Benha University
Faculty of Engineering
Shoubra
Antennas \&Wave Propagation Electrical Eng. Dept.
$4^{\text {th }}$ year communication 2015-2016

Sheet (2)... (Solution)

1. A hypothetical isotropic antenna is radiating in free-space. At a distance of 100 m from the antenna, the total electric field $\left(\mathbf{E}_{\boldsymbol{\theta}}\right)$ is measured to be $5 \mathrm{~V} / \mathrm{m}$. Find the
(a) Power density $\left(\mathrm{W}_{\mathrm{rad}}\right)$
(b) Power radiated ($\mathrm{P}_{\mathrm{rad}}$)
(a) $\underline{W}_{r a d}=\frac{1}{2}\left[\underline{E}^{\times} \underline{H}^{*}\right]=\frac{E^{2}}{2 \eta} \hat{a}_{r}=\frac{5^{2} \hat{a}_{r}}{2(120 \pi)}=0.03315 \hat{a}_{r}$ Watts $/ \mathrm{m}^{2}$
(b) $P_{\text {rad }}=\oint_{S} W_{\text {rad }} d S=\int_{0}^{2 \pi} \int_{0}^{\pi}(0.03315)\left(r^{2} \sin \theta d \theta d \phi\right)$
$=\int_{0}^{2 \pi} \int_{0}^{\pi}(0.03315)(100)^{2} \cdot \sin \theta d \theta d \phi$
$=2 \pi(0.03315)(100)^{2} \cdot \int_{0}^{\pi} \sin \theta d \theta=2 \pi(0.03315)(100)^{2} .2$
$=4165.75$ watts
2. Estimate the directivity of an antenna with $\boldsymbol{\Theta}_{\mathbf{H P}}=\mathbf{2}^{\mathbf{0}}$ and $\mathbf{\Phi}_{\mathbf{H P}}=\mathbf{1}^{\mathbf{0}}$.

D approximate $=\frac{41253}{\theta_{H P} \phi_{H P}}=\frac{41253}{2 * 1}=20627$.
3. Find the number of square degrees in the solid angle Ω on a spherical surface that is between $(\boldsymbol{\theta}=\mathbf{2 0}$ and $\boldsymbol{\theta}=\mathbf{4 0})$, and $\left(\boldsymbol{\varphi}=\mathbf{3 0}^{\circ}\right.$ and $\left.\boldsymbol{\varphi}=\mathbf{7 0}^{\circ}\right)$.
$\Omega=\int_{30}^{70} d \phi \int_{20}^{40} \sin \theta d \theta .=(70-30) *\left(\frac{180}{\pi}\right) *(-\operatorname{Cos} \theta)_{20}^{40}=398.17 \mathrm{deg}^{2}$.
4. The radiation intensity of antenna is given by $\mathbf{U}=\mathbf{B}_{\mathbf{0}} \boldsymbol{\operatorname { C o s } \theta}$. U exists only in the upper hemisphere, Find
a. The exact directivity.
b. The approximate directivity.
c. The decibel difference.
$\mathrm{U}=\mathrm{U}_{\mathrm{n}}=\mathrm{P}_{\mathrm{n}}=\operatorname{Cos} \theta$.
(a) Dexact $=\frac{4 \Pi}{\int_{0}^{2 \Pi} \int_{0}^{\frac{\pi}{2}} \operatorname{Cos} \theta \operatorname{Sin} \theta d \theta d \phi}=\frac{4 \Pi}{(2 \Pi)\left(\frac{-\operatorname{Cos}^{2} \theta}{2}\right)_{0}^{\frac{\pi}{2}}}=4$.

Benha University
Faculty of Engineering
Shoubra

Antennas \&Wave Propagation Electrical Eng. Dept.
 $4^{\text {th }}$ year communication 2015-2016

(b)D approximate $=\frac{4 \Pi}{\theta_{H P} \phi_{H P}}=\frac{4 \Pi}{\theta_{H P} \phi_{H P}}=\left.\frac{4 \Pi}{\left(\theta_{H P}\right)^{2}}\right|_{\mathrm{sr}}=\left.\frac{41253}{\left(\theta_{H P}\right)^{2}}\right|_{\operatorname{deg} 2}$.

We calculate $\theta_{\max } \rightarrow\left(\operatorname{Cos} \theta_{\max }=1\right) \rightarrow$ at $\theta_{\max }=0^{\circ}$,
We calculate $\theta_{h} \rightarrow\left(\operatorname{Cos}_{h}=\frac{1}{2}\right) \boldsymbol{\rightarrow} \theta_{h}=60^{\circ}$
$\theta_{\mathrm{HP}}=2 *\left|\theta_{\max }-\theta_{\mathrm{h}}\right|=2 *\left|0^{o}-60^{o}\right|=120^{\circ}$
so : Dapprox. $=\left.\frac{41253}{\left(\theta_{H P}\right)^{2}}\right|_{\operatorname{deg} 2}==\frac{41253}{(120)^{2}}=2.86$.
(c) Decibel difference $=10 \log \frac{4}{2.86}=1.46 \mathrm{db}$.
5. An antenna has a field pattern given by $\mathbf{E}(\boldsymbol{\theta})=\cos ^{2} \boldsymbol{\theta}$, For $0 \leq \theta^{\circ} \leq 90^{\circ}$. Find the beam area of this pattern.

