05 - Hydrogenic Atoms

- Aim of Section:
- Investigation of bound energy eigenstates of hydrogenic atoms: i.e., atoms with single electron, such as $\mathrm{H}, \mathrm{He}^{+}, \mathrm{Li}^{++}$, etc.

Hamiltonian - I

- Non-relativistic Hamiltonian of point particle is sum of operators representing kinetic and potential energies:

$$
H=K+V
$$

- By analogy with classical physics, kinetic energy of particle of mass m, moving in three dimensions, is

$$
K=\frac{p^{2}}{2 m} \equiv \frac{p_{x}^{2}}{2 m}+\frac{p_{y}^{2}}{2 m}+\frac{p_{z}^{2}}{2 m},
$$

where p_{x} is quantum mechanical operator that represents x-momentum, etc.

Hamiltonian - II

- In a hydrogenic atom, classical potential energy takes form $V=V(r)$, where $r=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$. Such a potential is termed a central potential (because it only depends on radial distance, r, from origin).
- Assume that quantum mechanical potential energy is same function of operators representing Cartesian components of position that classical potential is of Cartesian coordinates.
- Hamiltonian of point particle moving in central potential becomes

$$
\begin{equation*}
H=\frac{p^{2}}{2 m}+V(r) \tag{1}
\end{equation*}
$$

- Wish to find bound energy eigenstates of system. These are square-integrable solutions of time-independent Schrödinger equation:

$$
\begin{equation*}
H \psi=E \psi \tag{2}
\end{equation*}
$$

Derivation of Radial Equation - I

- Cartesian components of momentum, \mathbf{p}, are represented as

$$
p_{i}=-\mathrm{i} \hbar \frac{\partial}{\partial x_{i}}
$$

for $i=1,2,3$, where $x_{1} \equiv x$, etc.

- Radial component of momentum can be represented as (Hw. 3, Q. 4)

$$
\begin{equation*}
p_{r} \equiv \frac{\mathbf{x} \cdot \mathbf{p}}{r}=\frac{x_{i} p_{i}}{r}=-\mathrm{i} \hbar \frac{x_{i}}{r} \frac{\partial}{\partial x_{i}}=-\mathrm{i} \hbar \frac{\partial}{\partial r} . \tag{3}
\end{equation*}
$$

- Here, have made use of Einstein summation convention: $x_{i} p_{i} \equiv \sum_{i=1,3} x_{i} p_{i}$.

Derivation of Radial Equation - II

- Angular momentum vector, \mathbf{L}, is defined

$$
\begin{equation*}
\mathbf{L}=\mathbf{x} \times \mathbf{p} \tag{4}
\end{equation*}
$$

- Previous expression can also be written:

$$
L_{i}=\epsilon_{i j k} x_{j} p_{k}
$$

where $\epsilon_{i j k}=+1$ if i, j, k cyclic permutation of 1,$23 ; \epsilon_{i j k}=-1$ if anti-cyclic permutation; $\epsilon_{i j k}=0$ otherwise.

- L^{2} is equivalent to $L_{i} L_{i}$. Thus, we obtain

$$
L^{2}=\epsilon_{i j k} x_{j} p_{k} \epsilon_{i l m} x_{l} p_{m}=\epsilon_{i j k} \epsilon_{i l m} x_{j} p_{k} x_{I} p_{m}
$$

- Note that we are able to shift position of $\epsilon_{i l m}$ because its elements are just numbers, and, therefore, commute with all of the x_{i} and the p_{i}.

Derivation of Radial Equation - III

- Easily demonstrated that

$$
\epsilon_{i j k} \epsilon_{i l m} \equiv \delta_{j l} \delta_{k m}-\delta_{j m} \delta_{k l},
$$

where $\delta_{i j}=1$ if $i=j ; \delta_{i j}=0$ otherwise.

- Previous two equations yield

$$
\begin{equation*}
L^{2}=x_{i} p_{j} x_{i} p_{j}-x_{i} p_{j} x_{j} p_{i} \tag{5}
\end{equation*}
$$

- Here, we have made use of result $\delta_{i j} a_{i} b_{j} \equiv a_{i} b_{i}$. We have also been careful to preserve order of various terms on right-hand side of previous expression, because the x_{i} and the p_{i} do not necessarily commute with one another.

