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André, mereces um abraço muito especial, pelo suporte constante, dia e noite, em cada
instante.
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Abstract

We will provide a formalization of the use of real weights in analog recurrent neural
networks as a restricted class of oracles, closely related to physical oracles, and prove that
the famous P = NP problem relativizes with respect to deterministic and nondertermin-
istic analog recurrent neural networks with real weights working in polynomial time. As
a direct consequence, these devices have restricted computational power.

Keywords

• Analog Recurrent Neural Networks

• Davis’s Oracles

• Real weights in ARNN

• Relativization in ARNN
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Resumo

Apresentamos uma formalização da implementação de pesos reais em redes neuronais
como uma classe restrita de oráculos fortemente relacionados com oráculos f́ısicos e prova-
mos que a famosa hipótese P = NP relativiza no caso de redes neurais determińısticas
e não-determińısticas com pesos reais com tempo de computação polinomial. Como con-
sequência, estes sistemas revelam ter um poder computacional restrito.

Palavras-chave

• Redes Neuronais

• Oráculos de Davis

• Pesos reais em ARNN

• Relativização em ARNN
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Preface

Gandy once referred in [8] to a result he called the Turing’s Theorem which states
that

Any function which is effectively calculable by an abstract human being following a
fixed routine is effectively calculable in the sense defined by Church – and conversely.

Human being has always been interested in understanding how abstract reasoning is
generated in our brains and between them. Great efforts have been made from different
areas such as psychology, physiology and biology. In the computational sense, the first
big step was to formalize a concept reasonably strict but still sufficiently wide of what is
calculable. In the well known year of 1936, different ideas of effective calculability arised
which have later been proved to be equivalent between them: the Church-Turing Thesis.
As a result of this confluence of ideas, Computability Theory was born.

Many attempts have been made to create models of the human mind and important
philosophical discussions arose around this subject. Warren McCulloch and Walter Pitts
in [11] first presented a model of threshold logic units, forming what is called the neural
networks. These have been proved by Kleene to be equivalent to abstract devices called
finite automata. Threshold units together with a Heaviside function as activation can hold
binary values only. This model has been strongly criticized during the Macy’s Conferences
for its lack of biological and neurophysiological plausibility (see [13]) but they surely satisfy
the requirements of a computational device: the inputs are fed in in binary fashion; the
output streams are encoded in binary; the system has a finite dimension, corresponding
to a finite control.

Neural networks with rational weights and a piecewise linear activation function were
widely used. As the rational numbers can encode information of arbitrary (but finite)
size, for example, in Cantor subsets of the interval [0, 1] ([16], [17]), units holding rational
values resemble infinite tapes in Turing machines. In fact, they have been proven by Hava
Siegelmann and Eduardo Sontag in [17] to be equivalent and, moreover, that there is a
universal architecture of rational neural networks that simulates a given Turing machine
in real time.

In further research, neural networks carrying real values were shown to have the same
computational power as families of Boolean circuits ([16]). If no time bound is set, they
can decide any set! And when a polynomial time bound is imposed, they decide exactly
P/poly. This idea of “surpassing” the power of a Turing machine has attracted the
attention of Jack Copeland ([6]). Martin Davis strongly criticized this by recalling that
these real weights are in fact oracles, as they were implemented into the network along with
their non-computability. These oracles still have to be formalized. It seems that no one
noticed that these oracles are related to the P = NP problem, that is, the relativization
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problems.

Our goal is to define these oracles, we call them Davis’s oracles in memory of his
criticism, and show that Turing machines equipped with these oracles can be simulated
by a neural network with real weights and conversely. It is known that P = NP relativizes
for the physical oracles [5]. We will regard them as a particular case of Davis’s oracles
and show that P = NP relativizes also for this larger class, proving them to be a strict
class of oracles.

We will be first directing in Part I to some basic notions and classical results about
neural networks. In Chapter 1, some ideas from neurobiology of how the nervous system
works will be introduced.

A formal theory of systems will be presented in Chapter 2 to make possible the defini-
tion of a neural network. Softwired networks will be briefly mentioned, as we will mainly
be addressing results on hardwired ones (for further readings about softwired networks,
see [1]).

In Chapter 3, some computational issues such as combination of neural networks in
sequence and in parallel and synchronization will be discussed. The main idea of this
chapter is to make these architectures and their dynamics familiar to the reader.

Deterministic neural networks with integer and rational weights are presented and
proved to decide respectively regular and recognizable languages in Chapter 4. Here, we
provide a sketch of the proof of real time simulation of Turing machines by rational neural
nets. This result will be essential for the second part of this work. We will briefly explore
non-deterministic neural networks.

Along Part II, a path to relativization results will be drawn. In Chapter 1, we will recall
the definition of o-machines and formalize the idea of a Davis’s oracle. The circuit value
problem, strongly related to the implementation of a real weight, will be mentioned and
some results will be proved. A subsystem called BAM will be emphasized as an important
part of the proof of the simulation of real networks by Turing machines querying Davis’s
oracles. Time protocols of oracles will be introduced and Davis’s oracles with polynomial
and exponential access time will be defined.

In Chapters 2 and 3, we will show relativization results regarding Davis’s oracles with
polynomial and exponential access time. Scatter machine experiments will be related to
real weights with polynomial access time, both included in the class of Davis’s oracles with
polynomial access time. Collider machine experiments will be similarly related to those
with exponential access time. In the first case, we will prove that P = NP positively
relativizes and in the second both positively and negatively. These are the main results
of this project.

As James Anderson refers in [1]:

We hope to show that there is no magic in neural networks. Networks do suggest,
however, a number of fascinating and useful ideas that in the long run are of more value
than magic.



Part I

ARNN
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Chapter 1

Neurobiology

The nervous system is mainly a network of neurons or nerve cells responsable for
body movements’ coordination and information transmission between different parts of
the body.1 In human, there are apparently about 1010 to 1011 neurons, each connected
to hundreds to thousands of others, totalling 1014 to 1015 of connections. These cells are
highly sensitive to pressure and metabolically very active (they consume a substantial
part of the body’s energy to maintain their function). In mammals, the self-dividing
process of the neurons stops after birth.2

Each neuron is composed by: soma, its cell body; dendrites, a tree-shaped extension;
and a special extension called axon. The signal transmission, chemical or electrical, be-
tween neurons occurs between axon and dendrites, in the synapse (see Fig. 1.1). As a
signal is fired by a neuron’s soma, runs through the axon arriving to the terminal ar-
borization. In the synapse, this signal is transmitted to another neuron’s soma through
dendrites.

The nerve cell has a membrane mainly composed by lipids and proteins, whose per-
miability to ion flow through ionic channels can be controlled by electrical and chemical
environment. Electrical signals are then measurements of the potential in the membrane
of the inside of the cell relatively to the environment surrounding it. The ions responsable
for it are Na+ and K+. To hold the proportions of the concentration of these ions on both
sides of the membrane in an equilibrium (when the neuron is not excited), the membrane
itself should keep -60 mV of voltage, the so-called membrane potential in rest . This value
can be approximated by the Nernst Equation and corresponds to the equilibrium of K+:

E =
RT

F
ln
c1

c2

where F is the Faraday constant, R is the gas constant, T the temperature of the ion
(thought as an ideal gas) and c1 and c2 the concentration of the ion on both sides of the
membrane.

The membrane has an associated threshold potential responsable for whether the soma
fires a signal or not. When a membrane is depolarized, that is, when its potential is in-
creased by inducing a current3, either one of the two situations occurs. The potential

1There are many other cells composing the nervous system, such as the glia. We will omit them since
we consider them computationally irrelevant.

2This explains why we consider systems of fixed dimensions.
3Through a microelectrode for example.
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Soma

Synapse

Dendritic Tree Axon

Terminal Aborization

Figure 1.1: An idealized neuron

induced is not enough to surpass the threshold and the membrane returns to the equi-
librium of K+. Otherwise a sudden spike – an action potential – is generated by the
membrane, taking its potential to some tens of milivolts corresponding to the membrane
potential of the equilibrium of Na+. Immediately after, the threshold increases, making
it more difficult to excite.4

The spike is only generated if the membrane potential is greater than the threshold so
it works in all-or-none fashion and it’s shape does not change with increasing current once
it is generated. These properties resemble those of a true-false valued unit, allowing us to
create a computational model for neural networks. In the next chapters we will present a
model of units with fixed thresholds introduced by Warren McCulloch and Walter Pitts
in [11] based on these properties.

When more than one signal is transmitted along a short period of time from one
cell, presynaptic neuron, to another, postsynaptic neuron, the membrane of the dendrites
of the postsynaptic neuron works as an analog computer, refining and summing up the
input signals, i.e., it performs time integration.5 This integrating processing function
seems to be related to the shape of the dendritic tree. If we change the morphology
of a dendritic spine, part of the postsynaptic cell where synapse occurs, the synaptic
strength of the presynaptical cell over the postsynaptic one also changes and this can
happen independently of other spines6. Softwired nets suggest this plasticity of synaptic
strengths, permitting learning processes to be modelled.

Spatial integration in one cell, that is, the interaction of synapses coming from different
neurons, also occurs.

4A neuron can then be seen as a voltage-frequency converter.
5Although linear integration is not the general case, this phenomenon still happens in some simple

cases such as the well studied eye of the horseshoe crab.
6Around a dendritic spine, there is an “isolated biochemical microenvironment”.
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As for an introduction of simple computational models of the nervous system, we have
to abandon some important properties such as the noise of the signals, synaptic delays
and refractory periods, corresponding respectively to the increasing of the firing threshold
after an action potential (relative) or even absolute short-term inhibition of that cell
(absolute).
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Chapter 2

Formal model

After some insights in basic Neurobiology from the last chapter, we could start a
discussion about the biological plausibility of existing computational models of the brain.
This is not our goal. We aim to define a theoretical support for these models and then
classify them into two kinds of systems: the softwired ones – those that admit structural
changes after definition – and hardwired ones – those that does not.

2.1 General system theory

We will introduce some basic notions to make possible the definition of a general
system in a natural fashion. This will be consistent with the one given by Sontag in his
famous book (see [18]).

Definition 2.1.1 (T,≤,+) is a time set if it is a totally ordered monoid, that is:

(i) (Antisymmetry) a ≤ b and b ≤ a implies a = b;

(ii) (Transitivity) a ≤ b and b ≤ c implies a ≤ c;

(iii) (Totality) a ≤ b or b ≤ a;

(iv) (Associativity) (a+ b) + c = a+ (b+ c);

(v) (Identity) there is an element 0 such that a+ 0 = 0 + a = a

for all a, b, c ∈ T .

Example R, Z

The properties (i), (ii) and (iii) refers to the definition of totally ordered set and (iv)
and (v) of monoid. The monoid operation is important to be able to perform translation
in time.

Definition 2.1.2 An interval is a subset of T of the form [a, b[ = {c ∈ T : a ≤ c < b}.

Two intervals I1, I2 are concatenable if their disjoint union, written as I1

∐
I2, is still

an interval. For T a time set, we denote by T the set of all of its intervals.

9



10 CHAPTER 2. FORMAL MODEL

Definition 2.1.3 A path in an arbitrary set U (parametrized by an interval of T) is a
function ω : Iω ∈ T → U . The empty path is denoted by λ.

Two paths ω1 : I1 → U , ω2 : I2 → U are concatenable if I1 and I2 are concatenable.
The result is written as ω2ω1 : I1

∐
I2 → U (if all elements of I1 are smaller than those of

I2).1

Ω is closed under restriction in T , that is, if ω is a path, then any of its restriction I ′

to a subinterval of Iω, ω| : I
′ → U , is still a path.

Now, we are ready to define a system.

Definition 2.1.4 Let T be a time set, X, U sets (of states and of values, respectively)
and Ω the set of all paths in U .

Σ = 〈T,X,U,Φ〉 is called a system if the transition function Φ : DΦ ⊆ Ω ×X → X
verifies the following conditions:

• for all x ∈ X, Ω (x) = {ω ∈ Ω : (ω, x) ∈ DΦ} is a subset2 with the empty path of U
and Φ (λ, x) = x;

• if (ω1, x), (ω2,Φ (ω1, x)) ∈ DΦ and ω1, ω2 are concatenable, then (ω2ω1, x) ∈ DΦ

and Φ (ω2,Φ (ω1, x)) = Φ (ω2ω1, x).

An element of DΦ is an admissible pair and a path ω is admissible if there is x ∈ X
such that (ω, x) ∈ DΦ.

2.2 An overview on Dynamical Systems

Definition 2.2.1 A dynamical system is a tuple Σ = 〈T,X,Ψ〉 where T is a time set,
X a set and Ψ : U ⊆ T ×X → X such that for all x ∈ X:

• (∅, x) ∈ U ;

• if T (x) = {I ∈ T : (I, x) ∈ U}, then

Ψ (∅, x) = x

and
Ψ (I2,Ψ (I1, x)) = Ψ

(
I1

∐
I2, x

)
for all I1, I2 concatenable intervals in T (x).3

We will require another property:

• (I, x) ∈ U implies (I ′, x) ∈ U for all subinterval I ′ of I.

