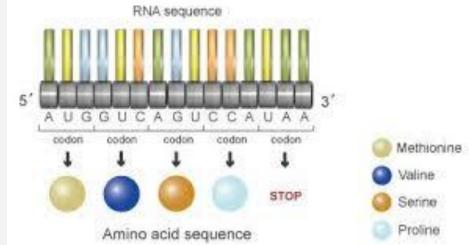
The Genetic Code

Lecture Objectives


- What is genetic code?
- Explain Properties of genetic code
- Understand amino acids codons

What is Genetic Code

The genetic code is the set of rules by which information encoded in genetic material (DNA or RNA sequences) is translated into proteins (amino acid sequences) by living cells.

- DNA could be read by Bases
- Proteins could be read by Amino Acids
- mRNA could be read by ?

-It will be read by codon

The Genetic Code

Genetic code is established to have an understanding of **molecular language**.

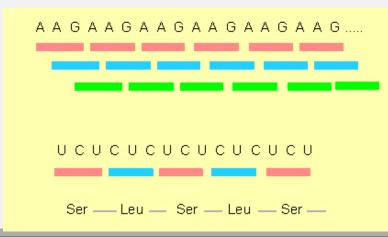
The sequence of codons in the **mRNA** defines the primary structure of the final protein.

A codon is made up of 3 bases also called **triplet codon**

Therefore three nucleotides in mRNA (a codon) specify one amino acid in a protein.

Properties of the Genetic Code

The code is triplet


The triplet sequence of mRNA that specify certain amino acid.

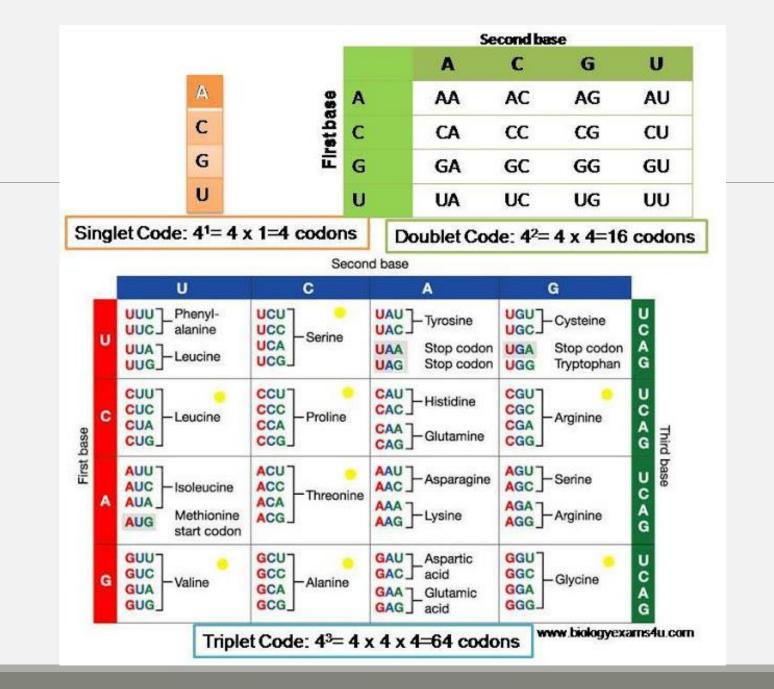
There are 64 different codons, but only 20 amino acids. (So, there may be more than one codon for an amino acid)

Stop Codons: 3 codons (UUA, UGA, UAG) in the genetic code used to terminate translation.

Start Codon: the codon (AUG) used to signify the start of translation

The remainder of the code is degenerate meaning that some amino acids are specified by more than one codon.

Evidence for the Triplet Code


Given that there are four bases in DNA, and these code for 20 Amino acids, what is the basis for the genetic code?

- If one base = one amino acid, possible amino acids = 4
- If two bases = one amino acid, possible amino acids = 16 (4×4)
- If three bases = one amino acid, possible amino acids = 64 (4×4×4)

Ģ	ç
_	_

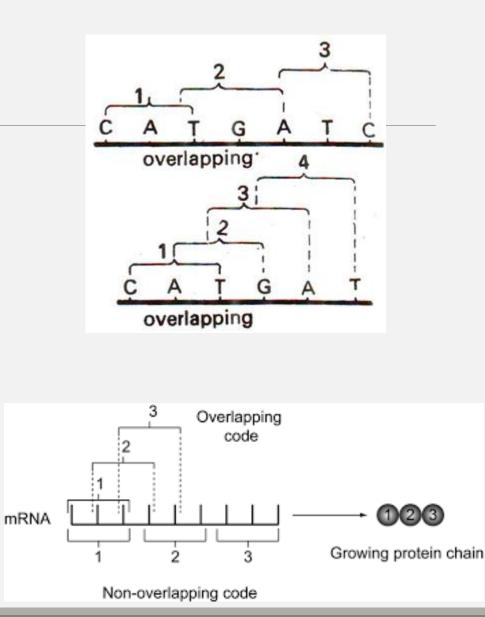
The existence of a three- base (triplet) code was confirmed by experiments by Francis Crick and his colleagues in 1961.

