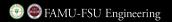


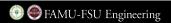
Basalt Fiber Reinforced Polymer Bars


PM: Steven Nolan (Chase Knight)

PI: Raphael Kampmann, PhD.

co-PI: Youneng Tang, PhD.

RA: Srichand Telikapalli, PhD.


RA: Sarajeen Saima Hoque

Presentation Outline

- Project Overview
- Project Benefits
- Implementation Items
- Introduction
- Background

- Project Objectives
- Task Outline
- Summary
- Further Recommendations
- Future Research
- Closing Remarks

Overview Benefits Implementation

Introduction

Background Objectives Tasks Summary Recommendations Future Research Closing

Project Overview

💿 🕌 FAMU-FSU Engineering

CIVIL AND ENVIRONMENTAL ENGINEERING 3

Project Overview

Project Overview

BFRP Rebars and its Components

Resin

Basaltic Rocks

Basalt Fiber

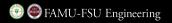
BFRP Rebar

Overview Benefits Implementation

Introduction

Background Objectives Tasks Summary Recommendations Future Research

Closing


Project Benefits

💿 🕌 FAMU-FSU Engineering

CIVIL AND ENVIRONMENTAL ENGINEERING 6

Project Benefits Qualitative

- Implementation of innovative materials
 - To enhance the sustainability and durability of the infrastructure
- Evaluation of alternative corrosion resistant reinforcement for concrete
- Identification of viable raw material sources for Basalt FRP rebars
- Assessment of constituent materials for BFRP composites
- Addition material alternatives generate more market competition

Project Benefits Quantitative

- Acquisition of experimental results for basalt rebar products
- Characterization of specific BFRP rebar types
- Defined acceptance criteria for Basalt FRP rebars
- Potential service life extension of structures and infrastructure in costal regions
- Reduction of maintenance cost
- Additional material options improve supply chain redundancy

Overview Benefits Implementation

Introduction

Background Objectives Tasks Summary Recommendations Future Research

Closing

Implementation Items

Objectives Tasks Summary

Implementation Items

Application of BFRP Rebars

- Update design guidelines
 - FDOT Section 932
- Share findings with industry
 - FRP Rebar Council

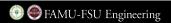
Overview Benefits Implementation

Introduction

Background Objectives Tasks Summary Recommendations Future Research

Closing

Introduction

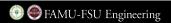

Introduction

Corrosion and Durability

- Steel corrosion \Rightarrow main deteriorating mechanisms for infrastructure components
 - Reduces lifespan of reinforced concrete (RC)

- Particularly concerning in costal regions
 - Crucial concrete structures directly exposed to aggressive environments

• To enhance durability, FDOT continues to implement innovative materials

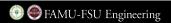

Introduction

Fiber Reinforced Polymer (FRP) Rebars

- Technological advancements have facilitated the use of FRP rebars
 - For internal reinforcement of concrete

- Viable alternative to traditional steel reinforcement due to significant advantages:
 - Light, strong, magnetic transparence, and corrosion resistant

• May lead to more durable concrete members and extended structural life



Introduction Current FDOT Regulation

• FDOT regulates Nonmetallic accessory materials for concrete in FDOT Section 932

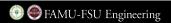
- Section 932-3 regulates glass and carbon FRP materials
 - BFRP now addressed, through this (and previous) project

• BFRP currently not allowed for submerged applications

Objectives Tasks Summary

Recommendations Future Research Closing

Project Subject Background


Project Subject Background

Emerging Materials

- Different fiber types exist
 - Glass (GFRP), carbon (CFRP), aramid (AFRP), basalt (BFRP)

- Until recently, basalt FRPs have not been produced/used in US
 - For historic reasons

• Now, BFRP rebars are produced and are available in US market

Background

Project Subject Background

Basalt Rock, Basalt Fiber, and Basalt Rebar

Project Subject Background

Problem Statement

- Production of FRP rebars is not standardized
- No acceptance criteria for basalt FRP rebars
- Inferior BFRP products are reportedly available on the world market now
- Urgent need for robust material standards and acceptance criteria
 - To guarantee safe use of new technology

