
05 - Hydrogenic Atoms

◮ Aim of Section:
◮ Investigation of bound energy eigenstates of hydrogenic atoms:

i.e., atoms with single electron, such as H, He+, Li++, etc.



Hamiltonian - I

◮ Non-relativistic Hamiltonian of point particle is sum of
operators representing kinetic and potential energies:

H = K + V .

◮ By analogy with classical physics, kinetic energy of particle of
mass m, moving in three dimensions, is

K =
p2

2m
≡ p 2

x

2m
+

p 2
y

2m
+

p 2
z

2m
,

where px is quantum mechanical operator that represents
x-momentum, etc.



Hamiltonian - II

◮ In a hydrogenic atom, classical potential energy takes form
V = V (r), where r = (x2 + y2 + z2)1/2. Such a potential is
termed a central potential (because it only depends on radial
distance, r , from origin).

◮ Assume that quantum mechanical potential energy is same
function of operators representing Cartesian components of
position that classical potential is of Cartesian coordinates.

◮ Hamiltonian of point particle moving in central potential
becomes

H =
p2

2m
+ V (r). (1)

◮ Wish to find bound energy eigenstates of system. These are
square-integrable solutions of time-independent Schrödinger
equation:

H ψ = E ψ. (2)



Derivation of Radial Equation - I

◮ Cartesian components of momentum, p, are represented as

pi = −i ~
∂

∂xi

for i = 1, 2, 3, where x1 ≡ x , etc.

◮ Radial component of momentum can be represented as
(Hw. 3, Q. 4)

pr ≡
x · p
r

=
xi pi

r
= −i ~

xi

r

∂

∂xi
= −i ~

∂

∂r
. (3)

◮ Here, have made use of Einstein summation convention:
xi pi ≡

∑

i=1,3 xi pi .



Derivation of Radial Equation - II

◮ Angular momentum vector, L, is defined

L = x× p. (4)

◮ Previous expression can also be written:

Li = ǫijk xj pk ,

where ǫijk = +1 if i , j , k cyclic permutation of 1,2 3; ǫijk = −1
if anti-cyclic permutation; ǫijk = 0 otherwise.

◮ L2 is equivalent to Li Li . Thus, we obtain

L2 = ǫijk xj pk ǫilm xl pm = ǫijk ǫilm xj pk xl pm.

◮ Note that we are able to shift position of ǫilm because its
elements are just numbers, and, therefore, commute with all
of the xi and the pi .



Derivation of Radial Equation - III

◮ Easily demonstrated that

ǫijk ǫilm ≡ δjl δkm − δjm δkl ,

where δij = 1 if i = j ; δij = 0 otherwise.

◮ Previous two equations yield

L2 = xi pj xi pj − xi pj xj pi . (5)

◮ Here, we have made use of result δij ai bj ≡ ai bi . We have
also been careful to preserve order of various terms on
right-hand side of previous expression, because the xi and the
pi do not necessarily commute with one another.



Derivation of Radial Equation - IV

◮ Now need to rearrange order of terms on right-hand side of
(5).

◮ Can achieve this goal by making use of fundamental
commutation relation for the xi and the pi :

[xi , pj ] = i ~ δij .

◮ Thus,

L2 = xi (xi pj − [xi , pj ]) pj − xi pj (pi xj + [xj , pi ])

= xi xi pj pj − i ~ δij xi pj − xi pj pi xj − i ~ δij xi pj

= xi xi pj pj − xi pi pj xj − 2 i ~ xi pi .

◮ Here, we have made use of fact that pj pi = pi pj , because the
pi commute with one another.



Derivation of Radial Equation - V

◮ Next,

L2 = xi xi pj pj − xi pi (xj pj − [xj , pj ])− 2 i ~ xi pi .

◮ Now,

[xj , pj ] ≡ [x1, p1] + [x2, p2] + [x3, p3] = 3 i ~.

◮ Hence, we obtain

L2 = xi xi pj pj − xi pi xj pj + i ~ xi pi .

