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We have learned that the two principal curvatures (and vectors) determine the local shape of a
point on a surface. One characterizes the rate of maximum bending of the surface and the tangent
direction in which it occurs, while the other characterizes the rate and tangent direction of minimum
bending. The rate of surface bending along any tangent direction at the same point is determined
by the two principal curvatures according to Euler’s formula. Our main focus will nevertheless be
on two new measures of the curving of a surface — its Gaussian and mean curvatures — that turn
out to have greater geometrical significance than the principal curvatures.

1 Definition

Let κ1 and κ2 be the principal curvatures of a surface patch σ(u, v). The Gaussian curvature of σ
is

K = κ1κ2,

and its mean curvature is

H =
1

2
(κ1 + κ2).

To compute K and H, we use the first and second fundamental forms of the surface:

Edu2 + 2Fdudv +Gdv2 and Ldu2 + 2Mdudv +Ndv2.

Again, we adopt the matrix notation:

F1 =

(

E F
F G

)

and F2 =

(

L M
M N

)

.

By definition, the principal curvatures are the eigenvalues of F−1

1
F2. Hence the determinant of this

matrix is the product κ1κ2, i.e., the Gaussian curvature K. So

K = det(F1
−1F2)

= det(F1)
−1 det(F2)

=
LN −M2

EG− F 2
.. (1)

∗The material is mostly adapted from the book Elementary Differential Geometry by Andrew Pressley, Springer-

Verlag, 2001.
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The trace of the matrix is the sum of its eigenvalues, thus, twice the mean curvature H. After
some calculation, we obtain

H =
1

2
trace(F1

−1F2)

=
1

2

LG− 2MF +NE

EG− F 2
. (2)

An equivalent way to obtain K and H uses the fact that the principal curvatures are also the
roots of

det(F2 − κF1) = 0,

which expands into a quadratic equation:

(EG− F 2)κ2 − (LG− 2MF +NE)κ+ LN −M2 = 0.

The product K and the sum 2H of the two roots, can be determined directly from the coefficients.
The results are the same as in (1) and (2).

Conversely, given the Gaussian and mean curvatures K and H, we can easily find the principal
curvatures κ1 and κ2, which are the roots of

κ2 − 2Hκ+K = 0,

i.e., H ±
√
H2 −K.

Example 1. We have considered the surface of revolution (see Example 8 in the notes titled “Surfaces”)

σ(u, v) = (f(u) cos v, f(u) sin v, g(u)),

where we assume, without loss of generality, that f > 0 and ḟ2 + ġ2 = 1 everywhere. Here a dot denotes
d/du. The coefficients of the first and second fundamental forms were determined:

E = 1, F = 0, G = f2, L = ḟ g̈ − f̈ ġ, M = 0, N = f ġ.

So the Gaussian curvatures is

K =
LN −M2

EG− F 2

=
(ḟ g̈ − f̈ ġ)f ġ

f2

=
(ḟ g̈ − f̈ ġ)ġ

f
.

Meanwhile, differentiate ḟ2 + ġ2 = 1:
ḟ f̈ + ġg̈ = 0.

Thus,

(ḟ g̈ − f̈ ġ)ġ = −ḟ2f̈ − f̈ ġ2

= −f̈(ḟ2 + ġ2)

= −f̈ .
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So the Gaussian curvature gets simplified to

K = − f̈

f
.

Example 2. Here we compute the Gaussian and mean curvatures of a Monge patch z = f(x, y). Namely,
the patch is described by σ(x, y) = (x, y, f(x, y)). First, we obtain the first and second derivatives:

σx = (1, 0, fx), σy = (0, 1, fy), σxx = (0, 0, fxx), σxy = (0, 0, fxy), σyy = (0, 0, fyy).

Immediately, the coefficients of the first fundamental form are determined

E = 1 + f2

x , F = fxfy, G = 1 + f2

y .

So is the unit normal to the patch:

n̂ =
σx × σy

‖σx × σy‖

=
(−fx,−fy, 1)
√

1 + f2
x + f2

y

.

With the normal n̂, we obtain the coefficients of the second fundamental form:

L = σxx · n̂ =
fxx

√

1 + f2
x + f2

y

,

M = σxy · n̂ =
fxy

√

1 + f2
x + f2

y

,

N = σyy · n̂ =
fyy

√

1 + f2
x + f2

y

.

Plug the expressions for E,F,G, L,M,N into (1) and (2). A few more steps of symbolic manipulation yield:

K =
LN −M2

EG− F 2

=
fxxfyy − f2

xy

(1 + f2
x + f2

y )
2
,

H =
1

2

LG− 2MF +NE

EG− F 2

=
fxx(1 + f2

y )− 2fxyfxfy + fyy(1 + f2

x)

2(1 + f2
x + f2

y )
3/2

.

2 Classification of Surface Points

The Gaussian curvature is independent of the choice of the unit normal n̂. To see why, suppose
n̂ is changed to −n̂. Then the signs of the coefficients of L,M,N change, so do the signs of both
principal curvatures κ1 and κ2, which are the roots of det(F2 − κF1). Their product K = κ1κ2
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is unaffected. The mean curvature H = (κ1 + κ2)/2, nevertheless, has its sign depending on the
choice of n̂.

The sign of K at a point p on a surface S has an important geometric meaning, which is detailed
below.