Project Subject Background

Problem Statement

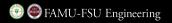
- FRP rebars are composite materials
 - Fiber + Sizing + Resin = Rebar

- No material standard available that relates constituents to final rebar quality
 - Raw materials or production quality vs. rebar performance and durability/service life

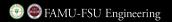
Background Objectives

tives Tasks Summary

Recommendations Future Research Closing


Project Objectives

Project Objectives


Research Goals — Raw Materials

- Evaluate basalt fiber quality
- Define minimum requirements for fiber (Similar to ASTM D 578)
 - Strength and resistance to chemicals
- Analyze fiber sizing (if possible)
 - For proper interfacial bond (to basalt fibers and resin)
- Identify high performance resin matrix
 - Compatibility with appropriately sized basalt fibers

Project Objectives Research Goals — BFRP Rebars

- Identify commonly available BFRP rebar products
 - For performance evaluation
- Evaluate virgin material properties for material characterization
- Age material in various aggressive environments
 - To measure strength retention properties
- Evaluate potential degradation mechanism to quantify service-life

Overview Benefits Implementation

Introduction

Background Objectives Tasks

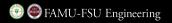
Summary

Recommendations Future Research Closing

Task Outline

Closing

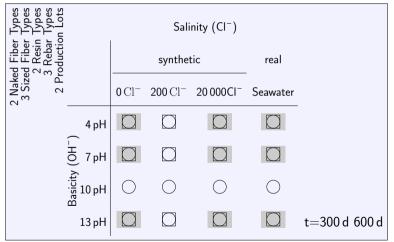
Task Outline

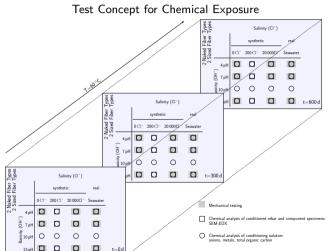

• This project consists of nine tasks

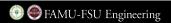
 Preparations for Experiments: 	Tasks 1-2
• Experiments:	Tasks 3-6
 Recommendations for BFRP Specifications: 	Task 7
 Project Conclusion: 	Tasks 8-9

Preparation for Experiments

- Task 1: Literature Review
 - Conduct a comprehensive review to include the following:
 - FRP rebar basics
 - Basalt fiber types
 - Sizing for basalt fibers
 - Suitable resin types
 - Basalt FRP rebars




Preparation for Experiments


- Task 2: Material Characterization and Testing Plan
 - The following activities were conducted:
 - Suitable constituent materials were identified
 - Suitable BFRP rebar products were determined
 - Exposure and test conditions were defined
 - A research test matrix was developed

General Test Matrix for Chemical Exposure

Closing

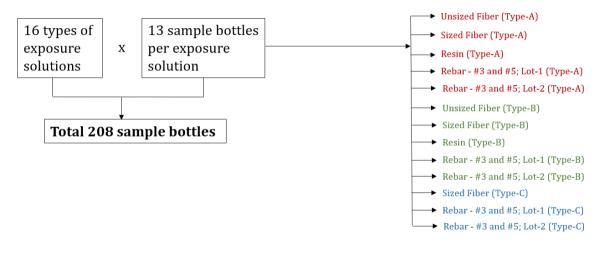
Task Outline

Types of Sample

- BFRP rebars
 - Three different rebar types
 - Two production lots and two different sizes
- Fibers
 - Two different unsized fiber types
 - Three different sized fiber types
- Resins
 - Ероху
 - Vinyl Ester

(Type A, B and C) (#3 and #5)

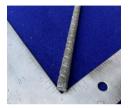
- (Type A and B) (Type A, B and C)
- (Type A) (Type B)