1The set Ω of all paths is a category with the operation of concatenation of paths.
2A subcategory...
3This definition of dynamical system is more general than the classical one, since here not only the

size of the time-step is considered, but also the initial instant.
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Let Σ = 〈T,X,U,Φ〉 be a system. Fix ω : Iω → U in Ω and

U (ω) =
{

(I, x) ∈ T ×X : I ⊆ Iω,
(
ω|I , x

)
∈ DΦ

}
.

Then Φω : U (ω)→ X defines a dynamical system.

Therefore, a system can be regarded as a family of dynamical systems, indexed by the
admissible paths in U .

If, instead, we fix a state x ∈ X, Φx : Ω (x)→ X can then be interpreted as a collection
of admissible “future states” with the initial state x.

•
•
•

x•
•

ω1
ω2

ω3

ω4

2.3 Discrete systems

Definition 2.3.1 A system is discrete if T = Z.

In discrete systems, paths can be “atomized”. We can write them as a concatenation
of paths of one time step ωt : {t} → U . We will use u : {t} → U to denote these
“atomized” paths where u(t) = u ∈ U . In fact, an “atomized” path is not more than a
choice of a pair (t, u) in T × U .

Definition 2.3.2 The dynamic map of a discrete system Σ = 〈Z, X, U,Φ〉 is a family
of functions {Ft : Dt ⊆ U ×X → X}t∈Z verifying the commutative diagram below

(u (t) , x) x+ ∈ X

(u, x)

Ft

(t, id)?
Φ

Note that from the last definition we can conclude that giving the dynamic map of a
discrete system is equivalent to giving its transition function.

After fixing initial conditions x (t0) = x0 for time and state, we can write x (t+ 1) =
x+ = Ft (u (t) , x (t)), that is, given a path of values (u(t))t (which will be seen as input)
and initial conditions, the result after iteration by F is a path of states.4

4From now on, we will adopt the notation of x+ for x(t+ 1) except when needed.
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• •

x0• • · · ·

u (0)
u (1)

u (2)

u (3)

Definition 2.3.3 A system Σ = 〈T,X, U,Φ〉 is complete if DΦ = Ω×X.

Definition 2.3.4 Σ = 〈Z, X, U,Φ〉 is a semilinear discrete system (over R) if:

• Σ is complete;

• X and U are vector spaces (over R);

• F = σ ◦ π, where π is an affine map and σ, called the activation function, a
vector of non-linear functions (R→ R)

The dimension of such system is the dimension of X. Σ is said to be of finite dimension
if the dimensions of X and U are finite. In this case, x+ = σt (A (t)x (t) +B (t)u (t))
where A (t) : X → X and B (t) : U → X are affine maps.

Definition 2.3.5 A system is time invariant if Φ is invariant by translation in time,
i.e., for all (ω, x) ∈ DΦ, (ωµ, x) ∈ DΦ, where

ωµ (t) = ω (t− µ) ,

and

Φ (ω, x) = Φ (ωµ, x) .

Thus the dynamic map of a time invariant system does not depend explicitly on time.
In particular, in a time invariant semilinear discrete system we have

x+ = σ (Ax (t) +Bu (t))

with A and B affine or equivalently,

x+ = σ (Ax (t) +Bu (t) + c)

with A and B linear maps and c a vector of X. The entries of the matrix representing A,
B and c are called weights .
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2.4 The neural net case

Now, consider finite dimension, discrete time, semilinear systems.
The time set is clearly the monoid Z.
The vector space X is Rn, for some specified n, although we will also consider subsets,

namely Qn (also as a subspace) and Zn. The state variables , or units , will be denoted by
~x of n components x1, . . . , xn.

The vector space U is Rm, for some m, although we will consider in what follows
Boolean vectors. Inputs will be total functions from N→ {0, 1}, i.e., streams of Boolean
values. The state of the input is given at any moment of time t by a vector ~u(t) of m
components u1(t), ..., um(t).

To specify the dynamical map we will consider σ1, . . . , σn independent of time and
matrices A(t), of dimension n× n and B(t) of dimension n×m, both composed by real
numbers. Sometimes we will restrict those values to the rationals or the integers. We can
always consider a state variable with fixed value 1 and workout the dynamic map to write
it as follows:

x+
1 = σ1(a11(t)x1(t) + · · ·+ a1n(t)xn(t) + b11(t)u1(t) + · · ·+ b1m(t)um(t) + c1(t))

...
x+
n = σn(an1(t)x1(t) + · · ·+ ann(t)xn(t) + bn1(t)u1(t) + · · ·+ bnm(t)um(t) + cn(t))

This system can be presented in abbreviated form by ~x+ = ~σ(A(t)~x(t) +B(t)~u(t) +~c(t)).
The most common functions used as σ1, ..., σn : R→ R are within the following classes:

(a) The McCulloch-Pitts sigmoid (see [9], [11]),

σd(x) =

{
1 if x ≥ 0
0 if x < 0

(b) The saturated sigmoid , used by Siegelmann and Sontag in the nineties,

σ(x) =


1 if x > 1
x if 0 ≤ x ≤ 1
0 if x < 0

(c) The analytic sigmoid of parameter k (see [9]),

σka(x) =
2

1 + e−kx
− 1

Definition 2.4.1 Given a system (Σ) ~x+ = ~σ(A(t)~x(t) + B(t)~u(t) + ~c(t)), with initial
condition ~x(0) and ~u(0), a finite computation of Σ is a sequence of state transitions
~x(0)~x(1)...~x(t) such that, for every 1 ≤ τ ≤ t, ~x(τ) = ~σ(A(τ − 1)~x(τ − 1) +B(τ − 1)~u(τ −
1) + ~c(τ − 1)).
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Definition 2.4.2 Given a system (Σ) ~x+ = ~σ(A(t)~x(t) + B(t)~u(t) + ~c(t)), with initial
condition ~x(0) and ~u(0), a computation of Σ is an infinite sequence of state transitions
~x(0)~x(1)...~x(t)... such that, for every τ > 0, ~x(τ) = ~σ(A(τ − 1)~x(τ − 1) + B(τ − 1)~u(τ −
1) + ~c(τ − 1)).

We choose a collection of state components within the n components to denote the
output of the system. Those variables are called effectors , provided that they are always
Boolean valued. For those effectors we can define an output stream, i.e., a map v : N→
{0, 1}, such that, if xk is an effector, then v(t) = xk(t).

The dimensions of X and U are fixed. This allows us to build an architecture that
realizes the system. This architecture is composed by m input lines or sensors , receiving
as input stream the states of input, n neurons , carying the values of the state variables
and equipped with evaluation functions σ, and a collection of effector neurons chosen to
output the Boolean stream v. These components are denoted by the same letters that
denote the values they hold but in capital letters.

This computational structure is a connection between the formal model and the bio-
logical model. On one hand, it is a realization of such dynamical systems. On the other, it
is an analog resemblance of biological neural networks. Here relies the tough discussions
of biological plausibility of these models and the utility and computational power of some
machines built from units with their properties.

2.5 Softwiring and Learning Processes

Neural nets were originally inspired by neural and biological characteristics of the
brain. As it is believed that long term changes in the synaptic strength is the key process
of memory, through algorithms of learning processes, supervised or unsupervised, one
expects to teach a finite list of patterns to a neural net by changing the weight matrices
and afterwards recall saved information with success. Here, we will do a small deviation
to briefly introduce the history of the development of these methods.

The first introduced and most basic learning rules are the famous Hebbian rules. It
consists on an autoassociative system, an architecture composed by n input lines fully
connected to n neurons. Being it a supervised learning process , it learns by showing a
list of vectors and the weights are corrected by comparing the final output to the original
input.

In 1959, Rosenblatt, computer scientist, introduced a system called Perceptron, ap-
plying the Hebbian learning rules refered in the last assignment. The first perceptron
based computer was built in 1960, the famous Mark 1. Being this a breathtaking advance
in computer science, many companies sponsored investigation on these systems. In 1969
Minsky and Pappert pointed out some flaws on the idea that perceptron is capable to
learn everything. Some simple counterexamples were given, such as the logical operation
XOR. Although in terms of computer science the interest on it dimmed out for some
years, for psychologists it was still used as a model with much interest, not only in what
it is capable, but also its limitations.

The Widrow-Hoff learning process, based on the least mean squares (LMS), was in-
troduced in 1960. In the same year, a 3-terminal circuit element that realizes it, called
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Memistor, was introduced by Widrow and a neural network architecture called the ADA-
LINE (ADAptive LInear NEuron or ADAptive LINear Element) based on these elements
was presented by Widrow and Hoff. The main idea is to apply the gradient descent
algorithm to minimize the error as much as possible.

In 1982, John Hopfield published an article where some ideas from discrete dynamical
systems were introduced as techniques of memory recalling. The weights are corrected by
asynchronous updating, that is, the weights being altered are randomly chosen given an
initially fixed distribuition.

In mid-80’s, Backpropagation, another application of the gradient descent method,
was discovered by several different research groups (David Parker in 1985, Yann Le Cun
in 1986, Rumelhart, Hinton and Williams in 1986). It consists on a multiple-layered
feedforward net with nonlinear activation functions. These systems are known to solve
problems that are not linearly separable, including XOR, so their computational power is
higher than simple architectures such as perceptron and the Widrow-Hoff nets. Despite
this advantage and its broad applicability – in programs like NETtalk, a net that learns
to pronounce English words, and character recognition –, there are still many problems,
especially with the interpretation of how it works, which slows down its development.

In opposite to these supervised learning methods, one can learn by accumulation of
experience, that is, concepts are naturally formed following a given rule without any
preconceived pairing between the stimulus and its representation. We call this an unsu-
pervised learning process . A set of models called ART (adaptive ressonance theory) has
been built, being the first one, ART 1, presented by Carpenter and Grossberg in 1987.
The basic algorithm follows from the study of stationary conditions of the differential
equations that rules the components of the neurons, while the inputs or stimuli presented
as binary vectors are analysed and classified by concepts5 The quality of the concepts is
controled by a constant associated to the network called the vigilance parameter 6. This
is an important component of the structure for a biologically more plausible model.

These methods were intended to mimic biological brain processes or to design more
powerful and efficient models. Conversely, they also played or still play an important
roll for the understanding and the functional characterization of the brain. For further
readings, see [1].

2.6 Hardwiring and ARNN

From now on, consider hardwired structures, that is, the weights of neural nets are
fixed at start. This means that we will be dealing with time invariant systems. The
dynamics can then be expressed as

x+ = σ (Ax (t) +Bu (t) + c)

5A concept is a representative element of a cluster of vectors experienced during the learning process.
6This parameter resembles the vigilance of visual learning process. If it is low, then new patterns

presented are not classified with enough detail and the result would be a poor collection of very few
concepts. But if this parameter is very high, then every new pattern is distinct, creating too many
undesired concepts.
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where A and B are linear maps, represented by matrices7 and c a vector. The architectures
supporting these systems are called analog recurrent neural networks , abbreviated as
ARNN. The class of these abstract structure will be denoted ARNN.

It is of our interest to study some special classes of ARNN. Restricting the weights to
the set of reals, rationals and integers, we have the classes of real, rational and integral
ARNN respectively.

Let us display some examples that suggest some computational power of neural nets.
For the purpose, we will consider only saturated sigmoids as activation function of the
state components of the dynamical system. Some conventions on how to input data and
extract the result from these systems have to be established. Let φ : {0, 1}+ → {0, 1}+

be a function and α a binary word given as input: we will consider two input streams,
one is 0α0ω and the other, to validate the sequence of time steps that the input takes, is
01|α|0ω. Analogously, we use two streams for the system to output the result: the first
one is the validation line 00t−11|φ(α)|0ω, where t > 1 is the time step of the first bit of the
output, and the output stream 00t−1φ(α)0ω, where φ(α) is the expected answer.

By convention, we adopt the initial state ~0 at time t = 0 and that the input bits at time
t = 0 are 0. Consequently, at time t = 1, the state is ~x(1) = σ(A~x(0) +B~u(0) +~c) = σ(~c).

Example The first example is a rather simple but clarifying one - the unary succesor 8.
There are many networks simulating this operation. In the following paragraphs we will
show two of them9.

Consider the system below: 
y+

1 = σ(a)
y+
a+ = σ(a+ y1)
y+
v = σ(a+ y1)

with a as input, ya+ as output and yv its validation. Note that in this case the validation
of the input, denoted by v, is not necessary since the input is in unary. The reader can
easily check that this system in fact computes the successor of the input in constant time.