1. K > 0 The principal curvatures κ1 and κ2 have the same sign. The normal curvature κ in
any tangent direction t is equal to κ1 cos

2 θ + κ2 sin
2 θ, where θ is the angle between t and

the principal vector corresponding to κ1. So κ has the same sign as that of κ1 and κ2. The
surface is bending away from its tangent plane in all tangent directions at p. The quadratic
approximation of the surface near p is the paraboloid

z =
1

2

(

κ1x
2 + κ2y

2
)

.

We call p an elliptic point of the surface. The left figure below plots an elliptic paraboloid
z = x2 + 2y2 with principal curvatures 2 and 4 at the origin.

2. K < 0 The principal curvatures κ1 and κ2 have opposite signs at p. The quadratic
approximation of the surface near p is a hyperboloid. The point is said to be a hyperbolic

point of the surface. The right figure above plots a hyperbolic paraboloid z = x2 − 2y2 with
principal curvatures 2 and −4 at the origin.

3. K = 0 There are two cases:

(a) Only one principal curvature, say, κ1, is zero. In this case, the quadratic approximation
is the cylinder z = 1

2
κ2y

2. The point p is called a parabolic point of the surface.

(b) Both principal curvatures are zero. The quadratic approximation is the plane z = 0.
The point p is a planar point of the surface. One cannot determine the shape of the
surface near p without examining the third or higher order derivatives. For example, a
point in the plane and the origin of a monkey saddle z = x3 − 3xy2 (shown on the next
page) are both planar points, but they have quite different shapes.
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A torus is the surface swept by a circle of radius a originally in the yz-plane and centered on
the y-axis at a distance b, b > a, from the origin, when the circle revolves about the z-axis. It is
easy to derive the following implicit equation for the torus:

(

√

x2 + y2 − b
)

2

+ z2 = a2.

p

z

y

x

p

a

a
b

The torus is a good example which has all three types of points. At points on the outer half of
the torus, the torus bends away from from its tangent plane; hence K > 0. At each point on the
inner half, the torus bends toward its tangent plane in the horizontal direction, but away from it
in the orthogonal direction; hence K < 0. On the two circles, swept respectively by the top and
bottom points of the original circle, every point has K = 0.

A surface S is flat if its Gaussian curvature is zero everywhere.
A plane is flat. Let it be the xy-plane with the parametrization
(x, y, 0). We can easily show that the plane has zero Gaussian
curvature. A circular cylinder, treated in Example 3 of the notes
“Surface Curvatures”, has one principal curvature equal to zero
and the other equal to the inverse of the radius of its cross section.
So a circular cylinder is also flat, even though it is so obviously
curved.

A surface is minimal provided its mean curvature is zero ev-
erywhere. Minimal surfaces have Gaussian curvature K ≤ 0. This
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is because H = (κ1 + κ2)/2 = 0 implies κ1 = −κ2. The catenoid
(cos u cosh v, sinu cosh v, v) plotted over [0, 2π]×[−2, 2] to the right
is a minimal surface.

3 The Gauss Map

The standard unit normal n̂ to a surface patch σ measures the ‘direction’ of its tangent plane. The
change rate of n̂ in a tangent direction, i.e., the normal curvature, indicates the degree of variation
of surface geometry in that direction at the point. To make the notion of change of geometry
independent of any tangent direction, we can measure by the ‘rate of change of n̂ per unit area’.

Note that n̂ is a point of the unit sphere S2 centered at the origin. The Gauss map from a
surface patch σ(u, v) : U → R

3 to the unit sphere S2 sends a point p = σ(u, v) to the point n̂(u, v)
of S2. The Gauss map may be a many-to-one mapping since multiple points on the patch can have
the same unit normal.

unit sphere

Gauss map

q

p

σ(R)

n̂(q)

n̂(p) n̂(p)

n̂(q) N(R)

Let R ⊆ U be a region in the patch’s domain. The amount by which n̂ varies over the
corresponding region σ(R) on the surface is measured by the area of the image region N(R) on the
unit sphere. The rate of change of n̂ per unit area is the limit of the ratio of the area AN (R) of
N(R) to the area Aσ(R) of the surface region σ(R), as R shrinks to a point. To be more precise,
we consider R to be a closed disk of radius δ centered at (u, v) ∈ U . This ratio is

lim
δ→0

AN(R)

Aσ(R)
.

It can be shown [2, pp. 166–168] that the above ratio is the absolute value of the Gaussian curvature
at p, i.e.,

lim
δ→0

AN (R)

Aσ(R)
= |K|.

The integral of the Gaussian curvature K over a surface S,
∫ ∫

S

KdS,

is called the total Gaussian curvature of S. It is the algebraic area of the image of the region on the
unit sphere under the Gauss map. Note the use of the word ‘algebraic’ since Gaussian curvature
can be either positive or negative,

Suppose the patch S = σ(u, v) is defined over the domain [a, b]× [c, d]. Then the total Gaussian
curvature is computed as

∫

d

c

∫

b

a

K(u, v)
√

EG− F 2 dudv.
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Example 3. If the Gaussian curvature K of a surface S is constant, then the total Gaussian curvature

is KA(S), where A(S) is the area of the surface. Thus a sphere of radius r has total Gaussian curvature
1

r2 · 4πr2 = 4π, which is independent of the radius r.

Example 4. Without any computation, we can determine that an ellipsoid also has total curvature 4π. The

Gauss map is bijective (one-to-one and onto) since every point on the ellipsoid has a distinct normal. The

image region covers the unit sphere. Because the Gaussian curvature is everywhere positive on the ellipsoid,

the area of the unit sphere, 4π, is the total Gaussian curvature of the ellipsoid.
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