Derivation of Radial Equation - IV

- Now need to rearrange order of terms on right-hand side of (5).
- Can achieve this goal by making use of fundamental commutation relation for the x_{i} and the p_{i} :

$$
\left[x_{i}, p_{j}\right]=\mathrm{i} \hbar \delta_{i j}
$$

- Thus,

$$
\begin{aligned}
L^{2} & =x_{i}\left(x_{i} p_{j}-\left[x_{i}, p_{j}\right]\right) p_{j}-x_{i} p_{j}\left(p_{i} x_{j}+\left[x_{j}, p_{i}\right]\right) \\
& =x_{i} x_{i} p_{j} p_{j}-\mathrm{i} \hbar \delta_{i j} x_{i} p_{j}-x_{i} p_{j} p_{i} x_{j}-\mathrm{i} \hbar \delta_{i j} x_{i} p_{j} \\
& =x_{i} x_{i} p_{j} p_{j}-x_{i} p_{i} p_{j} x_{j}-2 \mathrm{i} \hbar x_{i} p_{i}
\end{aligned}
$$

- Here, we have made use of fact that $p_{j} p_{i}=p_{i} p_{j}$, because the p_{i} commute with one another.

Derivation of Radial Equation - V

- Next,

$$
L^{2}=x_{i} x_{i} p_{j} p_{j}-x_{i} p_{i}\left(x_{j} p_{j}-\left[x_{j}, p_{j}\right]\right)-2 i \hbar x_{i} p_{i}
$$

- Now,

$$
\left[x_{j}, p_{j}\right] \equiv\left[x_{1}, p_{1}\right]+\left[x_{2}, p_{2}\right]+\left[x_{3}, p_{3}\right]=3 \mathrm{i} \hbar .
$$

- Hence, we obtain

$$
L^{2}=x_{i} x_{i} p_{j} p_{j}-x_{i} p_{i} x_{j} p_{j}+\mathrm{i} \hbar x_{i} p_{i}
$$

- When expressed in more conventional vector notation, previous expression becomes

$$
\begin{equation*}
L^{2}=r^{2} p^{2}-(\mathbf{x} \cdot \mathbf{p})^{2}+\mathrm{i} \hbar \mathbf{x} \cdot \mathbf{p} \tag{6}
\end{equation*}
$$

- If we had attempted to derive previous expression directly from (4), using standard vector identities, then we would have missed final term on right-hand side. This term originates from lack of commutation between x_{i} and p_{i} operators in quantum mechanics.

Derivation of Radial Equation - VI

- (6) can be rearranged to give

$$
p^{2}=r^{-2}\left[(\mathbf{x} \cdot \mathbf{p})^{2}-\mathrm{i} \hbar \mathbf{x} \cdot \mathbf{p}+L^{2}\right] .
$$

- Now,

$$
\mathbf{x} \cdot \mathbf{p}=r p_{r}=-\mathrm{i} \hbar r \frac{\partial}{\partial r}
$$

where use has been made of (3).

- Hence, we obtain

$$
p^{2}=-\hbar^{2}\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\right)+\frac{1}{r} \frac{\partial}{\partial r}-\frac{L^{2}}{\hbar^{2} r^{2}}\right] .
$$

- Finally, previous equation can be combined with (1) to give following expression for Hamiltonian:

$$
\begin{equation*}
H=-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}-\frac{L^{2}}{\hbar^{2} r^{2}}\right)+V(r) \tag{7}
\end{equation*}
$$

Derivation of Radial Equation - VII

- Let us now consider whether previous Hamiltonian commutes with angular momentum operators L_{z} and L^{2}.
- Recall that L_{z} and L^{2} are represented as differential operators that depend solely on angular spherical coordinates, θ and ϕ, and do not contain radial coordinate, r.
- Thus, any function of r, or any differential operator involving r (but not θ and ϕ), will automatically commute with L^{2} and L_{z}.
- Moreover, L^{2} commutes both with itself, and with L_{z}.
- It is, therefore, clear that previous Hamiltonian commutes with both L_{z} and L^{2}.