Given an input word, for instance 11, we can present the simulation of the associated
run by a table as follows:

t a y1 ya+ yv
0 0 0 0 0
1 1 0 0 0
2 1 1 1 1
3 0 1 1 1
4 0 0 1 1
5 0 0 0 0

7We will denote these matrices by the same letter.
8The representation of a natural number in unary is a sequence of 1’s, as many as the number

represented.
9By the way, this kind of examples is not published elsewhere.
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Another way to simulate this operation is by considering this system
y+

1 = σ(v)
y+
a+ = σ(v + y1)
y+
v = σ(v + y1)

This is almost the same as the former. If the input represents a natural number in
unary, the output will be exactly the same in both.10

Example Now, we will show a system that computes unary sum in constant time. Here,
a, b and ya+b will denote the summands and the output, respectively.

The first part {
y+

1 = σ(v)
y+

2 = σ(y1)

simply prints out the input of bigger value, digit by digit (being it delayed to match the
timing of the next procedure). The second part{

y+
3 = σ(a+ b− 1)
y+

4 = σ(1
2
(y3 + y4)− (1− y3))

codifies the summand with smaller value in 2-Cantor system (discussed in Appendix B).
Next, this result will be “saved” in the next neuron{

y+
5 = σ(y4 + y5 − (1− y1)− y3)

while the result from the first part is being exported. When it ends, the following part
decodes the ”saved” information 11:{

y+
6 = σ(2(y5 + y6 + y4)− 1− y1)
y+

7 = σ(2(y5 + y6 + y4)− 2y1)

Finally, the output neuron prints out the result{
y+
a+b = σ(y2 + y7)

This example shows that these systems not only do direct computations, but also have
the capacity of memory. This is due to the use of the saturated sigmoid, which allows us
to encode uniquely strings of input into a real number (in the last example, into a rational
number) in the interval [0, 1]. The system of the decoding units, y6 and y7, is equivalent
to the one described in Section 1.3. of Part II to extract answer from a Davis’s oracle by
extracting the binary expansion of a real number.

These systems can perform computations as other abstract machines such as automata
and Turing machines. In what follows, we aim to classify these nets by their computational
power, discuss their complexity and, our final goal, present relativization results.

10But this is not true in general. For example, if the input is 01, in the first one the output will be 11
while in the second one it will be 111. In the radical case where the input is simply 0, in the first system
the result will be the empty word while in the other it will be 11! We say that 0 is not classified by the
first system. This definition will be given and explored in the next section.

In fact, if we consider {0, 1}+ as the domain of the input line, the output of the first neural net is the
following: if αn, the nth digit of the input, is 1, then (φ (α))n = (φ (α))n+1 = 1; otherwise, it is 0. When

two consecutive 0 is imported, the net will attain an equilibrium, that is, its state at that instant is ~0.
Comparing with the second net: φ (α) is |α|+ 1 in unary.

11Note that if the summands are equal, there is nothing to be saved.
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Chapter 3

Computational model

In the last chapter, a simple example of addition was exhibited. Can we implement
simple logical predicates such as OR, AND, NOT? We will show that there are simple
modules that can compute these functions and how they can be connected to build more
complex modular constructions. As parallel computations are allowed, synchronization
plays an important role. In the last part of this chapter, we will be directing to it, showing
how to connect various subsystems.

The inputs are given in binary and the activation function of each processor here will
be the saturated sigmoid

σ(x) =

{
1 if x ≥ 0
0 if x < 0

3.1 Basic logical predicates

From Propositional Calculus we know that all quantifier-free propositions can be ex-
pressed with 0-ary predicates 0 and 1 (meaning False and True, respectively), unary pred-
icate NOT and binary predicates AND and OR. The following neural nets can simulate
these basic predicates.

The 0-ary predicates can be expressed by a single unit with the dynamics

z+
0 = σ(0) and z+

1 = σ(1).

The unary function NOT is computed by

z+
¬ = σ(−u+ 1)

The predicates AND and OR given as input u1 and u2 can be simulated by

z+
AND = σ(u1 + u2 − 1) z+

OR = σ(u1 + u2)

By composing these units, we can compute any logical proposition. To be able to
distinguish between an output unit in rest and sending the signal False, we use an extra
unit called the validation of the output. When this unit holds the value 1, the value of
the output unit holds the computation result. Similarly, we add an extra input validation
line.

19
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u X¬ ¬u
-1

1

u1

u2

XAND u1 AND u2

-1

u1

u2

XOR u1 OR u2

Figure 3.1: Neural nets that computes the logical predicates NOT, AND and OR. In this rep-
resentation, circles denotes the units. The label on the arrows denotes the corresponding
weights. When there is no label, the corresponding weight is 1.

Example Let ϕ(u1, u2, u3) = u1 AND (u2 OR ¬u3). Clearly we will need three layers. The
first one to compute ¬u3 and to hold the values of u1 and u2

x+
1,1 = σ(u1)
x+

1,2 = σ(u2)
x+

1,3 = σ(−u3 + 1)

A second layer to compute the disjunction and hold the value of u1{
x+

2,1 = σ(x1,1)
x+

2,2 = σ(x1,2 + x1,3)

The last one is to compute the function ϕ. The only unit here is the output unit.

x+
ϕ = σ(x2,1 + x2,2 − 1)

In three steps, the solution is computed. So, denoting the input validation line by v, we
add some extra units to compute the output validation d

y+
1 = σ(v)
y+

2 = σ(y1)
y+
d = σ(y2)

Let us compute ϕ(1, 0, 0) = 1. This table shows a step by step simulation of this compu-
tation given input u1 = 1, u2 = u3 = 0 at t = 1.
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t x1,1 x1,2 x1,3 x2,1 x2,2 xϕ y1 y2 yd
1 0 0 0 0 0 0 0 0 0
2 1 0 1 0 0 0 1 0 0
3 0 0 1 1 1 0 0 1 0
4 0 0 1 0 1 1 0 0 1
5 0 0 1 0 1 0 0 0 0

3.2 Memory and local inhibition

As cycles in single processors are allowed, one can easily understand that a single unit
have capacity to hold a value (forever if needed). Given input u, a neuron x following the
dynamics

x+ = σ(x+ u)

can save the value of u. Once u feeds in some value, x will hold this value forever. To
build a more complex unit x that saves the last value introduced, consider one input line
u and an input validation line v.

x+ = σ(x+ 2u− v)

One can easily check that it works as explained by evaluating for every possible state and
input.

x u v x+

0 0 0 0
0 0 1 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 1 1

Suppose now that we have another unit, y, and we want it to download the value of x
when it receives as input 1 from input line u. This download unit can follow, for example,
the dynamics

y+ = σ(x+ u− 1)

The input line u can be seen as a switch. This can be generalized. Suppose that a
unit y is defined as

y+ = σ (π (xi1 , . . . , xik) + bu− b)
where π : [0, 1]k −→ Z is a linear function1 with integer coefficients a1, . . . , ak. Let al be
the coefficient with greatest absolute value among them and c = |al|. Then the values
held by π are within [−ck, ck]. By setting b = c+ 1 we guarantee that:

1. if u(t) = 0, then y(t+ 1) = σ (π (xi1(t), . . . , xik(t))− b) = 0;

2. if u(t) = 1, then y(t+ 1) = σ (π (xi1(t), . . . , xik(t))).

1For the constant term, consider xik(t) = 1,∀t ∈ Z.
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Lemma 3.2.1 (Switch Lemma) Let y be a unit with dynamics

y+ = σ (π (~x)) .

Then there exists a substitution of y by ỹ described as

ỹ+ = σ (π̃ (~x, xswitch))

such that if xswitch(t) = 0 then ỹ(t+ 1) = 0 and if xswitch(t) = 1 then ỹ(t+ 1) = y(t+ 1).

X1

...

Xn

Y

w1

wn

=⇒

X1

...

Xn

Ỹ

Xswitch

w1

wn
b

−b

Figure 3.2: Switch Lemma

Remark This is generally true for neural networks with real weights and activation
functions with bounded values. The proof is similar.

Remark By considering y+ = σ(π(xi1 , . . . , xik)− bu) we can have the opposite combina-
tion.

3.3 Synchronization

Definition 3.3.1 A subsystem is a (real) neural network where inputs and outputs
allowed must not be binary.

Note that a conventional neural network is a particular kind of subsystem but the
reverse is not always true.

Let Σ1 and Σ2 be two subsystems, where Σ1 has two output units xout and xoutv
(denoting output and output validation, respectively) and Σ2 has two input lines uin and
uinv (denoting input and input validation, respectively) connected to units x1, . . . , xn.

To connect Σ1 to Σ2, add two extra units, xin and xinv, to Σ2 such that

x+
in = σ(xout) x+

inv = σ(xoutv)
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Then, simply change x1, . . . , xn by substituting in their dynamics uin and uinv by xin and
xinv respectively.2 After downloading, xoutv(t) = 0 and xinv(t+ 1) = 0 but the input unit
xin still needs to be switched off at t+ 1. We can add a switch as in Lemma 3.2.1 to xin,
that is, change its dynamics to

x+
in = σ(xout + xoutv − 1)

Suppose that Σ1 is in rest at t = 0 and that xoutv = 1 at t = T and for t < T ,
xoutv = 0. At time T + 1, Σ2 starts as expected, downloading the values of xout and
starting its computations at T + 2.

Remark If we want to shut Σ1 down after downloading the values, we can add a switch
unit xswitch. If

x+
outv = σ (π (~x))

let b be the constant in Lemma 3.2.1. Set

x+
switch = σ (−π(~x+ b(xoutv − 1) + bxswitch)

and add to the dynamic of every unit xi in Σ1 (including xoutv) an extra term −bixswitch,
where bi is the constant of Lemma 3.2.1 for the respective unit.

Proposition 3.3.2 Let Σ1 and Σ2 be two subsystems. Then we can connect them to build
a new subsystem working as follows. Σ1 starts its computation while Σ2 is in rest until
the output of Σ1 is fed into Σ2. If needed, Σ1 can be shut down after Σ2 downloaded its
output.

We just showed that we can perform combination of subsystems in sequence by iter-
ating the last proposition. Now, consider two subsystems Σ1 and Σ2 working in different
time and we have a third subsystem Σ waiting to receive the outputs from output units
x1
out and x2

out of Σ1 and Σ2. We want to feed their outputs at the same time into Σ. This
is a synchronization problem in combining subsystems in parallel .

Without loss of generality, suppose Σ is composed by only one unit, x, with two input
lines, u1 and u2, receiving signals from Σ1 and Σ2.

For Σi, add two units oi and vi, where

o+
i = σ

(
oi + xiout

)
v+
i = σ

(
vi + xioutv

)
These units holds the outputs and its validation. A switch unit xswitch works as follows3

x+
switch = σ (−xswitch + v1 + v2 − 1)

To the system Σ add two extra units x1
in and x2

in given by

xiin = σ (oi)

and substitute ui by xiin in Σ.
Now, to finish, alter vi, oi and xiin as in Lemma 3.2.1.

2The units xin and xinv are there because x1, . . . , xn can depend also on other units of Σ2. We do
not want to switch off units that make part of the computations of Σ2. If these units only depends on
uin and uinv, then we can connect them directly to xout and xoutv of Σ1.

3The constant term is −(n− 1) when we need to combine n systems. The term −xswitch is a switch
to turn itself off.
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Proposition 3.3.3 Let Σ1 and Σ2 be two subsystems with one output unit and Σ with
two input lines. Then we can build a subsystem that works as follows. Σ1 and Σ2 start
computing at t = 0 while Σ is in rest. The output of the first subsystem finishing the
computation is saved until the second finishes its computation. When both finish their
computations, the outputs are fed into Σ, starting its computation.

Remark We can turn off the subsystems being synchronized after the latter finishes
downloading the signals as in the sequential case.

This is just an unfolded corner of a whole page of discussion about the programmability
of neural nets and logical description of realizable logical propositions. For further results,
see [10], [11] and [14]. We will move on to the characterization of the languages accepted
by these nets as a computational model.



Chapter 4

Characterization of computational
model

As we have a new abstract device, a natural question arises. How are these neural nets
related to existing machines? Is there any uniform classification of languages using neural
nets? In Appendix A, finite automata and Turing machines are defined. Readers with
basic computational background can skip it and direct towards the word classification
problem in ARNN.

4.1 Word classification in ARNN

Given a word built with an alphabet, we should now look for systems that recognizes
it. More generally, one should ask whether a system can recognize a language. First, let
us give a formal definition of what we mean by recognition:

Definition 4.1.1 A word α ∈ {0, 1}+ is said to be classified in time ν by a system Σ if
the input streams are 〈A, V 〉, with A = 0α0ω and V = 01|α|0ω and the output streams are
〈U,R〉 with R(t) ≡ (t = ν). If U(ν) = 1, then the word is said to be accepted, otherwise
(if U(ν) = 0) rejected.

