

NPDES/SDS Permit Application

Volume V – Tailings Basin and Beneficiation Plant

Prepared for Poly Met Mining, Inc.

July 2016

4300 MarketPointe Drive, Suite 200 Minneapolis, MN 55435 952.832.2600 www.barr.com

NPDES/SDS Permit Application Volume V – Tailings Basin and Beneficiation Plant

July 2016

Contents

Applica	ation	Forms	1
Perr	nit Aj	pplication Checklist for Industrial Wastewater	1
Indiv	vidua	I Industrial Stormwater Multi-Sector NPDES/SDS Permit Application	4
Indu	ustria	Chemical Additives Attachment	7
1.0	Intr	oduction	9
2.0	Ber	eficiation Plant and Tailings Basin Water Management and Infrastructure	16
2.1	E	xisting Conditions	16
2.	.1.1	Historic Conditions	16
2.	.1.2	Current Conditions	17
2.2	E	eneficiation Plant	
2.	.2.1	Facility Description	18
2.	.2.2	Flotation Tailings Characterization	18
2.	.2.3	Chemical Additives	19
2.3	Т	ailings and Associated Water Management and Infrastructure	20
2.	.3.1	Flotation Tailings Basin	21
2.	.3.2	Flotation Tailings Transport and Deposition	23
2.	.3.3	FTB Seepage Capture Systems	23
	2.3.3	B.1 FTB Seepage Containment System	23
	2.3.3	3.2 FTB South Seepage Management System	24
	2.3.3	3.3 Construction Schedule	25
2.	.3.4	Reclamation and Long-Term Closure	25
2.4	S	tormwater Management and Infrastructure	25
2.	.4.1	Significant Materials	27
2.	.4.2	Stormwater Management System	29
2.	.4.3	Drainage Swale	29
2.5	A	daptive Management	29
3.0	Tail	ings Basin Monitoring	30
3.1	E	xisting Baseline Monitoring	30

\\barr.com\projects\Mpls\23 MN\69\2369862\WorkFiles\APA\Permitting\NPDES\Permit Applications\Volume V - Tailings Basin\Volume V - Tailings Basin v1d9.docx

3.	1.1	Surface Water	30
3.	1.2	Groundwater	34
3.2	Pr	roposed Monitoring Plan	37
4.0	Grou	undwater Nondegradation	38
4.1	Re	egulatory Context	38
4.2	Ex	xisting Groundwater Quality	38
4.3		escription of Engineering Controls to Protect Groundwater and Abate Existing roundwater Impacts	39
5.0	Refe	erences	40

List of Tables

Table 1-1	Beneficiation Plant and Tailings Basin Summary	9
Table 1-2	Project Water Definitions	. 12
Table 1-3	Volume V of PolyMet's NPDES/SDS Permit Application Cross-Reference	. 14
Table 2-1	FTB Pond Water Inflows during Operations	. 22
Table 2-2	Significant Materials at the Tailings Basin that have the Potential to Contact	
	Stormwater and Associated Management Methods	. 28
Table 3-1	Summary of Baseline Surface Water Monitoring Stations (2004 through 2015)	. 31
Table 3-2	Baseline Exceedances of Surface Water Standards at Monitoring Stations on the	
	Embarrass River Downstream of Spring Mine Creek, Unnamed (Mud Lake) Creek,	
	Trimble Creek, Unnamed Creek, and Second Creek (2004 through 2015)	. 32
Table 3-3	Baseline Exceedances of Surface Water Standards at the Monitoring Station on the	
	Embarrass River Upstream of Spring Mine Creek (2004, 2006 through 2015)	. 33
Table 3-4	Baseline Exceedances of Groundwater Standards at Uninfluenced Wells Identified in	
	Large Table 3 (2007, 2009 through 2015)	. 35
Table 3-5	Baseline Exceedances of Groundwater Standards at Influenced Wells Identified in	
	Large Table 3 (2007, 2009 through 2015)	. 36
Table 3-6	Baseline Exceedances of Cliffs Erie NPDES/SDS Permit No. MN0054089 Groundwater	
	Intervention Limits at Existing NPDES/SDS Groundwater Monitoring Stations GW001	
	through GW008 (2007 through 2013)	. 37

List of Large Tables

Large Table 1	Tailings Basin and Beneficiation Plant Chemical Additives
---------------	---

- Large Table 2 Tailings Basin Baseline Surface Water Quality Monitoring Summary
- Large Table 3 Tailings Basin Groundwater Monitoring Well Locations
- Large Table 4 Tailings Basin Baseline Groundwater Quality Monitoring Summary

List of Large Figures

Large Figure 1	Site Location
Large Figure 2	Tailings Basin and Beneficiation Plant Existing Conditions
Large Figure 3	Tailings Basin and Beneficiation Plant Layout – Mine Year 1
Large Figure 4	Tailings Basin and Beneficiation Plant Layout – Mine Year 20
Large Figure 5	Existing Baseline Surface Water Conditions

List of Appendices

- Appendix A Permit Application Support Drawings
- Appendix B Chemical Additives Safety Data Sheets
- Appendix C Industrial Stormwater Pollution Prevention Plan (SWPPP) Outline (Draft)

List of Acronyms and Abbreviations

BMP Best Management Practice
bivir best Management Fractice
CIP Clean-in-Place
FEIS Final Environmental Impact Statement
FTB Flotation Tailings Basin
LTVSMC LTV Steel Mining Company
MCL Maximum Concentration Limit
MDNR Minnesota Department of Natural Resources
MPCA Minnesota Pollution Control Agency
NPDES National Pollutant Discharge Elimination System
PMP Probable Maximum Precipitation
SDS State Disposal System
sMCL Secondary Maximum Concentration Limit
SWPPP Stormwater Pollution Prevention Plan
USEPA U.S. Environmental Protection Agency
USGS U.S. Geological Survey
WWTP Waste Water Treatment Plant

Permit Application Checklist for Industrial Wastewater

NPDES/SDS Permit Program

National Pollutant Discharge Elimination System (NPDES)/ State Disposal System (SDS)

Doc Type: Permit Application

Date Received

(MM/DD/YYYY)

Industrial Process Wastewater is wastewater which, during the manufacturing or	MPCA use only	
processing, comes into direct contact with, or is left over from production of a raw material, intermediate product, finished product, byproduct or waste product.		
This checklist is intended to help permit applicants determine the correct forms to submit as part of a	Permit Number	

This checklist is intended to help permit applicants determine the correct forms to submit as part of a complete permit application package. The Minnesota Pollution Control Agency (MPCA) will review the application materials for completeness and notify the applicant within 30 business days of receipt whether the application is incomplete or complete enough for processing.

Print or type application: Before submitting an application, make a photocopy of this form and all other application materials for your records. The MPCA will review the application for completeness and provide an official response to the permittees within 30 days of receipt of all necessary application materials.

Permit application assembly: To expedite the processing and review of your application, put this form and any other applicable permit application checklists for other waste types at the beginning of your submittal package. Please place all other application forms in order as listed on the back of this form. Do not place forms and checklists in an appendix as this makes it difficult and time consuming for staff to locate them.

Completeness instructions: The MPCA will not process an application without properly completed forms. *All sections of required forms must be completed.* If portions do not apply to this facility, please indicate using "n/a" or explain why it doesn't apply. For permit reissuance, all forms information must also be completed in full even if the information requested is not changing from the existing permit. This allows the MPCA to quickly verify that the existing information is correct.

Facility name:	NorthMet Tailings Basin and B	eneficiation Plant		Permit No.: MN TBD	
Reason for Ap	plication (check all that apply):	🛛 New permit	Permit Modification	Permit Reissuance	
			f an application determined as of all returned forms with		
Does this actio	n include construction activit	ies: 🛛 Constru	ction is proposed as part o	f the permit action.	
		🗌 No cons	struction is proposed as par	rt of this permit action.	

Form Submittal

Submit two (2) complete copies of the permit application package. At least one (1) copy must be a hard copy. The other may be an electronic copy. The completed form is to be returned to:

Attn: Fiscal Services – 6th floor Minnesota Pollution Control Agency 520 Lafayette Road North St. Paul, MN 55155-4194

Assistance

If you have any questions regarding the selection of the proper forms or how to complete the required information, contact the MPCA staff assigned to your facility. Staff is assigned by regions and a director of regional staff can be located at: http://www.pca.state.mn.us/index.php/about-mpca/mpca-overview/agency-structure/mpca-offices.html

You may also contact the MPCA at:

- In Metro Area 651-296-6300
- Outside Metro Area: 800-657-3864
- E-mail to: <u>askpca@state.mn.us</u>.

Application Forms Selection (Check all boxes that apply and include the completed form with the submittal.)

Listed below are application forms and required submittals that may be required for a typical industrial wastewater treatment facility application. All required forms must be completed in-full and included with the submittal. The MPCA cannot process an application that does not include all of the required application forms. All forms, instructions, and additional information can be found on the MPCA website at http://www.pca.state.mn.us/enzq915 . Check all boxes that apply. Include a copy of all completed application forms with the submittal.			For MPCA use only		
			Incomplete	Complete	
Required for all water quality permits For Transmittal Form: Refer to Volume I of this Permit Application.					
Transmittal Form (wq-wwprm7-03) http://www.pca.state.mn.us/index.php					
 ☑ Application Fee as specified on the T ☑ Certification Signature as specified or 	ransmittal Form				
Required for all new permits and modifica MPCA Design Flow and Loading Deternation Table 2, Worksheet (wq-wwtp#5.20) http://www.pca.state.mn.us/index.php	ermination Guidelines for Wastewater Treatment Facilities,				
Major NPDES facilities and/or Categorical	NPDES facilities				
U.S. Environmental Protection Agence http://www.pca.state.mn.us/index.php	y (EPA) Application Form 1 (10 pages of instructions, 16 pages total)				
EPA Application Form 2C (5 pages or http://www.pca.state.mn.us/index.php	instructions, 25 pages total)				
Discharge to surface water (for major and Industrial Surface Water Discharge o http://www.pca.state.mn.us/index.php	Process Wastewater Application (wq-wwprm7-20)				
Non-contact cooling water Industrial Non-Contact Cooling Water Application (wq-wwprm7-28) <u>http://www.pca.state.mn.us/index.php/view-document.html?gid=7043</u>					
Discharge to land				_	
Industrial Land Discharge of Process http://www.pca.state.mn.us/index.php					
Industrial Land Application of Industrial By-products Application (wq-wwprm7-27)					
Discharge to municipal wastewater treatment facility Industrial Pretreatment Discharge to a Municipal Wastewater Treatment Facility Application (wq-wwprm7-23) http://www.pca.state.mn.us/index.php/view-document.html?gid=7033					
Treatment facilities using stabilization por	nds				
Municipal and Industrial Pond Attachment (wq-wwprm7-11) http://www.pca.state.mn.us/index.php/view-document.html?gid=7002					
Stormwater management for wastewater treatment permit holders Industrial Stormwater Multi-Sector NPDES/SDS Permit Application (wq-wwprm7-60a) http://www.pca.state.mn.us/index.php/view-document.html?gid=19364					
Instructions for Industrial Stormwater Permit Application Attachment to NPDES/SDS permit (wq-wwprm7-60b) <u>http://www.pca.state.mn.us/index.php/view-document.html?gid=19368</u>					
Additional attachments					
Additional Station Location Attachme <u>http://www.pca.state.mn.us/index.php</u>					
Additional Chemical Additives Attachment (wq-wwprm7-48) http://www.pca.state.mn.us/index.php/view-document.html?gid=7051					
Supplemental information (This information may be information required on one, or more of the forms listed above, such as a map. A single map that provides all the information required from multiple forms may be acceptable. A separate copy of each form is not required.)					
 A schematic drawing or treatment process flow diagram showing all treatment components, direction of flow, compliance monitoring station locations, and discharge locations. 					

List any additional documents, reports, plans, or attachments included as part of the application package. (Common types of supplemental information may include maps, process flow diagrams, facility plans, engineering reports, plans and specifications, technical checklists and other reports related to the facility or proposed project.)				
proposod project.)	Refer to Volume V Table of Contents			
Other waste types Some facilities may also include other waste types that are not covered by this checklist. Facilities with multiple types of wastes should review the other permit application checklists to determine if additional forms and attachments may be required.				
 Permit Application Checklist for Municipal/Domestic Wastewater (wq-wwprm7-04a) Permit Application Checklist for Miscellaneous Waste Types (wq-wwprm7-04c) Permit Application Checklist for Water Treatment (wq-wwprm7-04d) 				

Minnesota Pollution Control Agency 520 Lafayette Road North St. Paul, MN 55155-4194

Individual Industrial Stormwater Multi-Sector NPDES/SDS Permit Application

NPDES/SDS Wastewater Permit Program

Doc Type: Permit Application

Chook if

Purpose: In addition to point source discharges, the National Pollutant Discharge Elimination System (NPDES)/State Disposal System (SDS) Permit Program regulates industrial stormwater (ISW) discharges to surface waters and land. This application applies to municipal and privately owned facilities which have Narrative Activities or a Primary Standard Industrial Classification (SIC) code listed in the *Individual Industrial Stormwater Multi-Sector Permit Application Instructions* and is requesting to incorporate their ISW permit requirements into their individual NPDES/SDS Permit. Please refer to the *Individual Industrial Stormwater Multi-Sector Permit Application Instructions* on the Minnesota Pollution Control Agency (MPCA) website at http://www.pca.state.mn.us/enzq915 detailed instructions.

Instructions: Complete the application by typing or printing in black ink. Attach additional sheets as necessary. Review the attachment and ensure all requested items are submitted with this attachment. Please make a copy for your records. Refer to the *Transmittal Form* for mailing instructions. For more information, please contact the Minnesota Pollution Control Agency (MPCA) at: In Metro Area: 651-296-6300 or Outside Metro Area: 800-657-3864.

Permittee name: Poly Met Mining, Inc. NPDES/SDS permit number: MN TBD

1. Do you currently have coverage under the Industrial Stormwater Multi-Sector General Permit or have certified for No Exposure?

☐ Yes ⊠ No If yes, please provide your permit ID: MNR If no, skip to 2.

Would you like to terminate your coverage under the Industrial Stormwater Multi-Sector General Permit and incorporate your permit requirements into your individual NPDES/SDS permit? Ves No

If no, stop here. You are responsible for maintaining compliance with the requirements of the Industrial Stormwater Multi-Sector General Permit.

2. Select all applicable Narrative Activities from the list below. If none are applicable, skip to 3.

Subsector	Subsector description	Check if applicable
A4	Timber products: discharges from wet decking storage areas	
C1	Runoff from phosphate fertilizer manufacturing facilities that comes into contact with any raw materials, finished product, by-products, or waste products	
D1	Runoff from asphalt paving and roofing material areas	
D2	Discharges from production of asphalt emulsions areas	
E2	Runoff from concrete and gypsum product manufacturing areas	
E3	Cement manufacturing facility, material storage runoff	
J1	Runoff from sand and gravel mining areas	
J2	Runoff from dimension, crushed stone, and nonmetallic mineral mining areas	
J4	Mine dewatering discharges at construction: sand and gravel, or industrial sand mining facilities	
K1	Hazardous waste treatment/storage/disposal facility for discharges not subject to effluent limitations in 40 CFR pt. 445, subp. A	
K2	Hazardous waste treatment/storage/disposal facility for discharges subject to effluent limitations in 40 CFR pt. 445, subp. A	
L1	Municipal solid waste landfill areas closed in accordance with 40 CFR 258.60	
L2	Open or closed non-hazardous waste landfill and land application site not discharging to surface water	
L3	Landfill that discharges to surface waters stormwater that has directly contacted solid waste	
01	Coal fired and oil fired steam electric generating facility	
O2	Nuclear, natural gas fired, and any other fuel source used for steam electric generation	
O3	Runoff from coal storage piles at steam electric generating facility	
T1	Treatment works with design flow of one million gallons per day or more or are required to have an approved pretreatment program under 40 CFR pt. 403	

3. What is your facility's primary SIC code? 1021 (Active Metal Mining Facilities - Copper Ores)

(See the instructions for the definition of "primary" SIC Code.)

If your primary SIC code or Narrative Activity is not listed within the instructions, **Stop here**. An application is not required; keep this document for your records.

4. List up to five additional authorized SIC codes from the instructions, if applicable:

1099 1041

5. If you listed SIC codes 2869, 4512, 4513, 4522, or 4581 in 3 or 4, list the corresponding subsector:

(Examples: 2869-C7 or 4581-S2)

Not Applicable

6. What is the acreage of your *Industrial Activities*?

Round to one decimal place (ex: 10.4): 4,086.4

7. Briefly describe the *industrial activities* performed at this facility:

Industrial activities at the Tailings Basin include collection and distribution of water for the Beneficiation Plant. The Flotation Tailings Basin (FTB) will also store and settle out the Flotation Tailings.

The Beneficiation Plant will crush and grind the ore, then use a flotation process to separate the base and precious sulfide minerals from the tailings. Flotation Tailings will be pumped as a slurry to the FTB.

For further information, refer to Table 1-1 of this volume.

Relatively little precipitation or runoff associated with the Tailings Basin will be managed as industrial stormwater; most will be collected in the FTB Pond or the FTB seepage capture systems and managed as tailings basin water or tailings basin seepage as described in Section 2.3 of this volume.

Precipitation and runoff managed as industrial stormwater will primarily consist of runoff from some portions of the Tailings Basin dam exterior slopes and from the access roads surrounding the seepage capture systems, where not captured by the seepage capture systems.

8. No Exposure. Are any of the following materials or activities exposed to precipitation, now or in the foreseeable future?

Responses are for those areas of the Tailings Basin where precipitation and runoff will be managed as industrial stormwater.

A. Using, storing or cleaning industrial machinery or equipment, and areas where residuals from using, storing or cleaning industrial machinery or equipment remain and are exposed to stormwater	🗌 Yes 🛛 No
B. Materials or residuals on the ground or in stormwater inlets from spills or leaks	🗌 Yes 🖾 No
C. Materials or products from past industrial activity	🖾 Yes 🔲 No
D. Material handling equipment (except adequately maintained vehicles)	🗌 Yes 🖾 No
E. Materials or products during loading or unloading or transporting activities	🗌 Yes 🖾 No
F. Materials or products stored outdoors (except final products intended for outside use, such as new cars, where exposure to stormwater does not result in the discharge of pollutants)	🗌 Yes 🛛 No
G. Materials contained in open, deteriorated or leaking storage drums, barrels, tanks and similar containers	🗌 Yes 🖾 No
H. Materials or products handled or stored on roads or railways owned or maintained by the discharger	🗌 Yes 🖾 No
I. Waste materials (except waste in covered, non-leaking containers like a covered dumpster)	🗌 Yes 🖾 No
J. Application or disposal of process wastewater, unless otherwise permitted (If currently unpermitted, obtain NPDES/SDS permit coverage or authorization from your local Wastewater Treatment Facility)	🗌 Yes 🛛 No
K. Particulate matter or visible deposits of residuals from roof stacks and/or vents not otherwise regulated (i.e., under an air guality control permit) and evident in the stormwater outflow	🗌 Yes 🛛 No

If you checked "yes" to any question(s) A-K, you are not eligible for the No Exposure exclusion. Go to 10.

If you checked "no" to all of the questions in A-K, you qualify for the No Exposure exclusion. Go to 9, sign, and submit form as part of the entire permit application packet to the MPCA.

9. No Exposure Owner and Operator Certification

I certify under penalty of law that I have read and understand the eligibility requirements for claiming a condition of "no exposure" and obtaining an exclusion from NPDES/SDS stormwater permitting; and that there are no discharges of storm water contaminated by exposure to industrial activities or materials from the industrial facility identified in this document.

I understand that I am obligated to submit a no exposure certification form once every five years to the NPDES/SDS permitting authority and, if requested, to the operator of the local Municipal Separate Storm Sewer Systems (MS4) into which this facility discharges.

I understand that I must allow the NPDES/SDS permitting authority, or MS4 operator where the discharge is into the local MS4, to perform inspections to confirm the condition of no exposure and to make such inspection reports publicly available upon request.

I understand that I must obtain coverage under an NPDES Permit prior to any point source discharge of storm water from the facility. I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted.

Based upon my inquiry of the person or persons who manage the system, or those persons directly involved in gathering the information, the information submitted is to the best of my knowledge and belief true, accurate and complete.

I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

(This certification is required by Federal Regulation 40 CFR 122.26(g)(4)(iv).)

Owner authorized signature: (For No Exposure only)	Not Applicable (not applying for No Exposure)	Operator authorized signature: (For No Exposure only)			
Owner (please print):		Operator (if different):			
Title:		Title:			
Signature:		_ Signature:			
Date (mm/dd/yyyy):		Date(mm/dd/yyyy):			

If you were unable to certify for the No Exposure exclusion, continue.

10. Do industrial stormwater discharges flow from the facility to a regulated MS4?

(Ex: St. Paul Municipal Stormwater)

11. List all surface waters that receive your industrial stormwater discharge.

Indicate below the name of surface water(s) and type of surface water (Fen, Ditch, Lake, Lake Trout Lake, Pond, River, Stream, Trout Stream, or Wetland) that receive your industrial stormwater discharges. If you are unsure of your receiving waters, the following website may be useful: <u>http://viewer.nationalmap.gov/viewer/</u>. Once you have found your location select the Hydro-NHD button in the upper right hand corner.

Name of surface water		Type of surface water	
	south and be managed with Pla Section 2.3.2 of Volume IV. Refer Sector NPDES/SDS Permit Applica	s of the Tailings Basin South Dam will drain the Site industrial stormwater as described in to the Individual Industrial Stormwater Multi- ation in Volume IV for surface waters that will strial stormwater discharge.	

12. Monitoring location information.

List all Benchmark and Effluent Monitoring Locations. A minimum of one monitoring location is required. These monitoring locations apply to sheltered product/activity/waste storage areas as well. See instructions for clarification. Attach additional sheets as necessary.

#	Describe the location monitoring location	of the	Latitude	Longitude	List Subsector of Na SIC Codes for monit	arrative Activities and/or toring location
1		Runoff from the	e exterior slopes of	the Tailings Basin S	outh Dam will drain	
2		south and be managed with Plant Site industrial stormwater as described				
3					ndustrial Stormwater	
4		Multi-Sector NPDES/SDS Permit Application in Volume IV for associated benchmark monitoring locations.				
5						
6						

Minnesota Pollution Control Agency

520 Lafayette Road North St. Paul, MN 55155-4194

Industrial Chemical Additives Attachment **NPDES/SDS** Permit Program

Doc Type: Permit Application

The National Pollutant Discharge Elimination System (NPDES)/State Disposal System (SDS) Permit Program regulates wastewater discharges to land and surface waters. This is an attachment to the Industrial Applications for facilities with multiple chemical additives.

Complete the attachment by typing or printing in black ink. Attach additional sheets as necessary. For more information, please contact the Minnesota Pollution Control Agency (MPCA) at: In Metro Area: 651-296-6300 or Outside Metro Area: 800-657-3864.

Permittee name: Poly Met Mining, Inc. Permit number: MN TBD Amount/duration/ frequency of Location of chemical addition in process addition (e.g., to raw water supply, at greensand filter, Average rate of use Maximum rate of use Chemical Purpose before RO unit #2. etc.) (weight or volume per day) (weight or volume per day) SIPX (Sodium Collector: Selectively adsorb minerals Isopropyl Xanthate) 2.74 tons/day 4.79 tons/dav based on hydrophobicity of the collector Flotation Circuit, specifically the Flotation Roughers, Scavengers, and Cleaner Circuit (Primary) and mineral Continuous (1,000 tons/year) (1,750 tons/year) PAX (Potassium Amyl Xanthate) Collector: Selectively adsorb minerals Flotation Circuit, specifically the Flotation 2.74 tons/day 4.79 tons/day based on hydrophobicity of the collector Roughers, Scavengers, and Cleaner (Potential Substitute) and mineral Flotation Cells Continuous (1,000 tons/year) (1,750 tons/year) MIBC (Methyl Isobutyl Carbinol, Frother: Used to improve stability of froth Flotation Circuit, specifically the Flotation 100% Solution) 2.88 tons/dav 4.11 tons/dav bubbles as they rise through the flotation Roughers, Scavengers, and Cleaner (Primary) cells Flotation Cells Continuous (1,050 tons/year) (1,500 tons/year) F-160-05 Frother Frother: Used to improve stability of froth Flotation Circuit, specifically the Flotation 2.88 tons/day 4.11 tons/day bubbles as they rise through the flotation (Potential Roughers, Scavengers, and Cleaner Substitute) cells Flotation Cells Continuous (1,050 tons/year)) (1,500 tons/year) F-160-13 Frother Frother: Used to improve stability of froth Flotation Circuit, specifically the Flotation 2.88 tons/day 4.11 tons/day (Potential bubbles as they rise through the flotation Roughers, Scavengers, and Cleaner Substitute) cells Flotation Cells Continuous (1,050 tons/year) (1,500 tons/year) NALCO DVS4U038 Frother: Used to improve stability of froth Flotation Circuit, specifically the Flotation 2.88 tons/day 4.11 tons/day (Potential bubbles as they rise through the flotation Roughers, Scavengers, and Cleaner Substitute) cells Flotation Cells (1.050 tons/vear) (1.500 tons/vear) Continuous 1.71 tons/dav 2.05 tons/day Copper Sulfate Flotation Circuit, specifically Scavenger Activator: Used to increase the available Pentahydrate adsorption sites on the mineral to allow Cells (625 tons/year) (750 tons/year) Continuous

Elecculant: Promote flocculation of	Elotation Circuit, specifically Concentrate		0.082 tons/day	0.14 tons/day
suspended particles in liquors	Thickeners	Continuous	(30 tons/year)	(50 tons/year)
Flocculant: Promote flocculation of	Flotation Circuit, specifically Concentrate		0.07 tons/day	0.14 tons/day
suspended particles in liquors	Thickeners	Continuous	(25 tons/year)	(50 tons/year)
			0.07 tops/day	0.14 tons/day
Flocculant: Promote flocculation of		Continuous		(50 tons/year)
		Continuous		(50 10113/year)
Elecculant: Promoto flocculation of	Electrical Circuit, specifically Concentrate		0.07 tons/day	0.14 tons/day
suspended particles in liquors	Thickeners	Continuous	(25 tons/year)	(50 tons/year)
Flocculant: Promote flocculation of	Flotation Circuit, specifically Concentrate		0.07 tons/day	0.14 tons/day
suspended particles in liquors	Thickeners	Continuous	(25 tons/year)	(50 tons/year
Flocculant: Used to depress gangue			3.29 tons/day	4.79 tons/day
selectivity towards Cu Ni minerals	Pyrhotite Cleaner Flotation Cells	Continuous	(1,200 tons/year)	(1,750 tons/year)
	Flatation Operations		28.15 tons/day	41.10 tons/day
Flotation Circuit	Cleaner Flotation Clrcuit, specifically the Separation	Continuous	(10,274 tons/year)	(15,000 tons/year)
	Flocculant: Promote flocculation of suspended particles in liquors Flocculant: Used to depress gangue minerals in flotation cells to improve selectivity towards Cu Ni minerals pH Modifier: Used to regulate pH in the	suspended particles in liquorsThickenersFlocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate ThickenersFlocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate ThickenersFlocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate ThickenersFlocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate ThickenersFlocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate ThickenersFlocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate ThickenersFlocculant: Vised to depress gangue minerals in flotation cells to improve selectivity towards Cu Ni mineralsFlotation Circuit, specifically Rougher and Pyrhotite Cleaner Flotation CellsPH Modifier: Used to regulate pH in theFlotation Circuit, specifically the Separation	suspended particles in liquorsThickenersContinuousFlocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate ThickenersContinuousFlocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate ThickenersContinuousFlocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate ThickenersContinuousFlocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate ThickenersContinuousFlocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate ThickenersContinuousFlocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate ThickenersContinuousFlocculant: Used to depress gangue minerals in flotation cells to improve selectivity towards Cu Ni mineralsFlotation Circuit, specifically Rougher and Pyrhotite Cleaner Flotation CellsContinuouspH Modifier: Used to regulate pH in theFlotation Circuit, specifically the SeparationContinuous	Flocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate ThickenersContinuous(30 tons/year)Flocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate Thickeners0.07 tons/day (25 tons/year)Flocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate Thickeners0.07 tons/day (25 tons/year)Flocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate Thickeners0.07 tons/day (25 tons/year)Flocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate Thickeners0.07 tons/day (25 tons/year)Flocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate Thickeners0.07 tons/day (25 tons/year)Flocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate Thickeners0.07 tons/day (25 tons/year)Flocculant: Used to depress gangue minerals in flotation cells to improve selectivity towards Cu Ni mineralsFlotation Circuit, specifically Rougher and Pyrhotite Cleaner Flotation Cells3.29 tons/day (1,200 tons/year)PH Modifier: Used to regulate pH in the pH Modifier: Used to regulate pH in theFlotation Circuit, specifically the Separation28.15 tons/day

*Remember to attach the *Material Safety Data Sheets*, complete product labels and any other information on chemical composition, aquatic toxicity, human health, and environmental fate for each chemical additive.

Please make a copy for your records.

Refer to the Transmittal Form for mailing instructions.

Chemicals listed as potential substitutes are not intended to be used at the average and maximum rates of use unless the primary chemical additive is unavailable.

1.0 Introduction

This volume, Volume V of the National Pollutant Discharge Elimination System (NPDES) / State Disposal System (SDS) Permit Application for Poly Met Mining, Inc.'s (PolyMet) NorthMet Project (Project), focuses on the Tailings Basin and Beneficiation Plant at the Plant Site. Refer to Section 2.0 of Volume I for discussion of the permitting approach for this permit application as it applies to the Tailings Basin and Beneficiation Plant.

The Beneficiation Plant will produce Flotation Tailings throughout 20 years of ore processing. Flotation Tailings are the materials remaining after metallic sulfide minerals are liberated from the finely ground ore in the flotation process. Flotation Tailings will be deposited in the Flotation Tailings Basin (FTB), which will be placed on top of a portion of the existing former LTV Steel Mining Company (LTVSMC) tailings basin. In this permit application, the "FTB" means the newly constructed NorthMet Flotation Tailings Basin, the "LTVSMC tailings basin" means the existing former LTVSMC tailings basin, and the "Tailings Basin" means the combined LTVSMC tailings basin and the FTB. Seepage from the Tailings Basin will be collected by the FTB Seepage Containment System and the FTB South Seepage Management System (collectively known as the FTB seepage capture systems).

Table 1-1 provides a high-level overview of the Beneficiation Plant and the Tailings Basin.

	Beneficiation Plant and Tailings Basin Summary		
Purpose	To produce copper and nickel concentrates, and to safely contain Flotation Tailings generated by the Beneficiation Plant in a manner that results in compliance with applicable water quality standards at appropriate compliance points.		
Location	At the Project Plant Site. The Beneficiation Plant is located at the former LTV Steel Mining Company (LTVSMC) taconite process plant area, and the Tailings Basin lies to the north (Large Figure 1).		
Beneficiation Plant description	The Beneficiation Plant will crush and grind the ore, then use a flotation process to separate the base and precious minerals from the tailings. Flotation Tailings will be pumped as a slurry to the FTB. Water for use in Beneficiation Plant processes will be drawn primarily from the FTB Pond, supplemented as necessary with water from the Plant Reservoir.		
Tailings Basin description	The FTB will be the primary collection and distribution facility for water used by the Beneficiation Plant. The FTB will be constructed atop a portion of the LTVSMC tailings basin. The LTVSMC tailings basin is divided into cells; Cell 1E, Cell 2E, and Cell 2W. The FTB will occupy Cells 1E and 2E. The FTB will expand from an area, measured at the crest of the dams, of about 530 acres at the beginning of operations to a maximum area of about 1,370 acres. FTB dams will be constructed using upstream methods.		

 Table 1-1
 Beneficiation Plant and Tailings Basin Summary

	Beneficiation Plant and Tailings Basin Summary
FTB seepage capture systems	The FTB Seepage Containment System and the FTB South Seepage Management System (collectively known as the FTB seepage capture systems) will collect water seeping from the Tailings Basin via surface or shallow groundwater flow. The FTB Seepage Containment System will surround the western and northern sides and extend to a portion of the eastern side of the Tailings Basin. It will consist of a cutoff wall installed to the top of the bedrock, with a collection trench and drain pipe installed on the upgradient side (tailings basin side) of the cutoff wall. The FTB South Seepage Management System, which currently exists as the SD026 pumpback system, consists of a berm, trench, and pumpback system and collects seepage on the southern side of the FTB.
Water management and discharge	<i>Tailings basin water</i> will be recycled back to the Beneficiation Plant and will not be discharged during operations. Seepage will be collected and either returned to the FTB Pond or routed to the Waste Water Treatment Plant (WWTP).
Estimated commission	Mine Year 1 ⁽¹⁾
Reclamation plan	Upland areas will be revegetated. Exposed beach areas and the pond bottom will be amended with bentonite to limit oxygen infiltration into the tailings. The FTB seepage capture systems will continue to operate, pumping seepage to the WWTP for treatment. Overflow from the FTB Pond will be prevented by pumping any excess pond water to the WWTP.
Long-term closure plan	The FTB seepage capture systems will continue to operate, pumping seepage to the WWTP for treatment. Overflow from the FTB Pond will be prevented by pumping any excess pond water to the WWTP. The ultimate objective is to transition from mechanical water treatment to a non-mechanical water treatment system. During long-term closure, if it can be demonstrated that water in the FTB Pond is <i>stormwater</i> and that it complies with applicable standards, then PolyMet could seek approval to allow excess pond water to discharge through the FTB Closure Overflow structure.

(1) Mine Year 1 is the year when blasting commences to access ore at the Mine Site.

This volume is organized in four sections:

Section 1.0	Provides an overview of the Tailings Basin and Beneficiation Plant and provides the water definitions specific to the volume.
Section 2.0	Describes water management and infrastructure at the Beneficiation Plant and Tailings Basin, including existing conditions, tailings and stormwater management and infrastructure, adaptive management, chemical additives, and reclamation and long-term closure.
Section 3.0	Summarizes the proposed monitoring plan for the Tailings Basin and Beneficiation Plant.
Section 4.0	Describes how the FTB complies with the groundwater nondegradation rule (Minnesota Rules, part 7060.0500).

In accordance with Minnesota Rules, part 6132.0200, the FTB has been designed "to control possible adverse environmental effects of nonferrous metallic mineral mining, to preserve natural resources, and to

encourage planning of future land utilization." The design of the FTB, and the Tailings Basin as a whole, includes systems for managing water in a manner that results in compliance with applicable water quality standards at appropriate compliance points (Section 1.1 of Reference (1)). The water management systems have been designed to achieve compliance based on modeling of expected water quantity and quality; additionally, plans have been developed for adaptive management (Section 6.5 of Reference (1)) and contingency mitigation (Section 6.6 of Reference (1)) as deemed necessary to maintain compliance (refer to Section 2.5 of this volume for further discussion).

Water management at the Beneficiation Plant and the Tailings Basin includes collection and management of *process water, tailings basin water,* and *tailings basin seepage.* The flow of water associated with the Tailings Basin and Beneficiation Plant is included on Large Figure 4 in Volume I, which depicts the general flow of water throughout the Project. Refer to Sections 2.2 through 2.4 of this volume for further details on the management of *process water, tailings basin water, tailings basin seepage,* and *stormwater.*

Table 1-2 provides definitions for the terms *treated mine water*, *process water*, *tailings basin water*, *tailings basin water*, *tailings basin seepage*, *plant reservoir water*, *industrial stormwater*, *construction stormwater*, and *non-contact stormwater*, as well as notes regarding the definitions' application to specific facets at the Tailings Basin and Beneficiation Plant.

As part of this application, PolyMet requests:

- authorization to discharge *stormwater* associated with construction activities occurring during Project operations at the Tailings Basin under the Minnesota NPDES/SDS Construction Stormwater General Permit (Permit No. MNR100001). (Note: A separate application is being submitted requesting authorization to discharge *stormwater* associated with pre-operation construction activities at the Tailings Basin under the Construction Stormwater General Permit.)
- authorization to discharge *stormwater* associated with industrial activities at the Tailings Basin under the Minnesota NPDES/SDS Industrial Stormwater General Permit (Permit No. MNR050000).

Refer to Section 2.4 of this volume for further details on the management of *stormwater* during operations.

Project-Specific Term	Project-Wide Definition ⁽¹⁾	Tailings Basin Specifics
Treated Mine Water	Water routed from the Mine Site to the Tailings Basin via the Treated Water Pipeline.	(no additions to Project-Wide Definition)
Process Water	Water that has been used in the beneficiation process or hydrometallurgical process.	Water that has been used in the beneficiation process.
Tailings Basin Water	 Water in the Tailings Basin Pond or in pores of the tailings, which includes the following sources: process water resulting from the beneficiation process treated mine water routed from the Mine Site via the Treated Water Pipeline tailings basin seepage collected by the FTB seepage capture systems and returned to the Pond treated effluent from the Sewage Treatment System precipitation and runoff from areas tributary to the FTB Pond 	The primary water source for the Beneficiation Plant.
Tailings Basin Seepage	<i>Tailings basin water</i> that infiltrates through Flotation Tailings, LTV Steel Mining Company (LTVSMC) tailings, or Tailings Basin dams and migrates through the base or the external dam faces of the Tailings Basin.	(no additions to Project-Wide Definition)
Plant Reservoir Water	 Water collected and stored within the Plant Reservoir, which includes the following: water pumped from Colby Lake precipitation that falls on the Plant Reservoir 	The make-up water source for the Beneficiation Plant.
Industrial Stormwater	<i>Stormwater</i> associated with industrial activities ⁽²⁾ .	Includes precipitation and runoff from the Tailings Basin dam exterior slopes and from the access roads surrounding the seepage capture systems, where not captured by the seepage capture systems.
Construction Stormwater	Stormwater associated with construction activities ⁽³⁾ .	(no additions to Project-Wide Definition)
Non-Contact Stormwater	Precipitation and runoff that contacts natural, stabilized, or reclaimed surfaces and has not been exposed to mining activities, construction activities ⁽³⁾ , or industrial activities ⁽²⁾ .	Does not include runoff from reclaimed Tailings Basin dam exterior slopes (refer to <i>industrial stormwater</i>).

(1) If two types of waters mix, the mixture is handled as the more actively managed type of water (e.g., a mixture of *non-contact stormwater* and *process water* is managed as *process water*). Management of water mixtures will be governed by regulatory requirements.

(2) As defined in Minnesota Rules, part 7090.0080, subpart 6

(3) As defined in Minnesota Rules, part 7090.0080, subpart 4

During environmental review, PolyMet developed numerous Management Plans to provide details of the design, construction, operation, reclamation, and long-term closure of the Project. The Management Plans rely on and incorporate the results of Data Packages, which are compilations of technical data and related supporting information.

Information from the above-referenced documents, as well as from permit applications and issued permits, will be incorporated into an operations plan for use during operations, reclamation, and long-term closure phases of the Project. Refer to Section 1.10 of Volume I for a description of the Project phases.

To help the reviewer navigate the supporting material for Volume V of this NPDES/SDS Permit Application, Table 1-3 cross references key Tailings Basin and Beneficiation Plant-related topics, PolyMet Management Plans and Data Packages, sections of this narrative, and permit application requirements.

Table 1-3 Volume V of PolyMet's NPDES/SDS Permit Application Cross-Reference

		Location of Relevant Details:					
	Facility Topic	Management Plan / Data Package		NPDES/SDS Volume V	Permit Application Form	Application Question	
Applicable Standard Industrial Classification (SIC) Code(s) and/or Narrative Activities					Individual Industrial Stormwater Multi-Sector NPDES/SDS Permit Application (wq-wwprm7-60a)	2 through 5	
Applicable Federal E	ffluent Limitation Guideline(s)						
Existing Conditions		NorthMet Project: Geotechnical Data Package Volume 1 – Flotation Tailings Basin (Reference (2))	Section 3.0	Section 2.1			
	Facility Description	NorthMet Project: Project Description (Reference (3))	Section 4.3.2	Table 1-1, Section 2.2.1	Individual Industrial Stormwater Multi-Sector NPDES/SDS Permit Application (wq-wwprm7-60a)	7	
	Raw Material Consumed	NorthMet Project: Project Description (Reference (3))	Section 4.3.2.6	Section 2.2.1			
	Product Produced	NorthMet Project: Project Description (Reference (3))	Section 4.3.2.5	Section 2.2.1			
Beneficiation Plant	Operation Initiated	NorthMet Project: Project Description (Reference (3))	Section 4.3.2	Table 1-1, Section 2.2.1			
Deficiciation Flant	Water Supply Source	NorthMet Project: Water Modeling Data Package Volume 2 – Plant Site (Reference (4))	Section 6.1.1	Section 2.2.1			
	Water Balance	NorthMet Project: Water Modeling Data Package Volume 2 – Plant Site (Reference (4))	Section 6.1.1	Section 2.2.1			
	Chemical Additives			Section 2.2.3	Industrial Chemical Additives Attachment (wq-wwprm7-48)	All	
	Geochemical Characteristics	NorthMet Project: Waste Characterization Data Package (Reference (5))	Sections 5.0 and 10.0				
Flotation Tailings	Geotechnical Characteristics	NorthMet Project: Geotechnical Data Package Volume 1 – Flotation Tailings Basin (Reference (2))	Section 5.3	Section 2.2.2			
Characterization	Expected Contribution to Sulfate and Metal Loading	NorthMet Project: Water Modeling Data Package Volume 2 – Plant Site (Reference (4))	Section 6.4.2.5				
	Estimated Volume	NorthMet Project: Project Description (Reference (3))	Section 4.3.2.5				
Process Water				Section 2.3			
	Facility Description	NorthMet Project: Flotation Tailings Management Plan (Reference (6))	Section 1.0	Table 1-1, Section 2.3.1	Individual Industrial Stormwater Multi-Sector NPDES/SDS Permit Application (wq-wwprm7-60a)	7	
	Operation Initiated	NorthMet Project: Flotation Tailings Management Plan (Reference (6))	Section 1.0	Table 1-1			
Tailings Basin	FTB Permit Application Support Drawings	NorthMet Project: Flotation Tailings Management Plan (Reference (6))	Attachment A	Appendix A			
	Dams	NorthMet Project: Flotation Tailings Management Plan (Reference (6))	Section 2.2 and Large Table 1	Section 2.3.1			
	FTB South Seepage Management System	NorthMet Project: Water Management Plan – Plant (Reference (1))	Sections 2.1.3 and 4.1.3	Table 1-1, Sections 2.3.3 and 2.3.3.2			

		Location of Relevant Details:				
	Facility Topic	Management Plan / Data Package		NPDES/SDS Volume V	Permit Application Form	Application Question
	FTB Seepage Containment System	NorthMet Project: Water Management Plan – Plant (Reference (1))	Sections 2.1.4 and 4.1.4	Table 1-1, Sections 2.3.3 and 2.3.3.1		
	FTB Seepage Containment System Permit Application Support Drawings	NorthMet Project: Water Management Plan – Plant (Reference (1))	Attachment B	Appendix A		
	Flotation Tailings Transport and Deposition System	NorthMet Project: Flotation Tailings Management Plan (Reference (6))	Sections 2.3 and 4.2	Section 2.3.2		
Tailings Basin (continued)	Water Balance	NorthMet Project: Water Modeling Data Package Volume 2 – Plant Site (Reference (4))	Section 6.1.5	Section 2.3.1		
	Construction	NorthMet Project: Flotation Tailings Management Plan (Reference (6))	Section 2.2.4	Section 2.3.1		
	Operational Plan	NorthMet Project: Flotation Tailings Management Plan (Reference (6))	Section 4.0			
		NorthMet Project: Flotation Tailings Management Plan (Reference (6))	Section 7.0			
	Reclamation and Long-Term Closure	NorthMet Project: Adaptive Water Management Plan (Reference (7))	Sections 5.1, 6.4, and 6.5	Table 1-1, Section 2.3.4		
		NorthMet Project: Reclamation Plan (Reference (8))	Section 4.1			
	Overall	NorthMet Project: Water Management Plan – Plant (Reference (1))	Section 2.4	- Section 2.4	Individual Industrial Stormwater Multi-Sector NPDES/SDS Permit Application	1 through 12
		NorthMet Project: Flotation Tailings Management Plan (Reference (6))	Section 2.5		(wq-wwprm7-60a)	1 through 12
Stormwater Management and	Significant Materials			Section 2.4.1, Table 2-2	Individual Industrial Stormwater Multi-Sector NPDES/SDS Permit Application (wq-wwprm7-60a)	7 and 8
Infrastructure	Drainage Swale	NorthMet Project: Water Management Plan – Plant (Reference (1))	Section 2.5	Section 2.4.3		
	Receiving Waters			Section 2.4.2	Individual Industrial Stormwater Multi-Sector NPDES/SDS Permit Application (wq-wwprm7-60a)	11
Adaptive Manager	ent and Captionana Mitiantian	NorthMet Project: Water Management Plan – Plant (Reference (1))	Sections 6.5 and 6.6			
Adaptive Management and Contingency Mitigation		NorthMet Project: Adaptive Water Management Plan (Reference (7))	Sections 4.0 and 5.0	Section 2.5		
	Baseline Surface Water Monitoring	NorthMet Project: Water Modeling Data Package Volume 2 – Plant Site (Reference (4))	Sections 4.4.1 and 4.4.4	Section 3.1.1		
Monitoring	Baseline Groundwater Monitoring	NorthMet Project: Water Modeling Data Package Volume 2 – Plant Site (Reference (4))	Sections 4.3.1 and 4.3.4	Section 3.1.2		
	Proposed Monitoring Plan			Section 3.2	Individual Industrial Stormwater Multi-Sector NPDES/SDS Permit Application (wq-wwprm7-60a)	12
Groundwater Nond	egradation			Section 4.0		

Gray shading indicates no corresponding reference material

2.0 Beneficiation Plant and Tailings Basin Water Management and Infrastructure

This section focuses on water management associated with the Beneficiation Plant and Tailings Basin during operations, specifically during the period covered by this permit application (approximately Mine Years 1 through 5). The following sub-sections describe:

- the existing site conditions (Section 2.1)
- the Beneficiation Plant (Section 2.2), including chemical additives proposed for use at the Beneficiation Plant (Section 2.2.3)
- the systems for managing tailings and associated water (Section 2.3), including an overview of plans for reclamation and long-term closure (Section 2.3.4)
- the stormwater management systems (Section 2.4)
- the adaptive management approach that can be used to modify tailings basin water management systems in response to site-specific conditions encountered during operations (Section 2.5)

Permit application support drawings for tailings basin water management systems are included in Appendix A.

2.1 Existing Conditions

2.1.1 Historic Conditions

The LTVSMC tailings basin was used by LTVSMC (and its predecessor Erie Mining Company) for disposal of taconite tailings. The facility was constructed in stages beginning in the 1950s. It was configured as three adjacent cells, identified as Cell 1E, Cell 2E, and Cell 2W, and was developed by first constructing perimeter starter dams and placing tailings from the iron-ore process directly on native material. Perimeter dams were initially constructed from rock, and subsequent dams were constructed of coarse tailings using upstream construction methods. The existing cells and dams are unlined and do not have a core or cutoff other than the fine tailings and slimes that deposited upstream (on the pond side) of the coarse tailings dams.

Historically most seepage from the LTVSMC tailings basin followed the northwesterly gradient in the surficial aquifer and eventually upwelled over a broad area encompassing the toes of the Tailings Basin dams and the wetlands located north and west of the Tailings Basin (surface seepage). A portion of the seepage (estimated to be less than 10%) remained as groundwater flow to the north, northwest, and west of the Tailings Basin (groundwater seepage) (Section 6.4 of Reference (4)). During LTVSMC operations, a system of ditches, pumps, and pipelines captured surface seepage at select locations along the toe of the Tailings Basin dams and returned it to the pond, however some surface seepage was uncontained.

LTVSMC tailings basin operations were discontinued in January 2001 and the basin has been inactive since, except for reclamation activities consistent with the Minnesota Department of Natural Resources (MDNR)-approved Closure Plan currently managed by Cliffs Erie, LLC (Cliffs Erie), and more recently,

activities associated with the April 6, 2010 Consent Decree between Cliffs Erie and the Minnesota Pollution Control Agency (MPCA). Since LTVSMC shut down, the surface seepage flow has decreased and many of the seeps are no longer flowing.

2.1.2 Current Conditions

The LTVSMC tailings basin is in the Embarrass River watershed. *Stormwater* drains to the interior of the basin from a tributary area bounded by the perimeter dam crests, high ground east of Cell 2E, high ground southeast of Cell 1E, and the Spring Mine Lake subwatershed east of Cell 1E. *Stormwater* runoff from the exterior slopes of the West and North Dams drains west-northwest toward Unnamed Creek and north towards Trimble Creek and Unnamed (Mud Lake) Creek. The south dam of Cell 2W drains south and west to the Emergency Basin and out to Unnamed Creek. *Stormwater* from high ground southeast of Cell 1E drains south toward Second Creek in the Partridge River watershed. Large Figure 2 shows existing stormwater conditions at the Plant Site, including the LTVSMC tailings basin.

There is no water ponded in Cell 2W; current groundwater elevations in Cell 2W are below the Tailings Basin surface. Ponds of water remain in Cells 1E and 2E. As it has historically, most seepage, eventually upwells over a broad area encompassing the toes of the Tailings Basin dams and the wetlands located north and west of the Tailings Basin (Attachment C of Reference (1)). Six surface seeps remain active: Seeps 20, 22 (upstream of Cliffs Erie NPDES/SDS Permit MN0054089 monitoring station SD004), and 24 (North Side Seep) on the northwestern corner of Cell 2W; Seep 30 on the northern side of Cell 2E, and Seeps 32 and 33 on the southern side of Cell 1E (upstream of Cliffs Erie NPDES/SDS Permit MN0042536 monitoring station SD026).

Seepage from active seeps is currently collected at three locations and pumped back into Cell 1E by pumpback systems installed in 2011 under the 2010 Consent Decree between Cliffs Erie and the MPCA. The pumpback systems that collect seepage upgradient of existing Cliffs Erie NPDES/SDS Permit MN0054089 monitoring stations SD004 and SD006 will be replaced by the FTB Seepage Containment System (Section 2.1.4 of Reference (1)). PolyMet will continue to operate the existing pumpback system that collects seepage from the southern side of the Tailings Basin upgradient of existing Cliffs Erie NPDES/SDS Permit MN0042536 monitoring station SD026; the system will be referred to as the FTB South Seepage Management System (Section 2.1.3 of Reference (1)). Large Figure 2 shows current conditions at the Tailings Basin, including the location of active seeps and existing pumpback systems.

In the time period after issuance of a permit to PolyMet and before the FTB Seepage Containment System is operational, PolyMet will continue to operate the existing pumpback systems in accordance with the schedule of compliance established under the Consent Decree between Cliffs Erie and the MPCA. The construction schedule for the FTB Seepage Containment System is presented in Section 2.3.3.3 of this volume.

2.2 Beneficiation Plant

2.2.1 Facility Description

The Beneficiation Plant will process ore to produce nickel and copper concentrates. Ore will be crushed at the Coarse Crusher Building, ground in the semi-autogenous grinding mill and ball mill at the Concentrator Building, and then sent to the Flotation Building. In flotation, the minerals containing base and precious metals will be separated from the tailings using a combination of flotation reagents. Inputs to the Beneficiation Plant will include ore delivered by rail from the Mine Site, water from the Tailings Basin and/or Plant Reservoir (*tailings basin water* and/or *plant reservoir water*), various process consumables as detailed in Section 4.3.2.6 of Reference (3), and chemical additives as described in Section 2.2.3 of this volume.

The Beneficiation Plant will require an annual average of approximately 13,800 gpm of water for processing. Nearly all this water (99%) will be piped with the tailings to the FTB; less than 1% will be lost to evaporation in the plant or included with the concentrate (Table 2-1 of Reference (1)).

Water for Beneficiation Plant processes will come primarily from the FTB Pond (*tailings basin water*). Other minor sources of water will include water in the raw ore, reagents, gland seals of slurry pumps, and other processes. Make-up water, as needed, will be drawn from the Plant Reservoir (*plant reservoir water*). The Plant Reservoir will be supplied with raw water pumped from Colby Lake under terms of a water appropriation permit. Make-up water demand will vary depending on factors such as precipitation and Project operations. The Beneficiation Plant demand for make-up water from Colby Lake will average about 560 gpm and will vary from about 25 gpm to about 1,750 gpm depending on the Mine Year (Section 6.1.5 of Reference (4)). The water balance of the Beneficiation Plant is discussed further as part of the overall water balance of the FTB (Section 2.3.1 of this volume).

The Beneficiation Plant will process approximately 32,000 tons of ore per day, and produce approximately 660 tons per day of copper and nickel concentrates and approximately 31,340 tons per day of Flotation Tailings (Section 4.3.2.5 of Reference (3)). Copper concentrates will be dewatered and shipped to customers via rail. Nickel concentrates will be dewatered and shipped directly to customers until the Hydrometallurgical Plant is built to process them on-site. Flotation Tailings will be slurried to the FTB.

2.2.2 Flotation Tailings Characterization

Flotation Tailings representative of the tailings expected from the Beneficiation Plant were produced during pilot-plant processing of Project ore samples in 2006, 2008, and 2009 (Section 2.1.1 of Reference (6)). The Flotation Tailings are composed primarily of plagioclase with lesser amounts of olivine and pyroxenes, and only very small amounts of sulfide minerals, which are of interest because of their potential to release sulfate and metals (Attachment L of Reference (2)). The flotation process is fine-tuned to maximize the capture of sulfide minerals, which are the source of the valuable copper, nickel, and platinum group elements, and minimize the amount lost to tailings.

The Flotation Tailings' potential effect on water quality will depend not only on their composition, but also on the overall geochemical environment. The rate at which constituents, such as sulfate and metals, are

released from the Flotation Tailings will vary depending on factors such as pH level and oxygen availability.

Samples of the Flotation Tailings were submitted for laboratory testing to determine geotechnical and geochemical parameters for use in water quality modeling and FTB planning. Results of geotechnical testing are presented in Section 5.3 of Reference (2). Results of ongoing kinetic testing to measure the release rates of constituents from the Flotation Tailings are presented in Section 5.1 of Reference (5). Ongoing testing of Flotation Tailings samples collected starting in 2006 has shown that samples containing higher sulfur content exhibit lower pHs and higher oxidation rates than samples with lower sulfur content; however, these tests have shown that the tailings will not generate acid: in eight years of testing no pH levels below 6 have been recorded (Section 5.1.4 of Reference (5)). Kinetic testing generally shows that metals leaching is stable or decreases over time, and that within the pH range expected for the FTB (above pH of approximately 7.0), metals leaching is not significantly affected by changes in humidity cell pH (Section 5.1.4 of Reference (5)). The Tailings Basin and associated water management systems have been designed based on the results of the eight years of characterization work on samples of Flotation Tailings.

The NorthMet Waste Characterization Data Package reports how geochemical test results were used in water quality modeling; refer to Section 10 of Reference (5). The expected contribution of the Flotation Tailings to the load of sulfate and metals in *tailings basin seepage* is described in Section 6.4.2.5 of Reference (4). Sources other than the Flotation Tailings that will contribute to the load of sulfate and metals in *tailings basin water* and the existing LTVSMC tailings.

2.2.3 Chemical Additives

Chemical additives will be used during flotation at the Beneficiation Plant to improve recovery of base and precious metals. Specifically each chemical additive will serve as one of the following:

- a collector to promote the adsorption of certain minerals
- a frother to improve froth bubble stability
- an activator to increase mineral adsorption sites
- a flocculant to promote flocculation of suspended particles
- a depressant for gangue minerals to improve selectivity towards copper and nickel minerals
- a pH modifier to regulate pH within the flotation circuit

The amount of each chemical needed in the process can be calculated and adjusted for the amount and characteristics of the ore being processed. As such, in order to maintain system efficacy and monitor costs, the minimal amount of chemicals will be used to provide the maximum metal recoveries.

Chemical additives will, for the most part, report to the flotation concentrate. However, low levels of some additives are expected to be present in the tailings slurry piped to the FTB. Most of the chemical additive

components present within the tailings slurry will biodegrade within the Tailings Basin. Chemical additives that do not biodegrade and that are transported with seepage will be collected by the FTB seepage capture systems (Section 2.3.3 of this volume) and routed to the Waste Water Treatment Plant (WWTP) for treatment. However, by design the WWTP does not remove all constituents, including some cations (i.e., K and Na). WWTP effluent may contain insignificant amounts of a few constituents that originated as chemical additives. Plant Site water modeling includes those additives that are expected to be present in WWTP influent, and the WWTP will be designed to treat all constituents necessary to meet permit conditions.

Additional information regarding proposed chemical additives that may be used in the flotation process is included in Large Table 1. Additionally, Safety Data Sheets and product information labels for each proposed chemical additive are included in Appendix B. Based on project economics and the availability of specific products, the same chemical additive may be acquired from multiple manufacturers provided that the chemical additive is commensurate with the chemical additive proposed within this application.

2.3 Tailings and Associated Water Management and Infrastructure

This section describes the design and operation of the infrastructure that will be used to manage Flotation Tailings, *tailings basin water*, and *tailings basin seepage* in accordance with applicable regulations. This infrastructure will be constructed or upgraded from existing conditions as necessary prior to commencement of Project operations.

From flotation, a slurry composed of *process water* and Flotation Tailings will be pumped to the FTB, where tailings will settle on beaches and at the bottom of the pond. Most water from the FTB Pond will be recycled to the Beneficiation Plant and some will infiltrate into the tailings. The FTB will be the primary collection and distribution point for water used in the beneficiation process. The FTB will receive *process water* from the Beneficiation Plant, *treated mine water* from the Mine Site via the TWP, precipitation, and *tailings basin seepage* collected by the FTB seepage capture systems (the FTB Seepage Containment System and the FTB Seepage Management System), along with other minor sources, as described in Table 2-1 of this volume. Water from the FTB Pond will be recycled back to the Beneficiation Plant.

The FTB is designed as a closed system. No discharge is planned. An emergency overflow will be provided as standard engineering practice for dam safety, but the FTB will be designed and operated with sufficient freeboard that there is a low likelihood of a precipitation event causing an overflow during the lifetime of the basin (Section 2.5 of Reference (6)). *Tailings basin seepage* will be collected by the FTB seepage capture systems. Refer to Section 6.1 of Reference (4) for the details of the Plant Site water balance, including the Tailings Basin.

The following sections describe the design and operation of the major components of the tailings and water management systems, which include the FTB (Section 2.3.1), systems for transport and deposition of Flotation Tailings (Section 2.3.2), and the FTB seepage capture systems (Section 2.3.3). Plans for reclamation and long-term closure are summarized in Section 2.3.4.

2.3.1 Flotation Tailings Basin

The FTB is designed to contain Flotation Tailings generated over 20 years of operation (Section 1.0 of Reference (6)). The basin is sized with sufficient freeboard and emergency overflow infrastructure to safely accommodate the 72-hour probable maximum precipitation (PMP) rainfall event (Sections 2.2.3 and 2.5 of Reference (6)). The PMP, which is defined as "the theoretically greatest depth of precipitation for a given duration over a particular drainage area..." is specified by the Office of Hydrology of the National Oceanic and Atmospheric Administration.

Three basic management techniques will be used to minimize the potential water resource impacts of the Flotation Tailings. First, the ore will be processed using a bulk sulfide flotation process to minimize the amount of sulfide minerals in tailings reporting to the FTB. Second, Flotation Tailings will be deposited as bulk tailings, rather than allowing coarse and fine tailings to segregate, because bulk tailings exhibit lower release rates of metals and other constituents than segregated tailings (Section 5.2 of Reference (5)). Third, FTB design includes features to minimize oxidation of the tailings (Section 2.2.4 of Reference (6)) because oxidation increases release rates of metals from the tailings.

FTB perimeter dams will be raised in an upstream construction method using compacted LTVSMC coarse tailings. Vegetation will be removed from the surface of the existing Tailings Basin in areas where dams will be constructed and tailings will be placed. A bentonite amended oxygen barrier layer will be placed on exterior sides of the FTB dams to limit oxidation of the tailings. The FTB dams are designed to meet all required factors of safety (Section 8.0 of Reference (2)), and will be constructed and operated in accordance with Minnesota state dam safety regulations (Section 2.0 of Reference (2)).

The facility will be constructed in stages, gradually increasing in elevation and size, as documented in Large Table 1 of Reference (6). Initially, Flotation Tailings will be placed in Cell 2E. Three dam lifts are planned during the first five years of operations. In Mine Year 7, after Lift 5 is finished, Cell 2E will merge with Cell 1E. Large Figure 3 shows the configuration of the Tailings Basin at the end of Mine Year 1. A total of eight dam lifts will be constructed during operations. Large Figure 4 shows the footprint of the FTB at the end of operations (Mine Year 20). For additional detail on the design of the FTB, refer to Section 2.2 of Reference (6). The FTB Permit Application Support Drawings are included in Appendix A.

The FTB Pond will receive water from a total of six sources during operations. These inflows and their relative volumes are shown in Table 2-1. This water supply to the FTB Pond will be sufficient to supply most of the Beneficiation Plant water demand. The overall water balance for the Tailings Basin (Section 6.1.5 of Reference (4)) shows that during operations the Project is a net consumer of water.

Table 2-1 FIB Pond Water Inflows during Operations	Table 2-1	FTB Pond Water Inflows during Operations
--	-----------	--

Water source	Description	Approximate relative percent of total inflow ⁽¹⁾
Beneficiation Plant	<i>Process water</i> directly to FTB Pond <i>Process water</i> runoff from FTB beaches	72%
Mine Site	Treated mine water via the TWP	10%
Precipitation	Direct precipitation and runoff from the Tailings Basin watershed	10%
Seepage Capture Systems	<i>Tailings basin seepage</i> , groundwater, and <i>stormwater</i> runoff from upgradient Tailings Basin dams	7%
Waste Water Treatment Plant (WWTP)	Greensand filter backwash and clean-in-place (CIP) membrane waste	1%
Sewage Treatment System	Treated effluent pumped to FTB Pond twice a year	0.1%

(1) Representative inflow during operations, in Mine Year 10 (Section 6.1.2 of Reference (4)). The proportion of various inflows will vary depending on operational factors and weather.

Inflows to the FTB Pond will be managed to keep the water level as high as possible without exceeding dam safety criteria. Setting the pond level as high as safely possible minimizes environmental impacts: smaller beaches minimize fugitive dust generation and reduce the potential for oxidation of exposed Flotation Tailings. FTB Pond level management is detailed in Section 4.2 of Reference (6). Additional details on the FTB Pond water balance are available in Section 6.1 of Reference (4).

No direct discharge from the FTB Pond is planned during operations. Seepage from the FTB Pond will be collected by the FTB seepage capture systems and either returned to the pond or treated at the WWTP prior to discharge from the WWTP (Section 2.3.3 of this volume). Discharge from the WWTP is described in Volume III.

The FTB is designed to prevent overflow. Dam raises are planned to provide ample freeboard to accommodate water level bounce from routine precipitation events (Section 4.2 of Reference (6)). The FTB Pond water level will be managed to maintain adequate freeboard by adjusting the relative amount of water routed back to the pond and sent to the WWTP. An emergency overflow for the FTB during operations will be provided for protection of the dams in the rare event that freeboard within the FTB is not sufficient to contain all *stormwater* from a PMP rainfall event. This is standard practice in dam design, to accommodate overflows in a manner that protects the integrity of the dams. The emergency overflow channel outlet is located near the headwaters of Unnamed (Mud Lake) Creek, as shown on Large Figure 3 and Large Figure 4. However, PMP rainfall events are rare and such an event has a low likelihood of being experienced during the life of the basin (Section 2.2.3 of Reference (6)). Therefore, no discharge from the FTB Pond is expected.

A geotechnical and dam safety monitoring program will be conducted to support long-term performance of the FTB, under the terms of a MDNR Dam Safety Permit (Section 5.0 of Reference (6)).

2.3.2 Flotation Tailings Transport and Deposition

Flotation Tailings will be pumped to the FTB in slurry form through a system of pumps and pipes. For approximately the first seven years of operation, the Flotation Tailings will be placed in Cell 2E. The design of the tailings transport and deposition system will be integrated with FTB dam design to define tailings discharge locations and system head.

The locations of the pipelines used to place the tailings in the FTB will evolve as operations continue. The system can be configured to deposit tailings by gravity flow over beaches or subaqueously in the FTB Pond. Roughly 30% of the tailings will be deposited on the beaches and 70% will be deposited subaqueously in the FTB Pond. Subaqueous deposition will spread tailings across the bottom of the pond without mixing with the pond water and minimize particle size segregation during deposition (Section 2.3 of Reference (6)).

A return water system will be constructed to recycle water from the FTB Pond for use in the Beneficiation Plant. As the dams are raised, the process water return pipeline will be moved to maintain the pipeline at or near the surface of the dam. Additional information on the Flotation Tailings transport and deposition systems is available in Section 2.3 of Reference (6).

2.3.3 FTB Seepage Capture Systems

Seepage from the northern, northwestern, western, and eastern sides of the Tailings Basin will be captured by the FTB Seepage Containment System (Section 2.3.3.1), and seepage from the southern side of the Tailings Basin will be collected by the FTB South Seepage Management System (Section 2.3.3.2). Much of the water collected by the FTB seepage capture systems will be returned to the FTB Pond for reuse at the Beneficiation Plant (Section 6.1.4 of Reference (4)). Water in excess of what can be reused will be pumped to the WWTP for treatment and discharged from the surface water discharge outfalls to Unnamed Creek, Trimble Creek, and Second Creek, as described in Section 2.4.3 of Volume III. The locations of the FTB seepage capture systems and surface water discharge outfalls are shown on Large Figure 3 and Large Figure 4.

2.3.3.1 FTB Seepage Containment System

Seepage from the LTVSMC tailings basin currently flows to the north and west as surface seepage or groundwater seepage; however, this seepage will be managed (collected and treated) when the FTB Seepage Containment System begins operation. The FTB Containment System will collect seepage along the northern, northwestern, western, and eastern toes of the Tailings Basin Dams. Along most of the eastern side of the Tailings Basin, high bedrock will prevent groundwater seepage; no dams are needed in these areas. The FTB Seepage Containment System will collect water seeping from the Tailings Basin via surface and shallow groundwater flow, as well as runoff from the exteriors of the dams on the northern, northwestern, western, and eastern sides of the Tailings Basin, and from the small watershed area between the toes of the dams and the FTB Seepage Containment System.

PolyMet will not deposit tailings in the FTB until the FTB Seepage Containment System along the northern and western sides of the Tailings Basin is fully functional. The segment along the eastern side of the

Tailings Basin will be constructed concurrently with the East Dam, prior to the time that FTB Cells 2E and 1E will merge. No seepage is reasonably expected along the eastern side of the Tailings Basin prior to the merging of FTB Cells 2E and 1E.

The FTB Seepage Containment System will consist of a cutoff wall (a low permeability hydraulic barrier) placed into the existing surficial deposits, with a drainage collection system installed on the upgradient side, as shown in Figure 2-1 of Reference (1). The drainage collection system will have a collection trench filled with granular drainage material and a perforated drain pipe located near the bottom of the trench. Vertical risers extending above ground surface from the drain pipe will collect runoff and surface seepage discharging upgradient of the FTB Seepage Containment System. Refer to Sections 2.1.4 and 4.1.4 of Reference (1) for additional information on the design and operation of the FTB Seepage Containment System. The FTB Seepage Containment System Permit Application Support Drawings are included in Appendix A.

The FTB Seepage Containment System will draw down the water table on the Tailings Basin side of the cutoff wall, maintaining an inward gradient and mitigating the potential for seepage to pass through the cutoff wall (i.e., any seepage through the cutoff wall will be inward into the FTB Seepage Containment System). The cutoff wall will be extended to bedrock in order to minimize the amount of water drawn inward. Groundwater flow modeling indicates that the FTB Seepage Containment System will collect 100% of surface seepage and at least 93% of the groundwater seepage that would otherwise flow to the north, northwest, or west of the Tailings Basin (Attachment C of Reference (1)). Hydrologic assessment indicates that the eastern portion of the FTB Seepage Containment System will have 100% capture efficiency (Section 2.1.4 of Reference (1)). Monitoring wells and piezometers will be installed along the length of the FTB Seepage Containment system to demonstrate its performance, as described in Section 3.2.2.4 of Volume I.

Eliminating the current discharge to the wetlands north and west of the Tailings Basin will significantly reduce inflow to downstream tributaries. To avoid hydrologic impacts to these tributaries, stream flow in Trimble Creek and Unnamed Creek will be augmented with treated water from the WWTP (refer to Section 2.4.3 of Volume III), and stream flow in Unnamed (Mud Lake) Creek will be augmented with *non-contact stormwater* routed via a drainage swale (refer to Section 2.4.3 of this volume).

2.3.3.2 FTB South Seepage Management System

Seepage along the southern side of the Tailings Basin has historically been limited to surface seepage, and it is expected that this will continue. The existing SD026 pumpback system currently collects surface seepage from the southern side of the Tailings Basin as part of the Consent Decree between Cliffs Erie and the MPCA, as described in Section 2.1.2 of this volume. During Project operations, PolyMet will continue to operate this system to collect seepage: it will be known as the FTB South Seepage Management System. Refer to Sections 2.1.3 and 4.1.3 of Reference (1) for additional information on the design and operation of the FTB South Seepage Management System.

Prior to the installation of the SD026 pumpback system in 2011, surface seepage from the southern side of the Tailings Basin was a major contributor to the headwaters of Second Creek. The FTB South Seepage

Management System will continue to collect this seepage, thus continuing to reduce stream flow in Second Creek from pre-Consent Decree levels. To counteract this reduction, stream flow in Second Creek will be augmented with treated water from the WWTP (refer to Section 2.4.3 of Volume III).

2.3.3.3 Construction Schedule

PolyMet will not deposit Flotation Tailings in the FTB until the portion of the FTB Seepage Containment System surrounding the northern, northwestern, and western sides of the Tailings Basin is fully functional. No seepage is reasonably expected along the eastern side of the Tailings Basin prior to the merging of FTB Cells 2E and 1E in Mine Year 7. PolyMet will not merge cells 2E and 1E until the portion of the FTB Seepage Containment System on the eastern side of the Tailings Basin is fully functional. A network of monitoring wells and piezometers will be installed along the FTB Seepage Containment System to verify the performance of the FTB Seepage Containment System, as described in Section 3.2.2.4 of Volume I.

The construction schedule for the FTB Seepage Containment System and associated monitoring system will be based on the time of year the NPDES/SDS permit is issued, as well as receipt of all other necessary permits for this work to commence. Two construction seasons will be necessary to install the FTB Seepage Containment System and associated monitoring wells and test their performance.

2.3.4 Reclamation and Long-Term Closure

The Tailings Basin exterior slopes will be progressively reclaimed during operations. During construction, the exterior dam slopes will be amended with bentonite to limit oxygen infiltration and stabilized with vegetation (Section 7.1 of Reference (6)). For final reclamation, upland areas will be vegetated and exposed beaches will be amended with bentonite to limit oxygen infiltration (Section 7.2 of Reference (6)). The FTB Pond bottom will also be amended with bentonite. The bentonite-amended pond bottom will reduce the amount of water collected by the FTB seepage capture systems. It will also reduce the percolation from the FTB Pond, maintaining a permanent pond as an oxygen barrier above the Flotation Tailings to reduce oxidation, infiltration, and resultant production of chemical constituents (Section 5.1 of Reference (7)).

PolyMet will continue to operate the FTB seepage capture systems during reclamation and long-term closure. During reclamation, the WWTP will continue to treat water collected by the FTB seepage capture systems. FTB Pond overflow will be prevented by pumping any excess pond water to the WWTP. The long-term objective is to replace the WWTP with non-mechanical water treatment systems (Section 6.4 of Reference (7)); however the WWTP will be maintained operable through reclamation and long-term closure until non-mechanical systems are demonstrated and approved. During long-term closure, if it can be demonstrated that water in the FTB Pond is *stormwater* and that it complies with applicable standards, then PolyMet could seek approval to allow the pond to overflow (Section 6.5 of Reference (7)).

2.4 Stormwater Management and Infrastructure

This section describes the management of *stormwater* at the Tailings Basin, including best management practices (BMPs) and the design and operation of the infrastructure that will be used to manage

stormwater in accordance with applicable regulations. *Stormwater* associated with the Beneficiation Plant is included in the discussion of Plant Site *stormwater* in Section 2.3 of Volume IV.

Consistent with the overall Project approach (Table 1-2 of this volume), *stormwater* at the Tailings Basin is defined in three categories:

- construction stormwater, which consists of stormwater associated with construction activities
- industrial stormwater, which consists of stormwater associated with industrial activities
- *non-contact stormwater*, which consists of precipitation and runoff that contacts natural, stabilized, or reclaimed surfaces and has not been exposed to mining activities, construction activities, or industrial activities

Stormwater infrastructure will be constructed or upgraded from existing conditions as necessary prior to commencement of Project operations. As discussed in Section 1.0 of this volume, a separate application is being submitted requesting authorization to discharge *stormwater* associated with pre-operation construction activities at the Tailings Basin under the Construction Stormwater General Permit. Therefore, *stormwater* management during pre-operation construction is not discussed further in this section. In order to meet the permanent stormwater features beyond those discussed herein may be included in the Construction Stormwater Pollution Prevention Plan (SWPPP) and final engineering designs. If additional stormwater features are deemed necessary, additional site-specific information (e.g., depth to bedrock) will be required prior to final design. Such potential stormwater features have not yet been incorporated into the attached Permit Application Support Drawings.

Also as discussed in Section 1.0 of this volume, as part of this application PolyMet requests:

- authorization to discharge *stormwater* associated with construction activities occurring during Project operations at the Tailings Basin under the Construction Stormwater General Permit.
- authorization to discharge *stormwater* associated with industrial activities at the Tailings Basin under the Industrial Stormwater General Permit.

Stormwater associated with construction activities occurring during Project operations will be managed with controls and BMPs, including erosion and sediment control measures, construction water management control measures, dust control measures, and construction site restoration practices. Prior to the start of each phase of construction activities, these management measures will be incorporated into a Construction SWPPP based on detailed construction plans and in accordance with Construction Stormwater General Permit requirements.