Specimens in Environmental Chamber, exposed to 60°C Temperature

Before Exposure

After Exposure

Exposure Solution Breakdown with Specimens


Chemical Tests on Exposure Solutions

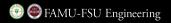
Test type	Unsized Fibers	Sized Fibers	Resins	BFRP Rebars
pH	1	1	1	1
Dissolved Oxygen	1	1	1	1
Salinity	1	1	1	~
Alkalinity	1	1	1	1
Anions (Chloride and Sulfate)	1	1	1	1
Metals (Na, K, Ca, Mg, Fe, Al, Cr and Si)	1	1	1	1
Total Organic Carbon	1	1	1	✓
Bisphenol-A	×	×	1	1

Exposure Solutions Containing

(a) Type A #3

(a) Type A # 5

(b) Type B # 3


(b) Type B # 5

(c) Type C #3

(c) Type C #5


Task Outline

Physical tests on rebar

		Specimen count	
Test type	Test method	Per sample	$Total^\dagger$
Cross-sectional area	ASTM D792	5	60
Fiber content	ASTM D2584	5	60
Moisture absorption	ASTM D570	5	60
Glass transition temperature	Differential scanning calorimetry	2	216

60 specimens: Test matrix has 3 types of rebars, 2 lots, 2 sizes. ŧ

216 specimens: Test matrix has 3 types of rebars, 2 lots, 2 sizes and 9 exposure types. ÷

Task Outline

Mechanical tests on rebar

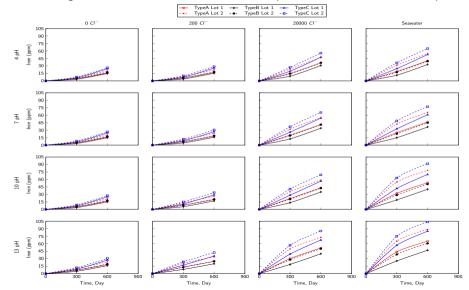
		Specimen count	
Test type	Test method	Per sample	$Total^\dagger$
Tensile strength	ASTM D7205	3	648
Transverse shear strength	ASTM D7617	5	1080
Apparent horizontal shear strength	ASTM D4475	5	1080
Bond-to-concrete	ACI440.3R,B.3	3	648

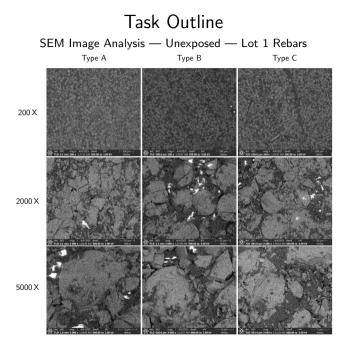
648 specimens: 3 types of rebars, 2 lots, 2 sizes, 9 exposure types, 2 durations. ŧ

1080 specimens: 3 types of rebars, 2 lots, 2 sizes, 9 exposure types, 2 durations. ŧ

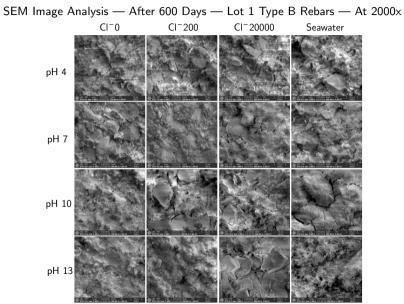

Task Outline Experiments

• Tasks 3-6: Report performance of constituents and BFRP rebar products


Background


• According to test matrix \Rightarrow Exposure conditions, strength tests, etc.