1-Exact... $\Omega_{A}=\int_{0}^{2 \pi} \int_{0}^{\Pi / 2} \operatorname{Cos}^{4} \theta \sin \theta d \theta d \phi=-2 \Pi *\left(\frac{1}{5} \operatorname{Cos}^{5} \theta\right)_{0}^{\pi / 2}=1.26 S r$.
2- Approximate $\ldots \Omega_{A}=\theta_{H P} \phi_{H P} .=\left(\theta_{H P}\right)^{2}$
To obtain $\theta_{H P} \ldots$ we must firstly calculate $\theta \max , \theta_{h}$
To Obtain $\theta_{\text {max }} \ldots$ the angle of which $P_{n}=E_{n}^{2}$ maximum.
It occurs when $\cos ^{2} \theta=1 \ldots$ at $\theta_{\max }=0^{\circ}$.
$\underline{\text { To obtain } \theta_{h}} \ldots$ the angle of which Pn $=\frac{1}{2} .\left(\operatorname{Or} E_{n}=\frac{1}{\sqrt{2}}\right)$.
It occurs when $\cos ^{2} \theta_{h}=\frac{1}{\sqrt{2}}$.
So: $\theta_{h}=32.76^{\circ} \cong 33^{\circ}$.
Now: $\theta_{H P}=2 *\left|\theta \max -\theta_{h}\right|=2 *|0-33|=66^{\circ}$.
So: $\Omega_{A}=\left(\theta_{H P}\right)^{2}=(66)^{2}=4356 \mathrm{deg}^{2}=4356^{*}(\Pi / 180)^{2}=1.33 \mathrm{Sr}$.
6. The normalized field pattern of an antenna is given by $\mathbf{E}(\boldsymbol{\theta})=\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta} \boldsymbol{\operatorname { s i n }} \varphi$.
$\mathbf{E}_{\mathbf{n}}$ has a value only for $0 \leq \theta \leq \Pi \& 0 \leq \varphi \leq \Pi$, and zero elsewhere, Find
a. The exact directivity.
b. The approximate directivity.
c. The decibel difference.

Benha University
Faculty of Engineering
Shoubra

Antennas \&Wave Propagation Electrical Eng. Dept. $4^{\text {th }}$ year communication 2015-2016

$$
\begin{aligned}
& \text { (a) Dexact }=\frac{4 \Pi}{\int_{0}^{\Pi \Pi} \int_{0}^{\operatorname{Sin}^{3} \theta \operatorname{Sin}^{2} \phi d \theta d \phi}}=\frac{4 \Pi}{\int_{0}^{\Pi} \sin \theta *\left(1-\operatorname{Cos}^{2} \theta\right) d \theta \int_{0}^{\Pi} \frac{(1-\operatorname{Cos} 2 \Phi)}{2} d \phi}= \\
& \left.\frac{4 \Pi}{2}-\frac{\operatorname{Sin} 2 \phi}{2}\right)_{0}^{\Pi} \int_{0}^{\Pi}\left(\operatorname{Sin} \theta d \theta-\operatorname{Sin} \theta \operatorname{Cos}^{2} \theta d \theta\right)
\end{aligned} \frac{4 \Pi}{\left(\frac{\Pi}{2}\right)\left[(-\operatorname{Cos} \theta)_{0}^{\Pi}+\left(\frac{\operatorname{Cos}^{3} \theta}{3}\right)_{0}^{\Pi}\right]}=1
$$

We calculate $\theta_{\max } \rightarrow\left(\operatorname{Sin} \theta_{\max }=1 . .(\max)\right) \rightarrow$ at $\theta_{\max }=90^{\circ}$,
We calculate $\Phi_{\max } \rightarrow\left(\operatorname{Sin} \Phi_{\max }=1 . .(\max)\right) \rightarrow$ at $\Phi_{\max }=90^{\circ}$,
We calculate $\theta_{h} \rightarrow\left(\operatorname{Sin} \theta_{h}=\frac{1}{\sqrt{2}}\right) \rightarrow \theta_{h}=45^{\circ}$
We calculate $\Phi_{h} \boldsymbol{\rightarrow}\left(\operatorname{Sin} \Phi_{h}=\frac{1}{\sqrt{2}}\right) \boldsymbol{\rightarrow} \Phi_{h=}=45^{\circ}$
So: $\theta_{H P}=2 *\left|90-45^{\circ}\right|=90^{\circ}=\frac{\Pi}{2}(\mathrm{rad})$
By the same way
We calculate $\Phi_{H P}=2 *\left|90^{\circ}-45^{\circ}\right|=90^{\circ}=\frac{\Pi}{2}(\mathrm{rad})$
So: D approximate $=\frac{4 \Pi}{\theta_{H P} \phi_{H P}}=\frac{4 \Pi}{\left(\frac{\Pi}{2}\right)\left(\frac{\Pi}{2}\right)}=5.1$.
(C) Decibel difference $=10 \log \frac{6}{5.1}=0.7 \mathrm{db}$.
7. The power radiated by a lossless antenna is 10 watts. The directional characteristics of the antenna are represented by the radiation intensity of
$\mathbf{U}=\mathbf{B}_{\mathbf{0}} \cos ^{3} \boldsymbol{\theta}$ (watts/unit solid angle) $(0 \leq \theta \leq \pi / 2,0 \leq \varphi \leq 2 \pi)$
Find the
(a) Maximum power density (in watts/square meter) at a distance of $1,000 \mathrm{~m}$ (assume far-field distance). Specify the angle where this occurs.
(b) Exact and approximate beam solid angle Ω_{A}.