In the following sections, we will discuss the computational power of systems such as
rational ARNN and, in Part II, real ARNN. The classes of languages decided by systems
in integral, rational and real ARNN will be denoted respectively by ARNN [Z], ARNN [Q]
and ARNN [R].

4.2 Integral ARNN

Neural nets with integer weights are those introduced by McCulloch and Pitts [11].
Since the state variables only hold linear combinations of 0 and 1, the obvious activation
function is the McCulloch-Pitts sigmoid

σ(x) =

{
1 if x ≥ 0
0 if x < 0

25
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McCulloch and Pitts [11] and Kleene showed how to simulate finite automata by
integral nets. Here we will adopt the prove in the book of Minsky [12].

Definition 4.2.1 A language is said to be regular if there is a finite automaton deciding
its words.

Theorem 4.2.2 L is a regular language if and only if L ∈ ARNN [Z].

Proof This theorem can be proved by providing how to simulate a neural net by a finite
automaton and vice versa.

Let Σ be an integral net of dimension n with m input lines1. Note that the n neurons
of Σ hold binary values totalling 2n possible states.

Build an automaton M with 2n states and using as alphabet binary vectors of dimen-
sion m, corresponding to all possible states of Σ and all the possible inputs. Define the
transition function by the computing laws of each state of Σ.

Consider the states of M that represent the states of Σ where the output and output
validation units are activated. By setting them as final states of M , this finite automaton
will accept the same language as Σ.

We shall prove the converse. Let M = 〈Q,Σ, δ, q0,F〉 be a finite automaton with
p states q1, . . . , qp and alphabet {s1, . . . , sm}. Set a neural net ΣM with m input lines
x1, . . . , xm, each corresponding to one letter. So in each instant there is only one line fed
with value 1.

Consider units uij, 0 ≤ i ≤ p, 1 ≤ j ≤ m, and an extra unit u0. The dynamics of this
system will be defined as follows.

At t = 0, unit u0 holds value 1 and the others 0. Fix qi ∈ Q and sj ∈ Σ. Consider
qi` ∈ Q such that δ(qi` , sj) = qi. Then, the dynamic map of the unit uij will be:

u+
ij = σ

(∑
`

m∑
k=1

ui`k + sj − 1

)
.

Note that in each instant after t = 0, only one unit is active in the system, which is
equivalent to the definition of the transition map δ. That is, uij fires at time t + 1 if
and only if at time t one of the units ui11, . . . , ui1m, . . . , ui`1, . . . , ui`m (and possibly u0)
and the unit sj fired. This mimics the transitions of M in the sense that if in instant
t the automaton is in state qi, then the only active unit of ΣM at time t will be among
ui1, . . . , uim.

By implementing one extra unit uout that sums up all the units corresponding to the
final states of M , we will obtain a neural net of dimension m×p+1 that simulates M .

We just proved that integral nets and finite automaton have the same power. Is there
any analogy to rational or real nets? It turns out that rational nets are equipotent to
Turing machines, proved by Siegelmann and Sontag [17]. As we will see, the fact that
rational numbers can hold as many digits (but just finitely many!) as we want is the key
to the simulation of a Turing machine, an abstract device with infinite resource writing
only finite information in each step.

1Although we only need two input lines, we prefer to leave this part of the proof as general as possible.
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4.3 Rational ARNN

In rational neural nets, the use of McCulloch-Pitts sigmoid makes no sense anymore.
Instead, the saturated sigmoid will be applied as activation function

σ(x) =


1 if x > 1
x if 0 ≤ x ≤ 1
0 if x < 0

That is, if x ∈ [0, 1], then σ(x) = x. This will allow us to encode information of
arbitrarily large size. For instance, consider words α in {0, 1}+. Using [·]4 to encode these
streams of values

[α]4 =

|α|∑
i=1

2αi + 1

4i

{0, 1}+ is mapped to a subset C of the rational numbers (actually, the image of this
function is a Cantor subset of the rationals; for further details, see Appendix B). The
following pair of functions will retrieve bit by bit the encoded word

top(q) = σ(4q − 2) pop(q) = σ(4q − (2top(q) + 1))

Together with the functions that concatenates 0 or 1 on the left of a word

push0(q) = σ

(
q

4
+

1

4

)
push1(q) = σ

(
q

4
+

3

4

)
and one that evaluates if a word is empty, i.e., giving 0 if the word is λ and 1 otherwise,

nonempty(q) = σ(4q),

we have the basic functions that “encode” the dynamics of a many taped Turing machine
to a system over the rationals in [0, 1].

As part of the definition, Turing machines have finite control. Denote it by Q with s
states. Then, we can describe it unarily by the cannonical vectors ei = (0, . . . , 1, . . . , 0)
in Qs, with all entries 0 except for the ith coordinate with value 1.

To describe the transitions from one state to another of a p-taped Turing machine, we
have the transition map, denoted by δ, given in its defintion. This can be extended to its
complete dynamic map F : Q× {0, 1}p −→ Q× {0, 1}p, describing every transition.2

Encoding through π : Q × {0, 1}p −→ Qs+p all the descriptions of the machine and
through the “encoding” of the tape operations, we get a new map F̃ : Qs+p −→ Qs+p

making the following diagram commutative

Q× {0, 1}p Qs+p

Q× {0, 1}p Qs+p

π

F

π

F̃

2This map holds the words in every tape of the machine instead of the position of the head.



28 CHAPTER 4. CHARACTERIZATION OF COMPUTATIONAL MODEL

By composing F̃ into four transition functions

F̃ = F1 ◦ F2 ◦ F3 ◦ F4

each Fi simulable by a subsystem, we get a four-layered neural net.
In fact, this is a sketch of the essential part of the proof of

Theorem 4.3.1 If L ∈ {0, 1}+ is decidable (in the sense of Turing) in time t, then there
exists a rational system Σ such that, for every word α ∈ {0, 1}+, the system classifies α
in time O(t(|α|) + |α|).

In this simulation, each step of the Turing machines is mimicked in four steps. Chang-
ing the encodings of the tapes, α ∈ {0, 1}+ to

|α|∑
i=1

10p2 − 1 + 4p(αi − 1)

(10p2)i

these systems can simulate the respective Turing machines in real time. For complete
proof, see [17].

We refer to this as real time simulation of Turing machines by neural nets . This result
is crucial for many proofs of our work here.

The simulation of neural nets by Turing machines is trivial. If a neural net accepts a
word α in time t(α), then there is a Turing machine accepting α in time O(p(t(α))).3

Definition 4.3.2 A language (or set) L ⊆ {0, 1}+ is said to be recursively enumer-
able if there exists a system Σ such that, for every word α, (a) if α ∈ L, then α is accepted
by Σ, i.e., it is classified at some time and accepted, and (b) if α /∈ L, then either α is
never classified or it is classified and rejected.

Definition 4.3.3 A language (or set) L ⊆ {0, 1}+ is said to be recursive if there exists
a system Σ such that, for every word α, if α ∈ L then α is accepted by Σ, else (if α /∈ L),
then α is rejected by Σ.

These definitions are sound, i.e., in agreement with the definition of the concepts with
the same name in classical theory.

Theorem 4.3.4 A language L is recognizable if and only if L ∈ ARNN [Q].

Since the simulation of a Turing machine is done in real time and the other way around
in polynomial time, the polynomial and exponential classes of recognizable languages
is preserved. That is, denoting by ARNNP [Q] and ARNNE[Q] classes of languages
accepted by rational nets in polynomial and exponential time,

Corollary 4.3.5 P = ARNNP [Q] and EXPTIME = ARNNE[Q].

Until now, we have been analysing deterministic neural net models. In the next
section, we will define a non-deterministic version of these processor nets and explore
their properties. We recall that our final goal is to exhibit relativization results. Hence,
the relation between deterministic and non-deterministic systems should be clarified.

3Consider tapes that keeps the value of each unit of the net being simulated. Multiplication, sum and
evaluation by the activation function can be performed in polynomial time. Note that the weights are
fixed rationals.
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4.4 Non-determinism in ARNN[Q]

Here, we will consider nets with rational weights and saturated sigmoid.
First, a definition of non-deterministic processor net:

Definition 4.4.1 A non-deterministic analog recurrent neural net (NDNN) N
(of dimension m) consists on three input units of validation of inputs, input and
a guess unit, receiving streams v = 01|α|0ω, u = 0α0ω and γ, a guess stream, with
dynamics defined by

~x(t+ 1) = σ(A~x(t) + ~b1v(t) + ~b2u(t) + ~b3γ(t) + ~c)

where ~x is the state vector of dimension m, A an m × m matrix, ~bi and ~c vectors of
dimension m.

Two special units are chosen for the output validation and the output, sending out
streams z = 0TN (α)−11|φ̃(α)|0ω, y(t) = 0 for t < TN (α) and y(TN (α) − 1 + i) = (φ̃(α))i,
where TN is the computation time given α as input and φ̃ : N −→ N the function
computed by N . A word is in dom(φ̃) if there is a guess stream such that its computation
will lead to an output validation z(t) = 1 for some t.

Note that if we impose a time bound t, then only the first t(α) digits of the guess
stream is needed.4 We can regard the guess stream (which only admits binary values as
other input streams) as a path in the binary tree for possible sets of states of the given
net. Each branch corresponds to a choice in {0, 1}. The values that the G unit takes
decide the path of sets of states as a guess in a non-deterministic Turing machine does
with its transition map (see Appendix A). We will explore this in the next section.

In general, the function φ̃ computed by a NDNN receives as argument α and γ. If
a word α is in its domain, then its value can vary for different streams γ that lead to
acceptance, so that φ̃ is multi-valued: a partial funcion Φ : N× N −→ N can be defined,
where Φ(α, γ�) takes value φ̃(α) given γ as guess and γ� one of its prefix. We are interested
in a more restricted definition of NDNN, those that computes functions φ : N −→ N, that
is, given α ∈ {0, 1}+, there is a γ such that Φ(α, γ�) is defined and, for all such γ this
value should be the same. In this case, we write φ(α) = Φ(α, γ�). Compare this restricted
definition to the following:

Definition 4.4.2 A function φ is in NPF if it is computed in polynomial time by a
non-deterministic Turing machine M , that is:

(a) M accepts the domain of φ

(b) if 〈x1, . . . , xn〉 ∈ dom(φ), then any accepting computation writes in the output tape
the value φ(x1, . . . , xn) in polynomial time

The notion of acceptance of a language is similar to the one for non-deterministic
Turing Machine:

4Synchronization is used to clock the computation.
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Definition 4.4.3 A language L is said to be decided by a non-deterministic net N if for
all α ∈ L, there is a guess γ such that Φ(α, γ�) = 1, that is, N computes its characteristic
function5.

This particular case coincides with the definition of a NDNN given by Siegelmann and
Sontag.

4.5 Polynomial time bound

In [17], it is stated that one can obtain a simulation of non-deterministic Turing ma-
chines by NDNN in a similar way to the deterministic case. Let us assume in this section
the special case where all the computation held by NDNN can be done in polynomial
time. It seems intuitive that these nets are equivalent to non-determinitic Turing ma-
chines polynomially bounded. Here we aim to show a clear proof of this statement.

Proposition 4.5.1 If φ is a funcion computed by a NDNN bounded in time by a polyno-
mial, denoted φ ∈ ARNNNDPF , then φ ∈ NPF .

Proof Let φ be a function of ARNNNDPF , computed by a non-deterministic net N ,
working in time TN bounded by p a polynomial, as in Definition 4.4.1.

Build a deterministic Turing machine M which simulates N given an input α and a
guess γ.6

Now, build the following non-deterministic Turing machine:
procedure:

begin
input α;
guess γ such that |γ| ≤ p(|α|);
simulate M on 〈α, γ〉 clocked by p;
if M is in accepting state, output its result

end

This machine witnesses the fact that φ ∈ NPF , since addition and multiplication can
be done in polynomial time and polynomials are closed under composition.

Once proven the other inclusion, we will have the equivalence

Theorem 4.5.2 ARNNNDPF = NPF

The only tool we have is simulation of deterministic Turing machines. The following
definition and proposition provide an alternative definition of NPF , which consists on
separating a general non-deterministic Turing machine in a guess part attached to a
deterministic Turing machine.

