05 - Hydrogenic Atoms

» Aim of Section:

» Investigation of bound energy eigenstates of hydrogenic atoms:
i.e., atoms with single electron, such as H, Het, Li" ™, etc.



Hamiltonian - |

» Non-relativistic Hamiltonian of point particle is sum of
operators representing kinetic and potential energies:

H=K+ V.

» By analogy with classical physics, kinetic energy of particle of
mass m, moving in three dimensions, is

2 2 2 2
p
P _PX+_y+P_z

“2m 2m  2m  2m’

where p, is quantum mechanical operator that represents
x-momentum, etc.



Hamiltonian - |l

In a hydrogenic atom, classical potential energy takes form
V = V(r), where r = (x? + y? + z?)}/2. Such a potential is
termed a central potential (because it only depends on radial
distance, r, from origin).

Assume that quantum mechanical potential energy is same
function of operators representing Cartesian components of
position that classical potential is of Cartesian coordinates.

Hamiltonian of point particle moving in central potential

becomes )

p
H= -+ V(r). (1)

Wish to find bound energy eigenstates of system. These are
square-integrable solutions of time-independent Schrodinger
equation:

Ha = E . ()



Derivation of Radial Equation - |

» Cartesian components of momentum, p, are represented as

0
j=—iho—
P ! 8X,'

for i = 1,2, 3, where x; = x, etc.

» Radial component of momentum can be represented as
(Hw. 3, Q. 4)

X P _XiPi_ %0 .0

ih—.
r r r O0x; or

pr

» Here, have made use of Einstein summation convention:

Xj pi = 2;2173 X Pi-



Derivation of Radial Equation - |l

Angular momentum vector, L, is defined
L=xxp. (4)
Previous expression can also be written:
Li = €jjk Xj px,

where € = +1if i, j, k cyclic permutation of 1,2 3; € = —1
if anti-cyclic permutation; € = 0 otherwise.

L? is equivalent to L; L;. Thus, we obtain

2
L= = €jjk Xj Pk €ilm XI Pm = €jjk €ilm Xj Pk X| Pm-

Note that we are able to shift position of ¢;;,,, because its
elements are just numbers, and, therefore, commute with all
of the x; and the p;.



Derivation of Radial Equation - |lI

» Easily demonstrated that
€ijk €ilm = 0j1 Okm — Ojm Ok,

where 0;; = 1 if i = j; 0;; = 0 otherwise.

» Previous two equations yield
L? = x; pj xi pj — Xi Pj X; Pi- (5)

» Here, we have made use of result 0;; a; bj = a; b;. We have
also been careful to preserve order of various terms on
right-hand side of previous expression, because the x; and the
pi do not necessarily commute with one another.
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Derivation of Radial Equation - IV

Now need to rearrange order of terms on right-hand side of
(5).

Can achieve this goal by making use of fundamental
commutation relation for the x; and the p;:

[xi, pj] =1h0j;.
Thus,
L% = x; (xi p; — Ixi, 1) i = xi Py (Pi g + [, pi])
= Xi Xi pj pj — 1h0jj Xi pj — Xi pj pi Xj — 1h.0jj X; pj
= X; X; pj pj — Xi Pi pj Xj — 21 h X p;.
Here, we have made use of fact that p; p; = p; p;, because the

pi commute with one another.



Derivation of Radial Equation - V
Next,
L% = xix; pj pj — xi pi (x; pj — [}, Bj]) — 210 pi.
Now,
[xj, il = [x1, p1] + [x2, p2] + [x3, p3] = 3ih.
Hence, we obtain
L = x; i pj pj — Xi pi Xj pj + 1B pi.

When expressed in more conventional vector notation,
previous expression becomes

[2=r*p?—(x-p)® +ihx-p. (6)

If we had attempted to derive previous expression directly
from (4), using standard vector identities, then we would have
missed final term on right-hand side. This term originates
from lack of commutation between x; and p; operators in
quantum mechanics.
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Derivation of Radial Equation - VI

(6) can be rearranged to give
p? =r2 [(x-p)2 —ihx-p+ Lz].

Now,

. 0
x-p:rpr:—lhra,

where use has been made of (3).
Hence, we obtain

19( 0 19 L2

2 2

=—h"|=—(r— - — .