Benha University
Faculty of Engineering
Shoubra

Antennas \&Wave Propagation Electrical Eng. Dept.
$4^{\text {th }}$ year communication 2015-2016
(c) Directivity, exact and approximate, of the antenna (dimensionless and in $\mathrm{dB})$.
(d) Gain, exact and approximate, of the antenna (dimensionless and in dB).
$U=B_{0} \cos ^{3} \theta$
(a) $P_{\text {rad }}=\int_{0}^{2 \pi} \int_{0}^{\pi / 2} U \sin \theta d \theta d \phi=B_{0} \int_{0}^{2 \pi} \int_{0}^{\pi / 2} \cos ^{3} \theta \sin \theta d \theta d \phi$
$=2 \pi B_{0} \int_{0}^{\pi / 2} \cos ^{3} \theta \sin \theta d \theta$
$P_{\text {rad }}=\left.2 \pi B_{0}\left(-\frac{\cos ^{4} \theta}{4}\right)\right|_{0} ^{\pi / 2}=\frac{\pi}{2} B_{0}=10 \Rightarrow B_{0}=\frac{20}{\pi}=6.3662$
$U=6.3662 \cos ^{3} \theta$
$W=\frac{u}{r^{2}}=\frac{6.3662}{r^{2}} \cos ^{3} \theta=\frac{6.3662}{\left(10^{3}\right)^{2}} \cdot \cos ^{3} \theta=6.3662 \times 10^{-6} \cdot \cos ^{3} \theta$
$\left.W\right|_{\text {max }}=6.3662 \times\left. 10^{-6} \cdot \cos ^{3} \theta\right|_{\max }=6.3662 \times 10^{-6} \mathrm{Watts} / \mathrm{m}^{2}$
(b) $D_{0}=\frac{4 \pi U_{\max }}{P_{\mathrm{rad}}}=\frac{4 \pi(6.3662)}{10}=8=9 \mathrm{~dB}$
(c) $G_{0}=e_{t} D_{0}=8=9 d B$
8. Calculate the $\mathrm{D}_{\text {approx. }}$ from the HPBW of a unidirectional antenna if the power pattern is given by :

$$
\begin{array}{cc}
\mathrm{E}(\theta, \phi)=\mathbf{3 0} \operatorname{Cos}^{2} \boldsymbol{\theta} \boldsymbol{S i n}^{3 / 2} \Phi \\
0 \leq \theta \leq \Pi \quad 0 \leq \Phi \leq \Pi \quad \text { and zero otherwise. }
\end{array}
$$

Then repeat by calculating $\mathrm{D}_{\text {exact }}$ for the previous pattern. Finally calculate the db difference between the exact and approximate records.
Dexact $=\frac{4 \Pi}{\int_{0}^{\pi} \int_{0}^{\Pi} E_{n}^{2}(\theta, \phi)^{*} \operatorname{Sin} \theta d \theta d \phi}=\frac{4 \Pi}{\int_{0}^{\Pi \Pi} \int_{0} \operatorname{Cos}^{4} \theta^{*} \operatorname{Sin}^{3} \phi^{*} \operatorname{Sin} \theta d \theta d \phi}$
$=\frac{4 \Pi}{\int_{0}^{\pi} \sin \phi^{*}\left(1-\operatorname{Cos}^{2} \phi\right) d \phi \int_{0}^{\Pi} \operatorname{Cos}^{4} \theta^{*} \operatorname{Sin} \theta d \phi}=\frac{4 \Pi}{\left(-\frac{\operatorname{Cos}^{5} \theta}{5}\right)_{0}^{\Pi} \int_{0}^{\Pi}\left(\operatorname{Sin} \phi d \phi-\operatorname{Sin} \phi \operatorname{Cos}^{2} \phi d \phi\right)}$

Benha University
Faculty of Engineering
Shoubra

Antennas \&Wave Propagation Electrical Eng. Dept. $4^{\text {th }}$ year communication 2015-2016

$=\frac{4 \Pi}{\left(\frac{2}{5}\right)\left[(-\operatorname{Cos} \phi)_{0}^{\Pi}+\left(\frac{\operatorname{Cos}^{3} \phi}{3}\right)_{0}^{\Pi}\right]}=\frac{4 \Pi}{\left(\frac{2}{5}\right)\left(\frac{4}{3}\right)}=23.56$
(b) To calculate D approximate.