◮ When expressed in more conventional vector notation,
previous expression becomes

L2 = r2 p2 − (x · p)2 + i ~ x · p. (6)

◮ If we had attempted to derive previous expression directly
from (4), using standard vector identities, then we would have
missed final term on right-hand side. This term originates
from lack of commutation between xi and pi operators in
quantum mechanics.



Derivation of Radial Equation - VI

◮ (6) can be rearranged to give

p2 = r−2
[

(x · p)2 − i ~ x · p+ L2
]

.

◮ Now,

x · p = r pr = −i ~ r
∂

∂r
,

where use has been made of (3).

◮ Hence, we obtain

p2 = −~
2

[

1

r

∂

∂r

(

r
∂

∂r

)

+
1

r

∂

∂r
− L2

~2 r2

]

.

◮ Finally, previous equation can be combined with (1) to give
following expression for Hamiltonian:

H = − ~
2

2m

(

∂ 2

∂r2
+

2

r

∂

∂r
− L2

~2 r2

)

+ V (r). (7)



Derivation of Radial Equation - VII

◮ Let us now consider whether previous Hamiltonian commutes
with angular momentum operators Lz and L2.

◮ Recall that Lz and L2 are represented as differential operators
that depend solely on angular spherical coordinates, θ and φ,
and do not contain radial coordinate, r .

◮ Thus, any function of r , or any differential operator involving
r (but not θ and φ), will automatically commute with L2 and
Lz .

◮ Moreover, L2 commutes both with itself, and with Lz .

◮ It is, therefore, clear that previous Hamiltonian commutes
with both Lz and L2.



Derivation of Radial Equation - VIII

◮ If two operators commute with one another then they possess
simultaneous eigenstates.

◮ Conclude that, for a particle moving in a central potential,
eigenstates of Hamiltonian are simultaneous eigenstates of Lz
and L2.

◮ Have already found simultaneous eigenstates of Lz and
L2—they are spherical harmonics, Ym

l (θ, φ).

◮ Follows that spherical harmonics are also eigenstates of
Hamiltonian. This observation leads us to try following
separable form for stationary wavefunction:

ψ(r , θ, φ) = R(r)Ym
l (θ, φ). (8)



Derivation of Radial Equation - IX

◮ Immediately follows from properties of Ym
l , and fact that Lz

and L2 both obviously commute with R(r), that

Lz ψ= m ~ψ, (9)

L2 ψ= l (l + 1)~2 ψ. (10)

◮ Recall that l is non-negative integer, and m is integer lying in
range −l ≤ m ≤ +l .

◮ Finally, making use of (2), (7), and (10), we obtain following
differential equation which determines radial variation of
stationary wavefunction:

− ~
2

2m

[

d2

dr2
+

2

r

d

dr
− l (l + 1)

r2

]

Rn,l + V (r)Rn,l = E Rn,l .

(11)



Derivation of Radial Equation - X

◮ Here, have labeled function R(r) by two quantum numbers, n
and l .

◮ Second quantum number, l , is related to eigenvalue of L2.
[Note that azimuthal quantum number, m, does not appear in
previous equation, and, therefore, does not influence either
function R(r) or energy, E .]

◮ First quantum number, n, is determined by constraint that
radial wavefunction be square-integrable.



Normalization of Radial Equation - I

◮ A hydrogenic atom consists of an electron, of change −e and
mass me , and a nucleus of charge +Z e, and mass mn = Amp.

◮ Here, Z and A are atomic number and mass number of atom,
respectively. Moreover, mp is proton mass.

◮ Potential energy of atom is

V (r) = − Z e2

4πǫ0 r
,

where r = |x|, and x is position vector of electron relative to
nucleus.

◮ As in classical physics, two-body problem can be converted
into equivalent one-body problem in which particle of mass

µ =
me mn

me +mn

moves in central potential

V (r) = − Z e2

4πǫ0 r
.



Normalization of Radial Equation - II

◮ V (r) → 0 as r → ∞, so bound state has negative energy.

◮ Given that me/mp ≃ 1/1836, fractional difference between me

and µ is less than 5.4× 10−4. However, relativistic corrections
to electron mass are larger than this. (See later.) Hence, it
does not make sense to make a distinction between me and µ
in non-relativistic quantum mechanics.