PolyMet will develop and implement an Industrial SWPPP in accordance with Industrial Stormwater General Permit requirements, which will incorporate and expand upon the discussions in this section. A draft outline of the Industrial SWPPP is included as Appendix C. Relatively little precipitation or runoff associated with the Tailings Basin will be managed as *stormwater* (including *construction stormwater*, *industrial stormwater*, and *non-contact stormwater*). Most will be collected in the FTB Pond or the FTB seepage capture systems and managed as *tailings basin water* or *tailings basin seepage* as described in Section 2.3 of this volume. Precipitation that falls within the tributary area of the Tailings Basin will run off into the FTB Pond or infiltrate and be managed by the FTB seepage capture systems.

Stormwater drainage patterns at the Tailings Basin during operations are shown on Large Figure 4. Stormwater conditions during operations will be changed from existing conditions as follows:

- Precipitation that falls on the exterior dam faces on the northern, northwestern, western, and eastern sides of the Tailings Basin will be collected by the FTB Seepage Containment System.
- After the HRF is constructed, *stormwater* from a small drainage area on the southern exterior dam of Tailings Basin Cell 2W that currently flows northwest will be redirected to flow south and will be managed with Plant Site *industrial stormwater*, as described in Section 2.3.2 of Volume IV. Prior to the construction of the HRF, this *stormwater* will be collected by the FTB Seepage Containment System.
- After the South Dam of the FTB is constructed, runoff from the South Dam will flow to the south, into the depression at the base of the railroad embankment, and will be managed with Plant Site *stormwater*, as described in Section 2.3.2 of Volume IV.

Stormwater infrastructure associated with the Tailings Basin (described in Section 2.4.2) will take into account these changes to existing stormwater conditions, natural drainage patterns, and the potential for *stormwater* to contact significant materials (Section 2.4.1).

2.4.1 Significant Materials

Significant materials are defined by 40 CFR § 122.26(b)(12) as including, but not limited to: "raw materials; fuels; materials such as solvents, detergents, and plastic pellets; finished materials such as metallic products; raw materials used in food processing or production; hazardous substances designated under Section 101(14) of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); any chemical the facility is required to report pursuant to Section 313 of the Emergency Planning and Community Right-to-Know Act (EPCRA); fertilizers; pesticides; and waste products such as ashes, slag, and sludge that have the potential to be released with stormwater discharges."

Stormwater may come into contact with significant materials at the Tailings Basin and will be managed throughout of the life of the Project using appropriate BMPs, including engineered controls and spill prevention and response procedures, to reduce or eliminate contact or exposure of pollutants to *stormwater* or remove pollutants from *stormwater*.

Table 2-2 describes materials at the Tailings Basin that have the potential to come into contact with *stormwater*, indicates whether the corresponding *stormwater* will be managed as *tailings basin water*, *tailing basin seepage*, *construction stormwater*, or *industrial stormwater* (as defined in Table 1-2 of this

volume), and summarizes the associated management method(s). This information will also be included in the Industrial SWPPP that will be developed for the Plant Site, including the Tailings Basin.

Material	Material description and stormwater pollution potential	Runoff will be managed as:	Management method(s)	
Beneficiation Plant <i>Process</i> <i>Water</i>	<i>Process water</i> used to transport Tailings from the Beneficiation Plant to the FTB	tailings basin water	<i>Tailings basin water</i> will be contained within the FTB. Most <i>tailings basin</i> <i>water</i> from the FTB Pond will be recycled to the Beneficiation Plant and some will infiltrate into the tailings. The FTB seepage capture systems will prevent <i>tailings basin water</i> from migrating off-site.	
Flotation Tailings	Materials remaining after metallic sulfide minerals are liberated and separated from the finely ground ore in the flotation process	tailings basin water		
Treated Mine Water	<i>Treated mine water</i> routed to the FTB from the Mine Site via the TWP	tailings basin water		
Tailings Basin Seepage	Water that has seeped from the Tailings Basin and is collected by the seepage capture systems	tailings basin seepage		
Waste Water Treatment Plant (WWTP) By- products	Clean-in-place (CIP) membrane waste and the greensand filter backwash	tailings basin water		
LTV Steel Mining Company (LTVSMC) Tailings	Existing tailings materials from the former LTVSMC tailings basin; may be used in construction of FTB dams	tailings basin water, tailings basin seepage, construction stormwater, and industrial stormwater	LTVSMC tailings may be used as construction materials at the Tailings Basin. Runoff from features constructed with tailings which drains into the Tailings Basin or is collected by the FTB seepage capture systems will be managed as <i>tailings basin water</i> or <i>tailings basin seepage</i> . Runoff from features constructed with tailings which does not become <i>tailings basin water</i> will be managed as <i>construction stormwater</i> until features are stabilized, at which time runoff will be managed as <i>industrial stormwater</i> .	
Spills and Leaks	May include petroleum and petroleum-based products from vehicles that have the potential to contaminate drainage	industrial stormwater, tailings basin water	Non-structural best management practices (BMPs) will be employed to prevent spills and leaks. If spills and leaks occur at the Tailings Basin, clean- up will be managed in accordance with the Project Spill Prevention, Control, and Countermeasure (SPCC) Plan.	

Table 2-2Significant Materials at the Tailings Basin that have the Potential to Contact
Stormwater and Associated Management Methods

2.4.2 Stormwater Management System

The only areas associated with the Tailings Basin that will generate runoff to be managed as *industrial stormwater* will be the exterior slopes of the South Dam and the access roads which will be constructed to service the FTB Seepage Containment System. Runoff from the exterior slopes of the South Dam will drain south and be managed with Plant Site *industrial stormwater* as described in Section 2.3.2 of Volume IV. Prior to operation, management measures for runoff from Tailings Basin access roads will be incorporated into an Industrial SWPPP based on detailed construction plans. Additional information about *stormwater* management at the Tailings Basin is presented in Section 2.5 of Reference (6).

2.4.3 Drainage Swale

A drainage swale will be constructed east of the Tailings Basin to re-route toward Unnamed (Mud Lake) Creek the *non-contact stormwater* that currently flows into the Tailings Basin (Large Figure 3). This drainage swale will be constructed before the FTB Seepage Containment System is operational. The purposes of the drainage swale are to augment streamflow in Unnamed (Mud Lake) Creek, replacing inflow that will be reduced by the FTB Seepage Containment System, and to prevent water from ponding at the toe of the East Dam.

2.5 Adaptive Management

The tailings basin water management systems have been designed to achieve compliance based on modeling of expected water quantity and quality. As described in Section 1.6 of Volume I, if water quality objectives are not met by these engineering controls, PolyMet will use an adaptive management approach, as necessary, to improve performance. As part of the adaptive management approach at the Tailings Basin, studies will first be undertaken to determine the root cause of the problem. Second, the design or operation of existing (or planned) Project engineering controls will be modified to remedy the root cause. Third, if modifying the design or operation of Project engineering controls is not sufficient, then contingency mitigation actions will be taken. Fourth, outcomes will be monitored and may be evaluated with water modeling. This process is meant to be iterative and will be repeated as necessary. The process for implementing adaptive management at the Tailings Basin is described in Section 6.5 of Reference (1) and Sections 4.0 and 5.0 of Reference (7).

Section 6.6 of Reference (1) presents feasible contingency mitigation actions available to address the following specific situations:

- new surface seeps emerge as the FTB is developed
- FTB Pond water quality is worse than expected
- potential groundwater or surface water concerns downgradient of the FTB

3.0 Tailings Basin Monitoring

Monitoring of baseline water quality and quantity has been ongoing in the vicinity of the Tailings Basin. As the Project commences, monitoring will continue at specific locations for a variety of purposes, including compliance with this permit. Baseline monitoring data from monitoring stations presented in the NorthMet Mining Project and Land Exchange Final Environmental Impact Statement (FEIS) (Reference (9)) (which includes stations proposed in the NPDES/SDS monitoring plan) is described in Section 3.1; Section 3.2 provides information on the proposed monitoring plan.

3.1 Existing Baseline Monitoring

This section summarizes the surface water and groundwater monitoring previously conducted at the Tailings Basin.

3.1.1 Surface Water

Baseline monitoring has been conducted at numerous locations along tributaries to the Embarrass River and the Partridge River that could potentially be affected by the Project, including Unnamed (Mud Lake) Creek, Trimble Creek, Unnamed Creek, and Second Creek. Baseline monitoring stations associated with the Tailings Basin are shown on Large Figure 2 and Large Figure 5.

Daily flow data is available for the Embarrass River from the U.S. Geological Survey (USGS) gaging station 04017000 (Embarrass River at Embarrass, Minnesota) from 1942 to 1964. The hydrology data has been validated and adjusted for use on this Project, as described in Section 4.4.1 of Reference (4). Daily flow data is also available for Second Creek from the USGS gaging station 04015500 (Second Creek near Aurora, Minnesota) from 1955 to 1980; however, during that period flow at this location was heavily affected by mine pit dewatering, so this data has not been used for this Project (Section 1.4.1 of Reference (1)).

Several locations have been monitored for water quality and quantity since 2004, as summarized in Table 3-1; existing surface water monitoring stations are shown on Large Figure 2 and Large Figure 5.

Current Monitoring Station ID	Wate	r Body	Water Quality Monitoring Years	Average Instantaneous Flow (cfs)	Number of Flow Measurements	Flow Measurement Monitoring Years
MLC-1		Unnamed	2011-2015	N/A	N/A	N/A
MLC-2		(Mud Lake)	2011-2015	2.7	4	2011
MLC-3A		Creek	2012	N/A	N/A	N/A
PM-19			2009-2015	1.7	13	2009-2011
TC-1	Embarrass	Trimble Creek	2012	N/A	N/A	N/A
TC-1a	River Tributaries	CIEEK	2012-2015	N/A	N/A	N/A
PM-11/ SW003	Thoulanes		2004, 2006, 2008-2015	3	24	2004-2011
UC-1/PM-9		Unnamed Creek	2004, 2006, 2012-2013	0	4	2004-2006
UC-1a			2013-2015	N/A	N/A	N/A
PM-12/ SW004 ⁽¹⁾			2004, 2006- 2015	9	40	2004-2009
PM-12.2 ⁽¹⁾			2010-2015	4.1	8	2010-2011
PM-12.3	Embarrass R	iver	2010-2015	12.8	8	2010-2011
PM-12.4			2010-2015	17.2	8	2010-2011
PM-13/ SW005			2004, 2006- 2015	61.1	41	2004-2011
PM-7/ SD026	Partridge River Tributary	Second Creek	2004-2015	1.2	21	2004-2007

 Table 3-1
 Summary of Baseline Surface Water Monitoring Stations (2004 through 2015)

(1) This station represents existing conditions upstream of the potential influence of the Tailings Basin.

Refer to Large Table 2 for a summary of the baseline surface water quality monitoring results and Section 4.4.4 of Reference (4) and Reference (10) for detailed baseline surface water quality results. The frequency and extent (i.e., number of constituents) of monitoring varied by location. Monitoring conducted from 2004 through 2008 generally included fewer locations and a wider list of constituents to characterize the baseline conditions within the watersheds. Monitoring from 2008 through 2011 generally focused on a smaller list of constituents and locations to resolve specific issues with the data. More extensive baseline monitoring was resumed in 2012, including additional locations along Embarrass River tributaries and a wider list of constituents (Section 1.4.1 of Reference (1)). Other downstream water bodies monitored for water quality include Sabin Lake (2009-2013), Wynne Lake (2009-2013), and Embarrass Lake (2009-2011); the related water quality data is available in Section 4.4.4.4 of Reference (4).

Under Minnesota Rules, part 7050.0430, Embarrass River, Unnamed (Mud Lake) Creek, Trimble Creek, Unnamed Creek, and Second Creek are unlisted waters with the default classification of Class 2B, 3C, 4A, 5, and 6. Baseline conditions exceed applicable surface water quality standards for several parameters, as

summarized in Table 3-2 for the monitoring stations on the Embarrass River downstream of Spring Mine Creek, Unnamed (Mud Lake) Creek, Trimble Creek, Unnamed Creek, and Second Creek and Table 3-3 for the monitoring station on the Embarrass River upstream of Spring Mine Creek. The baseline water quality of the Embarrass River at PM-12 (upstream of Spring Mine Creek) represents natural background levels. The water quality of the Embarrass River at the other stations listed in Table 3-1, Unnamed (Mud Lake) Creek, Trimble Creek, Unnamed Creek, and Second Creek represents a mixture of natural background levels and the possible influence of past industrial operations.

	Number		Water	Quality S	tandard	l and Numbe	er of Exc	eedances	(1)		
Parameter	of Samples	2B ⁽²⁾		3C		4A		4B		5	
Aluminum (dissolved)	466	125 µg/L	8	N/A	-	N/A	-	N/A	-	N/A	-
Aluminum (total)	523	125 µg/L	68	N/A	-	N/A	-	N/A	-	N/A	-
Cobalt (dissolved)	250	5 µg/L	1	N/A	-	N/A	-	N/A	-	N/A	-
Cobalt (total)	483	5 µg/L	1	N/A	-	N/A	-	N/A	-	N/A	-
Hardness as CaCO3	548	N/A	-	500 mg/L	104	N/A	-	N/A	-	N/A	-
pH (SU) ⁽³⁾	756	6.5-9.0	11	6.0 – 9.0	0	6.0 - 8.5	2	6.0 – 9.0	0	6.0 – 9.0	0
Mercury (dissolved)	24	0.0013 µg/L ⁽²⁾	22	N/A	-	N/A	-	N/A	-	N/A	-
Mercury (total)	264	0.0013 µg/L ⁽²⁾	110	N/A	-	N/A	-	N/A	-	N/A	-
Solids, Total Dissolved	552	N/A	-	N/A	-	700 mg/L	103	1,000 mg/L	3	N/A	-
Specific Conductance	744	N/A	-	N/A	-	1,000 µmhos/cm	178	N/A	-	N/A	-
Sulfate, as SO ₄ ⁽⁴⁾	733	N/A	-	N/A	-	N/A ⁽⁴⁾	-	N/A	-	N/A	-
Thallium	290	0.56 µg/L	1	N/A	-	N/A	-	N/A	-	N/A	-

Table 3-2Baseline Exceedances of Surface Water Standards at Monitoring Stations on the
Embarrass River Downstream of Spring Mine Creek, Unnamed (Mud Lake) Creek,
Trimble Creek, Unnamed Creek, and Second Creek (2004 through 2015)

Note: This assessment includes stations on the Embarrass River downstream of Spring Mine Creek, Unnamed (Mud Lake) Creek, Trimble Creek, Unnamed Creek, and Second Creek identified in Table 3-1 (MLC-1, MLC-2, MLC-3A, PM-19, TC-1, TC-1a, PM-11/ SW003, UC-1/PM-9, UC-1a, PM-12/ SW004, PM-12.2, PM-12.3, PM-12.4, PM-13/ SW005, and PM-7/ SD026). Some of the stations monitored for baseline conditions are not proposed to be monitored as part of this permit.

(1) These columns show applicable water quality standards for the stations and the number of exceedances for each standard.

(2) Minnesota Rules, chapter 7052 establishes additional surface water quality standards for Class 2 water bodies within the Lake Superior Basin. The Lake Superior Basin water quality standards in this table include mercury.

(3) pH exceedances are due to samples being either acidic (less than 6.0 or 6.5 SU) or basic (greater than 8.5 or 9.0 SU) as noted).

(4) The waterbodies corresponding with these monitoring stations are not listed wild rice waters; therefore the Class 4A sulfate standard of 10 mg/L for waters "used for production of wild rice" is not applicable. Monitoring at these stations during the specified time period has observed 611 instances where baseline sulfate concentrations were greater than 10 mg/L.

Table 3-3Baseline Exceedances of Surface Water Standards at the Monitoring Station on
the Embarrass River Upstream of Spring Mine Creek (2004, 2006 through 2015)

	Number	w	ater (Quality Sta	ndar	rd and Num	ber o	f Exceedance	s ⁽¹⁾				
Parameter	of Samples	2B ⁽²⁾		3C 4A		4A		4B		5			
Aluminum (dissolved)	52	125 µg/L	7	N/A	-	N/A	-	N/A	-	N/A	-		
Aluminum (total)	64	125 µg/L	18	N/A	-	N/A	-	N/A	-	N/A	-		
pH (SU) ⁽³⁾	85	6.5-9.0	13	6.0 - 9.0	2	6.0 - 8.5	2	6.0 - 9.0	2	6.0 - 9.0	2		
Mercury (dissolved)	8	0.0013 µg/L ⁽²⁾	8	N/A	-	N/A	-	N/A	-	N/A	-		
Mercury (total)	42	0.0013 µg/L ⁽²⁾	35	N/A	-	N/A	-	N/A	-	N/A	-		
Sulfate, as SO ₄ ⁽⁴⁾	89	N/A	-	N/A	-	N/A ⁽⁴⁾	-	N/A	-	N/A	-		

Note: This assessment includes the station on the Embarrass River upstream of Spring Mine Creek identified in Table 3-1 (PM-12/ SW004). This station is proposed to be monitored as part of this permit.

(1) These columns show applicable water quality standards for the stations and the number of exceedances for each standard.

(2) Minnesota Rules, chapter 7052 establishes additional surface water quality standards for Class 2 water bodies within the Lake Superior Basin. The Lake Superior Basin water quality standards in this table include mercury.

(3) pH exceedances are due to samples being either acidic (less than 6.0 or 6.5 SU) or basic (greater than 8.5 or 9.0 SU) as noted).

(4) The waterbodies corresponding with these monitoring stations are not listed wild rice waters; therefore the Class 4A sulfate standard of 10 mg/L for waters "used for production of wild rice" is not applicable. Monitoring at these stations during the specified time period has observed nine instances where baseline sulfate concentrations were greater than 10 mg/L.

The existing Cliffs Erie NPDES/SDS Permit for the former LTVSMC tailings basin (MN0054089) includes five surface water discharge monitoring stations (SD001, SD002, SD004, SD005, and SD006) and three surface water monitoring stations (SW003 [PM-11], SW004 [PM-12], and SW005 [PM-13]). There is currently no discharge at any of the five existing surface water discharge monitoring stations: no surface seepage is present at SD001, SD002, and SD005 and seepage upgradient of SD004 and SD006 is captured by the temporary pumpback systems installed in 2011 under the 2010 Cliffs Erie Consent Decree (which will be replaced by the FTB Seepage Containment System). The proposed monitoring plan for this Project includes monitoring of surface water monitoring stations SW003 and SW005, but will not include monitoring of SW004 or of any of the existing surface water discharge monitoring stations (refer to Section 3.2 of this volume).

The existing Cliffs Erie NPDES/SDS Permit for the Hoyt Lakes Mining Area (MN0042536) includes one surface water discharge monitoring station (SD026) related to the Tailings Basin. The existing pumpback system, which will continue during Project operations as the FTB South Seepage Management System, was installed in 2011 to collect surface seepage upstream of SD026 and pump it back into LTVSMC tailings basin Cell 1E. Cliffs Erie continues to monitor SD026 as part of their ongoing NPDES/SDS monitoring requirements (Section 1.4.1 of Reference (1)); additionally, for purposes of the Project, baseline surface water quality monitoring of Second Creek was performed at this location (also known as baseline surface water monitoring station PM-7) during 2004, 2006, and 2007. PM-7 is proposed as a surface water monitoring station for the Project (with proposed NPDES/SDS station ID SW020). Data collected at PM-7 is presented in Large Table 5 of Reference (4).

3.1.2 Groundwater

The surficial aquifer consists of a relatively thin mantle of peat, glacial till, and reworked sediments. Depth to bedrock along the containment system alignment to the north, northwest, and west of the Tailings Basin ranges from 3.5 to 42.5 feet. The average thickness of surficial deposits along these alignments is 19.5 feet. No substantial surficial deposits are present along the southern and much of the eastern sides of the Tailings Basin, where the basin abuts bedrock. Surficial deposits underlie a portion of the alignment of the East Dam. Although the thickness of the native sediments below the LTVSMC tailings is unknown, it is estimated that it is similar to the surrounding area. The underlying bedrock is the Giant's Range granite batholith (Section 4.3.1 of Reference (4)).

Groundwater elevations measured around the existing Tailings Basin indicate that groundwater flows to the north and northwest, toward the Embarrass River. As the Tailings Basin was built up over time, a groundwater mound formed beneath the basin due to seepage from the various ponds, which altered local flow directions and rates (Section 4.3.2.2.1 of Reference (4)). Groundwater flow to the south and east is generally constricted by the bedrock outcrops and the underlying bedrock unit of the Giant's Range granite batholith (Reference (11)), which outcrops as a ridge and drainage divide and makes up the highest topography in the area. However, there is a gap in the bedrock hills near the southern end of the Tailings Basin, which allows some seepage to flow south toward Cliffs Erie NPDES/SDS monitoring station SD026, forming the headwaters of Second Creek, a tributary to the lower Partridge River.

Baseline monitoring of groundwater quality and elevation at the existing Tailings Basin has been and continues to be assessed via a network of monitoring wells completed into the unconsolidated surficial aquifer. A summary of these existing wells is available as Large Table 3, and their locations are shown on Large Figure 2.

Sixteen existing monitoring wells provide information on groundwater quality in the surficial deposits in the area of the Tailings Basin. Some of the wells (GW001 through GW008, with the exception of GW003 and GW004, which have been dry in recent years) have been sampled regularly for more than 10 years as part of the NPDES/SDS Permit for the existing LTVSMC tailings basin (NPDES/SDS Permit No. MN0054089 held by Cliffs Erie). The groundwater monitoring well network also includes four wells installed in 2009 specifically for evaluation of baseline conditions for this Project, and three additional wells installed as part of the Cliffs Erie Consent Decree (Section 1.4.2 of Reference (1)). The wells are monitored quarterly, with the exception of the winter (first) quarter. For a complete tabulation of baseline groundwater quality data collected from 2007 through 2015 at the existing Tailings Basin, refer to Section 4.3.4 of Reference (4) and Reference (10). Refer also to Large Table 4, which provides a summary of these results.

Four of the wells, including one upgradient well, are uninfluenced by existing LTVSMC tailings basin seepage and represent natural background conditions (GW002, GW011, GW013, and GW015). Baseline condition exceedances of groundwater quality standards, specifically U.S. Environmental Protection Agency (USEPA) Maximum Concentration Limits (MCLs) and Secondary Maximum Concentration Limits (sMCLs), are summarized in Table 3-4 for these wells, which represent natural background conditions. In accordance with Minnesota Rules, part 7060.0600, subpart 8, "where the background level of natural

origin is reasonably definable and higher than the accepted standard for potable water and the hydrology and extent of the aquifer are known, the natural level may be used as the standard".

The remaining wells at the Tailings Basin have been influenced by historic or current *tailings basin seepage*. Baseline condition exceedances of groundwater quality standards, specifically USEPA MCLs and sMCLs, are summarized in Table 3-5 for these wells. Additionally, exceedances of NPDES/SDS Permit No. MN0054089 groundwater intervention limits from 2007 to April 2014 are summarized in Table 3-6.

	Number of	Water Quality Standard	and Nເ	umber of Exceedan	ices ⁽¹⁾
Parameter	Samples	USEPA MCL ⁽²⁾		USEPA sMC	L ⁽³⁾
Aluminum (dissolved)	72	N/A	-	50 µg/L	28
Aluminum (total)	50	N/A	-	50 µg/L	46
Arsenic (total)	50	10 µg/L	1	N/A	-
Chromium (total)	50	100 µg/L	1	N/A	-
Cyanide	50	0.2 mg/L	1	N/A	-
Iron (dissolved)	65	N/A	-	300 µg/L	1
Iron (total)	50	N/A	-	300 µg/L	35
Lead (total)	50	15 µg/L	1	N/A	-
Manganese (dissolved)	67	N/A	-	50 µg/L	18
Manganese (total)	50	N/A	-	50 µg/L	30
рН	72	N/A	-	6.5-8.5 SU	24
Turbidity	71	5 NTU	42	N/A	-

Table 3-4Baseline Exceedances of Groundwater Standards at Uninfluenced Wells Identified
in Large Table 3 (2007, 2009 through 2015)

Note: This assessment includes uninfluenced stations (GW002, GW011, GW013, and GW015) identified in Large Table 3. Some of the stations monitored for baseline conditions are not proposed to be monitored as part of this permit.

(1) The standards in this column (USEPA Maximum Concentration Limits (MCLs) and Secondary Maximum Concentration Limits (sMCLs)) have been incorporated as Minnesota Class I water quality standards in Minnesota Rules, part 7050.0221. However, it remains to be determined whether these standards are applicable to the groundwater at the Plant Site for compliance purposes, and, even if they are, how they should be applied. Under Minnesota Rules, part 7060.0600, subpart 8, where groundwater in its natural state exceeds the standards for potable water, the natural level may be used as the standard. For certain parameters, the natural background level in groundwater at the NorthMet site exceeds potable standards; accordingly, in these situations the background level should be the standard for compliance purposes, not the MCLs. In addition, even if the Class I standards (i.e., the MCLs) do apply for certain parameters, it is not clear whether Class I A, B, or C should apply (see Minnesota Rules, part 7050.0221, subparts 2 to 4). If Class B or C apply, the "applicable standard" will require groundwater being able to meet the standard after varying levels of treatment.

(2) USEPA Maximum Contaminant Levels. These USEPA groundwater quality standards are incorporated by reference into Minnesota Rules, part 7050.0220, subpart 2.A.

(3) USEPA Secondary Maximum Contaminant Levels. These USEPA groundwater quality standards are incorporated by reference into Minnesota Rules, part 7050.0220, subpart 2.A.

Table 3-5Baseline Exceedances of Groundwater Standards at Influenced Wells Identified in
Large Table 3 (2007, 2009 through 2015)

	Number of	Water Quality Standard	and Nu	mber of Exceedar	ices ⁽¹⁾
Parameter	Samples	USEPA MCL ⁽²⁾	USEPA sMCL ⁽³⁾		
Aluminum (dissolved)	192	N/A	-	50 µg/L	2
Aluminum (total)	138	N/A	-	50 µg/L	83
Arsenic (dissolved)	168	10 µg/L	1	N/A	-
Arsenic (total)	136	10 µg/L	4	N/A	-
Barium (dissolved)	128	2,000 µg/L	4	N/A	-
Beryllium (total)	135	4 µg/L	1	N/A	-
Chromium (total)	135	100 µg/L	5	N/A	-
Fluoride	194	4.0 mg/L	0	2.0 mg/L	19
Iron (dissolved)	159	N/A	-	300 µg/L	95
Iron (total)	138	N/A	-	300 µg/L	105
Lead (total)	135	15 µg/L	5	N/A	-
Manganese (dissolved)	170	N/A	-	50 µg/L	154
Manganese (total)	138	N/A	-	50 µg/L	127
рН	206	N/A	-	6.5-8.5 SU	4
Sulfate, as SO4	195	N/A	-	250 mg/L	59
TDS	169	N/A	-	500 mg/L	99
Turbidity	200	5 NTU	83	N/A	-

Note: This assessment includes influenced stations (GW001, GW005, GW006, GW007, GW008, GW009, GW010, GW012, GW014, and GW016) identified in Large Table 3. Some of the stations monitored for baseline conditions are not proposed to be monitored as part of this permit.

(1) The standards in this column (USEPA Maximum Concentration Limits (MCLs) and Secondary Maximum Concentration Limits (sMCLs)) have been incorporated as Minnesota Class I water quality standards in Minnesota Rules, part 7050.0221. However, it remains to be determined whether these standards are applicable to the groundwater at the Plant Site for compliance purposes, and, even if they are, how they should be applied. Under Minnesota Rules, part 7060.0600, subpart 8, where groundwater in its natural state exceeds the standards for potable water, the natural level may be used as the standard. For certain parameters, the natural background level in groundwater at the NorthMet site exceeds potable standards; accordingly, in these situations the background level should be the standard for compliance purposes, not the MCLs. In addition, even if the Class I standards (i.e., the MCLs) do apply for certain parameters, it is not clear whether Class I A, B, or C should apply (see Minnesota Rules, part 7050.0221, subparts 2 to 4). If Class B or C apply, the "applicable standard" will require groundwater being able to meet the standard after varying levels of treatment.

(2) USEPA Maximum Contaminant Levels. These USEPA groundwater quality standards are incorporated by reference into Minnesota Rules, part 7050.0220, subpart 2.A.

(3) USEPA Secondary Maximum Contaminant Levels. These USEPA groundwater quality standards are incorporated by reference into Minnesota Rules, part 7050.0220, subpart 2.A.

Table 3-6Baseline Exceedances of Cliffs Erie NPDES/SDS Permit No. MN0054089Groundwater Intervention Limits at Existing NPDES/SDS Groundwater Monitoring
Stations GW001 through GW008 (2007 through 2013)

		Permit Limit and Number of Exceedances ⁽¹⁾					
Parameter	Number of Samples	Instantaneous Maximum Intervention		Intervention Li	nit ⁽²⁾		
Boron (dissolved)	74	600 µg/L	0	150 µg/L	51		
Fluoride (total)	118	4.0 mg/L	0	1.0 mg/L	65		
Manganese (dissolved) ⁽³⁾	95	1000 µg/L	45	250 µg/L	61		
Molybdenum (dissolved) ⁽⁴⁾	117	30 µg/L	18	7.5 μg/L	80		
Solids, total dissolved	91	N/A	-	500 mg/L	57		
Sulfate, as SO ₄	119	250 mg/L	35	250 mg/L	35		

(1) These columns reflect the water quality standard and the number of exceedances for the standard.

(2) Instantaneous maximum intervention limit.

(3) 95 of the samples exceed the instantaneous maximum intervention limit. 45 of the samples exceed both the instantaneous maximum and instantaneous maximum intervention limit and have a concentration >1000 µg/L; 16 of the samples are >250 µg/L but <1000 µg/L, and thus only exceed the instantaneous maximum intervention limit.</p>

(4) 80 of the samples exceed the instantaneous maximum intervention limit. 62 of the samples are >7.5 μg/L but <30 μg/L, and thus only exceed the instantaneous maximum intervention limit; the remaining 18 samples are >30 μg/L and thus exceed both the instantaneous maximum and instantaneous maximum intervention limit.

Natural background concentrations in groundwater are above the standards for aluminum and manganese at the Tailings Basin. During the environmental review process, site-specific criteria were developed for solutes where natural background is over the applicable standard (Section 4.3.4.2 of Reference (4)). PolyMet is requesting that MPCA consider a site-specific approach based on natural background conditions for solutes where natural background is over applicable standards where monitoring will be required. Consideration of the chosen approach should also address the spatial variability in background conditions.

3.2 Proposed Monitoring Plan

Monitoring proposed as part of permit requirements for the Tailings Basin and Beneficiation Plant is included in the integrated Plant Site monitoring plan presented in Section 3.0 of Volume I. The proposed Plant Site monitoring plan includes groundwater monitoring stations, surface water monitoring stations, and internal waste stream monitoring stations associated with the Tailings Basin and Beneficiation Plant; these proposed monitoring stations are shown on Large Figure 3 and Large Figure 4.

4.0 Groundwater Nondegradation

PolyMet evaluated the anticipated effects of the Tailings Basin on groundwater quality. Section 4.1 describes how Minnesota's rules governing protection of underground waters apply to groundwater downgradient of the Tailings Basin. Section 4.2 documents that groundwater downgradient of the Tailings Basin has been discernably impacted by previous mining activities and does not reflect natural quality. Section 4.3 summarizes Project activities, including the use of engineering controls and mitigation measures, designed to protect groundwater and abate existing groundwater impacts in accordance with Minnesota's groundwater protection requirements. Existing groundwater quality downgradient of the Tailings Basin is described in Section 3.1.2 of this volume, and PolyMet's plan for ongoing groundwater monitoring is presented in Section 3.2 of this volume.

4.1 Regulatory Context

The State of Minnesota has policies to protect groundwater, including a groundwater nondegradation policy that states that certain waste "shall be controlled as may be necessary to ensure that to the maximum practicable extent the underground waters of the state are maintained at their natural quality" unless MPCA determines that a change is justifiable on certain specified grounds (Minnesota Rules, part 7060.0500). The State's policy on groundwater further states that groundwater should be "protected as nearly as possible in its natural condition." (Minnesota Rules, part 7060.0200). The MPCA rules provide that "[n]atural conditions exist where there is no discernable impact from point or nonpoint source pollutants attributable to human activity or from a physical alteration of wetlands." (Minnesota Rules, part 7050.0170).

Downgradient of the LTVSMC tailings basin, groundwater does not exist in its natural condition, as a result of seepage of pollutants from decades of ferrous mining activities at the site, including in particular ferrous seepage from the LTVSMC tailings basin. Section 4.2 demonstrates, based on available water quality monitoring data, that these previous ferrous mining activities have had a discernable impact on groundwater at various locations downgradient of the LTVSMC tailings basin. Under these circumstances, the Minnesota nondegradation policy of maintaining the natural quality of groundwater to the maximum practicable extent is not applicable. Where groundwater in its "natural condition" is not present to be protected against degradation, the State's groundwater policy focuses instead on "abating [existing] pollution" and "maximiz[ing] the possibility of rehabilitating degraded waters." (Minnesota Rules, part 7060.0400). The Project's design will have the effect of rehabilitating currently degraded groundwater downgradient of the Tailings Basin in accordance with the policies set forth in Minnesota Rules, chapter 7060 (Section 4.3).

4.2 Existing Groundwater Quality

The existing LTVSMC tailings basin has affected downgradient groundwater quality. Effects of the previous ferrous mining activities at the site are observed in, for example, elevated concentrations of TDS (especially chloride, sulfate, and other major cations and anions) and certain trace constituents (such as fluoride and molybdenum) (Section 4.3.4.1 of Reference (4)). Four Plant Site wells, which are not

downgradient of the LTVSMC tailings basin, are uninfluenced by legacy seepage and represent natural background conditions (GW002, GW011, GW013, and GW015) (Section 3.1.2 of this volume). Monitoring locations downgradient of the LTVSMC tailings basin, however, exhibit discernable effects of legacy seepage, including exceedances of Class 1 Standards (Table 3-5) and exceedances of permit limits in Cliffs Erie NPDES/SDS Permit No. MN0054089 (Table 3-6). Existing groundwater quality is summarized in Large Table 4, and existing monitoring stations are shown on Large Figure 2.

4.3 Description of Engineering Controls to Protect Groundwater and Abate Existing Groundwater Impacts

PolyMet will construct the FTB seepage capture systems to capture *tailings basin seepage*, including both nonferrous seepage from the NorthMet Project as well as legacy ferrous seepage, from the northern, northwestern, western, eastern, and southern sides of the Tailings Basin (Sections 2.3.3.1 and 2.3.3.2 of this volume). Additional detail on these systems and their expected performance is presented in Sections 2.1.3 and 2.1.4 of Reference (1), and their locations are shown on Large Figure 4.

The FTB seepage capture systems will abate the existing flow of ferrous seepage to groundwater. Over time, these engineering controls are expected to rehabilitate existing groundwater impacts outside of the FTB seepage capture systems as existing impacts are attenuated. With respect to potential groundwater impacts associated with the Project, the effect of the engineering controls and tailings and water management plans (Flotation Tailings Management Plan [Reference (6)]) and the Plant Site Water Management Plan [Reference (1)]) will be that no exceedances of applicable groundwater quality standards are expected at the property boundary (Section 6.5 of Reference (4)). Groundwater concentrations of some parameters that currently exceed Class 1 standards or existing Cliffs Erie permit limits will decrease over time as a result of the Project engineering controls (for example iron, boron, fluoride, and sulfate, see Attachment H of Reference (4)). These actions by PolyMet will meet the groundwater protection and pollution abatement policies of Minnesota Rules, chapter 7060.

PolyMet will monitor the performance of the FTB seepage capture systems and the groundwater quality downgradient of the Tailings Basin (Section 3.2.2 of Volume I), and if the engineering controls are not achieving the desired outcomes, will implement adaptive management actions or contingency mitigation (Sections 6.5 and 6.6 of Reference (1)), as necessary to comply with all permit conditions.

5.0 References

- 1. Poly Met Mining Inc. NorthMet Project Water Management Plan Plant (v5). July 2016.
- 2. —. NorthMet Project Geotechnical Data Package Vol 1 Flotation Tailings Basin (v7). July 2016.
- 3. —. NorthMet Project Project Description (v9). February 2015.
- 4. —. NorthMet Project Water Modeling Data Package Volume 2 Plant Site (v11). March 2015.
- 5. —. NorthMet Project Waste Characterization Data Package (v12). February 2015.
- 6. —. NorthMet Project Flotation Tailings Management Plan (v6). July 2016.
- 7. —. NorthMet Project Adaptive Water Management Plan (v10). July 2016.
- 8. —. NorthMet Project Reclamation Plan (v7). July 2016.

9. Minnesota Department of Natural Resources, U.S. Army Corps of Engineers and U.S. Forest
 Service. Final Environmental Impact Statement: NorthMet Mining Project and Land Exchange. November 2015.

10. **Barr Engineering Co.** 2014-2015 Surface water and groundwater quality data collected for the NorthMet Project Technical Memorandum to Jennifer Saran, PolyMet Mining Inc. May 27, 2016.

11. Jirsa, M.A., Chandler, V.W. and Lively, R.S. Bedrock Geology of the Mesabi Iron Range. [Map]. s.l. : Minnesota Geological Survey, 2005. Miscellaneous Map M-163.

Large Tables

Large Table 1 Tailings Basin and Beneficiation Plant Chemical Additives

Chemical	Purpose	Location of chemical addition in process	Amount/duration/ frequency of addition	Average rate of use	Maximum rate of use	Storage Location	Storage Capacity	Tank Description	Secondary Containment	
SIPX (Sodium Isopropyl Xanthate) (Primary)	Collector: Selectively adsorb minerals based on hydrophobicity of the collector and mineral	Flotation Circuit, specifically the Flotation Roughers, Scavengers, and Cleaner Circuits	Continuous	2.74 tons/day (1,000 tons/year)	4.79 tons/day (1,750 tons/year)	Flotation Reagents Building	Bulk (< 20 ton, 100% SIPX), AST (0.5% concentration in water)	25,000 gal AST	Building containment	Sodium wi receiving v biodegrad primarily v Some xant to carbon
PAX (Potassium Amyl Xanthate) (Potential Substitute)	Collector: Selectively adsorb minerals based on hydrophobicity of the collector and mineral	Flotation Circuit, specifically the Flotation Roughers, Scavengers, and Cleaner Flotation Cells	Continuous	2.74 tons/day (1,000 tons/year)	4.79 tons/day (1,750 tons/year)	Flotation Reagents Building	Bulk (< 20 ton, 100% PAX), AST (0.5% concentration in water)	25,000 gal AST	Building containment	Potassium receiving v biodegrad sulfate and within the concentrat
MIBC (Methyl Isobutyl Carbinol, 100% Solution) (Primary)	Frother: Used to improve stability of froth bubbles as they rise through the flotation cells	Flotation Circuit, specifically the Flotation Roughers, Scavengers, and Cleaner Flotation Cells	Continuous	2.88 tons/day (1,050 tons/year)	4.11 tons/day (1,500 tons/year)	Flotation Reagents Building	AST (100% solution)	Two ASTs: 15,000 gal AST 3,000 gal AST	Building containment	This produ composed Decompos
F-160-05 Frother (Potential Substitute)	Frother: Used to improve stability of froth bubbles as they rise through the flotation cells	Flotation Circuit, specifically the Flotation Roughers, Scavengers, and Cleaner Flotation Cells	Continuous	2.88 tons/day (1,050 tons/year)	4.11 tons/day (1,500 tons/year)	Flotation Reagents Building	AST (100% solution)	Two ASTs: 15,000 gal AST 3,000 gal AST	Building containment	This producted and will be monoxide,
F-160-13 Frother (Potential Substitute)	Frother: Used to improve stability of froth bubbles as they rise through the flotation cells	Flotation Circuit, specifically the Flotation Roughers, Scavengers, and Cleaner Flotation Cells	Continuous	2.88 tons/day (1,050 tons/year)	4.11 tons/day (1,500 tons/year)	Flotation Reagents Building	AST (100% solution)	Two ASTs: 15,000 gal AST 3,000 gal AST	Building containment	This produ classified a and will be monoxide,
NALCO DVS4U038 (Potential Substitute)	Frother: Used to improve stability of froth bubbles as they rise through the flotation cells	Flotation Circuit, specifically the Flotation Roughers, Scavengers, and Cleaner Flotation Cells	Continuous	2.88 tons/day (1,050 tons/year)	4.11 tons/day (1,500 tons/year)	Flotation Reagents Building	AST (100% solution)	Two ASTs: 15,000 gal AST 3,000 gal AST	Building containment	This produ additive is Safety Dat Decompos
Copper Sulfate Pentahydrate (Primary)	Activator: Used to increase the available adsorption sites on the mineral to allow for adsorption by the Collector	Flotation Circuit, specifically the Scavenger Cells	Continuous	1.71 tons/day (625 tons/year)	2.05 tons/day (750 tons/year)	Flotation Reagents Building	Bulk (< 30 ton pentahydrate crystals), AST (< 10% concentration in water)	17,000 gal AST	Building containment	The coppe iron oxide These pred transporte the sludge Facility (HI
MagnaFloc 10 (Primary)	Flocculant: Promote flocculation of suspended particles in liquors	Flotation Circuit, specifically the Concentrate Thickeners	Continuous	0.082 tons/day (30 tons/year)	0.14 tons/day (50 tons/year)	Flotation Reagents Building	Bulk (< 5 ton, 100% solution), AST (< 1% concentration in water)	15,000 gal AST	Building containment	The floccu several pro (concentra be transpo and final p Tailings to in the proc process.

Fate and Transport

will be transported to the WWTP and be discharged to the g water body. The alcohol component of SIPX will be aded within the Flotation Tailings Basin (FTB). Xanthate y will be oxidized to sulfate and be removed by the WWTP. anthate may be included within the concentrate. Decomposes on disulfide, trithiocarbinate, isopropyl alcohol.

Im will be transported to the WWTP and be discharged to the g water body. The alcohol component of SIPX will be aded within the FTB. Xanthate primarily will be oxidized to and be removed by the WWTP. Some xanthate may be included he concentrate. Decomposes to carbon disulfide. Absorbs to rate particles and not the tailing.

oduct will attach to the concentrate and collector. It is sed of alcohols, which will be biodegraded within the FTB. poses to carbon monoxide and carbon dioxide.

duct will attach to the concentrate and collector. It is not d as dangerous to the environment (per the Safety Data Sheet) be readily biodegraded within the FTB. Decomposes to carbon de, carbon dioxide, aldehydes, ketones, organic acids.

duct will attach to the concentrate and collector. It is not d as dangerous to the environment (per the Safety Data Sheet) be readily biodegraded within the FTB. Decomposes to carbon de, carbon dioxide, aldehydes, ketones, organic acids.

duct will attach to the concentrate and collector. This chemical is not classified as dangerous to the environment (per the Data Sheet) and will be readily biodegraded within the FTB. poses to carbon oxides.

per component of this chemical additive will precipitate with de or as an oxide. The sulfate will be precipitated as gypsum. recipitates will be included in the sludge that will initially be rted to an off-site landfill. Following start-up of the HydroMet, ge will be transported to the Hydrometallurgical Residue (HRF).

culant chemical additives will adsorb to the solids material in process thickeners to improve settling rates and productivity trate and hydrometallurgical thickeners). The flocculants will proted with the solids from these thickeners to intermediate all products. These flocculants will not report with the Flotation to the FTB. All recovered water from these thickeners is reused process facility. This product is biodegradable within the

Chemical	Purpose	Location of chemical addition in process	Amount/duration/ frequency of addition	Average rate of use	Maximum rate of use	Storage Location	Storage Capacity	Tank Description	Secondary Containment	
MagnaFloc 455 (Potential Substitute)	Flocculant: Promote flocculation of suspended particles in liquors	Flotation Circuit, specifically the Concentrate Thickeners	Continuous	0.07 tons/day (25 tons/year)	0.14 tons/day (50 tons/year)	Flotation Reagents Building	Bulk (< 5 ton, 100% solution), AST (< 1% concentration in water)	12,500 gal AST	Building containment	The floccu several pr (concentr transportu final prod Tailings to in the pro process.
Neo NS 6655 (Potential Substitute)	Flocculant: Promote flocculation of suspended particles in liquors	Flotation Circuit, specifically the Concentrate Thickeners	Continuous	0.07 tons/day (25 tons/year)	0.14 tons/day (50 tons/year)	Flotation Reagents Building	Bulk (< 5 ton, 100% solution), AST (< 1% concentration in water)	12,500 gal AST	Building containment	The flocc several p (concenti transport final proc Tailings t in the pro process.
NALCO 83949 (Potential Substitute)	Flocculant: Promote flocculation of suspended particles in liquors	Flotation Circuit, specifically the Concentrate Thickeners	Continuous	0.07 tons/day (25 tons/year)	0.14 tons/day (50 tons/year)	Flotation Reagents Building	Bulk (< 5 ton, 100% solution), AST (< 1% concentration in water)	12,500 gal AST	Building containment	The flocc several p (concenti transport final proc Tailings in the pro process.
NALCO 9877 PULV (Potential Substitute)	Flocculant: Promote flocculation of suspended particles in liquors	Flotation Circuit, specifically the Concentrate Thickeners	Continuous	0.07 tons/day (25 tons/year)	0.14 tons/day (50 tons/year)	Flotation Reagents Building	Bulk (< 5 ton, 100% solution), AST (< 1% concentration in water)	12,500 gal AST	Building containment	The flocor several pro- (concentri transport final proce Flotation is reused the proce
CMC (Carboxyl Methyl Cellulose) (Tennapress PE26) (Primary)	Flocculant: Used to depress gangue minerals in flotation cells to improve selectivity towards Cu Ni minerals	Flotation Circuit, specifically Rougher and Pyrhotite Cleaner Flotation Cells	Continuous	3.29 tons/day (1,200 tons/year)	4.79 tons/day (1,750 tons/year)	Flotation Reagents Building	Bulk (< 25 ton, 100% CMC), AST (< 1% concentration in water)	70,000 gal AST	Building containment	This chen down wit from cellu
Lime Slurry (Primary)	pH Modifier: Used to regulate pH in the Flotation Circuit	Flotation Circuit, specifically the Separation Cleaner Flotation Cells	Continuous	28.15 tons/day (10,274 tons/year)	41.10 tons/day (15,000 tons/year)	Flotation Reagents Building	Bulk (< 400 ton, 100% Hydrated Lime), AST (< 15% solution in water)	80,000 gal AST	Building containment	The calciu neutralize the sludg Following transport

Fate and Transport

cculant chemical additives will adsorb to the solids material in process thickeners to improve settling rates and productivity ntrate and hydrometallurgical thickeners). The flocculants will be pred with the solids from these thickeners to intermediate and oducts. These flocculants will not report with the Flotation is to the FTB. All recovered water from these thickeners is reused process facility. This product is biodegradable within the

cculant chemical additives will adsorb to the solids material in process thickeners to improve settling rates and productivity atrate and hydrometallurgical thickeners). The flocculants will be rted with the solids from these thickeners to intermediate and oducts. These flocculants will not report with theFlotation to the FTB. All recovered water from these thickeners is reused process facility. This product is biodegradable within the

cculant chemical additives will adsorb to the solids material in process thickeners to improve settling rates and productivity ntrate and hydrometallurgical thickeners). The flocculants will be orted with the solids from these thickeners to intermediate and oducts. These flocculants will not report with the Flotation s to the FTB. All recovered water from these thickeners is reused process facility. This product is biodegradable within the

cculant chemical additives will adsorb to the solids material in process thickeners to improve settling rates and productivity strate and hydrometallurgical thickeners). The flocculants will be rted with the solids from these thickeners to intermediate and oducts. These flocculants will not report with the nTailings to the FTB. All recovered water from these thickeners d in the process facility. This product is biodegradable within

ed in the process facility. This product is biodegradable within deess.

emical additive is an organic compound, which will be broken within the FTB. It is an anionoic water soluble polymer derived ellulose and is mainly used for silicate gangue inhibitors.

cium within this chemical additive will either be precipitated or zed. The calcium will be precipitated as gypsum and included in lge that will initially be transported to an off-site landfill. ng start-up of the HydroMet Plant, the sludge will be rted to the HRF.

Large Table 2 Tailings Basin Baseline Surface Water Quality Monitoring Summary

	Wa	ter Quality Data fo 2011-2015	r MLC-1			
Parameter	Fraction	Units	# of Samples	Minimum	Maximum	Average
Alkalinity bicarbonate as CaCO2		General Paramet	ers 29	00.7	652	246
Alkalinity, bicarbonate, as CaCO3 Alkalinity, total, as CaCO3	NA NA	mg/l mg/l	15	90.7 97.7	653 404	246 238
Biochemical Oxygen Demand (5-day)	NA	mg/l	NA	NA	NA	NA
Carbon, dissolved organic	NA	mg/l	NA	NA	NA	NA
Carbon, total organic	NA	mg/l	42	6.9	43.8	19.3
Chemical Oxygen Demand	NA	mg/l	8	37	80.2	56.5
Chloride	Dissolved	mg/l	NA	NA	NA	NA
Chloride	NA	mg/l	42	< 1	24.3	8.54
Chlorophyll a	NA	mg/l	NA	NA	NA	NA
Cyanide	NA	mg/l	NA	NA	NA	NA
Dissolved oxygen	NA	mg/l	40	< 0.1	11.13	6.79
Fluoride	NA	mg/l	2	0.15	0.31	0.23
Hardness, as CaCO3	NA	mg/l	42	83.5	616	220
Nitrogen, Nitrate + Nitrite, as N	NA NA	mg/l	9 8	< 0.1	0.16	0.06
Nitrogen, ammonia, as N Nitrogen, total	NA NA	mg/l mg/l	o NA	< 0.1 NA	NA	0.33 NA
Nitrogen, total kjeldahl (TKN)	NA	mg/l	NA	NA	NA	NA
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA
pH	NA	pH units	40	6.66	7.87	7.26
Phosphorus, total, as P	Dissolved	mg/l	NA	NA	NA	NA
Phosphorus, total, as P	NA	mg/l	8	0.0066	0.14	0.050
Redox (oxidation potential)	NA	mV	NA	NA	NA	NA
Solids, total dissolved	NA	mg/l	42	141	838	331
Solids, total suspended	NA	mg/l	2	2	4	3.00
Specific Conductance @ 25 °C	NA	µmhos/cm	40	199	1362	492
Sulfate, as SO4	Dissolved	mg/l	NA	NA	NA	NA
Sulfate, as SO4	NA	mg/l	42	< 1	118	18.2
Sulfide, as S ² -	NA	mg/l	NA	NA	NA	NA
Temperature	NA	deg C	40	0.08	23.61	9.68
Turbidity	NA	NTU	40	0	80.3	9.95
		Metals	1	1		1
Aluminum	Dissolved	µg/l	42	< 10	51.1	19.3
Aluminum	Total	µg/l	42	< 10	80.1	29.7
Antimony	Total	µg/l	20	< 0.5	< 0.5	NA
Arsenic	Dissolved	µg/l	7	< 0.5	2	1.25
Arsenic	Total	µg/l	41	0.42	7	1.88
Barium	Total	µg/l	15 15	11	93.8	36.0
Beryllium	Total	µg/l	15	< 0.2 < 50	< 0.2	NA 53.7
Boron Cadmium	Total Total	μg/l μg/l	15	< 0.03	< 100 < 0.2	53.7 NA
Calcium	Total	mg/l	42	12.9	88.9	33.9
Chromium	Total	μg/l	15	< 1	1.2	0.55
Cobalt	Dissolved	μg/l	28	< 0.2	1	0.35
Cobalt	Total	μg/l	42	< 0.2	1.1	0.31
Copper	Dissolved	µg/l	28	< 0.5	1.85	0.46
Copper	Total	µg/l	42	0.43	1.5	0.42
Iron	Dissolved	µg/l	28	302	35600	5705
Iron	Total	µg/l	42	265	37600	6111
Lead	Dissolved	µg/l	9	< 0.5	< 0.5	NA
Lead	Total	µg/l	42	< 0.02	< 0.5	0.24
Magnesium	Total	mg/l	42	12.5	95.8	32.9
Manganese	Dissolved	µg/l	28	14.3	1030	364
Manganese	Total	µg/l	42	5	1040	346
Mercury	Dissolved	ng/l	NA	NA	NA	NA
Mercury	Total	ng/l	15	0.655	4	1.74
Methyl Mercury	Dissolved	ng/l	NA	NA	NA	NA
Methyl Mercury	Total	ng/l	NA	NA	NA	NA
Molybdenum	Total	µg/l	8	< 0.3	1.06	0.60
Nickel	Dissolved	µg/l	28	< 0.5	1	0.37
Nickel	Total	µg/l	42	< 0.5	0.92	0.32
Palladium	Total	µg/l	NA	NA	NA	NA
Platinum Potassium	Total	µg/l	NA 15	NA 0.615	NA 4.6	NA 210
Potassium Selenium	Total Total	mg/l	28	< 0.2	4.6	2.10 0.49
		µg/l	8	< 0.2	< 0.2	
Silver Sodium	Total	µg/l	15	< 0.2	< 0.2 57.5	NA 30.4
	Total Total	mg/l µg/l	2	68.8	270	30.4
Strontium Thallium	Total	μg/i μg/l	27	< 0.0004	< 0.02	0.0037
Tin	Total	μg/l	NA	< 0.0004 NA	< 0.02 NA	0.0037 NA
Titanium	Total	μg/i μg/l	NA	NA	NA	NA
Vanadium	Total	μg/l	6	< 3	3.7	1.87
Zinc	Dissolved	μg/l	26	< 6	9.5	4.03
Zinc	Total	μg/l	42	< 6	10.7	3.69

	Wate	er Quality Data fo 2011-2015	r MLC-2			
Parameter	Fraction	Units	# of Samples	Minimum	Maximum	Average
		General Paramet		60 F	210	120
Alkalinity, bicarbonate, as CaCO3	NA NA	mg/l	36 22	60.5 76.5	210 210	130 133
Alkalinity, total, as CaCO3 Biochemical Oxygen Demand (5-day)	NA NA	mg/l mg/l	NA	76.5 NA	NA	NA
Carbon, dissolved organic	NA	mg/l	NA	NA	NA	NA
Carbon, total organic	NA	mg/l	51	10.4	48	22.3
Chemical Oxygen Demand	NA	mg/l	15	34.8	111	70.5
Chloride	Dissolved	mg/l	NA	NA	NA	NA
Chloride	NA	mg/l	54	1.7	22.9	6.57
Chlorophyll a	NA	mg/l	NA	NA	NA	NA
Cyanide	NA	mg/l	NA	NA	NA	NA
Dissolved oxygen	NA	mg/l	53	< 0.1	11.5	4.80
Fluoride Hardness, as CaCO3	NA	mg/l	4 51	0.2	0.33 199	0.25
Nitrogen, Nitrate + Nitrite, as N	NA NA	mg/l mg/l	15	< 0.1	0.12	0.06
Nitrogen, ammonia, as N	NA	mg/l	15	< 0.1	2.08	0.34
Nitrogen, total	NA	mg/l	NA	NA	NA	NA
Nitrogen, total kjeldahl (TKN)	NA	mg/l	NA	NA	NA	NA
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA
рН	NA	pH units	53	6.4	7.76	7.14
Phosphorus, total, as P	Dissolved	mg/l	NA	NA	NA	NA
Phosphorus, total, as P	NA	mg/l	15	< 0.004	0.25	0.048
Redox (oxidation potential)	NA	mV	1	NA	NA	456
Solids, total dissolved	NA	mg/l	51	110	335	210
Solids, total suspended	NA	mg/l	5	< 1	24	7.39
Specific Conductance @ 25 °C Sulfate, as SO4	NA Dissolved	µmhos/cm	NA	58.4 NA	454.9 NA	263 NA
Sulfate, as SO4 Sulfate, as SO4	NA	mg/l mg/l	54	< 1	40.2	4.59
Sulfide, as S ² -	NA	mg/l	NA	NA	NA	NA
Temperature	NA	deg C	53	-0.01	21.25	8.83
Turbidity	NA	NTU	53	0	150.3	10.6
,		Metals				
Aluminum	Dissolved	µg/l	54	< 10	154	30.6
Aluminum	Total	µg/l	54	11.2	1420	77.8
Antimony	Total	µg/l	30	< 0.5	< 0.5	NA
Arsenic	Dissolved	µg/l	7	0.54	1.6	1.06
Arsenic	Total	µg/l	51	0.48	3.1	1.17
Barium	Total	µg/l	18	10.5	61.6	26.5
Beryllium	Total Total	μg/l μg/l	18 18	< 0.2 < 50	< 0.2 < 100	NA NA
Boron Cadmium	Total	μg/l	18	< 0.03	< 0.2	0.08
Calcium	Total	mg/l	51	9.1	32.7	19.9
Chromium	Total	μg/l	18	< 1	1.6	0.61
Cobalt	Dissolved	µg/l	37	< 0.2	1.13	0.39
Cobalt	Total	µg/l	51	< 0.2	1.2	0.39
Copper	Dissolved	µg/l	37	< 0.15	1.6	0.46
Copper	Total	µg/l	51	0.2	7.5	0.62
Iron	Dissolved	µg/l	37	212	26900	3454
Iron	Total	µg/l	51	160	27100	4117
Lead	Dissolved	µg/l	10	< 0.5	< 0.5	NA
Lead	Total	µg/l	47	0.06	0.57	0.25
Magnesium	Total	mg/l	51 36	8.2 7.2	30.1	16.9 342
Manganese Manganese	Dissolved Total	μg/l μg/l	51	3.5	1310 1310	342
Manganese	Dissolved	ng/l	NA	NA	NA	NA
Mercury	Total	ng/l	22	0.9	6.9	2.98
Methyl Mercury	Dissolved	ng/l	NA	NA	NA	NA
Methyl Mercury	Total	ng/l	4	< 0.1	3.74	1.26
Molybdenum	Total	μg/l	15	0.21	0.92	0.46
Nickel	Dissolved	μg/l	37	< 0.5	2.2	0.50
Nickel	Total	µg/l	51	< 0.5	3	0.52
Palladium	Total	μg/l	NA	NA	NA	NA
Platinum	Total	µg/l	NA	NA	NA	NA
Potassium	Total	mg/l	22	0.33	4.4	1.39
Selenium	Total	µg/l	33	< 0.2	< 1	0.47
Silver Sadium	Total	µg/l	11	< 0.2	< 0.2	NA
Sodium Strontium	Total Total	mg/l	22 4	9.5 60.9	33.2 136	16.7 102
Thallium	Total	μg/l μg/l	35	< 0.0004	0.03	0.0058
Tin	Total	μg/l	NA	< 0.0004 NA	NA	0.0038 NA
Titanium	Total	μg/l	4	< 10	< 10	NA
Vanadium	Total	μg/l	11	< 3	< 10	NA
Zinc	Dissolved	µg/l	37	< 6	47.4	6.01
Zinc	Total	µg/l	51	< 6	42.4	4.87

	Wate	r Quality Data for 2012	MLC-3A			
Parameter	Fraction	Units General Paramete	# of Samples	Minimum	Maximum	Average
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	1	NA	NA	448
Alkalinity, total, as CaCO3	NA	mg/l	1	NA	NA	448
Biochemical Oxygen Demand (5-day)	NA	mg/l	NA	NA	NA	NA
Carbon, dissolved organic	NA	mg/l	NA	NA	NA	NA
Carbon, total organic	NA	mg/l	2	14.3	15	14.7
Chlorophyll a	NA	mg/l	NA	NA	NA	NA
Chemical Oxygen Demand Chloride	NA	mg/l	1 NA	NA	NA	37.4 NA
Chloride	Dissolved NA	mg/l mg/l	2	NA 13.2	NA 22.8	18.0
Cyanide	NA	mg/l	NA	NA	NA	NA
Dissolved oxygen	NA	mg/l	2	4.8	5.2	5.00
Fluoride	NA	mg/l	NA	NA	NA	NA
Hardness, as CaCO3	NA	mg/l	2	236	394	315
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	1	< 0.1	NA	NA
Nitrogen, ammonia, as N	NA	mg/l	1	< 0.1	NA	NA
Nitrogen, total	NA	mg/l	NA	NA	NA	NA
Nitrogen, total kjeldahl (TKN)	NA	mg/l	NA	NA	NA	NA
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA
pH	NA	pH units	2	7.07	7.6	7.34
Phosphorus, total, as P	Dissolved	mg/l	NA	NA	NA	NA
Phosphorus, total, as P	NA	mg/l	1	NA	NA	0.005
Redox (oxidation potential) Solids, total dissolved	NA	mV mg/l	<u>NA</u> 2	NA 369	NA 613	NA 491
Solids, total dissolved Solids, total suspended	NA NA	mg/l	 NA	369 NA	613 NA	491 NA
Solids, total suspended Specific Conductance @ 25 °C	NA NA	mg/l µmhos/cm	2 NA	506.1	NA 885.2	696
Sulfate, as SO4	Dissolved	mg/l	NA	NA	NA	NA
Sulfate, as SO4	NA	mg/l	2	17.3	53.2	35.3
Sulfide, as S ² -	NA	mg/l	NA	NA	NA	NA
Temperature, °C	NA	deg C	2	0.72	4.3	2.51
Turbidity	NA	NTU	2	0	0	NA
		Metals				
Aluminum	Dissolved	µg/l	2	< 20	< 20	NA
Aluminum	Total	µg/l	2	< 20	< 20	NA
Antimony	Total	µg/l	2	< 0.5	< 0.5	NA
Arsenic	Dissolved	µg/l	NA	NA	NA	NA
Arsenic	Total	µg/l	2	< 0.5	0.59	0.42
Barium	Total	µg/l	1	NA	NA	37.3
Beryllium	Total	µg/l	1	< 0.2	NA	NA
Boron	Total	µg/l	1	NA	NA	160
Cadmium	Total	µg/l	1	< 0.2	NA	NA
Calcium	Total	mg/l	2	34.5	59.8	47.2
Chromium	Total	µg/l	1	< 1	NA	NA
Cobalt	Dissolved	µg/l	2	< 0.2	< 0.2	NA
Cobalt	Total	µg/l	2	< 0.2	0.2	0.15
Copper	Dissolved Total	µg/l	2	< 0.5 0.53	0.55 0.59	0.40
Copper Iron	Dissolved	µg/l	2	136	231	184
iron	Total	μg/l μg/l	2	275	231	280
Lead	Dissolved	μg/l	NA	NA	NA	NA
Lead	Total	μg/l	2	< 0.5	< 0.5	NA
Magnesium	Total	mg/l	2	36.4	59.4	47.9
Manganese	Dissolved	μg/l	2	19.2	397	208
Manganese	Total	µg/l	2	19.1	402	211
Mercury	Dissolved	ng/L	NA	NA	NA	NA
Mercury	Total	ng/L	1	0.99	1.3	1.15
Methyl Mercury	Dissolved	ng/L	NA	NA	NA	NA
Methyl Mercury	Total	ng/L	NA	NA	NA	NA
Molybdenum	Total	µg/l	1	NA	NA	1.7
Nickel	Dissolved	µg/l	2	< 0.5	< 0.5	NA
Nickel	Total	µg/l	2	< 0.5	0.59	0.42
Palladium	Total	µg/l	NA	NA	NA	NA
Platinum	Total	µg/l	NA	NA	NA	NA
Potassium	Total	mg/l	1	NA	NA	3
Selenium	Total	µg/l	2	< 1	< 1	NA
Silver	Total	µg/l	1	< 0.2	NA	NA
Sodium	Total	mg/l	1	NA	NA	63.9
Strontium	Total	μg/l	NA	NA	NA	NA
Thallium Tin	Total	µg/l	2	< 0.0004	< 0.005	NA
Tin Titanium	Total	µg/l	NA	NA	NA	NA
Titanium Vanadium	Total	µg/l	NA 1	NA	NA	NA
Vanadium Zinc	Total Dissolved	μg/l μg/l	1 2	< 3	NA < 6	NA NA
Zinc	LUSSOIVed	U0/1	/	ı < b	<pre> < n</pre>	I INA

	Wate	er Quality Data fo	r PM-19			
Parameter	Fraction	2009-2015 Units	# of Samples	Minimum	Maximum	Average
		General Paramet			T	
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	<u> </u>	123	535	337
Alkalinity, total, as CaCO3 Biochemical Oxygen Demand (5-day)	NA NA	mg/l mg/l	25	161 < 2.4	514 < 3	339 NA
Carbon, dissolved organic	NA	mg/l	11	11.1	24.5	16.5
Carbon, total organic	NA	mg/l	54	10.3	33.7	16.9
Chemical Oxygen Demand	NA	mg/l	18	29.8	79.7	48.9
Chloride	Dissolved	mg/l	1	NA	NA	9.59
Chloride	NA	mg/l	69	6.7	55.1	16.1
Chlorophyll a	NA	mg/l	NA	NA	NA	NA
Cyanide Dissolved oxygen	NA NA	mg/l mg/l	NA 59	NA < 0.1	NA 11.68	NA 6.04
Fluoride	NA	mg/l	2	0.87	0.95	0.04
Hardness, as CaCO3	NA	mg/l	54	121	530	310
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	18	< 0.1	< 0.1	NA
Nitrogen, ammonia, as N	NA	mg/l	15	< 0.1	0.39	0.11
Nitrogen, total	NA	mg/l	3	1.27	1.76	1.44
Nitrogen, total kjeldahl (TKN)	NA	mg/l	3	1.27	1.66	1.40
Orthophosphate, as PO4	NA	mg/l	8	< 0.02	< 0.07	0.02
pH Dhosphorus total as D	NA	pH units	59	6.1	7.77	7.30
Phosphorus, total, as P Phosphorus, total, as P	Dissolved NA	mg/l	8 18	0.014 < 0.004	0.028	0.019
Redox (oxidation potential)	NA NA	mg/l mV	18	< 0.004 NA	< 0.1 NA	468
Solids, total dissolved	NA	mg/l	54	195	708	408
Solids, total suspended	NA	mg/l	14	< 1	19.5	4.39
Specific Conductance @ 25 °C	NA	µmhos/cm	59	285.3	1229	685
Sulfate, as SO4	Dissolved	mg/l	1	NA	NA	8.30
Sulfate, as SO4	NA	mg/l	69	< 1	139	36.0
Sulfide, as S ² -	NA	mg/l	8	< 0.1	< 0.1	NA
Temperature	NA	deg C	59	0.01	22.23	8.91
Turbidity	NA	NTU Metals	59	0	40.4	3.47
Aluminum	Dissolved	µg/l	54	< 10	67.3	20.0
Aluminum	Total	μg/l	54	13.4	238	40.1
Antimony	Total	μg/l	31	< 0.5	< 0.5	NA
Arsenic	Dissolved	µg/l	7	< 0.5	1.1	0.64
Arsenic	Total	µg/l	54	0.45	3.9	0.94
Barium	Total	µg/l	19	52	154	83.4
Beryllium	Total	µg/l	19	< 0.2	< 0.2	NA
Boron	Total	µg/l	19	< 100	177	126
Cadmium Calcium	Total	µg/l	19 54	< 0.02	< 0.2	NA 47.2
Chromium	Total Total	mg/l μg/l	19	18.5 < 1	77.1	47.3 0.53
Cobalt	Dissolved	μg/l	37	< 0.2	0.86	0.25
Cobalt	Total	µg/l	54	< 0.2	0.98	0.25
Copper	Dissolved	µg/l	37	< 0.15	1.9	0.57
Copper	Total	µg/l	54	0.29	2.4	0.61
Iron	Dissolved	µg/l	45	107	2560	541
Iron	Total	µg/l	54	226	5830	1086
Lead	Dissolved	μg/l	10	< 0.5	< 0.5	NA 0.24
Lead	Total Total	μg/l	48 54	< 0.02 18	< 0.5 81.8	0.24 46.6
Magnesium Manganese	Dissolved	mg/l μg/l	37	36.2	4140	46.6
Manganese	Total	μg/l	54	24.2	3990	693
Mercury	Dissolved	ng/L	8	0.6	2.1	1.60
Mercury	Total	ng/L	22	0.5	4.2	1.72
Methyl Mercury	Dissolved	ng/L	8	< 0.1	0.67	0.35
Methyl Mercury	Total	ng/L	2	< 0.1	0.16	0.11
Molybdenum	Total	µg/l	18	0.39	2.45	1.28
Nickel	Dissolved	µg/l	37	< 0.5	3.3	0.48
Nickel Palladium	Total Total	µg/l	54 NA	< 0.5 NA	1.42 NA	0.48 NA
Platinum	Total	μg/l μg/l	NA	NA	NA	NA
Potassium	Total	mg/l	25	1.4	5.2	3.04
Selenium	Total	μg/l	33	0.37	< 1	0.50
Silver	Total	µg/l	12	< 0.2	< 0.2	NA
Sodium	Total	mg/l	25	26.8	76.2	48.8
Strontium	Total	µg/l	2	220	242	231
Thallium	Total	µg/l	38	< 0.0004	< 0.2	0.01
Tin	Total	µg/l	2	< 0.5	< 0.5	NA
Titanium	Total	µg/l	2	< 10	< 10	NA
Vanadium	Total	µg/l	9	< 3	< 10	NA
Zinc	Dissolved	µg/l	37	< 6	21.7	4.66

	vva	ter Quality Data fo 2012	or IC-1			
Parameter	Fraction	Units	# of Samples	Minimum	Maximum	Average
		General Paramete				
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	<u> </u>	NA	NA	335
Alkalinity, total, as CaCO3 Biochemical Oxygen Demand (5-day)	NA NA	mg/l mg/l	NA	NA NA	NA NA	335 NA
Carbon, dissolved organic	NA	mg/l	NA	NA	NA	NA
Carbon, total organic	NA	mg/l	4	14.8	31.8	23.0
Chemical Oxygen Demand	NA	mg/l	1	NA	NA	45.8
Chloride	Dissolved	mg/l	NA	NA	NA	NA
Chloride	NA	mg/l	4	7.5	17.2	11.7
Chlorophyll a	NA	mg/l	NA	NA	NA	NA
Cyanide Dissolved oxygen	NA NA	mg/l mg/l	<u>NA</u> 4	NA 1.46	NA 6.43	NA 4.08
Fluoride	NA	mg/l	NA	NA	NA	NA
Hardness, as CaCO3	NA	mg/l	4	231	299	273
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	1	< 0.1	NA	NA
Nitrogen, ammonia, as N	NA	mg/l	1	< 0.1	NA	NA
Nitrogen, total	NA	mg/l	NA	NA	NA	NA
Nitrogen, total kjeldahl (TKN)	NA	mg/l	NA	NA	NA	NA
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA T 10
pH Phosphorus total as P	NA Dissolved	pH units	4 NA	7.38	7.69	7.48 NA
Phosphorus, total, as P Phosphorus, total, as P	Dissolved NA	mg/l mg/l	NA1	NA NA	NA NA	0.028
Redox (oxidation potential)	NA NA	mV	NA	NA	NA	0.028 NA
Solids, total dissolved	NA	mg/l	4	366	416	400
Solids, total suspended	NA	mg/l	NA	NA	NA	NA
Specific Conductance @ 25 °C	NA	µmhos/cm	4	492.2	651.9	600
Sulfate, as SO4	Dissolved	mg/l	NA	NA	NA	NA
Sulfate, as SO4	NA	mg/l	4	1.3	36.6	12.4
Sulfide, as S ² -	NA	mg/l	NA	NA	NA	NA
Temperature	NA NA	deg C	4	7.04 0.7	19.42	12.7
Turbidity	INA	NTU Metals	4	0.7	15.3	5.45
Aluminum	Dissolved	µg/l	4	25.6	48	36.7
Aluminum	Total	μg/l	4	26.5	82.5	44.9
Antimony	Total	µg/l	4	< 0.5	< 0.5	NA
Arsenic	Dissolved	µg/l	NA	NA	NA	NA
Arsenic	Total	µg/l	4	0.98	5.2	2.57
Barium	Total	µg/l	1	NA	NA	95.2
Beryllium	Total	µg/l	1	< 0.2	NA	NA
Boron	Total	µg/l	1	NA	NA	137
Cadmium Calcium	Total Total	μg/l mg/l	1 4	< 0.2 38.2	NA 49.8	NA 43.6
Chromium	Total	μg/l	1	< 1	49.8 NA	43.0 NA
Cobalt	Dissolved	μg/l	4	< 0.2	1.2	0.55
Cobalt	Total	μg/l	4	0.25	1.4	0.62
Copper	Dissolved	µg/l	4	< 0.5	0.85	0.40
Copper	Total	µg/l	4	< 0.5	0.53	0.32
Iron	Dissolved	µg/l	4	329	3070	1481
Iron	Total	µg/l	4	941	8330	3255
Lead	Dissolved	µg/l	NA	NA	NA	NA
Lead Magnesium	Total Total	µg/l	4	< 0.5 33	< 0.5 42.3	NA 39.9
Magnesium Manganese	Dissolved	mg/l μg/l	4 4	111	3430	1218
Manganese	Total	μg/l	4	202	3670	1305
Mercury	Dissolved	ng/L	NA	NA	NA	NA
Mercury	Total	ng/L	1	NA	NA	1.10
Methyl Mercury	Dissolved	ng/L	NA	NA	NA	NA
Methyl Mercury	Total	ng/L	NA	NA	NA	NA
Molybdenum	Total	µg/l	1	NA	NA	0.89
Nickel	Dissolved	µg/l	4	< 0.5	0.84	0.40
Nickel Palladium	Total Total	µg/l	4 NA	< 0.5 NA	0.88 NA	0.52 NA
Platinum	Total	μg/l μg/l	NA NA	NA	NA	NA
Potassium	Total	mg/l	1	NA	NA	2.30
Selenium	Total	μg/l	4	< 1	< 1	NA
Silver	Total	μg/l	1	< 0.2	NA	NA
Sodium	Total	mg/l	1	NA	NA	47.0
Strontium	Total	µg/l	NA	NA	NA	NA
Thallium	Total	µg/l	4	< 0.0004	< 0.005	NA
Tin	Total	µg/l	NA	NA	NA	NA
Titanium	Total	µg/l	NA	NA	NA	NA
Vanadium	Total	µg/l	1	< 3	NA	NA
Zinc	Dissolved	µg/l	4	< 6	< 6	NA