We calculate $\theta_{\max } \rightarrow\left(\operatorname{Cos}^{2} \theta_{\max }=1 . .(\max)\right) \rightarrow$ at $\theta_{\max }=0^{\circ}$,
We calculate $\Phi_{\max } \rightarrow\left(\operatorname{Sin}^{3 / 2} \Phi_{\max }=1 . .(\max)\right) \rightarrow$ at $\Phi_{\max }=90^{\circ}$,
We calculate $\theta_{h} \rightarrow\left(\operatorname{Cos}^{2} \theta_{h}=\frac{1}{\sqrt{2}}\right) \rightarrow \theta_{h}=33^{\circ}$
We calculate $\Phi_{h} \rightarrow\left(\operatorname{Sin}^{3 / 2} \Phi_{h}=\frac{1}{\sqrt{2}}\right) \rightarrow \Phi_{h=5} 52.5^{\circ}$
So: $\theta_{H P}=2 *\left|0-33^{\circ}\right|=66^{\circ}$.
By the same way
We calculate $\Phi_{H P}=2 *\left|90^{\circ}-52.5^{\circ}\right|=75^{\circ}$
So: D approximate $=\frac{41253}{\theta_{H P} \phi_{H P}}=\frac{41253}{66 * 75}=8.33$.
(c) decibel difference $=10 \log \frac{23.5}{8.33}=4.5$
9. In target-search ground-mapping radars it is desirable to have echo power received from a target, of constant cross section, to be independent of its range. For one such application, the desirable radiation intensity of the antenna is given by

$$
U(\theta, \phi)=\left\{\begin{array}{cr}
1 & 0^{\circ} \leq \theta<20^{\circ} \\
0.342 \csc (\theta) & 20^{\circ} \leq \theta<60^{\circ} \\
0 & 60^{\circ} \leq \theta \leq 180^{\circ}
\end{array}\right\} 0^{\circ} \leq \phi \leq 360^{\circ}
$$

Find the directivity (in dB) using the exact formula.

Benha University
 Faculty of Engineering
 Shoubra
 Antennas \&Wave Propagation Electrical Eng. Dept.
 $4^{\text {th }}$ year communication 2015-2016

$$
\begin{aligned}
U(\theta, \phi)= & \left\{\begin{array}{cc}
1 & 0^{\circ} \leqslant \theta \leqslant 20^{\circ} \\
0.342 \csc (\theta) & 20^{\circ} \leqslant \theta \leqslant 60^{\circ} \\
0 & 60^{\circ} \leqslant \theta \leqslant 180^{\circ}
\end{array}\right\} 0^{\circ} \leqslant \phi \leqslant 360^{\circ} \\
P_{\mathrm{rad}}= & \int_{0}^{2 \pi} \int_{0}^{\pi} U(\theta, \phi) \sin \theta d \theta d \phi=2 \pi\left[\int_{0}^{20^{\circ}} \sin \theta d \theta+\int_{20^{\circ}}^{60^{\circ}} 0.342 \csc (\theta) x\right. \\
& \sin \theta d \theta]=2 \pi\left\{-\left.\cos \theta\right|_{0} ^{\pi / 9}+\left.0.342 \cdot \theta\right|_{\pi / 9} ^{\pi / 3}\right\} \\
= & 2 \pi\left\{\left[-\cos \left(\frac{\pi}{9}\right)+1\right]+0.342\left(\frac{\pi}{3}-\frac{\pi}{9}\right)\right\} \\
= & 2 \pi\left\{[-0.93969+1]+0.342 \pi\left(\frac{2}{9}\right)\right\} \\
= & 2 \pi\{0.06031+0.23876\}=1.87912 \\
D_{0}= & \frac{4 \pi U_{\max }}{P_{\text {mad }}}=\frac{4 \pi(1)}{1.87912}=6.68737=8.25255 \mathrm{~dB}
\end{aligned}
$$

10. The normalized radiation intensity of a given antenna is given by
(a) $U=\sin \theta \sin \varphi$, (b) $U=\sin \theta \sin ^{2} \varphi$, (C) $U=\sin ^{2} \theta \sin ^{3} \varphi$

The intensity exists only in the $0 \leq \theta \leq \pi, 0 \leq \varphi \leq \pi$ region, and it is zero elsewhere.
Find the
(a) Exact directivity (dimensionless and in dB).
(b) Azimuthal and elevation plane half-power beam widths (in degrees).

