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Fluid Kinematics
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Overview

• Fluid Kinematics deals with the motion of fluids without 
considering the forces and moments which create the 
motion.
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What is a fluid ?
Tension: Force per unit area
• Normal tension: perpendicular to the surface
• Shear tension: parallel to the surface

Materials respond differently to shear stresses:
• Solids deform non-permanently
• Plastics deform permanently
• Fluids do not resist: they flow

In a fluid at mechanical equilibrium the shear stresses are 
ZERO. 

A fluid may be a gas or a liquid, characterized by:  𝜌, 𝛽, 𝜂

What is a fluid ?

3

3

Lagrangian Description

• Lagrangian description of fluid flow tracks the position and 
velocity of individual particles.

• Based upon Newton's laws of motion.

• Difficult to use for practical flow analysis.
• Fluids are composed of billions of molecules.
• Interaction between molecules hard to describe/model.

• However, useful for specialized applications
• Sprays, particles, bubble dynamics, rarefied gases.
• Coupled Eulerian-Lagrangian methods.

• Named after Italian mathematician Joseph Louis Lagrange 
(1736-1813).
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Eulerian Description

• Eulerian description of fluid flow: a flow domain or control volume is defined by 
which fluid flows in and out.

• We define field variables which are functions of space and time.
• Pressure field,          P=P(x,y,z,t)
• Velocity field,

• Acceleration field,

• These (and other) field variables define the flow field.

• Well suited for formulation of initial boundary-value problems (PDE’s).

• Named after Swiss mathematician Leonhard Euler (1707-1783).
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Example:Lagrange versus Euler 
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Rate of change of the velocity at a fixed point in the flow field versus the acceleration
of a fluid particle, at that point.
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Hyperbolic 2d steady flow
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Example:  Coupled Eulerian-Lagrangian Method

Forensic analysis of Columbia accident:  simulation of shuttle 
debris trajectory using Eulerian CFD for flow field and Lagrangian 
method for the debris. 

8

8

Acceleration Field

• Consider a fluid particle and Newton's second law, 

• The acceleration of the particle is the time derivative of the 
particle's velocity.

• However, particle velocity at a point is the same as the fluid 
velocity,

• To take the time derivative of Vparticle the chain rule must be 
used.
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Acceleration Field

• Since

• In vector form, the acceleration can be written as

• First term is called the local acceleration and is nonzero only for unsteady 
flows.
• Second term is called the advective acceleration and accounts for the effect 

of the fluid particle moving to a new location in the flow, where the velocity 
is different.
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Material Derivative

• The total derivative operator is called the material derivative and 
is often given special notation, D/Dt.

• Advective acceleration is nonlinear:  source of many phenomena 
and primary challenge in solving fluid flow problems.
• Provides ``transformation'' between Lagrangian and Eulerian 

frames.
• Other names for the material derivative include: total, particle, 

and substantial derivative. 
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Example (hyperbolic 2d steady flow)

• Consider an accelerating fluid flow, such as the logs flowing through a 
narrowing channel. Suppose,

• The advective term is

• Hence the acceleration of the log is
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Flow Visualization

• Flow visualization is the visual examination of flow-field 
features.

• Important for both physical experiments and numerical 
(CFD) solutions.

•Numerous methods
• Streamlines and streamtubes
• Pathlines
• Streaklines
• Timelines
• Refractive techniques
• Surface flow techniques
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Streamlines

• A Streamline is a curve that is 
everywhere tangent to the 
instantaneous local velocity vector.
• Consider an arc length 

• must be parallel to the local 
velocity vector 

• Geometric arguments results in the 
equation for a streamline
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Streamlines

NASCAR surface pressure contours and 
streamlines

Airplane surface pressure contours, 
volume streamlines, and surface 
streamlines 
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Pathlines

( ) ( ) ( )( ), ,particle particle particlex t y t z t

• A Pathline is the actual path traveled by 
an individual fluid particle over some time 
period.

• Same as the fluid particle's material 
position vector

• Particle location at time t: 

• Particle Image Velocimetry (PIV) is a 
modern experimental technique to 
measure velocity field over a plane in the 
flow field.
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Stereo PIV measurements of the wing
tip vortex in the wake of a NACA-66
airfoil at angle of attack.
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Streaklines

•A Streakline is the locus 
of fluid particles that 
have passed sequentially 
through a prescribed 
point in the flow.

•Easy to generate in 
experiments:  dye in a 
water flow, or smoke in 
an airflow.
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Comparisons

•For steady flow, streamlines, pathlines, and 
streaklines are identical. 

•For unsteady flow, they can be very different. 
• Streamlines are an instantaneous picture of the flow field.
• Pathlines and Streaklines are flow patterns that have a 

time history associated with them. 
• Streakline:  instantaneous snapshot of a time-integrated 

flow pattern.
• Pathline:  time-exposed flow path of an individual 

particle.
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Timelines

• A Timeline is the locus of an array 
of fluid particles and it shows the
position of the array at a given
moment in time.
• If one point was taken on a 

timeline and traced with time, a 
pathline would be obtained.
• Timelines can be generated using a 

hydrogen bubble wire.
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Flow rate 

The volumetric flow rate is the
volume of fluid which passes 
per unit time; usually it is
represented by the symbol Q.