	Wa	ter Quality Data				
Parameter	Fraction	2012-2015 Units	# of Samples	Minimum	Maximum	Average
		General Paramo		I	Ĩ	Ī
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	26 12	144	545	332
Alkalinity, total, as CaCO3 Biochemical Oxygen Demand (5-day)	NA NA	mg/l mg/l	NA	177 NA	523 NA	328 NA
Carbon, dissolved organic	NA	mg/l	NA	NA	NA	NA
Carbon, total organic	NA	mg/l	38	10	27.2	14.9
Chemical Oxygen Demand	NA	mg/l	5	31	59.6	40.5
Chloride	Dissolved	mg/l	NA	NA	NA	NA
Chloride	NA	mg/l	38	6.6	33.5	17.3
Chlorophyll a	NA	mg/l	NA	NA	NA	NA
Cyanide	NA NA	mg/l	NA 38	NA 1.54	NA 11.46	NA 6.34
Dissolved oxygen Fluoride	NA	mg/l mg/l	NA	NA	NA	NA
Hardness, as CaCO3	NA	mg/l	38	144	547	331
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	5	< 0.1	< 0.1	NA
Nitrogen, ammonia, as N	NA	mg/l	5	< 0.1	0.31	0.12
Nitrogen, total	NA	mg/l	NA	NA	NA	NA
Nitrogen, total kjeldahl (TKN)	NA	mg/l	NA	NA	NA	NA
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA
pH	NA	pH units	38	6.85	7.82	7.3721053
Phosphorus, total, as P	Dissolved	mg/l	NA	NA	NA	NA
Phosphorus, total, as P Redox (oxidation potential)	NA NA	mg/l mV	5 NA	< 0.004 NA	0.048 NA	0.02 NA
Solids, total dissolved	NA NA	mv mg/l	38	231	722	474
Solids, total suspended	NA	mg/l	NA	NA	NA	NA
Specific Conductance @ 25 °C	NA	µmhos/cm	38	345.6	1150	723
Sulfate, as SO4	Dissolved	mg/l	NA	NA	NA	NA
Sulfate, as SO4	NA	mg/l	38	1	132	51.4
Sulfide, as S ² -	NA	mg/l	NA	NA	NA	NA
Temperature	NA	deg C	38	-0.09	19.25	7.26
Turbidity	NA	NTU	38	0	42.4	4.77
	Discolard	Metals	20	. 10	. 50	16.1
Aluminum Aluminum	Dissolved Total	µg/l	38 38	< 10 10.2	< 50 76.4	16.1 22.4
Antimony	Total	μg/l μg/l	17	< 0.5	< 0.5	NA
Arsenic	Dissolved	µg/l	7	< 0.5	2.2	0.96
Arsenic	Total	µg/l	38	< 0.31	3.7	0.87
Barium	Total	µg/l	12	66.9	157	103
Beryllium	Total	µg/l	12	< 0.2	< 0.2	NA
Boron	Total	µg/l	12	< 100	185	138
Cadmium	Total	µg/l	12	< 0.2	< 0.2	NA
Calcium	Total	mg/l	38	21.8	81	49.2
Chromium	Total	µg/l	12 24	< 1 < 0.2	< 1 0.61	NA 0.23
Cobalt Cobalt	Dissolved Total	μg/l μg/l	38	< 0.2	0.81	0.23
Copper	Dissolved	µg/l	24	< 0.2	1.2	0.23
Copper	Total	μg/l	38	< 0.5	3.6	0.52
Iron	Dissolved	µg/l	24	95.3	2990	542
Iron	Total	µg/l	38	226	6700	1162
Lead	Dissolved	µg/l	10	< 0.5	< 0.5	NA
Lead	Total	µg/l	38	< 0.5	< 0.5	NA
Magnesium	Total	mg/l	38	21.6	83.7	50.6
Manganese	Dissolved	µg/l	24	37	1960	637
Manganese Mercury	Total Dissolved	μg/l ng/L	38 NA	22.2 NA	3210 NA	686 NA
Mercury	Total	ng/L	12	0.655	5.1	2.14
Methyl Mercury	Dissolved	ng/L	NA	0.033 NA	NA	NA
Methyl Mercury	Total	ng/L	NA	NA	NA	NA
Molybdenum	Total	µg/l	5	0.63	1.5	1.03
Nickel	Dissolved	µg/l	24	< 0.5	1.4	0.36
Nickel	Total	µg/l	38	< 0.5	1.2	0.38
Palladium	Total	µg/l	NA	NA	NA	NA
Platinum	Total	µg/l	NA	NA	NA	NA
Potassium	Total	mg/l	12	1.7	5	3.15
Selenium Silver	Total Total	µg/l	24 5	< 1 < 0.2	< 1	NA NA
Sodium	Total	μg/l mg/l	12	30.2	< 0.2 70	49.4
Strontium	Total	µg/l	NA	NA	NA	49.4 NA
Thallium	Total	μg/l	24	< 0.0004	< 0.02	NA
Tin	Total	µg/l	NA	NA	NA	NA
Titanium	Total	µg/l	NA	NA	NA	NA
Vanadium	Total	µg/l	5	< 3	< 3	NA
Zinc	Dissolved	µg/l	24	< 6	6.4	3.14
Zinc	Total	µg/l	38	< 6	11.5	3.32

Water Quality Data for PM-11 / SW003 2004-2015											
Parameter	Fraction	2004-2015 Units	# of Samples	Minimum	Maximum	Average					
		General Paramete		05.2	550	210					
Alkalinity, bicarbonate, as CaCO3 Alkalinity, total, as CaCO3	NA NA	mg/l mg/l	36 37	85.3 106	550 550	310 295					
Biochemical Oxygen Demand (5-day)	NA	mg/l	3	< 3	< 3	NA					
Carbon, dissolved organic	NA	mg/l	11	8.7	14.3	11.7					
Carbon, total organic	NA	mg/l	68	6.5	44.6	13.0					
Chemical Oxygen Demand	NA	mg/l	25	16.2	65.8	34.1					
Chloride	Dissolved	mg/l	1	NA	NA	14.3					
Chloride	NA	mg/l	81	3.1	34.1	17.0					
Chlorophyll a	NA	mg/l	NA	NA	NA	NA					
Cyanide	NA	mg/l	4	< 0.02	< 0.02	NA					
Dissolved oxygen	NA	mg/l	63	< 0.1	12.69	6.27					
Fluoride Hardness, as CaCO3	NA NA	mg/l	<u> </u>	0.84	2.2 705	1.49 373					
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l mg/l	25	< 0.1	0.11	0.05					
Nitrogen, ammonia, as N	NA	mg/l	19	< 0.1	0.21	0.03					
Nitrogen, total	NA	mg/l	3	1.17	1.28	1.22					
Nitrogen, total kjeldahl (TKN)	NA	mg/l	3	1.11	1.28	1.19					
Orthophosphate, as PO4	NA	mg/l	8	< 0.02	< 0.07	0.01					
pH	NA	pH units	76	6.64	8.3	7.56					
Phosphorus, total, as P	Dissolved	mg/l	9	0.005	< 0.02	0.009					
Phosphorus, total, as P	NA	mg/l	32	< 0.004	< 1	0.047					
Redox (oxidation potential)	NA	mV	1	NA	NA	493					
Solids, total dissolved	NA	mg/l	66	186	927	492					
Solids, total suspended	NA	mg/l	24	< 1	8	2.62					
Specific Conductance @ 25 °C	NA	umhos/cm	70	248	1386	793					
Sulfate, as SO4	Dissolved	mg/l	1	NA	NA	123					
Sulfate, as SO4	NA	mg/l	85	4.4	245	115					
Sulfide, as S ² -	NA	mg/l	8	< 0.1	< 0.1	NA					
Temperature	NA	deg C	69	0.24	24.4	10.2					
Turbidity	NA	NTU	64	0	13.5	1.72					
AL		Metals		10	02.0	170					
Aluminum	Dissolved	µg/l	54	< 10	83.9	17.0					
Aluminum	Total Total	µg/l	<u>66</u> 35	< 10 < 0.5	119	29.5					
Antimony Arsenic	Dissolved	µg/l	7	< 0.5	< 3 3.9	NA 1.14					
Arsenic	Total	μg/l μg/l	58	< 0.5	4.1	0.87					
Barium	Total	μg/l	26	13.4	67.9	35.5					
Beryllium	Total	μg/l	23	< 0.2	< 0.2	NA					
Boron	Total	μg/l	23	< 100	307	207					
Cadmium	Total	μg/l	26	0.021	< 0.2	0.084					
Calcium	Total	mg/l	66	15.5	78.4	44.6					
Chromium	Total	µg/l	26	0.33	2.3	0.64					
Cobalt	Dissolved	µg/l	37	< 0.2	7	0.34					
Cobalt	Total	µg/l	64	0.16	7.6	0.30					
Copper	Dissolved	µg/l	37	0.34	1.8	0.81					
Copper	Total	µg/l	66	< 0.5	< 5	0.93					
Iron	Dissolved	µg/l	45	80	17300	653					
Iron	Total	µg/l	61	0.21	18000	890					
Lead	Dissolved	µg/l	10	< 0.5	< 0.5	NA					
Lead	Total	µg/l	60	0.03	< 1	0.25					
Magnesium	Total	mg/l	66	18.9	124	63.8					
Manganese	Dissolved	µg/l	37	17.3	1640	380					
Manganese	Total	µg/l	64	19.3	1800	323					
Mercury	Dissolved	ng/L	8	0.6	2.5	1.45					
Mercury Mothyl Morcury	Total	ng/L	<u>38</u> 8	< 0.5	< 10	2.00					
Methyl Mercury Methyl Mercury	Dissolved Total	ng/L	<u> </u>	< 0.1 0.15	0.55	0.20					
Metnyi Mercury Molybdenum	Total	ng/L µg/l	28	3.7	29.3	0.26					
Nickel	Dissolved	μg/l	37	< 0.5	1.8	0.41					
Nickel	Total	μg/l	66	< 0.5	< 5	0.41					
Palladium	Total	μg/l	5	< 0.3	< 25	NA					
Platinum	Total	μg/l	5	< 0.25	< 250	NA					
Potassium	Total	mg/l	32	1	8.41	4.89					
Selenium	Total	μg/l	42	0.24	< 3.6	0.67					
Silver	Total	μg/l	21	< 0.2	< 1	NA					
Sodium	Total	mg/l	34	12.6	62.2	40.6					
Strontium	Total	µg/l	6	95.1	327	207					
Thallium	Total	µg/l	47	< 0.0004	< 2	0.116					
Tin	Total	µg/l	2	< 0.5	< 0.5	NA					
Titanium	Total	µg/l	3	< 10	< 10	NA					
Vanadium	Total	µg/l	9	< 3	< 10	NA					
Zinc	Dissolved	µg/l	37	< 6	7.9	3.52					
Zinc	Total	µg/l	66	1.6	41.2	4.15					

Fraction NA	2004-2006, 2012-2 Units General Paramete	# of Samples	Minimum	Maximum	Average
ΝΔ	General Paramete	ers		•	
NΔ			1		T
	mg/l	3	399	471	437
NA NA	mg/l mg/l	12 NA	186 NA	471 NA	336 NA
	J				NA
					10.6
NA	mg/l	10	5.1	84.4	28.7
Dissolved	mg/l	NA	NA	NA	NA
NA	mg/l			43.9	25.3
	J				NA
					NA 6.68
					1.52
					461
NA	mg/l	10	< 0.1	0.12	0.06
NA	mg/l	7	< 0.1	0.24	0.09
NA	mg/l	NA	NA	NA	NA
	mg/l				NA
	mg/l				NA 7.C2
					7.62 NA
	<u> </u>				0.043
	J				0.043 NA
NA	mg/l	20	325	1030	615
NA	mg/l	7	< 1	12	4.43
NA	µmhos/cm	21	569	1558	951
Dissolved	mg/l	NA	NA	NA	NA
NA	mg/l		67.5	380	169
NA	mg/l		NA		NA
					9.24
NA	1	14	0	3.4	1.60
Discolved		11	< 20	20.2	19.7
					26.7
					NA
Dissolved		NA	NA	NA	NA
Total	µg/l	15	< 0.5	< 2	0.84
Total	µg/l	10	18.3	59.5	36.3
	µg/l				NA
					309
					NA
	<u> </u>				57.9 0.80
					0.80
					0.32
					1.38
Total	µg/l	20	< 0.5	< 5	1.43
Dissolved	µg/l	11	65.4	1050	257
Total	µg/l	18	0.3	1590	369
Dissolved					NA
					NA
	e e				78.4
					326 259
					NA
					2.73
				NA	NA
Total		NA	NA	NA	NA
Total	µg/l	10	4.4	30	17.4
Dissolved	µg/l	11	< 0.5	1.1	0.45
Total	µg/l	20	< 0.5	< 5	1.12
Total	µg/l	5	< 0.3	< 250	NA
					NA C 27
					6.27
					NA NA
					49.0
					258
		20	< 0.0004	< 2	0.25
Total	µg/l	NA	NA	NA	NA
Total	µg/l	1	< 10	NA	NA
Total	<u>~~~</u>		10		1.0.1
Total	μg/l	3	< 3	< 3	NA
	DissolvedNA<	NAmg/lNAmg/lDissolvedmg/lNA <td< td=""><td>NA mg/l 18 NA mg/l 10 Dissolved mg/l NA NA mg/l 20 NA mg/l 20 NA mg/l 4 NA mg/l 13 NA mg/l 9 NA mg/l 10 NA mg/l 10 NA mg/l 10 NA mg/l 10 NA mg/l NA NA mg/l 10 NA mg/l 11 Dissolved mg/l NA NA mg/l 11 Total µg/l 15 Dissolved µg/l 15 <td>NA mg/l 18 5.8 NA mg/l 10 5.1 Dissolved mg/l NA NA NA mg/l 20 11 NA mg/l 20 11 NA mg/l 13 0.68 NA mg/l 9 112 NA mg/l 10 <0.1</td> NA mg/l 10 <0.1</td> NA mg/l NA NA NA mg/l NA NA NA mg/l NA NA NA mg/l NA NA NA mg/l 10 0.002 NA mg/l 10 0.008 NA mg/l 20 325 NA mg/l 20 325 NA mg/l NA NA NA mg/l 20 67.5 NA mg/l 20 67.5 <!--</td--><td>NA mg/l 18 5.8 18.5 NA mg/l 10 5.1 844 Dissolved mg/l NA NA NA NA NA mg/l 20 11 43.9 NA mg/l 13 068 120.3 NA mg/l 13 068 120.3 NA mg/l 10 <0.1</td> 0.12 NA mg/l 10 <0.1</td<>	NA mg/l 18 NA mg/l 10 Dissolved mg/l NA NA mg/l 20 NA mg/l 20 NA mg/l 4 NA mg/l 13 NA mg/l 9 NA mg/l 10 NA mg/l 10 NA mg/l 10 NA mg/l 10 NA mg/l NA NA mg/l 10 NA mg/l 11 Dissolved mg/l NA NA mg/l 11 Total µg/l 15 Dissolved µg/l 15 <td>NA mg/l 18 5.8 NA mg/l 10 5.1 Dissolved mg/l NA NA NA mg/l 20 11 NA mg/l 20 11 NA mg/l 13 0.68 NA mg/l 9 112 NA mg/l 10 <0.1</td> NA mg/l 10 <0.1	NA mg/l 18 5.8 NA mg/l 10 5.1 Dissolved mg/l NA NA NA mg/l 20 11 NA mg/l 20 11 NA mg/l 13 0.68 NA mg/l 9 112 NA mg/l 10 <0.1	NA mg/l 18 5.8 18.5 NA mg/l 10 5.1 844 Dissolved mg/l NA NA NA NA NA mg/l 20 11 43.9 NA mg/l 13 068 120.3 NA mg/l 13 068 120.3 NA mg/l 10 <0.1

	Water Qu	ality Data for PM	-12 / SW004			
Parameter	Fraction	2004-2015 Units General Paramete	# of Samples	Minimum	Maximum	Average
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	28	13.3	122	57.1
Alkalinity, total, as CaCO3	NA	mg/l	41	15.2	152	51.8
Biochemical Oxygen Demand (5-day)	NA	mg/l	2	< 3	< 3	NA
Carbon, dissolved organic	NA	mg/l	10 72	15.6	32.3	23.7
Carbon, total organic Chemical Oxygen Demand	NA NA	mg/l mg/l	16	6.2 25.2	44.7 122	22.0 61.3
Chloride	Dissolved	mg/l	10	NA	NA	5.90
Chloride	NA	mg/l	85	1.3	22.3	4.82
Chlorophyll a	NA	mg/l	NA	NA	NA	NA
Cyanide	NA	mg/l	4	< 0.02	< 0.02	NA
Dissolved oxygen	NA	mg/l	72	< 0.1	11.8	5.53
Fluoride	NA	mg/l	21	< 0.1	0.2	0.10
Hardness, as CaCO3	NA	mg/l	70	17.8	171	61.7
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	16	< 0.1	0.12	0.05
Nitrogen, ammonia, as N	NA	mg/l	<u>11</u> 2	< 0.1 1.56	0.56	0.14
Nitrogen, total Nitrogen, total kjeldahl (TKN)	NA NA	mg/l mg/l	2	1.56	1.76	1.66 1.61
Orthophosphate, as PO4	NA	mg/l	8	< 0.02	< 0.07	0.03
pH	NA	pH units	86	5.84	8.45	7.04
Phosphorus, total, as P	Dissolved	mg/l	9	0.01	0.035	0.02
Phosphorus, total, as P	NA	mg/l	36	0.009	0.22	0.06
Redox (oxidation potential)	NA	mV	NA	NA	NA	NA
Solids, total dissolved	NA	mg/l	70	46	258	133
Solids, total suspended	NA	mg/l	20	< 1	4	2.09
Specific Conductance @ 25 °C	NA	µmhos/cm	79	0	777	138
Sulfate, as SO4	Dissolved	mg/l	1	NA	NA	1.07
Sulfate, as SO4	NA	mg/l	89	0.5	116	5.74
Sulfide, as S ² -	NA	mg/l	8	< 0.1	< 0.1	NA 10.2
Temperature Turbidity	NA NA	deg C NTU	79 61	0.22	25.3 3000	10.3 59.2
Turblatty	INA	Metals	10	0	5000	<u> </u>
Aluminum	Dissolved	µg/l	52	23.2	184	73.6
Aluminum	Total	µg/l	64	44.3	280	109
Antimony	Total	µg/l	27	< 0.5	< 3	NA
Arsenic	Dissolved	µg/l	7	< 0.5	2	1.12
Arsenic	Total	µg/l	49	0.38	< 10	1.44
Barium	Total	µg/l	23	< 10	57.9	22.4
Beryllium	Total	µg/l	20	< 0.2	1.4	0.17
Boron	Total	µg/l	21	< 35	< 100	NA
Cadmium	Total	µg/l	23	< 0.02	1.1	0.14
Calcium	Total	mg/l	70	4.1	29.9	14.5
Chromium Cobalt	Total Dissolved	μg/l	23 29	0.48	2.3 3.7	0.76
Cobalt	Total	μg/l μg/l	70	0.13	4.1	1.41
Copper	Dissolved	μg/l	29	< 0.5	1.5	0.71
Copper	Total	μg/l	72	< 0.5	< 5	1.08
Iron	Dissolved	µg/l	37	541	9800	3066
Iron	Total	µg/l	52	1.66	11200	3991
Lead	Dissolved	µg/l	10	< 0.5	< 0.5	NA
Lead	Total	µg/l	57	0.08	1.1	0.27
Magnesium	Total	mg/l	70	1.8	27.3	6.28
Manganese	Dissolved	µg/l	29	13.6	1390	530
Manganese	Total	µg/l	55	6.7	1550	418
Mercury	Dissolved	ng/L	8	1.5	5	3.49
Mercury	Total	ng/L	42	0.877	< 10	4.36
Methyl Mercury	Dissolved Total	ng/L	8	0.12 0.16	2.7 1.38	0.72
Methyl Mercury Molybdenum	Total	ng/L µg/l	13	0.16	< 5	1.28
Nickel	Dissolved	μg/l	29	< 0.5	2.1	1.28
Nickel	Total	μg/l	72	< 0.5	< 5	1.09
Palladium	Total	μg/l	5	< 0.3	< 25	NA
Platinum	Total	μg/l	5	< 0.25	< 25	NA
Potassium	Total	mg/l	23	0.29	4	1.23
Selenium	Total	µg/l	39	0.085	< 10	0.80
Silver	Total	µg/l	18	< 0.2	< 1	NA
Sodium	Total	mg/l	25	2.2	11.8	4.01
Strontium	Total	µg/l	4	17.6	61.9	35.2
Thallium	Total	µg/l	40	< 0.0004	< 2	0.13
•	Total	µg/l	1	< 0.5	NA	NA
Titanium	Total	µg/l	1	< 10	NA	NA
Tin Titanium Vanadium Zinc			1 7 29	< 10 < 3 < 6	NA < 3 13.7	NA NA 5.26

	Wate	er Quality Data fo	r UC-1A				
Parameter	Fraction	2013-2015 Units	# of Samples	Minimum	Maximum	Average	
		General Paramet			T		
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	24	104	551	318	
Alkalinity, total, as CaCO3 Biochemical Oxygen Demand (5-day)	NA NA	mg/l mg/l	10 NA	173 NA	551 NA	319 NA	
Carbon, dissolved organic	NA	mg/l	NA	NA	NA I		
Carbon, total organic	NA	mg/l	31	6.7	21.4	11.4	
Chemical Oxygen Demand	NA	mg/l	3	22.9	60.7	39.7	
Chloride	Dissolved	mg/l	NA	NA	NA	NA	
Chloride	NA	mg/l	31	4.4	33.1	17.5	
Chlorophyll a	NA	mg/l	NA	NA	NA	NA	
Cyanide Dissolved oxygen	NA NA	mg/l mg/l	NA 31	NA 4.58	NA 11.91	NA 8.12	
Fluoride	NA	mg/l	NA	4.38 NA	NA	NA	
Hardness, as CaCO3	NA	mg/l	31	146	698	402	
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	3	< 0.1	< 0.1	NA	
Nitrogen, ammonia, as N	NA	mg/l	3	< 0.1	0.12	0.07	
Nitrogen, total	NA	mg/l	NA	NA	NA	NA	
Nitrogen, total kjeldahl (TKN)	NA	mg/l	NA	NA	NA	NA	
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA	
pH Dhaambama tatal as D	NA	pH units	31	7.13	7.84	7.55	
Phosphorus, total, as P	Dissolved	mg/l	NA	NA 0.02	NA 0.076	NA	
Phosphorus, total, as P Redox (oxidation potential)	NA NA	mg/l mV	3 NA	0.02 NA	0.076 NA	0.041 NA	
Solids, total dissolved	NA	mg/l	31	198	932	517	
Solids, total suspended	NA	mg/l	NA	NA	NA	NA	
Specific Conductance @ 25 °C	NA	µmhos/cm	31	313	1385	802	
Sulfate, as SO4	Dissolved	mg/l	NA	NA	NA	NA	
Sulfate, as SO4	NA	mg/l	31	2.8	255	111	
Sulfide, as S ² -	NA	mg/l	NA	NA	NA	NA	
Temperature	NA	deg C	31	0.61	19.81	9.22	
Turbidity	NA	NTU	32	0	10.7	2.78	
Aluminum	Disashuad	Metals	21	. 10	. 50	12.0	
Aluminum Aluminum	Dissolved Total	µg/l	31 31	< 10 < 10	< 50 74.7	13.0 19.5	
Antimony	Total	μg/l μg/l	10	< 0.5	< 0.5	NA	
Arsenic	Dissolved	μg/l	7	< 0.5	1.6	0.74	
Arsenic	Total	μg/l	31	< 0.5	2.8	0.79	
Barium	Total	µg/l	10	29	61.9	42.1	
Beryllium	Total	µg/l	10	< 0.2	< 0.2	NA	
Boron	Total	µg/l	10	141	305	208	
Cadmium	Total	µg/l	10	< 0.2	< 0.2	NA	
Calcium	Total	mg/l	31	19	75.9	47.2	
Chromium	Total	µg/l	10 17	< 1	< 1 0.35	NA 0.15	
Cobalt Cobalt	Dissolved Total	µg/l	31	< 0.2	0.35	0.15	
Copper	Dissolved	μg/l μg/l	17	< 0.2	1.1	0.18	
Copper	Total	μg/l	31	< 0.5	2	0.65	
Iron	Dissolved	µg/l	17	71.4	1660	422	
Iron	Total	µg/l	31	220	2730	871	
Lead	Dissolved	μg/l	10	< 0.5	< 0.5	NA	
Lead	Total	µg/l	31	< 0.5	< 0.5	NA	
Magnesium	Total	mg/l	31	24	124	69.1	
Manganese	Dissolved	µg/l	17	45.6	927	461	
Manganese	Total	µg/l	31	34 NA	2430	540	
Mercury Mercury	Dissolved Total	ng/L ng/L	NA 10	0.527	NA 5.7	NA 1.94	
Mercury Methyl Mercury	Dissolved	ng/L ng/L	NA	0.527 NA	NA	1.94 NA	
Methyl Mercury	Total	ng/L	NA	NA	NA	NA	
Molybdenum	Total	μg/l	3	5.1	7	5.77	
Nickel	Dissolved	µg/l	17	< 0.5	1.3	0.43	
Nickel	Total	µg/l	31	< 0.5	1.5	0.35	
Palladium	Total	µg/l	NA	NA	NA	NA	
Platinum	Total	µg/l	NA	NA	NA	NA	
Potassium	Total	mg/l	10	1.7	7.2	4.02	
Selenium	Total	μg/l	17 3	< 1	< 1	NA	
Silver Sodium	Total Total	µg/l	<u> </u>	< 0.2 17.6	< 0.2 62.9	NA 34.5	
Strontium	Total	mg/l μg/l	NA	17.6 NA	62.9 NA	34.5 NA	
Thallium	Total	μg/l	17	< 0.002	< 0.02	0.004	
Tin	Total	μg/l	NA	NA	NA	NA	
Titanium	Total	μg/l	NA	NA	NA	NA	
Vanadium	Total	µg/l	3	< 3	< 3	NA	
Zinc	Dissolved	μg/l	17	< 6	9.7	3.58	
Zinc	Total	µg/l	31	< 6	10.8	3.25	

	Wate	r Quality Data for	PM-12.2			
Parameter	Fraction	2010-2015 Units General Paramete	# of Samples	Minimum	Maximum	Average
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	21	23	219	103
Alkalinity, total, as CaCO3	NA	mg/l	7	71.2	192	104
Biochemical Oxygen Demand (5-day)	NA	mg/l	NA	NA	NA	NA
Carbon, dissolved organic	NA	mg/l	NA	NA	NA	NA 20.0
Carbon, total organic Chemical Oxygen Demand	NA NA	mg/l mg/l	43 NA	4.7 NA	46.6 NA	20.6 NA
Chloride	Dissolved	mg/l	NA	NA	NA	NA
Chloride	NA	mg/l	51	1.3	10.3	3.69
Chlorophyll a	NA	mg/l	NA	NA	NA	NA
Cyanide	NA	mg/l	NA	NA	NA	NA
Dissolved oxygen	NA	mg/l	50	< 0.1	12.19	5.60
Fluoride	NA	mg/l	NA	NA	NA	NA
Hardness, as CaCO3	NA	mg/l	21 NA	57.2 NA	711 NA	261 NA
Nitrate + Nitrite, as N Nitrogen, ammonia as N	NA NA	mg/l mg/l	NA NA	NA	NA	NA
Nitrogen, total	NA	mg/l	NA	NA	NA	NA
Nitrogen, total kjeldahl (TKN)	NA	mg/l	NA	NA	NA	NA
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA
рН	NA	pH units	50	6.08	8.32	7.19
Phosphorus, total, as P	Dissolved	mg/l	NA	NA	NA	NA
Phosphorus, total, as P	NA	mg/l	NA	NA	NA	NA
Redox (oxidation potential)	NA	mV	1	NA 114	NA 1020	437
Solids, total dissolved Solids, total suspended	NA NA	mg/l	21 NA	114 NA	1020 NA	413 NA
Solids, total suspended Specific Conductance @ 25 °C	NA NA	mg/l µmhos/cm	50	11.5	1600	539
Sulfate, as SO4	Dissolved	mg/l	NA	NA	NA	NA
Sulfate, as SO4	NA	mg/l	51	30.4	595	171
Sulfide, as S ² -	NA	mg/l	NA	NA	NA	NA
Temperature	NA	deg C	50	0.07	456	19.1
Turbidity	NA	NTU	51	0	3000	66.0
		Metals		1	T	
Aluminum	Dissolved	µg/l	47	15.5	160	46.4
Aluminum	Total Total	µg/l	47 7	< 20	197	77.3
Antimony Arsenic	Dissolved	μg/l μg/l	7	< 0.5 < 0.5	< 0.5 2.1	NA 1.03
Arsenic	Total	μg/l	21	< 0.31	3	0.97
Barium	Total	µg/l	7	21.6	49.4	28.0
Beryllium	Total	µg/l	7	< 0.2	2.4	0.43
Boron	Total	µg/l	7	< 100	< 100	NA
Cadmium	Total	µg/l	7	< 0.2	2.1	0.39
Calcium	Total	mg/l	21	7.4	60.7	26.5
Chromium	Total	µg/l	7	< 1	1.9	0.80
Cobalt Cobalt	Dissolved Total	µg/l	21	0.38	1.2 2.8	0.66 0.58
Copper	Dissolved	μg/l μg/l	7	0.74	1.2	0.93
Copper	Total	μg/l	21	0.55	3.2	1.21
Iron	Dissolved	µg/l	29	272	5710	1525
Iron	Total	µg/l	43	475	6940	2082
Lead	Dissolved	µg/l	NA	NA	NA	NA
Lead	Total	µg/l	21	< 0.5	2	0.33
Magnesium	Total	mg/l	21	9.4	136	47.3
Manganese	Dissolved	µg/l	29	75.3	1390	560
Manganese	Total Dissolved	µg/l	43 NA	19.8 NA	1440 NA	479 NA
Mercury Mercury	Total	ng/L ng/L	NA 7	0.522	7 7	3.13
Mercury Methyl Mercury	Dissolved	ng/L	NA	0.522 NA	NA	3.13 NA
Methyl Mercury	Total	ng/L	NA	NA	NA	NA
Molybdenum	Total	µg/l	NA	NA	NA	NA
Nickel	Dissolved	µg/l	7	0.55	2.9	1.32
Nickel	Total	µg/l	21	< 0.5	3.1	1.18
Palladium	Total	µg/l	NA	NA	NA	NA
Platinum	Total	µg/l	NA	NA	NA	NA
Potassium Colonium	Total	mg/l	7	4	17.4	8.41
Selenium Silver	Total	µg/l	7	< 1 NA	3.2 NA	0.89
Silver Solum	Total Total	μg/l mg/l	NA 7	8.3	32.5	NA 16.8
Strontium	Total	mg/l μg/l	/ NA	8.3 NA	32.5 NA	16.8 NA
Thallium	Total	μg/l	7	< 0.005	< 0.02	0.01
Tin	Total	μg/l	NA	NA	NA	NA
Titanium	Total	μg/l	NA	NA	NA	NA
Vanadium	Total	µg/l	NA	NA	NA	NA
Zinc	Dissolved	µg/l	7	< 6	< 6	NA
Zinc	Total	µg/l	21	< 6	7.2	3.20

	Wate	r Quality Data for 2010-2015	PM-12.3			
Parameter	Fraction	Units General Paramete	# of Samples	Minimum	Maximum	Average
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA
Alkalinity, total, as CaCO3	NA	mg/l	NA	NA	NA	NA
Biochemical Oxygen Demand (5-day)	NA	mg/l	NA	NA	NA	NA
Carbon, dissolved organic	NA	mg/l	NA	NA	NA	NA
Carbon, total organic	NA	mg/l	43	9.7	46.3	21.4
Chemical Oxygen Demand	NA	mg/l	NA	NA	NA	NA
Chloride Chloride	Dissolved	mg/l	NA 51	NA 1.5	NA 13	NA 4.96
Chlorophyll a	NA NA	mg/l mg/l	NA	NA	NA	4.96 NA
Cyanide	NA	mg/l	NA	NA	NA	NA
Dissolved oxygen	NA	mg/l	50	< 0.1	12.35	7.36
Fluoride	NA	mg/l	NA	NA	NA	NA
Hardness, as CaCO3	NA	mg/l	NA	NA	NA	NA
Nitrate + Nitrite, as N	NA	mg/l	NA	NA	NA	NA
Nitrogen, ammonia as N	NA	mg/l	NA	NA	NA	NA
Nitrogen, total	NA	mg/l	NA	NA	NA	NA
Nitrogen, total kjeldahl (TKN)	NA	mg/l	NA	NA	NA	NA
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA
pH	NA	pH units	50	6.27	8.25	7.28
Phosphorus, total, as P	Dissolved	mg/l	NA	NA	NA	NA
Phosphorus, total, as P	NA	mg/l	<u>NA</u>	NA	NA	NA 462
Redox (oxidation potential) Solids, total dissolved	NA	mV mg/l	1 NA	NA	NA	463 NA
Solids, total dissolved Solids, total suspended	NA NA	mg/l	NA NA	NA NA	NA NA	NA NA
Solids, total suspended Specific Conductance @ 25 °C	NA NA	mg/l µmhos/cm	50	95.7	802.6	308
Sulfate, as SO4	Dissolved	mg/l	NA	NA	NA	NA
Sulfate, as SO4	NA	mg/l	51	5.64	221	58.2
Sulfide, as S ² -	NA	mg/l	NA	NA	NA	NA
Temperature	NA	deg C	50	-0.01	22.72	10.2
Turbidity	NA	NTU	51	0	3000	64.2
· · · · · · · · · · · · · · · · · · ·		Metals				•=
Aluminum	Dissolved	µg/l	26	< 20	133	43.4
Aluminum	Total	µg/l	26	26.8	433	125
Antimony	Total	µg/l	NA	NA	NA	NA
Arsenic	Dissolved	µg/l	NA	NA	NA	NA
Arsenic	Total	µg/l	NA	NA	NA	NA
Barium	Total	µg/l	NA	NA	NA	NA
Beryllium	Total	µg/l	NA	NA	NA	NA
Boron	Total	µg/l	NA	NA	NA	NA
Cadmium	Total	µg/l	NA	NA	NA	NA
Calcium	Total	mg/l	NA	NA	NA	NA
Chromium	Total	µg/l	NA	NA	NA	NA
Cobalt	Dissolved	µg/l	NA	NA	NA	NA
Cobalt	Total	µg/l	NA	NA	NA	NA
Copper	Dissolved	µg/l	NA	NA	NA	NA
Copper	Total	µg/l	NA	NA	NA	NA
Iron	Dissolved	µg/l	43 43	380	6240	1780
Iron Lead	Total Dissolved	µg/l	43 NA	472 NA	6620 NA	2391 NA
Lead Lead	Total	μg/l μg/l	NA NA	NA	NA	NA
Magnesium	Total	mg/l	NA	NA	NA	NA
Magnese	Dissolved	μg/l	22	30.5	1640	543
Manganese	Total	μg/l	22	43.3	1660	562
Mercury	Dissolved	ng/L	NA	NA	NA	NA
Mercury	Total	ng/L	NA	NA	NA	NA
Methyl Mercury	Dissolved	ng/L	NA	NA	NA	NA
Methyl Mercury	Total	ng/L	NA	NA	NA	NA
Molybdenum	Total	μg/l	NA	NA	NA	NA
Nickel	Dissolved	µg/l	NA	NA	NA	NA
Nickel	Total	µg/l	NA	NA	NA	NA
Palladium	Total	µg/l	NA	NA	NA	NA
Platinum	Total	µg/l	NA	NA	NA	NA
Potassium	Total	mg/l	NA	NA	NA	NA
Selenium	Total	µg/l	NA	NA	NA	NA
Silver	Total	µg/l	NA	NA	NA	NA
Sodium	Total	mg/l	NA	NA	NA	NA
Strontium	Total	µg/l	NA	NA	NA	NA
Thallium	Total	µg/l	NA	NA	NA	NA
Tin	Total	µg/l	NA	NA	NA	NA
Titanium	Total	µg/l	NA	NA	NA	NA
Vanadium	Total	µg/l	NA	NA	NA	NA
Zinc	Dissolved	μg/l	NA	NA	NA	NA

	Wate	r Quality Data for 2010-2015	РМ-12.4			
Parameter	Fraction	Units General Paramete	# of Samples	Minimum	Maximum	Average
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA
Alkalinity, total, as CaCO3	NA	mg/l	NA	NA	NA	NA
Biochemical Oxygen Demand (5-day)	NA	mg/l	NA	NA	NA	NA
Carbon, dissolved organic	NA	mg/l	NA	NA	NA	NA
Carbon, total organic	NA	mg/l	43	9.4	44.6	20.3
Chemical Oxygen Demand	NA	mg/l	NA	NA	NA	NA
Chloride	Dissolved	mg/l	NA	NA	NA	NA
Chloride	NA	mg/l	51	1.6	17.1	5.44
Chlorophyll a Cyanide	NA NA	mg/l	NA NA	NA NA	NA NA	NA NA
Dissolved oxygen	NA	mg/l mg/l	50	< 0.1	12.4	7.81
Fluoride	NA	mg/l	NA	NA	NA	NA
Hardness, as CaCO3	NA	mg/l	NA	NA	NA	NA
Nitrate + Nitrite, as N	NA	mg/l	NA	NA	NA	NA
Nitrogen, ammonia as N	NA	mg/l	NA	NA	NA	NA
Nitrogen, total	NA	mg/l	NA	NA	NA	NA
Nitrogen, total kjeldahl (TKN)	NA	mg/l	NA	NA	NA	NA
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA
pH	NA	pH units	50	6.44	8.52	7.40
Phosphorus, total, as P	Dissolved	mg/l	NA	NA	NA	NA
Phosphorus, total, as P	NA	mg/l	NA	NA	NA	NA
Redox (oxidation potential)	NA	mV	1	NA	NA	441
Solids, total dissolved	NA	mg/l	NA	NA	NA	NA
Solids, total suspended	NA	mg/l	NA	NA	NA	NA
Specific Conductance @ 25 °C	NA	µmhos/cm	50	91.3	664.5	298
Sulfate, as SO4	Dissolved	mg/l	NA	NA	NA	NA F0.1
Sulfate, as SO4	NA	mg/l	51	5.67	181	50.1
Sulfide, as S ² -	NA NA	mg/l	NA 50	NA 0.02	NA 22.95	NA 10.2
Temperature Turbidity	NA	deg C NTU	50	0.02	3000	68.4
Turblatty	INA	Metals	51	0	5000	00.4
Aluminum	Dissolved	µg/l	26	< 20	133	43.2
Aluminum	Total	μg/l	26	< 25	349	116
Antimony	Total	μg/l	NA	NA	NA	NA
Arsenic	Dissolved	µg/l	NA	NA	NA	NA
Arsenic	Total	µg/l	NA	NA	NA	NA
Barium	Total	µg/l	NA	NA	NA	NA
Beryllium	Total	µg/l	NA	NA	NA	NA
Boron	Total	µg/l	NA	NA	NA	NA
Cadmium	Total	µg/l	NA	NA	NA	NA
Calcium	Total	mg/l	NA	NA	NA	NA
Chromium	Total	µg/l	NA	NA	NA	NA
Cobalt	Dissolved	µg/l	NA	NA	NA	NA
Cobalt	Total	µg/l	NA	NA	NA	NA
Copper	Dissolved	µg/l	NA	NA	NA	NA
Copper	Total	µg/l	NA	NA	NA EE40	NA
Iron	Dissolved Total	µg/l	43 43	388 486	5540	1657 2128
Iron Lead	Dissolved	µg/l	43 NA	486 NA	5790 NA	2128 NA
Lead	Total	μg/l μg/l	NA NA	NA	NA	NA
Magnesium	Total	mg/l	NA	NA	NA	NA
Manganese	Dissolved	μg/l	22	35.2	1020	385
Manganese	Total	μg/l	22	53.7	1020	405
Mercury	Dissolved	ng/L	NA	NA	NA	NA
Mercury	Total	ng/L	NA	NA	NA	NA
Methyl Mercury	Dissolved	ng/L	NA	NA	NA	NA
Methyl Mercury	Total	ng/L	NA	NA	NA	NA
Molybdenum	Total	µg/l	NA	NA	NA	NA
Nickel	Dissolved	µg/l	NA	NA	NA	NA
Nickel	Total	µg/l	NA	NA	NA	NA
Palladium	Total	µg/l	NA	NA	NA	NA
Platinum	Total	µg/l	NA	NA	NA	NA
Potassium	Total	mg/l	NA	NA	NA	NA
Selenium	Total	µg/l	NA	NA	NA	NA
Silver	Total	µg/l	NA	NA	NA	NA
Sodium	Total	mg/l	NA	NA	NA	NA
Strontium	Total	µg/l	NA	NA	NA	NA
Thallium	Total	µg/l	NA	NA	NA	NA
Tin Titanium	Total	µg/l	NA	NA	NA	NA
Titanium Vanadium	Total	µg/l	NA	NA	NA	NA
Vanadium	Total	µg/l	NA	NA	NA	NA
Zinc	Dissolved	µg/l	NA	NA	NA	NA

Water Quality Data for PM-13 / SW005 2004-2015											
Parameter	Fraction	2004-2015 Units General Paramete	# of Samples	Minimum	Maximum	Average					
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	28	27	210	111					
Alkalinity, total, as CaCO3	NA	mg/l	39	26	202	96.2					
Biochemical Oxygen Demand (5-day)	NA	mg/l	NA	NA	NA	NA					
Carbon, dissolved organic	NA	mg/l	8	16.3	29.6	22.5					
Carbon, total organic	NA	mg/l	70	9.1	46.6	20.6					
Chemical Oxygen Demand	NA	mg/l	14	< 10	120	49.7					
Chloride	Dissolved	mg/l	1	NA	NA	4.55					
Chloride	NA	mg/l	83 NA	2 NA	94.8 NA	7.28					
Chlorophyll a Cyanide	NA NA	mg/l mg/l	4	< 0.02	< 0.02	NA NA					
Dissolved oxygen	NA	mg/l	70	2.1	12.62	7.7					
Fluoride	NA	mg/l	21	< 0.1	2.28	0.37					
Hardness, as CaCO3	NA	mg/l	68	35.6	337	139					
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	14	< 0.1	0.23	0.09					
Nitrogen, ammonia, as N	NA	mg/l	11	< 0.1	0.2	0.09					
Nitrogen, total	NA	mg/l	NA	NA	NA	NA					
Nitrogen, total kjeldahl (TKN)	NA	mg/l	NA	NA	NA	NA					
Orthophosphate, as PO4	NA	mg/l	8	< 0.02	< 0.07	0.03					
рН	NA	pH units	84	6.3	8.6	7.42					
Phosphorus, total, as P	Dissolved	mg/l	9	0.009	0.028	0.016					
Phosphorus, total, as P	NA	mg/l	34	< 0.004	0.18	0.045					
Redox (oxidation potential)	NA	mV	NA	NA	NA	NA					
Solids, total dissolved	NA	mg/l	68	48	494	227					
Solids, total suspended	NA	mg/l	18	< 1	13	6.8					
Specific Conductance @ 25 °C	NA	µmhos/cm	78	42	698.2	284					
Sulfate, as SO4	Dissolved	mg/l	1	NA	NA	31.4					
Sulfate, as SO4	NA	mg/l	87	7.55	688	53.9					
Sulfide, as S ² -	NA NA	mg/l	8	< 0.1	< 0.1 24.6	NA					
Temperature Turbidity	NA	deg C NTU	58	0.01	3000	10.8 58.3					
Turblatty		Metals	00	0	5000	50.5					
Aluminum	Dissolved	µg/l	52	15.3	138	49					
Aluminum	Total	μg/l	64	43.9	1150	187					
Antimony	Total	μg/l	26	< 0.5	< 3	NA					
Arsenic	Dissolved	µg/l	7	< 0.5	2.2	1.09					
Arsenic	Total	μg/l	47	0.39	2.9	1.1					
Barium	Total	µg/l	21	14.3	57.5	37.4					
Beryllium	Total	µg/l	18	< 0.2	0.27	0.10					
Boron	Total	µg/l	18	< 35	< 100	40.4					
Cadmium	Total	µg/l	21	0.044	0.26	0.10					
Calcium	Total	mg/l	68	7	44.8	22.7					
Chromium	Total	µg/l	21	0.71	4.3	0.80					
Cobalt	Dissolved	µg/l	29	< 0.2	0.91	0.34					
Cobalt	Total	µg/l	68	< 0.2	1.1	0.44					
Copper	Dissolved	µg/l	29	0.56	1.7	1.02					
Copper	Total	µg/l	70	0.62	< 5	1.32					
Iron	Dissolved	µg/l	36	504	5000	1773					
Iron	Total	µg/l	50	2.08	5740	2191					
Lead	Dissolved	µg/l	10	< 0.5	< 0.5	NA					
Lead	Total	µg/l	55	0.15	< 1	0.27					
Magnesium Mangapasa	Total	mg/l	68	5.9	54.7	20.1					
Manganese	Dissolved	µg/l	29 53	< 0.5	720	346					
Manganese	Total Dissolved	µg/l	8	< 0.5 1.5	757 4.1	301 3.11					
Mercury Mercury	Total	ng/L	43	0.84	4.1	3.11					
Mercury Methyl Mercury	Dissolved	ng/L ng/L	8	0.23	0.76	0.41					
Methyl Mercury Methyl Mercury	Total	ng/L	13	0.23	1.1	0.41					
Molybdenum	Total	µg/l	13	< 0.3	< 5	1.65					
Nickel	Dissolved	μg/l	29	< 0.5	2.2	1.03					
Nickel	Total	μg/l	70	< 0.5	< 5	1.01					
Palladium	Total	μg/l	5	< 0.3	< 25	NA					
Platinum	Total	μg/l	5	< 0.25	< 25	NA					
Potassium	Total	mg/l	21	1.5	7.4	2.99					
Selenium	Total	µg/l	38	< 1	< 3.6	NA					
Silver	Total	µg/l	16	< 0.2	< 1	NA					
Sodium	Total	mg/l	23	5.2	29.8	13.5					
Strontium	Total	μg/l	4	29.1	104	58.3					
Thallium	Total	µg/l	38	< 0.0004	< 2	0.135					
Tin	Total	µg/l	NA	NA	NA	NA					
Titanium	Total	µg/l	1	NA	NA	13					
Vanadium	Total	µg/l	7	< 3	< 3	NA					
Zinc	Dissolved	µg/l	29	< 6	10.2	3.51					
Zinc	Total	µg/l	70	3.2	61	6.97					

	Water Q	uality Data for Pl 1999-2015	M-7 / SD026			
Parameter	Fraction	Units	# of Samples	Minimum	Maximum	Average
		General Paramet	1	102	607	202
Alkalinity, bicarbonate, as CaCO3 Alkalinity, bicarbonate, as HCO3	NA NA	mg/l	63 82	182 181	687 716	393 399
Alkalinity, total, as CaCO3	NA	mg/l	55	< 10	536	390
Biochemical Oxygen Demand (5-day)	NA	mg/l	5	2	< 3	1.52
Carbon, dissolved organic	NA	mg/l	4	4.7	5.7	5.10
Carbon, total organic	NA	mg/l	58	3.6	7.8	5.40
Cations	NA	meq/l	15	8.9	16	13.2
Chemical Oxygen Demand Chloride	NA Dissolved	mg/l mg/l	27 NA	< 2 NA	183 NA	22.6 NA
Chloride	NA	mg/l	155	3.1	21.5	11.5
Cyanide	NA	mg/l	4	< 0.02	< 0.02	NA
Dissolved oxygen	NA	mg/l	49	3.3	13.88	8.94
Fluoride	NA	mg/l	81	0.41	4.2	2.30
Hardness, as CaCO3	NA	mg/l	220	175	780	439
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	16 11	< 0.1	0.11	0.06
Nitrogen, ammonia, as N Nitrogen, total	NA NA	mg/l mg/l	4	< 0.01 0.61	0.25 1.5	0.07
Nitrogen, total kjeldahl (TKN)	NA	mg/l	5	0.51	1.5	0.93
Nitrogen, total organic, as N	NA	mg/l	1	NA	NA	1
Nitrogen, unionized ammonia, as N	NA	mg/l	15	< 0.01	0.02	0.01
pH	NA	pH units	296	6.77	8.7	7.83
Phosphorus, total, as P	Dissolved	mg/l	1	< 0.02	NA	NA
Phosphorus, total, as P	NA	mg/l	17	0.006	0.11	0.041
Redox (oxidation potential)	NA	mV	NA	NA	NA	NA 10C
Salinity	NA	mg/l %	26 15	300	600	496
Sodium, % of total cations Solids, total dissolved	NA NA	mg/l	15	10.3 350	24.1 1540	17.6 650
Solids, total suspended	NA	mg/l	240	0.6	26.5	2.78
Specific Conductance @ 25 °C	NA	µmhos/cm	299	1	1393	997
Sulfate, as SO4	Dissolved	mg/l	NA	NA	NA	NA
Sulfate, as SO4	NA	mg/l	154	< 1	360	173
Sulfide, as S ² -	NA	mg/l	1	NA	NA	2.00
Temperature	NA	deg C	117	0.3	22.7	9.01
Turbidity	NA	NTU	79	0	328	9.17
Aluminum	Dissolved	Metals	31	< 10	38.4	11.1
Aluminum	Total	μg/l μg/l	55	< 0.4	63.7	11.1
Antimony	Total	μg/l	16	< 0.5	3	0.86
Arsenic	Dissolved	µg/l	17	< 0.31	0.69	0.35
Arsenic	Total	µg/l	41	< 0.31	2	0.62
Barium	Total	µg/l	35	15.5	51.2	27.3
Beryllium	Total	µg/l	19	< 0.2	0.2	0.11
Boron	Total	µg/l	98	92	311	210
Cadmium Calcium	Total Total	µg/l	27 102	0.05 49.2	< 0.2 90.3	0.10
Chromium	Total	mg/l μg/l	20	< 1	1.7	0.63
Cobalt	Dissolved	μg/l	17	< 0.2	0.45	0.29
Cobalt	Total	μg/l	102	0.17	< 5	0.54
Copper	Dissolved	μg/l	17	0.6	1.8	1.00
Copper	Total	µg/l	68	< 0.5	< 10	1.11
Iron	Dissolved	µg/l	17	< 50	726	303
Iron	Total	µg/l	57	0.18	1980	645
Lead Lead	Dissolved Total	µg/l	NA 54	NA < 0.03	NA 1	NA 0.31
Lead	Total	μg/l μg/l	1	< 0.03 NA	NA	25.6
Magnesium	Total	mg/l	104	46.6	120	84.5
Manganese	Dissolved	μg/l	17	336	1210	777
Manganese	Total	μg/l	114	0.73	2190	595
Mercury	Dissolved	ng/l	NA	NA	NA	NA
Mercury	Total	ng/l	89	< 0.1	< 25	1.02
Methyl Mercury	Dissolved	ng/l	NA	NA	NA	NA
Methyl Mercury	Total	ng/l	7	< 0.025	< 25	3.03
Molybdenum Nickol	Total	µg/l	87	4	53	22.1
Nickel Nickel	Dissolved Total	μg/l μg/l	17 60	< 0.5 < 0	< 1 5	0.33
Palladium	Total	μg/l	5	< 0.3	< 250	1.32 NA
Platinum	Total	μg/l	5	< 0.25	< 250	NA
Platinum		mg/l	52	3.29	14.8	7.66
	Total	· ·	31	0.037	< 3.6	0.814
Potassium	Total	µg/l	51			
Potassium Selenium		μg/l μg/l	17	< 0.2	1	0.25
Potassium Selenium Silver	Total		17 52			0.25 41.3
Potassium Selenium Silver Sodium Strontium	Total Total Total Total Total	μg/l mg/l μg/l	17 52 18	< 0.2 13 232	1 62.7 361	41.3 297
Potassium Selenium Silver Sodium Strontium Thallium	Total Total Total Total Total Total	μg/l mg/l μg/l μg/l	17 52 18 31	< 0.2 13 232 < 0.002	1 62.7 361 2	41.3 297 0.26
Potassium Selenium Silver Sodium Strontium Thallium Tin	Total Total Total Total Total Total Total	μg/l mg/l μg/l μg/l μg/l	17 52 18 31 4	< 0.2 13 232 < 0.002 < 0.5	1 62.7 361 2 10	41.3 297 0.26 2.73
Potassium Selenium Silver Sodium Strontium Thallium Tin Titanium	Total Total Total Total Total Total Total Total	μg/l mg/l μg/l μg/l μg/l μg/l	17 52 18 31 4 2	< 0.2 13 232 < 0.002 < 0.5 < 10	1 62.7 361 2 10 10	41.3 297 0.26 2.73 7.50
Potassium Selenium Silver Sodium Strontium Thallium Tin	Total Total Total Total Total Total Total	μg/l mg/l μg/l μg/l μg/l	17 52 18 31 4	< 0.2 13 232 < 0.002 < 0.5	1 62.7 361 2 10	41.3 297 0.26 2.73

Large Table 3 Tailings Basin Groundwater Monitoring Well Locations

						N	/ell Location				Upgradient/Downgradient?		
Current Monitoring Station ID	Proposed NPDES/SDS Station ID	Unique Well Number	Bedrock or Surficial Aquifer	Water Quality Monitoring Years	UTM Easting	UTM Northing	Township	Range	Section	Forty	Current ¹	Average depth to water table (feet)	Installation Date
GW001			Surficial Aquifer	2007, 2009-2015	566028.67	5276003.26	60	14	33	NESE	Not applicable	2.56	Unknown
GW002	GW002		Surficial Aquifer	2007, 2009-2015	561841.00	5271962.00	59	14	18	SWNW	Not applicable	20.93	Unknown
GW003		597383	Within FTB		564488.00	5273378.00	59	14	8	SENE	Not applicable	Dry	July 1998
GW004		551772	Within FTB		564410.00	5273298.00	59	14	8	SENE	Not applicable	Dry	October 1994
GW005		597384	Within FTB	2009-2015	564361.00	5273427.00	59	14	8	SENE	Not applicable	133.86	July 1998
GW006		625042	Surficial Aquifer	2007, 2009-2015	563873.49	5275683.25	60	14	32	SESW	Not applicable	11.15	April 2001
GW007		625043	Surficial Aquifer	2007, 2009-2015	563453.89	5274725.57	59	14	5	SWNW	Not applicable	7.32	April 2001
GW008		625044	Surficial Aquifer	2007, 2009-2015	563699.00	5273110.00	59	14	8	SENW	Not applicable	4.52	April 2001
GW009	GW009		Surficial Aquifer	2009-2015	566084.33	5277751.94	60	14	28	NESE	Not applicable	4.36	February 2009
GW010	GW010	767967	Surficial Aquifer	2009-2015	564680.49	5276976.61	60	14	32	NENE	Not applicable	2.49	May 2009
GW011		767966	Surficial Aquifer	2009-2015	563440.54	5276749.89	60	14	32	NWNW	Not applicable	20.73	May 2009
GW012		767968	Surficial Aquifer	2009-2015	565469.07	5275974.94	60	14	33	NESW	Not applicable	4.87	May 2009
GW013			Surficial Aquifer	2010-2015	562342.02	5276625.05	60	14	31	SWNE	Not applicable	2.46	July 2010
GW014			Surficial Aquifer	2010-2014	561168.69	5276123.59	60	15	36	NESE	Not applicable	4.32	July 2010
GW015	GW015		Surficial Aquifer	2010-2015	558718.00	5273855.46	59	15	11	NWNW	Not applicable	2.98	July 2010
GW016	GW016		Surficial Aquifer	2013-2015	561551.38	5276343.72	60	14	31	SWNW	Not applicable	5.06	August 2013

(1) Whether wells are upgradient or downgradient of Project features will change following permit issuance and initiation of activities at the FTB. For information regarding well locations following Mine Year 1, refer to Volume I.

Large Table 4 Tailings Basin Baseline Groundwater Quality Monitoring Summary

Water Quality Data for GW001 2007 - 2015							
Parameter	Fraction	Units	# of Samples	Minimum	Maximum	Averag	
General Parameters							
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	12	339	405	387	
Alkalinity, carbonate, as CaCO3	NA	mg/l	11	< 10	< 20	NA	
Alkalinity, total, as CaCO3	NA	mg/l	22	339	428	395	
iochemical Oxygen Demand (5-day)	NA	mg/l	11	< 2.4	< 8	NA	
arbon, dissolved organic	NA	mg/l	12	8.3	9.8	8.97	
arbon, total organic	NA	mg/l	22	7.3	9.8	8.75	
hemical Oxygen Demand	NA	mg/l	15	23.2	52.9	34.2	
Chloride	NA	mg/l	21	25.3	28.1	26.9	
yanide	NA	mg/l	15	< 0.01	0.0219	0.0085	
Dissolved oxygen	NA	mg/l	24	0.01	5.36	1.40	
luoride	NA	mg/l	21	< 0.1	0.19	0.14	
ardness, as CaCO3	NA	mg/l	21	328	418	371	
itrogen, Nitrate, as N	NA	mg/l	2	< 0.1	< 0.1	NA	
litrogen, Nitrite, as N	NA	mg/l	2	< 0.05	< 0.1	NA	
litrogen, Nitrate + Nitrite, as N	NA	mg/l	20	< 0.1	0.14	0.06	
litrogen, ammonia, as N	NA	mg/l	22	< 0.1	0.21	0.14	
orthophosphate, as PO4	NA	mg/l	1	< 0.02	NA	NA	
H	NA	pH units	45	4.1	8	7.05	
hosphorus, total, as P	Dissolved	mg/l	1	< 0.0003	NA	NA	
hosphorus, total, as P	NA	mg/l	16	< 0.1	0.11	0.05	
edox (oxidation potential)	NA	mV	24	2	591	242	
ilica, as SiO2	NA	mg/l	1	NA	NA	23.7	
ilica, Reactive as (SiO2)	NA	mg/l	5	23.1	24.4	23.7	
olids, total dissolved	NA	mg/l	18	455	586	516	
blids, total suspended	NA	mg/l	10	NA	NA	42	
pecific Conductance @ 25 °C	NA	umhos/cm	25	640	902	854	
			25		41.5	33.3	
ulfate, as SO4	NA	mg/l		28.8			
ulfide, as S ² -	NA	mg/l	1	< 5	NA	NA 7.64	
emperature	NA	deg C	23	3.5	11.01	7.64	
urbidity	NA	NTU	24	0	187	25.4	
Metals							
lluminum	Dissolved	µg/l	21	< 10	25	12.6	
luminum	Total	µg/l	16	< 20	3060	637	
ntimony	Dissolved	µg/l	7	< 0.5	< 0.5	NA	
Intimony	Total	µg/l	15	< 0.5	< 0.5	NA	
rsenic	Dissolved	µg/l	18	< 0.31	< 2	0.39	
rsenic	Total	µg/l	15	< 0.5	< 10	0.81	
arium	Dissolved	µg/l	14	228	267	247	
arium	Total	µg/l	16	229	300	267	
eryllium	Dissolved	μg/l	7	< 0.2	< 2	NA	
Beryllium	Total	μg/l	15	< 0.2	< 2	NA	
Soron	Dissolved	μg/l	15	256	308	277	
Boron	Total	μg/l	16	254	312	273	
Cadmium	Dissolved	μg/l	21	< 0.2	< 0.2	NA	
admium	Total	μg/l	15	< 0.2	0.98	0.22	
Calcium	Dissolved	mg/l	1	NA	NA	71	
		5.					
alcium	Total	mg/l	22	61.8	81.4	73.9	
Chromium	Dissolved	µg/l	21	< 1	< 2	NA	
hromium	Total	µg/l	15	< 1	7.7	1.96	
obalt	Dissolved	µg/l	14	< 0.2	0.37	0.17	
obalt	Total	µg/l	15	0.21	2.5	0.74	
Copper	Dissolved	µg/l	21	< 0.5	5.41	0.80	
opper	Total	µg/l	15	0.55	13.6	4.26	
on	Dissolved	µg/l	18	4750	11000	8719	
on	Total	µg/l	16	8690	14700	11418	
ead	Dissolved	µg/l	14	< 0.5	< 0.6	NA	
ead	Total	µg/l	15	< 0.5	5.6	1.23	
lagnesium	Dissolved	mg/l	1	NA	NA	42	
/agnesium	Total	mg/l	22	41.3	52.2	45.2	
langanese	Dissolved	μg/l	18	2200	4260	3544	
langanese	Total	μg/l	16	2300	3890	3221	
1ercury	Total	ng/l	19	< 0.5	4.6	1.41	
Iethyl Mercury	Total	ng/l	13	< 0.03	0.14	0.05	
folybdenum	Dissolved	μg/l	21	8	10.2	9.06	
folybdenum	Total	μ <u>μ</u> g/l	15	8	10.2	9.19	
lickel	Dissolved	μg/l	21	< 0.5	4.4	1.12	
lickel	Total	μ <u>μ</u> σ/Ι	15	< 0.5	10.9	3.14	
alladium	Total	μ <u>μ</u> β/Ι μg/Ι	15	< 0.3	< 0.5	3.14 NA	
			15	< 0.3	< 0.5 NA		
latinum	Dissolved	μg/l				NA	
latinum	Total	μg/l	15	< 0.3	< 0.5	NA 3.2	
otassium	Dissolved	mg/l		NA	NA		
otassium	Total	mg/l	22	2.52	4	3.09	
elenium	Dissolved	µg/l	21	< 1	< 1	NA	
elenium	Total	µg/l	15	< 1	< 10	0.89	
licon, as Si	Dissolved	mg/l	5	11.5	12.7	12.1	
licon, as Si	Total	mg/l	5	11.8	12.4	12.1	
lver	Dissolved	µg/l	15	< 0.2	< 0.2	NA	
ilver	Total	μg/l	15	< 0.2	< 0.2	NA	
odium	Dissolved	mg/l	1	NA	NA	60	
odium	Total	mg/l	22	48.8	65	52.8	
trontium	Dissolved	μg/l	1	NA	NA	240	
trontium	Total	μg/l	16	240	289	264	
hallium	Dissolved	μg/l	7	< 0.02	< 0.4	NA	
hallium	Total	μg/l	15	< 0.02	0.53	0.16	
itanium	Dissolved	μg/l	1	< 0.017 NA	NA	2.8	
	Total		15	< 10	160	31.3	
itanium	i otai	µg/l					
Zinc	Dissolved	µg/l	21	< 6	50.8	7.65	

Averages calculated with non-detects at half the detection limit. Averages not calculated if 100% non-detects.

Field duplicates not included in count of samples.

Water Quality Data for GW002 2007 - 2015								
Parameter	Fraction	2007 - 2015 Units	# of Samples	Minimum	Maximum	Average		
General Parameters								
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	12	17.6	54.6	31.7		
Alkalinity, carbonate, as CaCO3 Alkalinity, total, as CaCO3	NA NA	mg/l mg/l	12 21	< 10 17.6	< 10 54.6	NA 31.8		
Biochemical Oxygen Demand (5-day)	NA	mg/l	12	< 2.4	< 8	NA		
Carbon, dissolved organic	NA	mg/l	12	1.8	7.1	4.27		
Carbon, total organic	NA	mg/l	21	1.5	7.4	3.75		
Chemical Oxygen Demand	NA	mg/l	15	< 10	38	20.3		
Chloride Cyanide	NA NA	mg/l mg/l	21 15	< 0.5 0.0054	1.4 < 0.02	0.62		
Dissolved oxygen	NA	mg/l	21	1.75	16.21	9.19		
Fluoride	NA	mg/l	21	< 0.1	< 0.1	NA		
Hardness, as CaCO3	NA	mg/l	21	28.9	73.9	43.2		
Nitrogen, Nitrate, as N	NA	mg/l	1	< 0.1	NA	NA		
Nitrogen, Nitrite, as N Nitrogen, Nitrate + Nitrite, as N	NA NA	mg/l mg/l	1 20	< 0.05 < 0.1	NA < 0.1	NA NA		
Nitrogen, ammonia, as N	NA	mg/l	20	< 0.05	0.44	0.07		
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA		
рН	NA	pH units	41	5.3	8.3	7.23		
Phosphorus, total, as P	Dissolved	mg/l	1	< 0.0003	NA	NA		
Phosphorus, total, as P Redox (oxidation potential)	NA NA	mg/l mV	15 21	< 0.1 171	0.48 638	0.22		
Silica, as SiO2	NA	mg/l	NA	NA	NA	NA		
Silica, Reactive as (SiO2)	NA	mg/l	NA	NA	NA	NA		
Solids, total dissolved	NA	mg/l	17	81	142	98.1		
Solids, total suspended	NA	mg/l	NA	NA	NA	NA		
Specific Conductance @ 25 °C	NA	umhos/cm	21	0	225	78.5		
Sulfate, as SO4	NA	mg/l	21	4.7	7.74	6.19		
Sulfide, as S ² Temperature	NA NA	mg/l deg C	NA 20	NA 5.85	NA 21.72	NA 12.5		
Temperature Turbidity	NA	NTU	20	5.85	786	12.5		
Metals								
Aluminum	Dissolved	µg/l	21	< 25	682	116		
Aluminum	Total	µg/l	15	413	16000	5682		
Antimony	Dissolved	µg/l	7	< 0.5	< 0.5	NA		
Antimony	Total Dissolved	µg/l	15	< 0.5	< 0.5	NA		
Arsenic Arsenic	Total	μg/l μg/l	17 15	< 0.5	< 2	NA 1.12		
Barium	Dissolved	μg/l	15	5.96	11.7	7.04		
Barium	Total	µg/l	15	10.9	110	48.5		
Beryllium	Dissolved	µg/l	7	< 0.2	< 2	NA		
Beryllium	Total	µg/l	15	< 0.2	< 2	0.19		
Boron	Dissolved	µg/l	16	< 50	< 200	NA		
Boron	Total	μg/l	15	< 50	< 200	NA 0.10		
Cadmium Cadmium	Dissolved Total	μg/l μg/l	21 15	< 0.2	1.33 1.72	0.19		
Calcium	Dissolved	mg/l	1	NA	NA	11		
Calcium	Total	mg/l	21	8.4	17.8	11.8		
Chromium	Dissolved	µg/l	21	< 1	2.4	1.14		
Chromium	Total	µg/l	15	2	31	14.1		
Cobalt	Dissolved	µg/l	15	< 0.2	0.32	0.11		
Cobalt Copper	Total Dissolved	μg/l μg/l	15 21	0.27	7.9 784	3.27 39.7		
Copper Copper	Total	μg/l	15	1.1	32	12.9		
Iron	Dissolved	μg/l	17	< 50	678	114		
Iron	Total	µg/l	15	458	18000	6428		
Lead	Dissolved	µg/l	15	< 0.5	< 0.6	NA		
Lead	Total	µg/l	15	< 0.5	4	1.79		
Magnesium Magnesium	Dissolved	mg/l	1 21	NA	NA	1.8		
Magnesium Manganese	Total Dissolved	mg/l μg/l	18	1.6 1.3	7.88 12	3.49 4.23		
Manganese	Total	μg/l	15	11.1	340	119		
Mercury	Total	ng/L	20	0.685	9.3	3.99		
Methyl Mercury	Total	ng/L	14	< 0.03	< 0.1	0.04		
Molybdenum	Dissolved	µg/l	21	< 0.2	0.41	0.16		
Molybdenum	Total	µg/l	15	< 0.2	< 5	0.47		
Nickel Nickel	Dissolved Total	μg/l μg/l	21 15	0.61	2.2 32	1.14 12.2		
Palladium	Total	μg/l	15	< 0.03	< 0.5	NA		
Platinum	Dissolved	μg/l	1	< 0.3	NA	NA		
Platinum	Total	µg/l	15	< 0.009	< 0.5	NA		
Potassium	Dissolved	mg/l	1	NA	NA	0.41		
Potassium	Total	mg/l	21	0.3	4	1.13		
Selenium	Dissolved	μg/l	21 15	< 1	< 1 < 5	NA		
	Total	μg/l μg/l	NA	< 1 NA	< 5 NA	NA NA		
Selenium	Discolved		NA	NA	NA	NA		
Selenium Silicon, as Si	Dissolved Total	ua/i						
Selenium Silicon, as Si Silicon, as Si	Dissolved Total Dissolved	μg/l μg/l	15	< 0.2	< 0.2	NA		
Selenium Silicon, as Si Silicon, as Si Silver	Total		15 15	< 0.2 < 0.2	< 0.2 < 0.2	NA NA		
Selenium Silicon, as Si Silicon, as Si Silver Silver Sodium	Total Dissolved Total Dissolved	μg/l μg/l mg/l	15 1	< 0.2 NA	< 0.2 NA	NA 2.5		
Selenium Silicon, as Si Silicon, as Si Silver Silver Sodium Sodium	Total Dissolved Total Dissolved Total	μg/l μg/l mg/l mg/l	15 1 21	< 0.2 NA 2.1	< 0.2 NA 5.5	NA 2.5 3.19		
Selenium Silicon, as Si Silicon, as Si Silver Silver Sodium Sodium Strontium	Total Dissolved Total Dissolved Total Dissolved	μg/l μg/l mg/l mg/l μg/l	15 1 21 1	< 0.2 NA 2.1 NA	< 0.2 NA 5.5 NA	NA 2.5 3.19 42		
Selenium Silicon, as Si Silicon, as Si Silver Silver Sodium Sodium Strontium Strontium	Total Dissolved Total Dissolved Total Dissolved Total	μg/l μg/l mg/l mg/l μg/l μg/l	15 1 21 1 15	< 0.2 NA 2.1 NA 38.3	< 0.2 NA 5.5 NA 110	NA 2.5 3.19 42 62.7		
Selenium Silicon, as Si Silicon, as Si Silver Silver Sodium Sodium Strontium Strontium Thallium	Total Dissolved Total Dissolved Total Dissolved Total Dissolved	μg/l μg/l mg/l mg/l μg/l μg/l μg/l	15 1 21 1 15 7	< 0.2 NA 2.1 NA 38.3 < 0.02	< 0.2 NA 5.5 NA 110 < 0.4	NA 2.5 3.19 42 62.7 NA		
Selenium	Total Dissolved Total Dissolved Total Dissolved Total Dissolved Total Dissolved Total	μg/l μg/l mg/l μg/l μg/l μg/l μg/l μg/l	15 1 21 1 15	< 0.2 NA 2.1 NA 38.3 < 0.02 < 0.017	< 0.2 NA 5.5 NA 110 < 0.4 0.59	NA 2.5 3.19 42 62.7 NA 0.16		
Selenium Silicon, as Si Silicon, as Si Silver Soliver Sodium Sodium Strontium Strontium Thallium Thallium	Total Dissolved Total Dissolved Total Dissolved Total Dissolved	μg/l μg/l mg/l mg/l μg/l μg/l μg/l	15 1 21 1 15 7 15	< 0.2 NA 2.1 NA 38.3 < 0.02	< 0.2 NA 5.5 NA 110 < 0.4	NA 2.5 3.19 42 62.7 NA		

	Wate	er Quality Data fo	r GW005			
Parameter	Fraction	2009 - 2015 Units	# of Samples	Minimum	Maximum	Average
General Parameters						
Alkalinity, bicarbonate, as CaCO3 Alkalinity, carbonate, as CaCO3	NA NA	mg/l	13 13	300 < 10	439 < 20	349 NA
Alkalinity, total, as CaCO3	NA	mg/l mg/l	20	300	439	352
Biochemical Oxygen Demand (5-day)	NA	mg/l	13	< 3	< 24	5.4
Carbon, dissolved organic	NA	mg/l	13	1.6	5.1	2.75
Carbon, total organic	NA	mg/l	20	1.4	4.4	2.10
Chemical Oxygen Demand Chloride	NA NA	mg/l	14 20	< 10 28.2	66.3 31.9	29.1 30.0
Cyanide	NA	mg/l mg/l	14	< 0.0035	< 0.02	30.0 NA
Dissolved oxygen	NA	mg/l	21	< 0.1	10	3.99
Fluoride	NA	mg/l	20	1.9	3.2	2.26
Hardness, as CaCO3	NA	mg/l	20	399	815	530
Nitrogen, Nitrate as N Nitrogen, Nitrite as N	NA NA	mg/l	NA NA	NA NA	NA NA	NA NA
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l mg/l	20	< 0.1	0.16	0.07
Nitrogen, ammonia, as N	NA	mg/l	20	< 0.1	< 1	0.21
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA
рН	NA	pH units	40	7.2	8.5	7.87
Phosphorus, total, as P	NA	mg/l	14	< 0.1	0.72	0.20
Phosphorus, total, as P Redox (oxidation potential)	NA NA	mg/l mV	14 21	< 0.1 58	0.62	0.20 324
Silica, as SiO2	NA	mg/l	NA	NA	NA	NA
Silica, Reactive as (SiO2)	NA	mg/l	NA	NA	NA	NA
Solids, total dissolved	NA	mg/l	18	694	886	780
Solids, total suspended	NA	mg/l	NA	NA	NA	NA
Specific Conductance @ 25 °C	NA	umhos/cm	21	512	1359	1156
Sulfate, as SO4	NA	mg/l	21	209	353	287
Sulfide, as S ² -	NA NA	mg/l deg C	1 21	NA 3.83	NA 22.59	8 11.5
Turbidity	NA	NTU	21	1	702	11.5
Metals						
Aluminum	Dissolved	µg∕l	20	< 10	40.6	14.4
Aluminum	Total	µg/l	14	387	21500	4170
Antimony	Dissolved	µg/l	6	< 0.5	< 0.5	NA
Antimony Arsenic	Total Dissolved	μg/l μg/l	14 17	< 0.5 < 0.5	< 2.5 1.2	0.37
Arsenic	Total	μg/l	15	1.18	27.1	6.51
Barium	Dissolved	μ <u>g</u> /l	13	7.6	29.4	21.5
Barium	Total	µg/l	14	36.2	193	72.7
Beryllium	Dissolved	µg∕l	6	< 0.2	< 0.2	NA
Beryllium	Total	µg/l	14	< 0.2	2.17	0.58
Boron	Dissolved	μg/l	15 14	408	551 569	471
Boron Cadmium	Total Dissolved	μg/l μg/l	20	390 < 0.2	< 0.2	441 NA
Cadmium	Total	μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μμμμ	14	< 0.2	1.98	0.45
Calcium	Dissolved	mg/l	NA	NA	NA	NA
Calcium	Total	mg/l	20	55.6	167	79.9
Chromium	Dissolved	µg/l	20	< 1	1.6	0.61
Chromium	Total	µg/l	14	4.3	71.3	21.8
Cobalt Cobalt	Dissolved Total	μg/l μg/l	13 14	< 0.2 1.2	0.95 23.4	0.39 7.04
Copper	Dissolved	µg/l	20	0.62	5.09	1.53
Copper	Total	µg/l	14	4.7	89.4	24.7
Iron	Dissolved	µg∕l	17	< 50	816	198
Iron	Total	µg/l	14	6100	190000	48568
Lead	Dissolved	µg/l	13	< 0.5	< 0.5	NA
Lead Magnesium	Total Dissolved	µg/l	14 NA	0.7 NA	20.9 NA	5.54 NA
Magnesium Magnesium	Total	mg/l mg/l	20	61.9	97.8	80.3
Manganese	Dissolved	μg/l	18	92.9	480	258
Manganese	Total	µg/l	14	601	8820	2749
Mercury	Total	ng/L	20	< 0.5	71.2	9.15
Methyl Mercury	Total	ng/L	14	< 0.03	0.27	0.07
Molybdenum Molybdenum	Dissolved Total	μg/l μg/l	20 14	14.2 18.2	39.7 49.8	27.6 30.5
Nickel	Dissolved	μg/l	20	< 0.5	7.2	2.95
Nickel	Total	μg/l	14	8.5	108	34.1
Palladium	Total	µg/l	14	< 0.03	0.63	0.30
Platinum	Dissolved	µg/l	NA	NA	NA	NA
Platinum	Total	µg/l	14	0.026	< 0.5	0.24
Potassium Potassium	Dissolved Total	mg/l	NA 20	NA 10.4	NA 17.8	NA 13.5
Potassium Selenium	Dissolved	mg/l μg/l	20	10.4	< 1	13.5 NA
Selenium	Total	μg/l	14	< 1	< 5	NA
Silicon, as Si	Dissolved	µg/l	NA	NA	NA	NA
Silicon, as Si	Total	µg/l	NA	NA	NA	NA
Silver	Dissolved	µg/l	14	< 0.2	< 0.2	NA
Silver	Total	µg/l	14	< 0.2	< 1	0.15
Sodium Sodium	Dissolved Total	mg/l	NA 20	NA 58.7	NA 128	NA 102
Strontium	Dissolved	mg/l μg/l	20 NA	58.7 NA	NA	102 NA
Strontium	Total	μg/l	14	290	396	337
Thallium	Dissolved	μg/l	6	< 0.02	< 0.2	NA
			14	< 0.017	< 1	0.17
	Total	µg/l		× 0.017	< <u>1</u>	0.17
Thallium Itanium	Dissolved	µg/l	NA	NA	NA	NA