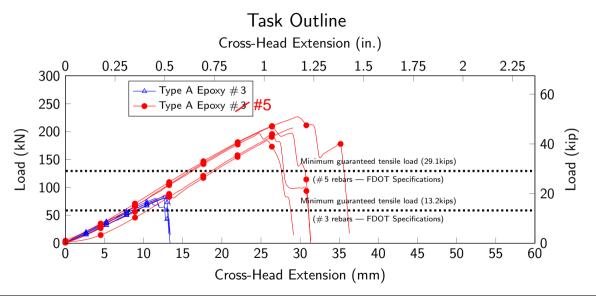
- Task 3: Basalt Fiber Characterization and Performance
- Task 4: Sizing Characterization and Performance
- Task 5: Resin Matrix Characterization and Performance
- Task 6: BFRP rebar Characterization and Performance



BFRP Rebar Degradation: Metals — Iron Content vs Exposure Time — All Rebar Sample Groups

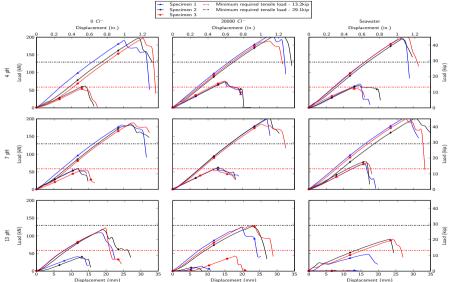
Physical and mechanical tests on Type A # 3 rebars

			Per diameter		FDOT 932-3/2017		AC454		ASTM D 7957	
Test Method	Test Description	Unit	Nom.	Exp.	Criteria	✓/X	Criteria	✓/X	Criteria	✓/X
ASTM D 792	Measured Cross-Sectional Area	in. ²	0.11	0.15	0.104 - 0.161	1	0.104 - 0.161	1	0.104 - 0.161	1
ASTM D 2584	Fiber Content	% wt.	75.17	75.17	$\geqslant 70$	1	$\geqslant 70$	1	$\geqslant 70$	1
ASTM D 570	Moist. Absorption Short Term @50 $^\circ\text{C}$	%	0.2	0.2	≤ 0.25	1	≤ 0.25	1	≤ 0.25	1
ASTM D 570	Moist. Absorption Long Term @50 $^{\circ}\mathrm{C}$	%	0.55	0.55	$\leqslant 1.0$	1	n/a	n/a	$\leqslant 1.0$	1
ASTM E 1356	Glass Transition Temperature	°F	241	241	≥ 212	1	≥ 212	1	n/a	n/a
ASTM D 7617	Min. Guaranteed Transverse Shear	ksi	29.1	n/a	≥ 22	1	≥ 22	1	$\geqslant 19$	1
ASTM D 4475	Horizontal Shear Stress	ksi	5.75	n/a	n/a	n/a	≥ 5.5	1	n/a	n/a
ASTM D 7205	Min. Guaranteed Tensile Load	kip	13.4	13.4	≥ 13.2	1	≥ 13.2	1	≥ 13.2	1
ASTM D 7205	Min. Guaranteed Tensile Strength	ksi	121.7	105.2	n/a	n/a	n/a	n/a	n/a	n/a
ASTM D 7205	Tensile Modulus	ksi	7306	6313	$\geqslant 6,500$	1	$\geqslant 6,500$	1	$\geqslant 6,500$	1
ASTM D 7205	Max. Strain	%	1.66	1.66	n/a	n/a	n/a	n/a	n/a	n/a
ACI440. 3 R, B.3	Bond-to-Concrete Strength	ksi	3.20	2.64	$\geqslant 1.1$	1	$\geqslant 1.1$	1	$\geqslant 1.1$	1


