Benha University

Faculty Of Engineering at Shoubra

ECE 411

Antennas \& Wave propagations

prepared by:

Dr. Noataz Hsheribini

Agenda

Remember (Radiation Pattern)

Beam Area, Beam Solid Angle, HPBW

Directivity (Exact - Approximate)

Examples

1 - Remember (Radiation Pattern)

1 - Remember (Radiation Pattern)

3D Field/Power pattern

Normalized three-dimensional amplitude field pattern (in linear scale)

Three- and two-dimensional power patterns (in linear scale) of $U(\theta)=\cos ^{2}(\theta) \cos ^{2}(3 \theta)$.

Field Versus Power Pattern

(a) Field pattern (in linear scale)

(b) Power pattern (in linear scale)

Radiation Lobes

Radiation lobes and beamwidths of an antenna pattern

Linear Plot for Radiation pattern

Example

For example, the radiation pattern of the Hertzian dipole can be plotted using the following steps.
(1) Far field:

$$
E_{\theta}=j \frac{\eta k I d \ell}{4 \pi}\left(\frac{e^{-j k r}}{r}\right) \sin \theta,\left\{\begin{array}{l}
0 \leq \theta \leq \pi \\
0 \leq \phi \leq 2 \pi \\
r \text { fixed }
\end{array}\right.
$$

(2) Far field magnitude:

$$
\left|E_{\theta}\right|=\frac{\eta k I d \ell}{4 \pi r}|\sin \theta|, \quad\left\{\begin{array}{l}
0 \leq \theta \leq \pi \\
0 \leq \phi \leq 2 \pi \\
r \text { fixed }
\end{array}\right.
$$

Example

(3) Normalization:

$$
\left|E_{\theta}\right|_{\mathrm{n}}=\frac{\frac{\eta k I d \ell}{4 \pi r} \sin \theta}{\frac{\eta k I d \ell}{4 \pi r}}=|\sin \theta|,\left\{\begin{array}{l}
0 \leq \theta \leq \pi \\
0 \leq \phi \leq 2 \pi \\
r \text { fixed }
\end{array}\right.
$$

(4) Plot θ-plane pattern (fix ϕ at a chosen value, for example $\phi=0^{\circ}$)

Nulls: at $\mathbf{0 , 1 8 0}$
Maxima: at 90, -90

Example

(5) Plot ϕ-plane pattern (fix θ at a chosen value, for example $\theta=90^{\circ}$)

Example 2
Draw the radiation pattern for an antenna has a field pattern of :

$$
E_{n}=\cos ^{2} \theta, \text { for } \quad 0 \leq \theta \leq 90^{\circ}, 0 \leq \phi \leq 360^{\circ}
$$

And Show the nulls, Maxima, FNBW, and HPBW
(1) m_{2}

$$
E_{n}=0 \quad \cos ^{2} \theta=0
$$

$$
\theta_{n}= \pm 90^{\circ}
$$

(2) Max.

$$
\begin{aligned}
& E_{n}= \pm 1 \quad \cos ^{2} \theta= \pm 1 \quad \therefore \varepsilon^{2} \theta=+1 \text { aby } \\
& \therefore \theta_{\text {mi }}=\dot{\circ}, 180^{\circ} \times \text { refused ContefRage) }
\end{aligned}
$$

Example 2
(3)

$$
F N B W=2\left|\theta_{m x}-\theta_{m}\right|=2|0-90|=180^{\circ}
$$

$$
\text { or }|90-(-90)|=180^{\circ}
$$

(4) APB W
let $E_{n}=\frac{(1)}{\sqrt{2}}$

$$
\begin{aligned}
\therefore & \cos ^{2} \theta= \pm \frac{1}{\sqrt{2}}=+\frac{1}{\sqrt{2}} \frac{1}{\sqrt{\sqrt{2}}} \rightarrow \theta= \pm 32.7^{\circ} \leftarrow \\
\therefore \cos \theta & \pm \sqrt{\frac{1}{\sqrt{2}}} \longrightarrow+\sqrt{\frac{1}{\sqrt{2}}} \rightarrow \theta= \pm 147.3^{\circ} \times X_{1}
\end{aligned}
$$