Water Quality Data for GW006 2007 - 2015								
Parameter	Fraction	Units	# of Samples	Minimum	Maximum	Average		
General Parameters								
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	14 13	605 < 10	852	695		
Alkalinity, carbonate, as CaCO3 Alkalinity, total, as CaCO3	NA NA	mg/l mg/l	24	521	< 50 973	NA 732		
Biochemical Oxygen Demand (5-day)	NA	mg/l	13	< 2.4	< 8	NA		
Carbon, dissolved organic	NA	mg/l	14	2.6	4.4	3.31		
Carbon, total organic	NA	mg/l	24	2	3.8	3.04		
Chemical Oxygen Demand Chloride	NA	mg/l	17 24	< 10 8.26	23	11.27		
Chioride	NA NA	mg/l mg/l	17	< 0.0035	22.7 < 0.02	14.76 0.0077		
Dissolved oxygen	NA	mg/l	25	0.05	4.38	1.09		
Fluoride	NA	mg/l	24	1.3	2.56	1.8		
Hardness, as CaCO3	NA	mg/l	23	757	1810	1268		
Nitrogen, Nitrate + Nitrite, as N	NA NA	mg/l	22 24	< 0.1	< 0.1 0.43	NA 0.195		
Nitrogen, ammonia, as N Nitrogen, Nitrate, as N	NA	mg/l mg/l	24	< 0.1	< 0.1	0.195 NA		
Nitrogen, Nitrite, as N	NA	mg/l	2	< 0.05	< 0.1	NA		
Orthophosphate, as PO4	NA	mg/l	1	< 0.02	NA	NA		
pH	NA	pH units	47	6.7	8.6	7.33		
Phosphorus, total, as P Phosphorus, total, as P	Dissolved	mg/l	1 18	< 0.0003	NA 0.10	NA		
Redox (oxidation potential)	NA NA	mg/l mV	25	< 0.1	0.19	0.091 250		
Silica, as SiO2	NA	mg/l	1	NA	NA	38		
Silica, Reactive as (SiO2)	NA	mg/l	5	28.2	40	35.0		
Solids, total dissolved	NA	mg/l	19	1204	1860	1508		
Solids, total suspended	NA	mg/l	1	NA	NA	20		
Specific Conductance @ 25 °C	NA	umhos/cm	26	559	2606	1942		
Sulfate, as SO4 Sulfide, as S ² -	NA NA	mg/l mg/l	25 2	217	749 < 5	551 NA		
Temperature	NA	deg C	24	4.3	15.97	9.93		
Turbidity	NA	NTU	25	0	11.2	1.12		
Metals								
Aluminum	Dissolved	µg/l	23	< 10	31.2	13.2		
Aluminum	Total	µg/l	18	< 20	572	88.7		
Antimony Antimony	Dissolved Total	µg/l µg/l	7 17	< 0.5	< 0.5 < 0.5	NA NA		
Antimony Arsenic	Dissolved	μg/i μg/l	19	0.52	6.5	2.6		
Arsenic	Total	μg/l	18	0.66	6.62	3.89		
Barium	Dissolved	µg/l	15	68.5	133	105.9		
Barium	Total	µg/l	18	66	127	106		
Beryllium	Dissolved	µg/l	7	< 0.2	< 2	NA		
Beryllium	Total	µg/l	17	< 0.2	< 2	NA		
Boron Boron	Dissolved Total	μg/l μg/l	16 18	350 330	558 554	475		
Cadmium	Dissolved	μ <u>μ</u> μμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμ	23	< 0.2	0.34	0.12		
Cadmium	Total	μg/l	17	< 0.2	< 0.2	NA		
Calcium	Dissolved	mg/l	1	NA	NA	84		
Calcium	Total	mg/l	24	81.9	139	112.0		
Chromium	Dissolved	µg/l	23 17	< 1	< 2	NA		
Chromium Cobalt	Total Dissolved	μg/l μg/l	17	< 1 1.6	2.06 5.2	0.68		
Cobalt	Total	μg/l	17	1.6	3.8	2.66		
Copper	Dissolved	μg/l	23	1	11	2.96		
Copper	Total	µg/l	17	1.24	7.27	2.51		
Iron	Dissolved	µg/l	19	126	9400	4024		
Iron	Total	µg/l	18	148	6730	3717		
Lead Lead	Dissolved Total	μg/l	15 17	< 0.5 < 0.5	< 0.6 < 0.6	NA NA		
Lead Magnesium	Dissolved	μg/l mg/l	1/	< 0.5 NA	< 0.6 NA	140		
Magnesium	Total	mg/l	24	134	356	240		
Manganese	Dissolved	μg/l	19	495	1260	1053		
Manganese	Total	µg/l	18	541	1420	1066		
Mercury	Total	ng/l	21	0.512	4.5	1.32		
Methyl Mercury Molybdenum	Total Dissolved	ng/l	15 23	< 0.03 20.3	0.27 45	0.049 26.6		
vlolybdenum Molybdenum	Total	μg/l μg/l	17	20.3	45	26.6		
Nickel	Dissolved	μg/l	23	< 0.5	7	3.32		
Nickel	Total	μg/l	17	< 0.5	7	3.34		
Palladium	Total	µg/l	17	< 0.03	0.81	0.26		
Platinum	Dissolved	µg/l	1	< 0.3	NA	NA 0.22		
Platinum Potassium	Total Dissolved	μg/l mg/l	17	< 0.009 NA	< 0.5 NA	0.23		
Potassium	Total	mg/l	24	6.84	16	9.9		
Selenium	Dissolved	μg/l	23	< 1	< 1	NA		
Selenium	Total	µg∕l	17	< 1	< 1	NA		
Silicon, as Si	Dissolved	mg/l	5	7.4	17.6	15		
illicon, as Si	Total	mg/l	5	7.4	18.2	15.1		
ilver	Dissolved	μg/l	17	< 0.2	< 0.2	NA		
Soliver Sodium	Total Dissolved	μg/l mg/l	17	< 0.2 NA	< 0.2 NA	NA 37		
odium odium	Total	mg/l mg/l	24	33	80	58		
Strontium	Dissolved	µg/l	1	NA	NA	360		
Strontium	Total	μg/l	18	350	721	581		
Thallium	Dissolved	µg/l	7	< 0.02	< 0.4	NA		
Thallium	Total	µg/l	17	< 0.017	0.51	0.15		
Fitanium	Dissolved	µg/l	1	NA	NA	2.6		
Titanium	Total	µg/l	17	4.1	47	9.2		
Zinc	Dissolved	µg/l	23	< 6	< 30	6.6		

Water Quality Data for GW007 2007 - 2015								
Parameter	Fraction	Units	# of Samples	Minimum	Maximum	Average		
General Parameters								
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	13 13	274 < 10	307 < 20	291		
Alkalinity, carbonate, as CaCO3 Alkalinity, total, as CaCO3	NA NA	mg/l mg/l	23	250	316	NA 291		
Biochemical Oxygen Demand (5-day)	NA	mg/l	13	< 2.4	< 8	NA		
Carbon, dissolved organic	NA	mg/l	13	1.4	3.1	2.0		
Carbon, total organic	NA	mg/l	23	< 1	2.4	1.65		
Chemical Oxygen Demand Chloride	NA NA	mg/l	17 23	6.75 27.7	95.4 30.5	13.59 29.14		
Cyanide	NA	mg/l mg/l	17	< 0.0035	< 0.02	0.0069		
Dissolved oxygen	NA	mg/l	24	0.08	5	1.28		
Fluoride	NA	mg/l	23	1.7	2.04	1.9		
Hardness, as CaCO3	NA	mg/l	23	375	440	415		
Nitrogen, Nitrate + Nitrite, as N Nitrogen, ammonia, as N	NA NA	mg/l mg/l	22 23	< 0.1 0.06	0.33	0.062		
Nitrogen, Nitrate, as N	NA	mg/l	1	< 0.1	0.19 NA	0.069 NA		
Nitrogen, Nitrite, as N	NA	mg/l	1	< 0.05	< 0.05	NA		
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA		
pH	NA	pH units	46	6.6	8.7	7.67		
Phosphorus, total, as P Phosphorus, total, as P	Dissolved NA	mg/l	1 17	< 0.0003 < 0.1	NA 0.1	NA 0.05		
Redox (oxidation potential)	NA	mg/l mV	24	144	561	403		
Silica, as SiO2	NA	mg/l	1	17	17	105		
Silica, Reactive as (SiO2)	NA	mg/l	5	16.1	18	17.0		
Solids, total dissolved	NA	mg/l	18	517	608	566		
Solids, total suspended	NA	mg/l	NA	NA F21	NA 081	NA		
Specific Conductance @ 25 °C Sulfate, as SO4	NA NA	umhos/cm mg/l	24 24	531 151	981 183	895 169		
Sulfate, as SO4 Sulfide, as S ² -	NA	mg/l mg/l	1	< 2	183 NA	NA		
Temperature	NA	deg C	23	2.38	13.49	8.62		
Turbidity	NA	NTU	24	0	82.4	10.11		
Metals								
Aluminum	Dissolved	μg/l	23	< 10	25.6	10.9		
Aluminum Antimony	Total Dissolved	μg/l μg/l	17 7	< 0.5	284 < 0.5	43 NA		
Antimony	Total	μg/l	17	< 0.5	< 0.5	NA		
Arsenic	Dissolved	μg/l	19	< 0.5	2.6	1.26		
Arsenic	Total	µg/l	18	0.84	7.64	2.15		
Barium	Dissolved	µg/l	15	1.2	4.5	1.8		
Barium	Total	µg/l	17	1.2	< 10	2.9		
Beryllium Beryllium	Dissolved Total	μg/l	7 17	< 0.2	< 2	NA NA		
Boron	Dissolved	μg/l μg/l	16	371	467	410		
Boron	Total	μg/l	17	353	450	402		
Cadmium	Dissolved	µg/l	23	< 0.2	< 0.2	NA		
Cadmium	Total	µg/l	17	< 0.2	0.23	0.10		
Calcium	Dissolved	mg/l	1	NA	NA	54		
Calcium Chromium	Total Dissolved	mg/l	23 23	45 < 1	53.4 < 2	50.5 0.54		
Chromium	Total	μg/l μg/l	17	< 1	2.5	0.34		
Cobalt	Dissolved	μ <u>g</u> /l	15	0.56	0.91	0.74		
Cobalt	Total	µg/l	17	0.56	3.94	1.08		
Copper	Dissolved	µg/l	23	0.56	5.16	1.10		
Copper	Total	µg/l	17	< 0.7	11.6	2.2		
Iron Iron	Dissolved Total	μg/l μg/l	18 17	< 50 < 50	132 5970	33 724		
Lead	Dissolved	μg/l	15	< 0.5	< 0.6	NA		
Lead	Total	μg/l	17	< 0.5	2.09	0.42		
Magnesium	Dissolved	mg/l	1	NA	NA	75		
Magnesium	Total	mg/l	23	63.6	75.7	70.3		
Manganese	Dissolved	μg/l	19	1000	1400	1247		
Manganese Mercury	Total Total	μg/l ng/l	17 21	1070 < 0.5	4130 6.8	1565 0.89		
Mercury Methyl Mercury	Total	ng/l	15	< 0.03	0.15	0.89		
Molybdenum	Dissolved	μg/l	23	< 0.3	34.2	29.3		
Molybdenum	Total	μg/l	17	27.1	35	30.6		
Nickel	Dissolved	µg/l	23	< 0.5	4	0.93		
Nickel Balladium	Total	μg/l	17	< 0.5	4	1.4		
Palladium Platinum	Total Dissolved	μg/l μg/l	17	0.032	< 0.5 NA	0.23 NA		
Platinum	Total	μg/l	17	0.01	< 0.5	0.23		
Potassium	Dissolved	mg/l	1	NA	NA	9.1		
Potassium	Total	mg/l	23	6.7	9.8	8.2		
Selenium	Dissolved	µg/l	23	< 1	< 1	NA		
Selenium	Total	μg/l	17 5	< 1 7.3	1.1	0.52		
Silicon, as Si Silicon, as Si	Dissolved Total	mg/l mg/l	5	7.3	8.1 8.3	7.6 7.69		
Silver	Dissolved	μg/l	17	< 0.2	< 0.2	7.69 NA		
Silver	Total	μg/l	17	< 0.2	< 0.2	NA		
Sodium	Dissolved	mg/l	1	NA	NA	46		
Sodium	Total	mg/l	23	46	65.7	50.0		
Strontium	Dissolved	µg/l	1	NA	NA	330		
Strontium	Total	μg/l	17	278	330	308		
Thallium Thallium	Dissolved Total	μg/l	7 17	< 0.02 < 0.017	< 0.4	NA 0.13		
Titanium	Dissolved	μg/l μg/l	1/	< 0.017 NA	< 0.4 NA	2.0		
Titanium	Total	μg/l	17	< 2	< 10	4.64		
Zinc	Dissolved	μ <u>μ</u> g/l	23	< 6	< 30	5.3		

	Wat	er Quality Data fo	r GW008			
Parameter	Fraction	2007 - 2015 Units	# of Samples	Minimum	Maximum	Average
General Parameters		Units	" or samples	Winnan	Maximum	Average
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	13	115	148	129
Alkalinity, carbonate, as CaCO3 Alkalinity, total, as CaCO3	NA NA	mg/l mg/l	13 22	< 10 115	< 20 158	NA 131
Biochemical Oxygen Demand (5-day)	NA	mg/l	13	< 2.4	< 8	NA
Carbon, dissolved organic	NA	mg/l	13	1.1	3	1.9
Carbon, total organic	NA	mg/l	22	1	3.2	1.45
Chemical Oxygen Demand	NA	mg/l	16	< 10	26.5	9.56
Chloride Cyanide	NA NA	mg/l	22 16	0.56 < 0.0035	1.3 < 0.02	0.76
Dissolved oxygen	NA	mg/l mg/l	23	0.64	11.98	3.17
Fluoride	NA	mg/l	22	< 0.1	0.12	0.1
Hardness, as CaCO3	NA	mg/l	22	130	195	148
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	21	< 0.1	0.12	0.053
Nitrogen, ammonia, as N	NA	mg/l	22	< 0.05	0.14	0.050
Nitrogen, Nitrate, as N Nitrogen, Nitrite, as N	NA NA	mg/l mg/l	1	< 0.1 < 0.05	NA NA	NA NA
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA
pH	NA	pH units	44	5.2	8.5	6.9
Phosphorus, total, as P	Dissolved	mg/l	1	< 0.0003	NA	NA
Phosphorus, total, as P	NA	mg/l	16	< 0.1	0.86	0.15
Redox (oxidation potential) Silica, as SiO2	NA NA	mV mg/l	23	208 30	563 30	439 30
Silica, as SiO2 Silica, Reactive as (SiO2)	NA	mg/l mg/l	5	29.2	30	30
Solids, total dissolved	NA	mg/l	18	151	235	193
Specific Conductance @ 25 °C	NA	umhos/cm	23	222	321	272
Sulfate, as SO4	NA	mg/l	22	10.1	23.5	15
Sulfide, as S ² -	NA	mg/l	NA 22	NA 2.60	NA 12.9	NA 9 E 2
Temperature Turbidity	NA NA	deg C NTU	22	2.69 0	13.8 886	8.53 87.5
Metals	INA		23	0	000	U.J
Aluminum	Dissolved	µg/l	22	< 10	29.6	12.3
Aluminum	Total	µg/l	16	23.5	24300	3549
Antimony	Dissolved	µg/l	7	< 0.5	< 0.5	NA
Antimony	Total	µg/l	16 18	< 0.5	< 0.5	NA
Arsenic Arsenic	Dissolved Total	μg/l μg/l	18	< 0.5 < 0.5	< 2 4.17	NA 0.92
Barium	Dissolved	μg/l	14	27.1	35	32.1
Barium	Total	μg/l	16	28.7	234	62.0
Beryllium	Dissolved	µg/l	7	< 0.2	< 2	NA
Beryllium	Total	µg/l	16	< 0.2	< 2	0.23
Boron	Dissolved	µg/l	16	< 50	< 200	NA
Boron Cadmium	Total Dissolved	μg/l μg/l	16 22	< 50 < 0.2	< 200 < 0.2	NA NA
Cadmium	Total	μg/l	16	< 0.2	0.39	0.13
Calcium	Dissolved	mg/l	1	NA	NA	24
Calcium	Total	mg/l	22	21	31.8	24.1
Chromium	Dissolved	µg/l	22	< 1	2.9	1.51
Chromium Cobalt	Total Dissolved	µg/l	16 14	1.06 < 0.2	65.1 0.2	10.1 0.11
Cobalt	Total	μg/l μg/l	14	< 0.2	16.8	2.47
Copper	Dissolved	μ <u>μ</u> g/l	22	0.7	16.8	2.13
Copper	Total	µg/l	16	0.76	50	8.3
Iron	Dissolved	µg/l	18	24	106	31
Iron	Total	µg/l	16	< 50	31000	4364
Lead Lead	Dissolved Total	µg/l	14 16	< 0.5 < 0.5	< 0.6 8.49	NA 1.36
Magnesium	Dissolved	μg/l mg/l	10	< 0.5 NA	8.49 NA	21
Magnesium	Total	mg/l	22	18.3	28	21.4
Manganese	Dissolved	µg/l	19	2.6	84	24
Manganese	Total	µg/l	16	10	866	171
Mercury Methyl Mercury	Total Total	ng/l	21 15	< 0.5 < 0.03	22.4 0.28	2.44 0.06
Metnyi Mercury Molybdenum	Dissolved	ng/l µg/l	22	< 0.03	0.28	0.06
Molybdenum	Total	μg/l	16	< 0.2	< 5	0.5
Nickel	Dissolved	µg/l	22	0.63	2.5	1.13
Nickel	Total	µg/l	16	0.71	67.5	10.7
Palladium	Total	µg/l	16	< 0.03	< 0.5	NA
Platinum Platinum	Dissolved Total	μg/l	1 16	< 0.3 < 0.009	NA < 0.5	NA NA
Platinum Potassium	Dissolved	µg/l mg/l	10	< 0.009 NA	< 0.5 NA	1.9
Potassium	Total	mg/l	22	1.25	4.62	1.9
Selenium	Dissolved	µg/l	22	< 1	< 1	NA
Selenium	Total	µg/l	16	< 1	< 1	NA
Silicon, as Si	Dissolved	mg/l	5	12.3	14.9	13.8
Silicon, as Si Silver	Total Dissolved	mg/l	5 16	12.2 < 0.2	14.8 < 0.2	13.6 NA
Silver	Total	μg/l μg/l	16	< 0.2	< 0.2	NA
Sodium	Dissolved	mg/l	10	NA	NA	6
Sodium	Total	mg/l	22	4.8	8.64	5.7
Strontium	Dissolved	µg/l	1	NA	NA	91
Strontium	Total	µg/l	16	74.3	149	94
Thallium	Dissolved	µg/l	7	< 0.02	< 0.4	NA
Thallium Titanium	Total	µg/l	16	< 0.017	0.44	0.13
Titanium Titanium	Dissolved Total	μg/l	1 16	NA < 10	NA 1100	3.0 151
manium		µg/l				
Zinc	Dissolved	µg/l	22	< 6	< 30	5.4

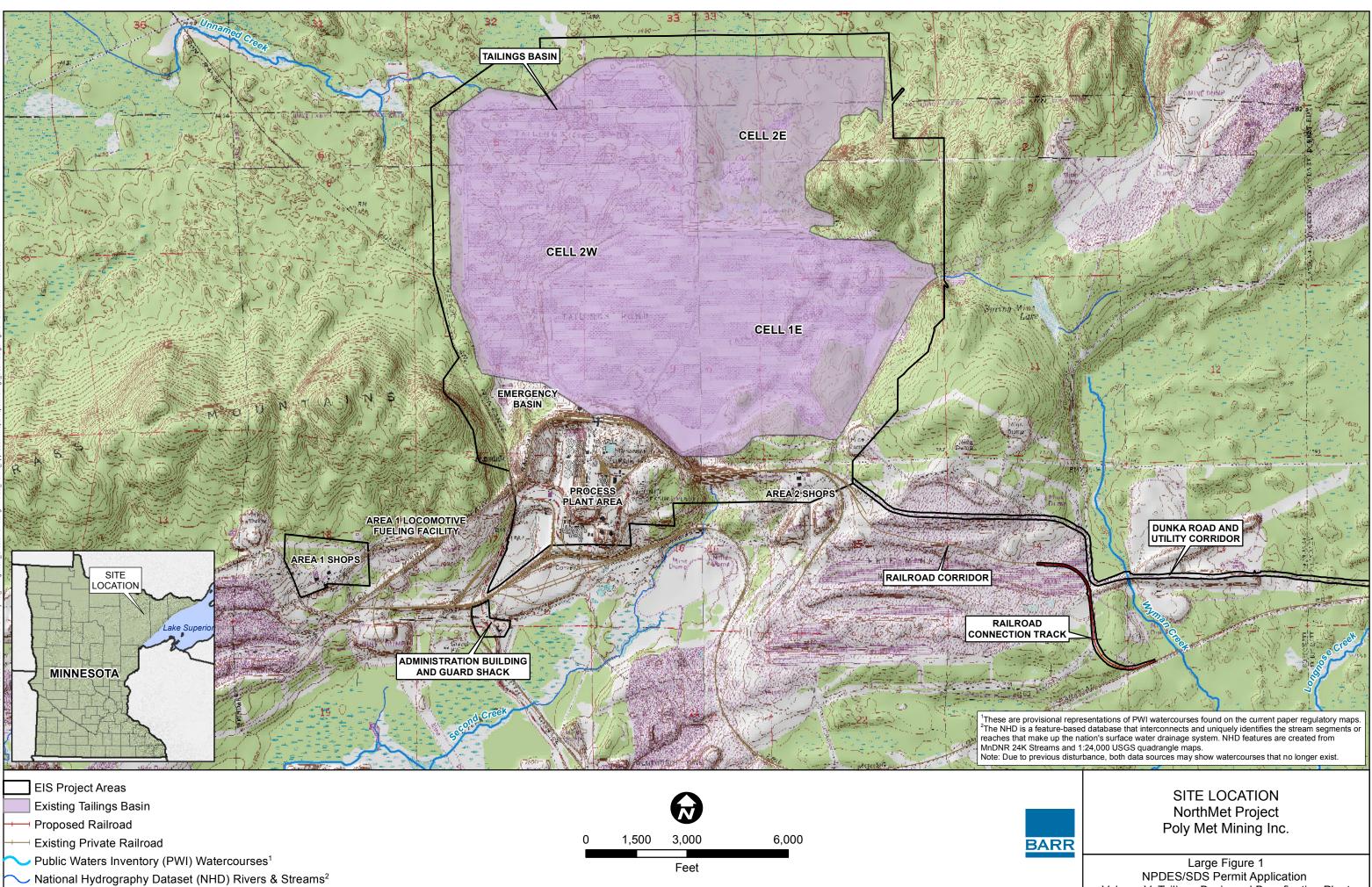
Water Quality Data for GW009 2009 - 2015								
Parameter	Fraction	Units	# of Samples	Minimum	Maximum	Average		
General Parameters								
Alkalinity, bicarbonate, as CaCO3 Alkalinity, carbonate, as CaCO3	NA	mg/l	13 13	168 < 10	239 < 10	207 NA		
Alkalinity, total, as CaCO3	NA	mg/l mg/l	21	141	239	197		
Biochemical Oxygen Demand (5-day)	NA	mg/l	13	< 2.4	< 8	NA		
Carbon, dissolved organic	NA	mg/l	13	10.1	22.9	15.9		
Carbon, total organic	NA	mg/l	21	10.3	25.5	16.8		
Chemical Oxygen Demand Chloride	NA NA	mg/l	15 21	39.5 2.08	154 17.1	64.7 7.05		
Chiofide	NA	mg/l mg/l	15	< 0.01	0.0446	0.0093		
Dissolved oxygen	NA	mg/l	21	< 0.1	7.6	1.66		
Fluoride	NA	mg/l	21	< 0.1	0.28	0.2		
Hardness, as CaCO3	NA	mg/l	21	174	346	223		
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	21	< 0.1	0.19	0.06		
Nitrogen, ammonia, as N Nitrogen, Nitrate as N	NA NA	mg/l mg/l	21 NA	< 0.1 NA	0.36 NA	0.17 NA		
Nitrogen, Nitrate as N Nitrogen, Nitrite as N	NA	mg/l	NA	NA	NA	NA		
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA		
pH	NA	pH units	41	6.31	8.2	6.9		
Phosphorus, total, as P	Dissolved	mg/l	NA	NA	NA	NA		
Phosphorus, total, as P	NA	mg/l	15	< 0.1	3.92	0.65		
Redox (oxidation potential)	NA	mV	21	-13	651	251		
Silica, as SiO2 Silica, Reactive as (SiO2)	NA NA	mg/l mg/l	NA NA	NA NA	NA NA	NA NA		
Solids, total dissolved	NA	mg/l	18	314	443	359		
Solids, total suspended	NA	mg/l	NA	NA	NA	NA		
Specific Conductance @ 25 °C	NA	µmhos/cm	21	450.3	981	577		
Sulfate, as SO4	NA	mg/l	21	15.6	235	75.7		
Sulfide, as S ² -	NA	mg/l	NA	NA	NA	NA 0.67		
Temperature Turbidity	NA NA	deg C NTU	21 21	3.06 0	19.4 2543	8.67 301		
Metals	NA	NIU	21	0	2545	501		
Aluminum	Dissolved	µg/l	21	14.8	< 250	27.7		
Aluminum	Total	µg/l	15	< 40	47800	10952		
Antimony	Dissolved	μg/l	6	< 0.5	< 0.5	NA		
Antimony	Total	µg/l	15	< 0.5	< 0.5	NA		
Arsenic	Dissolved	µg/l	18	< 0.5	< 2	0.88		
Arsenic	Total	µg/l	15 13	< 0.5	9.97 74	2.10 62.2		
Barium Barium	Dissolved Total	μg/l μg/l	13	52.6 62.7	594	162.2		
Beryllium	Dissolved	μg/l	6	< 0.2	< 0.2	NA		
Beryllium	Total	μg/l	15	< 0.2	2.72	0.42		
Boron	Dissolved	µg/l	14	75.1	< 500	125		
Boron	Total	µg/l	15	65.8	< 500	139		
Cadmium	Dissolved	µg/l	21	< 0.2	0.2	0.10		
Cadmium Calcium	Total Dissolved	μg/l mg/l	15 NA	< 0.2 NA	0.95 NA	0.28 NA		
Calcium	Total	mg/l	21	33.6	66	43.2		
Chromium	Dissolved	μg/l	21	< 1	3.3	0.96		
Chromium	Total	µg/l	15	< 1	344	41.9		
Cobalt	Dissolved	µg/l	13	3.1	6.8	4.63		
Cobalt	Total	µg/l	15	3.5	81.3	13.6		
Copper	Dissolved	µg/l	21	1.19	20.7	4.21		
Copper Iron	Total Dissolved	μg/l μg/l	15 17	2.4 1140	252 16400	35.5 10302		
Iron	Total	μg/l	15	3060	83900	25394		
Lead	Dissolved	μg/l	13	< 0.5	< 0.5	NA		
Lead	Total	µg/l	15	< 0.5	44.6	5.81		
Magnesium	Dissolved	mg/l	NA	NA	NA	NA		
Magnesium	Total	mg/l	21	20.3	43.9	27.8		
Manganese Manganese	Dissolved Total	μg/l μg/l	18 15	17.3 2690	3910 4220	3026 3461		
Manganese Mercury	Total	ng/l	21	2690	69.7	15.4		
Methyl Mercury	Total	ng/l	14	< 0.03	0.11	0.05		
Molybdenum	Dissolved	μg/l	21	0.26	9	3.98		
Molybdenum	Total	μg/l	15	1.9	11.1	5.86		
Nickel	Dissolved	µg/l	21	2.6	9.2	4.24		
Nickel	Total	μg/l	15	2.8	294	38.7		
Palladium Platinum	Total Dissolved	μg/l μg/l	15 NA	0.24 NA	2.11 NA	0.42 NA		
Platinum	Total	μg/l	15	< 0.009	< 0.5	NA		
Potassium	Dissolved	mg/l	NA	NA	NA	NA		
Potassium	Total	mg/l	21	1.56	8.1	3.23		
Selenium	Dissolved	µg/l	21	< 1	< 1	NA		
Selenium	Total	µg/l	15	< 1	1.98	0.59		
Silicon, as Si	Dissolved	mg/l	NA	NA	NA	NA		
silicon, as Si Silver	Total Dissolved	mg/l μg/l	NA 15	NA < 0.2	NA < 0.2	NA NA		
jilver	Total	μg/I μg/l	15	< 0.2	0.42	0.12		
Sodium	Dissolved	mg/l	NA	NA	NA	NA		
Sodium	Total	mg/l	21	24.4	77.6	43.6		
Strontium	Dissolved	μg/l	NA	NA	NA	NA		
Strontium	Total	μg/l	15	146	301	208		
Thallium	Dissolved	µg/l	6	< 0.02	< 0.2	NA		
Fhallium	Total	µg/l	15	< 0.017	0.74	0.20		
Fitanium	Dissolved	μg/l	NA 15	NA	NA 2250	NA		
lītanium Zinc	Total Dissolved	μg/l μg/l	15 21	< 10	3350 26.7	561 6.39		

	Wat	er Quality Data fo 2009 - 2013	r GW010			
Parameter	Fraction	2009 - 2013 Units	# of Samples	Minimum	Maximum	Average
General Parameters			10		270	210
Alkalinity, bicarbonate, as CaCO3 Alkalinity, carbonate, as CaCO3	NA NA	mg/l	12 12	277 < 10	379 < 20	318 NA
Alkalinity, total, as CaCO3	NA	mg/l mg/l	12	259	421	337
Biochemical Oxygen Demand (5-day)	NA	mg/l	12	< 2.4	9.3	2.6
Carbon, dissolved organic	NA	mg/l	12	8.6	15.3	12.7
Carbon, total organic	NA	mg/l	19	5.4	14.9	12.5
Chemical Oxygen Demand	NA	mg/l	13	16.3	70	39.4
Chloride	NA	mg/l	19	15.5	19.9	17.4
Cyanide	NA	mg/l	13	< 0.01	< 0.02	0.007
Dissolved oxygen	NA	mg/l	18	0.02	5.5	0.95
Fluoride Hardness, as CaCO3	NA NA	mg/l	19 19	< 0.1 232	0.13 387	0.1
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l mg/l	19	< 0.1	0.1	0.05
Nitrogen, ammonia, as N	NA	mg/l	19	< 0.05	0.38	0.05
Nitrogen, Nitrate as N	NA	mg/l	NA	NA	NA	NA
Nitrogen, Nitrite as N	NA	mg/l	NA	NA	NA	NA
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA
рН	NA	pH units	36	5.8	8.4	6.9
Phosphorus, total, as P	Dissolved	mg/l	NA	NA	NA	NA
Phosphorus, total, as P	NA	mg/l	13	< 0.1	< 0.1	NA
Redox (oxidation potential)	NA	mV	18	-70	597	205
Silica, as SiO2 Silica, Reactive as (SiO2)	NA	mg/l	NA	NA	NA	NA
Silica, Reactive as (SiO2) Solids, total dissolved	NA NA	mg/l mg/l	NA 18	NA 248	NA 477	NA 399
Solids, total suspended	NA	mg/l	NA	NA	NA	NA
Specific Conductance @ 25 °C	NA	umhos/cm	18	535	837	687
Sulfate, as SO4	NA	mg/l	19	1.6	31.7	4.58
Sulfide, as S ² -	NA	mg/l	NA	NA	NA	NA
Temperature	NA	deg C	18	6.13	11.09	8.29
Turbidity	NA	NTU	18	0	14.1	2.29
Metals						
Aluminum	Dissolved	µg/l	19	< 10	37.6	16.5
Aluminum	Total	µg/l	13	< 20	463	96.3
Antimony	Dissolved	µg/l	6	< 0.5	< 0.5	NA
Antimony	Total	μg/l	13 18	< 0.5	< 0.5 10.7	NA 4.70
Arsenic	Dissolved Total	μg/l μg/l	13	1.18 1.16	6.4	3.32
Barium	Dissolved	μg/l	13	1200	2200	1732
Barium	Total	μ <u>μ</u> g/l	13	442	1930	1484
Beryllium	Dissolved	μg/l	6	< 0.2	< 0.2	NA
Beryllium	Total	μg/l	13	< 0.2	< 0.2	NA
Boron	Dissolved	µg/l	14	84.6	142	118
Boron	Total	µg/l	13	81.8	150	104
Cadmium	Dissolved	µg/l	19	< 0.2	< 0.2	NA
Cadmium	Total	µg/l	13	< 0.2	< 0.2	NA
Calcium	Dissolved	mg/l	NA	NA	NA	NA
Calcium Chromium	Total Dissolved	mg/l	19 19	48.4 < 1	81.5 2.7	63.0 1.44
Chromium	Total	μg/l μg/l	13	< 1	3.54	1.44
Cobalt	Dissolved	μg/l	13	0.73	2.9	1.05
Cobalt	Total	μg/l	13	1.1	4.4	2.24
Copper	Dissolved	μg/l	19	< 0.5	8.11	1.66
Copper	Total	µg/l	13	1.2	6.7	2.86
Iron	Dissolved	µg/l	17	5900	21900	12041
Iron	Total	µg/l	13	1150	13900	9695
Lead	Dissolved	µg/l	13	< 0.5	0.57	0.27
Lead	Total	µg/l	13	< 0.5	0.68	0.32
Magnesium Magnesium	Dissolved	mg/l	NA 19	NA 27.1	NA	NA
Magnesium Manganese	Total Dissolved	mg/l	19	27.1 254	44.6 600	35 422
Manganese Manganese	Total	μg/l μg/l	18	254	600	422
Manganese	Total	ng/l	18	1.41	5.8	3.53
Methyl Mercury	Total	ng/l	12	< 0.03	0.51	0.07
Molybdenum	Dissolved	μg/l	19	0.24	1.2	0.70
Molybdenum	Total	µg/l	13	0.22	1.2	0.61
Nickel	Dissolved	µg/l	19	< 0.5	6.9	1.65
Nickel	Total	µg/l	13	< 0.5	6.8	2.28
Palladium	Total	µg/l	13	< 0.3	< 0.5	NA
Platinum	Dissolved	µg/l	NA 12	NA	NA	NA
Platinum Potoccium	Total	μg/l	13 NA	< 0.3 NA	< 0.5 NA	NA NA
Potassium Potassium	Dissolved Total	mg/l mg/l	19	1.93	2.91	NA 2.44
Selenium	Dissolved	µg/l	19	< 1	< 1	2.44 NA
Selenium	Total	μg/l	13	< 1	< 1	NA
Silicon, as Si	Dissolved	mg/l	NA	NA	NA	NA
Silicon, as Si	Total	mg/l	NA	NA	NA	NA
Silver	Dissolved	µg/l	13	< 0.2	< 0.2	NA
Silver	Total	μg/l	13	< 0.2	< 0.2	NA
Sodium	Dissolved	mg/l	NA	NA	NA	NA
Sodium	Total	mg/l	19	29.9	44.1	38.5
Strontium	Dissolved	µg/l	NA	NA	NA	NA
Strontium	Total	µg/l	13	180	250	213
Fhallium	Dissolved	µg/l	6	< 0.02	< 0.2	NA
Thallium Titanium	Total	μg/l	13 NA	< 0.017	< 0.4	NA
Titanium	Dissolved Total	μg/l μg/l	13	NA < 10	NA 34	NA 9.66
	Dissolved	μg/l	13	< 10	9.51	3.75
Zinc		11(1/1	19		951	3 / 5

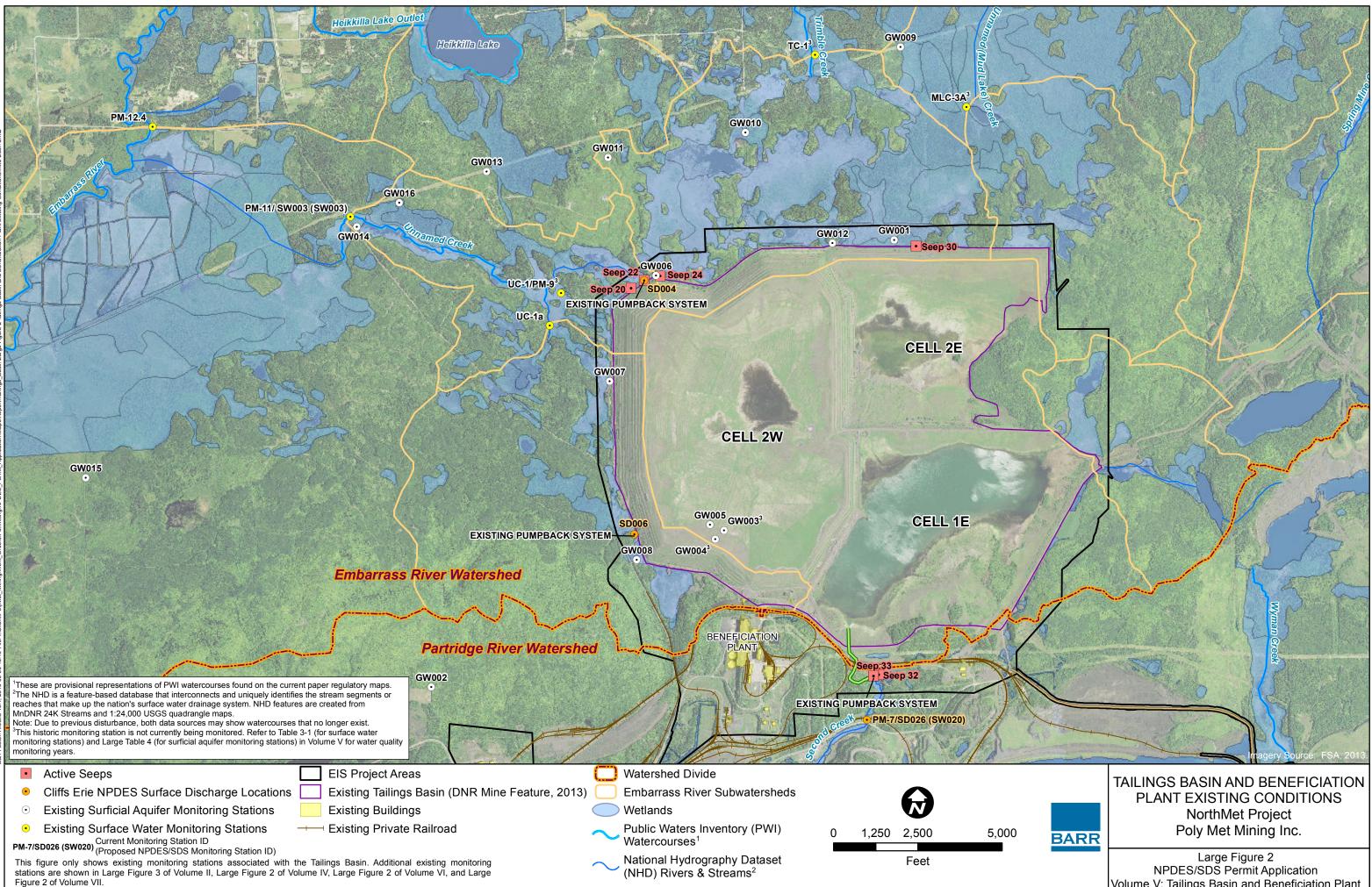
	Wat	er Quality Data fo 2009 - 2015	r GW011			
Parameter	Fraction	Units	# of Samples	Minimum	Maximum	Average
General Parameters						
Alkalinity, bicarbonate, as CaCO3 Alkalinity, carbonate, as CaCO3	NA NA	mg/l	10 10	23.9 < 10	96.1 < 20	46.2 NA
Alkalinity, total, as CaCO3	NA	mg/l mg/l	15	23.9	96.1	43.4
Biochemical Oxygen Demand (5-day)	NA	mg/l	10	< 2.4	< 8	NA
Carbon, dissolved organic	NA	mg/l	10	< 1	3.1	1.59
Carbon, total organic	NA	mg/l	15	< 1	< 2	1.16
Chemical Oxygen Demand Chloride	NA NA	mg/l	11 15	< 10 < 0.5	75.1 2.78	15.5 1.16
Cyanide	NA	mg/l mg/l	15	< 0.0035	< 0.02	0.007
Dissolved oxygen	NA	mg/l	14	1.34	11.84	9.02
Fluoride	NA	mg/l	15	< 0.1	0.11	0.05
Hardness, as CaCO3	NA	mg/l	15	32.8	236	72.8
Nitrogen, Nitrate + Nitrite, as N Nitrogen, ammonia, as N	NA NA	mg/l	15 15	< 0.1	0.31	0.17
Nitrogen, Nitrate as N	NA	mg/l mg/l	NA	< 0.05 NA	0.14 NA	0.05 NA
Nitrogen, Nitrite as N	NA	mg/l	NA	NA	NA	NA
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA
pH	NA	pH units	28	5.5	8.33	6.74
Phosphorus, total, as P	Dissolved	mg/l	11	< 0.1	6	0.96
Phosphorus, total, as P Redox (oxidation potential)	NA NA	mg/l mV	11 14	< 0.1 271	6 616	0.97 461
Silica, as SiO2	NA	mg/l	NA	NA	NA	NA
Silica, Reactive as (SiO2)	NA	mg/l	NA	NA	NA	NA
Solids, total dissolved	NA	mg/l	13	65	116	97.3
Solids, total suspended	NA	mg/l	NA	NA	NA	NA
Specific Conductance @ 25 °C	NA	umhos/cm	14	71	1103	169
Sulfate, as SO4 Sulfide, as S ² -	NA	mg/l	15 NA	5.54	20.8 NA	10.5
Sulfide, as S ² -	NA NA	mg/l deg C	NA 14	NA 5.1	NA 19.4	NA 11.0
Turbidity	NA	NTU	14	0	2458	360
Metals						
Aluminum	Dissolved	µg/l	15	10.2	27.8	12.4
Aluminum	Total	µg/l	11	28.1	63500	11988
Antimony	Dissolved	µg/l	4	< 0.5	< 0.5	NA
Antimony Arsenic	Total Dissolved	μg/l	11 13	< 0.5 < 0.31	< 0.5	NA NA
Arsenic	Total	μg/l μg/l	11	< 0.5	18	3.22
Barium	Dissolved	μ <u>g</u> /l	11	14.7	27.4	20.3
Barium	Total	µg/l	11	18.5	703	140
Beryllium	Dissolved	µg/l	4	< 0.2	< 0.2	NA
Beryllium	Total	µg/l	11	< 0.2	2.72	0.45
Boron	Dissolved	μg/l	9 11	< 50	< 100	NA
Boron Cadmium	Total Dissolved	μg/l μg/l	11	< 50 < 0.2	< 100 < 0.2	NA NA
Cadmium	Total	μg/l	11	< 0.2	0.67	0.17
Calcium	Dissolved	mg/l	NA	NA	NA	NA
Calcium	Total	mg/l	15	7.6	41.4	14.5
Chromium	Dissolved	µg/l	15	< 1	2.2	1.26
Chromium	Total	µg/l	11	< 1	258	41.0
Cobalt Cobalt	Dissolved Total	μg/l μg/l	11 11	< 0.2 < 0.2	< 0.2 87.1	NA 12.9
Copper	Dissolved	μg/l	15	< 0.2	6.2	1.12
Copper	Total	μg/l	11	1.2	300	43.8
iron	Dissolved	µg/l	12	< 50	56.6	29.3
Iron	Total	µg∕l	11	< 50	82600	15635
Lead	Dissolved	µg/l	11	< 0.5	< 0.5	NA
_ead	Total	μg/l	11 NA	< 0.5	56.2 NA	8.02
Magnesium Magnesium	Dissolved Total	mg/l mg/l	15	NA 3.3	32.2	NA 8.87
Vagnesidin Vanganese	Dissolved	μg/l	13	0.85	17	4.29
Manganese	Total	μg/l	11	5.5	2140	388
Mercury	Total	ng/l	14	< 0.5	43.1	5.76
Methyl Mercury	Total	ng/l	9	< 0.03	< 0.1	0.04
Molybdenum Molybdenum	Dissolved Total	μg/l	15 11	< 0.2	1.4 2.87	0.33
violybaenum Nickel	Dissolved	μg/l μg/l	11	< 0.2	5.64	3.57
Nickel	Total	μg/l	11	2.7	316	48.7
Palladium	Total	μg/l	11	0.045	1.64	0.36
Platinum	Dissolved	µg/l	NA	NA	NA	NA
Platinum	Total	µg/l	11	< 0.009	< 0.5	NA
Potassium	Dissolved Total	mg/l	NA 15	NA 0.85	NA 6.13	NA 2.10
Potassium Selenium	Dissolved	mg/l μg/l	15	0.85	6.13 < 1	2.10 NA
Selenium	Total	μg/l	11	< 1	1.19	0.56
Silicon, as Si	Dissolved	mg/l	NA	NA	NA	NA
silicon, as Si	Total	mg/l	NA	NA	NA	NA
ilver	Dissolved	µg/l	11	< 0.2	< 0.2	NA
Silver	Total	µg/l	11	< 0.2	0.46	0.13
Sodium	Dissolved	mg/l	NA 15	NA 2.7	NA 7.7	NA
Sodium Strontium	Total Dissolved	mg/l μg/l	NA	2.7 NA	7.7 NA	4.31 NA
Strontium	Total	μg/l μg/l	11	41.8	269	96.7
Fhallium	Dissolved	μ <u>μ</u> g/l	4	< 0.02	< 0.2	NA
	Total	μg/l	11	< 0.017	0.53	0.15
Titanium	Dissolved	µg/l	NA	NA	NA	NA
Titanium	Total	µg∕l	11	< 10	2100	563
Zinc	Dissolved	µg/l	15	< 6	13.8	4.34

	Wat	er Quality Data fo 2009 - 2015	r GW012			
Parameter	Fraction	Units	# of Samples	Minimum	Maximum	Average
General Parameters						
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	14 13	496 < 20	680	606
Alkalinity, carbonate, as CaCO3 Alkalinity, total, as CaCO3	NA NA	mg/l mg/l	21	496	23.7 696	<u>11.1</u> 609
Biochemical Oxygen Demand (5-day)	NA	mg/l	13	< 2.4	< 8	NA
Carbon, dissolved organic	NA	mg/l	14	3.9	7.1	5.6
Carbon, total organic	NA	mg/l	21	4	6.8	5.1
Chemical Oxygen Demand Chloride	NA	mg/l	14 21	< 10	59.1 23	19.1
Chioride	NA NA	mg/l mg/l	14	13.3 < 0.0035	0.0289	17.3 0.009
Dissolved oxygen	NA	mg/l	21	0.03	9.4	1.88
Fluoride	NA	mg/l	21	< 0.13	0.26	0.2
Hardness, as CaCO3	NA	mg/l	20	670	1090	859
Nitrogen, Nitrate, as N	NA	mg/l	1	< 0.1	NA	NA
Nitrogen, Nitrite, as N Nitrogen, Nitrate + Nitrite, as N	NA NA	mg/l mg/l	1 20	< 0.1	NA 0.11	NA 0.053
Nitrogen, ammonia, as N	NA	mg/l	20	< 0.1	< 0.1	0.05
Orthophosphate, as PO4	NA	mg/l	1	NA	NA	0.02
рН	NA	pH units	40	6.59	7.9	7.3
Phosphorus, total, as P	Dissolved	mg/l	NA	NA	NA	NA
Phosphorus, total, as P	NA NA	mg/l mV	15 21	< 0.1 215	2.9 792	0.27
Redox (oxidation potential) Silica, as SiO2	NA	mg/l	1	NA NA	NA	18.9
Silica, Reactive as (SiO2)	NA	mg/l	5	15.5	19	17.4
Solids, total dissolved	NA	mg/l	19	893	1458	1201
Solids, total suspended	NA	mg/l	1	NA	NA	4.90
Specific Conductance @ 25 °C	NA	umhos/cm	22	573	2376	1703
Sulfate, as SO4 Sulfide, as S ² -	NA	mg/l	21	246	507	392
	NA NA	mg/l deg C	1 21	< 5 2.83	NA 13.98	NA 9.24
Temperature Turbidity	NA	NTU	21	0	13.98	9.24
Metals		1110			1001	122
Aluminum	Dissolved	µg/l	20	< 10	< 80	16.7
Aluminum	Total	µg/l	15	< 20	29000	3556
Antimony	Dissolved	µg/l	6	< 0.5	< 0.5	NA
Antimony	Total Dissolved	µg/l	14	< 0.5	< 0.5	NA 0.20
Arsenic Arsenic	Total	μg/l μg/l	18 14	< 0.5	< 2 3.44	0.36
Barium	Dissolved	μg/l	15	153	277	207
Barium	Total	µg/l	15	156	452	245
Beryllium	Dissolved	µg/l	6	< 0.2	< 0.2	NA
Beryllium	Total	µg/l	14	< 0.2	1.02	0.17
Boron	Dissolved	µg/l	14	168	442	374
Boron Cadmium	Total Dissolved	μg/l	15 20	313 < 0.2	442 1.1	386 0.16
Cadmium	Total	μg/l μg/l	14	< 0.2	2	0.10
Calcium	Dissolved	mg/l	NA	NA	NA	NA
Calcium	Total	mg/l	21	128	211	165
Chromium	Dissolved	µg/l	20	< 1	< 1	NA
Chromium	Total	µg/l	14	< 1	68.2	9.00
Cobalt Cobalt	Dissolved Total	μg/l	15 14	< 0.2	0.88 17.9	0.54 2.76
Copper	Dissolved	μg/l μg/l	20	1.8	6.2	3.38
Copper	Total	µg/l	14	2.1	205	24.5
Iron	Dissolved	µg/l	18	< 50	551	88.6
Iron	Total	µg/l	15	77.2	30100	3510
Lead	Dissolved	µg/l	15	< 0.5	< 0.5	NA
Lead	Total	µg/l	14 NA	< 0.5	8.26 NA	1.28
Magnesium Magnesium	Dissolved Total	mg/l mg/l	21	NA 81.4	136	NA 110
Manganese	Dissolved	μg/l	18	140	567	267
Manganese	Total	µg/l	15	173	776	392
Mercury	Total	ng/l	19	1.05	153	12.4
Methyl Mercury	Total	ng/l	12	< 0.03	< 0.1	0.04
Molybdenum Molybdenum	Dissolved Total	μg/l μg/l	20 14	26.5 19.5	38.4 37.2	34.2 31.9
Nickel	Dissolved	μg/l	20	8.1	13.3	10.7
Nickel	Total	μg/l	14	8.2	90.6	19.7
Palladium	Total	µg/l	14	< 0.03	1.72	0.41
Platinum	Dissolved	µg/l	NA	NA	NA	NA
Platinum	Total	µg/l	14	< 0.009	< 0.5	NA
Potassium Potassium	Dissolved Total	mg/l	NA 21	NA 2.59	NA 5.04	NA 3.46
Potassium Selenium	Dissolved	mg/l µg/l	21 20	2.59	< 1	3.46 NA
Selenium	Total	μg/l	14	< 1	< 1	NA
Silicon, as Si	Dissolved	mg/l	5	8	8.7	8.40
Silicon, as Si	Total	mg/l	5	7.9	9	8.44
Silver	Dissolved	µg/l	14	< 0.2	< 0.2	NA 0.11
Silver Sodium	Total	μg/l	14	< 0.2	0.23	0.11
Sodium Sodium	Dissolved Total	mg/l mg/l	NA 21	NA 80.3	NA 131	NA 107
Strontium	Dissolved	µg/l	NA	NA	NA	NA
Strontium	Total	μg/l	15	692	1050	873
Thallium	Dissolved	µg/l	6	< 0.02	< 0.2	NA
Thallium	Total	µg/l	14	< 0.017	< 0.4	NA
Titanium	Dissolved	µg/l	NA	NA	NA	NA
		1	14	/ 10	780	134
Titanium Zinc	Total Dissolved	μg/l μg/l	20	< 10	43.7	5.30

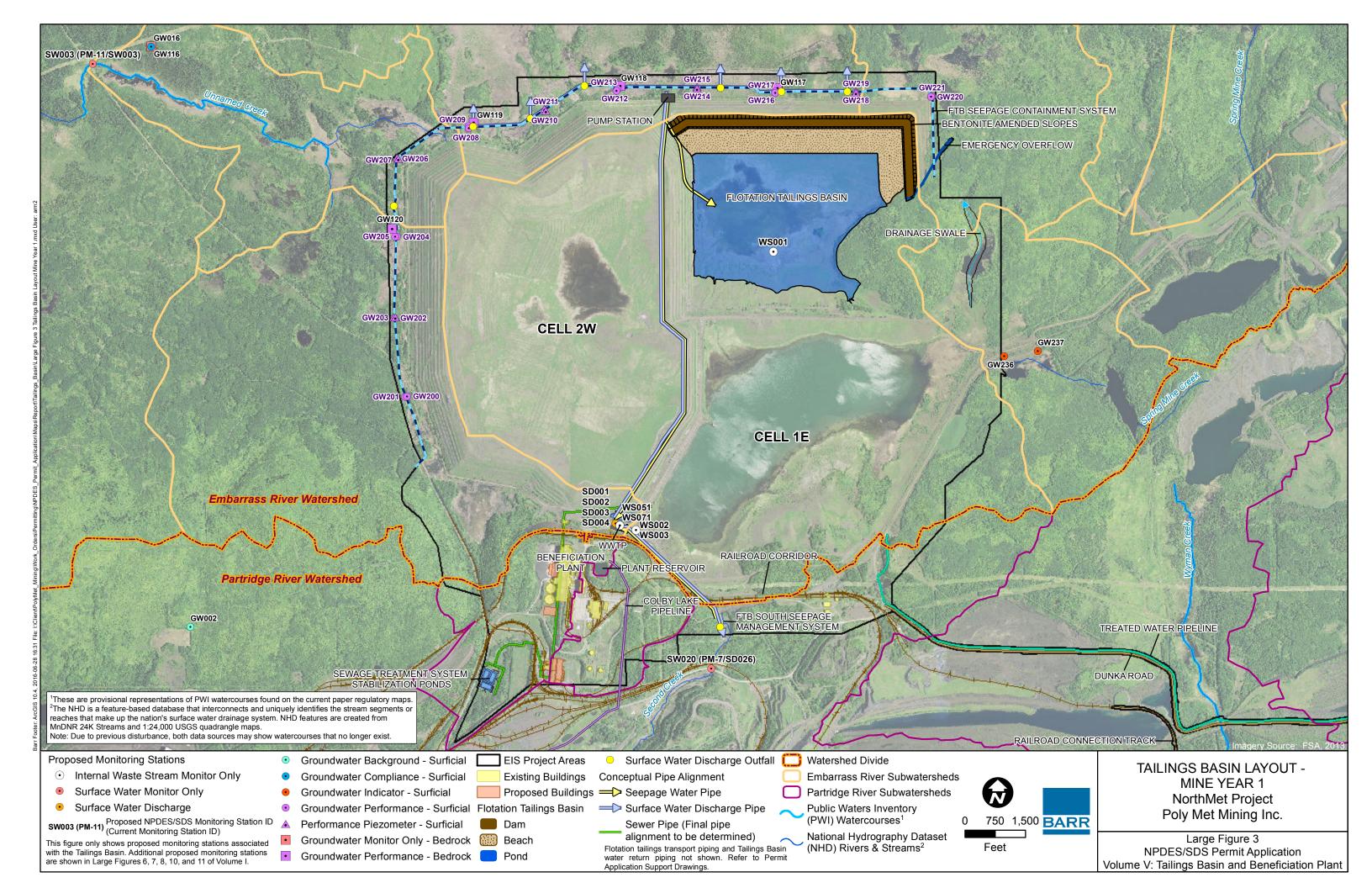
	Wat	er Quality Data fo 2010 - 2015	r GW013			
Parameter	Fraction	2010 - 2015 Units	# of Samples	Minimum	Maximum	Average
General Parameters						
Alkalinity, bicarbonate, as CaCO3 Alkalinity, carbonate, as CaCO3	NA NA	mg/l	12 12	12.7 < 10	46.2 < 20	18.5 NA
Alkalinity, total, as CaCO3	NA	mg/l mg/l	12	11.4	46.2	16.8
Biochemical Oxygen Demand (5-day)	NA	mg/l	12	< 2.4	< 8	NA
Carbon, dissolved organic	NA	mg/l	12	2.4	5.2	3.64
Carbon, total organic	NA	mg/l	18	2.4	5.8	3.39
Chemical Oxygen Demand	NA	mg/l	12	< 10	23.5	12.2
Chloride	NA	mg/l	18	< 0.5	< 1	0.39
Cyanide	NA	mg/l	12	< 0.01	0.945	0.086
Dissolved oxygen	NA	mg/l	18	5.8	10.79	8.10
Fluoride Hardness, as CaCO3	NA NA	mg/l	18 18	0.06	0.56 19.8	0.06
Nitrate + Nitrite, as N	NA	mg/l mg/l	18	< 0.1	0.25	0.13
Nitrogen, ammonia as N	NA	mg/l	18	< 0.05	0.49	0.13
Nitrogen, Nitrate as N	NA	mg/l	NA	NA	NA	NA
Nitrogen, Nitrite as N	NA	mg/l	NA	NA	NA	NA
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA
рН	NA	pH units	35	5.39	7.2	6.16
Phosphorus, total, as P	Dissolved	mg/l	12	< 0.1	< 0.1	NA
Phosphorus, total, as P	NA	mg/l	12	< 0.1	< 0.1	NA
Redox (oxidation potential)	NA	mV	18	364	635	484
Silica, as SiO2	NA	mg/l	NA	NA	NA	NA
Silica, Reactive as (SiO2) Solids, total dissolved	NA NA	mg/l mg/l	NA 18	NA 12	NA 104	NA 61.9
Solids, total dissolved Solids, total suspended	NA	mg/l	NA	NA	NA	61.9 NA
Specific Conductance @ 25 °C	NA	µmhos/cm	18	0	43	28.5
Sulfate, as SO4	NA	mg/l	18	2.2	4.1	2.93
Sulfide, as S ² -	NA	mg/l	NA	NA	NA	NA
Temperature, °C	NA	deg C	18	4.69	10.56	7.67
Turbidity	NA	NTU	18	0	71.4	12.0
Metals						
Aluminum	Dissolved	µg/l	18	27.7	154	56.9
Aluminum	Total	µg/l	12	51.6	2450	654
Antimony	Dissolved	µg/l	6	< 0.5	< 0.5	NA
Antimony	Total	µg/l	12	< 0.5	< 0.5	NA
Arsenic	Dissolved	µg/l	18	< 0.31	< 1	NA
Arsenic	Total Dissolved	μg/l	12 15	< 0.5 13.8	< 1 20.2	0.37
Barium Barium	Total	μg/l μg/l	13	15.8	50.5	25.6
Beryllium	Dissolved	μg/l	6	< 0.2	< 0.2	NA
Beryllium	Total	μg/l	12	< 0.2	< 0.2	NA
Boron	Dissolved	μ <u>μ</u> g/l	14	< 50	< 100	NA
Boron	Total	µg/l	12	< 50	< 50	NA
Cadmium	Dissolved	µg/l	18	< 0.03	< 0.2	0.10
Cadmium	Total	µg/l	12	0.04	< 0.2	0.10
Calcium	Dissolved	mg/l	NA	NA	NA	NA
Calcium	Total	mg/l	18	2.8	4.39	3.76
Chromium	Dissolved	µg/l	18	< 1	1.46	0.77
Chromium	Total	µg/l	12	< 1	6.42	1.90
Cobalt Cobalt	Dissolved Total	μg/l μg/l	15 12	< 0.2	3.3 1.36	0.29
Copper	Dissolved	μg/l	12	1.1	7.18	2.10
Copper	Total	μg/l	12	1.5	7.68	3.17
Iron	Dissolved	μ <u>g</u> /l	18	< 50	103	34.9
Iron	Total	µg/l	12	55.6	2320	630
Lead	Dissolved	µg/l	15	< 0.5	< 0.5	NA
Lead	Total	µg/l	12	< 0.5	3.55	0.53
Magnesium	Dissolved	mg/l	NA	NA	NA	NA
Magnesium	Total	mg/l	18	1.2	2.14	1.67
Manganese	Dissolved	µg/l	18	< 0.5	29	3.78
Manganese	Total	µg/l	12 18	1	39.7	10.4
Mercury Methyl Mercury	Total Total	ng/l ng/l	18	1.8 < 0.03	6 0.25	3.40 0.05
Methyl Mercury Molybdenum	Dissolved	μg/l	11	< 0.03	0.25	0.05
Molybdenum	Total	μg/l	12	< 0.2	0.44	0.10
Nickel	Dissolved	μ <u>μ</u> g/l	18	0.51	1.69	0.80
Nickel	Total	µg/l	12	0.71	6.93	2.12
Palladium	Total	μg/l	12	< 0.5	< 0.5	NA
Platinum	Dissolved	µg/l	NA	NA	NA	NA
Platinum	Total	µg/l	12	< 0.5	< 0.5	NA
Potassium	Dissolved	mg/l	NA	NA	NA	NA
Potassium Solonium	Total	mg/l	18 18	0.246	0.64	0.35
Selenium Selenium	Dissolved Total	μg/l	18	< 0.2 < 0.2	< 1	NA 0.47
Selenium Silicon, as Si	Dissolved	μg/l μg/l	NA	< 0.2 NA	< 1 NA	0.47 NA
Silicon, as Si	Total	μg/I μg/l	NA	NA	NA	NA
Silver	Dissolved	μg/l	12	< 0.2	< 0.2	NA
Silver	Total	μg/l	12	< 0.2	< 0.2	NA
Sodium	Dissolved	mg/l	NA	NA	NA	NA
Sodium	Total	mg/l	18	1.3	< 2	1.34
Strontium	Dissolved	μg/l	NA	NA	NA	NA
Strontium	Total	μg/l	12	15.9	27.3	22.2
Thallium	Dissolved	µg/l	6	< 0.02	< 0.2	NA
Thallium	Total	µg/l	12	< 0.017	0.81	0.15
Titanium	Dissolved	µg/l	NA	NA	NA	NA
Fitanium Zinc	Total Dissolved	μg/l μg/l	12 18	< 10 < 6	88 12.3	24.4 4.12

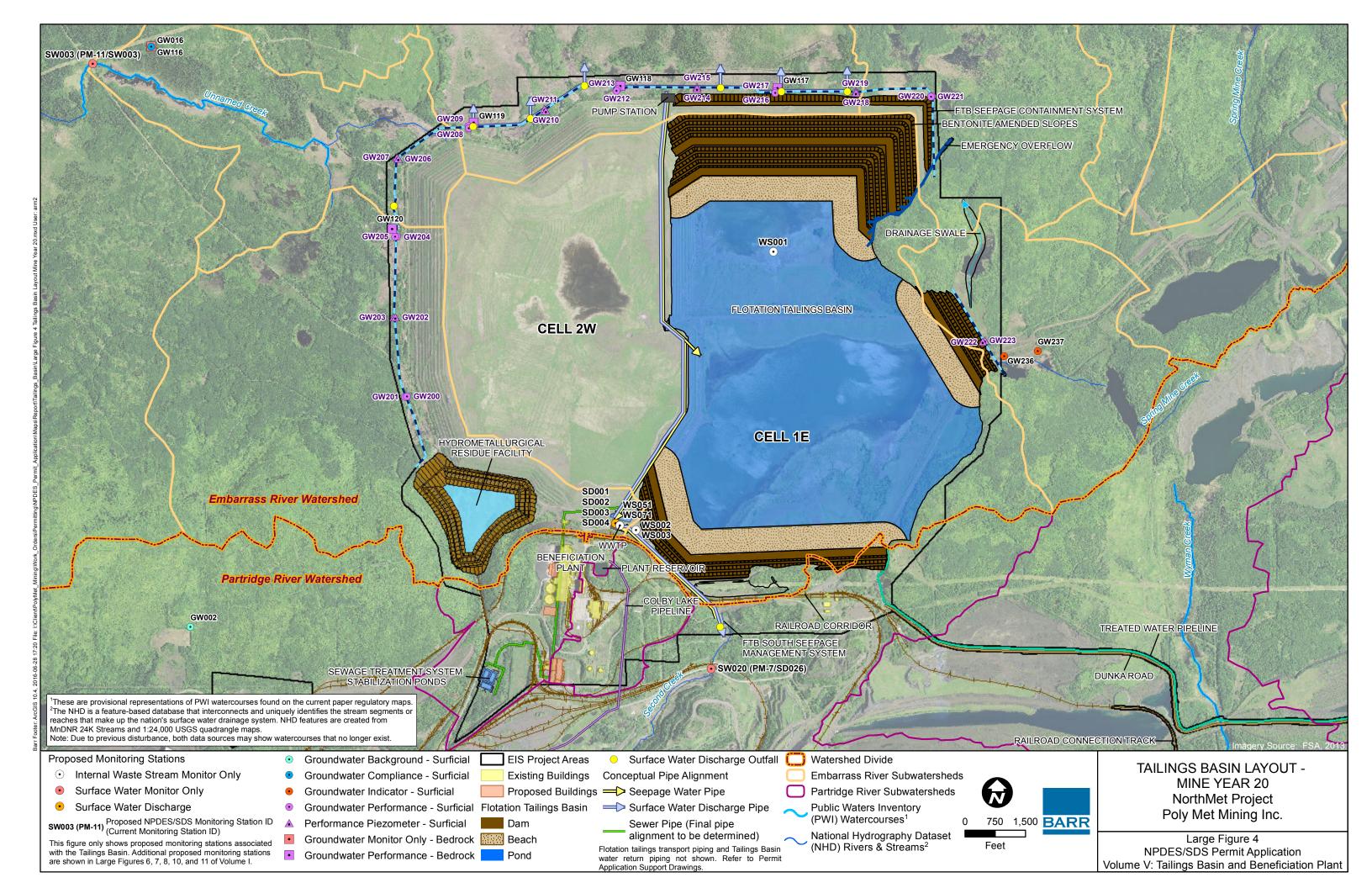

	Wat	er Quality Data fo 2010 - 2015	r GW014			
Parameter	Fraction	Units	# of Samples	Minimum	Maximum	Average
General Parameters						
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	12 12	317	507	398
Alkalinity, carbonate, as CaCO3 Alkalinity, total, as CaCO3	NA NA	mg/l mg/l	12	< 10 317	< 20 507	NA 389
Biochemical Oxygen Demand (5-day)	NA	mg/l	12	< 3	9.7	4.36
Carbon, dissolved organic	NA	mg/l	12	9.1	19.3	12.1
Carbon, total organic	NA	mg/l	15	9.1	16.3	11.8
Chemical Oxygen Demand Chloride	NA NA	mg/l	12 15	23.7 9.1	126 25	49.4 17.3
Chloride	NA	mg/l mg/l	15	< 0.01	0.0234	0.010
Dissolved oxygen	NA	mg/l	15	0.16	9.81	4.24
Fluoride	NA	mg/l	15	< 0.1	0.86	0.46
Hardness, as CaCO3	NA	mg/l	15	274	1220	492
Nitrate + Nitrite, as N Nitrogen, ammonia as N	NA NA	mg/l	15 15	< 0.1 0.07	0.51	0.10
Nitrogen, Nitrate as N	NA	mg/l mg/l	NA	0.07 NA	NA	0.09 NA
Nitrogen, Nitrite as N	NA	mg/l	NA	NA	NA	NA
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA
pH	NA	pH units	29	6.1	7.8	7.09
Phosphorus, total, as P	Dissolved NA	mg/l	NA 12	NA < 0.1	NA 10.6	NA 1.63
Phosphorus, total, as P Redox (oxidation potential)	NA	mg/l mV	12	3.7	10.6 535	307
Silica, as SiO2	NA	mg/l	NA	NA	NA	NA
Silica, Reactive as (SiO2)	NA	mg/l	NA	NA	NA	NA
Solids, total dissolved	NA	mg/l	15	421	653	566
Solids, total suspended	NA	mg/l	NA 1E	NA	NA 1022	NA
Specific Conductance @ 25 °C Sulfate, as SO4	NA NA	µmhos/cm mg/l	15 15	505 37.4	1022 211	898 94.8
Sulfide, as S ² -	NA	mg/l	NA	37.4 NA	NA	94.8 NA
Temperature, °C	NA	deg C	15	3.61	25.98	12.0
Turbidity	NA	NTU	15	12.6	2458	361
Metals						
Aluminum	Dissolved	μg/l	15	< 20	232	39.7
Aluminum Antimony	Total Dissolved	μg/l μg/l	12 3	582 < 0.5	134000 < 0.5	25097 NA
Antimony	Total	µg/l	12	< 0.5	< 5	0.68
Arsenic	Dissolved	µg/l	15	0.34	4.99	0.86
Arsenic	Total	µg/l	12	< 0.5	26.6	4.35
Barium	Dissolved	µg/l	12	36.6	200	124
Barium	Total	µg/l	12	77.3	1520	357
Beryllium Beryllium	Dissolved Total	μg/l μg/l	3 12	< 0.2 < 0.2	< 0.2 5.43	NA 0.92
Boron	Dissolved	μg/l	11	136	267	191
Boron	Total	µg/l	12	169	< 500	203
Cadmium	Dissolved	µg/l	15	0.04	1.1	0.16
Cadmium	Total	µg/l	12	< 0.2	4.57	0.78
Calcium Calcium	Dissolved Total	mg/l mg/l	NA 15	NA 47.4	NA 252	NA 97.8
Chromium	Dissolved	μg/l	15	< 1	2.86	0.79
Chromium	Total	μg/l	12	1.5	1000	139
Cobalt	Dissolved	µg/l	12	0.26	5	1.30
Cobalt	Total	µg/l	12	1.3	215	28.0
Copper	Dissolved	µg/l	15	< 0.5	5.81	2.05
Copper Iron	Total Dissolved	μg/l μg/l	12 15	4.1 < 50	545 10800	80.4 4389
Iron	Total	μg/l	12	2410	228000	43592
Lead	Dissolved	µg/l	12	< 0.5	< 0.5	NA
Lead	Total	µg/l	12	< 0.5	78.4	11.7
Magnesium	Dissolved	mg/l	NA	NA	NA	NA
Magnesium Mangapese	Total Dissolved	mg/l μg/l	15 15	37.7 547	<u>144</u> 1940	60.1 1472
Manganese Manganese	Total	μg/i μg/l	12	864	6720	2285
Mercury	Total	ng/l	15	0.81	102	12.4
Methyl Mercury	Total	ng/l	11	< 0.03	0.44	0.15
Molybdenum	Dissolved	µg/l	15	3.7	59	21.1
Molybdenum Nickel	Total Dissolved	μg/l μg/l	12 15	9.8 0.8	130 11.2	35.6 3.04
Nickel	Total	μg/I μg/l	15	2.6	620	85.4
Palladium	Total	μg/l	12	< 0.5	5.72	1.08
Platinum	Dissolved	µg/l	NA	NA	NA	NA
Platinum	Total	µg/l	12	< 0.5	< 5	NA
Potassium	Dissolved	mg/l	NA 1E	NA 2.1	NA 17.2	NA E 41
PotassiumSeleniumS	Total Dissolved	mg/l μg/l	15 15	2.1 0.47	17.2	5.41 0.50
Selenium	Total	μ <u>μ</u> γι μ <u>g</u> /l	13	< 1	< 10	1.50
Silicon, as Si	Dissolved	mg/l	NA	NA	NA	NA
Silicon, as Si	Total	mg/l	NA	NA	NA	NA
Silver	Dissolved	µg/l	12	< 0.2	< 0.2	NA
Silver	Total	μg/l	12	< 0.2	< 2	0.28
Sodium Sodium	Dissolved Total	mg/l	NA 15	NA 48.8	NA 80.1	NA 64.0
Strontium	Dissolved	mg/l µg/l	NA	48.8 NA	80.1 NA	64.0 NA
Strontium	Total	μg/l	12	230	1230	459
Thallium	Dissolved	μ <u>μ</u> g/l	3	< 0.2	< 0.2	NA
Fhallium	Total	µg/l	12	< 0.017	< 2	0.29
Titanium	Dissolved	µg/l	NA	NA	NA	NA
Titanium	Total	µg∕l	12	37.2	5560	1434
Zinc	Dissolved	μg/l	15	< 6	37.2	7.15