𝑄 = #𝑉 % 𝑛𝑑𝐴
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Kinematic Description

• In fluid mechanics, an element 
may undergo four fundamental 
types of motion. 
a) Translation
b) Rotation
c) Linear strain
d) Shear strain

• Because fluids are in constant 
motion, motion and deformation 
is best described in terms of rates 
a) velocity: rate of translation
b) angular velocity: rate of rotation
c) linear strain rate: rate of linear  

strain
d) shear strain rate:  rate of shear    

strain
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Example

A fluid element illustrating 
• translation, 
• rotation, 
• linear strain, 
• shear strain, and 
• volumetric strain.
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Rate of Translation and Rotation

• To be useful, these rates must be expressed in terms of velocity 
and derivatives of velocity
• The rate of translation vector is described as the velocity vector.  

In Cartesian coordinates:

• Rate of rotation at a point is defined as the average rotation rate 
of two initially perpendicular lines that intersect at that point. 
The rate of rotation vector in Cartesian coordinates:
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Rate of rotation (recap)

In 2d, 𝜔

𝜔 =
1
2 ∇×𝑉In 3d,
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Linear Strain Rate

• Linear Strain Rate is defined as the rate of increase in length per unit length.
• In Cartesian coordinates

• Volumetric strain rate in Cartesian coordinates

• Since the volume of a fluid element is constant for an incompressible flow, the 
volumetric strain rate must be zero.
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Shear Strain Rate

Shear Strain Rate at a point is 
defined as half of the rate of 
decrease of the angle between 
two initially perpendicular lines 
that intersect at a point.
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Shear strain rate can be expressed in Cartesian coordinates as: 
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Shear Strain Rate

We can combine linear strain rate and shear strain rate 
into one symmetric second-order tensor called the 
strain-rate tensor.
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Shear Strain Rate

• Purpose of our discussion of fluid element kinematics:  
• Better appreciation of the inherent complexity of fluid 

dynamics 
• Mathematical sophistication required to fully describe fluid 

motion

• Strain-rate tensor is important for numerous reasons.  
For example,
• Develop relationships between fluid stress and strain rate. 
• Feature extraction and flow visualization in CFD simulations.
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Shear Strain Rate

Example:  Visualization of trailing-edge turbulent eddies 
for a hydrofoil with a beveled trailing edge

Feature extraction method is based upon eigen-analysis of the strain-rate tensor.
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Example (hyperbolic 2d steady flow)
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Vorticity and Rotationality

• The vorticity vector is defined as the curl of the velocity vector

• Vorticity is equal to twice the angular velocity of a fluid particle. 

Cartesian coordinates

Cylindrical coordinates

• In regions where z = 0, the flow is called irrotational.
• Elsewhere, the flow is called rotational.
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Vorticity and Rotationality
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Comparison of Two Circular Flows

Special case:  consider two flows with circular streamlines
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Example
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Reynolds—Transport Theorem (RTT)

• A system is a quantity of matter of fixed identity. No mass 
can cross a system boundary.
• A control volume is a region in space chosen for study. Mass 

can cross a control surface.
• The fundamental conservation laws (conservation of mass, 

energy, and momentum) apply directly to systems.
• However, in most fluid mechanics problems, control volume 

analysis is preferred over system analysis (for the same 
reason that the Eulerian description is usually preferred over 
the Lagrangian description).
• Therefore, we need to transform the conservation laws from 

a system to a control volume. This is accomplished with the 
Reynolds transport theorem (RTT).
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Reynolds—Transport Theorem (RTT)

There is an analogy between the transformation from Lagrangian
to Eulerian descriptions (for differential analysis using 
infinitesimally small fluid elements) and that from systems to 
control volumes (for integral analysis using finite flow fields).
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System and control volume (simple geometry)
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Control Volume (general)
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Reynolds—Transport Theorem (RTT)

• Material derivative (differential analysis):

• General RTT (integral analysis):

• Interpretation of the RTT:
• Time rate of change of the property B of the system is equal to (Term 1) + 

(Term 2)
• Term 1:  the time rate of change of B of the control volume
• Term 2:  the net flux of B out of the control volume by mass crossing the 

control surface
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RTT Special Cases

For moving and/or deforming control volumes, 

• Where the absolute velocity V in the second term is 
replaced by the relative velocity Vr = V –VCS

• Vr is the fluid velocity expressed relative to a coordinate 
system moving with the control volume.

• This can also be written as (Leibnitz Theorem)
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Conservation of mass (continuity equation)

• Integral form 
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Conservation of mass (continuity equation)

Differential form

• Use Stokes Theorem to transform the surface integral into a volume 
integral and equate the integrands,

∇ % 𝜌𝑉 =−
𝜕𝜌
𝜕𝑡

• For an incompressible fluid (constant density) the continuity equation
reduces to

∇ % 𝑉 = 0
and the velocity field has ZERO divergence.
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Simple examples of field divergence
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Streamfunction 𝜓

• If the fluid is incompressible

• Then the 2d flow field can be written as

with

• The streamfunction is constant along a streamline

• For steady flows, the streamlines do not cross each other and fluid
does not cross the streamlines.
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Example: Vortex
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