$$
\begin{aligned}
\theta_{A P B} w & =(32.7-(-32.7)) \\
& =65.4^{\circ}
\end{aligned}
$$

$$
=65.4^{\circ}
$$

or $2\left(\theta_{\max }-\theta_{\mathrm{lh}}\right)$

$$
\therefore \quad 2|0-32.7|=65,4^{\circ}
$$

2 - Beam Area, Beam Solid Angle, HPBW

Radian

Radian

Steradian

Steradian

Beam Solid Angle

Solid angle in 1 steradian $\cong 3283 \square$ in sphere $\cong 41,253 \square$

Equivalent solid angle Ω_{A}

Actual pattern of beam area Ω_{A}
Half-power beam
width θ_{HP}
(b)

Beam Solid Angle

$$
d A=(r d \theta)(r \sin \theta d \phi)=r^{2} d \Omega
$$

Beam Solid Angle

$$
d A=(r d \theta)(r \sin \theta d \phi)=r^{2} d \Omega
$$

where
$d \Omega=$ solid angle expressed in steradians (sr) or square degrees $\left.{ }^{(}{ }^{\square}\right)$
$d \Omega=$ solid angle subtended by the area $d A$
A differential solid angle $\mathrm{d} \Omega$ in sr is:

$$
d \Omega=\sin \theta d \theta d \phi
$$

For sphere, the solid angle $\mathrm{d} \Omega$ and the total area A

$$
\begin{array}{r}
\Omega=\int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\pi} \sin \theta d \theta d \phi=4 \pi \mathbf{s r} \\
A
\end{array}
$$

Steradian

where $4 \pi=$ solid angle subtended by a sphere, sr
Thus,

1 steradian $=1 \mathrm{sr}=($ solid angle of sphere $) /(4 \pi)$

$$
=1 \mathrm{rad}^{2}=\left(\frac{180}{\pi}\right)^{2}\left(\mathrm{deg}^{2}\right)=3282.8064 \text { square degrees }
$$

4π steradians $=3282.8064 \times 4 \pi=41,252.96 \cong 41,253$ square degrees $=41,253^{\square}$
$=$ solid angle in a sphere

Beam Area (for any Radiation Pattern)

Beam area $\Omega_{A}=\int_{0}^{2 \pi} \int_{0}^{\pi} P_{n}(\theta, \phi) \cdot \sin (\theta) d \theta d \phi=\iint_{4 \pi} P_{n}(\theta, \phi) d \Omega$ (Exact)

$$
d \Omega=\sin \theta d \theta d \phi, \mathrm{sr} .
$$

Beam area
 (Approximate)

$\Omega_{A} \cong \theta_{\mathrm{HP}} \phi_{\mathrm{HP}}$
(sr)

Directivity

The maximum Directivity of an antenna is the ratio of the maximum power in particular direction to the average normalized power OR (the ratio of the radiation intensity in a given direction from the antenna to the radiation intensity averaged over all directions)

$$
D=\frac{P(\theta, \varphi)_{\max }}{P(\theta, \varphi)_{\text {average }}}=\frac{4 \pi}{\Omega_{A}} \geq 1 \quad D(\theta, \phi)=\frac{U_{\max }(\theta, \phi)}{U_{\text {iso }}}
$$

$$
D(d B)=10 \log (D)
$$

Directivity

(a)

(b)

For (a), power gets radiated to the side and back lobes, so the pattern solid angle is large and the directivity is small. For (b), almost all the power gets radiated to the main beam, so pattern solid angle is small and directivity is high.