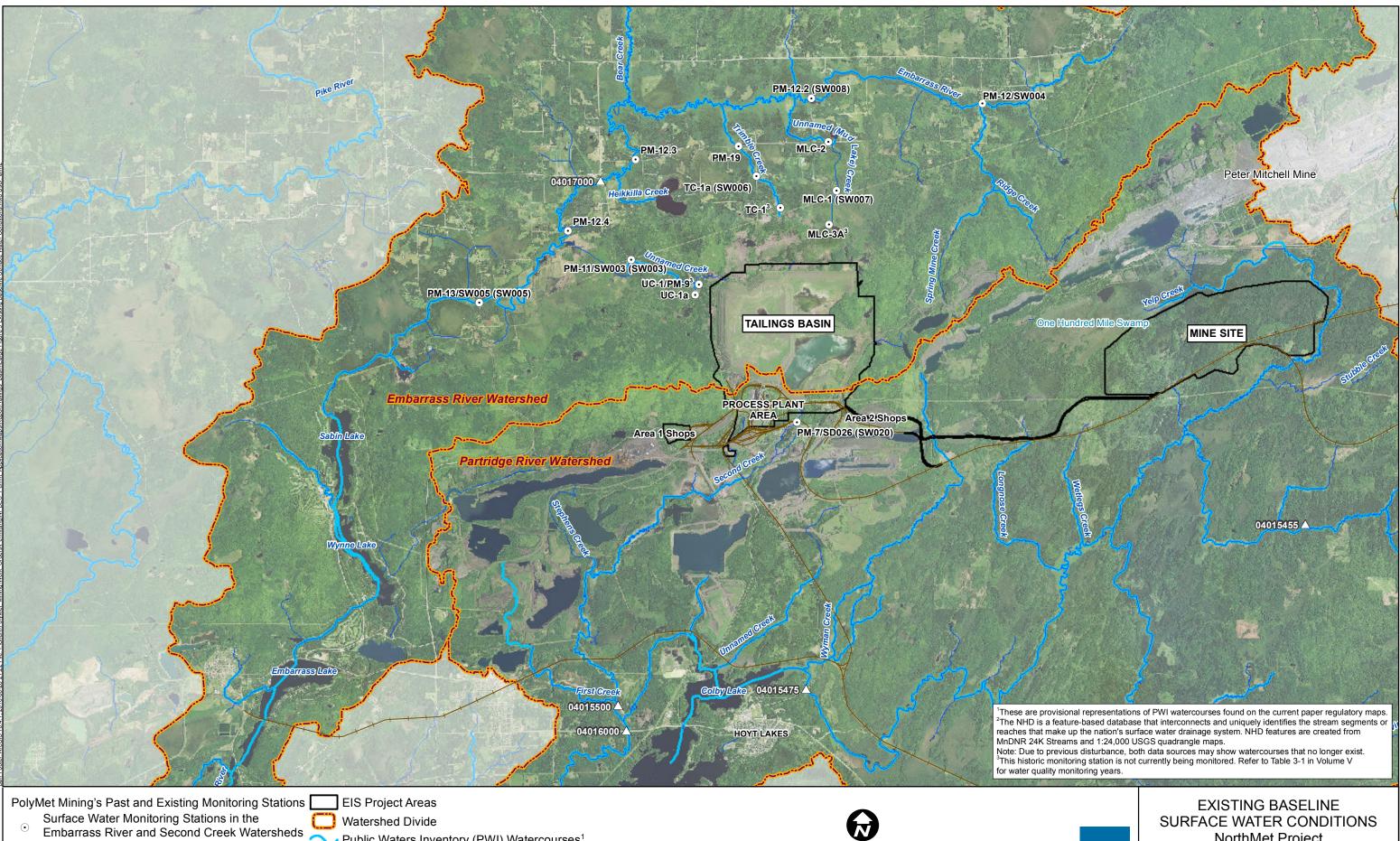
	Wat	er Quality Data fo 2010 - 2015	r GW015			
Parameter	Fraction	Units	# of Samples	Minimum	Maximum	Average
General Parameters						
Alkalinity, bicarbonate, as CaCO3	NA NA	mg/l	12 12	98 < 10	135 < 20	109 NA
Alkalinity, carbonate, as CaCO3 Alkalinity, total, as CaCO3	NA	mg/l mg/l	12	98	135	108
Biochemical Oxygen Demand (5-day)	NA	mg/l	12	< 2.4	< 8	NA
Carbon, dissolved organic	NA	mg/l	12	2	3.6	2.95
Carbon, total organic	NA	mg/l	18	1.9	3.7	2.43
Chemical Oxygen Demand	NA	mg/l	12	< 10	40.6	14.0
Chloride Cyanide	NA NA	mg/l mg/l	18 12	< 0.5 < 0.01	4.8	0.81 NA
Dissolved oxygen	NA	mg/l	18	< 0.1	3.6	0.85
Fluoride	NA	mg/l	18	0.16	0.23	0.19
Hardness, as CaCO3	NA	mg/l	18	104	162	116
Nitrate + Nitrite, as N	NA	mg/l	18	< 0.1	0.28	0.063
Nitrogen, ammonia as N	NA NA	mg/l	18 NA	0.08 NA	0.19 NA	0.077 NA
Nitrogen, Nitrate as N Nitrogen, Nitrite as N	NA	mg/l mg/l	NA	NA	NA	NA
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA
pH	NA	pH units	35	7.04	8	7.55
Phosphorus, total, as P	Dissolved	mg/l	NA	NA	NA	NA
Phosphorus, total, as P	NA	mg/l	12	< 0.1	0.43	0.11
Redox (oxidation potential)	NA	mV mg/l	18	35	472	263
Silica, as SiO2 Silica, Reactive as (SiO2)	NA NA	mg/l mg/l	NA NA	NA NA	NA NA	NA NA
Solids, total dissolved	NA	mg/l	18	124	236	165
Solids, total suspended	NA	mg/l	NA	NA	NA	NA
Specific Conductance @ 25 °C	NA	µmhos/cm	18	175	312	215
Sulfate, as SO4	NA	mg/l	18	5.2	38.6	9.54
Sulfide, as S ² -	NA	mg/l	NA 10	NA	NA	NA
Temperature, °C Turbidity	NA NA	deg C NTU	18 18	6.1 0	8.92 303	7.38 43.2
Metals	INA	INTO	10	0	503	43.2
Aluminum	Dissolved	µg/l	18	< 10	89.9	17.9
Aluminum	Total	µg/l	12	< 20	4870	1277
Antimony	Dissolved	µg/l	6	< 0.5	< 0.5	NA
Antimony	Total	µg/l	12	< 0.5	< 5	NA
Arsenic	Dissolved	µg/l	18	0.58	1.3	0.79
Arsenic	Total Dissolved	μg/l	12 15	< 0.5 146	< 5 273	0.94 215
Barium Barium	Total	μg/l μg/l	13	146	273	215
Beryllium	Dissolved	μg/l	6	< 0.2	< 0.2	NA
Beryllium	Total	µg/l	12	< 0.2	< 2	NA
Boron	Dissolved	µg/l	14	< 50	< 100	NA
Boron	Total	µg/l	12	< 50	< 100	NA
Cadmium	Dissolved	µg/l	18	< 0.2	0.26	0.11
Cadmium	Total Dissolved	µg/l	12 NA	< 0.2 NA	< 2 NA	NA
Calcium Calcium	Total	mg/l mg/l	18	24.2	38.7	NA 27.2
Chromium	Dissolved	μg/l	18	< 1	1.04	0.53
Chromium	Total	µg/l	12	< 1	< 10	3.39
Cobalt	Dissolved	µg/l	15	< 0.2	< 0.2	NA
Cobalt	Total	µg/l	12	< 0.2	3.52	1.17
Copper	Dissolved	µg/l	18	< 0.5	6.49	1.34
Copper Iron	Total Dissolved	μg/l μg/l	12 18	< 0.5 < 50	21.7 159	6.69 93.7
Iron	Total	μg/l	18	112	5800	1638
Lead	Dissolved	µg/l	15	< 0.5	< 0.5	NA
Lead	Total	µg/l	12	< 0.5	< 5	0.92
Magnesium	Dissolved	mg/l	NA	NA	NA	NA
Magnesium	Total	mg/l	18	10.5	16	11.6
Manganese	Dissolved	μg/l	18 12	294	744	597
Manganese Mercury	Total Total	μg/l ng/l	12	541 < 0.5	730 2.6	619 0.78
Metcury Methyl Mercury	Total	ng/l	18	< 0.03	< 0.1	0.78
Molybdenum	Dissolved	μg/l	18	2	16.6	4.03
Molybdenum	Total	µg/l	12	2.1	17.1	5.47
Nickel	Dissolved	µg/l	18	< 0.5	1.6	0.56
Nickel	Total	µg/l	12	< 0.5	11.4	3.81
Palladium Platinum	Total Dissolved	μg/l	12 NA	< 0.5 NA	< 5 NA	NA NA
Platinum Platinum	Total	μg/l μg/l	12	NA < 0.5	NA < 5	NA NA
Potassium	Dissolved	mg/l	NA	NA	NA	NA
Potassium	Total	mg/l	18	1.2	2.43	1.57
Selenium	Dissolved	µg/l	18	< 1	< 1	NA
Selenium	Total	µg/l	12	< 1	< 10	NA
Silicon, as Si	Dissolved	mg/l	NA	NA	NA	NA
Silicon, as Si	Total	mg/l	NA 12	NA < 0.2	NA C 0 2	NA
Silver Silver	Dissolved Total	μg/l μg/l	12 12	< 0.2	< 0.2 < 2	NA NA
Soliver	Dissolved	μg/I mg/l	NA	< 0.2 NA	< 2 NA	NA
Sodium	Total	mg/l	18	3.3	9.76	4.36
Strontium	Dissolved	μg/l	NA	NA	NA	NA
Strontium	Total	µg/l	12	208	275	245
Thallium	Dissolved	µg/l	6	< 0.02	< 0.2	NA
Thallium	Total	µg/l	12	< 0.017	< 2	NA
Titanium Titanium	Dissolved	μg/l	NA 12	NA < 10	NA 291	NA 96.9
Titanium	Total	µg/l	12 18	< 10	281	86.8 4.89
Zinc	Dissolved	µg/l	10	< 6	17.8	7.011


	Wat	er Quality Data fo 2013 - 2015	GW016			
Parameter	Fraction	Units	# of Samples	Minimum	Maximum	Average
General Parameters						
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	2	32.9	63.8	48.4
Alkalinity, carbonate, as CaCO3 Alkalinity, total, as CaCO3	NA NA	mg/l mg/l	8	< 10 32.9	< 10 63.8	NA 45.9
Biochemical Oxygen Demand (5-day)	NA	mg/l	2	4.3	13	8.65
Carbon, dissolved organic	NA	mg/l	2	8.9	20.7	14.8
Carbon, total organic	NA	mg/l	8	2.5	20.4	6.68
Chemical Oxygen Demand Chloride	NA	mg/l	2 8	31.6	89.7	60.7
Chioride	NA NA	mg/l mg/l	2	< 1 0.0134	2.4 0.0211	0.85
Dissolved oxygen	NA	mg/l	8	< 0.1	6.12	3.58
Fluoride	NA	mg/l	8	< 0.1	0.26	0.13
Hardness, as CaCO3	NA	mg/l	8	32.3	64.7	42.7
Nitrate + Nitrite, as N	NA NA	mg/l	8	< 0.1	0.16	0.080 NA
Nitrogen, ammonia as N Nitrogen, Nitrate as N	NA	mg/l mg/l	NA	× 0.1 NA	< 0.1 NA	NA
Nitrogen, Nitrite as N	NA	mg/l	NA	NA	NA	NA
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA
pH	NA	pH units	16	6.37	8	6.95
Phosphorus, total, as P	Dissolved NA	mg/l	NA 2	NA < 0.1	NA < 0.1	NA NA
Phosphorus, total, as P Redox (oxidation potential)	NA	mg/l mV	8	228	469	309
Silica, as SiO2	NA	mg/l	NA	NA	NA	NA
Silica, Reactive as (SiO2)	NA	mg/l	NA	NA	NA	NA
Solids, total dissolved	NA	mg/l	8	83	129	107
Solids, total suspended	NA	mg/l	NA	NA	NA 157	NA 102
Specific Conductance @ 25 °C Sulfate, as SO4	NA NA	µmhos/cm	8	86.6 3.4	157 6.8	103 4.38
Sulfate, as SO4 Sulfide, as S ² -	NA	mg/l mg/l	NA NA	3.4 NA	NA	4.38 NA
Temperature, °C	NA	deg C	8	3.58	13.22	9.05
Turbidity	NA	NTU	8	1.9	59.1	16.5
Metals						
Aluminum	Dissolved	µg/l	8	10.2	47	16.5
Aluminum	Total	µg/l	2	651	3060	1856
Antimony Antimony	Dissolved Total	μg/l μg/l	6 2	< 0.5 < 0.5	< 0.5	NA NA
Arsenic	Dissolved	μg/l	8	< 0.5	1.1	0.67
Arsenic	Total	μg/l	2	< 0.5	1.1	0.68
Barium	Dissolved	µg/l	8	9.1	19.7	14.4
Barium	Total	µg/l	2	15.1	49.9	32.5
Beryllium	Dissolved	µg/l	6	< 0.2	< 0.2	NA
Beryllium Boron	Total Dissolved	μg/l μg/l	2 8	< 0.2 < 50	< 0.2 < 100	NA NA
Boron	Total	μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μμμμμμμμμμμμμμμμμμ	2	< 50	< 50	NA
Cadmium	Dissolved	μ <u>g</u> /l	8	< 0.2	< 0.2	NA
Cadmium	Total	µg/l	2	< 0.2	< 0.2	NA
Calcium	Dissolved	mg/l	NA	NA	NA	NA
Calcium	Total	mg/l	8	6.9	13.2	9.43
Chromium	Dissolved Total	μg/l	8	< 1 2.4	1.6 8.6	0.64 5.50
Chromium Cobalt	Dissolved	μg/l μg/l	8	1.4	5.4	2.48
Cobalt	Total	μg/l	2	2	7.5	4.75
Copper	Dissolved	μg/l	8	0.56	2	1.19
Copper	Total	μg/l	2	3.2	11.9	7.55
Iron	Dissolved	µg/l	8	67.6	766	440
Iron	Total	µg/l	2	729	3980	2355
Lead Lead	Dissolved Total	μg/l μg/l	8	< 0.5 < 0.5	< 0.5	NA 0.78
Magnesium	Dissolved	mg/l	NA	NA	NA	NA
Magnesium	Total	mg/l	8	3.7	7.8	5.19
Manganese	Dissolved	μg/l	8	184	1420	966
Manganese	Total	µg/l	2	217	903	560
Mercury Methyl Mercury	Total Total	ng/l	8	< 0.5 < 0.03	5.5 0.12	1.42 0.07
Methyl Mercury Molybdenum	Dissolved	ng/l µg/l	8	< 0.03	1.6	1.45
Molybdenum	Total	μg/l	2	1.1	1.3	1.43
Nickel	Dissolved	μg/l	8	1.8	7.7	3.16
Nickel	Total	µg/l	2	4.3	16.3	10.3
Palladium	Total	µg/l	2	< 0.5	< 0.5	NA
Platinum Platinum	Dissolved	µg/l	NA 2	NA < 0.5	NA	NA
Platinum Potassium	Total Dissolved	μg/l mg/l	NA	< 0.5 NA	< 0.5 NA	NA NA
Potassium	Total	mg/l	8	0.828	1.6	1.11
Selenium	Dissolved	μg/l	8	< 1	< 1	NA
Selenium	Total	µg/l	2	< 1	< 1	NA
Silicon, as Si	Dissolved	mg/l	NA	NA	NA	NA
Silicon, as Si	Total	mg/l	NA	NA	NA	NA
Silver	Dissolved	μg/l	2	< 0.2	< 0.2	NA
SilverSodium	Total Dissolved	μg/l mg/l	2 NA	< 0.2 NA	< 0.2 NA	NA NA
Sodium	Total	mg/l mg/l	8	3.7	8 NA	4.85
Strontium	Dissolved	µg/l	NA	NA	NA	NA
Strontium	Total	μg/l	2	32.6	69	50.8
Thallium	Dissolved	μg/l	6	< 0.02	< 0.2	NA
Thallium	Total	µg/l	2	< 0.017	< 0.2	NA
Titanium Titanium	Dissolved	µg/l	NA	NA 20.1	NA 107	NA
Titanium	Total	µg/l	2	28.1	127	77.6
Zinc	Dissolved	µg/l	8	< 6	< 6	NA

Water quality data is not available for GW003 or GW004 because these wells have been dry during the period of monitoring (2007-2015)


Large Figures




Large Figure 1 NPDES/SDS Permit Application Volume V: Tailings Basin and Benefication Plant

Volume V: Tailings Basin and Beneficiation Plant

- \triangle USGS Gage Stations
- PM-7/SD026 (SW020) Current Monitoring Station ID (Proposed NPDES/SDS Monitoring Station ID)
- Other existing and past surface water monitoring stations in the Partridge River watershed are shown on Large Figure 7 in Volume II.
- Public Waters Inventory (PWI) Watercourses¹
- National Hydrography Dataset (NHD) Rivers & Streams²
- ----- Existing Railroad

0.75 1.5 Miles 3

0

NorthMet Project Poly Met Mining Inc.

Large Figure 5 NPDES/SDS Permit Application Volume V: Tailings Basin and Beneficiation Plant

Appendices

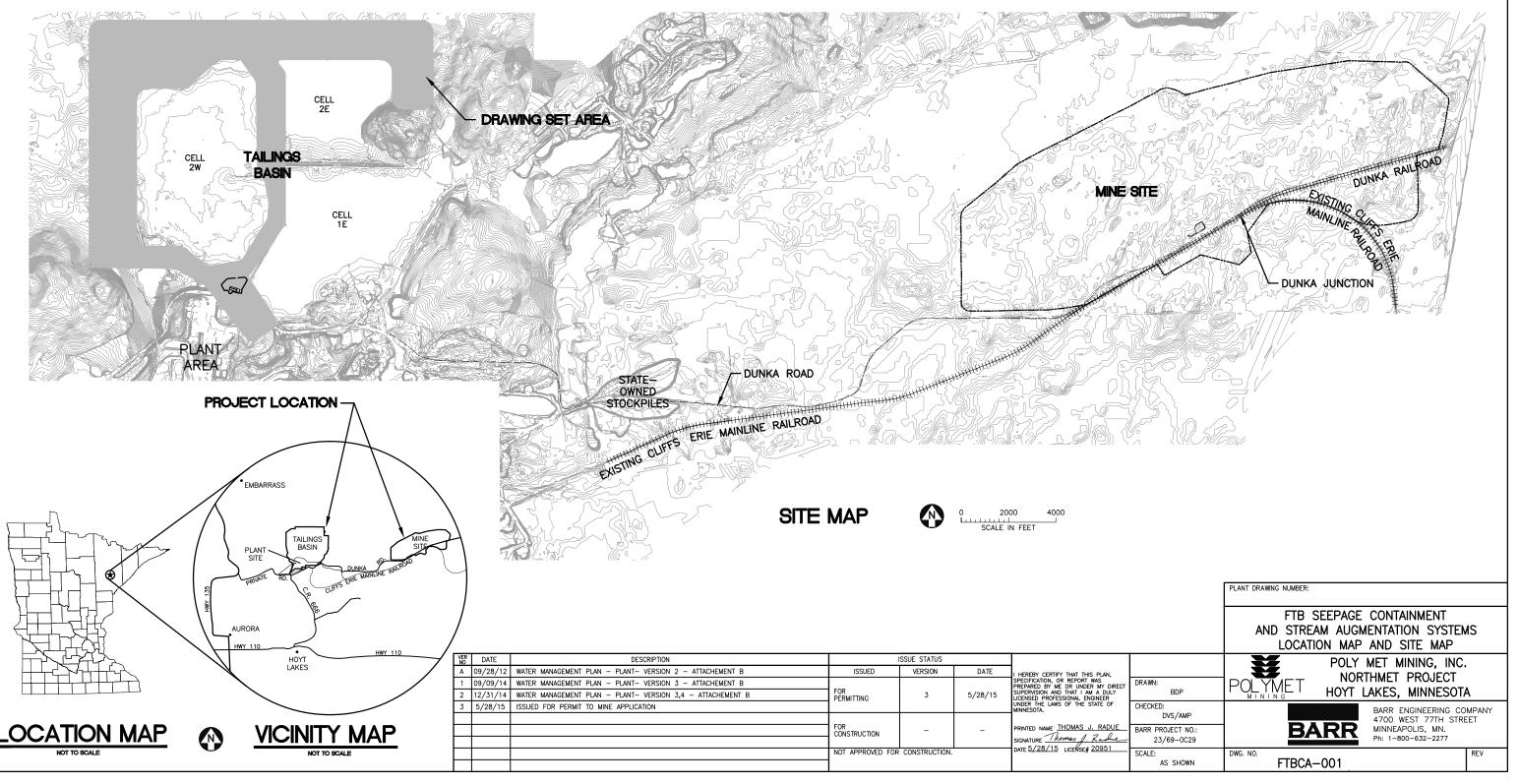
Appendix A

Permit Application Support Drawings

FTB Seepage Containment and Stream Augmentation Systems Permit Application Support Drawings Flotation Tailings Basin Permit Application Support Drawings FTB Seepage Containment and Stream Augmentation Systems Permit Application Support Drawings

Errata Sheet

Poly Met Mining Inc. NorthMet Project


Permit Application Support Drawings: FTBCA

May 2016

The table below lists changes that were identified during completion of the Construction Stormwater Pollution Prevention Plans (SWPPPs) and have not yet been incorporated in the attached permit application support drawings within this set. These changes and additional details developed during final design will be incorporated into the final design drawing set.

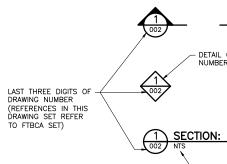
Drawing Sheet(s)	Change
Global change to all sheets, as needed	The terminology "stream augmentation" system as noted in these drawings has been changed to "surface water discharge" system.
FTBCA-013, FTBCA-015	The cross slope on the perimeter access road surface was revised so that it slopes entirely towards the FTB, instead of being crowned in the center.
FTBCA-013, FTBCA-015	To eliminate additional fill in wetlands, the monitoring wells located outside of the perimeter access road were moved to within the road embankment.
FTBCA-003, FTBCA-004	The alignment of the stream augmentation pipe was revised to a more optimal layout.