Benha University
 Faculty of Engineering
 Shoubra

Antennas \&Wave Propagation Electrical Eng. Dept.
 $4^{\text {th }}$ year communication 2015-2016

$D_{0}=\frac{4 \pi U_{\text {max }}}{P_{\text {rad }}}$
(a) $u=\sin \theta \sin \phi$ for $0 \leqslant \theta \leqslant \pi, 0 \leqslant \varnothing \leqslant \pi$

$$
\left.U\right|_{\max }=1 \text { and it occurs when } \theta=\phi=\pi / 2 \text {. }
$$

$$
P_{\text {rad }}=\int_{0}^{\pi} \int_{0}^{\pi} u \sin \theta d \theta d \phi=\int_{0}^{\pi} \sin \phi d \phi \int_{0}^{\pi} \sin ^{2} \theta d \theta=2\left(\frac{\pi}{2}\right)=\pi \text {. }
$$

Thus $D_{0}=\frac{4 \pi(1)}{\pi}=4=6.02 \mathrm{~dB}$
The half-power beamwidths are equal to
$\operatorname{HPBW}(a z)=.2\left[90^{\circ}-\sin ^{-1}(1 / 2)\right]=2\left(90^{\circ}-30^{\circ}\right)=120^{\circ}$
$\operatorname{HPBW}(\mathrm{el})=.2\left[90^{\circ}-\sin ^{-1}(1 / 2)\right]=2\left(90^{\circ}-30^{\circ}\right)=120^{\circ}$
In a similar manner, it can be shown that for
(b) $u=\sin \theta \sin ^{2} \phi \Rightarrow D_{0}=5.09=7.07 \mathrm{~dB}$ $\operatorname{HPBW}(e l)=.120^{\circ}, \operatorname{HPBW}($ az. $)=90^{\circ}$
(C)
$u=\sin ^{2} \theta \sin ^{3} \phi \Rightarrow D_{0}=9 \pi / 4=7.07=8.49 \mathrm{~dB}$

$$
\mathrm{HPBW}\left(\mathrm{el}^{\prime}\right)=90^{\circ}, \quad \mathrm{HPBW}(a z .)=74.93^{\circ}
$$

11.Find the directivity (dimensionless and in dB) for the antenna of Problem 4 using Kraus' approximate formula.
(a)
$U=\sin \theta \cdot \sin \phi$; (a) $D_{0} \simeq \frac{41253}{\Theta_{1 d} \oplus 2 d}=\frac{41253}{120(120)}=2.86=4.5^{\prime} 7 \mathrm{~dB}$
(b) $D_{0} \simeq 3.82=5.82 \mathrm{~dB}$
(c) $D_{0} \simeq 6.12=7.817 \mathrm{~dB}$
12. The normalized radiation intensity of an antenna is rotationally symmetric in φ, and it is represented by

Benha University
Faculty of Engineering
Shoubra

Antennas \&Wave Propagation Electrical Eng. Dept.
 $4^{\text {th }}$ year communication 2015-2016

$U= \begin{cases}1 & 0^{\circ} \leq \theta<30^{\circ} \\ 0.5 & 30^{\circ} \leq \theta<60^{\circ} \\ 0.1 & 60^{\circ} \leq \theta<90^{\circ} \\ 0 & 90^{\circ} \leq \theta \leq 180^{\circ}\end{cases}$
(a) What is the directivity (above isotropic) of the antenna (in dB)?

$$
\begin{aligned}
& \text { (a) } D_{0}=\frac{4 \pi U_{\text {max }}}{P_{\text {rad }}}=\frac{U_{\text {max }}}{U_{0}} \\
& \begin{aligned}
& P_{\text {rad }}=\int_{0}^{2 \pi} \int_{0}^{\pi} U \sin \theta d \theta d \phi=2 \pi \int_{0}^{\pi} U \sin \theta d \theta=2 \pi\left\{\int_{0}^{30^{\circ}} \sin \theta d \theta+\right. \\
&\left.\int_{30^{\circ}}^{60^{\circ}}(0.5) \sin \theta d \theta+\int_{60^{\circ}}^{90}(0.1) \sin \theta d \theta\right\}=2 \pi\left\{\left.(-\cos \theta)\right|_{0} ^{30^{\circ}}+\left.\left(-\frac{\cos \theta}{2}\right)\right|_{30^{\circ}} ^{60^{\circ}}+\left.(-0.1 \cos \theta)\right|_{60^{\circ}} ^{900^{\circ}}\right\} \\
&\left(\text { cont'd) } \quad=2 \pi\left\{(-0.866+1)+\left(\frac{-0.5+0.866}{2}\right)+\left(\frac{-0+0.5}{10}\right)\right\}\right. \\
& P_{\text {rad }}=2 \pi\{-0.866+1-0.25+0.433+0.05\}=2 \pi(0.367) \\
&=0.734 \cdot \pi=2.3059 \\
& D_{0}=\frac{1(4 \pi)}{2.3059}=5.4496=7.3636 \mathrm{~dB}
\end{aligned}
\end{aligned}
$$

13. The radiation intensity of an antenna is given by $\mathbf{U}(\boldsymbol{\theta}, \varphi)=\cos ^{4} \theta \sin ^{2} \varphi$, for $0 \leq \theta \leq \pi / 2$ and $0 \leq \varphi \leq 2 \pi$ (i.e., inthe upper half-space). It is zero in the lower halfspace.

Find the

(a) Exact directivity (dimensionless and in dB)
(b) Elevation plane half-power beam width (in degrees).