Directivity

From pattern D (Exact)

$$
D=\frac{4 \pi}{\Omega_{A}}=\frac{4 \pi}{\iint_{4 \pi} P_{n}(\theta, \varphi) d \Omega}
$$

$$
P_{n}(\theta, \varphi)=E_{n}^{2}(\theta, \varphi)=U_{n}(\theta, \varphi)
$$

$$
D=\frac{4 \pi}{\Omega_{A}}=\frac{4 \pi}{\iint_{4 \pi} P_{n}(\theta, \varphi) d \Omega}=\frac{4 \pi}{\iint_{4 \pi} E_{n}^{2}(\theta, \varphi) d \Omega}=\frac{4 \pi}{\iint_{4 \pi} U_{n}(\theta, \varphi) d \Omega}
$$

$\begin{gathered}\text { (Approximate) } \\ \\ \text { (} \\ \Omega_{A}\end{gathered}=\frac{4 \pi}{\Theta_{H P}(\mathrm{rad}) * \Phi_{H P}(\mathrm{rad})}=\frac{41253}{\Theta_{H P}^{o} * \Phi_{H P}^{o}}$

Zatoona

$$
D=\frac{4 \pi}{\Omega_{A}}
$$

Exact

$$
\Omega_{A}=\iint_{4 \pi} P_{n}(\theta, \varphi) d \Omega=\iint_{4 \pi} U_{n}(\theta, \varphi) d \Omega=\iint_{4 \pi} E_{n}^{2}(\theta, \varphi) d \Omega
$$

Approximate (Sr)

$$
\Omega_{A}=\Theta_{H P}(\mathrm{rad}) * \Phi_{H P}(\mathrm{rad})
$$

Approximate (degree square)

$$
D=\frac{41253}{\Theta_{H P}^{o} * \Phi_{H P}^{o}}
$$

4 - Examples

Example (1)

Estimate the directivity of an antenna with $\theta_{H P}=20$ and $\Phi_{H P}=10$

$$
\text { D approximate }=\frac{41253}{\theta_{H P} \phi_{H P}}=\frac{41253}{2 * 1}=20627 \text {. }
$$

Example (2)

Find the number of square degrees in the solid angle Ω on a spherical surface that is between $\left(\theta=20^{\circ}\right.$ and $\left.\theta=40^{\circ}\right)$, and $\left(\phi=30^{\circ}\right.$ and $\left.\phi=70^{\circ}\right)$.

$$
\Omega=\int_{30}^{70} d \phi \int_{20}^{40} \sin \theta d \theta .=(70-30) *\left(\frac{180}{\pi}\right) *(-\operatorname{Cos} \theta)_{20}^{40}=398.17 \mathrm{deg}^{2} .
$$

Example (3)

The normalized field pattern of an antenna is given by $E(\theta)=\sin \theta \sin \phi . E_{n}$ has a value only for $0 \leq \theta \leq \pi \& 0 \leq \phi \leq \pi$, and zero elsewhere, Find

The exact directivity.
The approximate directivity.
The decibel difference.

$$
\begin{aligned}
& \text { (a) Dexact }=\frac{4 \Pi}{\int_{0}^{\Pi \Pi} \int_{0} \operatorname{Sin}^{3} \theta \operatorname{Sin}^{2} \phi d \theta d \phi}=\frac{4 \Pi}{\int_{0}^{\pi} \sin \theta *\left(1-\operatorname{Cos}^{2} \theta\right) d \theta \int_{0}^{\Pi} \frac{(1-\operatorname{Cos} 2 \Phi)}{2} d \phi}= \\
& \frac{4 \Pi}{\left(\frac{\phi}{2}-\frac{\operatorname{Sin} 2 \phi}{2}\right)_{0}^{\Pi} \int_{0}^{\Pi}\left(\operatorname{Sin} \theta d \theta-\operatorname{Sin} \theta \operatorname{Cos}^{2} \theta d \theta\right)}=\frac{4 \Pi}{\left(\frac{\Pi}{2}\right)\left[(-\operatorname{Cos} \theta)_{0}^{\Pi}+\left(\frac{\operatorname{Cos}^{3} \theta}{3}\right)_{0}^{\Pi}\right]}= \\
& \frac{4 \Pi}{\left(\frac{\Pi}{2}\right)\left(\frac{4}{3}\right)}=6 .
\end{aligned}
$$

Example (3)

(b).. D approximate $=\frac{4 \Pi}{\theta_{H P} \phi_{H P}}$.