◮ Conclude that appropriate version of radial equation, (11), for
hydrogenic atom is

− ~
2

2me

[

d2

dr2
+

2

r

d

dr
− l (l + 1)

r2

]

Rn,l −
Z e2

4πǫ0 r
Rn,l = E Rn,l .



Normalization of Radial Equation - III

◮ Previous equation can be rearranged to give

d2Rn,l

dr2
+

2

r

dRn,l

dr
+

2me

~2

[

E +
Z e2

4πǫ0 r
− ~

2 l (l + 1)

2me r2

]

Rn,l = 0.

◮ Convenient to rewrite radial equation in terms of
dimensionless energy and dimensionless radial coordinate.

◮ Let a be characteristic length-scale of hydrogenic atom.

◮ Dimensionless radial coordinate is

ρ =
r

a
. (12)

◮ Follows that

1

a2
d2Rn,l

dρ2
+

1

a2
2

ρ

dRn,l

dρ
+

2me

~2

[

E +
Z e2

4πǫ0 a ρ
− ~

2 l (l + 1)

2me a2 ρ2

]

Rn,l = 0.



Normalization of Radial Equation - IV

◮ Multiplying by a2, obtain

d2Rn,l

dρ2
+

2

ρ

dRn,l

dρ
+

[

2me a
2 E

~2
+

me Z e2

4πǫ0 ~2
2 a

ρ
− l (l + 1)

ρ2

]

Rn,l = 0.

◮ Terms inside square bracket on right-hand side of previous
equation are dimensionless.

◮ Evident that characteristic length-scale is

a =
4πǫ0 ~

2

me Z e2
. (13)

◮ Characteristic energy scale is ~2/(2me a
2).

◮ Define dimensionless energy parameter,

γ2 = −E

/(

~
2

2me a2

)

. (14)

◮ Note that E < 0 for bound state. Hence, γ2 > 0. Can chose
positive root without loss of generality.



Normalization of Radial Equation - V

◮ Radial equation becomes

d2Rn,l

dρ2
+

2

ρ

dRn,l

dρ
+

[

−γ2 + 2

ρ
− l (l + 1)

ρ2

]

Rn,l = 0. (15)

◮ Normalization condition for radial wavefunction is
∫ ∞

0
r2 [Rn,l(r)]

2
dr = a3

∫ ∞

0
ρ2 [Rn,l(ρ)]

2
dρ = 1. (16)



Solution of Radial Equation - I

◮ Consider large-ρ limit of (15) in which 1/ρ and 1/ρ2 terms are
negligible.

◮ Equation reduces to

d2Rn,l

dρ2
− γ2 Rn,l ≃ 0.

◮ Solutions are Rn,l = e
±γ ρ. However, e+γ ρ solution is not

compatible with normalization condition (16).

◮ Conclude that
Rn,l(ρ) ∼ e

−γ ρ

at large ρ.



Solution of Radial Equation - II

◮ Consider small-ρ limit of (15) in which 1/ρ2 term dominates.

◮ Equation reduces to

d2Rn,l

dρ2
+

2

ρ

dRn,l

dρ
− l (l + 1)

ρ2
Rn,l ≃ 0.

◮ Search for power-law solution of form R(ρ) = ρq . Obtain

q (q − 1) + 2 q − l (l + 1) = q (q + 1)− l (l + 1) = 0.

◮ Solutions are q = l and q = −l − 1. Latter solution not
compatible with physical constraint that wavefunction finite at
origin.

◮ Conclude that
Rn,l(ρ) ∼ ρl

at small ρ.



Solution of Radial Equation - III

◮ Previous analysis suggest that we search for a solution of
radial equation (15) that has form

Rn,l(ρ) = e
−γ ρ ρl H(ρ). (17)

◮ (15) transforms to give (Hw. 3, Q. 5)

ρ
d2H

dρ2
+ 2 (l + 1− γ ρ)

dH

dρ
+ 2 (1 − γ − γ l)H = 0. (18)

◮ Search for power-law solution of form

H(ρ) =
∑

j=0,∞

cj ρ
j . (19)

◮ Solution automatically satisfies correct boundary condition at
small ρ.