POLY MET MINING, INC. NORTHMET PROJECT FTB SEEPAGE CONTAINMENT AND STREAM AUGMENTATION SYSTEMS HOYT LAKES, MINNESOTA

GENERAL LEGEND

	EXISTING CONTOUR - MAJOR
	EXISTING CONTOUR - MINOR
1000	PROPOSED CONTOUR - MAJOR
	PROPOSED CONTOUR - MINOR
8	EXISTING POWER POLE
	EXISTING RAILROAD
	EXISTING ROAD
	EXISTING TRAIL
= $=$ $=$ $=$	EXISTING UNIMPROVED TRAIL
	EXISTING STRUCTURES
~~~~~	TREE LINE
	WETLAND BOUNDARY
$\rightarrow$	EXISTING CULVERT
P	EXISTING PIPELINE
+ +-	CUTOFF WALL ALIGNMENT
	OVERHEAD ELECTRIC
	SURFACE DRAINAGE
	PROPOSED DEWATERING PIPE
	PROPOSED DISCHARGE PIPELINE
	PROPOSED RETURN PIPELINE
$\succ$	PROPOSED CULVERT (NON-MINE DRAINAGE)
	PROPOSED SEEPAGE COLLECTION DRAIN
	PROPOSED STORMWATER DRAIN
0	PROPOSED MANHOLE
	PROPOSED RIP RAP
•	ROTASONIC BORING
۲	ROTASONIC BORING WITH PIEZOMETER
$\diamond$	SPT BORING
۲	SPT BORING WITH PACKER
_	

**ABBREVIATIONS** 


APPROX.	-	APPROXIMATE
CDSM	-	CEMENT DEEP SOIL MIX
CMP	-	CORRUGATED METAL PIPE
CPEP	-	CORRUGATED POLYETHYLENE PIPE
CY	-	CUBIC YARD
DR	-	DIMENSION RATIO
DWG	-	DRAWING
EL.	-	ELEVATION
Ø	-	DIAMETER
FTB	-	FLOTATION TAILINGS BASIN
GCL	-	GEOSYNTHETIC CLAY LINER
HDPE	-	HIGH DENSITY POLYETHYLENE
HRF	-	HYDROMETALLURGICAL RESIDUE FACILITY
LDPE	-	LOW DENSITY POLYETHYLENE
LF	-	LINER FEET
LTVSMC	-	LTV STEEL MINING COMPANY
MCY	-	MILLION CUBIC YARDS
mil	-	one thousandth of an inch
MIN	-	MINIMUM
MSL	-	MEAN SEA LEVEL
NTS	-	NOT TO SCALE
SCH.	-	SCHEDULE
DR	-	DIMENSION RATIO
TYP	-	TYPICAL
N-MH-XX	-	NORTH SECTION MANHOLE
NW-MH-XX	-	NORTHWEST SECTION MANHOLE
W-MH-XX	-	WEST SECTION MANHOLE
N-MH/PS-XX	-	NORTH SECTION MANHOLE/PUMP STATION
NW-MH/PS-XX	-	NORTHWEST SECTION MANHOLE
W-MH/PS-XX	-	WEST SECTION MANHOLE/PUMP STATION

### SHEET INDEX

#### SHEET NO. TITLE

FTBCA-001 FTBCA-002 FTBCA-003 FTBCA-003 FTBCA-005 FTBCA-006 FTBCA-007 FTBCA-008 FTBCA-009 FTBCA-010	LOCATION MAP AND SITE MAP LEGEND AND SHEET INDEX PLAN SHEET LAYOUT PLAN AND PROFILE- STATION O PLAN AND PROFILE- STATION O PLAN AND PROFILE- STATION O PLAN AND PROFILE- STATION 1 PLAN AND PROFILE- STATION 1 PLAN AND PROFILE- STATION 1 PLAN AND PROFILE- STATION 1
FTBCA-010	PLAN AND PROFILE - STATION 1
FTBCA-012	EAST SECTION PLAN & PROFILE
FTBCA-013	DETAILS
FTBCA-014 FTBCA-015	DETAILS DETAILS
11004-013	DEIALS

#### DRAWING NUMBERING



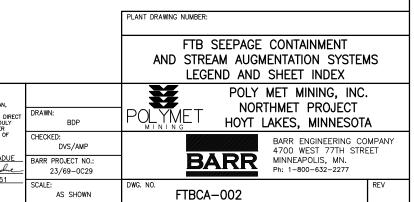
#### <u>NOTES</u>

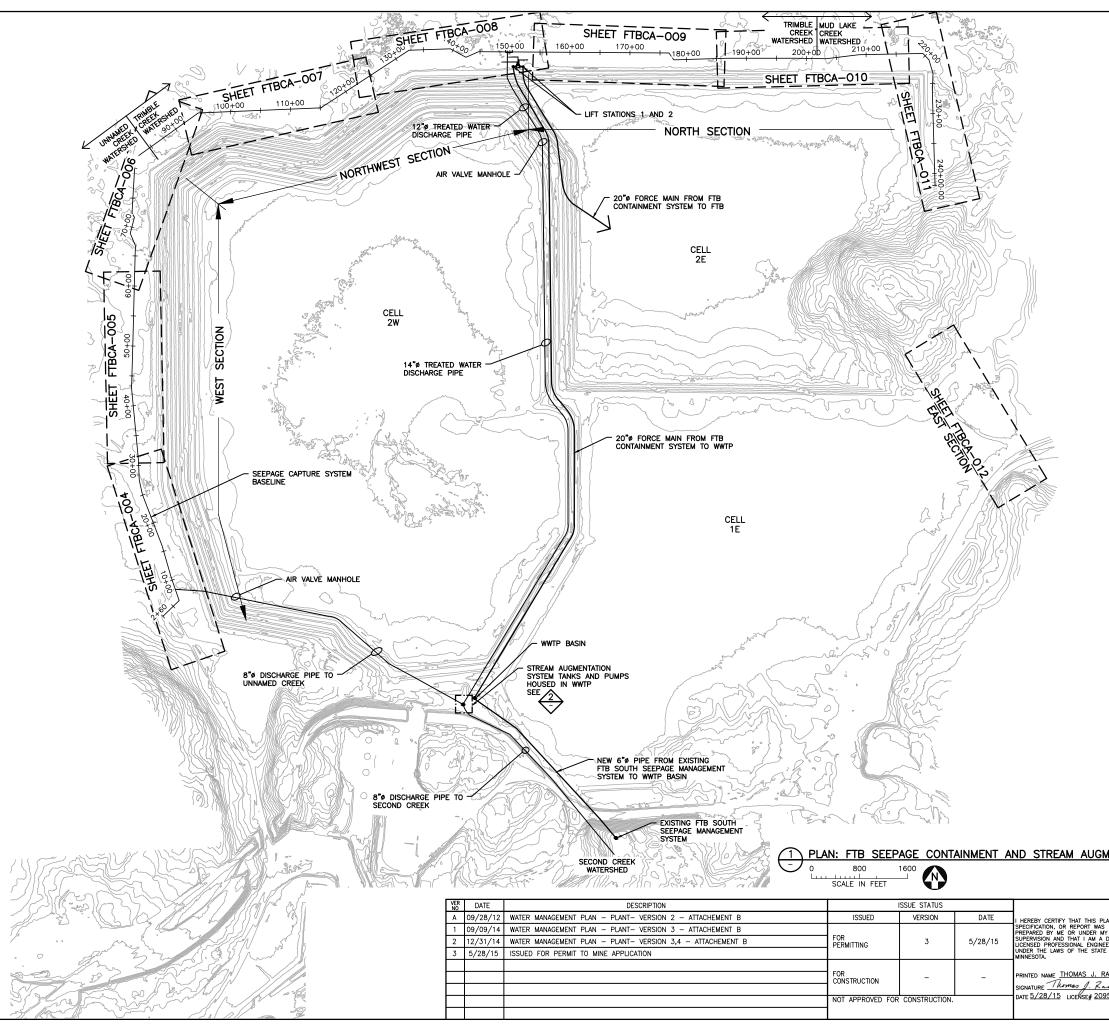
₪

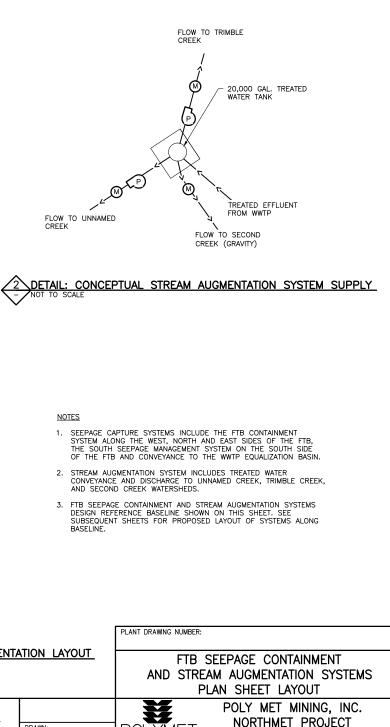
- 1. COORDINATE SYSTEM IS MINNESOTA STATE PLANE NORTH ZONE, NAD83.
- 2. ELEVATIONS ARE MEAN SEA LEVEL (MSL), NAVD88.

FLOW METER

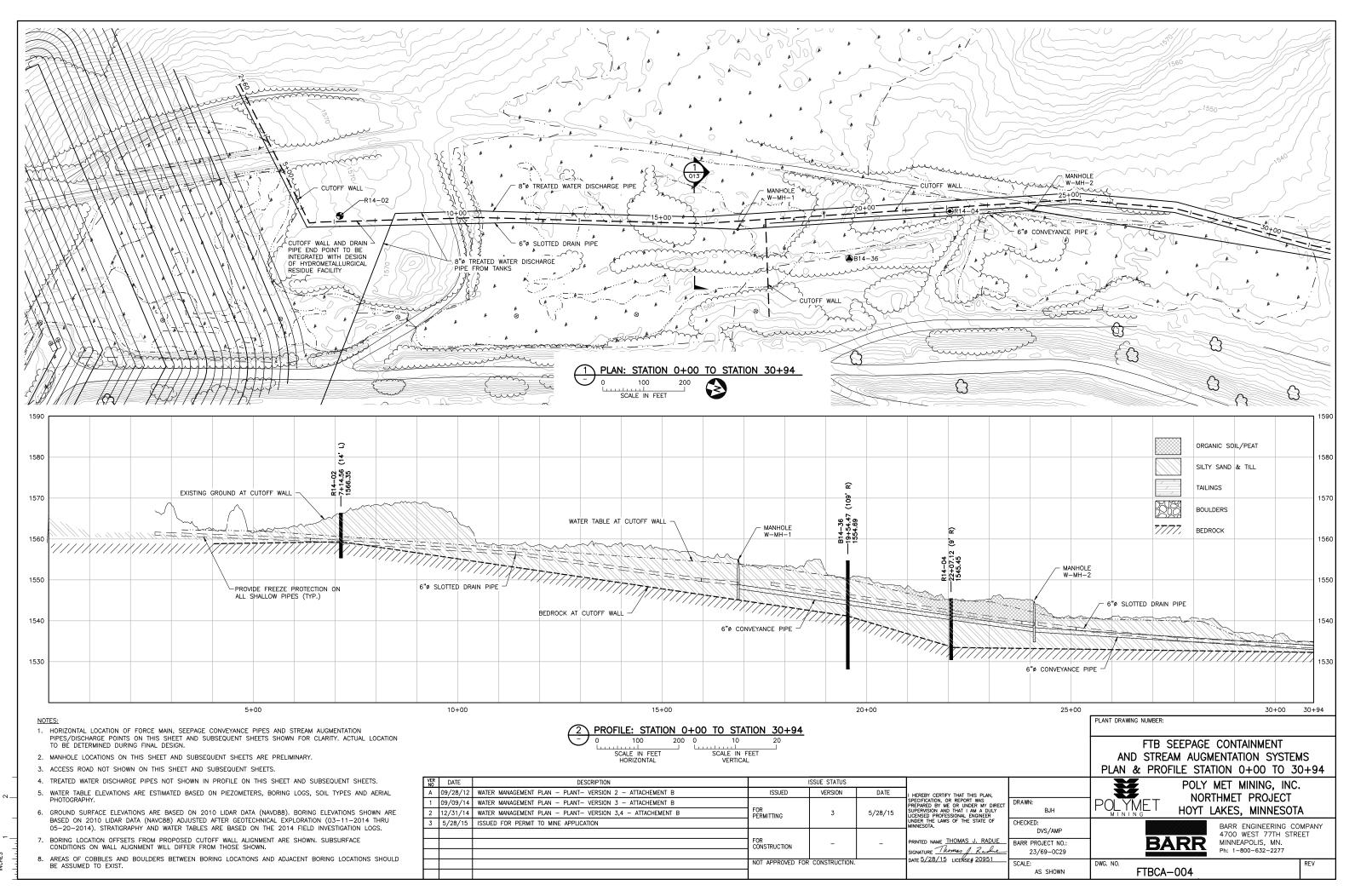
- 3. EXISTING TOPOGRAPHIC INFORMATION SHOWN ON THE DRAWINGS WAS PREPARED BY AEROMETRIC, INC. FROM LIDAR DATA COLLECTED ON MARCH 17, 2010.
- 4. EXISTING TOPOGRAPHIC INFORMATION WAS UPDATED FOR AREAS SOUTH EAST OF COAL ASH LANDFILL AND EAST OF OUTCROP BETWEEN CELLS 1E AND 2E USING CONTOURS FROM DATA COLLECTED IN 1999.

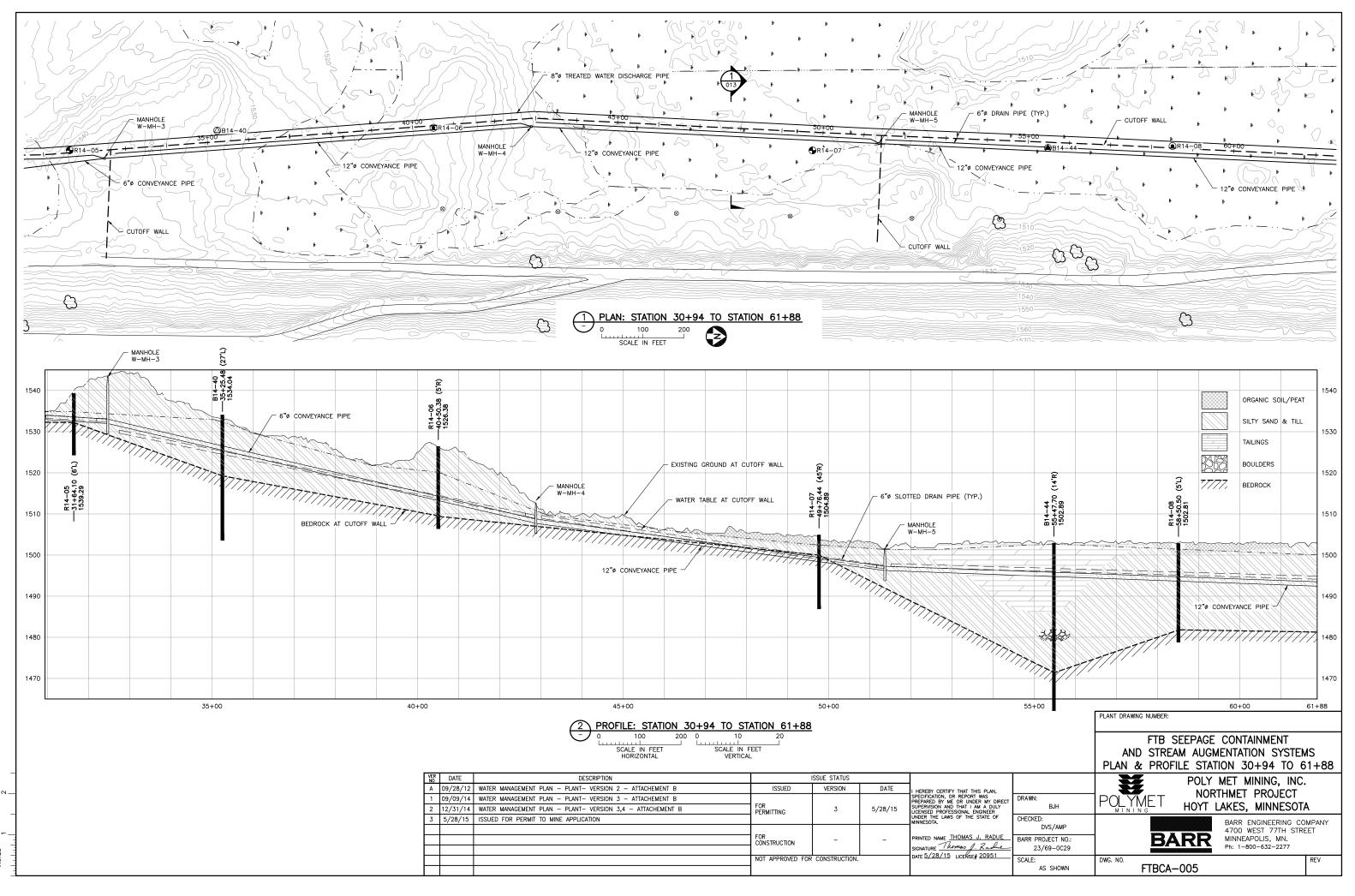

VER NO	DATE	DESCRIPTION		SSUE STATUS		
Α	09/28/12	WATER MANAGEMENT PLAN - PLANT- VERSION 2 - ATTACHEMENT B	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
1	09/09/14	WATER MANAGEMENT PLAN - PLANT- VERSION 3 - ATTACHEMENT B				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIREC
2	12/31/14	WATER MANAGEMENT PLAN - PLANT- VERSION 3,4 - ATTACHEMENT B	FOR PERMITTING	3		SUPERVISION AND THAT I AM A DULY
3	5/28/15	ISSUED FOR PERMIT TO MINE APPLICATION				UNDER THE LAWS OF THE STATE OF MINNESOTA.
			FOR CONSTRUCTION	-		PRINTED NAME THOMAS J. RADUE
						SIGNATURE Thomas J. Radie DATE 5/28/15 LICENSE# 20951
			NOT APPROVED FOR	CONSTRUCTION.		DATE 37 207 13 LICENSE# 20331

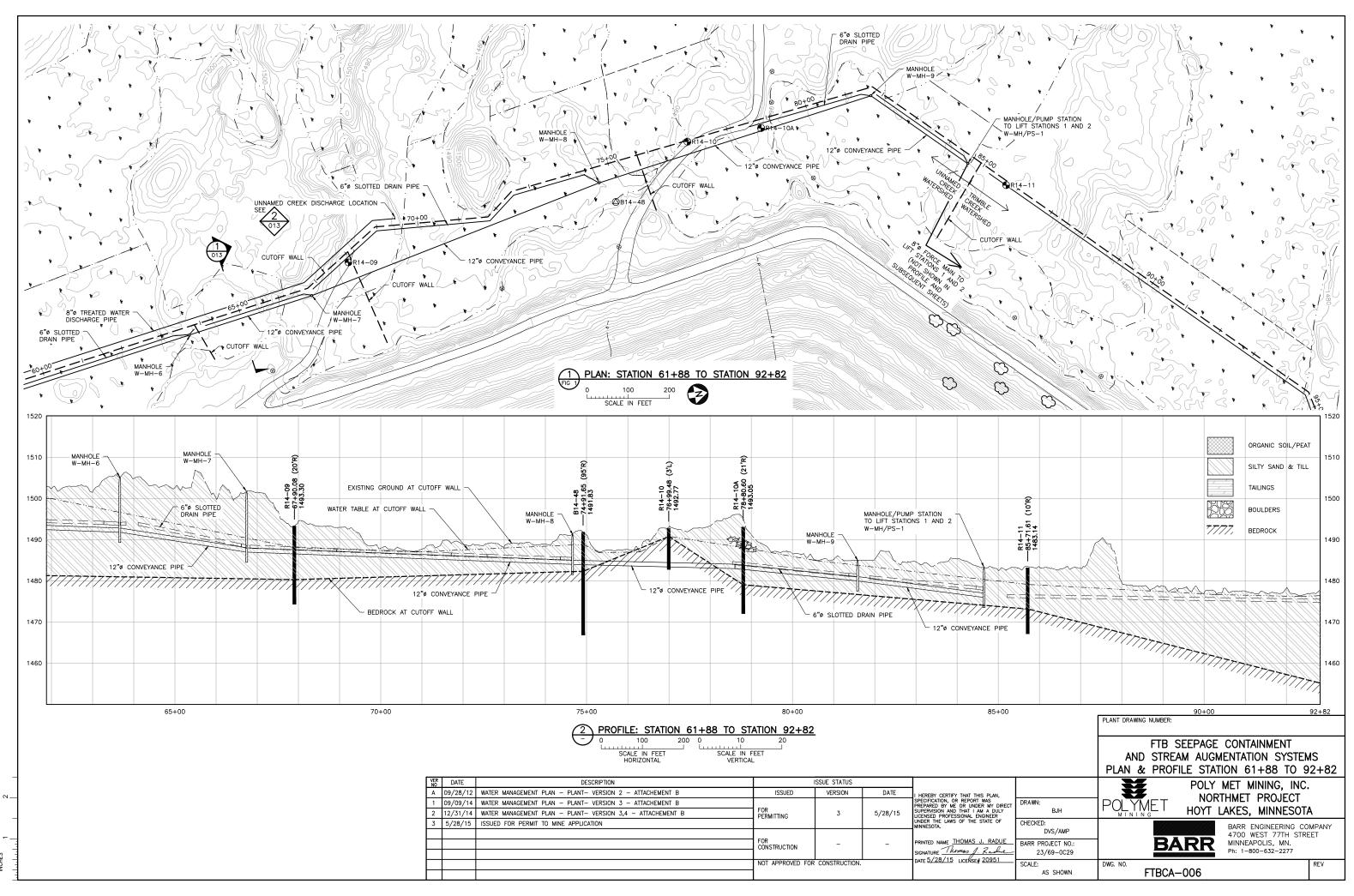

¥ 60

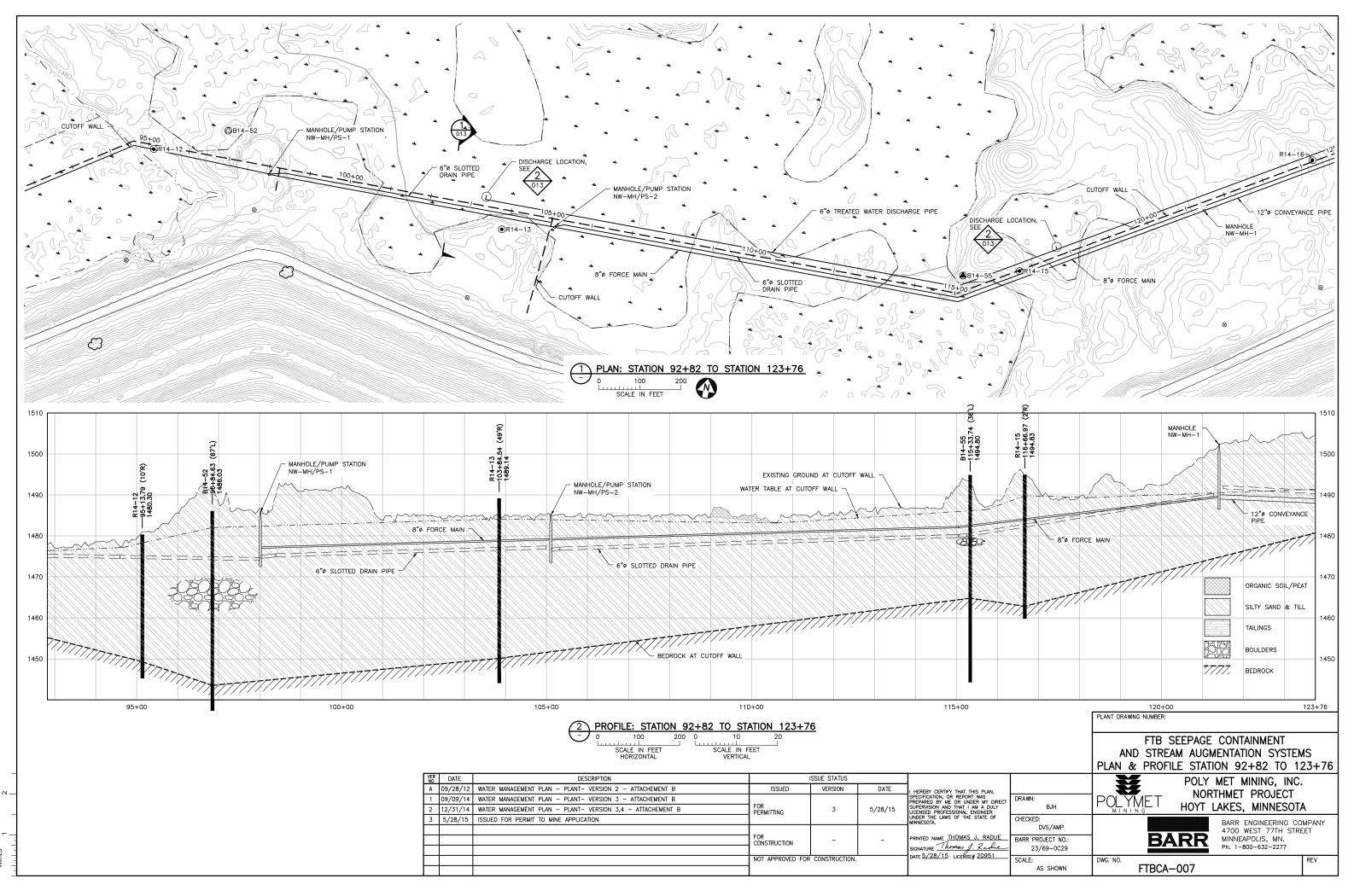

DN 0+00 TO STATION 30+94 DN 30+94 TO STATION 61+88 DN 61+88 TO STATION 92+82 DN 92+82 TO STATION 123+76 DN 123+76 TO STATION 154+70 DN 154+70 TO STATION 155+64 DN 185+64 TO STATION 216+58 DN 216+58 TO STATION 240+17 DFILE STATION 0+00 TO STATION 25+43

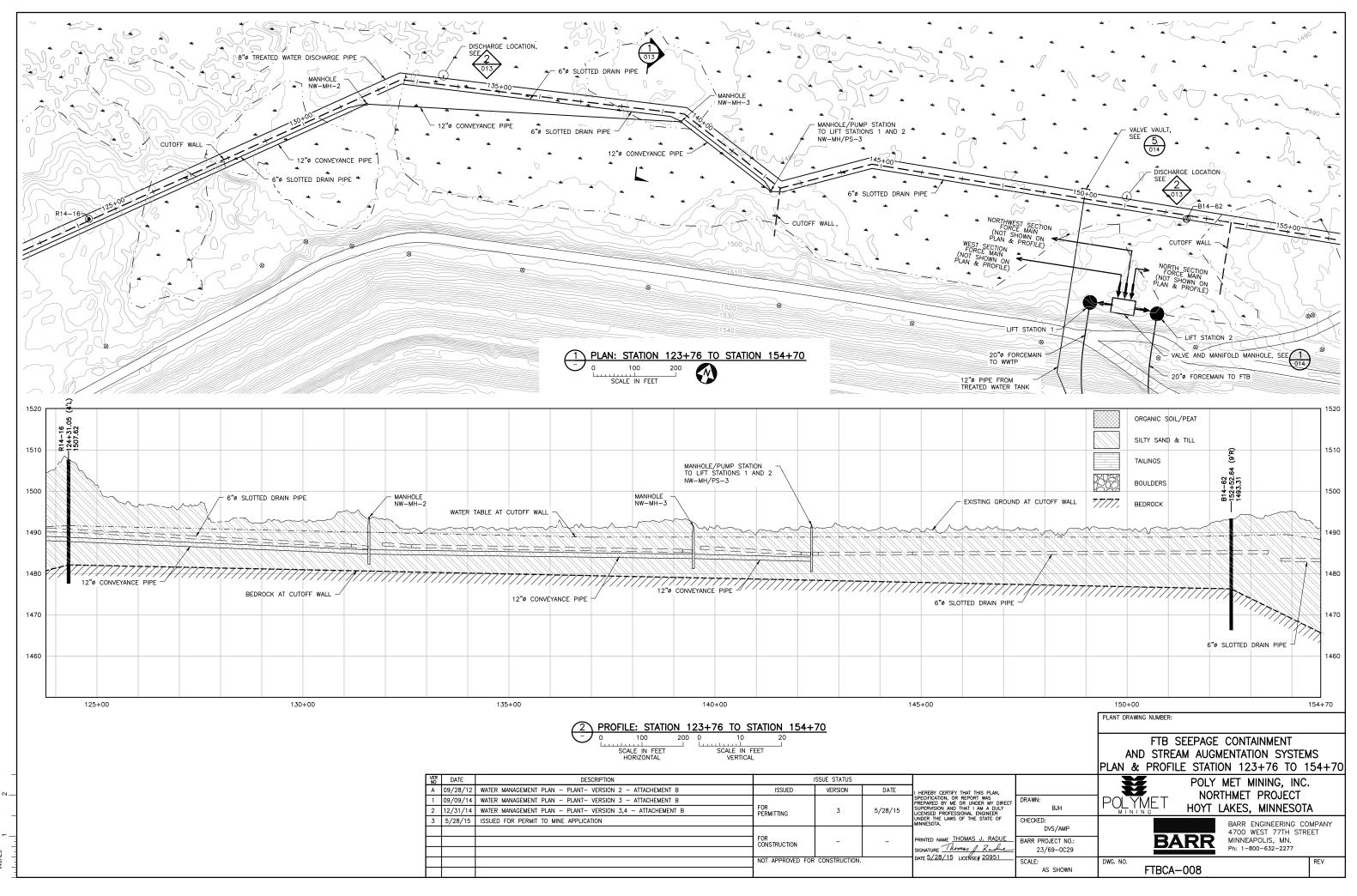
- DETAIL OR SECTION NUMBER, TYPICAL

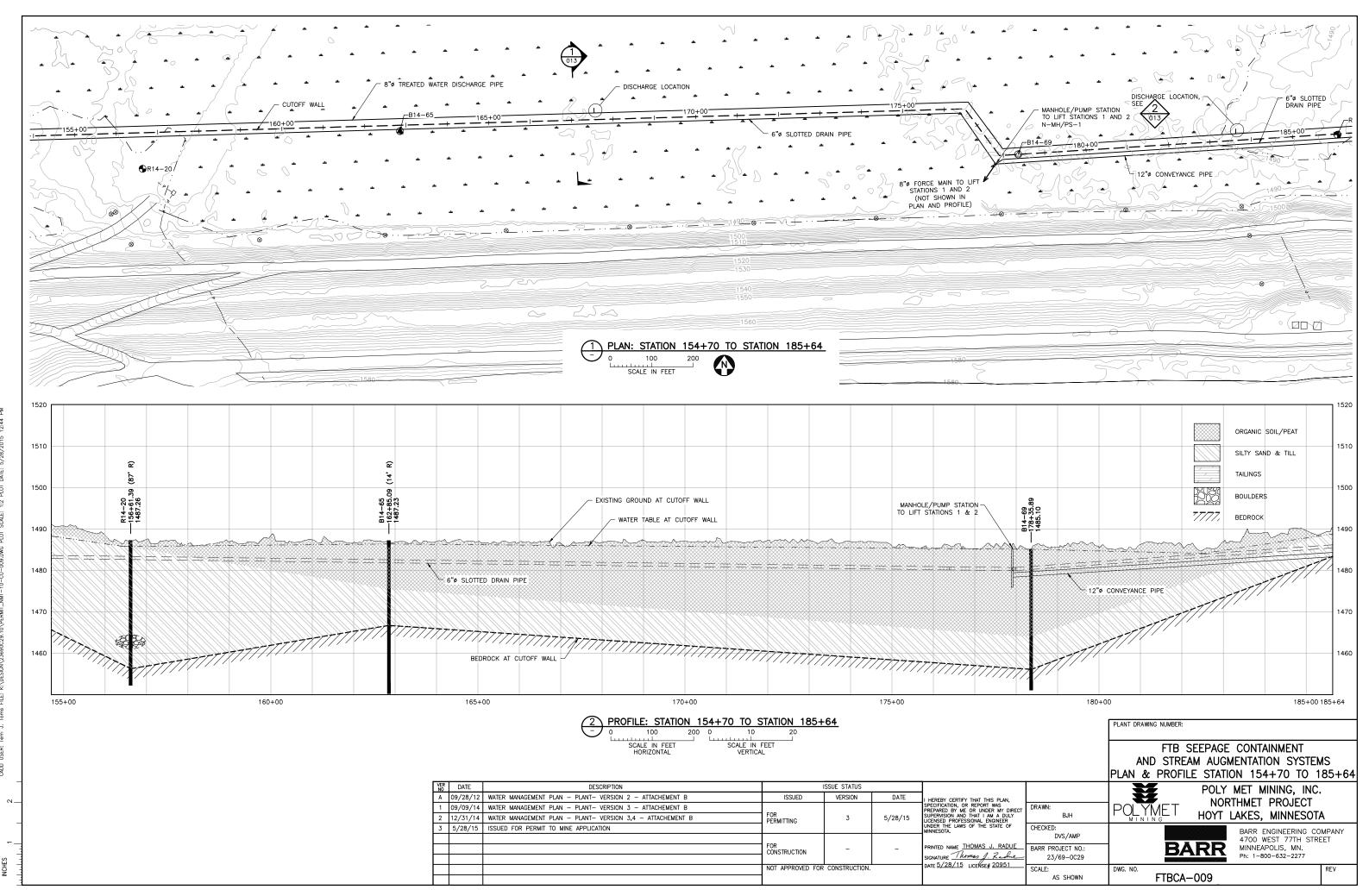

-NTS = NOT TO SCALE



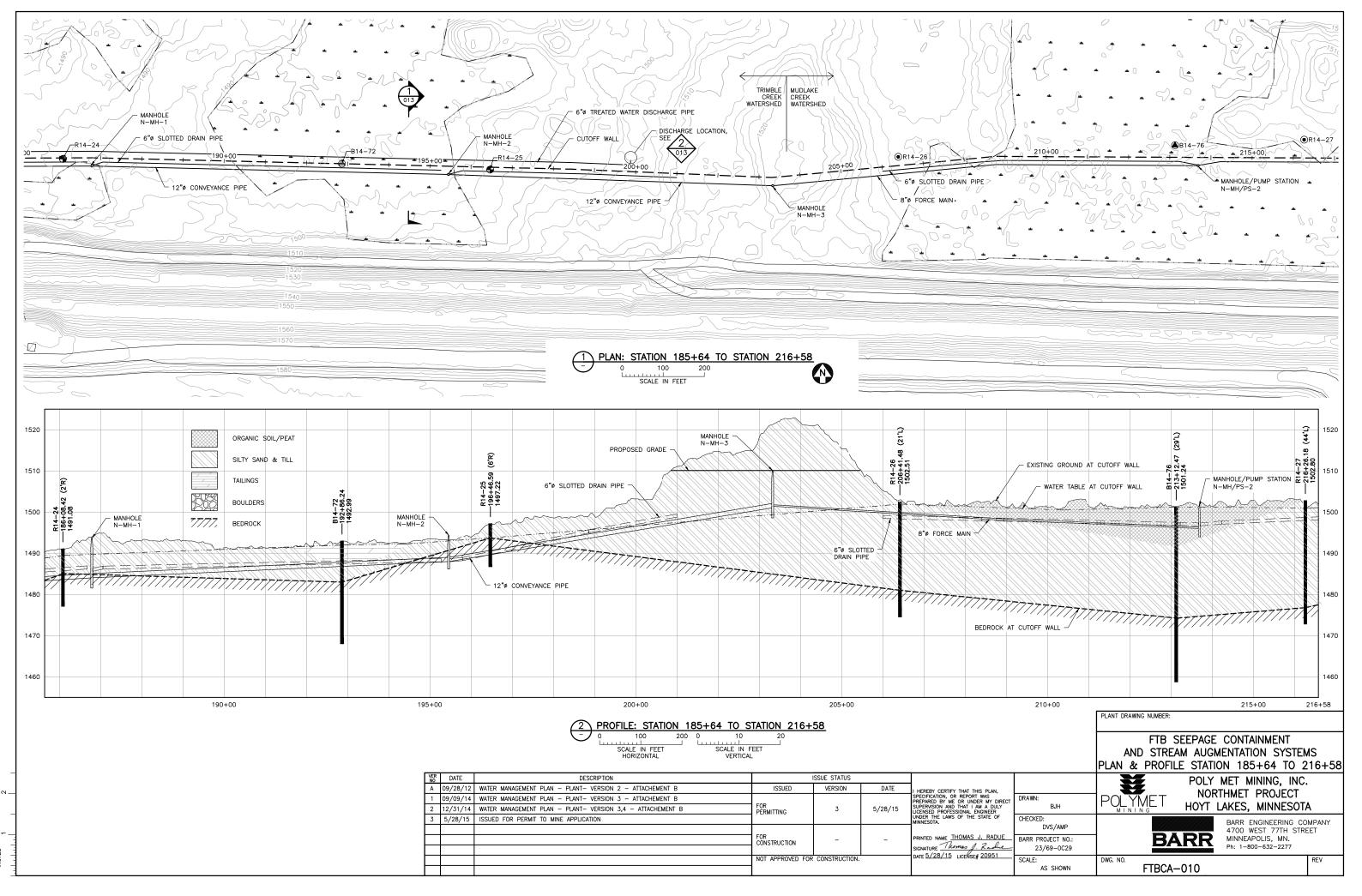



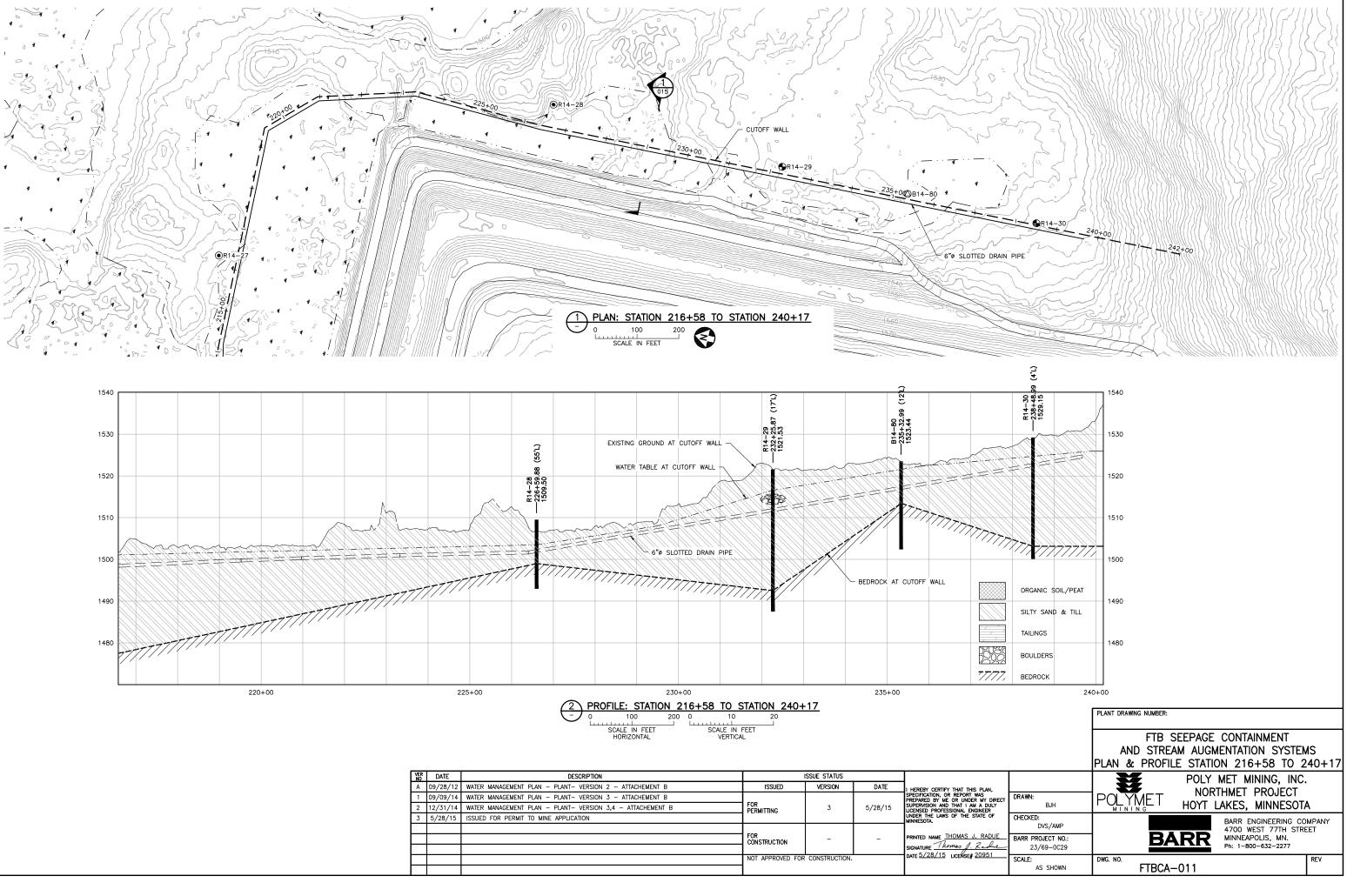





	TIONI INVOLIT					
IENTA	TION LAYOUT	FTB SEEPAGE CONTAINMENT AND STREAM AUGMENTATION SYSTEMS PLAN SHEET LAYOUT				
N, DIRECT DULY R OF	DRAWN: BDP	POLY MET MINING, INC. NORTHMET PROJECT HOYT LAKES, MINNESOT				
OF DUE che 51	CHECKED: DVS BARR PROJECT NO.: 23/69-0C29	BARR ENGINEERING CC 4700 WEST 77TH STRI MINNEAPOLIS, MN. Ph: 1-800-632-2277				
<u> </u>	SCALE: AS SHOWN	DWG. NO. FTBCA-003	REV			

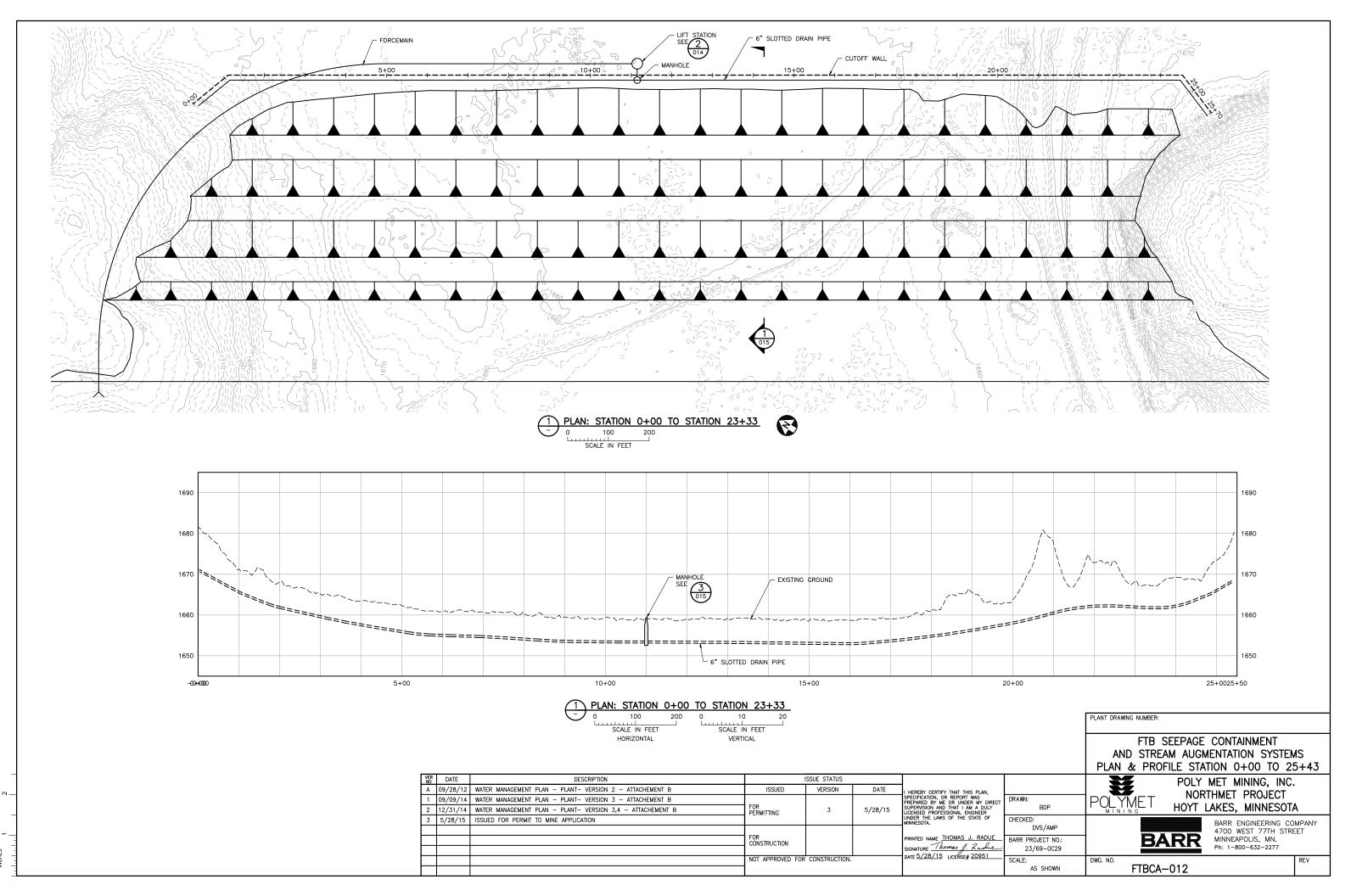




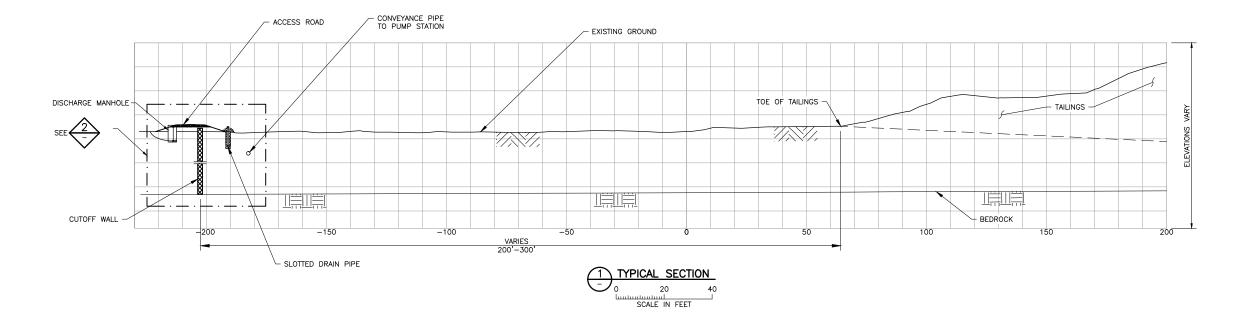



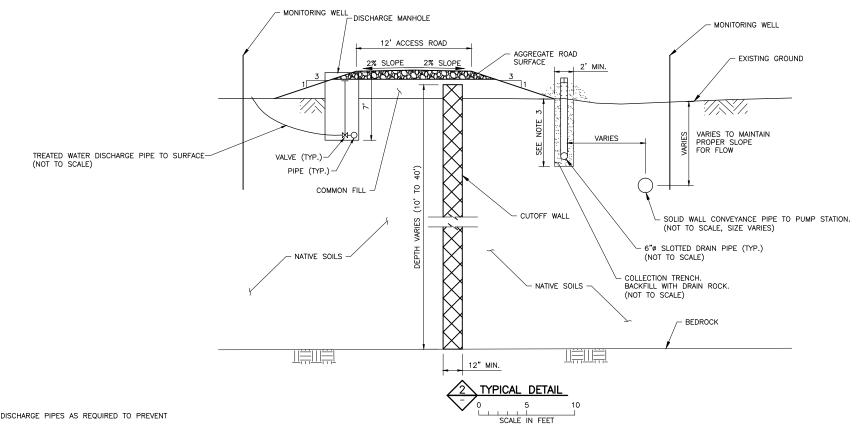






N



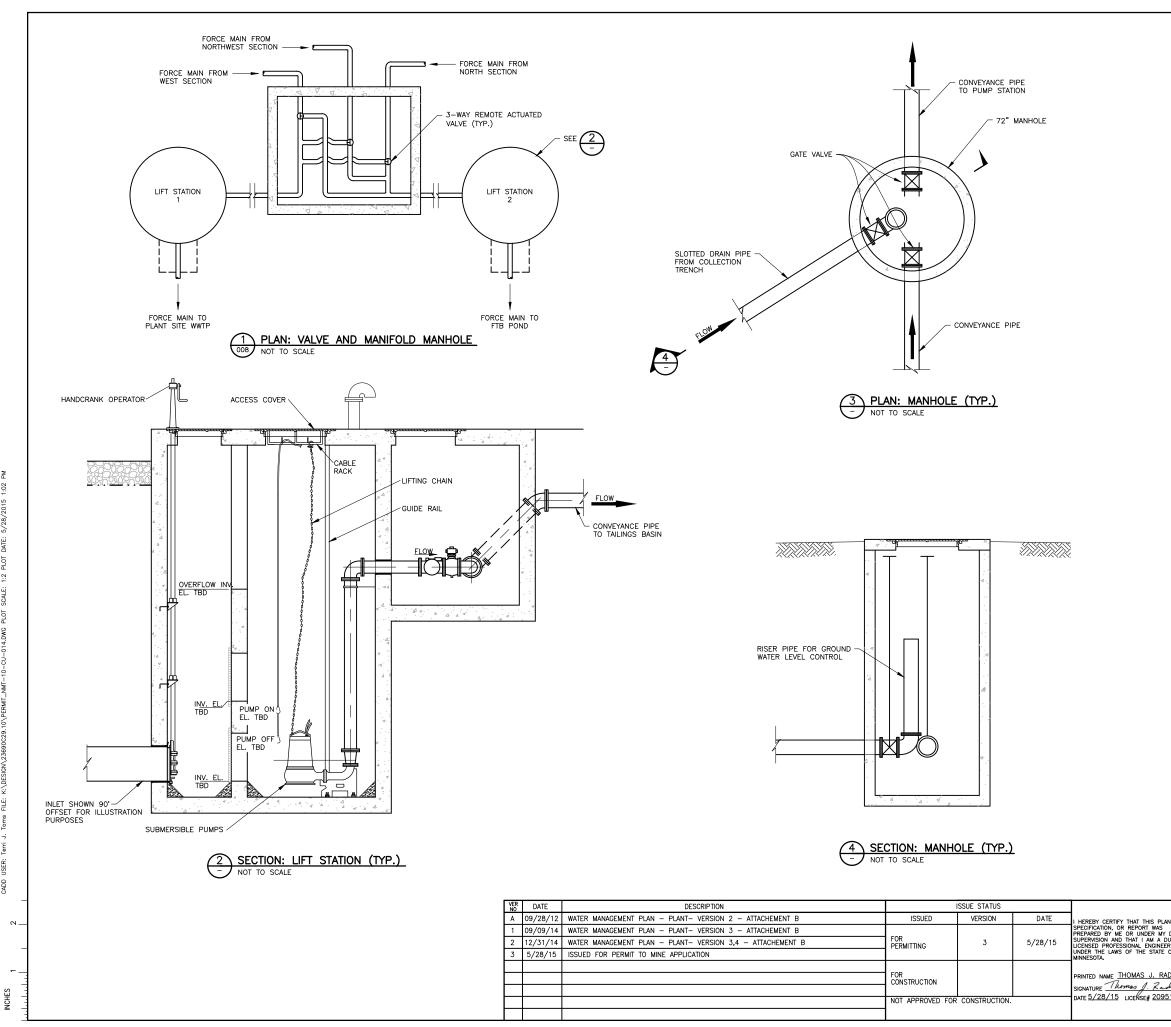

VER NO	DATE	DESCRIPTION		ISSUE STATUS		
А	09/28/12	WATER MANAGEMENT PLAN - PLANT- VERSION 2 - ATTACHEMENT B	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
1	09/09/14	WATER MANAGEMENT PLAN - PLANT- VERSION 3 - ATTACHEMENT B				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DI
2	12/31/14	WATER MANAGEMENT PLAN - PLANT- VERSION 3,4 - ATTACHEMENT B	FOR	3	5/28/15	SUPERVISION AND THAT I AM A DUL'
3	5/28/15	ISSUED FOR PERMIT TO MINE APPLICATION				UNDER THE LAWS OF THE STATE OF MINNESOTA.
			FOR CONSTRUCTION	-	-	PRINTED NAME THOMAS J. RADU
						SIGNATURE Thomas J. Radu
			NOT APPROVED FOR	CONSTRUCTION.		DATE 5/28/15 LICENSE# 20951

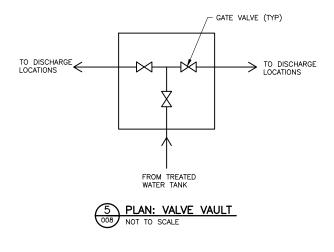


ž





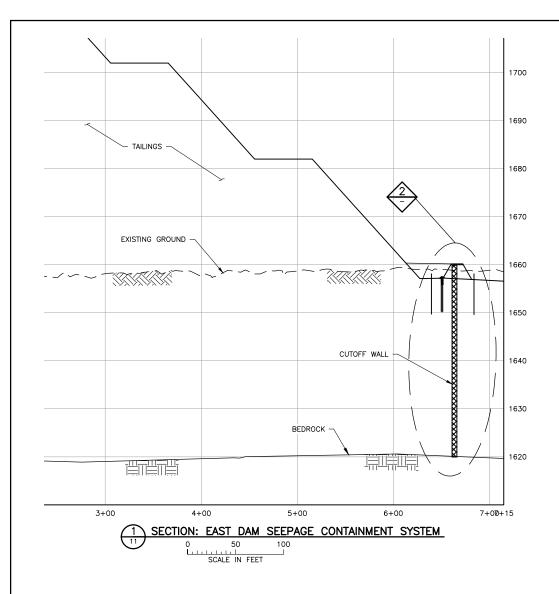

NOTES:

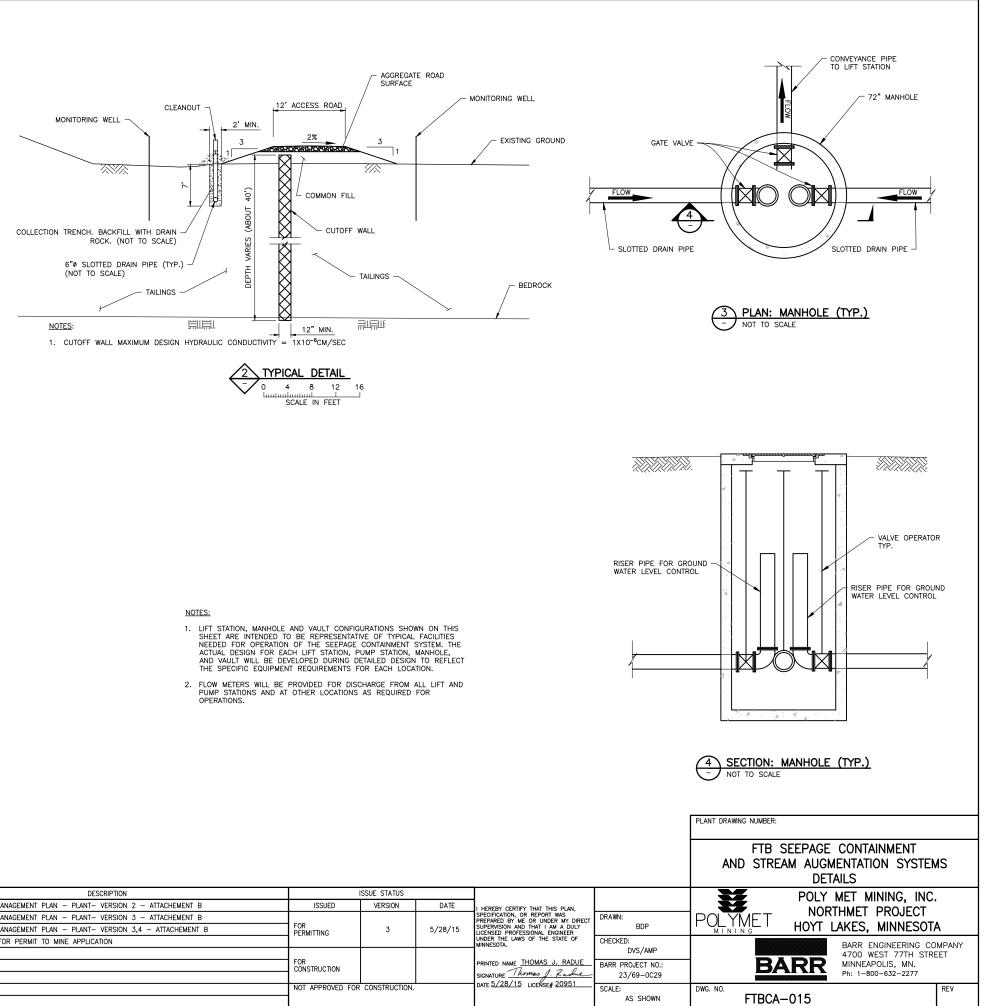

1. DIFFUSER TO BE INSTALLED ON DISCHARGE PIPES AS REQUIRED TO PREVENT EROSION.

- 2. CUTOFF WALL MAXIMUM DESIGN HYDRAULIC CONDUCTIVITY =  $1 \times 10^{-6}$  CM/SEC
- 3. 7' TYPICAL BUT MAY BE LESS IN AREAS WITH SHALLOW BEDROCK

_							
`	/ER NO	DATE	DESCRIPTION		SSUE STATUS		
	A 0	9/28/12	WATER MANAGEMENT PLAN - PLANT- VERSION 2 - ATTACHEMENT B	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
	1 0	9/09/14	WATER MANAGEMENT PLAN - PLANT- VERSION 3 - ATTACHEMENT B				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRE
	2 1	2/31/14	WATER MANAGEMENT PLAN - PLANT- VERSION 3,4 - ATTACHEMENT B	FOR	3	5/28/15	SUPERVISION AND THAT I AM A DULY
	35	5/28/15	ISSUED FOR PERMIT TO MINE APPLICATION				UNDER THE LAWS OF THE STATE OF MINNESOTA.
				FOR CONSTRUCTION			PRINTED NAME THOMAS J. RADUE
							SIGNATURE Thomas J. Rachie DATE 5/28/15 LICENSE# 20951
				NOT APPROVED FOR	CONSTRUCTION.		DATE 37 207 13 LICENSE# 20931

		PLANT DRAWING NUMBER:	
		FTB SEEPAGE CONTAINMENT AND STREAM AUGMENTATION SYSTEMS DETAILS	
N, DIRECT DULY R OF	DRAWN: BDP	POLY MET MINING, INC. NORTHMET PROJECT HOYT LAKES, MINNESOTA	
DUE bre 51	CHECKED: DVS/AMP BARR PROJECT NO.: 23/69-0C29	BARR ENGINEERING COMPANY 4700 WEST 77TH STREET MINNEAPOLIS, MN. Ph: 1-800-632-2277	(
<u>21</u>	SCALE: AS SHOWN	FTBCA-013	



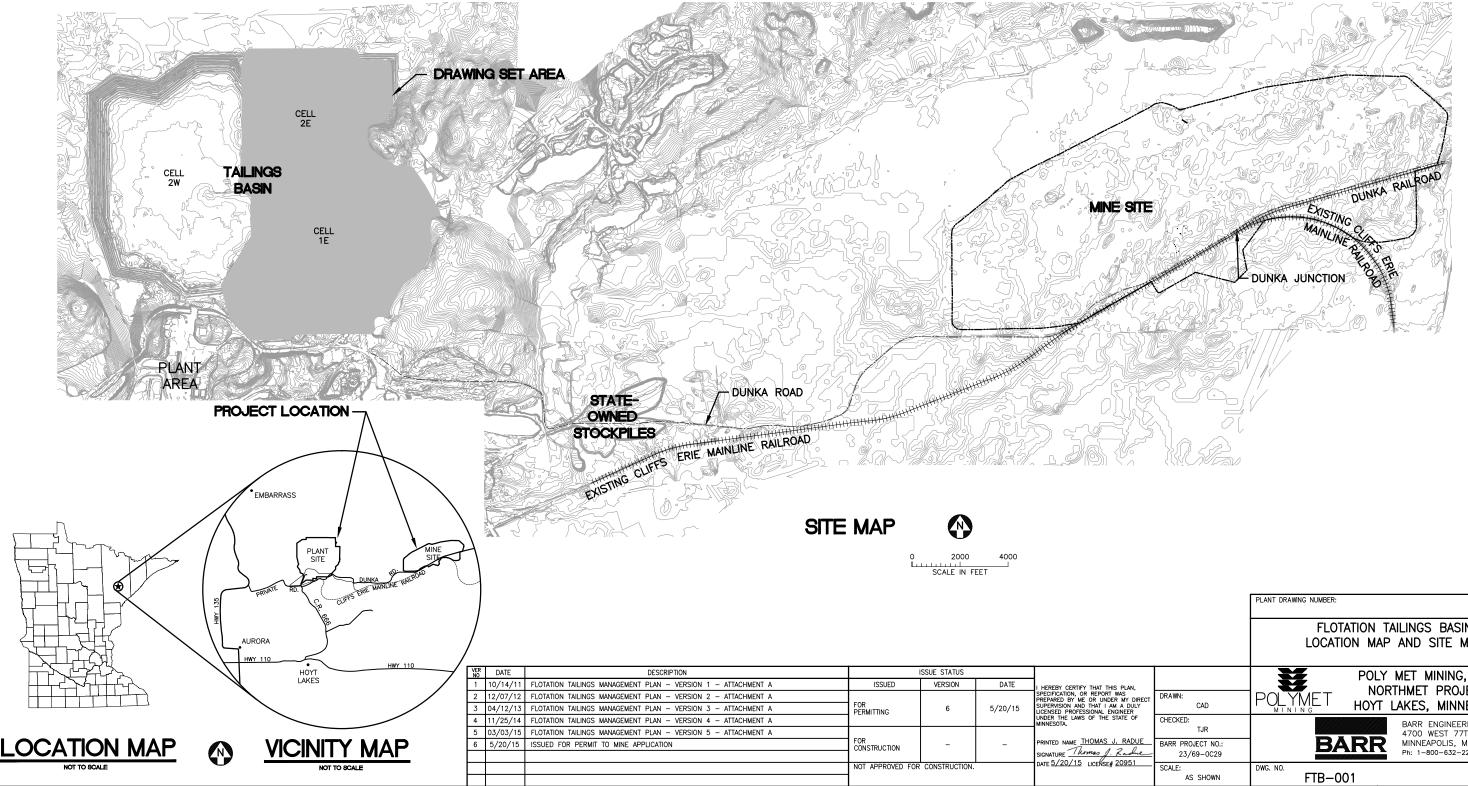




NOTES:

- LIFT STATION, MANHOLE AND VAULT CONFIGURATIONS SHOWN ON THIS SHEET ARE INTENDED TO BE REPRESENTATIVE OF TYPICAL FACILITIES NEEDED FOR OPERATION OF THE SEEPAGE CONTAINMENT AND STREAM AUGMENTATION SYSTEMS. THE ACTUAL DESIGN FOR EACH LIFT STATION, PUMP STATION, MANHOLE, AND VAULT WILL BE DEVELOPED DURING DETAILED DESIGN TO REFLECT THE SPECIFIC EQUIPMENT REQUIREMENTS FOR EACH LICCATION.
- 2. PUMP STATIONS WILL BE SIMILAR TO MANHOLE SHOWN IN  $\overbrace{-}^{3}$  with small submersible pump,
- FLOW METERS WILL BE PROVIDED FOR DISCHARGE FROM ALL LIFT AND PUMP STATIONS AND AT OTHER LOCATIONS AS REQUIRED FOR OPERATIONS.

		PLANT DRAWING NUMBER:	
		FTB SEEPAGE CONTAINMENT AND STREAM AUGMENTATION SYSTEM DETAILS	IS
N, DIRECT ULY R OF	DRAWN: BDP	POLY MET MINING, INC. POLYMET MINING NORTHMET PROJECT HOYT LAKES, MINNESOTA	
DUE_	CHECKED: DVS/AMP BARR PROJECT NO.: 23/69-0C29	BARR ENGINEERING CON 4700 WEST 77TH STRE MINNEAPOLIS, MN. Ph: 1-800-632-2277	
51	SCALE: AS SHOWN	TBCA-014	REV








VER NO	DATE	DESCRIPTION		SSUE STATUS		
Α	09/28/12	WATER MANAGEMENT PLAN - PLANT- VERSION 2 - ATTACHEMENT B	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
1	09/09/14	WATER MANAGEMENT PLAN - PLANT- VERSION 3 - ATTACHEMENT B				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIR
2	12/31/14	WATER MANAGEMENT PLAN – PLANT– VERSION 3,4 – ATTACHEMENT B	FOR PERMITTING	3	5/28/15	SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER
3	5/28/15	ISSUED FOR PERMIT TO MINE APPLICATION				UNDER THE LAWS OF THE STATE OF MINNESOTA.
			FOR CONSTRUCTION			PRINTED NAME THOMAS J. RADU
						SIGNATURE Thomas J. Rachie
			NOT APPROVED FOR	CONSTRUCTION.		DATE <u>5/28/15</u> LICENSE# <u>20951</u>

## Flotation Tailings Basin Permit Application Support Drawings

# POLY MET MINING, INC. NORTHMET PROJECT PERMIT SUPPORT DRAWINGS FLOTATION TAILINGS BASIN HOYT LAKES, MINNESOTA



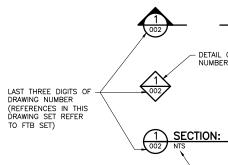
		PLANT DRAWING NUMBER:	
		FLOTATION TAILINGS BASIN LOCATION MAP AND SITE MAP	
AN, ' DIRECT DULY ER OF	DRAWN: CAD	POLY MET MINING, INC NORTHMET PROJECT HOYT LAKES, MINNESO	
ADUE_	CHECKED: TJR BARR PROJECT NO.: 23/69-0C29	BARR ENGINEERING O 4700 WEST 77TH ST MINNEAPOLIS, MN. Ph: 1-800-632-2277	
51	SCALE: AS SHOWN	DWG. NO. FTB-001	REV

#### GENERAL LEGEND

1000	EXISTING CONTOUR - MAJOR
	EXISTING CONTOUR - MINOR
1000	PROPOSED CONTOUR - MAJOR
	PROPOSED CONTOUR - MINOR
8	EXISTING POWER POLE
····	EXISTING RAILROAD
	EXISTING ROAD
	EXISTING TRAIL
=======	EXISTING UNIMPROVED TRAIL
	EXISTING STRUCTURES
	TREE LINE
	WETLAND BOUNDARY
$\rightarrow$	EXISTING CULVERT
P	EXISTING PIPELINE
OE	OVERHEAD ELECTRIC
Ť	DISCHARGE POINT
1	DEWATERING OUTLET POINT
8	RETURN PUMP PAD
	DEWATERING PUMP
	SURFACE DRAINAGE
•	DRAINAGE COLLECTION STRUCTURE AND PIPE
	DRAINAGE AREA BOUNDARY
	PROPOSED DAMS
DW	PROPOSED DEWATERING PIPE
— D —	PROPOSED DISCHARGE PIPELINE
—— R ——	PROPOSED RETURN PIPELINE
$\rightarrow \rightarrow \rightarrow$	PROPOSED CULVERT (NON-MINE DRAINAGE)
<	PROPOSED SEEPAGE COLLECTION DRAIN
	PROPOSED STORMWATER DRAIN
0	PROPOSED MANHOLE
 199583	PROPOSED WICK DRAIN LATERAL PIPE
ASSESSA	PROPOSED RIP RAP
	FILL SLOPE
>	CUT SLOPE

ABBREVIATIONS
---------------

ADDr		ATIONS
APPROX.	-	APPROXIMATE
CDSM	-	CEMENT DEEP SOIL MIX
CMP	-	CORRUGATED METAL PIPE
CPEP	-	CORRUGATED POLYETHYLENE PIPE
CY	-	CUBIC YARD
DR	-	DIMENSION RATIO
DWG	-	DRAWING
EL.	-	ELEVATION
F	-	DIAMETER
FTB	-	FLOTATION TAILINGS BASIN
GCL	-	GEOSYNTHETIC CLAY LINER
HDPE	-	HIGH DENSITY POLYETHYLENE
HRF	-	HYDROMETALLURGICAL RESIDUE FACILITY
LDPE	-	LOW DENSITY POLYETHYLENE
LF	-	LINER FEET
LTVSMC	-	LTV STEEL MINING COMPANY
MCY	-	MILLION CUBIC YARDS
mil	-	one thousandth of an inch
MIN	-	MINIMUM
MSL	-	MEAN SEA LEVEL
NTS	-	NOT TO SCALE
SCH.	-	SCHEDULE
DR	-	DIMENSION RATIO
TYP.	-	TYPICAL


### SHEET INDEX

#### <u>SHEET NO. TITLE</u>

#### GENERAL DRAWINGS

LOCATION MAP AND SITE MAP
LEGEND AND SHEET INDEX
EXISTING CONDITIONS
LAYOUT MINE YEAR 20
LAYOUT MINE YEAR 1
LAYOUT MINE YEAR 5
LAYOUT MINE YEAR 7
NORTH DAM - MINE YEAR 20 LAYOU
NORTH DAM - TYPICAL CROSS SECT
NORTH DAM - STAGED CONSTRUCTION
EAST AND WEST DAMS - MINE YEAR
EAST AND WEST DAMS - TYPICAL C SOUTH DAM - MINE YEAR 20 LAYOU
SOUTH DAM - MINE TEAR 20 LATOR SOUTH DAM - TYPICAL CROSS SECT
EMERGENCY OVERFLOW CHANNEL -
PIPING LAYOUT CELL 2E
PIPING LAYOUT CELL 1/2E
DETAILS
TRANSFER PUMP RAFT
TAILINGS DISPOSAL DIFFUSER RAFT
CLOSURE PLAN

#### DRAWING NUMBERING

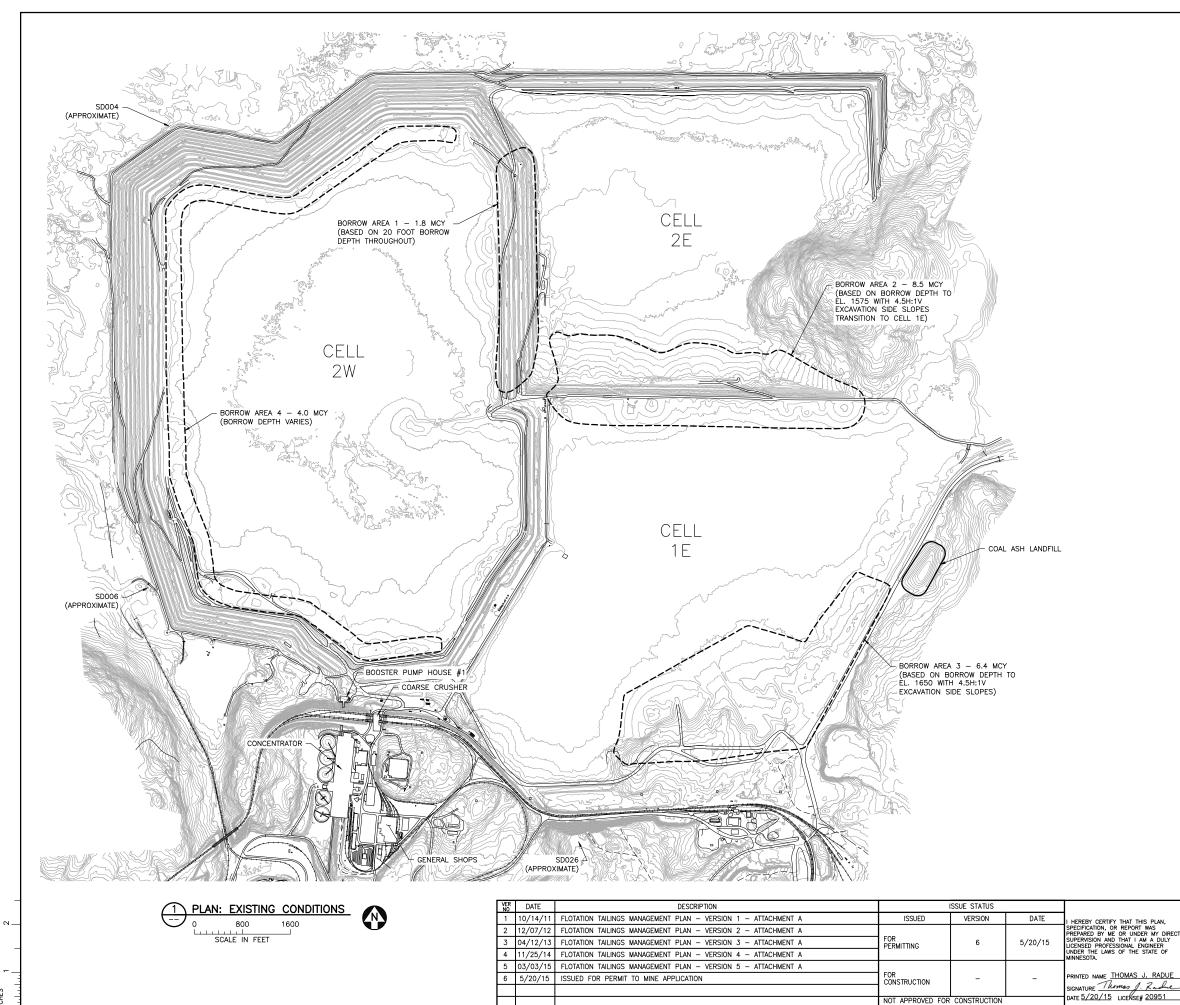


#### <u>NOTES</u>

- 1. COORDINATE SYSTEM IS MINNESOTA STATE PLANE NORTH ZONE, NAD83.
- 2. ELEVATIONS ARE MEAN SEA LEVEL (MSL), NAVD88.
- 3. EXISTING TOPOGRAPHIC INFORMATION SHOWN ON THE DRAWINGS WAS PREPARED BY AEROMETRIC, INC. FROM LIDAR DATA COLLECTED ON MARCH 17, 2010.
- 4. EXISTING TOPOGRAPHIC INFORMATION WAS UPDATED FOR AREAS SOUTH EAST OF COAL ASH LANDFILL AND EAST OF OUTCROP BETWEEN CELLS 1E AND 2E USING CONTOURS FROM DATA COLLECTED IN 1999.
- 5. FLOATATION TAILINGS BASIN DESIGN WAS BASED ON CONTOURS FROM DATA COLLECTED IN 1999. PROPOSED DAM LAYOUTS MAY NOT EXACTLY MATCH THE EXISTING TOPOGRAPHY FROM 2010 LIDAR.

VER NO	DATE	DESCRIPTION	ISSUE STATUS			
1	10/14/11	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 1 - ATTACHMENT A	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
2	12/07/12	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 2 - ATTACHMENT A				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIR
3	04/12/13	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 3 - ATTACHMENT A	FOR	6		SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER
4	11/25/14	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 4 - ATTACHMENT A				UNDER THE LAWS OF THE STATE OF MINNESOTA.
5	03/03/15	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A				
6	5/20/15	ISSUED FOR PERMIT TO MINE APPLICATION	FOR CONSTRUCTION	-		PRINTED NAME THOMAS J. RADU
						SIGNATURE Thomas J. Rachu
			NOT APPROVED FOR	CONSTRUCTION		DATE 5/20/15 LICENSE# 20951

÷-.

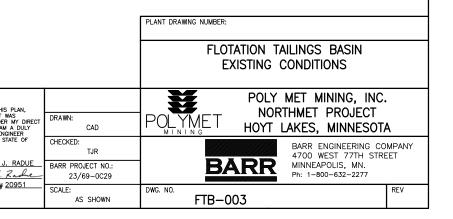

M

		PLANT DRAWING NUMBER:			
		FLOTATION TAILINGS BASIN LEGEND AND SHEET INDEX			
AN, DIRECT DULY SR OF ADUE	DRAWN: CAD	POLY MET MINING, INC. NORTHMET PROJECT HOYT LAKES, MINNESOTA			
	CHECKED: TJR BARR PROJECT NO.: 23/69-0C29	BARR ENGINEERING CO 4700 WEST 77TH STRE MINNEAPOLIS, MN. Ph: 1-800-632-2277			
51	SCALE: AS SHOWN	DWG. NO. FTB-002	REV		

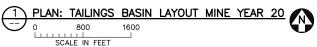
-NTS = NOT TO SCALE

- DETAIL OR SECTION NUMBER, TYPICAL

YOUT ECTION ECTION EAR 20 LAYOUT _ CROSS SECTIONS AND DRAINAGE SWALE YOUT ECTION — LAYOUT — SECTIONS — SECTIONS — DETAILS — SEQUENCING




#### NOTES:


1. CONTOURS DO NOT REFLECT BORROW REMOVAL.

2. BORROW LTVSMC COARSE TAILINGS IN THE NUMERICAL SEQUENCE SHOWN.

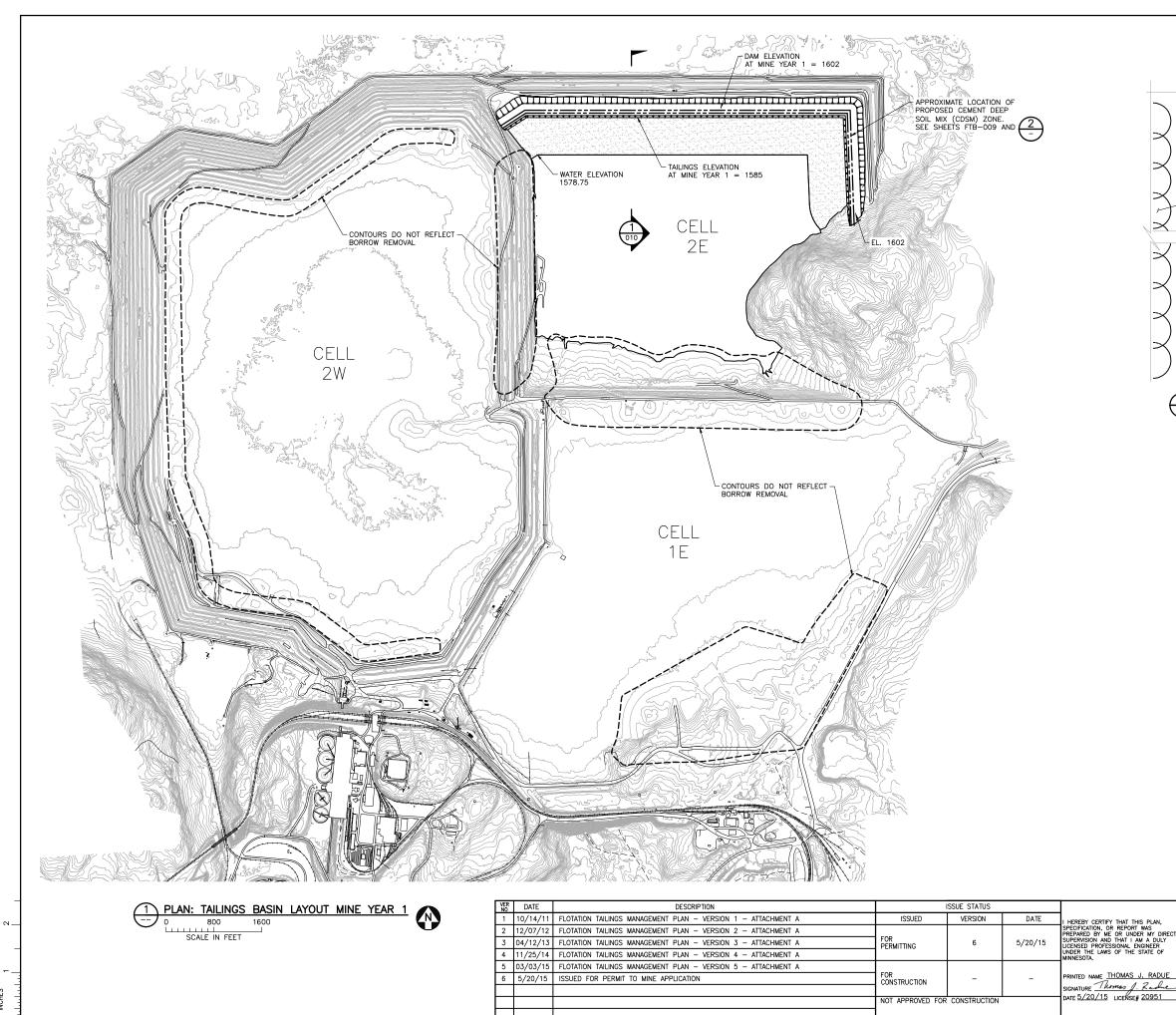
3. COAL ASH LANDFILL TO BE RELOCATED TO HYDROMET RESIDUE FACILITY OR ALTERNATE PERMITTED FACILITY PRIOR TO TAILINGS DEPOSITION IN CELL 1E.



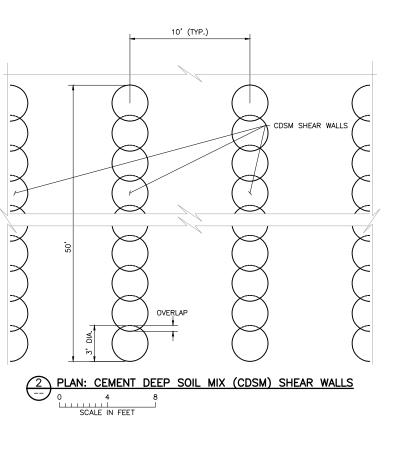




VER NO	DATE	DESCRIPTION		ISSUE STATUS		
1	10/14/11	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 1 - ATTACHMENT A	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
2	12/07/12	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 2 - ATTACHMENT A				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT
3	04/12/13	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 3 - ATTACHMENT A	FOR PERMITTING	6	5/20/15	SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER
4	11/25/14	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 4 - ATTACHMENT A				UNDER THE LAWS OF THE STATE OF MINNESOTA.
5	03/03/15	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A				
6	5/20/15	ISSUED FOR PERMIT TO MINE APPLICATION	FOR CONSTRUCTION	-		PRINTED NAME THOMAS J. RADUE
						SIGNATURE Thomas J. Rache
			NOT APPROVED FOR	CONSTRUCTION		DATE <u>5/20/15</u> LICENSE# <u>20951</u>


INCHES

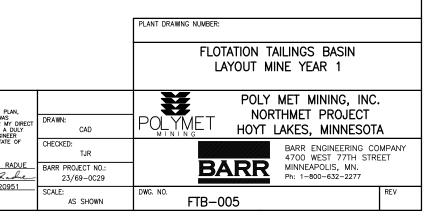
#### NOTE:

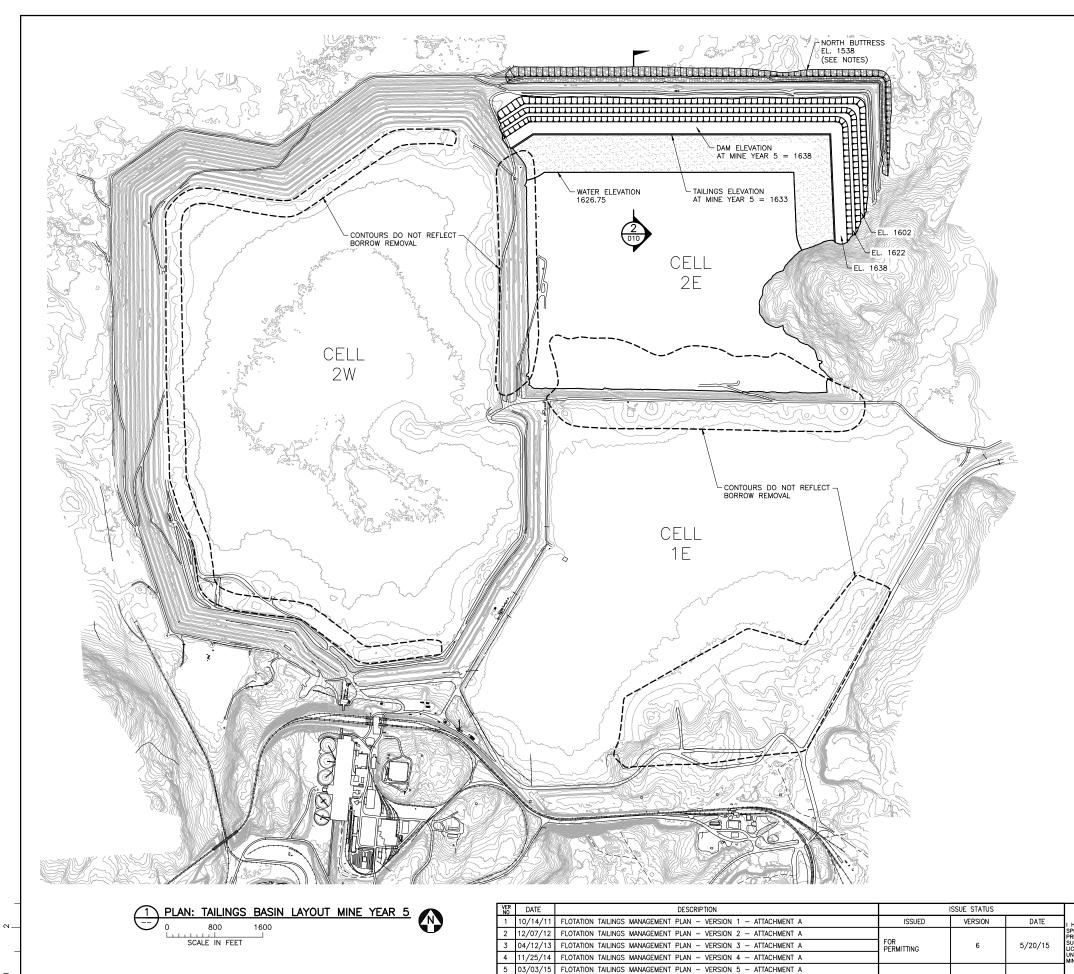

- 2. LOCATION AND DIMENSIONS OF CDSM SHEAR WALL MAY CHANGE AS DESIGNS ARE FINALIZED.
- 1. CEMENT DEEP SOIL MIX (CDSM) ZONE NOT SHOWN. SEE SHEETS FTB-003 AND FTB-009.

REV

PLANT DRAWING NUMBER:




NCHES

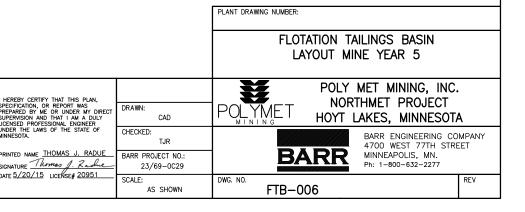



#### NOTES:

1. SEE SHEET FTB-015 FOR OPERATIONS-PHASE EMERGENCY OVERFLOW CHANNEL.

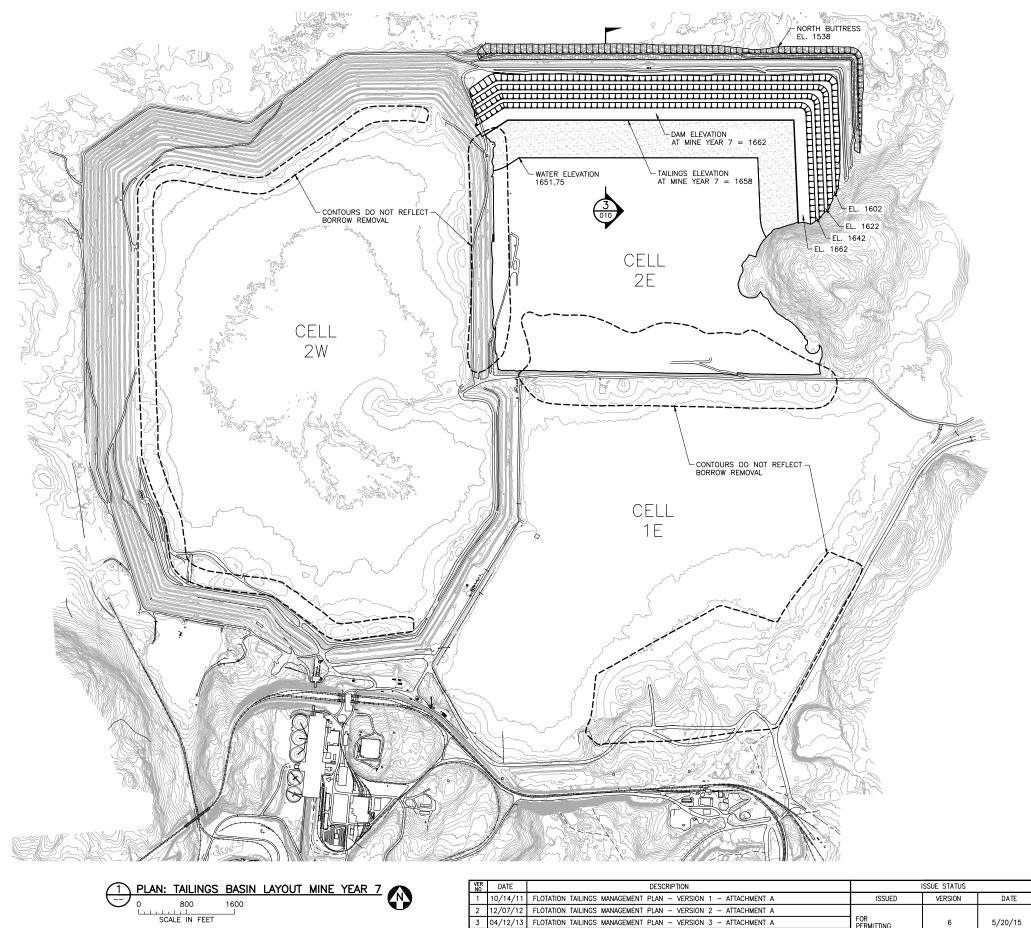
2. CDSM TO BE CONSTRUCTED PRIOR TO TAILINGS PLACEMENT.





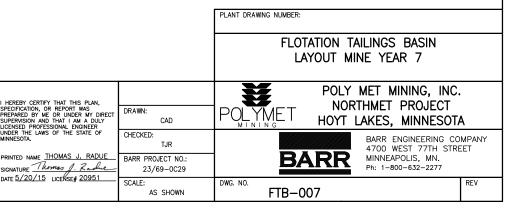

6 5/20/15 ISSUED FOR PERMIT TO MINE APPLICATION

FOR CONSTRUCTION


NOT APPROVED FOR CONSTRUCTION

NCHES

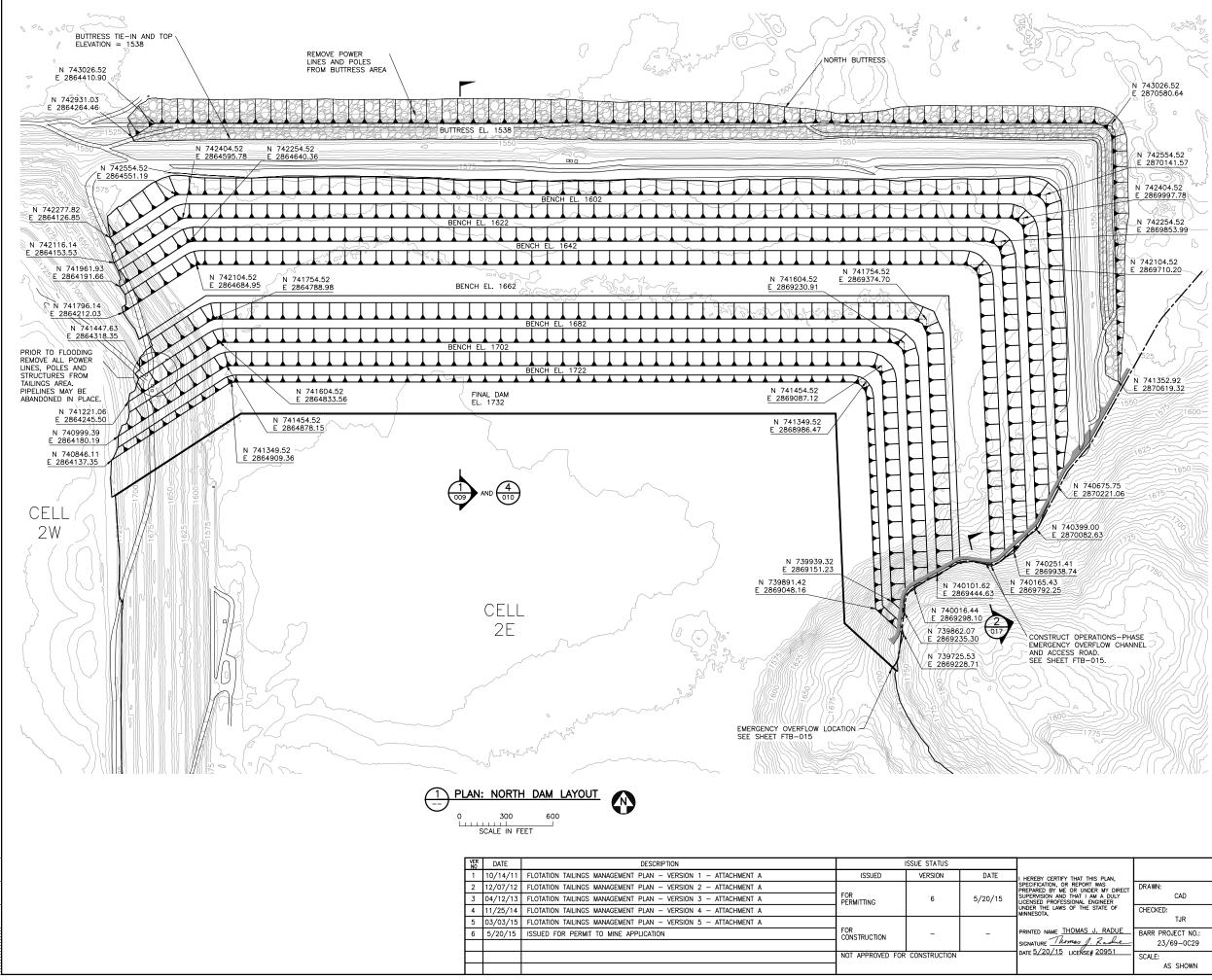



NOTES: 2. CDSM ZONE NOT SHOWN. SEE SHEETS FTB-003 AND FTB-009.

1. SEE SHEET FTB-015 FOR OPERATIONS-PHASE EMERGENCY OVERFLOW CHANNEL.



INCHES


h			10/14/11	FLOTATION TAILINGS MANAGEMENT FLAN - VERSION I - ATTACHMENT A	ISSUED	VERSION	DATE	h.
	$\mathbf{U}$	2	12/07/12	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 2 - ATTACHMENT A				S
		3	04/12/13	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 3 - ATTACHMENT A	FOR PERMITTING	6	5/20/15	S
		4	11/25/14	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 4 - ATTACHMENT A				U M
		5	03/03/15	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A				1
		6	5/20/15	ISSUED FOR PERMIT TO MINE APPLICATION	FOR CONSTRUCTION	-	-	P
								s
					NOT APPROVED FOR	CONSTRUCTION		P
								L



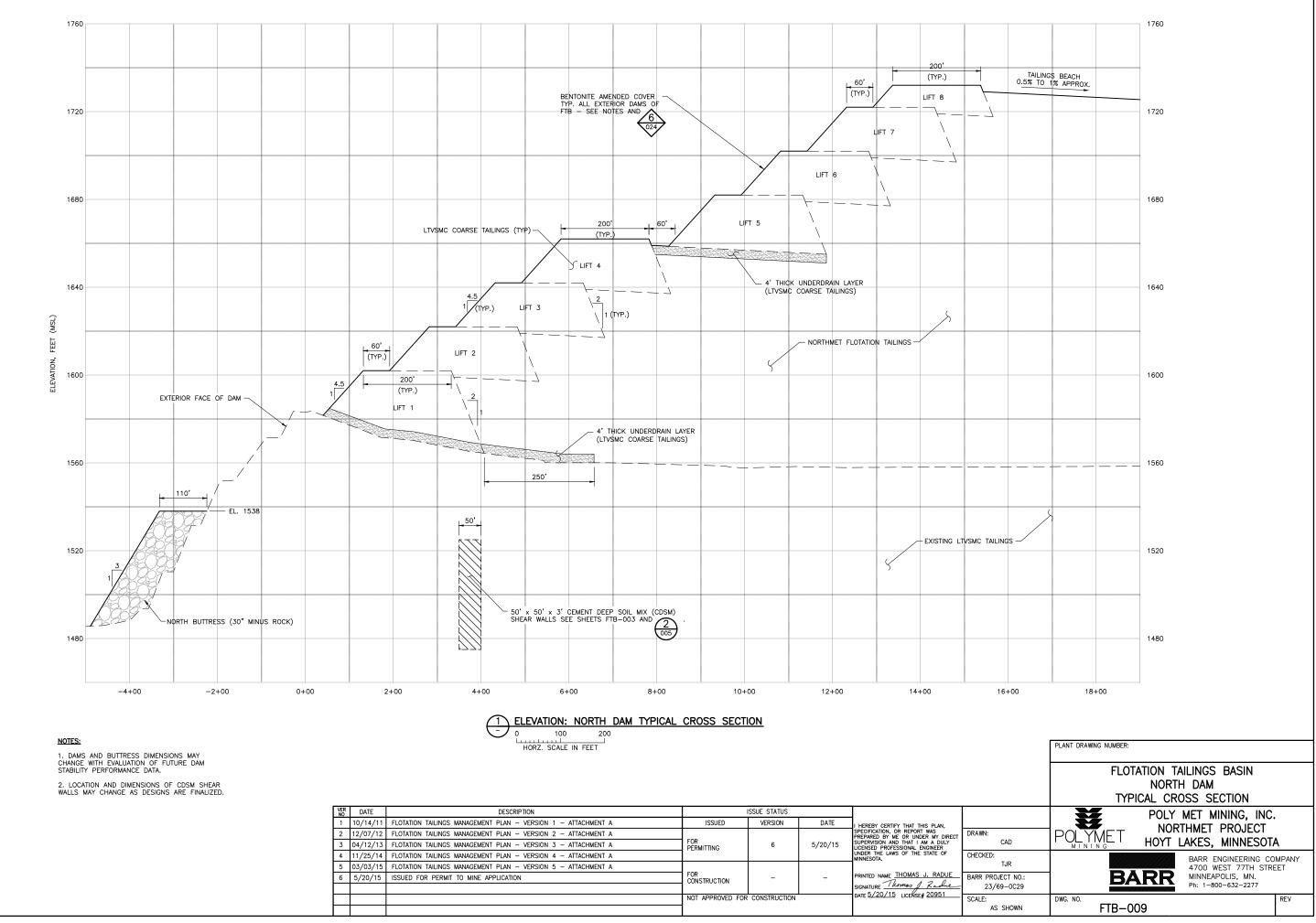
3. CDSM ZONE NOT SHOWN. SEE SHEETS FTB-003 AND FTB-009.

1. LAST YEAR BEFORE COMBINING CELLS 2E AND 1E FOR TAILINGS. 2. SEE SHEET FTB-015 FOR OPERATIONS-PHASE EMERGENCY OVERFLOW CHANNEL.

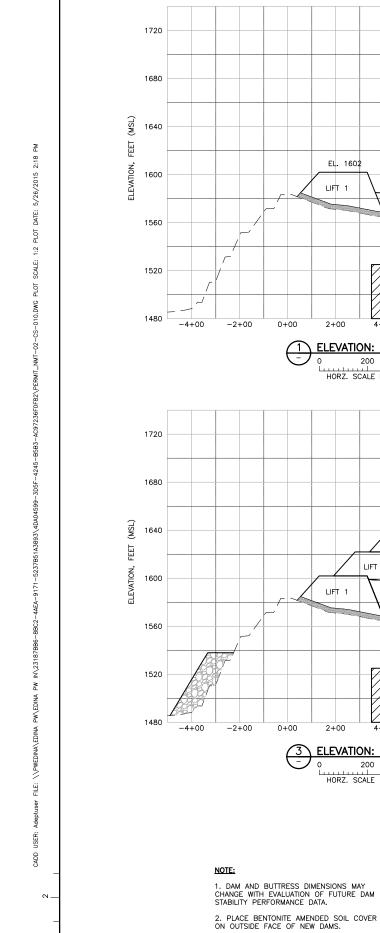
NOTES:



NCHES


#### NOTES:

1. DAM ACCESS ROAD LOCATION IS APPROXIMATE. FIELD LOCATE TO PROVIDE PREFERRED SLOPE AND DRAINAGE.


2. EXTEND ACCESS ROAD TO AREA 5 STOCKPILES AND TO PLANT (NOT SHOWN).

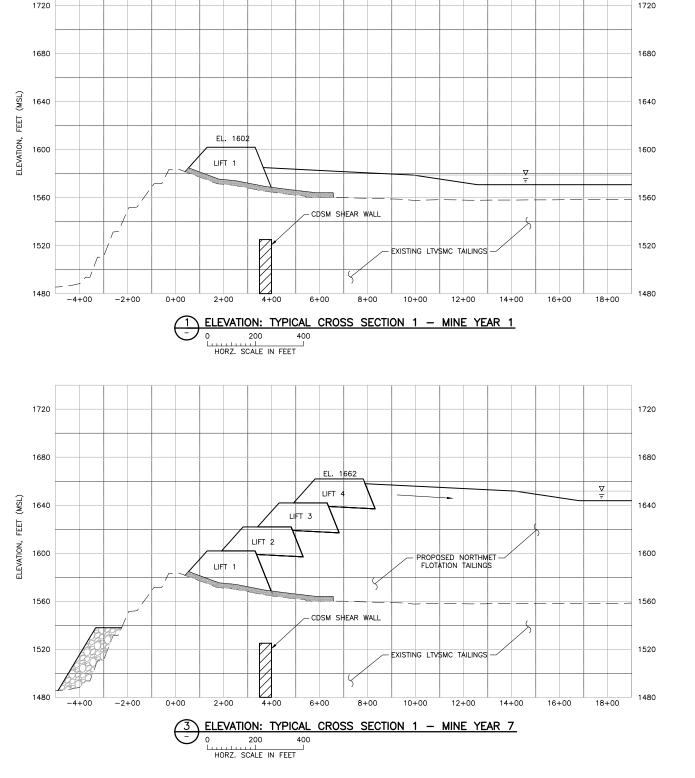
3. CDSM ZONE NOT SHOWN. SEE SHEETS FTB-003 AND FTB-009.

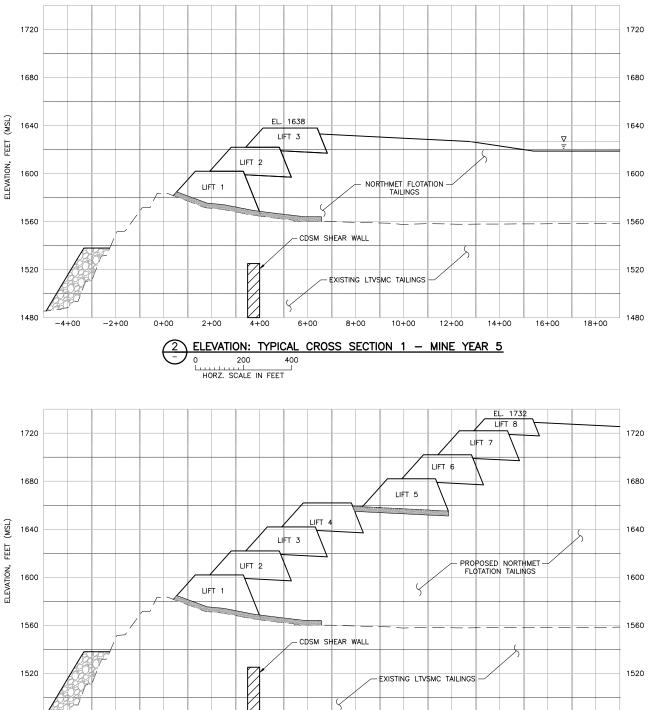
		PLANT DRAWING NUMBER:					
		FLOTATION TAILINGS BASIN NORTH DAM MINE YEAR 20 LAYOUT					
AN, 1 DIRECT DULY ER	DRAWN: CAD	POLYMET MINING, INC. NORTHMET PROJECT HOYT LAKES, MINNESOTA					
ADUE_	CHECKED: TJR BARR PROJECT NO.: 23/69-0C29	BARR ENGINEERING COMPAN 4700 WEST 77TH STREET MINNEAPOLIS, MN. Ph: 1-800-632-2277	Y				
51	SCALE: AS SHOWN	DWG. NO. FTB-008					



VER NO	DATE	DESCRIPTION	ISSUE STATUS			
1	10/14/11	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 1 - ATTACHMENT A	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
2	12/07/12	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 2 - ATTACHMENT A				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIR
3	04/12/13	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 3 - ATTACHMENT A	FOR	6		SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER
4	11/25/14	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 4 - ATTACHMENT A				UNDER THE LAWS OF THE STATE OF MINNESOTA.
5	03/03/15	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A				
6	5/20/15	ISSUED FOR PERMIT TO MINE APPLICATION	FOR CONSTRUCTION	-		PRINTED NAME THOMAS J. RADU
						SIGNATURE Thomas J. Rachie
			NOT APPROVED FOR	CONSTRUCTION		DATE <u>5/20/15</u> LICENSE# <u>20951</u>




_							
	VER NO	DATE	DESCRIPTION	ISSUE STATUS			
	1	10/14/11	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 1 - ATTACHMENT A	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
	2	12/07/12	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 2 - ATTACHMENT A				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRE
	3	04/12/13	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 3 - ATTACHMENT A	FOR PERMITTING	6	5/20/15	SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.
	4	11/25/14	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 4 - ATTACHMENT A				
	5	03/03/15	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A				1
	6	5/20/15	ISSUED FOR PERMIT TO MINE APPLICATION	FOR CONSTRUCTION	-	-	PRINTED NAME THOMAS J. RADUE
							SIGNATURE Thomas J. Radue
				NOT APPROVED FOR	FOR CONSTRUCTION		DATE 5/20/15 LICENSE# 20951

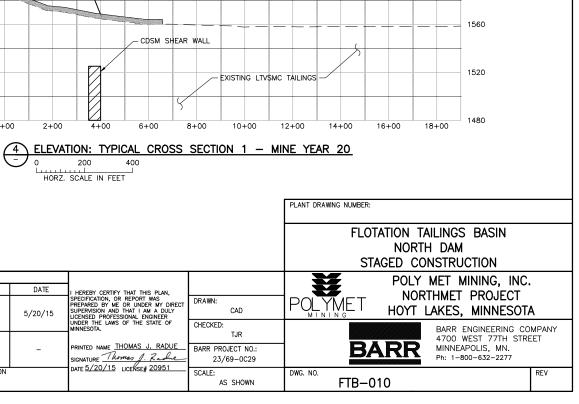

1480

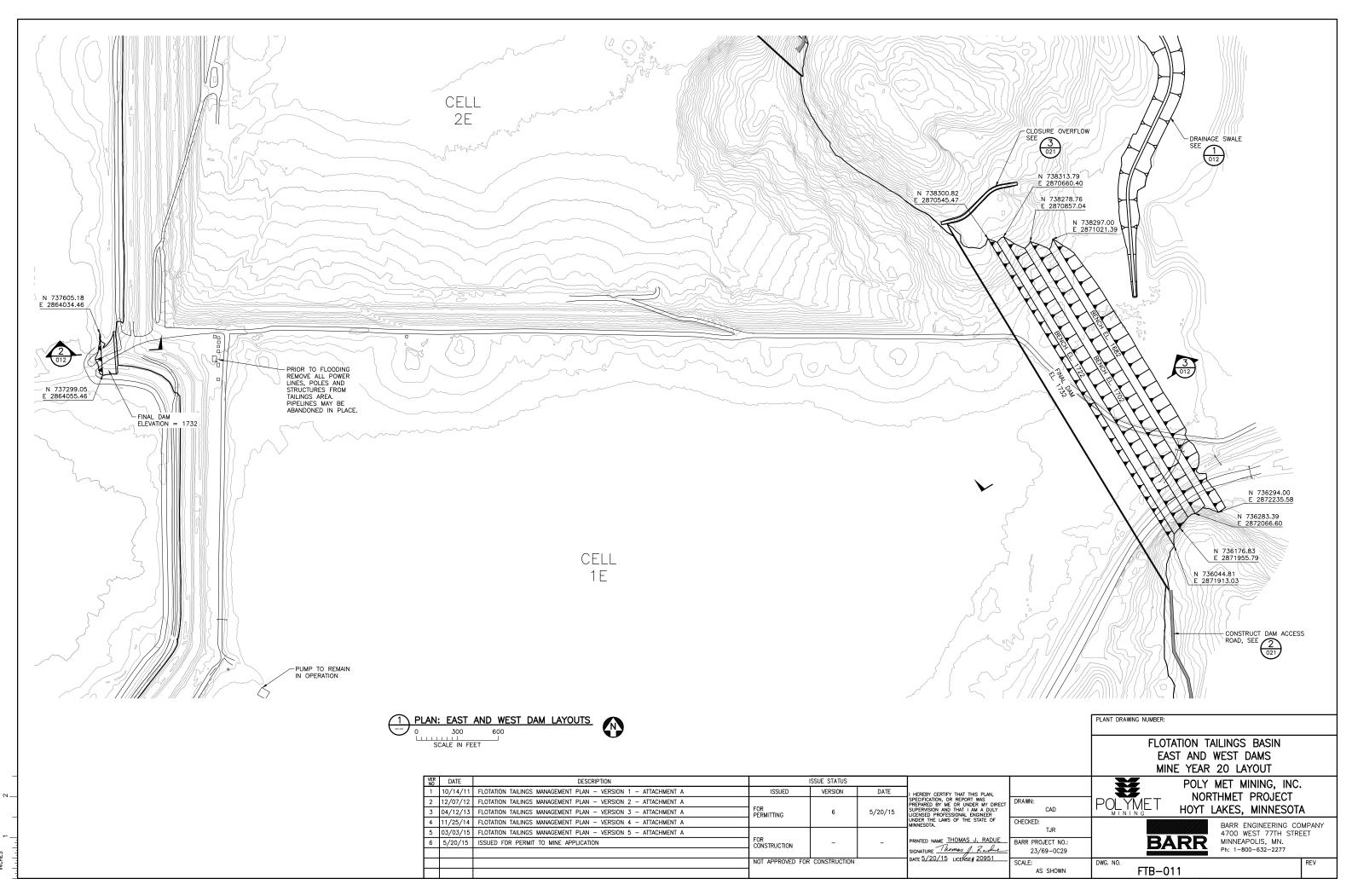
-4+00

-2+00

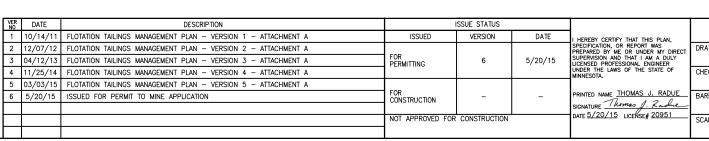
0+00







V

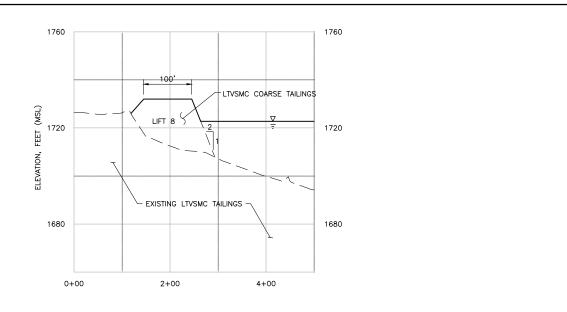
HORZ. SCALE IN FEET

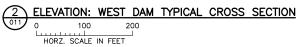

4+00

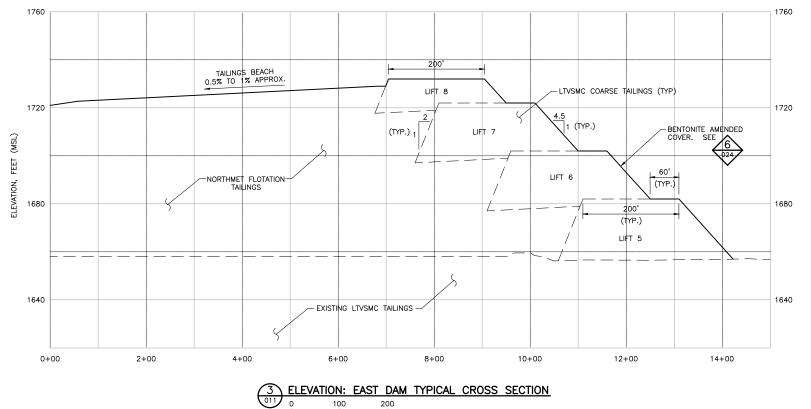
2+00







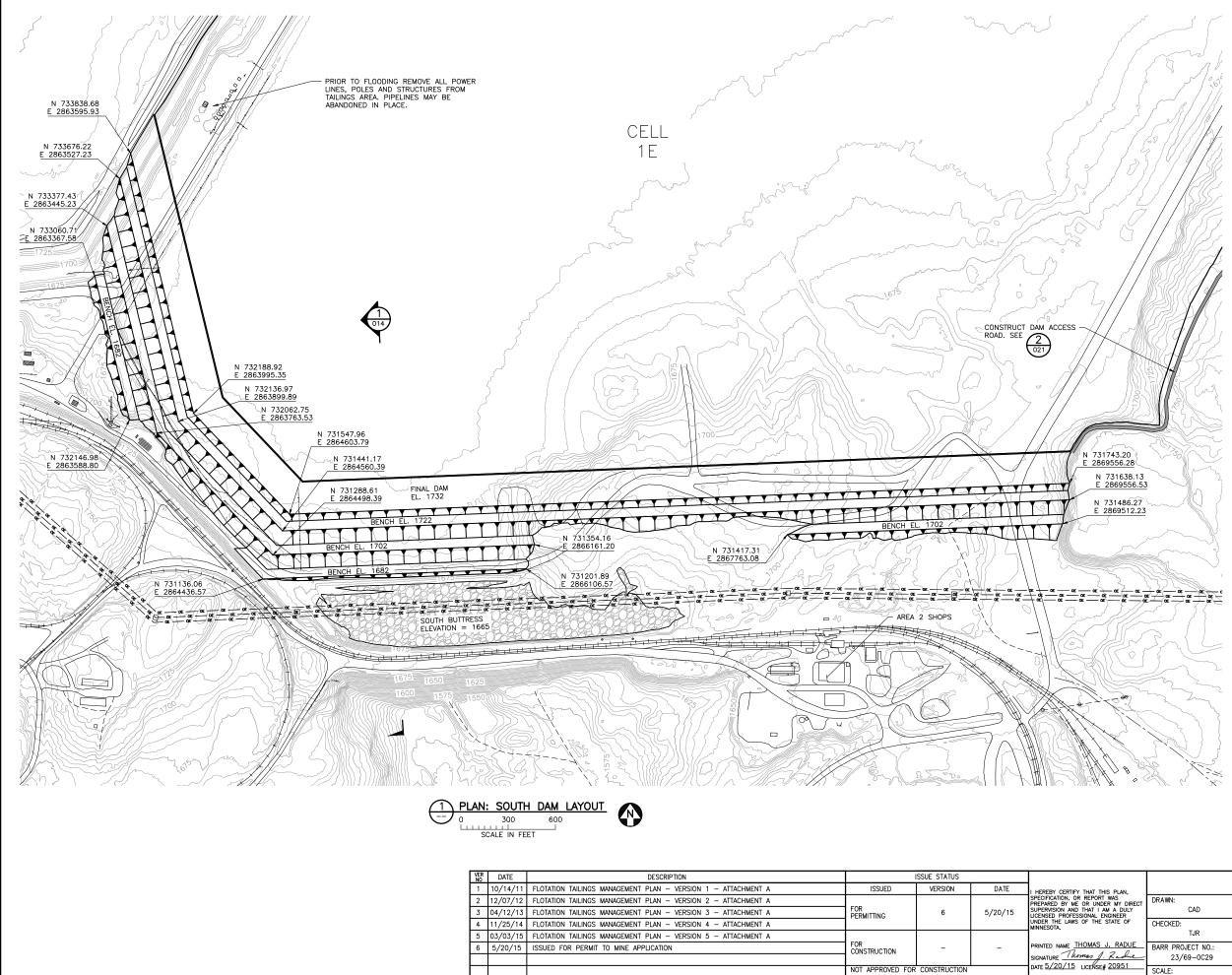


NOTES:

1.CLOSURE OVERFLOW IS FOR EMERGENCY OVERFLOW ONLY UNTIL POND WATER QUALITY MEETS DISCHARGE WATER QUALITY REQUIREMENTS.

2. DAM DIMENSIONS MAY CHANGE WITH EVALUATION OF FUTURE DAM STABILITY PERFORMANCE DATA.

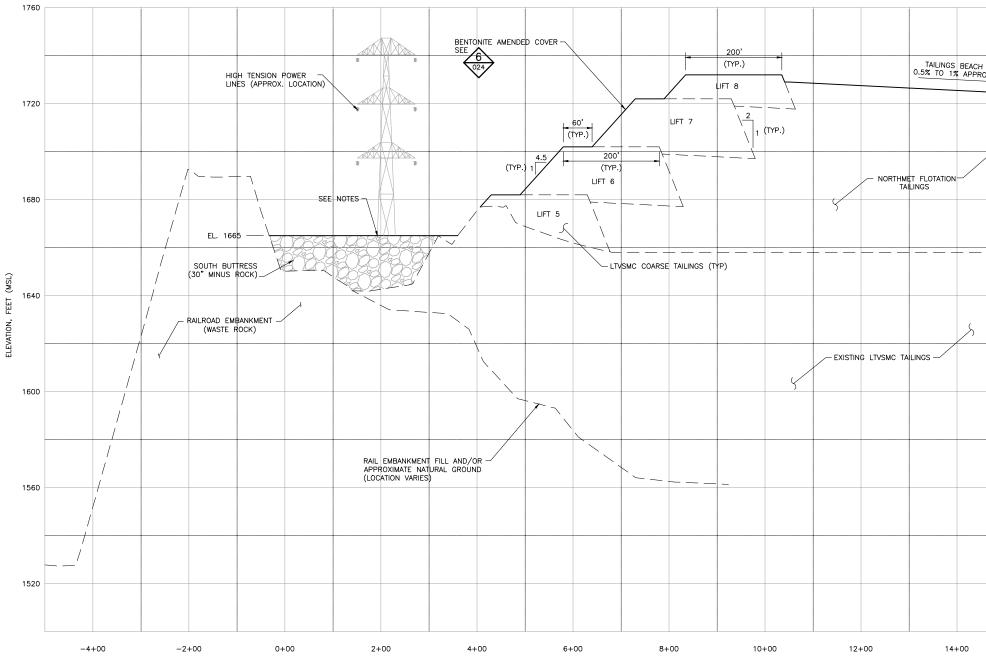







100

HORZ. SCALE IN FEET


200

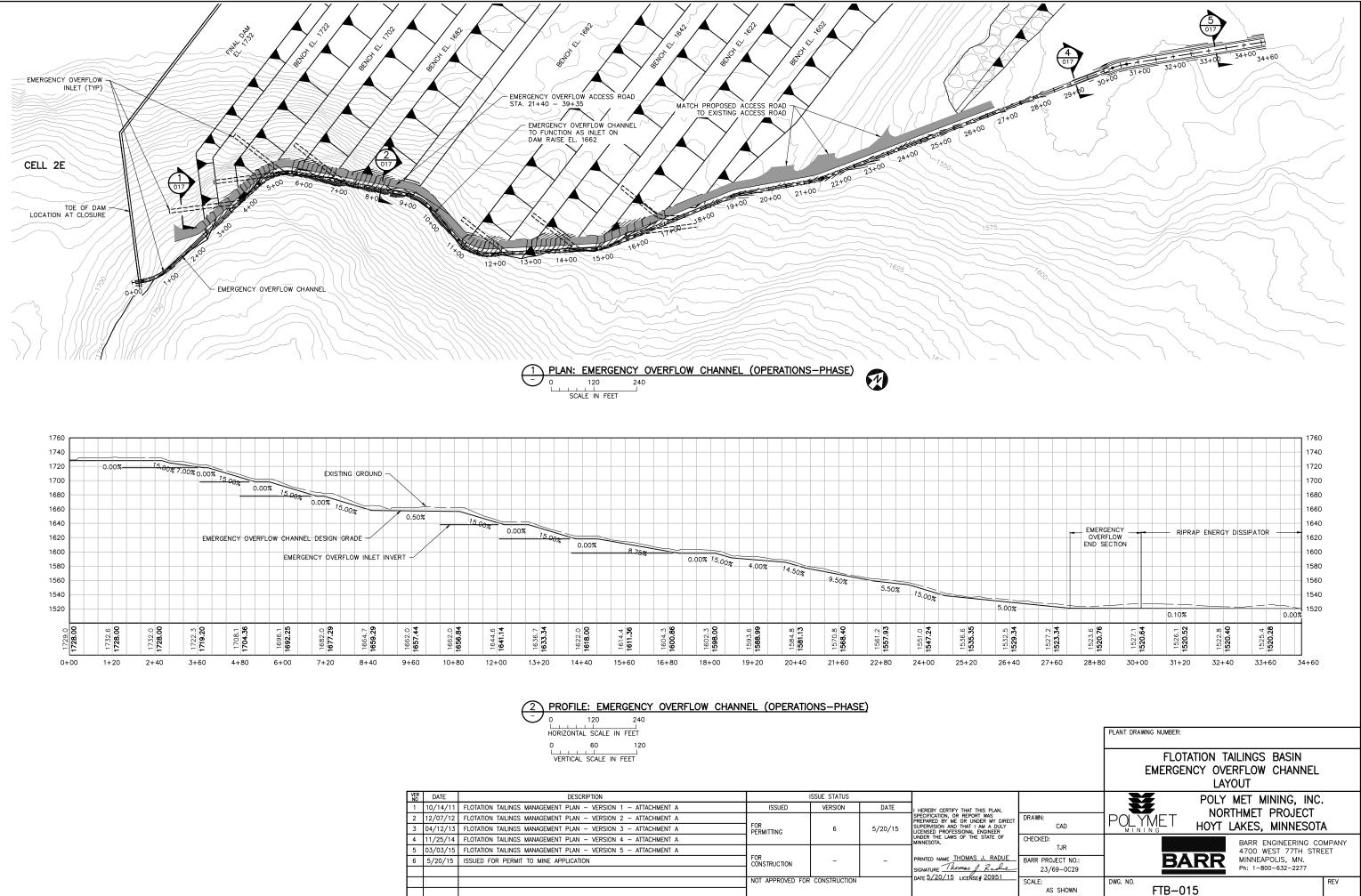
		PLANT DRAWING NUMBER:	
		FLOTATION TAILINGS BASIN EAST AND WEST DAMS TYPICAL CROSS SECTIONS AND DRAINAGE SWALE	
AN, ' DIRECT DULY ER OF	DRAWN: CAD	POLY MET MINING, INC. NORTHMET PROJECT HOYT LAKES, MINNESOTA	
ADUE	CHECKED: TJR BARR PROJECT NO.: 23/69-0C29	BARR ENGINEERING COMPANY 4700 WEST 77TH STREET MINNEAPOLIS, MN. Ph: 1-800-632-2277	, ,
51	SCALE: AS SHOWN	DWG. NO. FTB-012	



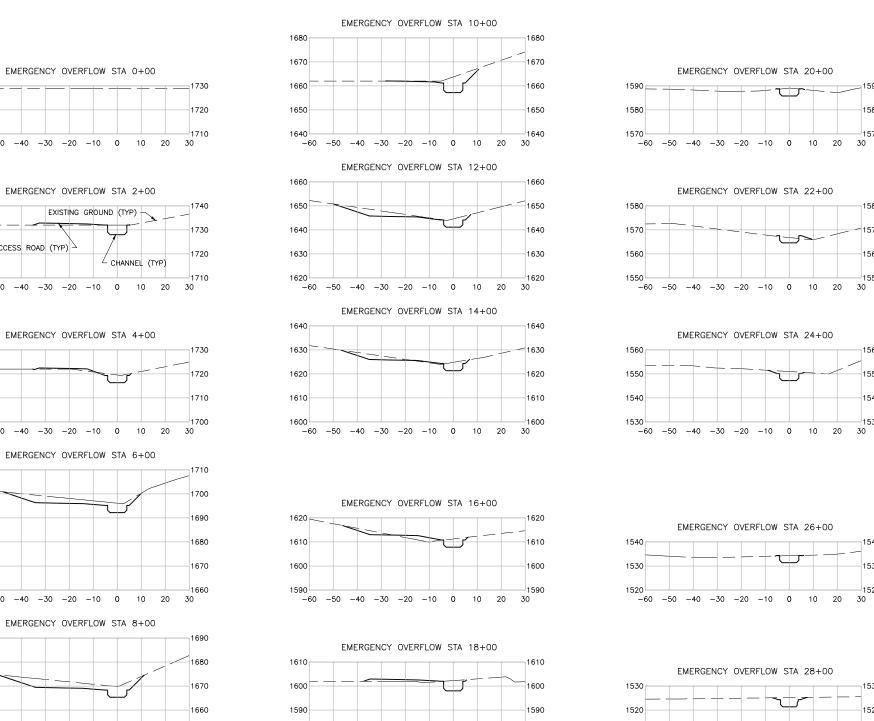
NCHES

		PLANT DRAWING NUMBER:	
		FLOTATION TAILINGS BASIN SOUTH DAM YEAR 20 LAYOUT	
AN, Y DIRECT DULY ER : OF	DRAWN: CAD	POLY MET MINING, INC. NORTHMET PROJECT HOYT LAKES, MINNESOTA	
ADUE_	CHECKED: TJR BARR PROJECT NO.: 23/69-0C29	BARR ENGINEERING COMP/ 4700 WEST 77TH STREET MINNEAPOLIS, MN. Ph: 1-800-632-2277	ANY
951	SCALE: AS SHOWN	DWG. NO. FTB-013	V

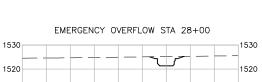


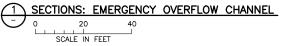

NOTES:

1. DAM DIMENSIONS MAY CHANGE WITH EVALUATION OF FUTURE PERFORMANCE DATA.


2. HIGH TENSION POWER LINES SHOWN FOR REFERENCE. TOWER FOUNDATIONS ARE LOCATED OUTSIDE OF THE AREA COVERED BY THE BUTTRESS.

1       10/14/11       FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 1 - ATTACHMENT A       ISSUED       VERSION       DATE       I HEREBY CERTIFY THAT THIS PLAN, SPECARCATION, OR REPORT WAS       DATE       I HEREBY CERTIFY THAT THIS PLAN, SPECARCATION, OR REPORT WAS       DATE       I HEREBY CERTIFY THAT THIS PLAN, SPECARCATION, OR REPORT WAS       DATE       I HEREBY CERTIFY THAT THIS PLAN, SPECARCATION, OR REPORT WAS       DATE       I HEREBY CERTIFY THAT THIS PLAN, SPECARCATION, OR REPORT WAS       DATE       DATE       NORTH         3       04/12/13       FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 3 - ATTACHMENT A       FOR PERMITTING       6       5/20/15       DATE       DATE	
100       200         HORZ. SCALE IN FEET         PLANT DRAWING NUMBER:         FLOTATION TAIL         SOUTH         TO/14/11       FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 1 - ATTACHMENT A         10/14/11       FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 2 - ATTACHMENT A         12       12/207/12         13       04/12/13         14/12/13       FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 3 - ATTACHMENT A	
VER NO       DATE       DESCRIPTION       ISSUE STATUS       POLY MI         1       10/14/11       FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 1 - ATTACHMENT A       ISSUE VERSION       DATE       I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR WE OR UNDER MY DIRCT       INC.       POLY MI       NORTH         2       12/07/12       FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 2 - ATTACHMENT A       FOR PERMITTING       6       5/20/15       SUPERVISION AND TAI TAI AN ADDULY UCENSED PROFERSIONAL ENGINEER       DRAWN:       CAD       NORTH	
1       10/14/11       FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 1 - ATTACHMENT A       ISSUED       VERSION       DATE       I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS       MANAGEMENT PLAN - VERSION 2 - ATTACHMENT A       NORTH         2       12/07/12       FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 2 - ATTACHMENT A       FOR PERMITTING       6       5/20/15       SUPERVISION AND TAI TAI AN ADULY LUCENSED PROFESSIONAL ENGINEER       CAD       NORTH	DAM
2       12/07/12       FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 2 - ATTACHMENT A       FOR       SPECIARCD FW O REPORT WAS       PREPAREMENT PLAN - VERSION 3 - ATTACHMENT A       NOLVIT         3       04/12/13       FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 3 - ATTACHMENT A       FOR       6       5/20/15       SUPERVISION AND TAI I AM A DULY LUCKNEED FOR MOLINEER       CAD       MININGE       HOYT LAI	DAM
	DAM SECTIONS
ININESOTA	DAM
5 03/03/15 ELOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A	DAM SECTIONS IT MINING, INC. MET PROJECT IES, MINNESOTA
CUNSIRUCTION SIGNATURE Thomas J. Rache 23/69-0C29	DAM SECTIONS T. MINING, INC. MET PROJECT (ES, MINNESOTA ARR ENGINEERING COMPANY 700 WEST 77TH STREET
NOT APPROVED FOR CONSTRUCTION     Date 5/20/15     LiceNse# 20951     SCALE:     DWG. NO.       AS SHOWN     FTB-014	DAM SECTIONS T MINING, INC. MET PROJECT (ES, MINNESOTA ARR ENGINEERING COMPANY

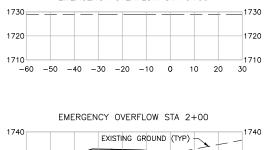

					1760	
H ROX.						
(					1720	
$\nearrow$						
					1680	
					1640	
					1600	
					1560	
					1520	
	10		10-	00		
	10-	+00	18-	-00		

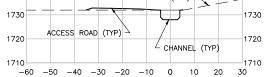



ľ	NO DATE	DESCRIPTION		ISSUE STATUS		
	1 10/14	1 FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 1 - ATTACHMENT A	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
	2 12/07,	2 FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 2 - ATTACHMENT A				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRE
	3 04/12	3 FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 3 - ATTACHMENT A	FOR	6		SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER
	4 11/25,	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 4 - ATTACHMENT A				UNDER THE LAWS OF THE STATE OF MINNESOTA.
	5 03/03	5 FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A				1
	6 5/20/	ISSUED FOR PERMIT TO MINE APPLICATION	FOR	-		PRINTED NAME THOMAS J. RADUE
						SIGNATURE Thomas J. Rache
			NOT APPROVED FOR	FOR CONSTRUCTION		DATE 5/20/15 LICENSE# 20951

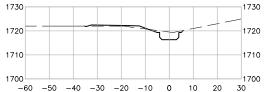




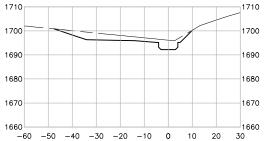


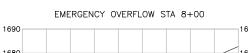



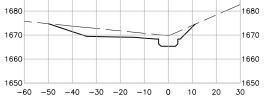

	1590 1580 —60	-50 -40 -30 -20 -10 0 10 20 30 151	0	-30 -20 -10	0 0 10	1520 1510 20 30		
		1     SECTIONS: EMERGENCY OVER       0     20     40       0     20     40       SCALE IN FEET     SCALE IN FEET	FLOW CHANNE	<u>.</u>				PLANT DRAWING NUMBER: FLOTATION TAILINGS BASIN EMERGENCY OVERFLOW CHANNEL SECTIONS
VER NO	DATE	DESCRIPTION		SSUE STATUS				POLY MET MINING, INC.
1	10/14/11	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 1 - ATTACHMENT A	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.		
2	12/07/12	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 2 - ATTACHMENT A				I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY	DRAWN:	
3	04/12/13	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 3 - ATTACHMENT A	FOR PERMITTING	6	5/20/15	LICENSED PROFESSIONAL ENGINEER	CAD	
<u> </u>	11/25/14	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 4 - ATTACHMENT A				UNDER THE LAWS OF THE STATE OF MINNESOTA.	CHECKED:	BARR ENGINEERING COMPANY
<u> </u>	03/03/15	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A	500				TJR	4700 WEST 77TH STREET
6	5/20/15	ISSUED FOR PERMIT TO MINE APPLICATION	FOR CONSTRUCTION	-	-	PRINTED NAME THOMAS J. RADUE SIGNATURE Thomas J. Radue	BARR PROJECT NO.: 23/69-0C29	BARR MINNEAPOLIS, MN. Ph: 1-800-632-2277
			NOT APPROVED FOR	CONSTRUCTION		DATE <u>5/20/15</u> LICENSE# <u>20951</u>	SCALE: AS SHOWN	DWG. NO. FTB-016


___1590

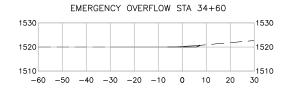
-1540



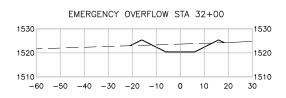



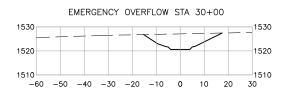


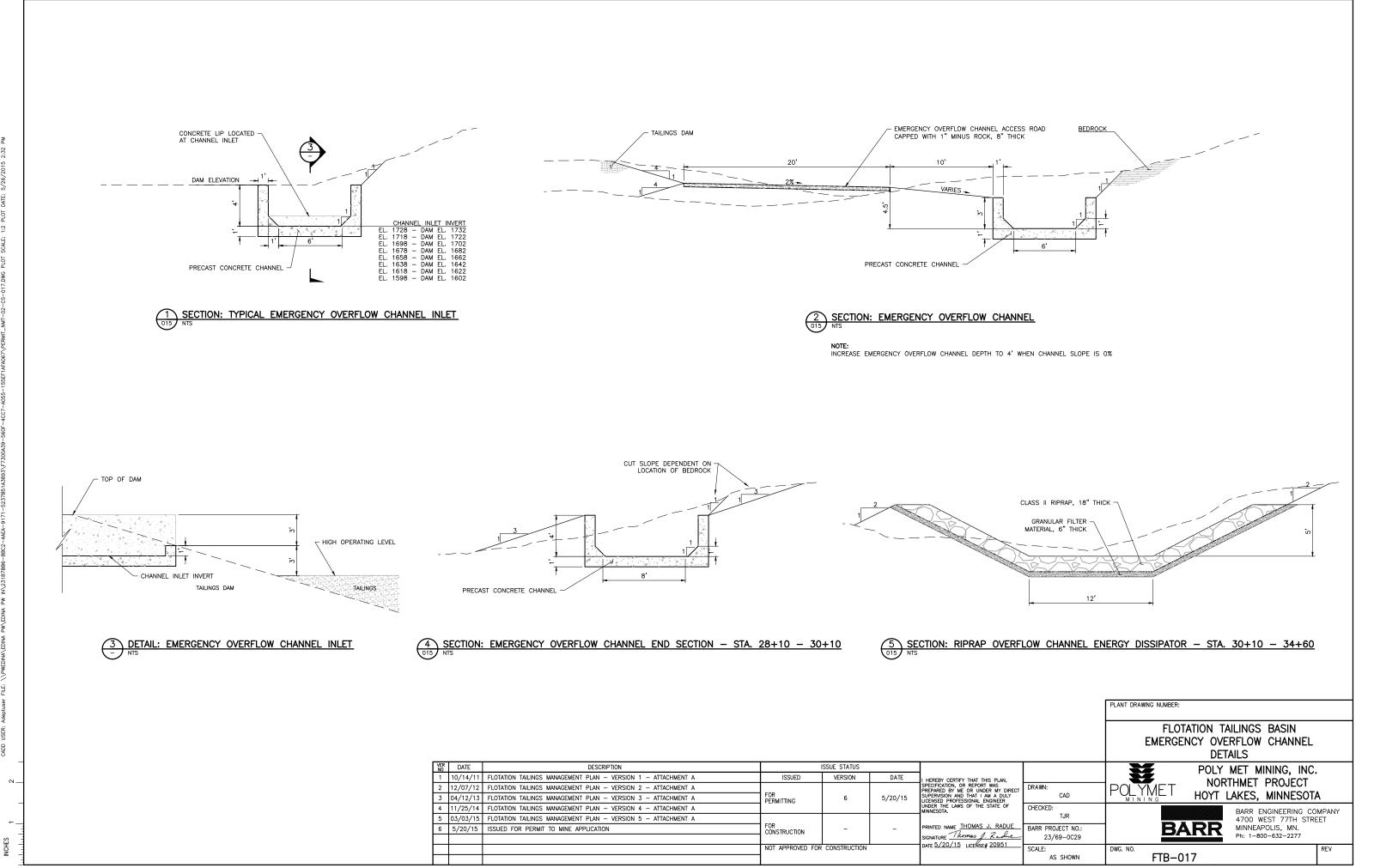



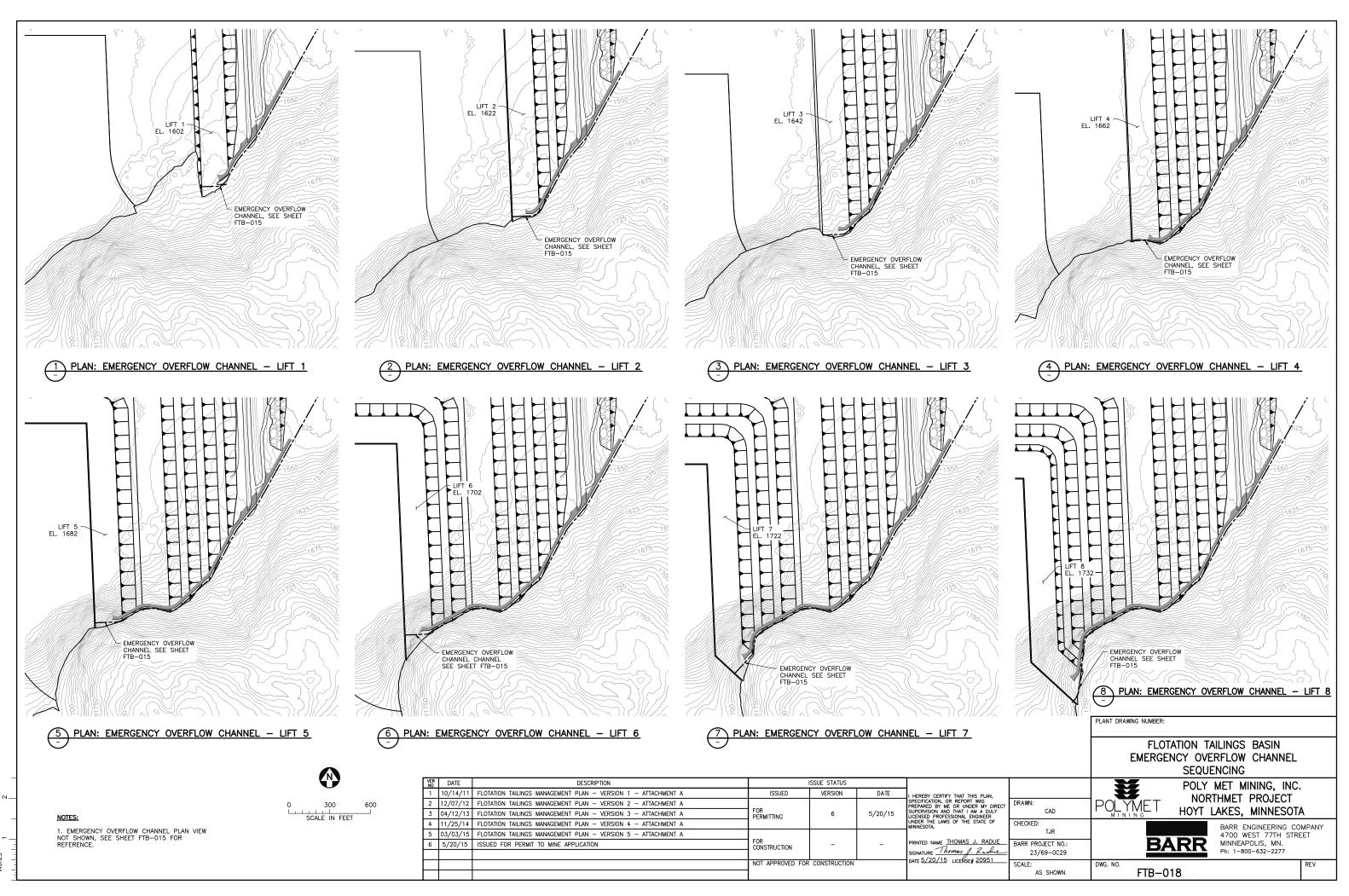


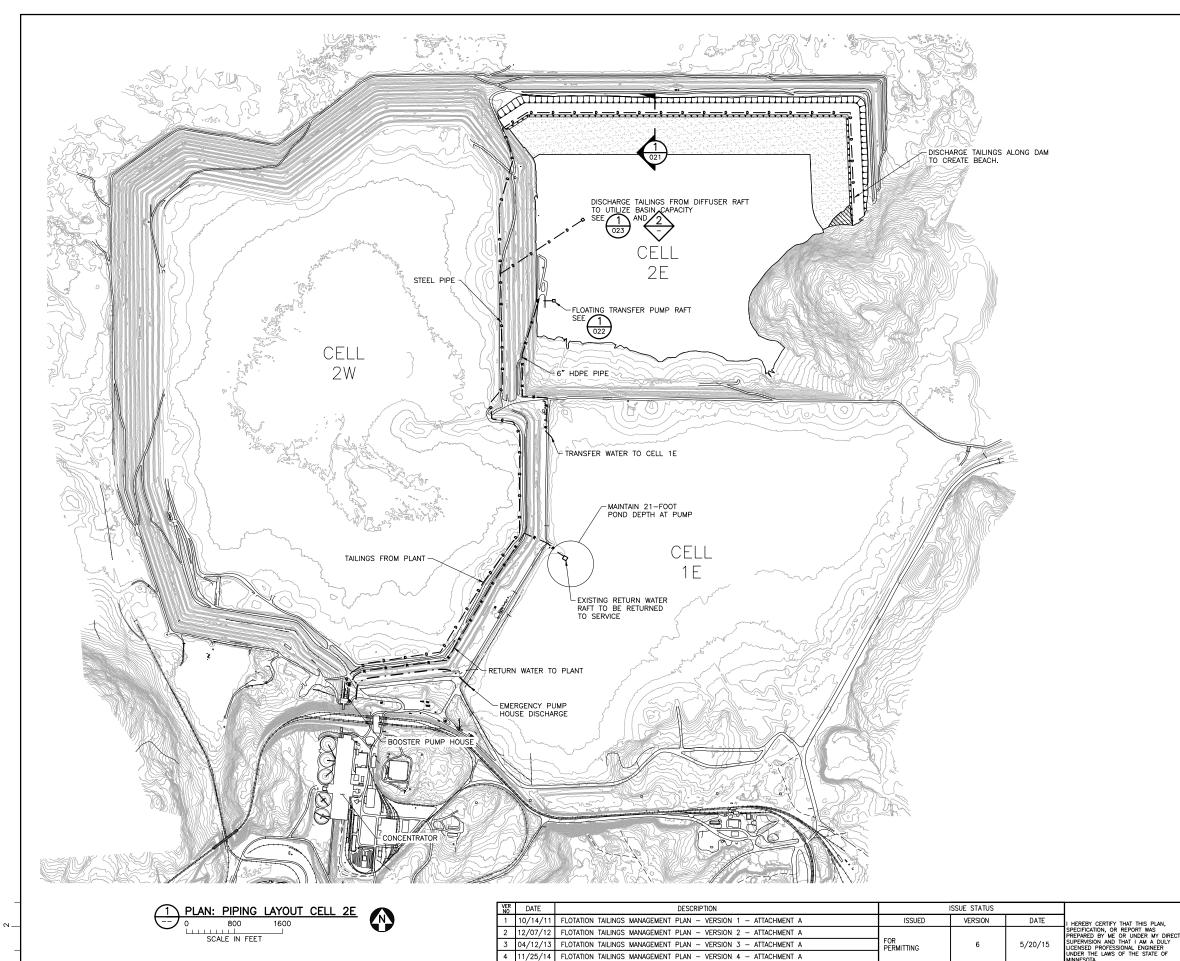






Ν.



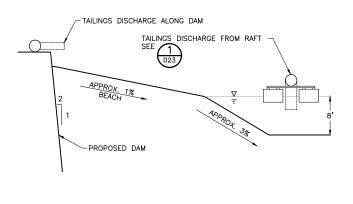


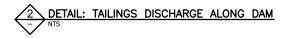






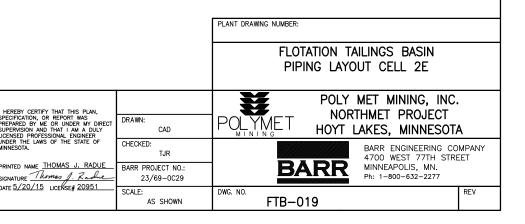


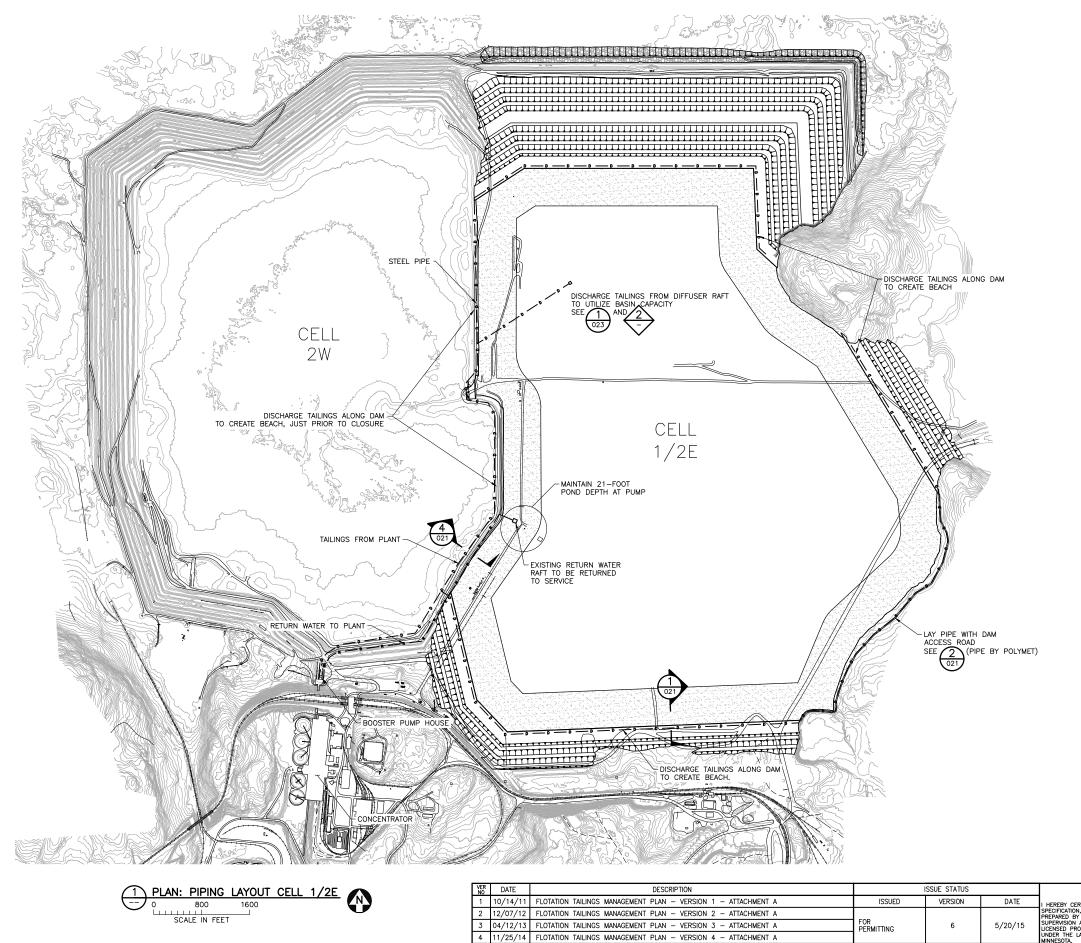


5 03/03/15 FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A


FOR CONSTRUCTION

NOT APPROVED FOR CONSTRUCTION

6 5/20/15 ISSUED FOR PERMIT TO MINE APPLICATION


ADD






#### NOTES:

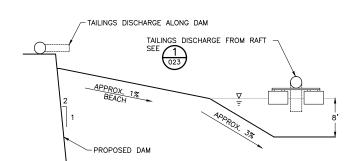
- 1. CONTOURS DO NOT REFLECT BORROW REMOVAL.
- 2. PIPELINE LOCATIONS ARE PRELIMINARY.

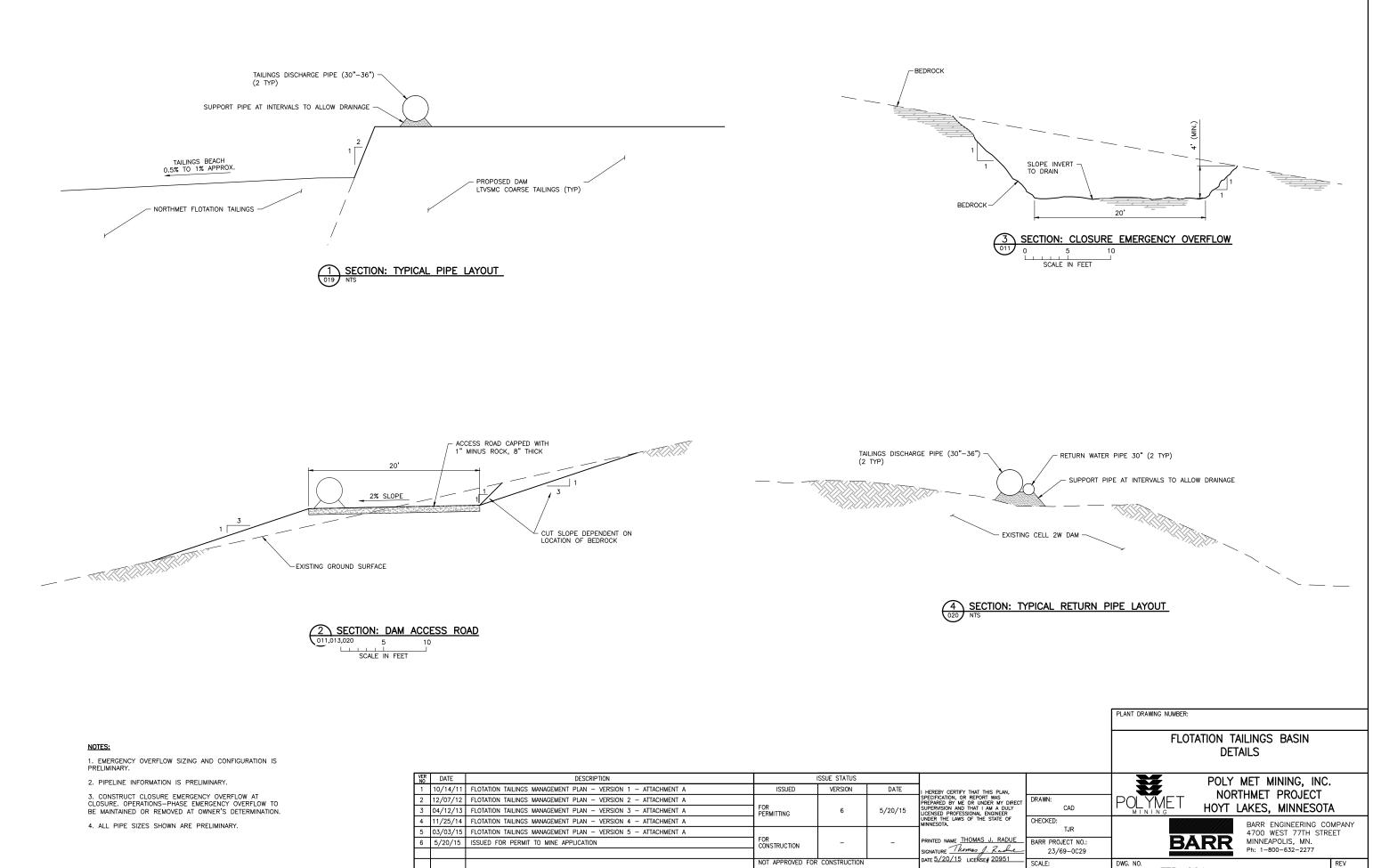




1 10/14/1	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 1 - ATTACHMENT A	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
2 12/07/1	PLOTATION TAILINGS MANAGEMENT PLAN - VERSION 2 - ATTACHMENT A				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIREC
3 04/12/1	5 FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 3 - ATTACHMENT A	FOR	6	5/20/15	SUPERVISION AND THAT I AM A DULY
4 11/25/1·	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 4 - ATTACHMENT A				UNDER THE LAWS OF THE STATE OF MINNESOTA.
5 03/03/1	5 FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A				
5 5/20/15	ISSUED FOR PERMIT TO MINE APPLICATION		-	-	PRINTED NAME THOMAS J. RADUE
					SIGNATURE Thomas J. Radue DATE 5/20/15 LICENSE# 20951
		NOT APPROVED FOR	CONSTRUCTION		DATE 3/20/13 LICENSE# 20931

INCHES


		PLANT DRAWING NUMBER:			
		FLOTATION TAILINGS BASIN PIPING LAYOUT CELL 1/2E			
AN, 7 DIRECT DULY ER 3 OF	DRAWN: CAD	POLY MET MINING, INC. POLYMET HOYT LAKES, MINNESOTA			
ADUE	CHECKED: TJR BARR PROJECT NO.: 23/69-0C29	BARR ENGINEERING COM 4700 WEST 77TH STREE MINNEAPOLIS, MN. Ph: 1-800-632-2277			
51	SCALE: AS SHOWN	DWG. NO. FTB-020	REV		


1. PIPELINE LOCATIONS ARE PRELIMINARY.

NOTES:



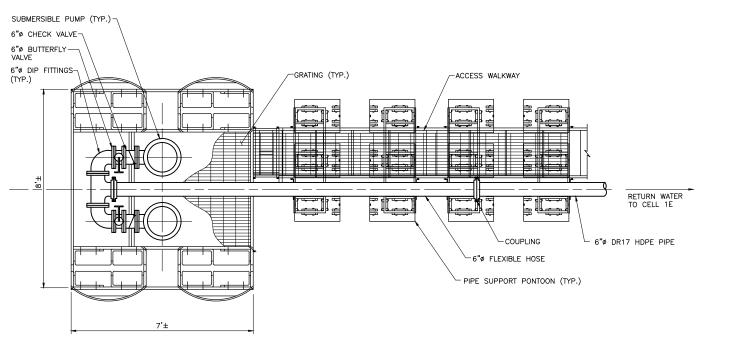






VER NO	DATE	DESCRIPTION		ISSUE STATUS		
1	10/14/11	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 1 - ATTACHMENT A	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
2	12/07/12	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 2 - ATTACHMENT A				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIF
3	04/12/13	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 3 - ATTACHMENT A	FOR	6	5/20/15	SUPERVISION AND THAT I AM A DULY
4	11/25/14	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 4 - ATTACHMENT A				UNDER THE LAWS OF THE STATE OF MINNESOTA.
5	03/03/15	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A				
6	5/20/15	ISSUED FOR PERMIT TO MINE APPLICATION	FOR CONSTRUCTION	-		PRINTED NAME THOMAS J. RADU
						SIGNATURE Thomas J. Radu
			NOT APPROVED FOR	CONSTRUCTION		DATE 5/20/15 LICENSE# 20951

FTB-021


AS SHOWN

 12° FLEXIEL HOSE
 12° DR17 HOPE RETURN WATER PIPE

 FLEXIENCE PLANP
 ACCESS WALWAY

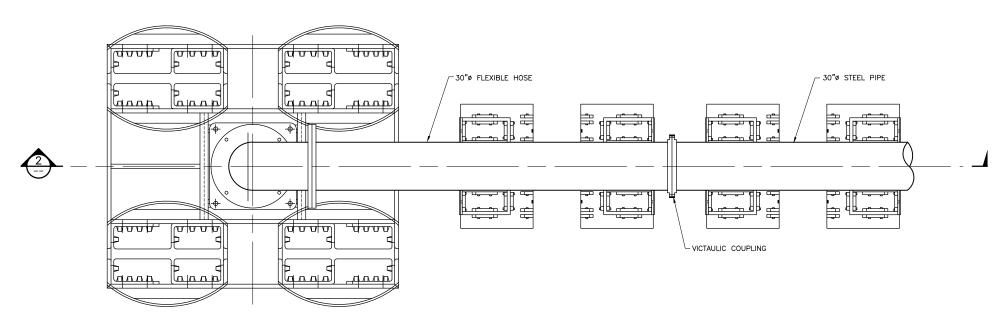
 SUBMERSIELE PLANP
 CONTROL OF ACTION

 VIENTION
 CONTROL OF ACTION

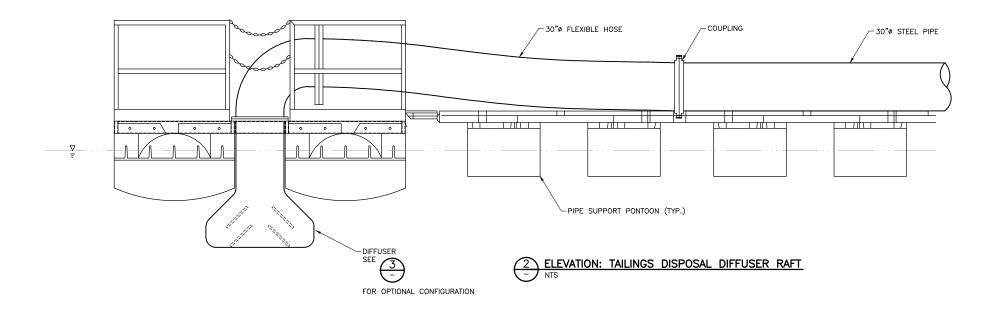


SCALE IN FEET

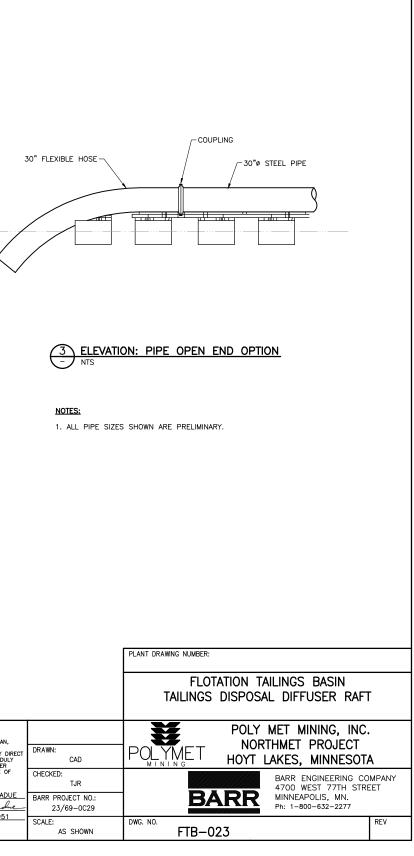


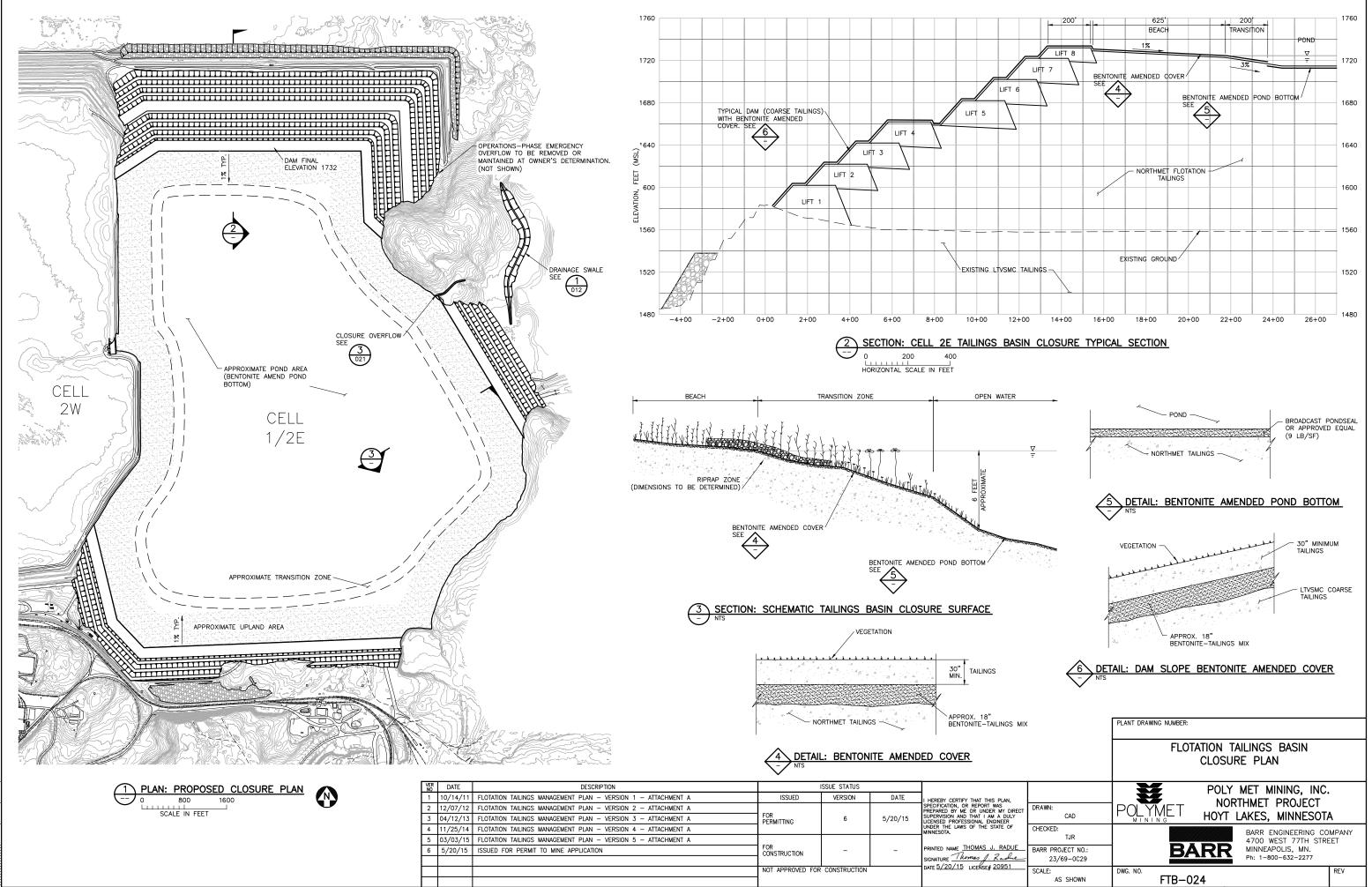

-						
VE	DATE	DESCRIPTION		ISSUE STATUS		
1	10/14/11	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 1 - ATTACHMENT A	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
2	12/07/12	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 2 - ATTACHMENT A				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DI
3	04/12/13	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 3 - ATTACHMENT A		6		SUPERVISION AND THAT I AM A DUL' LICENSED PROFESSIONAL ENGINEER
4	11/25/14	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 4 - ATTACHMENT A				UNDER THE LAWS OF THE STATE OF MINNESOTA.
5	03/03/15	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A				
6	5/20/15	ISSUED FOR PERMIT TO MINE APPLICATION		-		PRINTED NAME THOMAS J. RADU
						SIGNATURE Thomas J. Radu
			NOT APPROVED FOR	CONSTRUCTION		DATE 5/20/15 LICENSE# 20951

		FLOTATION TAILINGS BASIN TRANSFER PUMP VENT	
N, DIRECT DULY R OF	DRAWN: CAD	POLY MET MINING, INC. NORTHMET PROJECT HOYT LAKES, MINNESOT/	
ADUE_	CHECKED: TJR BARR PROJECT NO.: 23/69-0C29	BARR ENGINEERING CC 4700 WEST 77TH STRE MINNEAPOLIS, MN. Ph: 1-800-632-2277	
51	SCALE: AS SHOWN	FTB-022	REV


PLANT DRAWING NUMBER:

NOTES: 1. ALL PIPE SIZES SHOWN ARE PRELIMINARY.


FOR PIPE ALIGNMENT, SEE 015 TO CELL 1E ANCHOR BLOCK




1 PLAN: TAILINGS DISPOSAL DIFFUSER RAFT



VER NO	DATE	DESCRIPTION		ISSUE STATUS		
1	10/14/11	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 1 - ATTACHMENT A	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
2	12/07/12	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 2 - ATTACHMENT A				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY D
3	04/12/13	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 3 - ATTACHMENT A	FOR PERMITTING	6	5/20/15	SUPERVISION AND THAT I AM A DUI LICENSED PROFESSIONAL ENGINEER
4	11/25/14	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 4 - ATTACHMENT A				UNDER THE LAWS OF THE STATE OF MINNESOTA.
5	03/03/15	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A				
6	5/20/15	ISSUED FOR PERMIT TO MINE APPLICATION	FOR CONSTRUCTION	-	-	PRINTED NAME THOMAS J. RAD
						SIGNATURE Thomas J. Rad
			NOT APPROVED FOR	CONSTRUCTION		DATE <u>5/20/15</u> LICENSE# <u>20951</u>
			]			





INCHES

Appendix B

Chemical Additives Safety Data Sheets

# Appendix B Chemical Additives Safety Data Sheets

# July 2016

# Contents

SIPX (Sodium Isopropyl Xanthate)	B-1
PAX (Potassium Amyl Xanthate)	В-6
MIBC (Methyl Isobutyl Carbinol, 100% Solution)	B-13
F-160-05 Frother	B-26
F-160-13 Frother	B-32
NALCO DVS4U038	B-38
Copper Sulfate Pentahydrate	B-48
MagnaFloc 10	B-58
MaganaFloc 455	B-68
Neo NS 6655	B-81
NALCO 83949	B-87
NALCO 9877 PULV	B-96
CMC (Carboxyl Methyl Cellulose) (Tennapress PE26)	B-107
Lime Slurry	B-111

00002610			SAFETY DATA S		Page 1
CHARLES TENR & Company/C	IANT iompagnie	div of CHARLES	ES TENNANT & CO/C TENNANT & CO (CAI N RD., TORONTO, O M9M 2G8	NÁDA) LTD	CACD
PRODUCT: SODIUM ISO	PROP	YL XANTHATE			
		(		<b>`</b>	
		Q		)	
Section 0	01: CHE		CT AND COMPA	NY IDENTIFICATION	
MANUFACTURERS		CHARLES TEN 34 CLAYSON I WESTON, ON M9M 2G8	NNANT & COMPANY ROAD TARIO		
PRODUCT NAME CHEMICAL NAME: MATERIAL USE: CHEMICAL FAMILY: CHEMICAL FORMULA: MOLECULAR WEIGHT:		ORE PROCES	ROPYL XANTHATE I 3 "HAZARDOUS ING SING. RBONIC ACID DITHI		SOPROPYL XANTHATE.
ROUTE OF ENTRY: SKIN CONTACT: SKIN ABSORPTION: EYE		DUST OR VAF NOT AVAILAB DUST OR VAF	PORS MAY BE IRRITA LE. PORS MAY IRRITATE	ATING. . CAUSES EYE BURNS.	
INHALATION INHALATION CHRONIC: INGESTION:		AND CHEST D NOT AVAILAB CAN CAUSE G	DISCOMFORT. LE. GASTRO-INTESTINAL	_ IRRITATION, NAUSEA, \	
EFFECTS OF ACUTE EXPOSU EFFECTS OF CHRONIC EXPC	JRE: SURE:	REFER TO RC	AN CAUSE UNCONS DUTE OF ENTRY. DUTE OF ENTRY.	CIOUSNESS.	
Sectio	on 03: C	COMPOSITION/I	NFORMATION OF		
Hazardous Ingredients	%	Exposure Limit	C.A.S.#	LD/50, Route, Species	LC/50 Route, Species
SODIUM ISOPROPYL XANTHATE	>84	NOT AVAILABLE	140-93-2	ORAL RAT 250-2000mg/ Kg	NOT AVAILABLE
SODIUM HYDROXIDE	1.5	2 mg/m3 (CEILING) ACGIH	1310-73-2	140 - 340 MG/KG RAT ORAL	NOT AVAILABLE
ISOPROPANOL	0.5-1.0	400 ppm	67-63-0	ORAL RAT 5045 mg/kg DERMAL RABBIT 8.00 ml/kg	RAT 12000 ppm/8h
SODIUM SULFIDE	1				
	Se	ection 04: FIRST	AID MEASURES		
SKIN:		UNTIL CHEMI	CAL IS REMOVED W	ITH SOAP AND WATER. I	EAS FOR 20 MINUTES OR DO NOT USE SOLVENTS.
EYE:		FLUSH CONTI APART TO EN	SURE IRRIGATION (	USE. TER FOR 15 MINUTES. F DF ALL EYE TISSUE. IF IF	
GET MEDICAL ATTENTION. INHALATION: REMOVE TO FRESH AIR. GIVE ARTIFICIAL RESPIRATION, OR CARDIOPULMONARY RESUSCITATION (CPR) IF REQUIRED. IF BREATHING IS DIFFICULT, GIVE OXYGEN.					
INGESTION: KEEP WARM AND QUIÉT, AND OBTAIN MEDICAL ATTENTION. IF CONSCIOUS:. GIVE A MINIMUM OF 500 ml WATER. INDUCE VOMITING. HAVE VICTIM RINSE MOUTH THOROUGHLY WITH WATER. IF VOMITING OCCURS NATURALLY, HAVE VICTIM LEAN FORWARD TO REDUCE RISK OF ASPIRATION. DO NOT GIVE AN UNCONSCIOUS PERSON ANYTHING BY MOUTH. SEEK IMMEDIATE					
NOTES TO PHYSICIAN:		MEDICAL ATT THERE IS NO	ENTION. SPECIFIC ANTIDOTE THE CONTROL OF		SURE SHOULD BE

# PRODUCT: SODIUM ISOPROPYL XANTHATE

## Section 04: FIRST AID MEASURES

Section 04: FIRST AID MEASURES					
GENERAL ADVICE:	CONSULT A PHYSICIAN AND/OR THE NEAREST POISON CONTROL CENTRE FOR ALL BUT MINOR INSTANCES OF INHALATION OR SKIN CONTACT. AVOID HIGH LEVELS OF DUST, USE DUST MASK OR RESPIRATOR WHEN NECESSARY. PRECAUTIONS SHOULD ALWAYS BE TAKEN TO AVOID SKIN/EYE CONTACT WITH ANY CHEMICAL SUBSTANCE.				
Section	05: FIRE FIGHTING MEASURES				
MEANS OF EXTINCTION:	SOLID XANTHATES WHEN EXPOSED TO HEAT AND/OR MOISTURE CAUSES DECOMPOSITION, AND VAPOURS ARE VERY FLAMMABLE AND SPONTANEOUS COMBUSTION CAN RESULT. CARBON DIOXIDE. DRY CHEMICAL. WATER. SELF-CONTAINED, POSITIVE PRESSURE BREATHING APPARATUS AND PROPER PROTECTIVE CLOTHING SHOULD BE WORN IN FIGHTING FIRES INVOLVING ANY CHEMICAL SUBSTANCE. HEAT WILL DECOMPOSE BOTH SOLID AND LIQUID XANTHATES YIELDING CARBON DISULPHIDE WHICH IS EXTREMELY FLAMMABLE				
AUTO IGNITION TEMPERATURE °C: T.D.G. FLAMMABLE CLASS: UPPER EXPLOSION LIMIT: LOWER EXPLOSION LIMIT: HAZARDOUS COMBUSTION PRODUCTS EXPLOSION DATA:	CLASS 4.2, SELF-HEATING SUBSTANCES.				
SENSITIVITY TO STATIC DISCHARGE: SENSITIVITY TO IMPACT: RATE OF BURNING: EXPLOSIVE POWER:	NOT AVAILABLE.				
Section 06:	ACCIDENTAL RELEASE MEASURES				
CLEAN-UP PROCEDURES, LEAK/SPILL:	IF IN THE LIQUID STATE:. STOP SPILL AT SOURCE. CONTAIN ANY SPILLED MATERIAL TO PREVENT DISCHARGE INTO THE ENVIRONMENT. ELIMINATE ALL SOURCES OF IGNITION. PERSONS NOT WEARING PROTECTIVE EQUIPMENT SHOULD BE EXCLUDED FROM THE AREA. ABSORB WITH INERT DRY MATERIAL. PUT INTO AN APPROVED METAL SALVAGE DRUM FOR DISPOSAL. IF IN THE SOLID STATE:. ELIMINATE ALL SOURCES OF IGNITION. RESTRICT ACCESS TO AREA UNTIL COMPLETION OF CLEAN-UP. ENSURE CLEAN-UP IS CONDUCTED BY TRAINED PERSONNEL ONLY. DO NOT TOUCH SPILLED MATERIAL. DO NOT USE WATER ON SPILLED MATERIAL AS HEAT WILL BE GENERATED. PUT SPILLED MATERIAL INTO APPROVED SALVAGE DRUMS FOR DISPOSAL. FLUSH CLEANED AREA WITH WATER, MAKING SURE NO WATER ENTERS XANTHATE CONTAINERS.				
Section	07: HANDLING AND STORAGE				
HANDLING PROCEDURES AND	STORE SOLID XANTHATES UNDER COOL, DARK, DRY CONDITIONS. LIQUID PRODUCTS MUST BE KEPT COOL AND USED AS QUICKLY AS POSSIBLE. AVOID ALL SKIN CONTACT. AVOID CONTACT WITH EYES. AVOID BREATHING VAPOURS. EQUIPMENT SHOULD BE GROUNDED TO AVOID STATIC DISCHARGE. KEEP AWAY FROM HEAT, SPARKS, AND OPEN FLAME. USE NON-SPARKING TOOLS				
SPECIAL SHIPPING INSTRUCTIONS	AND DO NOT SMOKE. USE PRECAUTION WHEN HANDLING OR SHIPPING ANY CHEMICAL SUBSTANCE. PROTECT AGAINST PHYSICAL DAMAGE.				
Section 08: EXPC	SURE CONTROLS/PERSONAL PROTECTION				
RESPIRATOR/TYPE:	WEAR IMPERVIOUS GLOVES (E.G. NEOPRENE, RUBBER). IF RESPIRATORY PROTECTION IS REQUIRED, INSTITUTE A COMPLETE RESPIRATORY PROTECTION PROGRAM INCLUDING SELECTION, FIT TESTING, TRAINING, MAINTENANCE AND INSPECTION. REFER TO THE CAS STANDARD 294.4-M1982 "SELECTION, CARE, AND USE OF RESPIRATORS" WHICH IS AVAILABLE FROM CANADIAN STANDARDS ASSOCIATION, REXDALE ONTARIO, M9W 1R3. IF VAPOURS ARE PRESENT, USE A NIOSH OR MSHA APPROVED RESPIRATOR FOR ACIDIC VAPOURS OR A SELF CONTAINED BREATHING APPARATUS. SEE M.S.D.S FOR MORE DETAIL ON THIS SECTION. FACE SHIELD. SAFETY GLASSES WITH SIDE-SHIELDS.				
FOOTWEAR/TYPE: CLOTHING/TYPE: OTHER/TYPE:	SAFETY BOOTS. WEAR ADEQUATE PROTECTIVE CLOTHES. AN EYE WASH STATION AND SAFETY SHOWER SHOULD BE NEAR THE WORK AREA.				

#### 00002610

## MATERIAL SAFETY DATA SHEET

## **PRODUCT: SODIUM ISOPROPYL XANTHATE**

## Section 08: EXPOSURE CONTROLS/PERSONAL PROTECTION

ENGINEERING CONTROLS:.....

..... EXPLOSION PROOF MECHANICAL VENTILATION TO LIMIT VAPOUR CONCENTRATION BELOW T.L.V.

### Section 09: PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL STATE: ODOUR/APPEARANCE: ODOUR THRESHOLD: VAPOUR PRESSURE: REL. VAPOUR DENSITY	NOT AVAILABLE. NOT APPLICABLE.
BY VOLUME. BY WEIGHT	< 20.
EVAPORATION RATE: BOILING POINT °C: FREEZING POINT °C: pH: SPECIFIC GRAVITY: SOLUBILITY IN WATER (20 °C): COEFFICIENT WATER/OIL DIST:	NOT APPLICABLE. M.P. 150 - 250 (decomposes). >182 Deg C. 10% H2O 13 +/- 1. 1.263. SOLUBLE.

#### Section 10: STABILITY AND REACTIVITY

## Section 11: TOXICOLOGICAL INFORMATION

	NOT AVAILABLE. SEE SECTION 3, HAZARDOUS INGREDIENTS. NOT AVAILABLE. SEE SECTION 3, HAZARDOUS INGREDIENTS. TLV FOR DUST: 2 mg/m3; TLV FOR VAPOURS FROM DECOMP.: 31 mg/m3 (see ACGIH).
IRRITANCY OF MATERIAL: SENSITIZING CAPABILITY OF MATERIAL: CARCINOGENICITY OF MATERIAL:	IRRITÁNT. REFER TO ROUTE OF ENTRY, SECTION 3. NOT AVAILABLE.
REPRODUCTIVE EFFECTS: REPRODUCTIVE TOXICITY: MUTAGENICITY:	NOT AVAILABLE.
TERATOGENICITY & EMBRYOTOXICITY: SYNERGISTIC MATERIALS: MEDICAL CONDITIONS AGGRAVATED BY OVEREXPOSURE:	
OVEREAFOSORE.	OR ANY OTHER CHEMICAL SHOULD BE AVOIDED.

#### Section 12: ECOLOGICAL INFORMATION

BIODEGRADABILITY	
ENVIRONMENTAL	

...... NOT AVAILABLE. NOT AVAILABLE. DO NOT ALLOW TO ENTER SOIL, WATERWAYS OR WASTE WATER. THIS PRODUCT MAY BE HARMFUL TO AQUATIC LIFE. .

### Section 13: DISPOSAL CONSIDERATIONS

WASTE DISPOSAL, METHOD A	ND
EQUIPMENT:	

ALL WASTE FROM THIS PRODUCT INCLUDING ALL EMPTY CONTAINERS MUST BE DISPOSED OF IN ACCORDANCE WITH MUNICIPAL, PROVINCIAL AND FEDERAL REGULATIONS.

### Section 14: TRANSPORT INFORMATION

T.D.G. CLASSIFICATION:	CLASS 4.2 UN 3342 P.G. II.
T.D.G. SHIPPING NAME:	XANTHATES.
T.D.G. SHIPPING INFORMATION:	THE DANGEROUS GOODS ARE DESCRIBED IN ACCORDANCE WITH THE UN
	RECOMMENDATIONS.

**MATERIAL SAFETY DATA SHEET** 

## **PRODUCT: SODIUM ISOPROPYL XANTHATE**

## Section 15: REGULATORY INFORMATION

WHMIS CLASSIFICATION: CPR COMPLIANCE	
Section	on 16: OTHER INFORMATION
MANUFACTURERS MSDS DATE: MSDS REVISION DATE: NOTES:	JULY 24, 2013.

Maximizing the Value of Flotation Chemicals Technology	n Che	E micals Technology	Flottec SIPX Collector	scto	Ч Х
Flottec, LLC 338 West Main Street			WAKINING: BEFORE HANDLING YOU MUSI READ AND UNDERSIAND THE MATERIAL SAFETY DATA SHEET FOR THIS PRODUCT. DO NOT DISPOSE OF THIS MATERIAL NOR THE EMPTY CONTAINER IN THE ENVIRONMENT. AVOID CONTACT WITH SKIN AND EYES, MAY CAUSE IRRITATION. WEAR CHEMICAL GOGGLES.	U MUSI READ AND I THIS PRODUCT. DO TAINER IN THE ENVI CAUSE IRRITATION.	understand the Not dispose of Ronment. Avoid . Wear chemical
Boonton, New Jersey, USA 07005 TEL: +1.973.588.4717 • FAX: 1.973.588.4719	05 973.5	88.4719	HING V FACE UGHLY	VAPOR. USE ADEQUATE V SHIELD, LONG SLEEVE AFTER HANDLING. DO	TE VENTILATION. EVE SHIRT AND DO NOT WEAR
<b>PROPER SHIPPING NAME:</b>			CONTAMINATED CLOTHING.		
XANTHATES			FIRST AID: IF INHALED, REMOVE PERSON TO FRESH AIR. IN CASE OF CONTACT IMMEDIATELY FILISH EVES WITH DIFNTY OF WATER FOR AT	PERSON TO FRESH	AIR. IN CASE OF F WATER FOR AT
TECHNICAL NAME: SODIUM ISOPROPYL XANTHATE			LEAST 15 MINUTES. CALL A PHYSICIAN. WASH EXPOSED SKIN AREAS WITH SOAPY WATER. LAUNDER CONTAMINATED CLOTHING BEFORE REUSE.	N. WASH EXPOSED S	SKIN AREAS WITH ORE REUSE.
ID No./HAZARD CLASS/PACKING GROUP/LABELS:	G GR(	DUP/LABELS: TIBLE	STORAGE: HEATING OR OVEREXPOSURE TO MOISTURE OF XANTHATES OR HEATING OR AGING OF XANTHATE SOLUTIONS	COSURE TO MOIS	LUTIONS CAUSES
			SOME DECOMPOSITION TO POISO	POISONOUS AND FLAMMABLE	IMABLE CARBON
HMIS RATINGS	I NG		DISULFIDE. STORAGE TANKS SHOULD HAVE CERTAIN DESIGN FEATURES FOR MAXIMUM SAFETY, AND THE VAPOR SPACE SHOULD BE FREE OF	D HAVE CERTAIN C VAPOR SPACE SHOU	design features uld be free of
Flottec SIPX Collector		КЕҮ		OXIDE, DRY CHEMI	CAL, OR FOAM TO
НЕАLTH	2	4 = Severe	EXTINGUISH FIRES. AS IN ANY FIRE, WEAR SELF-CONTA APPARATUS, POSITIVE PRESSURE, MSHA/NIOSH	AS IN ANY FIRE, WEAR SELF-CONTAINED BREATHING FIVE PRESSURE, MSHA/NIOSH (APPROVED OR	(APPROVED OR