P [r8r<r8r>+r8r 52,2]

Finally, previous equation can be combined with (1) to give
following expression for Hamiltonian:

B2 (0% 20 L2
He g (G e e) + V0

(7)



Derivation of Radial Equation - VII

Let us now consider whether previous Hamiltonian commutes
with angular momentum operators L, and L.

Recall that L, and L? are represented as differential operators
that depend solely on angular spherical coordinates, 6 and ¢,
and do not contain radial coordinate, r.

Thus, any function of r, or any differential operator involving
r (but not 6 and @), will automatically commute with L2 and
L,.

Moreover, L2 commutes both with itself, and with L,.

It is, therefore, clear that previous Hamiltonian commutes
with both L, and L2.



Derivation of Radial Equation - VIII

If two operators commute with one another then they possess
simultaneous eigenstates.

Conclude that, for a particle moving in a central potential,
eigenstates of Hamiltonian are simultaneous eigenstates of L,
and 2.

Have already found simultaneous eigenstates of L, and
[2—they are spherical harmonics, Y;™(0, ).

Follows that spherical harmonics are also eigenstates of
Hamiltonian. This observation leads us to try following
separable form for stationary wavefunction:

1/}(f, 97 ¢) = R(f) Ylm(ea (b) (8)



Derivation of Radial Equation - IX

» Immediately follows from properties of Y;”, and fact that L,
and L? both obviously commute with R(r), that

sz: mh% (9)
L2p=1(I+1) 0% . (10)

> Recall that / is non-negative integer, and m is integer lying in
range — < m < +/.

» Finally, making use of (2), (7), and (10), we obtain following
differential equation which determines radial variation of
stationary wavefunction:

R [d* 2d  I(I+1)

om |dr2 " rdr r2

R”J + V(r) R"J =E R"J‘
(11)



Derivation of Radial Equation - X

Here, have labeled function R(r) by two quantum numbers, n
and /.

Second quantum number, /, is related to eigenvalue of L2
[Note that azimuthal quantum number, m, does not appear in
previous equation, and, therefore, does not influence either
function R(r) or energy, E.]

First quantum number, n, is determined by constraint that
radial wavefunction be square-integrable.



v

Normalization of Radial Equation - |

A hydrogenic atom consists of an electron, of change —e and
mass me, and a nucleus of charge +Z e, and mass m, = Am,,.
Here, Z and A are atomic number and mass number of atom,
respectively. Moreover, m, is proton mass.

Potential energy of atom is

Z e?
Areg r’

V(ir)=—

where r = |x|, and x is position vector of electron relative to
nucleus.

As in classical physics, two-body problem can be converted
into equivalent one-body problem in which particle of mass

 Mmemy
B e+ m,

moves in central potential
Z e?

V(r)=

Aregr’



Normalization of Radial Equation - |l

» V(r) — 0 as r — oo, so bound state has negative energy.

» Given that m./m, ~ 1/1836, fractional difference between m,
and p is less than 5.4 x 10~*. However, relativistic corrections
to electron mass are larger than this. (See later.) Hence, it
does not make sense to make a distinction between m, and p
in non-relativistic quantum mechanics.

» Conclude that appropriate version of radial equation, (11), for
hydrogenic atom is

R[> 2d I(+1) Ze?
2me | dr?2  rdr r2 m! 4reg r

Rn,l = ERn,I'



Normalization of Radial Equation - Il

Previous equation can be rearranged to give

d?R,; 2 dR,; 2me Ze?  n2I(I+1) R —0
dr? rodr h? Ameg r 2me r2 ml =

Convenient to rewrite radial equation in terms of
dimensionless energy and dimensionless radial coordinate.

Let a be characteristic length-scale of hydrogenic atom.

Dimensionless radial coordinate is

= _. 12
p=- (12)
Follows that
1 PR,y 12 dRy, 2m. ze _RI0+D] .
a2 dp? a2p dp 12 dregap 2meatp? | M T



Normalization of Radial Equation - [V
Multiplying by a?, obtain
d’R,; 2 dR,; [2mea*’E  meZe*2a I(/+1)

‘ L. Ry = 0.
dp? +p dp + h? +47T60h2 p p? ml

Terms inside square bracket on right-hand side of previous
equation are dimensionless.
Evident that characteristic length-scale is

Areg h?
2=

=~ . 1
me Z €2 (13)

» Characteristic energy scale is 72 /(2m, a?).