Definition 4.5.3 The class ∃PF consists on functions φ : Nn −→ N such that there exist
a function Φ : Nn+1 −→ N in PF and a polynomial p with the properties:

5The characteristic function of a set A is given by χA(α) = 1 if α ∈ A, else χA(α) = ⊥ (undefined).
6Note that N can be regarded as deterministic once 〈α, γ〉 is given as input.
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(a) 〈x1, . . . , xn〉 ∈ dom(φ) if and only if there exists k such that |k| ≤ p (
∑n

i=1 |xi|) and
〈x1, . . . , xn, k〉 ∈ dom(Φ);

(b) φ(x1, . . . , xn) is defined and its value is y if and only if there exists a k such that
|k| ≤ p (

∑n
i=1 |xi|), 〈x1, . . . , xn, k〉 ∈ dom(Φ), Φ(x1, . . . , xn, k) is defined and, for all

k in these conditions, Φ(x1, . . . , xn, k) = y.

Proposition 4.5.4 NPF = ∃PF

Proof Let φ ∈ NPF witnessed by the non-deterministic Turing machine M . The fol-
lowing machine computes the function Φ with the properties of Definition 4.5.3:

procedure:
begin

input x and z;
simulate M on x using z as guess;
if M is led to the acceptance state
then output the value of the output tape
else reject

end

Conversely, let φ ∈ ∃PF and the correspondent Φ ∈ PF witnessed by Turing ma-
chine M and polynomial p. We can construct a non-deterministic Turing Machine which
computes φ in polynomial time:

procedure:
begin

input x;
guess z such that |z| ≤ p(|x|);
if M is led to the acceptance state
then output the value of the output tape

end

This ends the proof.

As a corollary, we have that NP = ∃P by the last results applied to characteristic
functions. This provides a proof for a different characterization of NP : A is in NP if
and only if there is a set B in P and a polynomial p such that x ∈ A if and only if
∃z, |z| ≤ p(|x|) : (〈x, z〉 ∈ B).

Now, we are ready to prove Theorem 4.5.2.

Proof Suppose φ ∈ NPF = ∃PF . Let M be the Turing machine that computes the
correspondent Φ. Note that M is a deterministic Turing machine with two input tapes
and its computation is done in polynomial time. We can then simulate it in real time by
a deterministic neural net N with one validation input line and two input lines, one of
them for the guess stream.

Hence, the class of languages accepted by these nets is exactly NP . Joining this with
the fact that deterministic neural nets with polynomial time bound decides exactly P , one
is induced naturally to the positive relativization of the Hypothesis P = NP discussed in
Part II.
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Part II

Relativization in ARNN
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Chapter 1

Oracles

In this chapter, we will recall the basic definitions of oracle Turing machine and advice
(so the first section can be skipped by readers familiar with them). By inserting an extra
real weight in rational ARNN, one have an effect similar to that when an oracle is used in
a Turing machine. We will introduce the notion of Davis’s oracle which will allow us to
simulate such ARNN by an oracle Turing machine and vice versa. In the next chapters,
we will move towards relativization results, which is the final goal of this work.

1.1 Oracles in Standard Computation

In 1938, Alan Turing described in his doctoral thesis a new kind of machine, what
he called the O-machine, which has been considered to be a way to achieve the so-called
“uncomputable” or “hypercomputation” by computer scientists such as Copeland and
Proudfoot [6].

Definition 1.1.1 An oracle Turing machine M is a Turing machine with a special
tape called the query tape, three special states qquery, qyes and qno and O, a set called the
oracle set, following the conditions:

1. when the machine is in the query state qquery, the machine stops its computation
and in one computation step verifies if the word in the query tape, say w, is in O;

2. if w ∈ O, then M transits to qyes;

3. if w /∈ O, then M transits to qno;

4. after the oracle’s answer, M continues its computation.

The main idea of this oracle Turing machine is to enrich a standard Turing machine
with a blackbox. This blackbox answers the membership question, that is, decides a
given word, in one step. Note that the oracle can be an arbitrary set: computable, not
computable... If one enhance a Turing machine with a noncomputable set as oracle, its
noncomputability suggests that this new machine can decide more sets. Consequently, a
natural computability hierarchy arises. Can we build a Turing machine that accepts A
using set B as an oracle?

35
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Definition 1.1.2 A set A is Turing-reducible to a set B, written A ≤T B, if A can
be decided by a Turing machine with oracle B.

The relation of Turing reducibility is in fact a preorder. Two sets X, Y are Turing-
equivalent, written X ≡T Y if X ≤T Y and Y ≤T X. The equivalence classes generates
a hierarchy called Turing degrees.

In Complexity Theory’s point of view, an oracle may be seen as a computation accel-
erator. We can obtain what is called the polynomial hierarchy by iterating the following
definition:

Definition 1.1.3 A set A is polynomial-time Turing-reducible to a set B, written
A ≤pT B, if A can be decided by a Turing machine with oracle B in polynomial time.

We will also refer to the concept of advice.

Definition 1.1.4 Let A be a class of sets and F a class of total functions N −→ Σ∗. The
non-uniform class A/F is the class of sets B such that there exist A ∈ A and f ∈ F
such that

x ∈ B if and only if 〈x, f(|x|)〉 ∈ A.
f is said to be an advice function.

Example P/poly is the class of sets decidable by deterministic Turing machines working
in polynomial time with advice of polynomial size. Note that f may not be computable.
A similar example is P/log.

Example P/exp has an analogous definition. This class is in fact P({′,∞}+). Given a
set A, we can build a word of length 2n for each n, called the characteristic of the set A,
such that in lexicographical order the ith word with size n is in A if and only if the ith
digit of the advice is 1.

1.2 Oracles in Non-Standard Computation – Hyper-

computation

Families of circuits of polynomial size have been known to decide problems in P/poly
(see [2]). In the article [16], Siegelmann and Sontag proved that one can simulate them
by a rational neural net with one real weight.

Definition 1.2.1 A circuit is a directed acyclic graph, where nodes of in-degree 0 are
called input nodes and the others gates labelled by one of the Boolean functions AND,
OR, or NOT, computing the correspondent function. The first two types are of many
variables and the third a unary function. A special node with no outgoing edge is designated
as the output node. The size of a circuit is the total number of gates. Arrange a circuit
by levels 0, . . . , d so that the input nodes are in level 0, the output nodes in level d and
each level have gates only with ingoing egdes from gates of the previous level. The depth
is then d. A family of circuits is a set of circuits

{cn : n ∈ N}.
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Theorem 1.2.2 (a) There is an injective enconding from the set of families of circuits to
the 9-Cantor subset of [0, 1]; (b) if r encodes a family (Ak)k∈N of polynomial size circuits,
then the code of the nth circuit can be found among the first p(n) digits of the decimal
expansion of r, where p is a polynomial depending on (Ak)k∈N, and furthermore (c) we
can construct an ARNN – call it Nr – with weights in Q ∪ {r} to extract, given input z
of size n, the code of An in a number of steps bounded by p(n).

The proof of this result relies on a subsystem called BAM which recovers bit by bit
such encodings (see Section 1.3 for proof). This shows that the class of languages decided
by rational neural nets working in polynomial time with one real weight is at least as
powerful as P/poly.

Proposition 1.2.3 P/poly ⊆ ARNNP [R], where ARNNP [R] denotes the class of sets
decided by neural nets with real weight working in polynomial time.

Proof Suppose A is a set in P/poly and let x be a word of size n. By the last theorem,
we can build Nr which extracts the code of An. Feeding 〈x,An〉 into NCV P , a rational
neural net that simulates CV P in real time, we can decide in polynomial time if x ∈ A.

Figure 1.1: A neural net that simulates a family of circuits.

In fact, neural networks working in polynomial time with real weights decide exactly
the sets in P/poly. Moreover, real neural nets working in exponential time can decide
any set! And here arises the claim of hypercomputational power of recurrent neural nets
made by Siegelmann. If we can implement such a real weight in a neural net, a computer
with hypercomputational properties can be built, exceeding the Turing machines’ com-
putational power! Others proposed the use of physical constructs as oracles to access in
a natural way real numbers encoded in the Universe.

Many defended that this is not possible by the impossibility of adjustment of the
physical devices with arbitrary approximation. This misconception can be refuted by the
following result:

Proposition 1.2.4 The output of an ARNN after t steps is only affected by the first
O(t) digits in the expansion of the weights and the states in each computation time. More
preciscely, Trunct =

⌈
log
(

1
8
(LW )(t−1)

)⌉
digits of precision will suffice, where L is one

plus the dimension of the net and the number of input lines, W is one plus the largest
absolute value of its weights.
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From the proof of this proposition ([16]), it was showed that one can simulate real
ARNN working in time t by a circuit of size O(t3). As a corollary, we can fully classify
ARNNP [R] and ARNN [R].

Theorem 1.2.5 ARNNP [R] = P/poly.

Theorem 1.2.6 For any language there is a neural network with real weights which de-
cides it. Conversely, an exponential time restriction is sufficient for real nets to decide
any set. In resume,

ARNNE[R] = ARNN [R] = P({0, 1}+)

The last one results from the fact that, to decide any language, families of circuits of
exponential size is enough. This full and uniform classification of languages decided by
ARNN can be resumed as in Table 1.1.

Set of weights Time restriction Computational power
Z none Regular languages
Q none Recursive languages
Q t DTIME(t)
R polynomial P/poly
R none All languages

Table 1.1: Computational power of ARNN under various restrictions.

In [7], Martin Davis critized Siegelmann’s point of view and also other attempts to
the survival of hypercomputation claims:

Since the non-computability that Siegelmann gets from her neural nets is nothing more
than the non-computability she has built into them, it is difficult to see in what sense she
can claim to have gone “beyond the Turing limit”.

As real numbers can “boost up” the computational power of rational ARNN, we will
present real numbers in the remaining of this work as oracles and show that they are
a restricted class of oracles. In memory of this criticism, we will refer them as Davis’s
oracles .

Remark To simulate neural net with real weights, one real weight suffices. This results
from Theorems 1.2.2 and 1.2.5. This will imply that a finite number of Davis’s oracles can
be reduced to one, although a direct construction is not known. Therefore, it is enough to
prove relativization results in ARNN for nets with only one Davis’s oracle, that is, only
one real weight.

1.3 BAM and the Prefix Retrieval Process

In linear time a prefix of r of length n can be extracted by running the following
procedure:1

1If |Γ| = k, suppose without loss of generality that Γ = {0, 1, . . . , k − 1}.
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procedure:
begin

input n;
r̃ := λ;
for i := 1 to n do
k := 0

for j := 1 to |Γ| − 1 do
if j < ri, then k = k + 1

end for;
r̃ := r̃k;

end for;
output r̃

end
In [16], Siegelmann and Sontag presented for the first time a subsystem that simulates

this procedure to retrieve the prefix of a given weight which has encoded in it a family of
circuits using 9-Cantor encoding.

Remark Note that we cannot simulate this procedure using real time simulation of Tur-
ing machines by neural nets. This procedure is not a Turing machine since the real number
r is already implemented into the procedure and it is an infinite string.

Let Cb be the b-Cantor subset in [0, 1] and r ∈ Cb a real number with digits within
{0, 2, . . . , b − l}, where l is 1 if b is odd and 2 if b is even.2 To extract its digits, we can
first compare r with k ∈ {0, 1, . . . , b− 1} through the family of functions3

Λk(r) = σ(br − k)

and then shift the encoding of r one bit to the left:

Ξ(r) = σ

(
b−1∑
k

(−1)kΛk(r)

)
.

Ξ is the shift map. When the word is not trivial, for atmost one k even, the value of Λk(r)
is in (0, 1). If such k exists, for 0 ≤ j < k we have Λj(r) = 1 and for j > k, Λj(r) = 0.
The following map recovers the prefix of r along the extraction and saves it in the reverse
order as r̃:

Ψ(r, r̃) = σ

(
r̃

b
+

2

b

∑
j

Λ2j(r)

)
.

This dynamical system can be simulated by a four-layered fully wired net called Bi-
directional Associative Memory neural network, or simply BAM :

y+ = σ
(
V +

∑b−1
k (−1)kxk

)
x+
k = σ(by − k), k ∈ {0, . . . , b− 1}
z+

1 = σ
(

1
b
z2 +

∑
j

2
b
x2j

)
z+

2 = σ(z1)

(1.1)

2A “good” encoding is one isomorphic to a b-Cantor encoding. See Appendix B.
3In fact, for b even, verifying this for k ∈ {0, 1, . . . , b− 2} is enough. For homogeneity of notation, we

can include b− 1 since Λb−1(r) = 0 for all r.
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where V is the unit that uploads the encoding of r to the BAM. Once V sends in r, the
units xk extracts one digit of r at a time while z1 keeps r̃.4 Joining this subsystem to
a clock (and some work of synchronization), we can control the number of digits to be
extracted. By choosing 9-Cantor encoding, we have the BAM exhibited by Siegelmann
and Sontag. This let us proof Theorem 1.2.2.

V

Y

X0 · · · X2k−1 X2k · · · Xb−1

Z1

Z2

b
b -1

−(2k − 1)

b

−(2k)

b

(−1)b−1

−(b− 1)

b
2

b
2

1
b

Figure 1.2: Architecture of BAM

Proof (a) Let Ak be one of the circuits from the family C = (Ak)k∈N. Enumerate the
gates by layer and fix an order, say gij is the jth gate of level i. The encoding of the Ak,
denoted by [Ak], is performed as follows.