Solution of Radial Equation - IV

◮ Previous two equations lead to recursion relation (Hw. 3, Q. 6)

cj+1 =
2 γ (1 + j + l)− 2

(j + 1) (j + 2 l + 2)
cj . (20)

◮ In large-j limit, obtain

cj+1 ≃
2 γ

j
cj .

◮ But series

e
2 γ ρ =

∑

j=0,∞

(2 γ) j

j!
ρ j

has same large-j recursion relation.



Solution of Radial Equation - V

◮ Conclude from (17) and (19) that Rn,l(ρ) ∼ ρl e γ ρ at large-ρ,
which is is not compatible with normalization condition (16).

◮ Only way to prevent this unacceptable behavior is if series
(19) terminates at a finite value of j .

◮ Suppose that maximum power of ρ in series solution (19) is
ρ jmax .

◮ In order for the series to terminate, we require cjmax+1 = 0
when cjmax

6= 0.

◮ Follows from recursion relation (20) that

2 γ (1 + jmax + l)− 2 = 0.

◮ Let
n = jmax + l + 1.

Evident that n ≥ l + 1 is positive integer (because jmax ≥ 0).



Solution of Radial Equation - VI

◮ From previous two equations, allowed values of energy
parameter are

γ =
1

n
. (21)

◮ Here, n is termed principle quantum number of hydrogenic
atom.

◮ Note that the power-law solution (19) contains n − l terms.



Useful Quantities - I

◮ Helpful to define Bohr radius:

a0 =
4πǫ0 ~

2

me e
2

= 5.29177 × 10−11
m. (22)

◮ Also helpful to define hydrogen ground-state energy:

E0 = − ~
2

2me a
2
0

= − e2

8πǫ0 a0
= −13.6 eV. (23)

◮ In terms of these quantities

a =
a0

Z
. (24)

◮ Energy of hydrogenic atom associated with principle quantum
number n is

En =
Z 2 E0

n 2
. (25)



Useful Quantities - II

◮ Ratio of magnitude of hydrogen ground-state energy to
electron rest mass energy is

|E0|
me c2

=
α2

2
,

where

α =
e2

4πǫ0 ~ c
≃ 1

137
(26)

is dimensionless fine-structure constant.

◮ Fact that α≪ 1 justifies non-relativistic treatment of problem.



Radial Wavefunctions - I

◮ Laguerre polynomials (warning: this is math definition—see
Wikipedia), Lq(x), defined as follows:

Lq(x) =
e
x

q!

dq

dxq
(xq e−x),

where q is a non-negative integer.

◮ Associated Laguerre polynomials, Lpq(x), defined as follows:

Lpq(x) = (−1)p
dp

dxp
Lq+p(x),

where p is a non-negative integer.

◮ Given that Lq(x) are polynomials of degree q, follows that
L
p
q(x) are also polynomials of degree q.



Radial Wavefunctions - II

◮ Associated Laguerre polynomials are solutions of following
differential equation:

x
d2L

p
q

dx2
+ (p + 1− x)

dL
p
q

dx
+ q Lpq = 0.

◮ (18) and (21) yield

x
d2H

dx2
+ [2 (l + 1)− x ]

dH

dx
+ (n − 1− l)H = 0,

where x = 2 ρ/n.

◮ Previous two equations imply that

H(ρ) = L2l+1
n−l−1(2 ρ/n).



Radial Wavefunctions - III

◮ From (17), (21), radial wavefunction becomes

Rn,l(ρ) = An,l e
−ρ/n ρl L2l+1

n−l−1(2 ρ/n).

◮ An,l determined from normalization condition (16).

◮ From (12), (24),

A 2
n,l

(a0

Z

)3
∫ ∞

0
ρ2 e−2 ρ/n ρ2 l

[

L2l+1
n−l−1(2ρ/n)

]2
dρ = 1.

◮ This yields

A 2
n,l

(a0

Z

)3 (n

2

)2l+3
∫ ∞

0
x2 (l+1)

e
−x

[

L2l+1
n−l−1(x)

]2
dx = 1,

where x = 2 ρ/n.