FLAMMABILITY	2	3 = Serious	EQUIVALENT) AND FULL PROTECTIVE GEAR.	GEAR.	
REACTIVITY	2	2 = Moderate	SPILL CONTROL: SWEEP UP INTO CONTAINERS FOR DISPOSAL. FLUSH SPILL AREA WITH WATER. USE APPROPRIATE CONTAINMENT TO AVOID	CONTAINERS FOR ROPRIATE CONTAIN	UISPOSAL. FLUSH UMENT TO AVOID
<b>PERSONAL PROTECTION</b>		1 = Slight	ENVIRONMENTAL CONTAMINATION.		
See Material Safety Data Sheet		0 = Minimal	ATTENTION EMPTY CONTAINERS MAY CONTAIN PRODUCT	GROSS Wt.	lbs. or kgs.
ö			RESIDUE INCLUDING FLAMMABLE OR EXPLOSIVE VAPOR. DO NOT CUT, PUNCTURE	TARE Wt.	lbs. or kgs.
140-93-2 Carbonodithioic acid, O-Isopropyl ester, sodium salt 1310-73-2 Sodiium hydroxide	lsopropy	l ester, sodium salt	WARNINGS SHOULD BE OBERVED UNTIL WARNINGS SHOULD BE OBERVED UNTIL CONTAINER HAS BEEN THOROUGHLY CLEANED	NET Wt.	lbs. or kgs.
			OR DESTROYED, COMPLYING WITH LOCAL, STATE AND FEDERAL REGULATIONS.	LOT No.	Insert Here

Chemtrec: North America 1.800.424 9300, International +1.703.527.3887 IN CASE OF EMERGENGY CALL



## 1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME:	Flottec PAX Collector
SYNONYMS:	Potassium Amyl Xanthate, Potassium Isoamyl Xanthate
CHEMICAL FAMILY:	Alkyl xanthate salt
MOLECULAR FORMULA:	C6H12OS2K
MOLECULAR WEIGHT	203.4
MANUFACTURER:	Flottec, LLC • 338 West Main Street • Boonton, New Jersey 07005 • USA
PRODUCT INFORMATION:	Tel: +1.973.588.4717 • Fax: +1.973.588.4719 • Web Site: www.flottec.com
EMERGENCY PHONE:	CHEMTREC • North America: +1.800.424.9300 • International: +1.703.527.3887
ISSUE DATE:	February 29, 2012

# 2. COMPOSITION/INFORMATION ON INGREDIENTS

## **OSHA REGULATED COMPONENTS**

COMPONENT	CAS No.	% (w/w)	OSHA (PEL)	ACGIH (TLV)	Carcinogen
Potassium sulfide	1312-73-8	~ 1	Not established	Not established	( <b>3</b> )
Carbonodithioic acid, O-(3-methylbutyl) ester, potassium salt	1928-70-1	> 90	Not established	Not established	531
Potassium hydroxide	1310-58-3	0 - 1	2 mg/m ³ (Ceiling)	2 mg/m ³ (Ceiling)	2

# **3. HAZARDS IDENTIFICATION**

## EMERGENCY OVERVIEW

### APPEARANCE AND ODOR

Color:	Yellow-green
Appearance:	Pellets, flakes, or powder
Odor:	Disagreeable
	47400

### STATEMENT OF HAZARD

DANGER!

SELF-HEATING MATERIAL MAY BE SPONTANEOUSLY COMBUSTIBLE MAY FORM EXPLOSIVE DUST-AIR MIXTURES HARMFUL IF ABSORBED THROUGH SKIN DUST IRRITATING CAUSES EYE AND SKIN IRRITATION

## **POTENTIAL HEALTH EFFECTS**

### **EFFECTS / ROUTES OF EXPOSURE**

The acute oral (rat) LD50 and dermal (rabbit) LD50 values are estimated to be >1,000 mg/kg and >500 mg/kg, respectively. Skin or eye contact with solutions of this product may cause moderate skin and eye irritation. Airborne dust may cause significant eye, skin or respiratory tract irritation. Refer to Section 11 for toxicology information on the regulated components of this product.



## **4. FIRST AID MEASURES**

the same state and the same state and the	
INGESTION:	If swallowed, call a physician immediately. Only induce vomiting at the instruction of a physician. Never give anything by mouth to an unconscious person.
SKIN CONTACT:	Remove contaminated clothing and shoes without delay. Wash immediately with plenty of water. Do not reuse contaminated clothing without laundering. Get medical attention if pain or irritation persists after washing or if signs and symptoms of overexposure appear.
EYE CONTACT:	Rinse immediately with plenty of water for at least 15 minutes. Obtain medical attention immediately.
INHALATION:	Remove to fresh air. If breathing is difficult, give oxygen. Obtain medical advice if there are persistent symptoms.

# **5. FIREFIGHTING MEASURES.**

## **EXTINGUISHING MEDIA AND FIRE FIGHTING INSTRUCTIONS**

Extinguishing Media:	Use carbon dioxide, dry chemical or large quantities of water.
Protective Equipment:	Firefighters, and others exposed, wear self-contained breathing apparatus. Wear full firefighting protective clothing. See MSDS Section 8 (Exposure Controls/Personal Protection).
Special Hazards:	Solid xanthates are stable when kept cool and dry. Exposure to heat and moisture can cause decomposition to flammable and explosive vapor of carbon disulfide. Since xanthates decompose in solution, even at room temperature, fire and explosion hazards can develop with aging.

# 6. ACCIDENTAL RELEASE MEASURES

PERSONAL PRECAUTIONS:	Where exposure level is not known, wear approved, positive pressure, self-contained respirator. Where exposure level is known, wear approved respirator suitable for level of exposure. Refer to Section 8 (Exposure Controls/Personal Protection) for appropriate personal protective equipment.
METHODS FOR CLEAN UP:	Sweep up into containers for disposal. Flush spill area with water.
ENVIRONMENTAL PRECAUTIONS:	Dispose of in accordance with EPA rules and regulations.

# 7. HANDLING AND STORAGE

### HANDLING

Precautionary Measures :	Avoid excessive heat or moisture. Avoid contact with eyes, skin and clothing. Avoid breathing dust. Keep container closed. Wash thoroughly after handling. Use non-sparking tools and do not smoke when opening drum. Use with adequate ventilation. Contains finely divided material. Dust suspended in air may ignite with static discharge, sparks or flame. Equipment, including venting systems, should be grounded. Provide adequate ventilation in areas of use to remove dust. Wash contaminated clothing before reuse
Special Handling Statements :	Minimize dust. Special precautions against fire and explosion must be observed in (1) pumping xanthate solutions, (2) draining mobile tanks, (3) cleaning mobile tanks, and (4) performing maintenance work on storage tanks and pipelines leading to and from tanks. Use non-sparking tools and do not smoke when opening drums of xanthate. DUST EXPLOSION HAZARD CLASS - 2 Handling of material should be in accordance with standards for venting of deflagrations (e.g. NFPA-68). If handled with flammable or combustible materials the explosion hazard may increase
STORAGE	Heating or overexposure to moisture of solid xanthates or heating or aging of xanthate solutions causes some decomposition to poisonous and flammable carbon disulfide. Storage tanks should have certain design features for maximum safety, and the vapor space should be free of sources of ignition.
Storage Temperature:	Store at <32.2 - 10 °C 90 - 50 °F Reason: Safety



## 8. EXPOSURE CONTROLS AND PERSONAL PROTECTION

**ENGINEERING**Where this material is not used in a closed system, good enclosure and local exhaust ventilation should be provided to control exposure.

#### PERSONAL PROTECTIVE EQUIPMENT

RESPIRATORY PROTECTION:	Where exposures are below the established exposure limit, no respiratory protection is required. Where exposures exceed the established exposure limit, use respiratory protection recommended for the material and level of exposure.
EYE PROTECTION:	Wear eye/face protection such as chemical splash proof goggles or face shield. Eyewash equipment and safety shower should be provided in areas of potential exposure.
SKIN PROTECTION:	Avoid skin contact. Wear impermeable gloves and suitable protective clothing.
ADDITIONAL ADVICE:	Food, beverage and tobacco products should not be carried, stored or consumed where this material is used. Before eating, drinking, or smoking, wash face and hands with soap and water.

# 9. PHYSICAL AND CHEMICAL PROPERTIES

COLOR:	Yellow-green	
APPEARANCE:	Pellets, flakes, or powder	_
ODOR:	Disagreeable	
BOILING POINT:	Not applicable	
MELTING POINT:	491 - 536°F; 255 - 280°C	
VAPOR PRESSURE:	Not applicable	
SPECIFIC GRAVITY:	Not available	
VAPOR DENSITY:	Not applicable	
% VOLATILE (BY WT.):	~ 1.5	
pH:	Not applicable	
SATURATION IN AIR (% by Vol):	Not applicable	
EVAPORATION RATE:	Not applicable	
SOLUBILITY IN WATER:	35 g/100 g at 20°C	
VOLATILE ORGANIC CONTENT:	Not available	
FLASH POINT:	Not applicable	
FLAMMABLE LIMITS (% BY VOL.):	Not applicable	
AUTO IGNITION TEMPERATURE:	>248°F; 120°C (value for carbon disulfide)	
DECOMPOSITION TEMPERATURE:	>267.8 - 536°F; 131 - 280°C	
PARTIAL COEFFICIENT (n-octanol/water):	Not available	
ODOR THRESHOLD:	See Section 2 for exposure limits	

# **10. STABILITY AND REACTIVITY**

STABILITY:	Stable
CONDITIONS TO AVOID:	Containers filled with this product should be kept closed when not in use. Keep container in a cool, well-ventilated area. Exposure of the solid xanthate to heat or moisture and heating or aging of xanthate solutions. Avoid prolonged exposure to heat; avoid strong acids, alkalies and oxidizing agents. Keep water and moist air out of container.
POLYMERIZATION:	Will not occur
CONDITIONS TO AVOID:	None known
MATERIALS TO AVOID:	Strong oxidizing agents, acidic material. High temperatures
HAZARDOUS DECOMPOSITION PRODUCTS:	Carbon disulfide, carbon monoxide, carbon dioxide, oxides of sulfur (includes sulfur di and tri oxides), hydrogen sulfide



## **11. TOXICOLOGICAL INFORMATION**

#### **Toxicological information for the product is found under SECTION 3: HAZARDS IDENTIFICATION** Toxicological information on the regulated components of this product is as follows:

Potassium hydroxide has an acute oral (rat) LD50 value of 273 mg/kg. Acute overexposure to potassium hydroxide or dusts causes severe respiratory irritation. Potassium hydroxide is severely irritating to the eyes and skin.

Potassium sulfide may cause eye and skin irritation. Under acidic conditions, potassium sulfide can decompose to produce flammable poisonous hydrogen sulfide gas.

Potassium 3 methyl butyl xanthate has an estimated acute oral (rat) LD50 and acute dermal (rabbit) LD50 values of > 1,000 mg/kg and > 500 mg/kg, respectively, based on similar materials. Direct contact with this material may cause moderate eye and skin irritation. Airborne dust may cause significant eye, skin or respiratory tract irritation.

California Proposition 65 Warning (applicable in California only) - This product contains (a) chemical(s) known to the State of California to cause birth defects or other reproductive harm.

## **12. ECOLOGICAL INFORMATION**

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

This material is not readily biodegradable.

All ecological information provided was conducted on a structurally similar product.

#### ALGAE TEST RESULTS

Test	Duration	Procedure	Species	Results	

#### **FISH TEST RESULTS**

Test	Duration	Procedure	Species	Results	
Acute toxicity, freshwater (OECD 203)	96 h <b>r</b> .		Rainbow Trout (Oncorhyncus mykiss)	> 10 - 100 mg/l	LC50

### INVERTEBRATE TEST RESULTS

Test	Duration	Procedure Species		Results	
Acute Immobilization (OECD 202)	48 hr.	-	Water Flea (Daphnia magna)	>1 - 10 mg/l	EC50

#### ACCUMULATION TEST RESULTS

Test	Duration	Procedure	Results

#### DEGRADATION

Test	Duration	Procedure	Results	
Biodegradability	-	-	< 70 %	
COMMENTS:	Information based on structurally similar material			



## **13. DISPOSAL CONSIDERATIONS**

RECOMMENDATIONS FOR THE PRODUCT:	In accordance with regulations for special waste, product must be taken, after pretreatment, to an authorized special waste incineration plant.		
RECOMMENDATIONS FOR PACKAGING:	Packaging that cannot be cleaned should be disposed of like the product.		
RECOMMENDED	Water		

RECOMMENDED CLEANSING AGENT:

# **14. Transportation Information**

This section provides basic shipping classification information. Refer to appropriate transportation regulations for specific requirements.

U.S. DOT							
PROPER SHIPPING NAME:	XANTHATES						
HAZARD CLASS	4.2						
PACKING GROUP:	п	П					
UN/ID NUMBER:	UN3342						
TRANSPORT LABEL REQUIRED:	Spontaneously Combustible Marine Pollutant	9					
TECHNICAL NAME (N.O.S.):	Contains potassium amyl x	anthate					
HAZARDOUS SUBSTANCE:	Not applicable						
COMMENTS:	Marine Pollutants - DOT re- packagings transported by			o Marine Pollutants do not apply <b>to non-bulk</b> ars or aircraft.			
TRANSPORT CANADA							
PROPER SHIPPING NAME:	XANTHATES						
HAZARD CLASS	4.2						
PACKING GROUP:	п						
UN/ID NUMBER:	3342						
TRANSPORT LABEL REQUIRED:	Spontaneously Combustible Marine Pollutant	2					
TECHNICAL NAME (N.O.S.):	Contains potassium amyl x	anthate					
ICAO/IATA							
PROPER SHIPPING NAME:	XANTHATES						
HAZARD CLASS:	4.2						
PACKING GROUP:	п						
UN NUMBER:	3342						
TRANSPORT LABEL REQUIRED:	Spontaneously Combustible	<u>.</u>					
PACKING INSTRUCTIONS/	PASSENGER AIRCRAFT	415	15 kg				
MAXIMUM NET QUANTITY:	CARGO AIRCRAFT	417	50 kg				
TECHNICAL NAME (N.O.S.):	Contains potassium amyl xa	anthate					
IMO	· · · · · · · · · · · · · · · · · · ·						
PROPER SHIPPING NAME:	XANTHATES						
HAZARD CLASS:	4.2						
UN NUMBER:	3342						
PACKING GROUP:	п						
TRANSPORT LABEL REQUIRED:	Spontaneously Combustible Marine Pollutant	•					
TECHNICAL NAME (N.O.S.):	Contains potassium amyl xa	anthate		·····			



# **15. REGULATORY INFORMATION**

## **INVENTORY INFORMATION**

United States (USA)	All components of this product are included on the TSCA Chemical Inventory or are not required to be listed on the TSCA Chemical Inventory.
Canada	This product contains components not on the Domestic Substances List. These components are on the Non- Domestic Substances List.
European Union (EU)	All components of this product are included in the European Inventory of Existing Chemical Substances (EINECS) in compliance with Council Directive 67/548/EEC and its amendments.
Australia	All components of this product are included in the Australian Inventory of Chemical Substances (AICS) or are not required to be listed on AICS.
China	All components of this product are included on the Chinese inventory or are not required to be listed on the Chinese inventory.
Japan	All components of this product are included on the Japanese (ENCS) inventory or are not required to be listed on the Japanese inventory.
Korea	All components of this product are NOT included on the Korean (ECL) inventory.
Philippines	All components of this product are NOT included on the Philippine (PICCS) inventory.

## **OTHER ENVIRONMENTAL INFORMATION**

The following components of this product may be subject to reporting requirements pursuant to Section 313 of CERCLA (40 CFR 372), Section 12(b) of TSCA, or may be subject to release reporting requirements (40 CFR 307, 40 CFR 311, etc.) See Section 13 for information on waste classification and waste disposal of this product.

Component	CAS NO.	% (w/w)	TPQ (lbs)	RQ (lbs)	S313	TSCA 12B
Carbon disulfide	75-15-0	~ 0.001	10,000	100	YES	YES

## **PRODUCT CLASSIFICATION UNDER SECTION 311 OF SARA**

ACUTE (N)	CHRONIC (N)	FIRE (Y)	REACTIVE (Y)	PRESSURE (N)

# **16. OTHER INFORMATION**



## NFPA HAZARD RATING (National Fire Protection Association)

HEALTH - 2 -	Materials that, under emergency conditions, can cause temporary incapacitation or residual injury.
FIRE - 1 -	Materials that must be preheated before ignition can occur.
REACTIVITY - 1 -	Materials that in themselves are normally stable, but that can become unstable at elevated temperatures and pressures.

**REASON FOR REVISION:** Triennial review

Prepared By: F. Cappuccitti

Revised By: Cathy Yuen

**IMPORTANT:** The above information is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warrant, expressed or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular uses.

Maximizing the Value of Flotation Chemicals Technology	tion	Chemicals Technolog	Flottec PAX Collector	to PA	×.
Flottec LLC			WARNING: BEFORE HANDLING YOU MUST READ AND UNDERSTAND THE MATERIAL SAFETY DATA SHEET FOR THIS PRODUCT. DO NOT DISPOSE OF THIS MATERIAL NOR THE EMPTY CONTAINER IN THE ENVIRONMENT. AVOID CONTACT WITH SKIN AND EYES, MAY CAUSE IRRITATION. WEAR CHEMICAL GOGGUES	r READ AND UN RODUCT. DO N IN THE ENVIRG IRRITATION. V	DERSTAND THE OT DISPOSE OF NMENT. AVOID /EAR CHEMICAL
338 West Main Street Boonton • New Jersey, USA • 07005 TEL: +1.973.588.4717 / FAX: +1.973.588.4719 WEB SITE: www.flottec.com	070 +1.	05 973.588.4719	CAUTION: AVOID BREATHING VAPOR. USE ADEQUATE VENTILATION. CAUTION: AVOID BREATHING VAPOR. USE ADEQUATE VENTILATION. WEAR SPLASH GOGGLES, FACE SHIELD, LONG SLEEVE SHIRT AND TROUSERS. WASH THOROUGHLY AFTER HANDLING. DO NOT WEAR CONTAMINATED CLOTHING.	IEE P	E VENTILATION. AND TROUSERS. CONTAMINATED
PROPER SHIPPING NAME:			— FIRST AID: IF INHALED, REMOVE PERSON TO FRESH AIR. IN CASE OF CONTACT, IMMEDIATELY FLUSH EYES WITH PLENTY OF WATER FOR AT LEAST 15 MINUTES. CALL A PHYSICIAN. WASH EXPOSED SKIN AREAS WITH SOAPY WATER. LAUNDER CONTAMINATED CLOTHING BEFORE REUSE.	N TO FRESH AI H PLENTY OF H EXPOSED SK OTHING BEFOR	R. IN CASE OF MATER FOR AT IN AREAS WITH E REUSE.
TECHNICAL NAME: POTASSIUM AMYL XANTHATE ID No./HAZARD CLASS/PACKING GROUP/LABELS:	<b>DNI</b>	GROUP/LABELS:	<b>STORAGE:</b> HEATING OR OVEREXPOSURE TO MOISTURE OF SOLID XANTHATES OR HEATING OR AGING OF XANTHATE SOLUTIONS CAUSES SOME DECOMPOSITION TO POISONOUS AND FLAMMABLE CARBON DISULFIDE. STORAGE TANKS SHOULD HAVE CERTAIN DESIGN FEATURES FOR MAXIMUM SAFETY, AND THE VAPOR SPACE SHOULD BE FREE OF SOURCES OF IGNITION.	E TO MOISTURE ANTHATE SOLUTIC AND FLAMMABL ERTAIN DESIGN FE IOULD BE FREE OF 3	IRE OF SOLID TTIONS CAUSES ABLE CARBON I FEATURES FOR OF SOURCES OF
HMIS RATINGS	<b>S</b>			IOXIDE OR DR	Y CHEMICAL TO
Flottec PAX Collector		КЕҮ	SPILL CONTROL: SWEEP UP INTO CONTAINERS FOR DISPOSAL. SPILL AREA WITH WATER. USE APPROPRIATE CONTAINMENT TO ENVIRONMENTAL CONTAMINATION.	ATNERS FOR UN ATE CONTAINM	ENT TO AVOID
НЕАLTH	2	4 = Severe			
FLAMMABILITY	1	3 = Serious	ATTENTION	GROSS WT	lhe or kae
REACTIVITY	1	2 = Moderate	EMPTY CONTAINERS MAY CONTAIN PRODUCT RESIDUE INCLUDING		· · · · · ·
PERSONAL PROTECTION		1 = Slight	FLAMMABLE OR EXPLOSIVE VAPOR. DO	TARE WT.	lbs. or kgs.
See Material Safety Data Sheet		0 = Minimal	CONTAINER. ALL LABEL WARNINGS SHOULD BE OBSERVED UNTIL CONTAINER	NET WT.	lbs. or kgs.
C.A.S. No. Component 928-70-1 Carbonodithioic acid, O-(3	3- meth	<b>Component</b> Carbonodithioic acid, O-(3- methylbutyl) ester, potassium salt	HAS BEEN THOROUGHLY CLEANED OR DESTROYED, COMPLYING WITH LOCAL, STATE AND FEDERAL BEGUI ATTONS	LOT No.	Insert Here
1310-58-3 Potassium hydroxide 1310-73-8 Sodium sulfide	:	IN CASE OF EM	EMERGENGY CALL CHEMTREC:		

IN CASE OF EMERGENGY CALL CHEMTREC: North America+1.800.424.93001/2International+1.703.527.3887

**Revision No. 03** 

METHYLISOBUTYLCARBINOL

Revision: 2.00 EU ( EN )

Issuing date: 31.03.2011

Phodia

#### 1. IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING

#### Product identifier

Trade name	:	METHYLISOBUTYLCARBINOL
Product name	:	methyl-2-pentanol
CAS-No.	:	108-11-2

#### Details of the supplier of the safety data sheet

Company :	Rhodia Poliamida e Especia Fazenda São Francisco, s/n CEP: 13140-000, Paulínia - Tel: (+55 19) 3874 8000	
Emergency telephone number :	Asia Pacific	
	Mercosul : (+55 19) 3874 93	33
E-mail address :	information.fds@eu.rhodia.c	com

#### 2. HAZARDS IDENTIFICATION

#### Classification

#### Classification (REGULATION (EC) No 1272/2008)

Flammable liquids, Category 3 Specific target organ toxicity - single exposure, Category 3 H226: Flammable liquid and vapour. H335: May cause respiratory irritation.

#### Classification (67/548/EEC,1999/45/EC)

Flammable Xi: Irritant R10: Flammable. R37: Irritating to respiratory system.

#### Label elements

#### Hazardous products which must be listed on the label:

• 603-008-00-8

4-methylpentan-2-ol

#### REGULATION (EC) No 1272/2008

Pictogram



# **METHYLISOBUTYLCARBINOL**

Revision: 2.00 EU (EN)

Issuing date: 31.03.2011

Rhodia

Signal word	: Warning
Hazard statements	<ul><li>H226 Flammable liquid and vapour.</li><li>H335 May cause respiratory irritation.</li></ul>
Precautionary statements	<ul> <li>Prevention:         <ul> <li>P210 Keep away from heat/sparks/open flames/hot surfaces No smoking.</li> <li>P280 Wear protective gloves/ protective clothing/ eye protection/ face protection.</li> <li>Response:</li> <li>P303 + P361 + P353 IF ON SKIN (or hair): Remove/ Take off immediately a contaminated clothing. Rinse skin with water/ shower.</li> <li>P304 + P340 IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.</li> <li>P370 + P378 In case of fire: Use dry sand, dry chemical or alcohol-resistan foam for extinction.</li> </ul> </li> <li>Storage:         <ul> <li>P403 + P235 Store in a well-ventilated place. Keep cool.</li> </ul> </li> </ul>

# 3. COMPOSITION/INFORMATION ON INGREDIENTS

Synonyms

: methyl-2-pentanol Mibcol methyl isoamyl alcohol

#### Substance

CAS-No.

: 108-11-2

EINECS-No.

: 203-551-7

### Information on Components and Impurities

Chemical Name	Identification number	Classification 67/548/EEC	Classification REGULATION (EC) No 1272/2008	Concentration [%]
4-methylpentan-2-ol	Index-No. : 603-008-00-8 CAS-No. : 108-11-2	R10 Xi; R37	H226 : Flammable liquids , Category 3 H335 : Specific target organ toxicity - single exposure , Category 3	>= 95 - < 99
4-methylpentan-2-one	Index-No. : 606-004-00-4 CAS-No. : 108-10-1 EINECS-No. : 203-550-1	F; R11 Xn; R20 Xi; R36/37 R66	H225 : Flammable liquids , Category 2 H332 : Acute toxicity , Category 4 H319 : Eye irritation , Category 2 H335 : Specific target organ toxicity - single exposure , Category 3	>= 1 - < 5

For the full text of the R-phrases mentioned in this Section, see Section 16. For the full text of the H-Statements mentioned in this Section, see Section 16.

METHYLISOBUTYLCARBINOL

Revision: 2.00 EU ( EN )

Issuing date: 31.03.2011

Rhodia

# 4. FIRST AID MEASURES

#### Description of necessary first-aid measures

General advice	:	Show this safety data sheet to the doctor in attendance. First aider needs to protect himself. Place affected clothing in a sealed bag for subsequent decontamination.
Inhalation	:	Move to fresh air in case of accidental inhalation of vapours or decomposition products. If breathing is irregular or stopped, administer artificial respiration. Consult a physician if necessary.
Skin contact	:	Take off contaminated clothing and shoes immediately. Wash off immediately with plenty of water for at least 15 minutes. Consult a physician if necessary.
Eye contact	:	Rinse with running water whilst keeping the eyes wide open (at least 15 minutes) If eye irritation persists, consult a physician
Ingestion	:	Do NOT induce vomiting. Rinse mouth with water.

### 5. FIRE-FIGHTING MEASURES

Extinguishing media	
Suitable extinguishing media	Foam Dry powder Carbon dioxide (CO2)
Unsuitable extinguishing media	High volume water jet
Special hazards arising from the substance or	mixture
Specific hazards during fire fighting	Flammable liquid Vapour/air mixtures are explosive. Heating increases the inner pressure of the bottle, risk of explosion.
Advice for firefighters	
Special protective equipment for fire-fighters	Personal protective equipment comprising: suitable protective gloves, safety goggles and protective clothing Wear self contained breathing apparatus for fire fighting if necessary.
Specific fire fighting methods	Use appropriate means for fighting adjacent fires.
Further information	Use extinguishing measures that are appropriate to local circumstances and

**METHYLISOBUTYLCARBINOL** 

Revision: 2.00 EU (EN)

Issuing date: 31.03.2011

Rhodia

the surrounding environment. Cool containers / tanks with water spray.

#### 6. ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures	:	Evacuate personnel to safe areas. Mark the contaminated area with signs and prevent access to unauthorized personnel. Do not breathe vapour. Avoid contact with the skin and the eyes. Remove all sources of ignition. Keep away from flames and sparks. Do not smoke. Use personal protective equipment. Stop the leak. Turn leaking containers leak-side up to prevent the escape of liquid.
Environmental precautions	:	Dam up. Prevent product from entering drains. Try to prevent the material from entering drains or water courses. Local authorities should be advised if significant spillages cannot be contained.
Methods for Cleaning or Taking Up		
Recovery	:	Collect spillage. Pick up and transfer to properly labelled containers. Flammable product. Take all necessary precautions. Earth the containers and the equipment. Keep in suitable, closed containers for disposal.
Neutralization	:	Contain spillage, soak up with non-combustible absorbent material, (e.g. sand, earth, diatomaceous earth, vermiculite) and transfer to a container for disposal according to local / national regulations (see section 13).
Decontamination/cleaning	:	Collect spillage. Pick up contaminated soil. Clean contaminated floors and objects thoroughly while observing environmental regulations. Pick up and transfer to properly labelled containers. Keep in suitable, closed containers for disposal. Contain spillage, soak up with non-combustible absorbent material, (e.g. sand, earth, diatomaceous earth, vermiculite) and transfer to a container for disposal according to local / national regulations (see section 13). Nonsparking tools should be used.
Disposal	:	Dispose of contents/ container to an approved waste disposal plant. The product should not be allowed to enter drains, water courses or the soil. Dispose of in accordance with local regulations.

METHYLISOBUTYLCARBINOL

Revision: 2.00 EU ( EN )

Issuing date: 31.03.2011

Rhodia

# 7. HANDLING AND STORAGE

Handling	
Technical measures	<ul> <li>Earth the equipment. Ground/bond container and receiving equipment. No smoking. Take measures to prevent the build up of electrostatic charge. Vapours may form explosive mixtures with air. Provide adequate ventilation.</li> <li>Provide sufficient air exchange and/or exhaust in work rooms. Electrical installations / working materials must comply with the technological safety standards. No sparking tools should be used.</li> </ul>
Advice on safe handling and usage	<ul> <li>Provide adequate ventilation.</li> <li>Handle in accordance with good industrial hygiene and safety practice.</li> <li>Wear personal protective equipment.</li> <li>Avoid inhalation, ingestion and contact with skin and eyes.</li> </ul>
Storage	
Technical Measures for storage	: The floor of the depot should be impermeable and designed to form a water- tight basin. Electrical installations / working materials must comply with the technological safety standards.
Storage conditions	
Recommended	<ul> <li>Keep away from open flames, hot surfaces and sources of ignition.</li> <li>Store in original container.</li> <li>Keep away from heat.</li> <li>Keep in a dry, cool and well-ventilated place.</li> <li>Store contents under inert gas.</li> <li>Keep under nitrogen.</li> </ul>
Packaging Measures	
Packaging materials - Recommended	: Steel, Stainless steel
Packaging materials - To be avoided	: Plastic materials.

# METHYLISOBUTYLCARBINOL

Revision: 2.00 EU (EN)

Issuing date: 31.03.2011

Rhodia

# 8. EXPOSURE CONTROLS/PERSONAL PROTECTION

### Components with workplace control parameters

Components	Value type	Value	Update	Basis
4-methylpentan-2-one	TWA	20 ppm 83 mg/m3	2000-06-16	Europe. Commission Directive 2000/39/EC establishing a first list of indicative occupational exposure limit values
4-methylpentan-2-one	STEL	50 ppm 208 mg/m3	2000-06-16	Europe. Commission Directive 2000/39/EC establishing a first list of indicative occupational exposure limit values

Personal protective equipment	
Respiratory protection	: Use a respirator with an approved filter if a risk assessment indicates this is necessary.
Hand protection	: Where there is a risk of contact with hands, use appropriate gloves The selected protective gloves have to satisfy the specifications of EU Directive 89/686/EEC and the standard EN 374 derived from it. Gloves must be inspected prior to use.
Eye protection	: Tightly fitting safety goggles
Skin and body protection	<ul> <li>Choose body protection according to the amount and concentration of the dangerous substance at the work place.</li> <li>Remove and wash contaminated clothing.</li> </ul>
Hygiene measures	<ul> <li>Ensure that eyewash stations and safety showers are close to the workstation location.</li> <li>Use clean, well-maintained personal protection equipment.</li> <li>Wash hands before breaks and at the end of workday.</li> <li>When using do not eat, drink or smoke.</li> </ul>
Protective measures	: The protective equipment must be selected in accordance with current CEN standards and in cooperation with the supplier of the protective equipment. Selection of appropriate personal protective equipment should be based on an evaluation of the performance characteristics of the protective equipment relative to the task(s) to be performed, conditions present, duration of use, and the potential hazards and/or risks that may occur during use.

METHYLISOBUTYLCARBINOL

Revision: 2.00 EU (EN)

Issuing date: 31.03.2011

General advice

#### Dam up.

1

Prevent product from entering drains. Try to prevent the material from entering drains or water courses. Local authorities should be advised if significant spillages cannot be contained.

Rhodia

### 9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance	
Form	: liquid
Physical state	: liquid
Colour	: colourless
Odour	: aromatic
Odour Threshold	: no data available
Safety data	
pH	: not applicable
Crystallization temperature	: -90 °C
Boiling point/boiling range	: 131,7 °C at 1.013,25 hPa
Flash point	: 44,8 °C closed cup
	54,5 °C open cup
Flammability (solid, gas)	: no data available
Autoignition temperature	: no data available
Oxidizing properties	: Non oxidizing material according to EC criteria
Water solubility	: 7 g/l partly miscible
Solubility in other solvents	: miscible with most organic solvents
Partition coefficient: n-octanol/water	: POW: 1,43
Vapour pressure	: 4,95 hPa at 20 °C
Henry's Constant	: 4,508962 Pa.m3/mol at 25 °C
Evaporation rate	: no data available
Relative vapour density	: 3,5
Density	: 0,807 g/cm3 at 20 °C

# METHYLISOBUTYLCARBINOL

Revision: 2.00 EU ( EN )

Issuing date: 31.03.2011

Rhodia

Oxidation/Reduction Potential	: no data available
Viscosity, dynamic	: no data available
Viscosity, kinematic	: no data available
Explosive properties	: no data available
Thermal decomposition	: no data available
Lower explosion limit	: 1,00 %(V)
Upper explosion limit	: 5,50 %(V)
Molecular Weight	: 102,17 g/mol

#### 10. STABILITY AND REACTIVITY

Chemical stability :	Stable at room temperature. Stable under normal conditions.
Hazardous reactions	
Conditions to avoid :	Heat, flames and sparks. Prevent the build-up of electrostatic charge. Exposure to moisture.
Materials to avoid :	Acids Strong oxidizing agents
Decomposition products :	On combustion or on thermal decomposition (pyrolysis) releases: (Carbon oxides (CO + CO2)).
Other information :	With oxidizing agents possible.

11. TOXICOLOGICAL INFORMATIC Acute toxicity	ON
Acute oral toxicity	: LD50: 2.590 mg/kg - mouse Bibliography
	Symptoms: Vomiting, Flank pain, Kidney disorders, Liver disorders., Central nervous system depression, Vertigo, Impairment of vision
Acute inhalation toxicity	: Acute toxicity estimate : 733,33 mg/l Method: Calculation method
Acute dermal toxicity	: LD50 : 2.870 mg/kg - rabbit

SAFETY DATA SHEET		
according to Regulation (EC) No. 1907/2006		
METHYLISOBUTYLCARBI		
Revision: 2.00 EU (EN)	Issuing date: 31.03.2011	
Acute toxicity (other routes of administration) Aspiration toxicity	: no data available : no data available	
Skin corrosion/irritation		
Skin irritation	: May cause skin irritation and/or dermatitis.	
Serious eye damage/eye irritation		
Eye irritation	: Irritating to mucous membranes May irritate eyes.	
Respiratory or skin sensitization		
Sensitisation	: no data available	
Repeated dose toxicity		
Repeated dose toxicity	: no data available	
STOT		
STOT - single exposure	: Toxicology Assessment: The substance or mixture is classified as specific target organ toxicant, single exposure, category 3 with respiratory tract irritation.	
STOT - repeated exposure	: no data available	
Carcinogenicity		
Carcinogenicity	: Not classifiable as a human carcinogen.	
Mutagenicity		
Genotoxicity in vitro Genotoxicity in vivo	: no data available : no data available	
Reproductive toxicity		
Reproductive toxicity	: no data available	
Experience with human exposure		
Experience with human exposure : Inhalation	: Symptoms: Drowsiness Local irritation Dizziness Vomiting Diarrhoea.	

**METHYLISOBUTYLCARBINOL** 

Revision: 2.00 EU (EN)

Issuing date: 31.03.2011

Rhodia

## 12. ECOLOGICAL INFORMATION

#### Ecotoxicity effects

Aquatic Compartment (including sed	diment)	
Toxicity to fish	: LC50 - 24 h : 360 mg/l - Carassius auratus (goldfish)	
Persistence and degradability		
Biodegradability		
Biodegradability	: Ultimate aerobic biodegradability Readily biodegradable.	
Ratio BOD/COD	: BOD type: BOD5 BOD/COD value: 82 %	
Bioaccumulation		
Partition coefficient: n-octanol/water	: Not potentially bioaccumulable	
Mobility		
Distribution among environmental compartments	: Product readily filters into the soil	
Known distribution to environmental compartments	: Ultimate destination of the product : Water	

#### **13. DISPOSAL CONSIDERATIONS**

#### **Product Disposal**

Advice on Disposal	Do not dispose of with domestic refuse. The product should not be allowed to enter drains, water courses or the soil. Dispose of in accordance with local regulations. Dispose of contents/ container to an approved waste disposal plant. Send to a licensed waste management company.
Advice on cleaning and disposal of packaging	
Advice	Do not re-use empty containers. Allow it to drain thoroughly. Empty remaining contents. Rinse with an appropriate solvent. Dispose of contents/ container to an approved incineration plant.
Other data	Dispose of in accordance with local regulations.

METHYLISOBUTYLCARBINOL

Revision: 2.00 EU (EN)

Issuing date: 31.03.2011

Rhodia

### 14. TRANSPORT INFORMATION

ADRUN number:Dangerous Good Description:Labels:Packing group:Tunnel restriction code:Class:Classification Code:Environmentally hazardous mark:Hazard identification No:	2053 UN 2053 METHYL ISOBUTYL CARBINOL, 3, III, (D/E) : 3 : III : (D/E) : 3 : F1 : NO : 30
RIDUN number:Dangerous Good Description:LabelsPacking groupClassClassification CodeEnvironmentally hazardous markHazard identification No	2053 UN 2053 METHYL ISOBUTYL CARBINOL, 3, III : 3 : III : 3 : F1 : NO : 30
	2053 UN 2053 METHYL ISOBUTYL CARBINOL, 3, III, IMDG Code Segregation Group - Not Relevant : 3 : III : 3 mark) : NO : F-E , S-D
IATA UN number : Dangerous Good Description : Labels Packing group Class Environmentally hazardous mark Packing instruction (cargo aircraft) Max net qty/pkg Packing instruction (passenger aircraft) Max net qty/pkg	2053 UN 2053 METHYL ISOBUTYL CARBINOL, 3, III : 3 : III : 3 : NO : 366 : 220,00 L : 355 : 60,00 L
ADN / ADNRUN number:Dangerous Good Description:LabelsPacking groupClassClassification CodeEnvironmentally hazardous mark	2053 UN 2053 METHYL ISOBUTYL CARBINOL, 3, III : 3 : III : 3 : F1 : NO

Note: The above regulatory prescriptions are those valid on the date of publication of this sheet. Given the possible evolution of transport regulations for hazardous materials, it would be advisable to check their validity with your sales office.

METHYLISOBUTYLCARBINOL

Revision: 2.00 EU (EN)

Issuing date: 31.03.2011

Phodia

#### **15. REGULATORY INFORMATION**

According to our knowledge, no specific regulatory information.

#### **16. OTHER INFORMATION**

#### Full text of R-phrases referred to under sections 2 and 3

R10	Flammable.
R11	Highly flammable.
R20	Harmful by inhalation.
R36/37	Irritating to eyes and respiratory system.
R37	Irritating to respiratory system.
R66	Repeated exposure may cause skin dryness or cracking.

#### Full text of H-Statements referred to under sections 2 and 3.

H225	Highly flammable liquid and vapour.
H226	Flammable liquid and vapour.
H319	Causes serious eye irritation.
H332	Harmful if inhaled.
H335	May cause respiratory irritation.

#### Full text of P-Statements referred to under sections 2 and 3.

P210 P280	Keep away from heat/sparks/open flames/hot surfaces No smoking.
F200	Wear protective gloves/ protective clothing/ eye protection/ face protection.
P303 + P361 + P353	IF ON SKIN (or hair): Remove/ Take off immediately all contaminated clothing.
	Rinse skin with water/ shower.
P304 + P340	IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.
P370 + P378	In case of fire: Use dry sand, dry chemical or alcohol-resistant foam for extinction.
P403 + P235	Store in a well-ventilated place. Keep cool.

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. Such information is only given as a guidance to help the user handle, use, process, store, transport, dispose and release the product in satisfactory safety conditions and is not to be considered as a warranty or quality specification. It should be used in conjunction with technical sheets but do not replace them. Thus, the information only relates to the designated specific product and may not be applicable if such product is used in combination with other materials or in an other manufacturing process, unless otherwise specifically indicated. It does not release the user from ensuring he is in conformity with all regulations linked to its activity.

NB: In this document the numerical separator of the thousands is the "." (point), the decimal separator is "," (comma).

# Warning

# METHYLISOBUTYLCARBINOL



Flammable liquid and vapor - May cause respiratory irritation; or; May cause drowsiness or dizziness

Rhodia Poliamida e Especialidades Ltda.

Keep away from heat/sparks/open flames/hot surfaces. - No smoking. - Wear protective gloves/protective clothing/eye protection/face protection. - IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower. -IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. - In case of fire: Use dry sand, dry chemical or alcohol-resistant foam for extinction for extinction. - Store in a well-ventilated place. Keep cool.

Please refer to the original SDS for more information



# 1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

Mixed polyglycol ethers None Mixed polyglycol ethers
Billiote uno
Mixture
Mixture
Flottec, LLC • 338 West Main Street • Boonton, New Jersey 07005 • USA
Tel: +1.973.588.4717 • Fax: +1.973.588.4719 • Web Site: www.flottec.com
CHEMTREC • North America: +1.800.424.9300 • International: +1.703.527.3887
September 30, 2012

# 2. COMPOSITION/INFORMATION ON INGREDIENTS

# **OSHA REGULATED COMPONENTS**

 COMPONENT
 CAS No.
 % (w/w)
 OSHA (PEL)
 ACGIH (TLV)
 Carcinogen

 No Permissible
 Exposure Limits
 (PEL/TLV) have been established
 by OSHA or ACGIH
 Carcinogen
 Carcinogen

# 3. HAZARDS IDENTIFICATION

# **EMERGENCY OVERVIEW**

APPEARANCE AND ODOR	
Color:	Dark brown
Appearance:	Heavy liquid
Odor:	Mild polyglycol ether odor
STATEMENT OF HAZARD	
CAUTION!	MAY CAUSE EYE, SKIN AND MUCOUS MEMBBRANE IRRITATION

# POTENTIAL HEALTH EFFECTS

**EFFECTS / ROUTES OF EXPOSURE** 

The acute oral (rat) LD50 and acute dermal (rabbit) LD50 values for this material are estimated to be >2000 mg/kg and >2000 mg/kg, respectively.

Direct contact with this material may cause mild eye and skin irritation.

Refer to Section 11 for toxicology information on the regulated components of this product.

4. FIRST AII	D MEASURES
INGESTION:	If swallowed, call a physician immediately. ONLY induce vomiting at the instructions of a physician. Never give anything by mouth to an unconscious person.
SKIN CONTACT:	Remove contaminated clothing without delay. Flush skin thoroughly with water. Do not reuse clothing without laundering.
EYES CONTACT:	Rinse immediately with plenty of water for at least 15 minutes. Obtain medical advice if there are persistent symptoms.
INHALATON:	Material is not expected to be harmful if inhaled. If inhaled, remove to fresh air.



# **5. FIREFIGHTING MEASURES**

# **EXTINGUISHING MEDIA AND FIRE FIGHTING INSTRUCTIONS**

#### **Extinguishing Media**

Use water spray, alcohol foam, carbon dioxide or dry chemical to extinguish fires.

### **Protective Equipment**

Firefighters, and others exposed, wear self-contained breathing apparatus. Wear full firefighting protective clothing. See MSDS Section 8 (Exposure Controls/personal Protection).

#### **Special Hazards**

Keep containers cool by spraying with water if exposed to fire.

# 6. ACCIDENTAL RELEASE MEASURES

### PERSONAL PRECAUTIONS

Where exposure level is known, wear approved respirator suitable for level of exposure. Where exposure level is not known, wear approved, positive pressure, self-contained respirator. In addition to the protective clothing/equipment in Section 8 (Exposure Controls/personal Protection). Wear impervious boots.

#### **METHODS FOR CLEAN UP**

Remove source of ignition. Cover spills with some inert absorbent material; sweep up and place in a waste disposal container. Flush spill area with water.

### **ENVIRONMENTAL PRECAUTIONS**

Not available

# 7. HANDLING AND STORAGE

### HANDLING

Precautionary Measures

Do not get in eyes, on skin, on clothing. Keep away from heat and flame. Wash thoroughly after handling.

#### **Special Handling Statements**

None Known

# STORAGE

Do not store in aluminum, brass or copper. Areas containing this material should have fire safe practices and electrical equipment in accordance with applicable regulations and/or guidelines.

Storage Temperature: Room Temperature

Reason: Integrity

# 8. EXPOSURE CONTROLS AND PERSONAL PROTECTION

### **ENGINEERING CONTROLS**

Where this material is not used in a closed system, good enclosure and local exhaust ventilation should be provided to control exposure.

### PERSONAL PROTECTIVE EQUIPMENT

EYES:	Wear eye/face protection such as chemical splash proof goggles or face shield. Eyewash equipment and safety shower should be provided in areas of potential exposure.
SKIN:	Avoid skin contact. Wear impermeable gloves and suitable protective clothing.
RESPIRATORY PROTECTION:	Where exposures are below the established exposure limit, no respiratory protection is required. Where exposures exceed the established exposure limit, use respiratory protection recommended for the material and level of exposure.

### **ADDITIONAL ADVICE**

Food, beverage and tobacco products should not be carried, stored or consumed where this material is used. Before eating, drinking, or smoking, wash face and hands with soap and water.