The enconding of a level starts with 6. Each level is encoded successively from the
bottom level to the top one. In each level i, the gates are encoded by order, each gij
starting with 0, followed by the respective code of the gate’s label

AND 7−→ 42
OR 7−→ 44

NOT 7−→ 22

and then, by order, 4 if a gate gi−1,j′ from the last level feeds into gij and 2 otherwise.
Denote by w the reverse of w. The encoding [C] of C is given by

[C] = 8 [A1] 8 [A2] 8 [A3] . . .

The real number that represents [C]

r =
∑
i≥1

[C]i
9i

4Unit z2 is only for synchorization purpose.
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encodes C in C9.
(b) Follows from the fact that (Ak)k∈N is of polynomial size.
(c) The validation line of the input v feeds into the system the size of the input in

unary. The unit

x+
|z| = σ

(
1

2
x|z| +

3

2
v − 1

)
encodes |z| into a rational number q|z|. Save this value into the unit xq{

x+
delay = σ(x|z|)

x+
q = σ(xdelay − v)

Build Σ, a BAM system for C9 extracting r. Each time Σ encounters an 8 in r, subtracts
1 from |z|, that is,

2q|z| − 1

When q|z| = 0, extract the bits of r until the next 8. Σ is given by

x+
i = σ(9x10 − i), i = 0, . . . , 8
x+

9 = σ(2xq)

x+
10 = σ

(
rx9 +

∑8
i=0 (−1)ixi

)
x+

11 = σ
(

1
9
x12 + 2

9
(x1 + x3 + x5 + x7)− 2x13

)
x+

12 = σ(x11)
x+

13 = σ(xq + x14 + x15)
x+

14 = σ(2x13 + x7 − 2)
x+

15 = σ(x13 − x7)
x+

16 = σ(x12 + x7 − 1)

The units x0, . . . , x12 forms the BAM. The unit x11 keeps the expansion of r. The
control of this retrieval is done by the units x13, . . . , x16 (note that in the dynamic map
of x14, 2x13 − 1 counts |z| downwards each time x7 = 1 and x7 works as a switch).

The neuron Y in Eq. 1.1 can be regarded as the query unit and Xi answer unit.
The time of extraction is linear on the numbers of digits required since each bit can be
obtained in constant time. We say that this “oracle” is of linear access time. In the next
sections, we will show how to simulate a rational net with one real weight by a Turing
machine with a special type of oracle and then define access time protocols for oracles.

1.4 Davis’s Oracles

The internalization of real numbers in machines or in neural nets has been seen as
a path to achieve “non-computability”. In this subection we provide a way of regarding
real numbers as oracles.

As stated in Theorem 1.2.4, only the first digits of the expansion of the weights are
needed. Consider the particular case of ARNN with real weights. The same output can be
computed by substituting its weights by their first O(t) bits if the computation is done in
time t. Conversely, computations held by an ARNN with a real weight can atmost decide
sets computable with its prefixes. This gives us the intuition that the oracles implemented
in ARNN are a restricted class of oracles.
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Definition 1.4.1 A Davis’s oracle Or is a subset of Prefix(r) for some r ∈ Γω, where
Γ is the alphabet used by the working tapes.5 The first n digits of r will be denoted r|n.

We will also call Davis’s oracle sets of the kind

Of
r = {〈0n, r̃〉 : n ∈ N, r̃ is a prefix of r|f(n)}

for some f : N −→ N time constructible. These two definitions are equivalent with a
possible delay in time f when implemented in a Turing machine.

However, in general, we may not have complete access to such weight so queries should
be made. And here is why a real number is in fact an oracle. It may encode noncomputable
information.6

Theorem 1.4.2 (a) A system Σ with weights in Q∪{r}, r ∈ [0, 1], working in time t can
be simulated by a Turing machine with a Davis’s oracle Or in time O(p(t)), p polynomial;
(b) A Turing machine M with a Davis’s oracle Or [Of

r ] working in time t can be simulated
by a neural net Σ with weights in Q∪{r}, r ∈ [0, 1] working in time O(p(t)) [O(f+p(t))].

Proof (a) Build the following Davis’s oracle to later retrieve the bits of r required for
the simulation of Σ.

O = {〈0n, r̃〉 : n ∈ N, r̃ is a prefix of r|Trunct(n))}

The following Turing machine can simulate Σ with atmost a delay of polynomial of t
procedure:

begin
input z;
n := Trunct(|z|);
r̃ := λ;
for i := 1 to n do

if 〈0n, r̃0〉 ∈ O,
then r̃ := r̃0;
else if 〈0n, r̃1〉 ∈ O,
then r̃ := r̃1;
else exit for

end for;
simulate Σ replacing r by r̃ with input z;
output its result

end
(b) The other way around can be proved by separating oracle calls of M from other

computations. Since M works in time t, for an input of size n, t(n) + 1 is an upper bound
of the size of the query words. Fix an input z of size n.

Let r̃ be the first t(n) + 1 bits of r and M̃ the Turing machine that receives 〈z, r̃〉 as
input and mimics all the computations of M , substituting oracle calls by the following
procedure:

5r can be regarded as a real number in [0, 1].
6Depending on the computability degree of the real number, one can have a hierarchy of complexity

of ARNN with real weights (see [4]).
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procedure:
begin

input query word w;
if w is a prefix of r̃,
then switch to state qyes;
else switch to state qno

end

Build Σ2 that simulates M̃ . Construct Σ1 with two input lines, feeding in the input
(z0ω) and the validation line (1|z|0ω). Σ1 consists on a binary BAM, a counter that counts
t(n) + 1 steps (by real time simulation of the Turing machine that witnesses the fact that
t + 1 is time constructible) to extract r̃ and a unit that saves the value of z and then
export it together with r̃ when prefix retrieval is done. Connecting Σ1 to Σ2, we have the
neural net Σ with all the weights rational except r, working in time O(t+ 1 + t), that is,
O(p(t)), with p polynomial.

The case of Of
r can be proved similarly, by changing the number of bits to be retrieved

by the BAM to f(n) + 1. This net will work in time O(f + 1 + t), hence O(f + p(t)) for
some p polynomial.

Remark The proof of Theorem 1.4.2 part (b) is essential for the last two chapters of
this work. We can resume it into two ingredients. The nature of the oracle permits us to
make queries through a BAM subsystem. On the other hand, separating an oracle Turing
machine into two parts

1. one that performs all the oracle calls and

2. M̃ that receives all the accepted query words (in this case, one prefix of a real
number) and the input to mimic the original machine,

will allow us to construct a neural net that simulates it with two subsystems

1. Σ1 that extracts a prefix of a real number (a BAM) and

2. Σ2 that simulates M2 in real time.

Corollary 1.4.3 For all r ∈ [0, 1], ARNNP [Q ∪ {r}] = P (Or) =
⋃
p polynomial P (Op

r).

We will be writing ARNNP [Q](r) instead of ARNNP [Q ∪ {r}] when we want to
emphasize that r is to be seen as an oracle.

By induction, we can conclude

Corollary 1.4.4 ARNNP [Q](r1)(r2) . . . (rn) = P (Or1)(Or2) . . . (Orn).

Theorem 1.4.5 These classes of sets coincides:

1. P/poly

2.
⋃
Ssparse P (S)

3.
⋃
T tally P (T )
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4.
⋃
r∈[0,1]ARNN

P [Q](r)

5. ARNNP [R]

6.
⋃
ODavis’s Oracle P (O)

This is also true for the analogous non-deterministic classes.

Proof (1) = (2) = (3) is known by Structural Complexity Theory. Theorem 1.2.5 states
that (5) = (1) and from the last corollary we have (4) = (6). (1) ⊆ (4) is guaranteed by
Theorem 1.2.2 and trivially (4) ⊆ (5).

1.5 Time protocols of Oracles

The working time of a standard oracle is constant by definition. This means that
when it is called, no matter how long a query word is, the time taken to answer the
query is the same, which is unrealistic when a physical experiment is incorporated as an
oracle. Certainly, we can “solve” this by substituting every call of a given oracle O by
the following subsystem:

procedure:
begin

input w;
count T (|w|)− 1 steps;
if w ∈ O, then ‘yes’
else ‘no’

end
where w is the query word and T a time constructible function. Instead, we include
naturally an internal clock in the oracle that works in same time units as the Turing
machine which it is attached to.

Definition 1.5.1 An oracle O works in time T when in each call the oracle takes
T (|z|) steps in time to answer the query z ∈ O.7

When T is a polynomial or an exponential, we say that the oracle works under poly-
nomial or exponential time protocol or access time.

One interesting property of these oracles is that the number of calls is limited when
a time bound is set. We could have used this to define these oracles. But we still prefer
this definition as to approximate the nature of physical experiments as oracles and that
of Davis’s oracles implemented in ARNN.

We will be interested in Davis’s oracles of polynomial and exponential access time.
When no protocol is refered, the oracle is just a classical one, that is, one that answers to
queries in one time step.

7T may not be time constructible.



1.6. GENERALIZED NETS – DAVIS’S ORACLE REVISITED 45

1.6 Generalized nets – Davis’s oracle revisited

Recall that the Davis’s oracles aim to retrieve the digits of real numbers.8 The retrieval
process works in linear time by the use of the saturated sigmoid. When other activation
functions are adopted, the time to retrieve the real bits of that weight might be longer
when simulated.

Definition 1.6.1 A neural net is said to be a generalized net (of dimension N with
M input lines) if the activation function is given by f = σ ◦ π where π : RN+M −→ RN

is an affine map9 and σ : RN −→ RN , called the activation function, has a bounded
range and is locally Lipschitz, that is, for each ρ > 0, there is a constant C such that for
all x1 and x2 in the range of σ,

|x2 − x1| < ρ ⇒ |σ(x2)− σ(x1)| ≤ C|x2 − x1|

where | · | is the Euclidean norm. The output units are chosen within the N processors
and two decision thresholds α < β are set to be interpreted as 0 if an output is less
than or equal to α and 1 if an output is greater than or equal to β.

Definition 1.6.2 A function f is s-approximable in time T if there is a Turing
machine that computes f|s(n) in time T (n) given input of total size n. When the function
s is not explicitly mentioned, we are considering s(n) = n.

Suppose now a neural net with the architecture of Theorem 1.4.2, substituting the
activation function of the unit with the real weight r by f , a function approximable in
time T , giving rise to a generalized processor net D. By incorporating a subsystem that
simulates the Turing machine that computes f instead of Σ1, given the first n bits of r we
can retrieve the first n bits of f(r) in T (n) steps. [16] shows that we can then simulate
D by a Turing machine (and so, by a neural net).

Definition 1.6.3 A generalized Davis’s oracle is a Davis’s oracle Of,r, a subset of
Prefix(f(r)), where r ∈ [0, 1] and f is a function approximable in time T . The time
protocol of this oracle is T .

Example The trivial case is the saturated sigmoid

σ(x) =


0 if x < 0
x if 0 ≤ x ≤ 1
1 if x > 1

For x ∈ [0, 1], we have that σ(x) = x. In fact, Oσ,r = Or is just a Davis’s oracle with
linear access time.

8The encoding used will be omitted when it is not relevant to be mentioned.
9Although in the article [16] π is a generic polynomial in N + M variables with real coefficients, we

are interested only in affine maps.
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Example Another example is the family of anayltic sigmoid

σka(x) =
2

1 + e−kx
− 1.

Its computation takes exponential time. That is, Oσk
a ,r

is a Davis’s oracle with expo-
nential access time.

Example Suppose that the value f(r) is given for a function f with right inverse, say
f−1, approximable in time T . Then, we can first retrieve n bits of f(r) and then feed
it into the Turing machine that computes n bits of r = f−1(f(r)) in time T . This is a
Davis’s oracle with access time O(n+ T ).

They can be seen as a blackbox with the following two components:

• A Davis’s oracle Or;

• A Turing machine Mf that approximates f in time T .

This oracle can be easily implemented in an ARNN, done as follows:

• A BAM subsystem to extract the bits of r;

• A subsystem simulating Mf in real time.

It takes O(n+T (n)) to compute the first n bits of r. Languages decided by these nets
will be denoted by ARNN [Q](f, r).

Clearly they do not fit in the definition of a standard oracle. As stated before, an
internal clock is naturally implemented into them, so we can control the time they take
to answer a given query. By choosing a function f approximable in polynomial time and
exponential time, we obtain respectively a Davis’s oracle with polynomial and exponential
access time and also their simulations in ARNN.

From now on, our goal is to present some relativization results. Two families of
physical experiments will be emphasized and we will see that they are strongly related to
Davis’s oracles with polynomial and exponential access time.