Benha University
Faculty of Engineering Shoubra

Antennas \&Wave Propagation Electrical Eng. Dept.
 $4^{\text {th }}$ year communication 2015-2016

(a) $P_{r a d}=\int_{0}^{2 \pi} \int_{0}^{\pi} u(\theta, \phi) \sin \theta d \theta d \phi=\int_{0}^{2 \pi} \sin ^{2} \phi d \phi \cdot \int_{0}^{\pi / 2} \cos ^{4} \theta \sin \theta d \theta$

$$
=(\pi)\left(\frac{1}{5}\right)=\frac{\pi}{5} .
$$

$$
U_{\max }=U\left(\theta=0^{\circ}, \phi=\pi / 2\right)=1
$$

$$
D_{0}=\frac{4 \pi U_{\max }}{P_{\mathrm{rad}}}=\frac{4 \pi}{(\pi / 5)}=20=13.0 \mathrm{~dB}
$$

(b) Elevation Plane: θ varies, \varnothing fixed

$$
\begin{aligned}
& \rightarrow \text { choose } \varnothing=\pi / 2 . \\
& U(\theta, \varnothing=\pi / 2)=\cos ^{4} \theta, \quad 0 \leqslant \theta \leqslant \pi / 2 . \\
& \cos ^{4}\left[\frac{H P B W(e l .)}{2}\right]=\frac{1}{2} \\
& H P B W(e l .)=2 \cdot \cos ^{-1}\{\sqrt{0.5}\}=65.5^{\circ} .
\end{aligned}
$$

14.The far-zone electric-field intensity (array factor) of an end-fire twoelement array antenna, placed along the z -axis and radiating into free-space, is given by

$$
E=\cos \left[\frac{\pi}{4}(\cos \theta-1)\right] \frac{e^{-j k r}}{r}, \quad 0 \leq \theta \leq \pi
$$

Find the directivity using Kraus' approximate formula

$$
\begin{aligned}
& \text { (a). }\left.E\right|_{\text {max }}=\left.\cos \left[\frac{\pi}{4}(\cos \theta-1)\right]\right|_{\text {max }}=1 \quad \text { at } \theta=0^{\circ} . \\
& 0.707 E_{\max }=0.707 \cdot(1)=\cos \left[\frac{\pi}{4}\left(\cos \theta_{1}-1\right)\right] \\
& \frac{\pi}{4}\left(\cos \theta_{1}-1\right)= \pm \frac{\pi}{4} \Rightarrow \theta_{1}=\left\{\begin{array}{l}
\cos ^{-1}(2)=\text { does not exist } \\
\cos ^{-1}(0)=90^{\circ}=\frac{\pi}{2} \mathrm{rad} . \\
\left(H_{1 r}=\oplus_{2 r}=2\left(\frac{\pi}{2}\right)=\pi\right.
\end{array}\right. \\
& D_{0} \simeq \frac{4 \pi}{\mathbb{H}_{1 r} \mathbb{H}_{2 r}}=\frac{4 \pi}{\pi^{2}}=\frac{4}{\pi}=1.273=1.049 \mathrm{~dB}
\end{aligned}
$$

15. The normalized far-zone field pattern of an antenna is given by
$E= \begin{cases}\left(\sin \theta \cos ^{2} \phi\right)^{1 / 2} & 0 \leq \theta \leq \pi \text { and } 0 \leq \phi \leq \pi / 2,3 \pi / 2 \leq \phi \leq 2 \pi \\ 0 & \text { elsewhere }\end{cases}$

Benha University
Faculty of Engineering Shoubra

Antennas \&Wave Propagation Electrical Eng. Dept.
 $4^{\text {th }}$ year communication 2015-2016

Find the directivity using
(a) The exact expression
(b) Kraus' approximate formula

$$
U=\frac{1}{2 \eta}|E|^{2}=\frac{1}{2 \eta} \sin \theta \cos ^{2} \phi \Rightarrow U_{\max }=\frac{1}{2 \eta}
$$

(a). $P_{\mathrm{rad}}=2 \cdot \int_{0}^{\pi / 2} \int_{0}^{\pi} \frac{1}{2 \eta} \sin ^{2} \theta \cos ^{2} \phi d \theta d \phi=\frac{1}{\eta}\left(\frac{\pi}{4}\right)\left(\frac{\pi}{2}\right)=\frac{\pi^{2}}{8 \eta}$
$D_{0}=\frac{4 \pi U_{\text {max }}}{P_{\mathrm{rad}}}=\frac{4 \pi\left(\frac{1}{2 \eta}\right)}{\frac{\pi^{2}}{8 \eta}}=\frac{16}{\pi}=5.09=7.07 \mathrm{~dB}$
(b). $U_{\text {max }}=\frac{1}{2 \eta}$ at $\theta=\pi / 2, \phi=0$

In the elevation plane through the maximum $\phi=0$ and $u=\frac{1}{2 \eta} \sin \theta$.
The $3-d B$ point occurs when

$$
u=0.5 u_{\text {max }}=0.5\left(\frac{1}{2 \eta}\right)=\frac{1}{2 \eta} \sin \theta_{1} \Rightarrow \theta_{1}=\sin ^{-1}(0.5)=30^{\circ}
$$