We calculate $\theta_{\max } \rightarrow\left(\operatorname{Sin} \theta_{\max }=1 . .(\max)\right) \rightarrow$ at $\theta_{\max }=90^{\circ}$,
We calculate $\Phi_{\max } \rightarrow\left(\operatorname{Sin} \Phi_{\max }=1 . .(\max)\right) \rightarrow$ at $\Phi_{\max }=90^{\circ}$,
We calculate $\theta_{h} \rightarrow\left(\operatorname{Sin} \theta_{h}=\frac{1}{\sqrt{2}}\right) \rightarrow \theta_{h}=45^{\circ}$
We calculate $\Phi_{h} \rightarrow\left(\operatorname{Sin} \Phi_{h}=\frac{1}{\sqrt{2}}\right) \rightarrow \Phi_{h}=45^{\circ}$
So: $\theta_{H P}=2 *\left|90-45^{\circ}\right|=90^{\circ}=\frac{\Pi}{2}(\mathrm{rad})$
By the same way
We calculate $\Phi_{H P}=2 *\left|90^{\circ}-45^{\circ}\right|=90^{\circ}=\frac{\Pi}{2}(\mathrm{rad})$
So: D approximate $=\frac{4 \Pi}{\theta_{H P} \phi_{H P}}=\frac{4 \Pi}{\left(\frac{\Pi}{2}\right)\left(\frac{\Pi}{2}\right)}=5.1$.
(C) Decibel difference $=10 \log \frac{6}{5.1}=0.7 d b$.

Example (4)

For this normalized radiation intensity,

$$
\begin{aligned}
& P_{n}(\theta, \phi)=\sin ^{2} \theta \sin ^{3} \phi \text { for } 0 \leq \phi \leq \pi, \\
& 0 \text { otherwise. }
\end{aligned}
$$

Find the solid angle and the directivity.

Solution // The pattern solid angle is:

$$
\begin{aligned}
& \Omega_{A}=\iint_{n} P_{n} d \Omega=\iint\left(\sin ^{2} \theta \sin ^{3} \phi\right) \sin \theta d \theta d \phi, \\
& \Omega_{A}=\int_{0}^{\pi} \sin ^{3} \theta d \theta \int_{0}^{\pi} \sin ^{3} \phi d \phi, \quad \text { (note limits on } \phi \text {) }
\end{aligned}
$$

Example (4)

Where each integral is solved as follows:

$$
\begin{aligned}
y=\int_{0}^{\pi} \sin ^{3} x d x= & \int_{0}^{\pi}\left(1-\cos ^{2} x\right) \sin x d x=\int_{0}^{\pi} \sin x d x-\int_{0}^{\pi} \cos ^{2} x \sin x d x . \\
& \text { Please continue on your own!! }
\end{aligned}
$$

$$
\Omega_{A}=\int_{0}^{\pi} \sin ^{3} \theta d \theta \int_{0}^{\pi} \sin ^{3} \varphi d \varphi=\left(\frac{4}{3}\right)\left(\frac{4}{3}\right)
$$

Finally,

$$
\Omega_{A}=1.78 s r
$$

and the directivity, $\quad D_{\max }=\frac{4 \pi}{\Omega_{P}}=\frac{4 \pi}{1.78}=7.1$
How to Calculate HPBW in two perpendicular Planes?

Next Lecture

Antenna parameters (Cont.)
 Radiation Intensity
 Power density Beam efficiency
 Gain
 Effective and Physical Aperture

Dr. Moataz Elsherbini motaz.ali@feng.bu.edu.eg