💿 🕌 FAMU-FSU Engineering

CIVIL AND ENVIRONMENTAL ENGINEERING 41

Physical and mechanical tests on Type A # 5 rebars


			Per diameter		FDOT 932-3/2017		AC454		ASTM D 7957	
Test Method	Test Description	Unit	Nom.	Exp.	Criteria	✓/X	Criteria	✓/X	Criteria	✓/X
ASTM D 792	Measured Cross-Sectional Area	in. ²	0.307	0.25	0.288 - 0.388	1	0.288 - 0.388	1	0.288 - 0.388	1
ASTM D 2584	Fiber Content	% wt.	78.4	78.4	$\geqslant 70$	1	$\geqslant 70$	1	$\geqslant 70$	1
ASTM D 570	Moist. Absorption Short Term @50 $^{\circ}\text{C}$	%	0.18	0.18	≤ 0.25	1	≤ 0.25	1	≤ 0.25	1
ASTM D 570	Moist. Absorption Long Term @50 $^{\circ}\mathrm{C}$	%	0.77	0.77	$\leqslant 1.0$	1	n/a	n/a	$\leqslant 1.0$	1
ASTM E 1356	Glass Transition Temperature	°F	241	241	$\geqslant 212$	1	≥ 212	1	n/a	n/a
ASTM D 7617	Min. Guaranteed Transverse Shear	ksi	25.7	n/a	≥ 22	1	≥ 22	1	$\geqslant 19$	1
ASTM D 4475	Horizontal Shear Stress	ksi	6.22	n/a	n/a	n/a	≥ 5.5	1	n/a	n/a
ASTM D 7205	Min. Guaranteed Tensile Load	kip	41.2	41.2	$\geqslant 29.1$	1	≥ 32.2	1	≥ 29.1	1
ASTM D 7205	Min. Guaranteed Tensile Strength	ksi	137.9	121.0	n/a	n/a	n/a	n/a	n/a	n/a
ASTM D 7205	Tensile Modulus	ksi	7749	6989	$\geqslant 6,500$	1	$\geqslant 6,500$	1	$\geqslant 6,500$	1
ASTM D 7205	Max. Strain	%	1.78	1.78	n/a	n/a	n/a	n/a	n/a	n/a
ACI440. 3 R, B.3	Bond-to-Concrete Strength	ksi	3.33	2.89	$\geqslant 1.1$	1	$\geqslant 1.1$	1	$\geqslant 1.1$	1

💿 🕌 FAMU-FSU Engineering

Tensile strength test — Load vs Displacement — Type B


Recommendations for BFRP Specifications

- Task 7: Proposed BFRP rebar Specification
 - Recommend suitable acceptance criteria for BFRP rebars
 - Suggest updates to FDOT Section 932

Recommendations for BFRP Specifications

- Virgin BFRP Rebar Performance acceptable
 - Appears stronger than GFRP, but with significant variation
- For now, define BFRP acceptance criteria in line with GFRP acceptance criteria
- Durability evaluations in high alkalinity and salinity environments not conclusive
 - Limit submerged applications of BFRP rebars
 - Further research need on applicability of accelerated aging
 - Saturated rebar vs. pore solution (high pH) at the rebar surface

Closing


Task Outline

Experiments

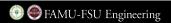
- Task 8a: Draft Final Report
 - Provide comprehensive report to document Tasks 1 through 7

Background

- Task 8b: Closeout teleconference
 - Discuss final review comments and report changes
- Task 9: Final Report
 - Complete report based on discussion in Task 8

Environmental reduction factor (C_E)

• Strength degradation following long-term exposure to aggressive environments

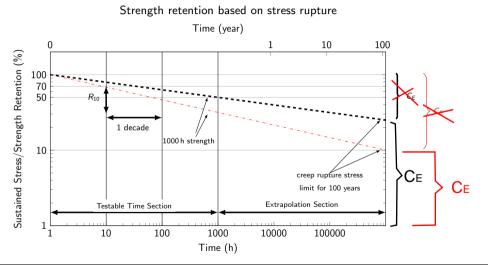

$$f_f d = C_E f'_{fu} \tag{1}$$

- $f_f d$: design strength
- $f'_f u$: specified strength

Environmental reduction factors — International design guidelines

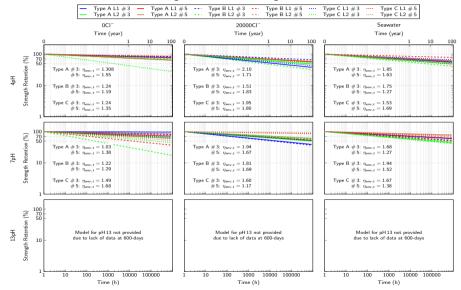
- fib: 0.55
- CSA: 1.0
- ACI: 0.7
- AASHTO: 0.7