Derivation of Radial Equation - VIII

- If two operators commute with one another then they possess simultaneous eigenstates.
- Conclude that, for a particle moving in a central potential, eigenstates of Hamiltonian are simultaneous eigenstates of L_{z} and L^{2}.
- Have already found simultaneous eigenstates of L_{z} and L^{2} —they are spherical harmonics, $Y_{I}^{m}(\theta, \phi)$.
- Follows that spherical harmonics are also eigenstates of Hamiltonian. This observation leads us to try following separable form for stationary wavefunction:

$$
\begin{equation*}
\psi(r, \theta, \phi)=R(r) Y_{I}^{m}(\theta, \phi) \tag{8}
\end{equation*}
$$

Derivation of Radial Equation - IX

- Immediately follows from properties of Y_{1}^{m}, and fact that L_{z} and L^{2} both obviously commute with $R(r)$, that

$$
\begin{align*}
& L_{z} \psi=m \hbar \psi, \tag{9}\\
& L^{2} \psi=I(I+1) \hbar^{2} \psi \tag{10}
\end{align*}
$$

- Recall that I is non-negative integer, and m is integer lying in range $-l \leq m \leq+l$.
- Finally, making use of (2), (7), and (10), we obtain following differential equation which determines radial variation of stationary wavefunction:

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m}\left[\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}-\frac{I(I+1)}{r^{2}}\right] R_{n, l}+V(r) R_{n, l}=E R_{n, l} \tag{11}
\end{equation*}
$$

Derivation of Radial Equation - X

- Here, have labeled function $R(r)$ by two quantum numbers, n and I.
- Second quantum number, l, is related to eigenvalue of L^{2}. [Note that azimuthal quantum number, m, does not appear in previous equation, and, therefore, does not influence either function $R(r)$ or energy, E.]
- First quantum number, n, is determined by constraint that radial wavefunction be square-integrable.

Normalization of Radial Equation - I

- A hydrogenic atom consists of an electron, of change $-e$ and mass m_{e}, and a nucleus of charge $+Z e$, and mass $m_{n}=A m_{p}$.
- Here, Z and A are atomic number and mass number of atom, respectively. Moreover, m_{p} is proton mass.
- Potential energy of atom is

$$
V(r)=-\frac{Z e^{2}}{4 \pi \epsilon_{0} r}
$$

where $r=|\mathbf{x}|$, and \mathbf{x} is position vector of electron relative to nucleus.

- As in classical physics, two-body problem can be converted into equivalent one-body problem in which particle of mass

$$
\mu=\frac{m_{e} m_{n}}{m_{e}+m_{n}}
$$

moves in central potential

$$
V(r)=-\frac{Z e^{2}}{4 \pi \epsilon_{0} r}
$$

Normalization of Radial Equation - II

- $V(r) \rightarrow 0$ as $r \rightarrow \infty$, so bound state has negative energy.
- Given that $m_{e} / m_{p} \simeq 1 / 1836$, fractional difference between m_{e} and μ is less than 5.4×10^{-4}. However, relativistic corrections to electron mass are larger than this. (See later.) Hence, it does not make sense to make a distinction between m_{e} and μ in non-relativistic quantum mechanics.
- Conclude that appropriate version of radial equation, (11), for hydrogenic atom is

$$
-\frac{\hbar^{2}}{2 m_{e}}\left[\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}-\frac{I(I+1)}{r^{2}}\right] R_{n, l}-\frac{Z e^{2}}{4 \pi \epsilon_{0} r} R_{n, l}=E R_{n, l}
$$

Normalization of Radial Equation - III

- Previous equation can be rearranged to give

$$
\frac{d^{2} R_{n, l}}{d r^{2}}+\frac{2}{r} \frac{d R_{n, l}}{d r}+\frac{2 m_{e}}{\hbar^{2}}\left[E+\frac{Z e^{2}}{4 \pi \epsilon_{0} r}-\frac{\hbar^{2} I(I+1)}{2 m_{e} r^{2}}\right] R_{n, l}=0 .
$$

- Convenient to rewrite radial equation in terms of dimensionless energy and dimensionless radial coordinate.
- Let a be characteristic length-scale of hydrogenic atom.
- Dimensionless radial coordinate is

$$
\begin{equation*}
\rho=\frac{r}{a} . \tag{12}
\end{equation*}
$$

- Follows that

$$
\frac{1}{a^{2}} \frac{d^{2} R_{n, l}}{d \rho^{2}}+\frac{1}{a^{2}} \frac{2}{\rho} \frac{d R_{n, l}}{d \rho}+\frac{2 m_{e}}{\hbar^{2}}\left[E+\frac{Z e^{2}}{4 \pi \epsilon_{0} a \rho}-\frac{\hbar^{2} I(I+1)}{2 m_{e} a^{2} \rho^{2}}\right] R_{n, l}=0 .
$$

