Biomarkers of Alzheimer's Disease: F_2 -isoprostanes

Domenico Praticò, M.D. Department of Pharmacology, Center for Experimental Therapeutics School of Medicine, Philadelphia, PA

Biomarkers based on AD pathology

Pathological Features

- Amyloid plaques
- Neurofibrilary tangles
- Lipid metabolism
- Oxidative stress
- Inflammation

HNE immunopositive lesions in Alzheimer's Disease

Mol Aspects Med. 24;293-303, 2003

Protein carbonyl immunoreactions in Alzheimer's Disease

J. Hysto. Cyto. 46;731-736, 1998

Brain and Oxidative Stress

Pro-oxidants

Anti-oxidants

High use of Oxygen and Glucose

High PUFA

High transition metals

Catalase ↓ SOD ↓ GSH Px; GSH Vitamin C ↑/ E Uric Acid

AD and Oxidative Stress

Oxidative stress in the CNS predominantly manifests as Lipid Peroxidation because of its high content of PUFA.

Assessment of Lipid Peroxidation in AD has been traditionally hampered by the use of assays that lack specificity and/or sensitivity.

The Isoprostane Family

Prostaglandin isomers produced from oxidative modification of PUFA via a free radicalcatalyzed mechanism.

□ Accumulate in tissue, circulate in plasma and are excreted in urine.

PL

Free Isoprostanes

F₂-Isoprostane Family

Methods to measure F₂-Isoprostanes

- Original GC/MS Method
 - Serial peaks that co-migrates with $PGF_{2\alpha}$, which consist of at least 3 F_2 -IsoPs (30% 8-isoPGF_{2\alpha})
- Modified GC/MS Methods
 - Single peak that co-migrates with specific isomers
- ELISA
 - Relative affinity of antibody for different isomers not known

Preferential formation of F₂-iPs in vivo

F₂-iPs in human urine

Urinary F₂-Isoprostanes

Plasma 8,12-*iso*-iPF_{2 α}-VI levels are elevated in AD patients

CSF 8,12-*iso*-iPF_{2 α}-VI levels are elevated in AD patients

CSF 8,12-*iso*-iPF_{2 α}-VI correlates with disease progression

AD and the Antioxidant Status

	AD (25)	Control (25)
Vitamin C (µM)	16±5.8*	36±6.3
Uric Acid (µM)	210±41	238±59
Vitamin E (µM)	12±5*	30±5
Vitamin A (µM)	2±0.3	2.2±0.5
Lycopene (µM)	0.38±0.09*	0.72±0.19
<i>α-Carotene</i> (μM)	0.035±0.01*	$0.071 {\pm} 0.01$
β-Carotene (μM)	0.21±0.1	$0.24{\pm}0.1$
8,12-iso-iPF _{2α} -VI (pg/ml)	110 ±15*	45 ±10

F₂-iPs and the Antioxidant Status

F₂-iPs in the CNS as markers of AD

Increased concentrations in AD patients compared to controls

- Diseased regions of AD Brain

- FASEB J 1998;12:1777-1783
- Am J Pathol 2001;158:293-297

- Post mortem ventricular CSF

- Ann Neurol 1998;44:410-413
- Am J Pathol 1999;155:863-868

- Intra vitam lumbar CSF from mild AD

- Neurology 1999;52:562-565
- Ann Neurol 2000;48:809-812
- Arch Pathol Lab Med 2001;125:510-512

F₂-iPs in plasma and urine as markers of AD

- Significant increase in AD compared to control:
 - 2 studies (urine and plasma) using GC/MS, 1 study (urine) ELISA.
- No difference between AD and control:
 - 1 study (urine) using GC/MS, 1 study (plasma) ELISA

F₂-iPs and neurodegeneration

- Mechanism(s) underlying the oxidative imbalance and the increase in 8,12-iso-iPF_{2a}-VI in AD are unknown.
- It is unclear whether the increase in Lipid Peroxidation is a cause of a consequence of the neurodegenerative process per se, or they are two independent processes.

F₂-iPs levels and FTD

- Frontotemporal dementia (FTD) is a heterogenous group of neurodegenerative conditions that account for 3 to 10% of all dementia.
- FTD includes: Dementia lacking distinctive histopathology (DLDH), Progressive supranuclear palsy (PSP), FTD with parkinsonism linked to chromosome 17 (FTDP-17), Pick's disease.