 C_E — Refined approach — fib bulletin 40


$$C_{E} = \frac{\frac{f_{fk1000h}}{f_{f0}}}{\left(\frac{100 - R_{10}}{100}\right)^{n}} \qquad (2)$$

$$n = n_{mo} + n_T + n_{SL} + n_d \quad (3)$$

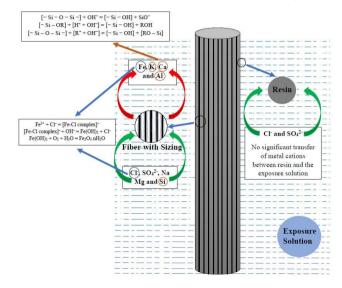
$$C_E = \frac{1}{\left(\frac{100 - R_{10}}{100}\right)^{n+2}} \quad (4)$$


f_{f0} :	strength at day 0			
$f_{fk1000h}$:	1000 h strength			
n:	the sum of influence terms			
<i>R</i> ₁₀ :	the standard reduction of strength			
	per logarithmic decade			
<i>n_{mo}</i> :	the term for moisture condition			
<i>n</i> _:	the term for temperature			
<i>n</i> _ <i>d</i> :	the term for diameter correction factor			

BFRP long-term tensile strength retention

Summary Recommendations Fu

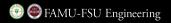
Summary of Research Conclusions


Chemical Tests — Alkalinity

- Alkaline environments lead to more degrading effects than acidic or neutral situation
- The presence of iron differentiates BFRP from GFRP
 - Iron oxide primarily separates BFRP rebars from the GFRP rebar
 - Degradation mechanism appears to be closely related
- Alkali-silica reaction is one of the main causes for the degradation of GFRP and BFRP bars
 - A reactive layer was formed due to the dissolution of the silica network (Si–O)
 - Si–OH gel appeared on the surface of the fibers
- Hydroxyl (OH-) ions from the alkaline solution attacked basalt fibers
 - The silica network (Si–O–Si–) in the basalt fibers break down
 - Neutral and acid environments do not attack the silicon lattice bond

Chemical Tests — Salinity

- In saline rich environments, basalt fibers degrade faster
 - Because molecules (H₂O) and ions (Cl^- and Na⁺) penetrate the surface
 - Forming voids and oxides (iron oxide) which react with (Fe^{2+}) and OH^-
- During immersion, H_2O , O_2 , CO_2 molecules and Cl^- , Na^+ ions penetrated the resin
 - Through channels or voids
 - Reactions with Cl^- and (Fe^{2+}) ultimately leads to corrosion on the BFRP surface
 - Clearly visible during SEM analyses


Chemical Transfer Direction between solid samples and exposure solution (for Seawater Environment)

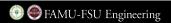
Chemical Tests — Fibers and Sizing

- Sized and unsized fibers degraded in harsh environments
 - High salinity and pH environments lead to more severe degradation
 - 13 pH seawater lead to most degradation due to a high concentration of sulfate ion
- Sizing material leached completely into aging solution (at later age)
 - As comparison between sized and unsized fibers showed

• Type A and C fibers degraded more than Type B fibers

Chemical Tests — Resin Matrix

- Neat Resin samples did not degrade severely
 - While slight degredation was visible in SEM analysis, the sample remained in tact
- Resin aging lead to a decrease of pH and alkalinity in exposure solution
 - In some (not all) cases
- The metal concentration of the exposure solution did not change over time
 - Due to the organic nature of Resin \Rightarrow mostly carbon (C), hydrogen (H) and oxygen (O)
- Type A resin degraded more than Type B resin