Normalization of Radial Equation - IV

- Multiplying by a^{2}, obtain

$$
\frac{d^{2} R_{n, I}}{d \rho^{2}}+\frac{2}{\rho} \frac{d R_{n, I}}{d \rho}+\left[\frac{2 m_{e} a^{2} E}{\hbar^{2}}+\frac{m_{e} Z e^{2}}{4 \pi \epsilon_{0} \hbar^{2}} \frac{2 a}{\rho}-\frac{I(I+1)}{\rho^{2}}\right] R_{n, l}=0
$$

- Terms inside square bracket on right-hand side of previous equation are dimensionless.
- Evident that characteristic length-scale is

$$
\begin{equation*}
a=\frac{4 \pi \epsilon_{0} \hbar^{2}}{m_{e} Z e^{2}} \tag{13}
\end{equation*}
$$

- Characteristic energy scale is $\hbar^{2} /\left(2 m_{e} a^{2}\right)$.
- Define dimensionless energy parameter,

$$
\begin{equation*}
\gamma^{2}=-E /\left(\frac{\hbar^{2}}{2 m_{e} a^{2}}\right) \tag{14}
\end{equation*}
$$

- Note that $E<0$ for bound state. Hence, $\gamma^{2}>0$. Can chose positive root without loss of generality.

Normalization of Radial Equation - V

- Radial equation becomes

$$
\begin{equation*}
\frac{d^{2} R_{n, l}}{d \rho^{2}}+\frac{2}{\rho} \frac{d R_{n, l}}{d \rho}+\left[-\gamma^{2}+\frac{2}{\rho}-\frac{I(I+1)}{\rho^{2}}\right] R_{n, l}=0 \tag{15}
\end{equation*}
$$

- Normalization condition for radial wavefunction is

$$
\begin{equation*}
\int_{0}^{\infty} r^{2}\left[R_{n, l}(r)\right]^{2} d r=a^{3} \int_{0}^{\infty} \rho^{2}\left[R_{n, l}(\rho)\right]^{2} d \rho=1 \tag{16}
\end{equation*}
$$

Solution of Radial Equation - I

- Consider large- ρ limit of (15) in which $1 / \rho$ and $1 / \rho^{2}$ terms are negligible.
- Equation reduces to

$$
\frac{d^{2} R_{n, l}}{d \rho^{2}}-\gamma^{2} R_{n, l} \simeq 0
$$

- Solutions are $R_{n, I}=\mathrm{e}^{ \pm \gamma \rho}$. However, $\mathrm{e}^{+\gamma \rho}$ solution is not compatible with normalization condition (16).
- Conclude that

$$
R_{n, l}(\rho) \sim \mathrm{e}^{-\gamma \rho}
$$

at large ρ.

Solution of Radial Equation - II

- Consider small- ρ limit of (15) in which $1 / \rho^{2}$ term dominates.
- Equation reduces to

$$
\frac{d^{2} R_{n, I}}{d \rho^{2}}+\frac{2}{\rho} \frac{d R_{n, l}}{d \rho}-\frac{I(I+1)}{\rho^{2}} R_{n, I} \simeq 0
$$

- Search for power-law solution of form $R(\rho)=\rho^{q}$. Obtain

$$
q(q-1)+2 q-I(I+1)=q(q+1)-I(I+1)=0 .
$$

- Solutions are $q=I$ and $q=-I-1$. Latter solution not compatible with physical constraint that wavefunction finite at origin.
- Conclude that

$$
R_{n, I}(\rho) \sim \rho^{\prime}
$$

at small ρ.

Solution of Radial Equation - III

- Previous analysis suggest that we search for a solution of radial equation (15) that has form

$$
\begin{equation*}
R_{n, I}(\rho)=\mathrm{e}^{-\gamma \rho} \rho^{\prime} H(\rho) . \tag{17}
\end{equation*}
$$

- (15) transforms to give (Hw. 3, Q. 5)

$$
\begin{equation*}
\rho \frac{d^{2} H}{d \rho^{2}}+2(I+1-\gamma \rho) \frac{d H}{d \rho}+2(1-\gamma-\gamma I) H=0 . \tag{18}
\end{equation*}
$$

- Search for power-law solution of form

$$
\begin{equation*}
H(\rho)=\sum_{j=0, \infty} c_{j} \rho^{j} \tag{19}
\end{equation*}
$$

- Solution automatically satisfies correct boundary condition at small ρ.