Chapter 2

Relativization in ARNN: Oracles
with polynomial access time

The main goal of this chapter is to show the positive relativization result for rational
ARNN with one real weight, regarding this weight as a Davis’s oracle with polynomial
access time. Along this path, we will introduce the Scatter Machine Experiments as a
class of physical oracles that simulate the extraction of bits from a real number.

2.1 Scatter Machine Experiments

In the description of a probabilistic Turing machine, it is common to integrate the
coin flipping experiment done in one step as a way to choose between two branches
with probability 1/2. A natural extension of this might be implementation of physical
experiments as oracles in a Turing machine. This has been extensively explored by E.
Beggs, J. Costa and J. Tucker in [5]. One of the experiments that has been analysed is
the Scatter Machine Experiment.

The scatter machine experiment (SME) consists on firing a particle with a fixed ve-
locity from a cannon in a position x given as input, projecting it over a surface with a
wedge of 45◦ in a fixed position r. On each side of the wedge set one box, so that one of
the two boxes collects the particle after reflecting on the surface (see Fig. 2.1). The goal
is to approximate the position of the wedge with the position of the cannon given by the
Turing machine using bisection method . We briefly explain this in the next paragraph.

Let r be a real number in [0, 1]. At step 1, compare r with 1
2
. In step 2, if r < 1

2
, then

compare r to 1
4
. If r > 1

2
, compare r to 3

4
. And so on. In fact, the extraction can be done

by subtracting r to a dyadic rational, that is, a rational of the form m
2n

. If the difference δ
is less than 0, then σ(δ) = 0. If δ > 0, by iterating σ(2 ·) to δ, in some time we will obtain
the value 1. In the case where r is a dyadic rational, this extraction will take forever since
δ will be 0 in some step. We will exclude dyadic rationals in our analysis.1

As an oracle, denoted by SME(r), it works as follows:

1. When the Turing machine is in the query state, the query tape contains x, the
position of the cannon.

1This can also be solved by admiting three answer states after setting a time protocol, qyes, qno and
qout of time.
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Figure 2.1: Example of a scatter machine experiment.

2. The cannon is set to the given position x (we assume that this can be done without
error)2 and fires the particle. If the particle is collected by the left box, i.e., x > r,
then proceed to state no, otherwise proceed to yes.

Connecting a Turing machine to such experiments running in real time as oracles
implies automatically the existence of an internal clock that is somehow related to the
internal clock of the Turing machine. For this experiment, we assume the protocol of
polynomial time (in this case we write SMEp(r)). This will give an upperbound of the
number of queries, denoted by Q:

Definition 2.1.1 Let M be a non-deterministic Turing machine equipped with an oracle
O. We denote by Q(M, z,O) the set of queries made by M in all branches of the com-
putation tree when z is given as input. When there is no confusion, we write Q(M, z, r)
when the oracle is SMEp(r).

Definition 2.1.2 Let Σ be a non-deterministic rational neural net with a real weight r.
We denote by Q(Σ, z, r) the set of queries made by Σ to r in all the branches of the
computation tree when z is given as input.

Proposition 2.1.3 Let A be a set decided by a non-deterministic Turing machine M
clocked in polynomial time p equipped with SMEp(r). Then there is a non-deterministic
Turing machine M̃ working in polynomial time querying the same oracle atmost a poly-
nomial number of times. In fact, |Q(M̃, z, r)| ≤ p(|z|) + 1.

2We call it error-free. The SME is error-prone with fixed precision if there is a value ε > 0 such that
the cannon can be set only to within a given precision ε.
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Proof Given input z, a word written in the query tape is of length bounded by p(|z|),
since M works in polynomial time. So we only need the first digits of r. Let r̃ be the
first p(|z|) + 1 bits of r. We first build a Turing machine M1 extracting the first p(|z|) + 1
digits through the scatter machine using bisection method. Then, attach this machine to
M2, with the same description of M , substituting the oracle call by:

procedure:
begin

input w;
for i := 1 to |w| do

if wi > r̃i, then ‘no’
else if wi < r̃i, then ‘yes’;

proceed to ‘no’
end

This new machine M̃ still works in polynomial time. As the queries were all done at
start, the total number of queries is |Q(M̃, z, r)| ≤ p(|z|) + 1.

The physical oracle SMEp(r) is a Davis’s oracle of polynomial access time by defini-
tion. We will see how this will lead to the following relativization result:

Theorem 2.1.4 P = NP if and only if, for all r ∈ [0, 1],

P (SMEp(r)) = NP (SMEp(r)).

2.2 Proof of Relativization result for Davis’s oracles

of polynomial time access

Proposition 2.2.1 Let A be a set decided by a non-deterministic Turing machine M
clocked in polynomial time p, equipped with a Davis’s oracle O of polynomial time ac-
cess. Then, there is a non-deterministic Turing machine M̃ working in polynomial time
querying the same oracle a polynomial number of times during a computation. In fact,
|Q(M̃, z, O)| ≤ p(|z|) + 1.

Proof Suppose without loss of generality that |Γ| = 2. Let O = Prefix(r) for a r ∈
{0, 1}ω where the extraction of the mth bit takes polynomial time q(m).

Since M is working in polynomial time p, given an input z, the size of the queries
does not exceed p(|z|). So, only a polynomial number of bits of r is needed. We apply
the bisection method.

Consider M1 the machines that extracts the first p(|z|) + 1 of r given input z:
procedure:

begin
input z;
r̃ := λ
for i := 1 to p(|z|) + 1 do

if r̃0 ∈ O, then ‘no’
else if r̃1 ∈ O, then ‘yes’

end
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This subsystem takes polynomial time q(p(|z|)) to perform the computations.3 Build
M2 with the same description as M , substituting each oracle call by the following proce-

dure:

procedure:
begin

input w;
for i := 1 to |w| do

if wi > r̃i, then ‘no’
else if wi < r̃i, then ‘yes’;

proceed to ‘no’
end

where w is the query word. M2 works in polynomial time and so is M̃ which consists in
attaching machine M1 to M2. The total number of oracle calls is indeed polynomial on
the size of the input.

Remark Note that it is trivial that the classes P (Or) and P (Or)p =
⋃
fapprox. in p. time P (Of,r)

coincides (implying

P/poly =
⋃

Orwith p.a.t.

P (Or)

where p.a.t. abbreviates polynomial access time and Or are Davis’s oracles).

By simulating M1 with a BAM and M2 by the real time simulation of Turing machines
by neural nets, we have the following corollary:

Corollary 2.2.2 Let A be a set decided by a non-deterministic rational neural net Σ
with a real weight r clocked in polynomial time p. Then, there is a non-deterministic
neural net Σ̃ working in polynomial time querying r a polynomial number of times during
a computation. In fact, |Q(Σ̃, z, r)| ≤ p(|z|) + 1.

Note that M has been composed into a machine that exclusively do the oracle calls,
M1, and the other without querying the oracle, M2. This was used in the proof of Theorem
1.4.2.

Theorem 2.2.3 (Positive relativization) P = NP if and only if, for any Davis’s oracle
O with polynomial access time,

P (O) = NP (O).

Proof Suppose that for all polynomial Davis oracles O, we have P (O) = NP (O). By
choosing r = 1

3
, Or is computable in constant time. Hence

P = P (Or) = NP (Or) = NP

Now, assume P = NP . Let A be a set decided by a non-deterministic Turing machine
M working in polynomial time p with a Davis’s oracle O with polynomial time access
implemented.

3This is indeed the simulation by a Turing machine of the bit extraction process done by a scatter
machine and the BAM subsystem in an ARNN.
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Construct M1 and M2 as in Proposition 2.2.1. Note that M1 is a deterministic Turing
machine with oracle O and M2 is non-deterministic without oracle. Since P = NP , there
is a deterministic Turing machine M̃2 that decides the same set as M2 in polynomial
time. Connecting M1 to M̃2, a new Turing machine is built. It is deterministic, works in
polynomial time and has implemented the same oracle O.

By repeating the proof for particular restrictions we have:

Theorem 2.2.4 P = NP if and only if, for all r ∈ [0, 1],

P (SMEp(r)) = NP (SMEp(r)).

Theorem 2.2.5 P = NP if and only if, for any r ∈ [0, 1] and f approximable in poly-
nomial time,

P (Of,r) = NP (Of,r).

As particular cases:

Theorem 2.2.6 P = NP if and only if, for any r ∈ [0, 1] and f linearly approximable
in polynomial time,

ARNNP [Q](f, r) = ARNNNP [Q](f, r).

Theorem 2.2.7 P = NP if and only if, for any r ∈ [0, 1],

ARNNP [Q](r) = ARNNNP [Q](r).

Note that the left hand side of the equivalence of all these results claims that, not
only the whole class will collapse, each deterministic subclass will coincide with its non-
deterministic correspondent. The difference from the trivial result

P = NP if and only if P/poly = NP/poly

should be emphasized.

Theorem 2.2.8 The following propositions are equivalent:

1. P = NP

2. ARNNP [Q] = ARNNNP [Q]

3. ARNNP [R] = ARNNNP [R]

We can conclude that the class of Davis’s oracles with polynomial time access is indeed
a restricted class of oracles, since it is known that there are oracles A and B such that
P (A) = NP (A) and P (B) 6= NP (B) (the Baker-Gill-Solovay Theorems). The negative
relativization for Davis’s oracles with polynomial time access is still an open problem. In
contrast, this will be proved to be true for those with exponential time access in the next
chapter.
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Chapter 3

Relativization in ARNN: Oracles
with exponential access time

For Davis’s oracles with polynomial access time, we only have the positive relativiza-
tion result. We will show that there is a positive relativization of the exponential access
time oracle but also a negative one. First we will refer to another physical oracle: the
Collider Machine Experiments.

3.1 Collider Machine Experiments

Another physical experiment explored is the Collider Machine Experiments (CME).
It consists on approximating the mass of a given particle by colliding it with another one
with a dyadic mass using the bisection method. This is a one dimensional experiment
(see Fig. 3.1). Assume that we can move a particle in any given speed and that there is
preservation of momentum and kinetic energy.

Let µ = r be the mass to be approximated, located at the origin, and m the mass of
the test particle. Suppose that the test particle is launched with speed v0 from position
−P , for some P > 0. If m < r, the proof particle will return to −P in some time. If
m > r, then it will move towards the direction of +P after collision.1

In the following paragraphs, the time taken by these experiments will be derived.

The momentum and the kinetic energy of a particle with mass m is given by mv and
1
2
mv2. By preservation of energy and momentum of the system, we have:

mv0 = mvm + rvr,
1

2
mv2

0 =
1

2
mv2

m +
1

2
mv2

r

Solving in respect to vm and vr:

vm =
m− r
m+ r

v0

1Since we considered that r is not a dyadic rational, the extraction is done in finite time.
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Figure 3.1: Example of a collider machine experiment.

By the last equation, we can conclude that the time taken by the experiment is given
by

T =

(
2r

|m− r| ± 1

)
P

v0

∼ K

|m− r|

If |m − r| < 2−n, the time needed will be of exponential order. For this reason,
when we use the collider machine experiment as physical oracle, the protocol is of either
exponential or unbounded time. To denote such experiments, we write CMEe(r) or
CME∞(r), respectively. We will consider the exponential protocol. The unbounded time
protocol will only be relevant when we allow dyadic rational oracles. An extensive study
of its properties is in [5].

In the same article, the following theorems are proven:

Theorem 3.1.1 P = NP if and only if, for all r ∈ [0, 1],

P (CMEe(r)) = NP (CMEe(r)).

Theorem 3.1.2 P 6= NP if and only if, for all r ∈ [0, 1],

P (CMEe(r)) 6= NP (CMEe(r)).

We will provide their proofs in the next section.
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3.2 Proof of Relativization results for Davis’s oracles

of exponential time access

Both CMEe(r) and the analytic oracles are members of a larger class of oracles: the
Davis’s oracles with exponential access time. As in the polynomial case, we have the
following results which will not be proved since their proofs are essentially the same.

Proposition 3.2.1 Let A be a set decided by a non-deterministic Turing machine M
clocked in polynomial time with an exponential Davis’s oracle implemented in it. Then,
there is a non-deterministic Turing machine M̃ also working in polynomial time querying
the same oracle only a logarithmic number of times, where the total number of query words
in all branches is logarithmic.

Denote by P`(O) the class of languages decided by Turing machines working in poly-
nomial time equipped with an oracle such that, for inputs of size n, only a logarithmic
number on n of queries are admitted to be made. The last proposition showed that

Corollary 3.2.2 For all Davis’s oracles Or with exponential access time, P (Or) = P`(Or).

In particular,

Corollary 3.2.3 For all Davis’s oracles Or and f approximable in exponential time,
P (Of,r) = P`(Of,r).