Closing

Mechanical Tests

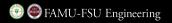
- Rebar performance appeared to be closely related to its moisture absorption property
 - Moisture absorption behavior is inherently related to the rebar porosity

- Rebars with higher porosity degraded more during aging
- Transverse shear strength: BFRP rebars >> GFRP rebars
 - Bars even passed GFRP minimum criteria after exposure to all 4 and 7 pH environments

Mechanical Tests

- The apparent horizontal shear strength is resin-driven
 - Not significantly different from measurements usually obtained for GFRP products

- FDOT Specifications Section 932 should maintain the minimum threshold value
 - Quality control parameter



Mechanical Tests

- The tensile strength of virgin BFRP rebars is hight than the strength of GFRP rebars
- BFRP rebars surpasses the maximum tensile strain of glass fiber based rebars
- Aged rebars exposed to 4 and 7 pH environments acceptably retained strength
 - More than 75 % of their initial strength after 300 d of exposure
 - More than 60 % of the initial strength after 600 d exposure
- Most BFRP rebars exposed to 13 pH at 60 $^\circ$ C for 600 days disintegrated
 - Could not be tested
 - If tested, no significant strength was maintained

Mechanical Tests

- The bond-to-concrete strength appears to be driven by geometric features
 - According to the surface enhancement and not by the fiber type
 - BFRP rebars showed similar behavior as GFRP rebars
- The virgin bond behavior of all tested rebars was acceptable
 - All virgin rebars outperformed the $\geq 1.1\,{\rm ksi}$ criteria by more than 200 %
- Rebars exposed to 4 and 7 pH environments continued to outperformed the requirement
- The surface enhancement of rebars exposed to 13 pH completely degraded

.

Prediction Model

- A prediction model was developed to define C_E based on exposure type
- Long-term strength retention of BFRP was calculated using the model
- Model validation
 - Through literature data (GFRP bars)
- Sufficient data was not available from this project to fully validate the model for BFRP bars
- Additional research needed to better predict service-life

Overview Benefits Implementation

Introduction

Background Objectives Tasks

Summary

Recommendations Future Research

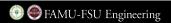
Closing

Further Recommendations

Further Recommendations

- FRP rebars are considered a preferable alternative in harsh environments
- Caution!
- Specifically in harsh environments, rebars may degrade
 - Highly dependent on actual/specific product
- Require or verify durability data before usage in (extremely) harsh environments

Overview Benefits Implementation


Introduction

Background Objectives Tasks

Summary

Recommendations Future Research Closing

Further Research Needs

Further Research Needs

- Accelerated aging usually done in aqueous solutions
 - Aqueous solutions may not simulate concrete environment properly

- Conduct study to correlate the aqueous solutions to real concrete environment
 - Rebar saturated with high pH and high salinity
 - $\bullet\,$ Rebar saturated with salinity and exposed to high pH at the surface and

Further Research Needs

- Expose real concrete elements reinforced with BFRP rebars
 - To combined environment (> 13 pH + high salinity)

• Use study to further improve the environmental reduction factor (C_E)

Further Research Needs

- Limited research on flexural, shear, and cracking behavior of beams reinforced with BFRP
 - Conduct testing on BFRP concrete elements

- The bond reduction factor (C_b) is determined based on flexural testing
 - Include concrete beam flexural tests in follow up study

Overview Benefits Implementation

Introduction

Background Objectives Tasks

Summary

Recommendations Future Research Closing

Closing Remarks

Closing

Closing Remarks

Acknowledgment

- Steven Nolan
- Chase Knight
- FDOT Administration

- Research Assistants
- Support Students

ctives Tasks Summary

y Recommendations Future Research

Closing

Closing Remarks Questions?

Raphael Kampmann kampmann@eng.famu.fsu.edu Youneng Tang ytang@eng.famu.fsu.edu