Solution of Radial Equation - IV

- Previous two equations lead to recursion relation (Hw. 3, Q. 6)

$$
\begin{equation*}
c_{j+1}=\frac{2 \gamma(1+j+I)-2}{(j+1)(j+2 I+2)} c_{j} . \tag{20}
\end{equation*}
$$

- In large-j limit, obtain

$$
c_{j+1} \simeq \frac{2 \gamma}{j} c_{j}
$$

- But series

$$
\mathrm{e}^{2 \gamma \rho}=\sum_{j=0, \infty} \frac{(2 \gamma)^{j}}{j!} \rho^{j}
$$

has same large-j recursion relation.

Solution of Radial Equation - V

- Conclude from (17) and (19) that $R_{n, l}(\rho) \sim \rho^{\prime} \mathrm{e}^{\gamma \rho}$ at large- ρ, which is is not compatible with normalization condition (16).
- Only way to prevent this unacceptable behavior is if series (19) terminates at a finite value of j.
- Suppose that maximum power of ρ in series solution (19) is $\rho^{j_{\text {max }}}$.
- In order for the series to terminate, we require $c_{j_{\max }+1}=0$ when $c_{j_{\text {max }}} \neq 0$.
- Follows from recursion relation (20) that

$$
2 \gamma\left(1+j_{\max }+l\right)-2=0
$$

- Let

$$
n=j_{\max }+I+1
$$

Evident that $n \geq I+1$ is positive integer (because $j_{\max } \geq 0$).

Solution of Radial Equation - VI

- From previous two equations, allowed values of energy parameter are

$$
\begin{equation*}
\gamma=\frac{1}{n} . \tag{21}
\end{equation*}
$$

- Here, n is termed principle quantum number of hydrogenic atom.
- Note that the power-law solution (19) contains $n-/$ terms.

Useful Quantities - I

- Helpful to define Bohr radius:

$$
\begin{equation*}
a_{0}=\frac{4 \pi \epsilon_{0} \hbar^{2}}{m_{e} e^{2}}=5.29177 \times 10^{-11} \mathrm{~m} \tag{22}
\end{equation*}
$$

- Also helpful to define hydrogen ground-state energy:

$$
\begin{equation*}
E_{0}=-\frac{\hbar^{2}}{2 m_{e} a_{0}^{2}}=-\frac{e^{2}}{8 \pi \epsilon_{0} a_{0}}=-13.6 \mathrm{eV} \tag{23}
\end{equation*}
$$

- In terms of these quantities

$$
\begin{equation*}
a=\frac{a_{0}}{Z} . \tag{24}
\end{equation*}
$$

- Energy of hydrogenic atom associated with principle quantum number n is

$$
\begin{equation*}
E_{n}=\frac{Z^{2} E_{0}}{n^{2}} \tag{25}
\end{equation*}
$$

Useful Quantities - II

- Ratio of magnitude of hydrogen ground-state energy to electron rest mass energy is

$$
\frac{\left|E_{0}\right|}{m_{e} c^{2}}=\frac{\alpha^{2}}{2}
$$

where

$$
\begin{equation*}
\alpha=\frac{e^{2}}{4 \pi \epsilon_{0} \hbar c} \simeq \frac{1}{137} \tag{26}
\end{equation*}
$$

is dimensionless fine-structure constant.

- Fact that $\alpha \ll 1$ justifies non-relativistic treatment of problem.

Radial Wavefunctions - I

- Laguerre polynomials (warning: this is math definition-see Wikipedia), $L_{q}(x)$, defined as follows:

$$
L_{q}(x)=\frac{\mathrm{e}^{x}}{q!} \frac{d^{q}}{d x^{q}}\left(x^{q} \mathrm{e}^{-x}\right)
$$

where q is a non-negative integer.

- Associated Laguerre polynomials, $L_{q}^{p}(x)$, defined as follows:

$$
L_{q}^{p}(x)=(-1)^{p} \frac{d^{p}}{d x^{p}} L_{q+p}(x)
$$

where p is a non-negative integer.