Therefore $\Theta_{10}=2(90-30)=120^{\circ}$
In the azimuth plane through the maximum $\theta=\pi / 2$ and $u=\frac{1}{2 \eta} \cos ^{2} \phi$.
The $3-d B$ point occurs when $u=0.5 u_{\max }=0.5\left(\frac{1}{2 \eta}\right)=\frac{1}{2 \eta} \cos ^{2} \theta_{1} \Rightarrow$

$$
\phi_{1}=\cos ^{-1}(0.707)=45^{\circ}, \quad\left(A_{2 d}=2\left(90^{\circ}-45^{\circ}\right)=90^{\circ} .\right.
$$

Therefore using kraus' formula $D_{0} \simeq \frac{41,253}{120 \cdot(90)}=3.82=5.82 \mathrm{~dB}$
16.Estimate the directivity for a source with relative field pattern
a. $\mathrm{E}=\operatorname{Cos} 2 \theta \operatorname{Cos} \theta$. Assume a unidirectional pattern.
b. $\mathrm{E}=\operatorname{Sin}\left(\frac{\Pi}{2} \operatorname{Cos} \theta\right)$. Assume $0 \leq \theta \leq \Pi \& 0 \leq \varphi \leq 2 \Pi$.

(a) Dexact	$=$	4Π
$=\frac{4 \Pi}{\Pi^{*} \int_{0}^{\Pi}(\cos 2 \theta \operatorname{Cos} \theta)^{2} * \operatorname{Sin} \theta d \theta}(\operatorname{Cos} 2 \theta \operatorname{Cos} \theta)^{2} * \operatorname{Sin} \theta d \theta d \phi$		
0		

Benha University
Faculty of Engineering Shoubra

Antennas \&Wave Propagation Electrical Eng. Dept. $4^{\text {th }}$ year communication 2015-2016

$$
\left.\begin{array}{l}
=\frac{4}{\int_{0}^{\pi}\left(2 \operatorname{Cos}^{2} \theta-1\right)^{2} \operatorname{Cos}^{2} \theta * \operatorname{Sin} \theta d \theta}=\frac{4}{\int_{0}^{\Pi}\left(4 \operatorname{Cos}^{4} \theta-4 \operatorname{Cos}^{2} \theta+1\right) \operatorname{Cos}^{2} \theta * \operatorname{Sin} \theta d \theta} \\
=\frac{4}{\int_{0}^{\Pi}\left(4 \operatorname{Cos}^{6} \theta-4 \operatorname{Cos}^{4} \theta+\operatorname{Cos}^{2} \theta\right) * \operatorname{Sin} \theta d \theta} \\
-\left(\frac{4 \operatorname{Cos}^{7} \theta}{7}-4 \frac{\operatorname{Cos}^{5} \theta}{5}+\frac{\operatorname{Cos}^{3} \theta}{3}\right)_{0}^{\pi}
\end{array}=19.1\right] .
$$

4Π
(b)Dexact $=\overline{\int_{0}^{\Pi \Pi}}\left(\operatorname{Sin}^{2}\left(\frac{\Pi}{2} \operatorname{Cos} \theta\right) * \operatorname{Sin} \theta d \theta d \phi \quad\right.$
4Π
$2 \Pi \int_{0}^{\Pi}\left(\operatorname{Sin}^{2}\left(\frac{\Pi}{2} \operatorname{Cos} \theta\right) * \operatorname{Sin} \theta d \theta d \phi\right.$
$=\frac{2}{\int_{0}^{\Pi}\left(\operatorname{Sin}^{2}\left(\frac{\Pi}{2} \operatorname{Cos} \theta\right) * \operatorname{Sin} \theta d \theta d \phi\right.}$
$\operatorname{Let}\left(\frac{\Pi}{2} \operatorname{Cos} \theta\right)=x \rightarrow(1)$
So $\quad \frac{d x}{d \theta}=-\frac{\Pi}{2} \operatorname{Sin} \theta \rightarrow \operatorname{Sin} \theta d \theta=\frac{-2}{\Pi} d x \rightarrow$ (2)
Replace (θ from 0 to Π) to (x from $\frac{\Pi}{2}$ to $\frac{-\Pi}{2}$). By substituting in (1).

Benha University
Faculty of Engineering Shoubra

Antennas \&Wave Propagation Electrical Eng. Dept.
 $4^{\text {th }}$ year communication 2015-2016

$$
\frac{-\Pi}{\frac{1}{2}\left(x-\frac{\operatorname{Sin} 2 x}{2}\right)_{\frac{\Pi}{2}}^{\frac{-\Pi}{2}}}=2
$$

(REPORT)

1. The normalized radiation intensity of an antenna is symmetric, and it can be approximated by

$$
U(\theta)=\left\{\begin{array}{cc}
1 & 0^{\circ} \leq \theta<30^{\circ} \\
\frac{\cos (\theta)}{} & 30^{\circ} \leq \theta<90^{\circ} \\
0.866 & 90^{\circ} \leq \theta \leq 180^{\circ}
\end{array}\right.
$$