Codons

			Secon	d Letter		
		U	с	A	G	
	υ	UUU Phe UUC UUA Leu UUG	UCU UCC <mark>Ser</mark> UCA UCG	UAU Tyr UAC UAA Stop UAG Stop	UGU Cys UGC UGA Stop UGG Trp	U C A G
1st	с	CUU CUC Leu CUA CUG	CCU CCC Pro CCA CCG	CAU His CAC CAA GIN CAG CAG	CGU CGC CGA CGG	U C A G
letter	A	AUU AUC lle AUA AUG Met	ACU ACC Thr ACA ACG	AAU Asn AAC AAA Lys AAG	AGU Ser AGC AGA Arg AGG	U letter C A G
	G	GUU GUC Val GUA GUG	GCU GCC Ala GCA GCG	GAU Asp GAC GAA Glu GAG Glu	GGU GGC Gly GGA GGG	U C A G

Th	The table shows the 64 codons and the amino acid for each. The direction of the mRNA is $5'$ to $3'$.					
1 st		2 ⁿ	^{id} base		2rd Dava	
Base	e U	С	А	G	3 rd Base	
	UUU (Phe/F)Phenylalanine	UCU (Ser/S)Serine	UAU (Tyr/Y)Tyrosine	UGU (Cys/C)Cysteine	U	
	UUC (Phe/F)Phenylalanine		UAC (Tyr/Y)Tyrosine	UGC (Cys/C)Cysteine	C	
U	UUA (Leu/L)Leucine	UCA (Ser/S)Serine	UAA Ochre (Stop)	UGA Opal (Stop)	A	
		UCG (Ser/S)Serine	· •		G A	
	UUG (Leu/L)Leucine	UCG (Sel/S)Seriile	UAG Amber (Stop)	UGG (Trp/W)Tryptophan	U	
	CUU (Leu/L)Leucine	CCU (Pro/P)Proline	CAU (His/H)Histidine	CGU (Arg/R)Arginine	U	
G	CUC (Leu/L)Leucine	CCC (Pro/P)Proline	CAC (His/H)Histidine	CGC (Arg/R)Arginine	С	
C	CUA (Leu/L)Leucine	CCA (Pro/P)Proline	CAA (Gln/Q)Glutamine	CGA (Arg/R)Arginine	А	
	CUG (Leu/L)Leucine	CCG (Pro/P)Proline	CAG (Gln/Q)Glutamine	CGG (Arg/R)Arginine	G	
A	AUU (Ile/I)Isoleucine AUC (Ile/I)Isoleucine AUA (Ile/I)Isoleucine AUG (Met/M)Methionine	ACU (Thr/T)Threonine ACC (Thr/T)Threonine ACA (Thr/T)Threonine ACG (Thr/T)Threonine	AAU(Asn/N)Asparagine AAC (Asn/N)Asparagine AAA (Lys/K)Lysine AAG (Lys/K)Lysine	AGU (Ser/S)Serine AGC (Ser/S)Serine AGA (Arg/R)Arginine AGG (Arg/R)Arginine	U C A G	
G	GUU (Val/V)Valine GUC (Val/V)Valine GUA (Val/V)Valine GUG (Val/V)Valine	GCU (Ala/A)Alanine GCC (Ala/A)Alanine GCA (Ala/A)Alanine GCG (Ala/A)Alanine	GAU (Asp/D)Aspartic acid GAC (Asp/D)Aspartic acid GAA (Glu/E)Glutamic acid GAG (Glu/E)Glutamic acid	GGU (Gly/G)Glycine GGC (Gly/G)Glycine GGA (Gly/G)Glycine GGG (Gly/G)Glycine	U C A G	

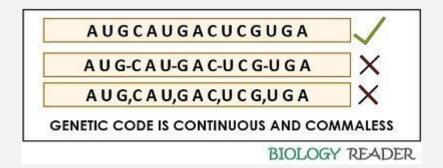
The code is degenerate


- •In the genetic code there are 64 codons. Three of them are stop codons (UAA, UAG & UGA).
- •Remaining 61 codons code for 20 amino acids.
- •Thus there are more than one codon for one amino acid. This is called degeneracy of genetic code.
- •Methionine and tryptophan are the only two amino acids that are coded for by just a single codon (AUG and UGG, respectively).
- •The other 18 amino acids are coded for by two to six codons. Because most of the 20 amino acids are coded for by more than one codon, the code is called degenerate.

