 Procedure

Steps		Tube 1	Tube 2	Tube 3	Tube 4
1	Sample	2 ml of 1% egg albumin	2 ml of 1% egg albumin	2 ml of 1% egg albumin	2 ml of 1% urea
2	Denaturing Reagent	5 drops of 0.2M copper sulfate	5 drops of 0.2M lead acetate	5 drops of 0.2M of mercuric chloride	5 drops of 0.2M copper sulfate

3- Mix well, and describe the result.

Guideline for writing the lab report

Total: 5 marks

All the following information should be included in your report:

- a) Course # (CLS 281)
- b) Experiment title
- c) Date of the experiment
- d) Student's names and university ID#
- e) Section #

The lab report is broken down into 6 sections:

- 1. Experiment title
- 2. The **aim** of the experiment (objective, or what the test detects specifically) (1 mark)
- 3. Principle (chemical reaction) (1 mark)
- 4. Methodology (written in steps, not in tables)
- 5. Result (1 mark)
- 6. Interpretation or Comment (2 mark)

Deadline: Next lab Submission: via email