- Given that $L_{q}(x)$ are polynomials of degree q, follows that $L_{q}^{p}(x)$ are also polynomials of degree q.

Radial Wavefunctions - II

- Associated Laguerre polynomials are solutions of following differential equation:

$$
x \frac{d^{2} L_{q}^{p}}{d x^{2}}+(p+1-x) \frac{d L_{q}^{p}}{d x}+q L_{q}^{p}=0
$$

- (18) and (21) yield

$$
x \frac{d^{2} H}{d x^{2}}+[2(I+1)-x] \frac{d H}{d x}+(n-1-I) H=0
$$

where $x=2 \rho / n$.

- Previous two equations imply that

$$
H(\rho)=L_{n-l-1}^{2 l+1}(2 \rho / n) .
$$

Radial Wavefunctions - III

- From (17), (21), radial wavefunction becomes

$$
R_{n, l}(\rho)=A_{n, l} \mathrm{e}^{-\rho / n} \rho^{\prime} L_{n-l-1}^{2 /+1}(2 \rho / n)
$$

- $A_{n, l}$ determined from normalization condition (16).
- From (12), (24),

$$
A_{n, l}^{2}\left(\frac{a_{0}}{Z}\right)^{3} \int_{0}^{\infty} \rho^{2} \mathrm{e}^{-2 \rho / n} \rho^{2 l}\left[L_{n-I-1}^{2 /+1}(2 \rho / n)\right]^{2} d \rho=1
$$

- This yields

$$
A_{n, I}^{2}\left(\frac{a_{0}}{Z}\right)^{3}\left(\frac{n}{2}\right)^{2 /+3} \int_{0}^{\infty} x^{2(I+1)} \mathrm{e}^{-x}\left[L_{n-I-1}^{2 /+1}(x)\right]^{2} d x=1
$$

where $x=2 \rho / n$.

Radial Wavefunctions - IV

- However,

$$
\int_{0}^{\infty} x^{2(I+1)} \mathrm{e}^{-x}\left[L_{n-I-1}^{2 I+1}(x)\right]^{2} d x=\frac{2 n(n+I)!}{(n-I-1)!}
$$

- Hence,

$$
A_{n, l}=\left\{\left(\frac{2 Z}{n a_{0}}\right)^{3} \frac{(n-I-1)!}{2 n(n+l)!}\right\}^{1 / 2}\left(\frac{2}{n}\right)^{\prime}
$$

- Properly normalized radial wavefunctions become

$$
\begin{align*}
R_{n, l}(r)= & \left\{\left(\frac{2 Z}{n a_{0}}\right)^{3} \frac{(n-I-1)!}{2 n(n+l)!}\right\}^{1 / 2} \exp \left(-\frac{Z r}{n a_{0}}\right)\left(\frac{2 Z r}{n a_{0}}\right)^{\prime} \\
& \times L_{n-I-1}^{21+1}\left(\frac{2 Z r}{n a_{0}}\right) \tag{27}
\end{align*}
$$

Radial Wavefunctions - V

- First few associated Laguerre polynomials as follows:

$$
\begin{array}{ll}
L_{0}^{0}(x)=1, & L_{0}^{1}(x)=1, \\
L_{0}^{2}(x)=1, & L_{0}^{3}(x)=1, \\
L_{1}^{0}(x)=1-x, & L_{1}^{1}(x)=2-x, \\
L_{1}^{2}(x)=3-x, & L_{1}^{3}(x)=4-x, \\
L_{2}^{0}(x)=1-2 x+x^{2} / 2, & L_{2}^{1}(x)=3-3 x+x^{2} / 2, \\
L_{2}^{2}(x)=6-4 x+x^{2} / 2, & L_{2}^{3}(x)=10-5 x+x^{2} / 2 .
\end{array}
$$