» Define dimensionless energy parameter,

»ﬁ:-E/<%§?>. (14)

Note that £ < 0 for bound state. Hence, v° > 0. Can chose
positive root without loss of generality.



Normalization of Radial Equation - V

» Radial equation becomes

d’R,; 2 dR,, [ , 2 /(/+1)]
R Rpy=0. (15
dp>  p dp p p? (15)

» Normalization condition for radial wavefunction is

| PR =2 [T 2[Rl dp =1 (16)
0

0



Solution of Radial Equation - |

Consider large-p limit of (15) in which 1/p and 1/p? terms are
negligible.

Equation reduces to

Solutions are R, | = et7P. However, et7? solution is not
compatible with normalization condition (16).

Conclude that
Rni(p) ~ e 77

at large p.



Solution of Radial Equation - |

Consider small-p limit of (15) in which 1/p? term dominates.

Equation reduces to

d?R 2 dR I(l+1
;7,/ + - ml_ ( 5 ) Rn ~ 0.
dp p dp p

Search for power-law solution of form R(p) = p9. Obtain
g(g—1)+2qg—-1(/+1)=q(q+1)—I1(/+1)=0.

Solutions are g =/ and g = —/ — 1. Latter solution not
compatible with physical constraint that wavefunction finite at
origin.
Conclude that

Roi(p) ~ ¢!

at small p.
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Solution of Radial Equation - IlI

Previous analysis suggest that we search for a solution of
radial equation (15) that has form

Rni(p) =777 p' H(p). (17)
(15) transforms to give (Hw. 3, Q. 5)

d*H dH
—+2(I+1- —4+2(1—~v—~yI)H=0. (18
pdp2+(+ W)der( v =) (18)
Search for power-law solution of form
Hp)= > o' (19)

Jj=0,00

Solution automatically satisfies correct boundary condition at
small p.



Solution of Radial Equation - IV

» Previous two equations lead to recursion relation (Hw. 3, Q. 6)

2y(L+j+1)—2

TGN r2i+2) T (20)

> In large-j limit, obtain

2y
G+1 = TCJ-

» But series

2 )j .
2vp ( v j
e = E —p
|
Jj=0,00 J:

has same large-j recursion relation.



Solution of Radial Equation - V

Conclude from (17) and (19) that R, (p) ~ p'e7? at large-p,
which is is not compatible with normalization condition (16).

Only way to prevent this unacceptable behavior is if series
(19) terminates at a finite value of j.

Suppose that maximum power of p in series solution (19) is
pjmaxl

In order for the series to terminate, we require ¢j,, +1 =0
when ¢ #0.

Follows from recursion relation (20) that

Let
N = jmax + 1+ 1.

Evident that n > / + 1 is positive integer (because jyax > 0).



Solution of Radial Equation - VI

» From previous two equations, allowed values of energy

parameter are
1
=-. 21
v=- (21)
» Here, nis termed principle quantum number of hydrogenic
atom.

» Note that the power-law solution (19) contains n — [ terms.
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Useful Quantities - |
Helpful to define Bohr radius:

Areg h?
ap =

> =5.20177 x 107" m. (22)
me e

Also helpful to define hydrogen ground-state energy:

12 e?
Ey = — =— = —13.6€eV. 23
0 2mg 302 8mep ag ¢ (23)

In terms of these quantities

4o
= =, 24
a=2 (24)
Energy of hydrogenic atom associated with principle quantum
number n is
Z%E,

E, =
n n2

. (25)



Useful Quantities - Il

» Ratio of magnitude of hydrogen ground-state energy to
electron rest mass energy is

|Eo| o
Mme c?2 2’
where
e? 1

@ 4reghc 137 (26)

is dimensionless fine-structure constant.

» Fact that a < 1 justifies non-relativistic treatment of problem.



Radial Wavefunctions - |

» Laguerre polynomials (warning: this is math definition—see
Wikipedia), L4(x), defined as follows:

eX d9 .
Lq(X) = a w(xqe )

where g is a non-negative integer.