And it is independent of φ. Find the
(a) Exact directivity by integrating the function
(b) Approximate directivity using Kraus' formula.
$?$

$$
\begin{aligned}
& \text { (a) } P_{\text {rad }}=\int_{0}^{2 \pi} \int_{0}^{\pi} u(\theta, \phi) \sin \theta d \theta d \varnothing=2 \pi \cdot\left\{\int_{0}^{30^{\circ}} \cdot \sin \theta d \theta+\int_{30^{\circ}}^{90.8606} 0\right. \\
& =2 \pi\left\{\int_{0}^{\pi / 6} \sin \theta d \theta+\int_{\pi / 6}^{\pi / 2} \frac{1}{0.866} \cos \theta \cdot \sin \theta d \theta\right\} \\
& \begin{aligned}
=2 \pi\left\{-\left.\cos \theta\right|_{0} ^{\pi / 6}+\left.\frac{1}{0.866}\left(-\frac{\cos ^{2} \theta}{2}\right)\right|_{\pi / 6} ^{\pi / 2}\right\} & =2 \pi[-0.866+1+0.433] \\
& =3.5626
\end{aligned} \\
& D_{0}=\frac{4 \pi U_{\text {max }}}{P_{\text {rad }}}=\frac{4 \pi(1)}{3.5626}=3.5273=5.4745 \mathrm{~dB}
\end{aligned}
$$

(b) $u=\frac{\cos (\theta)}{0.866}=0.5 \Rightarrow \cos \theta=0.5(0.866)=0.433, \theta=\operatorname{cs}^{-1}(0.433)=64.34^{\circ}$

$$
\begin{aligned}
& \bigoplus_{1 r}=2(64.34)=128.68^{\circ}=2.246 \mathrm{rad}=\mathbb{\otimes}_{2 r} \\
& D_{0} \simeq \frac{4 \pi}{\Theta_{1 r}\left(\theta_{2 r}\right.}=\frac{4 \pi}{(2.246)^{2}} H 2.4912=3.9641 \mathrm{~dB}
\end{aligned}
$$

2. Repeat Problem 8 when

$$
E=\cos \left[\frac{\pi}{4}(\cos \theta+1)\right] \frac{e^{-j k r}}{r}, \quad 0 \leq \theta \leq \pi
$$

Benha University
 Faculty of Engineering
 Shoubra

Antennas \&Wave Propagation Electrical Eng. Dept.
$4^{\text {th }}$ year communication 2015-2016

$$
\begin{aligned}
& \text { a. }\left.E\right|_{\max }=\left.\cos \left(\frac{\pi}{4}(\cos \theta+1)\right)\right|_{\text {max }}=1 \text { at } \theta=\pi . \\
& 0.707 \cdot=\cos \left(\frac{\pi}{4}\left(\cos \theta_{1}+1\right)\right) \\
& \frac{\pi}{4}\left(\cos \theta_{1}+1\right)= \pm \frac{\pi}{4} \Rightarrow \quad \theta_{1}=\left\{\begin{array}{l}
\cos ^{-1}(-2) \rightarrow \text { does not exist. } \\
\cos ^{-1}(0) \rightarrow 90^{\circ} \rightarrow \frac{\pi}{2} \mathrm{rad}
\end{array}\right. \\
& \theta_{1 r}=\theta_{2 r}=2\left(\frac{\pi}{2}\right)=\pi . \\
& D_{0} \simeq \frac{4 \pi}{\pi^{2}}=\frac{4}{\pi}=1.273=1.049 \mathrm{~dB}
\end{aligned}
$$

3. The normalized radiation intensity of an antenna is represented by
$U(\theta)=\cos ^{2}(\theta) \cos ^{2}(3 \theta), \quad\left(0 \leq \theta \leq 90^{\circ}, \quad 0^{\circ} \leq \phi \leq 360^{\circ}\right)$
Find the exact and approximate directivity.
a. Since the $U(\theta)$ represents the power pattern, to find the half-power beamwidth you set the function equal to half of its maximum, or

$$
\begin{gathered}
\left.U(\theta)\right|_{\theta=\theta_{h}}=\left.\cos ^{2}(\theta) \cos ^{2}(3 \theta)\right|_{\theta=\theta_{h}}=0.5 \Rightarrow \cos \theta_{h} \cos 3 \theta_{h}=0.707 \\
\theta_{h}=\cos ^{-1}\left(\frac{0.707}{\cos 3 \theta_{h}}\right)
\end{gathered}
$$

Since this is an equation with transcendental functions, it can be solved iteratively. After a few iterations, it is found that

$$
\theta_{h} \approx 0.25 \text { radians }=14.325^{\circ}
$$

Since the function $U(\theta)$ is symmetrical about the maximum at $\theta=0$, then the HPBW is

$$
\text { HPBW }=2 \theta_{h} \approx 0.50 \text { radians }=28.65^{\circ}
$$

ونكمل بقاتون الدايركتيفيتي

Benha University
Faculty of Engineering Shoubra

Antennas \& Wave Propagation Electrical Eng. Dept. $4^{\text {th }}$ year communication 2015-2016

Good Luck