F₂-iPs levels and FTD

	n	M/F	Age	PMI
AD	23	11/12	75 ± 2	9.3±1
DLDH	8	2/6	74 ± 3	10 ± 1
Pick's	3	2/1	71±2	8.5±3
FTDP-17	2	M/F	55±7	9±3
PSP	6	2/4	75±2	13 ± 2
Controls	14	8/6	76± 3	13 ± 2

8,12-*iso*-iPF_{2 α}-VI levels are elevated in AD but not in FTD

Vitamin E levels are decreased in AD but not in FTD

Brain 8,12-*iso*-iPF_{2a}-VI levels in FTD

	Frontal	Temporal	Occipi.	Cerebe.
AD	35±2	34±2	14 ± 1	11± 0.5
DLDH	19±1.5	17 ± 1.3	15 ± 1	13 ± 1
Pick's	18±5	21 ± 7	16 ± 5	14 ± 4
FTDP-17	18±1	14 ± 1.1	N/A	15± 1
PSP	1.5 ± 2	12 ± 2	12± 1.1	9.1±2
Controls	15±2	16±1	11 ± 1	12±1

F₂-iPs levels in PD substantia nigra

J.Neurochem. 85,645-650, 2003

8,12-*iso*-iPF_{2 α}-VI as an early marker of AD

- □ AD is characterized by an oxidative imbalance and an increase in 8,12-*iso*-iPF_{2α}-VI.
- It is unclear whether the increase in Lipid Peroxidation is a cause of a consequence of the Aβ accumulation, or they are two independent processes.

8,12-*iso*-iPF_{2a}-VI is elevated in Down's syndrome

MCI and 8,12-iso-iPF_{2a}-VI levels

Since MCI subjects are felt to be a high risk to progress to a clinical diagnosis of AD,

do these individuals, like AD patients, manifest increased levels of this marker ?

Plasma 8,12-*iso*-iPF_{2 α}-VI levels are elevated in MCI

CSF 8,12-*iso*-iPF_{2 α}-VI levels are elevated in MCI

MCI: CSF biomarkers

	AD (n=30)	MCI (n=22)	Controls (20)
CSF tau (pg/ml) Mean (SE) Range	681 (63)* (293-1513)	381 (55) (173-857)	313 (24) (176-461)
CSF Aß₁₋₄₂(%) Mean (SE) Range	4.0 (0.29)** (2.1-9.2)	4.7 (0.4) (1.7-7.9)	6.7 (0.9) (3.4-16.7)

MCI with high 8,12-*iso*-iPF_{2 α}-VI levels converted to AD

Lipid Peroxidation is an early event in AD

- □ Patients who meet standardized clinical criteria for MCI have increased 8,12-*iso*-iPF_{2α}-VI levels.
- □ No significant difference in CSF tau and the percentage of A β 1-40/1-42 was observed between MCI subjects and controls.
- □ The increase in 8,12-*iso*-iPF_{2α}-VI is an early biomarkers for AD.

Annual CSF-MRI Study- 3Time points Outcome Groups

	NL	MCI
Sample size	10	6
% Female	50	33
# Convert to AD	0	2
ApoE E4 +	1	2
Age	63	70
MMSE-baseline	30	28
Education	17	14

Annual Group Isoprostane Differences NL n=10, MCI n=6

Classifications from Longitudinal Isoprostane Changes

NL(10) MCI(6)

Classification Accuracy with Sensitivity = 83%

Interval	Specificity	Overall
Year 0 ~ 1	90	* 88
Year 1 ~ 2	80	81 *

*p<.05

CNS F₂-iPs as AD biomarkers

- Advantages
 - Consistently increased even at the early stages of the disease
 - Closely reflect brain biochemistry and pathology
 - Specific for disease (FTD, PD)
- Disadvantages
 - Invasive procedure
 - Some overlap between controls and patients

Peripheral F₂-iPs as AD biomarkers

- Advantages
 - Much easier to obtain
- Disadvantages
 - Confounded by peripheral factors (selection criteria of the patients)

Application of F₂-iPs as AD biomarkers

- Diagnosis (clinical, pre-clinical)
- Prediction of rate of progression
- Patients selection

Rationale for dose-selection of therapeutics with and without anti-oxidant activity

Thanks to the ADC directors and.....

CET

Lina X. Tang Yuemang Yao Hengxuan Yang

<u>NYU</u>

Mony J. de Leon Susan DeSanti

CNDR-MDC

Virginia M-Y Lee John Q. Trojanowski Chris M. Clark Vicki Zhuchareva

Supported by NIA and the Alzheimer's Association