» Associated Laguerre polynomials, LZ(X), defined as follows:

Lg(x) = (= 1)" q+p( );

where p is a non-negative integer.

» Given that L4(x) are polynomials of degree g, follows that
Lg(x) are also polynomials of degree g.



Radial Wavefunctions - Il

» Associated Laguerre polynomials are solutions of following
differential equation:
’Lg
X~ +(p +1—x) —I—qu—O

» (18) and (21) yield

2H dH
X7 +[2(/—|—1)—x]—+(n—1—l)H—0
where x = 2p/n.

» Previous two equations imply that

H(p) = Ly5L1(2p/n).



v

v

v

v

Radial Wavefunctions - Il1

From (17), (21), radial wavefunction becomes
Roi(p) = Anse™?/" o' L2551 1 (2p/n).

Ap, determined from normalization condition (16).
From (12), (24),

ao\3 [ 2 _oum 2
22(3)" [ 2o [ ol dp = 1.
This yields

3 2143 oo 2
an(3) () [ e [ge) o=t

where x =2p/n.



Radial Wavefunctions - |V

» However,
o _ 2 2n(n+1)!
2(1+1) —x [LZ’“ } _ ‘
/0 X e Soa(x)| dx 7(,7_/_ ]
» Hence,

1/2
A 1(2Z 3 (n—1-1)! SN
"7 Y\ nay) 2n(n+ 1) n)’
» Properly normalized radial wavefunctions become
1/2
R /(1) 2Z\> (n—1-1)! / Zr\ (2Zr\'
mitt nap 2n(n+1)! P nap nap

27 r
<, (320, 1)

nap



Radial Wavefunctions - V

» First few associated Laguerre polynomials as follows:

L) =1, Lo(x) =1,

B =1, B)=1,
L(x)=1-x, Li(x)=2 - x,
[3(x)=3 - x, L3(x)=4— x,
L(x)=1-2x+x%/2, L3(x)=3—3x+x?/2,
L3(x)=6—4x+x%/2, L3(x)=10—5x + x*/2



Radial Wavefunctions - VI

» First few radial wavefunctions as follows:

7\ 32
Rio(r)=2 <—> e 41/,
ao

zZ \*? Zr
R -9 1— —Zr/2ag
=2 () (150 ) ez,

1 (zZ\"z
Real) == (52) Sle?0n,

230 do
7 \*? 2Zr 272p°
R —o = 1— —Zr/3ag
30(r) 3ao> < 3 a0 * 27 a3 )e ’
a2 [ ZN\**Zr Zr\ _,
R = | — Z 1= == —Zr/3ao
371(1’) 3 < ao> dao < 630) ¢ ’

3
3/2 2
Rua(r) = 22 () (50) 2=

ao



n = 1 Radial Wavefunctions
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n = 2 Radial Wavefunctions
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n = 3 Radial Wavefunctions
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Energy Eigenstates - |

» Taking electron spin into account, energy eigenstates of
hydrogenic atom can be written

Unimat = Rni(r) Y™(0,0) x+.

» States are orthonormal:
/ r? R i(r)Ry 4(r) dr= 0pp,
0
}’{ Y/ (0, 0) Vi (0, 6) d2= 81 S,

Xi Xs' = Oss/,

where s = =+.
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Energy Eigenstates - |l

Quantum number n takes values
n=1273---.
Energy eigenvalues are

Z2E,

En

9

where Eg = —13.6€V.

Quantum number / takes values
0</I<n.
Quantum number m takes values

—I<m< 4+



Energy Eigenstates - IlI

» nth energy level is 2 n?>-fold degenerate. That is, there are two
n = 1 states, eight n = 2 states, eighteen n = 3 states, etc.

» As we shall see later, this degeneracy is lifted, to some extent,
by relativistic corrections. In fact,

72 E, 7% a2 E 3
o 0 Ll o( n >’

En~—0 n* j+1/2 4

where j is quantum number associated with total angular
momentum.



Properties of Hydrogenic Wavefunctions

» Hydrogenic wavefunctions have following useful properties:

(r)=

r2

[3n — (I +1)],

2

QJI\)

[5n +1-3/(I+1)],

~ | =

< >
<J%> 2 (1+1/2) /+—1/2)
()=

ao n2’

~

A3ml(l+1/2)(+1)