Definition 3.2.4 We denote by F∗ the set of prefix functions with size limited by a
function in F . That is, if f ∈ F∗, then for all n, f(n) is a prefix of f(n + 1) and
|f(n)| ≤ g(n) for some function g ∈ F .

Lemma 3.2.5 For all Davis’s oracle O with exponential access time, P (O) ⊆ P/log∗ ⊆
P/log.

Remark The first inclusion can be easily extended to

P/log∗ =
⋃

Orwith e.a.t.

P (O)

where e.a.t. abbreviates exponential access time and Or are Davis’s oracles.

For this class of oracles we have also the negative relativization result, which is still
an open problem for the polynomial ones.

Theorem 3.2.6 (Positive relativization) P = NP if and only if, for all Davis’s oracles
O with exponential time access,

P (O) = NP (O).

Theorem 3.2.7 (Negative relativization) P 6= NP if and only if, for all Davis’s oracles
O with exponential time access,

P (O) 6= NP (O).
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The proof of the first result is omitted since it applies the same techniques as in the
proof of Theorem 2.2.3. We shall prove the second one. For this we will need the following
lemma well known in Structural Complexity theory [3]:

Lemma 3.2.8 If SAT ∈ P/log, then P = NP .

Proof (of Theorem 3.2.7) If the statement on the right hand side is true, then for the
particular case of O 1

3
, we have that P 6= NP (see the correspondent case for polynomial

access time).
Suppose now that P 6= NP . Let O be a Davis’s oracle with exponential time access.

By Lemma 3.2.8, SAT /∈ P/log. In particular, SAT /∈ P (O) by Lemma 3.2.5. As known
in Structural Complexity theory, SAT is in NP , which implies that SAT is in NP (O)
(without any oracle call). This proves that P (O) 6= NP (O).

As particular cases, we have:

Theorem 3.2.9 P = NP if and only if, for all r ∈ [0, 1],

P (CMEe(r)) = NP (CMEe(r)).

Theorem 3.2.10 P 6= NP if and only if, for all r ∈ [0, 1],

P (CMEe(r)) 6= NP (CMEe(r)).

Theorem 3.2.11 P = NP if and only if, for all r ∈ [0, 1] and f approximable in expo-
nential time,

P (Of,r) = NP (Of,r).

Theorem 3.2.12 P 6= NP if and only if, for all r ∈ [0, 1] and f approximable in expo-
nential time,

P (Of,r) 6= NP (Of,r).

Transposing these results to neural nets,

Theorem 3.2.13 P = NP if and only if, for all r ∈ [0, 1] and f approximable in expo-
nential time,

ARNNP [Q](f, r) = ARNNNP [Q](f, r).

Theorem 3.2.14 P 6= NP if and only if, for all r ∈ [0, 1] and f approximable in expo-
nential time,

ARNNP [Q](f, r) 6= ARNNNP [Q](f, r).



Conclusion

We provided a formalization of the idea of a real weight internalized in a rational
ARNN regarded as a Davis’s oracle, concretizing the criticism of Martin Davis in a con-
structive point of view. The simulation of a rational neural net with one real weight by
a Turing machine with a Davis’s oracle defined by that real weight shows that, not only
the whole class of ARNNP [R] coincide with P/poly, but there is also an inductive cor-
respondence between the subclasses by incorporating the real weights one by one. This
creates a hierarchy in P/poly, where each class can be represented by a finite set of real
weights used, that is, sets of the form

{r1, r2, . . . , rn : ri ∈ R,∀1 ≤ i ≤ n}.

Taking into account time protocols of oracles, we proved that SME and CME are par-
ticular cases of Davis’s oracles with polynomial and exponential access time, respectively.
Furthermore, the famous problem P = NP positively relativizes for Davis’s oracles with
both access times. We immediately conclude that Davis’s oracles constitute a restricted
class of oracles. In respect to real neural nets working in polynomial time, we conclude
that they are in fact a restricted computational model. In resume, we have the following
classification table:

Set of weights Time restriction Protocol Computational power

Z none none Regular languages
Q none none Recursive languages
Q t none DTIME(t)

Q ∪ {r1} polynomial exponential P`(Or1)
...

...
Q ∪ {r1, . . . , rn} polynomial exponential P`(Or1) . . . (Orn)

...
...

R polynomial exponential P/log∗
Q ∪ {r1} polynomial polynomial P (Or1)

...
...

Q ∪ {r1, . . . , rn} polynomial polynomial P (Or1) . . . (Orn)
...

...
R polynomial polynomial P/poly
R none none All languages

Table 3.1: A more refined classification by computational power of ARNN.
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For the case of exponential access time, we also have the relativization of P 6= NP .
This result is still an open problem for the polynomial case. Once proven (or disproved)
for SME, its proof might be adapted to the case of Davis’s oracles of polynomial access
time and, in particular, real ARNN working in polynomial time.

Returning to more “grounded” issues, there are still simple questions that seem not
simple to be answered. For instance, a very rewarding work would be a good classification
of functional properties of neural nets. Within the logic system described by McCulloch
and Pitts in [11], it is possible to realize a given logical function. But giving a description
of how one neural network performs its computation is not trivial. Most of the known
work refers to layered neural nets (for example, BAM).

Computational approach did not show to be the best single way to understand our
brain and to explain how it works. But it turned out to be a relatively good tool to
functionally map our brain and, at the same time, provided a very interesting biologically
inspired computational model that uniformly classifies complexity classes in a surprising
way.
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Springer-Verlag, 1990.
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Appendix A

Basic definitions

Here we will recall the definition of some abstract devices relevant for Part I.

Definition A.0.1 An alphabet Σ is a non-empty finite set. Its elements are called
letters or symbols.

Definition A.0.2 Σ∗ denotes the set of words, that is, finite sequences of letters in Σ.
By convention, the empty word λ is in Σ∗. Σ+ denotes the set of non-empty finite words.

Definition A.0.3 A set or a language is a subset of Σ+.

Definition A.0.4 An encoding of an alphabet Σ over another alphabet Γ is

1. an injective function Σ −→ Γ if |Σ| ≤ |Γ|

2. an injective function Σ −→ Γn if |Σ| > |Γ|, for some n such that |Σ| ≤ |Γ|n

Definition A.0.5 A finite automaton is a tuple M = 〈Q,Σ, δ, q0,F〉 such that:

• Q is a finite non-empty set (elements of Q are called states)

• Σ is an alphabet

• δ : Q× Σ −→ Q called the transition function

• q0 ∈ Q, called the initial state

• F ⊆ Q is the set of accepting or final states1

Definition A.0.6 Let M = 〈Q,Σ, δ, q0,F〉 be a finite automaton and let w = w1w2 . . . wn ∈
Σ∗. We say that M accepts w if there is a sequence of states r0, r1, . . . , rn such that

1. r0 ≡ q0

2. δ(ri, wi+1) = ri+1, 0 ≤ i < n

1It is a convention that M will switch off itself once attained some element of F .
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3. rn ∈ F
If a word is not accepted, we say that it is rejected.

Definition A.0.7 A (1-taped) Turing machine M is a tuple 〈Q,Σ,Γ, δ, q0, qaccept, qreject〉
where:

• Q is a finite non-empty set (of control states);

• Σ is an alphabet (of input);

• Γ is an alphabet (of tape) such that Σ ⊆ Γ and t ∈ Γ \ Σ;

• q0, qaccept, qreject ∈ Q (the initial state, accepting state and rejecting state) all
three distinct from each other;

• δ : Q × Γ −→ Q × Γ × {R,L} a partial function, not defined for qaccept and qreject
(the transition function).

The machine stops when qaccept or qreject is attained.

The sequence of R and L given after some iterations of δ gives us the position of what
we call the reading head. When the machine is in state q and a word w = w1w2 ∈ Γ+ is
written in the tape with the reading head in the start of w2, we denote this configuration
by w1qw2.

Definition A.0.8 A non-deterministic Turing machine is a machine similar to a
deterministic one where the transition function is

δ : Q× Γ −→ P(Q× Γ× {R,L}).
Definition A.0.9 A Turing machine with k tapes is defined analogously as a 1-taped
Turing machine, where2

δ : Q× Γk −→ P(Q× Γk−1 × {R,L}k).
Definition A.0.10 A Turing machine M accepts a word w ∈ Σ+ if there exists a
sequence c0 . . . ck of configurations, k ≥ 1, such thtat:

1. c0 = q0w;

2. ci+1 is obtained from ci by the function δ, 0 ≤ i < k;

3. ck contains qaccept.

Similarly, a word is rejected when ck contains qreject

Note that a word that is not accepted is not necessarily rejected.

Definition A.0.11 A total function f : N −→ N is said to be constructible in time
if there is a Turing machine M such that, for all n ∈ N and all inputs of size n, halts
exactly in f(n) steps.

2When there are more than one tape, it is a convention to consider that one of the tapes is for the
input and is not altered during computation.



Appendix B

An introduction to Cantor sets and
Encoding Systems

Codifying finite information is a trivial task. But once we are dealing with information
of infinite size, for instance, an infinite subset of {0, 1}+, we should be able to compact it
in an efficient and “decodable” way.

Definition B.0.1 Two sets are said to be equipotent if a bijection between them exists.

Proposition B.0.2 The set of infinite languages of the alphabet {0, 1} is equipotent to
[0, 1].

Proof If we organize the words in lexicographical order, it can then be enumerated by
the natural numbers. Now, an infinite set of words can be fully characterized by coding,
for instance, 1 in the nth position if the nth element belongs to it, 0 otherwise.

Corollary B.0.3 The set of infinite languages of the alphabet {0, 1} are equipotent to R.

When two sets are equipotent, there are encodings from one to another. When the
encodings take values in [0, 1], there are two problems that naturally arise.

1. The problem of uniqueness of representation in a certain base n arises when we are
dealing with expansions of the form

+∞∑
i=1

ai
ni

where ai ∈ {0, 1, . . . , n− 1} for all i and for some k ∈ N, ai = n− 1 for all i ≥ k. In
this case, the other representation is

ak−1 + 1

nk−1
+

k−2∑
i=1

ai
ni

For example, in base 10, 0.09999 . . . = 0.1.

2. The problem of determining if a number is 0.
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For problem 1, we should look for a representation where the choice of consecutive
digits is not allowed. To explain this, let us show an illustrative example. Suppose we
have the number 0.57999 . . .. If we admit the use of the digit 8 in our encoding system,
then another representation of this would be 0.58.

A set that arises by this choice is a Cantor subset of the interval. When the base of the
encoding is n, we call it an n-Cantor subset, denoted Cn, and the encoding an n-Cantor
encoding.

Suppose that the not consecutive digits allowed are {a1, . . . , ak} ⊂ {0, 1, . . . , n − 1}.
The encoding takes values of the form⋂

i≥1

[
ai
ni
,
ai + 1

ni

)
It is easy to see that this construction will lead to a totally disconnect, perfect1 and

compact metric space with the inherited metric from the reals, that is, a Cantor set in
the interval. Hence our denomination is sound in the topological sense. Proposition B.0.2
shows that Cantor sets are uncountable.

Example Families of Boolean circuits are encoded into real numbers in base 9 with digits
within 0, 2, 4, 6 and 8. See Part II Section 1.3.

For problem 2, the empty word λ can be mapped to a special number, for example 0,
and avoid the use of 0 in our encoding. This will imply that in base n

σ(nx)

tests if a word is non-empty (0 if x encodes λ and 1 otherwise).

Example The universal architecture for simulation of Turing machines accepts as inputs
finite words in binary encoded into rational numbers in base 4, where the digits that are
allowed are 1 and 3 (Part I Section 2.4.). The funtion nonempty evaluates if the word
encoded is non-empty. Another encoding was used to accelerate the simulation, using
base 10p2

[α] =

|α|∑
i=1

10p2 − 1 + 4p(αi − 1)

(10p2)i
.

Conversely, we require three properties from such a “good” encoding set in [0, 1]: it
should be totally disconnected with respect to the induced topology of R so no interval
belongs to it (this corresponds to the limited choice of digits in the n-Cantor system),
uncountable to be equipotent to the set of infinite languages, recursively constructed in
a “self-similar” fashion so we can have a base for representation. Any n-Cantor set is
indeed homeomorphic to the usual Cantor set by equipping these sets with the following
metric:

d(α, β) =
+∞∑
i=1

δ(αi, βi)

2i
,

where δ(a, b) is 0 if a = b and 1 otherwise, that is, the Kronecker’s delta.

1A set is said to be perfect if every point is an accumulation point of the set, or equivalently, there is
no isolated point.
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Definition B.0.4 A good enconding of a set L ⊆ Σ+ is an injective map L −→ C,
induced by an encoding from Σ to the allowed digits in the expansion of elements in C,
where C denotes a Cantor subset in [0, 1].
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