Radial Wavefunctions - VI

- First few radial wavefunctions as follows:

$$
\begin{aligned}
& R_{1,0}(r)=2\left(\frac{Z}{a_{0}}\right)^{3 / 2} \mathrm{e}^{-Z r / a_{0}}, \\
& R_{2,0}(r)=2\left(\frac{Z}{2 a_{0}}\right)^{3 / 2}\left(1-\frac{Z r}{2 a_{0}}\right) \mathrm{e}^{-Z r / 2 a_{0}}, \\
& R_{2,1}(r)=\frac{1}{\sqrt{3}}\left(\frac{Z}{2 a_{0}}\right)^{3 / 2} \frac{Z r}{a_{0}} \mathrm{e}^{-Z r / 2 a_{0}}, \\
& R_{3,0}(r)=2\left(\frac{Z}{3 a_{0}}\right)^{3 / 2}\left(1-\frac{2 Z r}{3 a_{0}}+\frac{2 Z^{2} r^{2}}{27 a_{0}^{2}}\right) \mathrm{e}^{-Z r / 3 a_{0}}, \\
& R_{3,1}(r)=\frac{4 \sqrt{2}}{3}\left(\frac{Z}{3 a_{0}}\right)^{3 / 2} \frac{Z r}{a_{0}}\left(1-\frac{Z r}{6 a_{0}}\right) \mathrm{e}^{-Z r / 3 a_{0}}, \\
& R_{3,2}(r)=\frac{2 \sqrt{2}}{27 \sqrt{5}}\left(\frac{Z}{3 a_{0}}\right)^{3 / 2}\left(\frac{Z r}{a_{0}}\right)^{2} \mathrm{e}^{-Z r / 3 a_{0}} .
\end{aligned}
$$

$n=1$ Radial Wavefunctions

$n=2$ Radial Wavefunctions

$n=3$ Radial Wavefunctions

Energy Eigenstates - I

- Taking electron spin into account, energy eigenstates of hydrogenic atom can be written

$$
\psi_{n, l, m, \pm}=R_{n, l}(r) Y_{l}^{m}(\theta, \phi) \chi_{ \pm} .
$$

- States are orthonormal:

$$
\begin{aligned}
\int_{0}^{\infty} r^{2} R_{n, l}(r) R_{n^{\prime}, l}(r) d r & =\delta_{n n^{\prime}}, \\
\oint Y_{l}^{m *}(\theta, \phi) Y_{l^{\prime}}^{m^{\prime}}(\theta, \phi) d \Omega & =\delta_{l I^{\prime}} \delta_{m m^{\prime}}, \\
\chi_{s}^{\dagger} \chi_{s^{\prime}} & =\delta_{s s^{\prime}},
\end{aligned}
$$

where $s= \pm$.

Energy Eigenstates - II

- Quantum number n takes values

$$
n=1,2,3, \cdots
$$

- Energy eigenvalues are

$$
E_{n}=\frac{Z^{2} E_{0}}{n^{2}}
$$

where $E_{0}=-13.6 \mathrm{eV}$.

- Quantum number / takes values

$$
0 \leq l<n .
$$

- Quantum number m takes values

$$
-l \leq m \leq+l
$$

Energy Eigenstates - III

- nth energy level is $2 n^{2}$-fold degenerate. That is, there are two $n=1$ states, eight $n=2$ states, eighteen $n=3$ states, etc.
- As we shall see later, this degeneracy is lifted, to some extent, by relativistic corrections. In fact,

$$
E_{n} \simeq \frac{Z^{2} E_{0}}{n^{2}}+\frac{Z^{4} \alpha^{2} E_{0}}{n^{4}}\left(\frac{n}{j+1 / 2}-\frac{3}{4}\right)
$$

where j is quantum number associated with total angular momentum.

Properties of Hydrogenic Wavefunctions

- Hydrogenic wavefunctions have following useful properties:

$$
\begin{aligned}
\langle r\rangle & =\frac{a_{0}}{2 Z}\left[3 n^{2}-I(I+1)\right] \\
\left\langle r^{2}\right\rangle & =\frac{a_{0}^{2} n^{2}}{2 Z^{2}}\left[5 n^{2}+1-3 I(I+1)\right] \\
\left\langle\frac{1}{r}\right\rangle & =\frac{Z}{a_{0} n^{2}}, \\
\left\langle\frac{1}{r^{2}}\right\rangle & =\frac{Z^{2}}{a_{0}^{2} n^{3}(I+1 / 2)}, \\
\left\langle\frac{1}{r^{3}}\right\rangle & =\frac{Z^{3}}{a_{0}^{3} n^{3} I(I+1 / 2)(I+1)} .
\end{aligned}
$$