Radial Wavefunctions - IV

◮ However,

∫ ∞

0
x2 (l+1)

e
−x

[

L2l+1
n−l−1(x)

]2
dx =

2n (n + l)!

(n − l − 1)!
.

◮ Hence,

An,l =

{

(

2Z

n a0

)3 (n − l − 1)!

2n (n + l)!

}1/2
(

2

n

)l

.

◮ Properly normalized radial wavefunctions become

Rn,l(r)=

{

(

2Z

n a0

)3 (n − l − 1)!

2n (n + l)!

}1/2

exp

(

− Z r

n a0

)(

2Z r

n a0

)l

× L2l+1
n−l−1

(

2Z r

n a0

)

. (27)



Radial Wavefunctions - V

◮ First few associated Laguerre polynomials as follows:

L00(x) = 1, L10(x)= 1,

L20(x) = 1, L30(x)= 1,

L01(x) = 1− x , L11(x)= 2− x ,

L21(x) = 3− x , L31(x)= 4− x ,

L02(x) = 1− 2 x + x2/2, L12(x)= 3− 3 x + x2/2,

L22(x) = 6− 4 x + x2/2, L32(x)= 10− 5 x + x2/2.



Radial Wavefunctions - VI

◮ First few radial wavefunctions as follows:

R1,0(r)= 2

(

Z

a0

)3/2

e
−Z r/a0 ,

R2,0(r)= 2

(

Z

2 a0

)3/2 (

1− Z r

2 a0

)

e
−Z r/2 a0 ,

R2,1(r)=
1√
3

(

Z

2 a0

)3/2
Z r

a0
e
−Z r/2 a0 ,

R3,0(r)= 2

(

Z

3 a0

)3/2 (

1− 2Z r

3 a0
+

2Z 2 r2

27 a20

)

e
−Z r/3 a0 ,

R3,1(r)=
4
√
2

3

(

Z

3 a0

)3/2
Z r

a0

(

1− Z r

6 a0

)

e
−Z r/3 a0 ,

R3,2(r)=
2
√
2

27
√
5

(

Z

3 a0

)3/2 (
Z r

a0

)2

e
−Z r/3 a0 .



n = 1 Radial Wavefunctions
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n = 2 Radial Wavefunctions
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n = 3 Radial Wavefunctions
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Energy Eigenstates - I

◮ Taking electron spin into account, energy eigenstates of
hydrogenic atom can be written

ψn,l ,m,± = Rn,l(r)Y
m
l (θ, φ)χ±.

◮ States are orthonormal:
∫ ∞

0
r2 Rn,l(r)Rn′,l(r) dr = δnn′ ,

∮

Ym ∗
l (θ, φ)Ym′

l ′ (θ, φ) dΩ= δll ′ δmm′ ,

χ†
s χs′ = δss′ ,

where s = ±.



Energy Eigenstates - II

◮ Quantum number n takes values

n = 1, 2, 3, · · ·.

◮ Energy eigenvalues are

En =
Z 2 E0

n2
,

where E0 = −13.6 eV.

◮ Quantum number l takes values

0 ≤ l < n.

◮ Quantum number m takes values

−l ≤ m ≤ +l .



Energy Eigenstates - III

◮ nth energy level is 2 n2-fold degenerate. That is, there are two
n = 1 states, eight n = 2 states, eighteen n = 3 states, etc.

◮ As we shall see later, this degeneracy is lifted, to some extent,
by relativistic corrections. In fact,

En ≃ Z 2 E0

n2
+

Z 4 α2 E0

n4

(

n

j + 1/2
− 3

4

)

,

where j is quantum number associated with total angular
momentum.



Properties of Hydrogenic Wavefunctions

◮ Hydrogenic wavefunctions have following useful properties:

〈r〉= a0

2Z

[

3 n2 − l (l + 1)
]

,

〈

r2
〉

=
a20 n

2

2Z 2

[

5 n2 + 1− 3 l (l + 1)
]

,

〈

1

r

〉

=
Z

a0 n2
,

〈

1

r2

〉

=
Z 2

a20 n
3 (l + 1/2)

,

〈

1

r3

〉

=
Z 3

a30 n
3 l (l + 1/2) (l + 1)

.