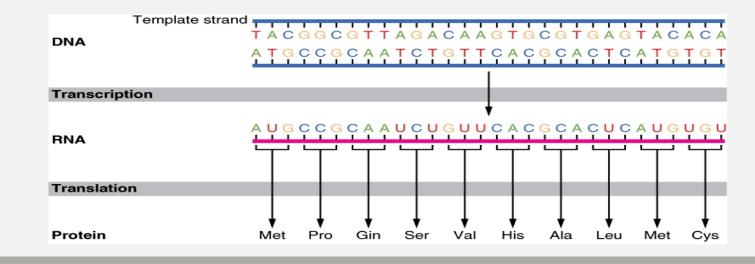
		Second	position		
	U	С	Α	G	
	UUU phe	UCU UCC ser	UAU UAC ^{tyr}	UGU UGC ^{cys}	U C
U	UUA UUG	UCA UCG	UAA Stop UAG Stop		A G
C	CUU <i>leu</i> CUC CUA CUG	CCU CCC pro CCA	CAU CAC his CAA gln CAG	CGU CGC arg CGA CGG	U C A G
C	AUU AUC <i>ile</i> AUA	ACU ACC ACA ^{thr}	AAU AAC ^{asn} AAA _{lys}	AGU AGC ^{ser}	U C A G U C A G
G	AUG met GUU GUC GUA val	ACG GCU GCC ala GCA	AAG GAU GAC asp GAA glu	AGG GGU GGC GGA	GU CA G

Initiation 📃 Termination

Non Overlapping


- Non-overlapping code means that a base in a mRNA is not used for two different codons.
- Not used in the formation of more than one codon.
- In Figure : it is shown that an overlapping code can mean coding for four amino acids from six bases. In actual practice six bases code for not more than two amino acids.

A commaless code


Means that no punctuations are needed between any two words. In other words, we can say that after one amino acid is coded, the second amino acid will be automatically coded by the next three letters

- Genetic code is non punctuating
- The reading frame of mRNA could not have any break during translation
- Punctuation in codon may be lethal
- It is called as comma less language that means within the coding regions of mRNA molecules there are no commas so that during translation, the codons are read consecutively.

The code is universal

All kinds of living organisms, micro or macro, plants or animals, the same genetic code is used.

Amino acids codons

There are 64 possible codons, three of which do not code for amino acids but indicate the end of a protein. The remaining 61 codons specify the 20 amino acids that make up proteins. The AUG codon, in addition to coding for methionine, is found at the beginning of every mRNA and indicates the start of a protein..

Organized by start and stop codons

Types of codons: 1- Sense Codons: The codon that code for amino acid are called sense codon.

2- Signal Codons: Start codons • Stop codonsThose codons that code for signal during protein synthesis are called signal codons.

For Example: AUG, UAA, UAG & UGA.

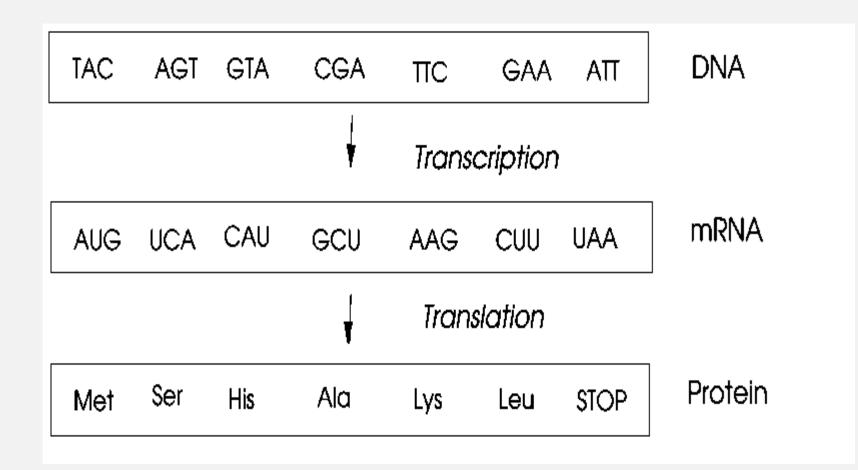
There are Two types of signal codons: **Terminating Codon **I

**Initiating Codon

"Terminating Codons" • UAA, UAG & UGA are termination codons "Initiating codon" • AUG is the initiation codon. It codes for the first amino acid in all proteins. Suppose we want to determine the amino acids coded for in the following section of a mRNA

5'—CCU—AGC—GGA—CUU—3'

According to the genetic code, the amino acids for these codons are:


CCU = Proline AGC = Serine

GGA = Glycine CUU = Leucine

The mRNA section codes for the amino acid sequence of Pro—Ser—

Gly—Leu

Construction of a Protein

https://www.youtube.com/watch?v=LsEYgwuP6ko