# 9. PHYSICAL AND CHEMICAL PROPERTIES

APPEARNCE AND ODOR:	Brown, typical polyglycol odor
BOILING POINT:	Not available
MELTING POINT:	Not available
VAPOR PRESSURE:	0.03 mmHG @ 20°C
SPECIFIC GRAVITY:	0.96 @ 20°C
VAPOR DENSITY:	>6 (air = 1)
% VOLATILE (BY WT.):	Not available
pH:	10; (5% aqueous solution)
SATURATION IN AIR (% by Vol):	Not applicable
EVAPORATION RATE:	Not applicable
SOLUBILITY IN WATER:	<5%
VOLATILE ORGANIC CONTENT:	Not available
FLASH POINT:	>263°F (128°C) MPCC
FLAMMABLE LIMITS (% BY VOL.):	Not available
AUTOIGNITION TEMPERATURE:	Not available
DECOMPOSITION TEMPERATURE:	Not available
PARTIAL COEFFICIENT (n-octanol/water):	Not available
ODOR TRESHOLD:	See Section 2 for exposure limits

# **10. STABILITY AND REACTIVITY**

STABILITY:	Stable
CONDITIONS TO AVOID:	None known
POLYMERIZATION:	Will not occur
CONDITIONS TO AVOID:	None known
INCOMPATABILE MATERIALS:	Avoid contact with oxidizers, contact with isocyanates due to heat liberation, and strong acids. Corrosive to aluminum, brass, copper
HAZARDOUS DECOMPOSITION PRODUCTS:	Carbon dioxide; carbon monoxide; aldehydes; ketones; organic acids

# **11. TOXICOLOGICAL INFORMATION**

**Toxicological information for the product is found under SECTION 3: HAZARDS IDENTIFICATION** Toxicological information on the regulated components of this product is as follows:

This product contains no OSHA regulated (hazardous) components

# **12. ECOLOGICAL INFORMATION**

This product is not classified as dangerous for the environment and is readily biodegradeable.

13. DISPOSAL CONSIDERATIONS		
RECOMMENDATIONS FOR THE PRODUCT:	Dispose of product in accordance with local, state, and federal laws and regulations. Do not contaminate any lakes, streams, ponds, ground water or soil.	
RECOMMENDATIONS FOR PACKAGING:	DO NOT PRESSURIZE, CUT, WELD, BRAZE, DRILL, GRIND OR EXPOSE SUCH CONTAINERS TO HEAT, FLAME, SPARKS, STATIC ELECTRICITY, OR OTHER SURCES OF IGNINITION. THEY MAY EXPLODE AND CAUSE INJURY OR DEATH. Empty drums should be completely drained, properly bunged and promptly returned to a drum re-conditioner, or properly disposed of.	
RECOMMENDED CLEANSING AGENT:	Water	



# **14. Transportation Information**

	D.O.T. Shipping Information			<b>IMO Shipping Information</b>	
SHIPPING NAME:	Not applicable/Not regulated			Not applicable/Not regulated	
HAZARD CLASS	Not applicab	le		Not applicable	
PACKING GROUP:	Not applicabl	le		Not applicable	
UN/ID NUMBER:	Not applicab	le		Not applicable	
IMDG PAGE:	Not applicabl	le		Not applicable	
DOT HAZARDOUS SUBSTANCE:	Not applicabl	le		Not applicable	
TRANSPORT LABEL REQUIRED:	None require	d		None required	
	ICAO/IA	ΓΑ		Transport Canada	
SHIPPING NAME:	Not applicabl	e		Not applicable/Not regulated	
AZARD CLASS: Not applicable			Not applicable		
SUBSIDIARY CLASS:	Not applicable			Not applicable	
UN/ID NUMBER:	Not applicabl	Not applicable		Not applicable	
PACKING GROUP:	Not applicabl	е		Not applicable	
TRANSPORT LABEL REQUIRED:	Not applicable			Not applicable	
PACKING INSTRUCTIONS/	PASSENGER	Not app.	Not app.	Netapplicable	
MAXIMIMUM NET QUANTITY:			Not app.	Not applicable	

**ADDITIONAL TRANSPORTATION INFORMATION** 

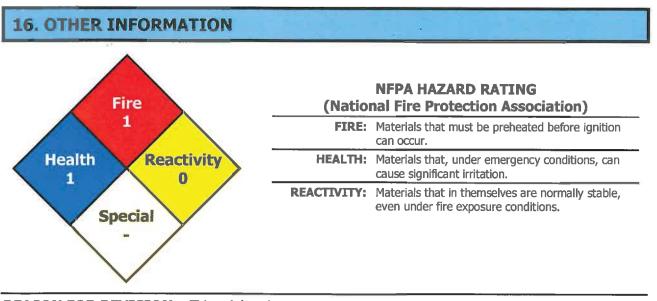
Technical Name (N.O.S.): Not applicable/not regulated



# **15. REGULATORY INFORMATION**

# **INVENTORY INFORMATION**

United States (USA):	All components of this product are included on the TSCA Inventory in compliance with the Toxic Substances Control Act, 15 U. S. C. 2601 et. seq.
Canada:	Components of this product have been reported to Environment Canada in accordance with subsection 25 of the Canadian Environmental Protection Act and are included on the Domestic Substances List.
European Union (EU):	All components of this product are included in the European Inventory of Existing Chemical Substances (EINECS) or the "No Longer Polymer" list in compliance with Council Directive 67/548/EEC and its amendments.


# **OTHER ENVIRONMENTAL INFORMATION**

The following components of this product may be subject to reporting requirements pursuant to Section 313 of CERCLA (40 CFR 372), Section 12(b) of TSCA, or may be subject to release reporting requirements (40 CFR 307, 40 CFR 311, etc.) See Section 13 for information on waste classification and waste disposal of this product.

<b>Component</b> This product does not contain any components regulated under these sections of the EPA	CAS NO.	% (w/w)	TPQ (lbs)	RQ (lbs)	S313	TSCA 12B
---------------------------------------------------------------------------------------------------------------------	---------	---------	-----------	----------	------	----------

# **PRODUCT CLASSIFICATION UNDER SECTION 311 OF SARA**

Not applicable under SARA TITLE III



# **REASON FOR REVISION:** Triennial review

Prepared By: F. Cappuccitti

Revised By: C. Yuen

**IMPORTANT:** The above information is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warrant, expressed or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular uses.

Maximizing the Value of Flotation Chemicals Technology	hemi	cals Technology	Flottec F160-05 Frother	Erother	0-05
Flottec, LLC 338 West Main Street Boonton, New Jersey 07005 • USA TEL: +1.973.588.4717 FAX: +1.973.588.4719	ŝА 973.	588.4719	WARNING: BEFORE HANDLING YOU MUST READ AND UNDERSTAND THE MATERIAL SAFETY DATA SHEET FOR THIS PRODUCT. DO NOT DISPOSE OF THIS MATERIA NOR THE EMPTY CONTAINER IN THE ENVIRONMENT. AVOID CONTACT WITH SKIN AND EYES, MAY CAUSE IRRITATION. WEAR CHEMICAL GOGGLES.	U MUST READ AN HIS PRODUCT. D AINER IN THE EN CAUSE IRRITATI	JD UNDERSTAND THE O NOT DISPOSE OF VVIRONMENT. AVOID ON. WEAR CHEMICAL
Website: www.flottec.com PROPER SHIPPING NAME: NOT REGULATED AS HAZARDOUS			CAUTION: AVOID BREATHING VAPOR. USE ADEQUATE VENTILATION WEAR SPLASH GOGGLES, FACE SHIELD, LONG SLEEVE SHIRT AND TROUSERS. WASH THOROUGHLY AFTER HANDLING. DO NOT WEAR CONTAMINATED CLOTHING.	or. Use adeoua d, long sleeve ( er handling. Do	TE VENTILATION. SHIRT AND D NOT WEAR
TECHNICAL NAME: Not Applicable ID No./HAZARD CLASS/PACKING GROUP/LABELS: NOT REGULATED AS HAZARDOUS	GRC	)UP/LABELS:	FIRST AID: IF INHALED, REMOVE PERSON TO FRESH AIR. IN CASE OF CONTACT, IMMEDIATELY FLUSH EYES WITH PLENTY OF WATER FOR AT LEAST 15 MINUTES. CALL A PHYSICIAN. WASH EXPOSED SKIN AREAS WITH SOAPY WATER. LAUNDER CONTAMINATED CLOTHING BEFORE REUSE. STORAGE: STORF IN TIGHTLY CLOSED CONTAINERS IN A COOL WELL.	PERSON TO FRESI WITH PLENTY OI N. WASH EXPOSE ATED CLOTHING SED CONTALINES	H AIR. IN CASE OF F WATER FOR AT ED SKIN AREAS WITH BEFORE REUSE. S IN A COOL WFIL-
HMIS RATINGS	NGS		FIRE FIGHTING: USE WATER, DRY CHEMICAL, CARBON DIOXIDE, OR	Y CHEMICAL, CAR	BON DIOXIDE, OR
Flottec F160-05 Frother	<u> </u>	КЕҮ	"ALCOHOL" FOAM. SPILL CONTROL: CONTAIN SPILLS WITH SAND OR OTHER ABSORBENT	S WITH SAND OF	R OTHER ABSORBENT
НЕАLTH	1	4 = Severe	MATERIALS. DISPOSE OF SPILL MATERIAL IN APPROVED MANNER.	RIAL IN APPROVI	ED MANNER.
FLAMMABILITY	1	3 = Serious	ATTENTION	GROSS	
REACTIVITY	0	2 = Moderate	EMPTY CONTAINERS MAY CONTAIN PRODUCT RESIDUE INCLUDING		los.
<b>PERSONAL PROTECTION</b>		1 = Slight	FLAMMABLE OR EXPLOSIVE VAPOR. DO NOT CUT, PUNCTURE OR WELD ON CONTAINEP ALLIAREL WARNINGS	TARE WT.	.sd
See Material Safety Data Sheet		0 = Minimal			
C.A.S. No. Component Contains No Hazardous Ingredients	gredien	its	CUNIATINER HAS BEEN I HOROUGHLY CLEANED OR DESTROYED, COMPLYING WITH LOCAL, STATE AND FEDERAL REGULATIONS.	NET WT.	lbs.
				LOT No.	
		IN CASE OF EMERC	IN CASE OF EMERGENGY CALL CHEMTREC		

North America + 1.800.424.9300 Minternational + 1.703.527.3887

**Revision No. 03** 

Maximizing the Value of Flotation Chemicals Technology MATERIAL SAFETY DATA SHEET

# **1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION**

PRODUCT NAME:	Flottec F160-13 Frother		
CHEMICAL FAMILY:	Mixed glycol, glycol ethers		
SYNONYMS:	None		
MOLECULAR FORMULA:	Mixture		
MOLECULAR WEIGHT:	Mixture		
MANUFACTURER:	Flottec, LLC • 338 West Main Street • Boonton, New Jersey 07005 • USA		
PRODUCT INFORMATION:	Tel: +1.973.588.4717 • Fax: +1.973.588.4719 • Web Site: www.flottec.com		
EMERGENCY PHONE:	CHEMTREC • North America: +1.800.424.9300 • International: +1.703.527.3887		
ISSUE DATE:	April 30, 2012		

# 2. COMPOSITION/INFORMATION ON INGREDIENTS

# **OSHA REGULATED COMPONENTS**

 COMPONENT
 CAS No.
 % (w/w)
 OSHA (PEL)
 ACGIH (TLV)
 Carcinogen

 No Permissible
 Exposure Limits
 (PEL/TLV) have been
 established
 by OSHA or ACGIH

# **3. HAZARDS IDENTIFICATION**

### **EMERGENCY OVERVIEW**

#### APPEARANCE AND ODOR

Color: Dark brown Appearance: Heavy liquid Odor: Mild polyglycol ether odor STATEMENT OF HAZARD

CAUTION! MAY CAUSE EYE, SKIN AND MUCOUS MEMBBRANE IRRITATION

# **POTENTIAL HEALTH EFFECTS**

### **EFFECTS / ROUTES OF EXPOSURE**

The acute oral (rat) LD50 and acute dermal (rabbit) LD50 values for this material are estimated to be >2000 mg/kg and >2000 mg/kg, respectively. Direct contact with this material may cause mild eye and skin irritation.

Refer to Section 11 for toxicology information on the regulated components of this product.

4. FIRST AID	MEASURES
INGESTION:	If swallowed, call a physician immediately. ONLY induce vomiting at the instructions of a physician. Never give anything by mouth to an unconscious person.
<b>SKIN CONTACT:</b> Remove contaminated clothing without delay. Flush skin thoroughly with water. Do not reuse clothing without laundering.	
EYES CONTACT:	Rinse immediately with plenty of water for at least 15 minutes. Obtain medical advice if there are persistent symptoms.
INHALATON:	Material is not expected to be harmful if inhaled. If inhaled, remove to fresh air.



# **5. FIREFIGHTING MEASURES**

# **EXTINGUISHING MEDIA AND FIRE FIGHTING INSTRUCTIONS**

#### **Extinguishing Media**

Use water spray, alcohol foam, carbon dioxide or dry chemical to extinguish fires.

#### **Protective Equipment**

Firefighters, and others exposed, wear self-contained breathing apparatus. Wear full firefighting protective clothing. See MSDS Section 8 (Exposure Controls/personal Protection).

#### **Special Hazards**

Keep containers cool by spraying with water if exposed to fire.

# 6. ACCIDENTAL RELEASE MEASURES

### **PERSONAL PRECAUTIONS**

Where exposure level is known, wear approved respirator suitable for level of exposure. Where exposure level is not known, wear approved, positive pressure, self-contained respirator. In addition to the protective clothing/equipment in Section 8 (Exposure Controls/personal Protection). Wear impervious boots.

### **METHODS FOR CLEAN UP**

Remove source of ignition. Cover spills with some inert absorbent material; sweep up and place in a waste disposal container. Flush spill area with water.

### **ENVIRONMENTAL PRECAUTIONS**

Not available

# 7. HANDLING AND STORAGE

### HANDLING

#### **Precautionary Measures**

Do not get in eyes, on skin, on clothing. Keep away from heat and flame. Wash thoroughly after handling.

**Special Handling Statements** 

None Known

# STORAGE

Do not store in aluminum, brass or copper. Areas containing this material should have fire safe practices and electrical equipment in accordance with applicable regulations and/or guidelines.

Storage Temperature: Room Temperature

Reason:

Integrity

# 8. EXPOSURE CONTROLS AND PERSONAL PROTECTION

# **ENGINEERING CONTROLS**

Where this material is not used in a closed system, good enclosure and local exhaust ventilation should be provided to control exposure.

# PERSONAL PROTECTIVE EQUIPMENT

EYES:	Wear eye/face protection such as chemical splash proof goggles or face shield. Eyewash equipment and safety shower should be provided in areas of potential exposure.
SKIN:	Avoid skin contact. Wear impermeable gloves and suitable protective clothing.
RESPIRATORY PROTECTION:	Where exposures are below the established exposure limit, no respiratory protection is required. Where exposures exceed the established exposure limit, use respiratory protection recommended for the material and level of exposure.

### **ADDITIONAL ADVICE**

Food, beverage and tobacco products should not be carried, stored or consumed where this material is used. Before eating, drinking, or smoking, wash face and hands with soap and water.



# 9. PHYSICAL AND CHEMICAL PROPERTIES

APPEARNCE AND ODOR:	Brown, typical polyglycol odor
BOILING POINT:	225°C
MELTING POINT:	Not available
VAPOR PRESSURE:	0.02 mmHG@20°C
SPECIFIC GRAVITY:	0.98 – 1.05@ 25°C
VAPOR DENSITY:	Not available
% VOLATILE (BY WT.):	Not available
pH:	10; (5% aqueous solution)
SATURATION IN AIR (% by Vol):	Not applicable
EVAPORATION RATE:	Not applicable
SOLUBILITY IN WATER:	Soluble
VOLATILE ORGANIC CONTENT:	Not available
FLASH POINT:	>220°F (104°C) MPCC
FLAMMABLE LIMITS (% BY VOL.):	Not available
AUTOIGNITION TEMPERATURE:	Not available
DECOMPOSITION TEMPERATURE:	Not available
PARTIAL COEFFICIENT (n-octanol/water):	Not available
ODOR TRESHOLD:	See Section 2 for exposure limits

# **10. STABILITY AND REACTIVITY**

STABILITY:	Stable
CONDITIONS TO AVOID:	None known
POLYMERIZATION:	Will not occur
CONDITIONS TO AVOID:	None known
INCOMPATABILE MATERIALS:	Avoid contact with oxidizers, contact with isocyanates due to heat liberation, and strong acids. Corrosive to aluminum, brass, copper
HAZARDOUS DECOMPOSITION PRODUCTS:	Carbon dioxide; carbon monoxide; aldehydes; ketones; organic acids

# **11. TOXICOLOGICAL INFORMATION**

**Toxicological information for the product is found under SECTION 3: HAZARDS IDENTIFICATION** Toxicological information on the regulated components of this product is as follows:

This product contains no OSHA regulated (hazardous) components

# **12. ECOLOGICAL INFORMATION**

This product is not classified as dangerous for the environment and is readily biodegradeable.

13. DISPOSAL CONSIDERATIONS			
<b>RECOMMENDATIONS</b> FOR THE PRODUCT: Dispose of product in accordance with local, state, and federal laws and regulations. contaminate any lakes, streams, ponds, ground water or soil.			
RECOMMENDATIONS FOR PACKAGING:	DO NOT PRESSURIZE, CUT, WELD, BRAZE, DRILL, GRIND OR EXPOSE SUCH CONTAINERS TO HEAT, FLAME, SPARKS, STATIC ELECTRICITY, OR OTHER SURCES OF IGNINITION. THEY MAY EXPLODE AND CAUSE INJURY OR DEATH. Empty drums should be completely drained, properly bunged and promptly returned to a drum re-conditioner, or properly		

	disposed of.
RECOMMENDED	Water
CLEANSING AGENT:	



# 14. Transportation Information

	D.O.T. Shipping Information			<b>IMO Shipping Information</b>
SHIPPING NAME:	Not applicab	le/Not regul	ated	Not applicable/Not regulated
HAZARD CLASS	Not applicab	le		Not applicable
PACKING GROUP:	Not applicab	le		Not applicable
UN/ID NUMBER:	Not applicab	le		Not applicable
IMDG PAGE:	Not applicable	le		Not applicable
DOT HAZARDOUS SUBSTANCE:	Not applicable	le		Not applicable
TRANSPORT LABEL REQUIRED:	None require	d		None required
	ICAO/IA	ΓΑ		Transport Canada
SHIPPING NAME:	Not applicabl	le		Not applicable/Not regulated
HAZARD CLASS:	Not applicabl	le		Not applicable
SUBSIDIARY CLASS:	Not applicabl	le	-	Not applicable
UN/ID NUMBER:	Not applicabl	e		Not applicable
PACKING GROUP:	Not applicabl	e		Not applicable
TRANSPORT LABEL REQUIRED:	Not applicabl	e		Not applicable
PACKING INSTRUCTIONS/	PASSENGER	Not app.	Not app.	Net emplicable
MAXIMIMUM NET QUANTITY:	CARGO	Not app.	Not app.	Not applicable

**ADDITIONAL TRANSPORTATION INFORMATION** 

Technical Name (N.O.S.): Not applicable/not regulated

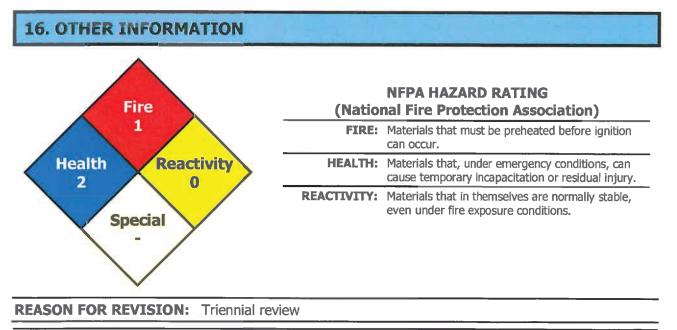


# **15. REGULATORY INFORMATION**

### **INVENTORY INFORMATION**

United States (USA):	All components of this product are included on the TSCA Inventory in compliance with the Toxic Substances Control Act, 15 U. S. C. 2601 et. seq.
Canada:	Components of this product have been reported to Environment Canada in accordance with subsection 25 of the Canadian Environmental Protection Act and are included on the Domestic Substances List.
European Union (EU):	All components of this product are included in the European Inventory of Existing Chemical Substances (EINECS) or the "No Longer Polymer" list in compliance with Council Directive 67/548/EEC and its amendments.

# **OTHER ENVIRONMENTAL INFORMATION**


The following components of this product may be subject to reporting requirements pursuant to Section 313 of CERCLA (40 CFR 372), Section 12(b) of TSCA, or may be subject to release reporting requirements (40 CFR 307, 40 CFR 311, etc.) See Section 13 for information on waste classification and waste disposal of this product.

				- presses		
Component	CAS NO.	% (w/w)	TPQ (lbs)	RQ (lbs)	S313	TSCA 12B
Potassium Hydroxide	001310-58-3	0.1 - 1.0		1000		

# **PRODUCT CLASSIFICATION UNDER SECTION 311 OF SARA**

Not applicable under SARA TITLE III

WHMIS Classification: D2B Eye and Skin irritant



Prepared By: F. Cappuccitti

Revised By: C. Yuen

**IMPORTANT:** The above information is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warrant, expressed or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular uses.

Maximizing the Value of Flotation Chemicals Technology	hemid	cals Technology	Flottec F160-13 Frother	160-1 Jer	S
Flottec, LLC 338 West Main Street Boonton, New Jersey 07005 • USA TEL: +1.973.588.4717 FAX: +1.973.588.4719	A 973.5	588.4719	WARNING: BEFORE HANDLING YOU MUST READ AND UNDERSTAND THE MATERIAL SAFETY DATA SHEET FOR THIS PRODUCT. DO NOT DISPOSE OF THIS MATERIA NOR THE EMPTY CONTAINER IN THE ENVIRONMENT. AVOID CONTACT WITH SKIN AND EYES, MAY CAUSE IRRITATION. WEAR CHEMICAL GOGGLES.	IST READ AND UNDERSTA PRODUCT. DO NOT DISPO: R IN THE ENVIRONMENT. SE IRRITATION. WEAR CH	ND THE SE OF AVOID EMICAL
Website: www.flottec.com PROPER SHIPPING NAME: NOT REGULATED AS HAZARDOUS			CAUTION: AVOID BREATHING VAPOR. USE ADEQUATE VENTILATION. WEAR SPLASH GOGGLES, FACE SHIELD, LONG SLEEVE SHIRT AND TROUSERS. WASH THOROUGHLY AFTER HANDLING. DO NOT WEAR CONTAMINATED CLOTHING.	ISE ADEQUATE VENTILATI NG SLEEVE SHIRT AND INDLING. DO NOT WEAR	ON.
TECHNICAL NAME: Not Applicable ID No./HAZARD CLASS/PACKING GROUP/LABELS:	GRO	UP/LABELS:	FIRST AID: IF INHALED, REMOVE PERSON TO FRESH AIR. IN CASE OF CONTACT, IMMEDIATELY FLUSH EYES WITH PLENTY OF WATER FOR AT LEAST 15 MINUTES. CALL A PHYSICIAN. WASH EXPOSED SKIN AREAS WITH SOAPY WATER. LAUNDER CONTAMINATED CLOTHING BEFORE REUSE.	ON TO FRESH AIR. IN CAS H PLENTY OF WATER FOR ASH EXPOSED SKIN AREA CLOTHING BEFORE REUS	EE OF AT S WITH E.
	NGS NGS		STORAGE: STORE IN TIGHTLY CLOSED CONTAINERS IN A COOL, WELL- VENTILATED PLACE.	CONTAINERS IN A COOL, V	VELL-
Flottec F160-13 Frother		КЕҮ	ALCOHOL FORT OF CONTAIN SPILE, ON CHEMICAL, CANDON FLOXIDL, ON "ALCOHOL FOAM. SDILL CONTROL · CONTAIN SPILE WITH SAME OF OTHED APSODDENT	TH SAND OD OTHED ABSC	
НЕАLTH	2	4 = Severe	MATERIALS. DISPOSE OF SPILL MATERIAL IN APPROVED MANNER.	IN APPROVED MANNER.	
FLAMMABILITY	L	3 = Serious			
REACTIVITY	0	2 = Moderate			
PERSONAL PROTECTION		1 = Slight	ATTENTION EMPTY CONTAINERS MAY CONTAIN	GROSS WT.	
See Material Safety Data Sheet		0 = Minimal	PRODUCT RESIDUE INCLUDING FLAMMABLE OR EXPLOSIVE VAPOR. DO	TARE WT.	
1310-58-3 Potassium hydroxide			CONTAINER. ALL LABEL WARNINGS SHOULD BE OBSERVED UNTIL CONTAINER	NET WT.	
			DESTROYED, COMPLYING WITH LOCAL, STATE AND FEDERAL REGULATIONS.	LOT No.	
Revision No. 01 North Ame	rica-	IN CASE OF EMERG + 1.800.424.930	IN CASE OF EMERGENGY CALL CHEMTREC North America+1.800.424.9300 ³⁷ I nternational+1.703.527.3887	87	



# SAFETY DATA SHEET

NALCO® DVS4U038

# Section: 1. PRODUCT AND COMPANY IDENTIFICATION

Product name	:	NALCO® DVS4U038
Other means of identification	:	Not applicable.
Recommended use	:	FROTHER
Restrictions on use	:	Refer to available product literature or ask your local Sales Representative for restrictions on use and dose limits.
Company	:	Nalco Company 1601 W. Diehl Road Naperville, Illinois 60563-1198 USA TEL: (630)305-1000
Emergency telephone number	:	(800) 424-9300 (24 Hours) CHEMTREC
Issuing date	:	09/29/2014

# Section: 2. HAZARDS IDENTIFICATION

#### **GHS Classification**

Flammable liquids Serious eye damage/eye irritation	: Category 4 : Category 1
Skin sensitization	: Category 1
Germ cell mutagenicity	: Category 2

# **GHS Label element** Hazard pictograms

Hazard pictograms	
Signal Word	: Danger
Hazard Statements	<ul> <li>Combustible liquid</li> <li>May cause an allergic skin reaction.</li> <li>Causes serious eye damage.</li> <li>Suspected of causing genetic defects.</li> </ul>
Precautionary Statements	<ul> <li>Prevention:</li> <li>Obtain special instructions before use. Do not handle until all safety precautions have been read and understood. Keep away from heat/sparks/open flames/hot surfaces No smoking. Avoid breathing dust/ fume/ gas/ mist/ vapours/ spray. Contaminated work clothing should not be allowed out of the workplace. Wear protective gloves/ eye protection/ face protection. Use personal protective equipment as required.</li> <li>Response:</li> <li>IF ON SKIN: Wash with plenty of soap and water. IF IN EYES:</li> </ul>

1/9

# NALCO® DVS4U038

	lenses, if p concerned POISON C occurs: Ge before reu resistant fo <b>Storage:</b> Store in a <b>Disposal:</b> Dispose of plant.	oresent and easy to do. C : Get medical advice/atte CENTER or doctor/ physic tet medical advice/ attentic se. In case of fire: Use do to am for extinction. well-ventilated place. Ke f contents/ container to a	eral minutes. Remove contact Continue rinsing. IF exposed or ention. Immediately call a cian. If skin irritation or rash on. Wash contaminated clothing ry sand, dry chemical or alcohol- ep cool. Store locked up. n approved waste disposal
Other hazards	: None know		
Section: 3. COMPOSITION/IN	IFORMATION	ON INGREDIENTS	
Chemical Name C4-C16 Alcohols, Aldehydes, B Alkane distn. residues Butanal	Esters	CAS-No. Proprietary Proprietary 123-72-8	Concentration: (%) 60 - 100 5 - 10 5 - 10
Section: 4. FIRST AID MEAS	URES		
In case of eye contact	least 15 mi		tter, also under the eyelids, for at enses, if present and easy to do. tion immediately.
In case of skin contact	Use a mild	soap if available. Wash	water for at least 15 minutes. clothing before reuse. se. Get medical attention.
If swallowed	: Rinse mout	th. Get medical attention	if symptoms occur.
If inhaled	: Remove to symptoms		natically. Get medical attention if
Protection of first-aiders	not put you	rself at risk of injury. If in	anger before taking action. Do doubt, contact emergency equipment as required.
Notes to physician	: Treat symp	tomatically.	
See toxicological information	n (Section 11)		
Section: 5. FIREFIGHTING M	EASURES		
Suitable extinguishing media		uishing measures that ar ces and the surrounding	
Unsuitable extinguishing media	: High volum	e water jet	

# SAFETY DATA SHEET

# NALCO® DVS4U038

Special protective equipment for firefighters	:	Use personal protective equipment.
Specific extinguishing methods	:	Fire residues and contaminated fire extinguishing water must be disposed of in accordance with local regulations. In the event of fire and/or explosion do not breathe fumes.
Section: 6. ACCIDENTAL RE	ELE	ASE MEASURES
Personal precautions, protective equipment and emergency procedures	:	Ensure adequate ventilation. Keep people away from and upwind of spill/leak. Avoid inhalation, ingestion and contact with skin and eyes. When workers are facing concentrations above the exposure limit they must use appropriate certified respirators. Ensure clean-up is conducted by trained personnel only. Refer to protective measures listed in sections 7 and 8.
Environmental precautions	:	Do not allow contact with soil, surface or ground water.
Methods and materials for containment and cleaning up	:	Stop leak if safe to do so. Contain spillage, and then collect with non-combustible absorbent material, (e.g. sand, earth, diatomaceous earth, vermiculite) and place in container for disposal according to local / national regulations (see section 13). Flush away traces with water. For large spills, dike spilled material or otherwise contain material to ensure runoff does not reach a waterway. Do not flush into surface water or sanitary sewer system.
Section: 7. HANDLING AND	ST	ORAGE
Advice on safe handling	:	Do not breathe dust/fume/gas/mist/vapours/spray. Do not get in eyes, on skin, or on clothing. Wash hands thoroughly after handling. Use only with adequate ventilation.
Conditions for safe storage	:	Keep out of reach of children. Keep container tightly closed. Store in suitable labeled containers.
Suitable material	:	The following compatibility data is suggested based on similar product data and/or industry experience: Compatibility with Plastic Materials can vary; we therefore recommend that compatibility is tested prior to use.
Unsuitable material	:	not determinednot determined

# Section: 8. EXPOSURE CONTROLS/PERSONAL PROTECTION

### Components with workplace control parameters

Components	CAS-No.	Form of exposure	Permissible concentration	Basis
Butanal	123-72-8	TWA	25 ppm	WEEL

Engineering measures

: Effective exhaust ventilation system Maintain air concentrations below occupational exposure standards.

# Personal protective equipment

# NALCO® DVS4U038

Eye protection	:	Safety goggles Face-shield
Hand protection	:	Wear the following personal protective equipment: Standard glove type. Gloves should be discarded and replaced if there is any indication of degradation or chemical breakthrough.
Skin protection	:	Wear suitable protective clothing.
Respiratory protection	:	No personal respiratory protective equipment normally required.
Hygiene measures	:	Handle in accordance with good industrial hygiene and safety practice. Remove and wash contaminated clothing before re-use. Wash face, hands and any exposed skin thoroughly after handling. Provide suitable facilities for quick drenching or flushing of the eyes and body in case of contact or splash hazard.

# Section: 9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance	:	Liquid
Colour	:	Dark Amber
Odour	:	Alcoholic
Flash point	:	60.5 - 93.3 °C Method: Pensky-Martens closed cup
pН	:	no data available
Odour Threshold	:	no data available
Melting point/freezing point	:	no data available
Initial boiling point and boiling range	:	no data available
Evaporation rate	:	no data available
Flammability (solid, gas)	:	no data available
Upper explosion limit	:	no data available
Lower explosion limit	:	no data available
Vapour pressure	:	no data available
Relative vapour density	:	no data available
Relative density	:	0.85 (20.0 °C)
Density	:	7.0 lb/gal
Water solubility	:	immiscible
Solubility in other solvents	:	no data available
Partition coefficient: n- octanol/water	:	no data available
Auto-ignition temperature	:	no data available
Thermal decomposition	:	Carbon oxides
Viscosity, dynamic	:	no data available
Viscosity, kinematic	:	no data available

# SAFETY DATA SHEET

# NALCO® DVS4U038

VOC	:	92.5 %			
Section: 10. STABILITY AND REACTIVITY					
Chemical stability	:	Stable under normal conditions.			
Possibility of hazardous	:	No dangerous reaction known under conditions of normal use.			
reactions Conditions to avoid	:	Extremes of temperature Heat, flames and sparks.			
Incompatible materials	:	Contact with strong oxidizers (e.g. chlorine, peroxides, chromates, nitric acid, perchlorate, concentrated oxygen, permanganate) may generate heat, fires, explosions and/or toxic vapors.			
Hazardous decomposition products	:	Carbon oxides			
Section: 11. TOXICOLOGICA	\L I	NFORMATION			
Information on likely routes of exposure	:	Inhalation, Eye contact, Skin contact			
Potential Health Effects					
Eyes	:	Causes serious eye damage.			
Skin	:	May cause allergic skin reaction.			
Ingestion	:	Health injuries are not known or expected under normal use.			
Inhalation	:	Health injuries are not known or expected under normal use.			
Chronic Exposure	:	Suspected of causing genetic defects.			
Experience with human exposure					
Eye contact	:	Redness, Pain, Corrosion			
Skin contact	:	Redness, Irritation, Allergic reactions			
Ingestion	:	No symptoms known or expected.			
Inhalation	:	No symptoms known or expected.			
Toxicity					
Product					
Acute oral toxicity	:	no data available			
Acute inhalation toxicity	:	no data available			
Acute dermal toxicity	:	no data available			
Skin corrosion/irritation	:	no data available			

# NALCO® DVS4U038

Serious eye damage/eye irritation	: no data available
Respiratory or skin sensitization	: no data available
Carcinogenicity	: no data available
Reproductive effects	: no data available
Germ cell mutagenicity	: no data available
Teratogenicity	: no data available
STOT - single exposure	: no data available
STOT - repeated exposure	: no data available
Aspiration toxicity	: no data available
Components	
Acute oral toxicity	: C4-C16 Alcohols, Aldehydes, Esters LD50 rat: > 5,000 mg/kg

### Section: 12. ECOLOGICAL INFORMATION

#### Ecotoxicity

Environmental Effects	:	Toxic to aquatic life.
<b>Components</b> Toxicity to fish	:	C4-C16 Alcohols, Aldehydes, Esters LC50 : 6 mg/l Exposure time: 96 h
Components		
Toxicity to daphnia and other aquatic invertebrates	:	Alkane distn. residues EC50 : 29.2 mg/l Exposure time: 48 h

### Persistence and degradability

The organic portion of this preparation is expected to be inherently biodegradable.

#### Mobility

The environmental fate was estimated using a level III fugacity model embedded in the EPI (estimation program interface) Suite TM, provided by the US EPA. The model assumes a steady state condition between the total input and output. The level III model does not require equilibrium between the defined media. The information provided is intended to give the user a general estimate of the environmental fate of this product under the defined conditions of the models. If released into the environment this material is expected to distribute to the air, water and soil/sediment in the approximate respective percentages;

Air	:	5 - 10%
Water	:	30 - 50%

# NALCO® DVS4U038

Soil

: 50 - 70%

The portion in water is expected to float on the surface.

### Bioaccumulative potential

Component substances have a potential to bioaccumulate.

#### Other information

no data available

### Section: 13. DISPOSAL CONSIDERATIONS

If this product becomes a waste, it is not a hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA) 40 CFR 261, since it does not have the characteristics of Subpart C, nor is it listed under Subpart D.

Disposal methods	The product should not be allowed to enter drains, water courses or the soil. Where possible recycling is preferred to disposal or incineration. If recycling is not practicable, dispose of in compliance with local regulations. Dispose of wastes in an approved waste disposal facility.
Disposal considerations	Dispose of as unused product. Empty containers should be taken to an approved waste handling site for recycling or disposal. Do not re-use empty containers.

### Section: 14. TRANSPORT INFORMATION

The shipper/consignor/sender is responsible to ensure that the packaging, labeling, and markings are in compliance with the selected mode of transport.

### Land transport (DOT)

For Packages Less Than Or Equal To 119 Gallons:

Proper shipping name	:	PRODUCT IS NOT REGULATED DURING
		TRANSPORTATION

For Packages Greater Than 119 Gallons:

Proper shipping name	: CC	MBUSTIBLE LIQUID, N.O.S.
Technical name(s)	: Bu	tanal
UN/ID No.	: NA	1993
Hazard Class - Primary	: CC	MBUSTIBLE LIQUID
Packing group	: 111	

### Air transport (IATA)

Proper shipping name	:	PRODUCT IS NOT REGULATED DURING
		TRANSPORTATION

#### Sea transport (IMDG/IMO)

Proper shipping name	:	PRODUCT IS NOT REGULATED DURING
		TRANSPORTATION

# SAFETY DATA SHEET

# NALCO® DVS4U038

### Section: 15. REGULATORY INFORMATION

### EPCRA - Emergency Planning and Community Right-to-Know Act

#### **CERCLA Reportable Quantity**

This material does not contain any components with a CERCLA RQ.

#### SARA 304 Extremely Hazardous Substances Reportable Quantity

This material does not contain any components with a section 304 EHS RQ.

SARA 311/312 Hazards	Fire Hazard Acute Health Hazard Chronic Health Hazard
SARA 302	No chemicals in this material are subject to the reporting requirements of SARA Title III, Section 302.
SARA 313	This material does not contain any chemical components with known CAS numbers that exceed the threshold (De Minimis) reporting levels established by SARA Title III, Section 313.

#### California Prop 65

This product does not contain any chemicals known to State of California to cause cancer, birth defects, or any other reproductive harm.

#### INTERNATIONAL CHEMICAL CONTROL LAWS :

#### TOXIC SUBSTANCES CONTROL ACT (TSCA)

The substances in this preparation are included on or exempted from the TSCA 8(b) Inventory (40 CFR 710)

#### AUSTRALIA

All substances in this product comply with the National Industrial Chemicals Notification & Assessment Scheme (NICNAS).

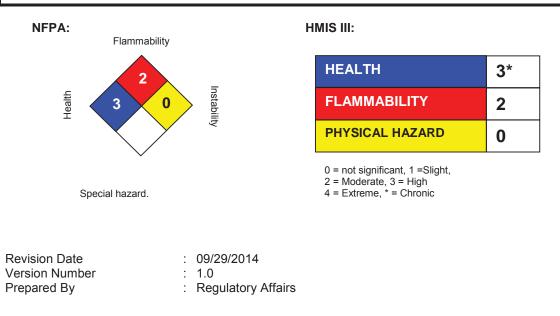
#### CHINA

This product contains substance(s) which are not in compliance with the Provisions on the Environmental Administration of New Chemical Substances and may require additional review.

#### JAPAN

This product contains substance(s) which are not in compliance with the Law Regulating the Manufacture and Importation Of Chemical Substances and are not listed on the Existing and New Chemical Substances list (ENCS).

### KOREA


This product contains substance(s) which are not in compliance with the Toxic Chemical Control Law (TCCL) and may require additional review.

### PHILIPPINES

This product contains substance(s) which are not in compliance with the Republic Act 6969 (RA 6969) and may require additional review.

#### Section: 16. OTHER INFORMATION

# NALCO® DVS4U038



REVISED INFORMATION: Significant changes to regulatory or health information for this revision is indicated by a bar in the left-hand margin of the SDS.

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text.

For additional copies of an MSDS visit www.nalco.com and request access.

An Ecolab Company	NALCO® DVS4U038	EMERGENCY TELEPHONE NUMBER(S): (800) 424-9300 (24 Hours) CHEMTREC	EPHONE )): 4 Hours) C
<u>ب</u>	Danger! Combustible liquid May cause an allergic skin reaction. Causes serious eye damage. Suspected of causing genetic defects.	MATERIAL DV: NET WEIGHT	DVS4U038.91
60563-1198 630-305-1000 U.S. DOT Shipping Name:		GENERATED 1/2	1/22/2015
<b>NA1993</b> COMBUSTIBLE LIQUID, N.O.S., (Butanal), CBL, III	Prevention: Obtain special instructions before use., Do not handle until all safety precautions have been read and understood., Keep away from heat/sparks/open flames/hot surfaces No smoking., Avoid breathing dust/ fume/ gas/ mist/ vapours/ spray., Contaminated work clothing should not be allowed out of the workplace., Wear protective gloves/ eye protection/ face protection., Use personal protective equipment as required.	•	
MARINE TRANSPORT (IMDG/IMO):	Response: IF ON SKIN: Wash with plenty of soap and water., IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing., IF exposed or concerned: Get medical advice/attention., Immediately call a POISON CENTER or doctor/ physician., If skin irritation or rash occurs: Get medical advice/ attention., Wash contaminated clothing before reuse., In case of fire:		
PRODUCT IS NOT REGULATED DURING TRANSPORTATION	Use or y sarro, or y chemical or alconor-resistant roam for exunction. Storage: Store in a well-ventilated place. Keep cool., Store locked up.	ATTENTION: For more information refer to the material safety data sheet. Empty containers may contain residual product	mation refer neet. Empty
	Disposal: Dispose of contents/ container to an approved waste disposal plant.	DO NOT reuse containers unless properly reconditioned.	nless properly

B-47



# SAFETY DATA SHEET

Issue Date 02-May-2013	Revision Date 03-May-2013	Version 1		
1. PRODUCT AND COMPANY IDENTIFICATION				
Product Identifier Product Name	Copper Sulfate Pentahydrate			
Other Means of Identification SDS #	OBC-007			
UN/ID No Synonyms	UN3077 Blue Vitrol, Bluestone, Cupric Sulfate			
Recommended Use of the Chemical and Restrictions on UseRecommended UseFor industrial use.				
Details of the Supplier of the Sa Manufacturer Address Old Bridge Chemicals, Inc. 554 Waterworks Rd. Old Bridge, NJ 08857	fety Data Sheet			
Emergency Telephone Number Company Phone Number Emergency Telephone	(732) 727-2225 (normal business hours) (800) 275-3924 (24 hour number) Chemtrec 1-800-424-9300 (North America) 1-703-527-3887 (Internation	nal)		
2 HAZADOS IDENTIEICATION				

# 2. HAZARDS IDENTIFICATION

### **Classification**

Acute toxicity - Oral	Category 4
Acute toxicity - Dermal	Category 4

#### Signal Word Warning

# Hazard Statements

Harmful if swallowed Harmful in contact with skin



**Appearance** Transparent blue crystals or blue powder

Physical State Solid

Odor Odorless

Page 1/9

### **Precautionary Statements - Prevention**

Wash face, hands and any exposed skin thoroughly after handling Do not eat, drink or smoke when using this product Wear protective gloves/protective clothing

### Precautionary Statements - Response

IF ON SKIN: Wash with plenty of soap and water Take off contaminated clothing and wash it before reuse Call a POISON CENTER or doctor/physician if you feel unwell IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell Rinse mouth

### Precautionary Statements - Storage

Store locked up

### Precautionary Statements - Disposal

Dispose of contents/container to an approved waste disposal plant

### Other Hazards

Toxic to aquatic life

### 3. COMPOSITION/INFORMATION ON INGREDIENTS

### Synonyms

Blue Vitrol, Bluestone, Cupric Sulfate.

Chemical Name	CAS No	Weight-%
Copper sulfate pentahydrate	7758-99-8	100

### **4. FIRST AID MEASURES**

### First Aid Measures

Eye Contact	Rinse thoroughly with plenty of water for at least 15 minutes, lifting lower and upper eyelids. Consult a physician.
Skin Contact	IF ON SKIN: Wash with plenty of soap and water. Take off contaminated clothing and wash it before reuse. Call a POISON CENTER or doctor/physician if you feel unwell.
Inhalation	Remove from exposure and move to fresh air immediately. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical aid.
Ingestion	IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell. Rinse mouth. Do NOT induce vomiting. Promptly drink large quantities of milk, egg white, gelatin solution, or if these are not available, drink large quantities of water. Never give anything by mouth to an unconscious person. Avoid alcohol.
Most Important Symptoms and Eff	ects. both Acute and Delayed

SymptomsCauses skin irritation. Repeated or prolonged contact may cause allergic dermatitis. May<br/>cause irritation or burns on wet skin. May cause eye irritation. Irritates the digestive tract.<br/>Abdominal discomfort. Inhalation of dust can result in irritation of nasal mucous membranes<br/>and sometimes of the pharynx. On occasion ulceration with perforation of the nasal<br/>septum.

### Indication of any Immediate Medical Attention and Special Treatment Needed

Note to PhysiciansTreat symptomatically. Material may be corrosive. Possible mucosal damage may<br/>contraindicate the use of gastric lavage. Measures against circulatory shock, respiratory<br/>depression and convulsions may be necessary. Wilson's disease can be aggravated by<br/>excessive exposure. Symptoms include nausea, vomiting, epigastria pain, diarrhea,<br/>jaundice, and general debility.

### **5. FIRE-FIGHTING MEASURES**

### Suitable Extinguishing Media

Dry chemical, CO2 or water spray. Copper Sulfate does not burn nor will it support combustion.

Unsuitable Extinguishing Media If dry heated above 600 °C/ 1112 °F, SO2 is evolved. If water is used it will solubilize the Copper Sulfate and care should be taken to keep such water out of streams or other bodies of water.

### Specific Hazards Arising from the Chemical

Not determined.

**Hazardous Combustion Products** If heated above 400°C/ 752°F product can decompose to emit toxic fumes of oxide and sulfur.

### Protective Equipment and Precautions for Firefighters

As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear.

### 6. ACCIDENTAL RELEASE MEASURES

### Personal Precautions. Protective Equipment and Emergency Procedures

**Personal Precautions** Use personal protective equipment as required.

### Methods and Material for Containment and Cleaning Up

Methods for Containment Prevent further leakage or spillage if safe to do so.

Methods for Cleaning Up Avoid the generation of dusts during clean-up. Wear NIOSH or MSHA approved respirator if dust will be generated. Dry sweep up, using a sweeping compound. Shovel spill material into plastic bags and seal with tape. Place in appropriate containers for disposal. Dispose of contents/container to an approved waste disposal plant. Prevent run off to storm sewers and ditches leading to natural waterways.

### 7. HANDLING AND STORAGE

### Precautions for Safe Handling

Advice on Safe Handling Use personal protection recommended in Section 8. Wash face, hands and any exposed skin thoroughly after handling. Do not eat, drink or smoke when using this product. Wash thoroughly after handling before eating, drinking, smoking, or using toilet facilities. Wear protective gloves/protective clothing. Wash outside of gloves before removing. Wash and change into clean clothing as soon as possible.

### Page 3/9

### Conditions for Safe Storage. Including any Incompatibilities

Storage Conditions	Keep containers tightly closed in a dry, cool and well-ventilated place. Store locked up. Store away from reducing agents. Keep away from galvanized pipe, aluminum and nylon. Store in original containers. Place damaged containers in plastic bags. Iron and moisture should be avoided. With exposure to air it will oxidize and turn whitish.
Packaging Materials	Solutions are mildly corrosive to steel. Store in plastic or rubber or 304, 347 or 316 stainless steel.
Incompatible Materials	Aluminum powders. Acetylene. Hydroxylamine. Magnesium. Moisture. Contact with magnesium can generate dangerous levels of hydrogen gas.

### 8. EXPOSURE CONTROLS/PERSONAL PROTECTION

### Exposure Guidelines

Chemical Name	ACGIH TLV	OSHA PEL	NIOSH IDLH
Copper sulfate pentahydrate	TWA: 1 mg/m ³ Cu dust and mist	TWA: 1 mg/m ³ Cu dust and mist	
7758-99-8			mist TWA: 1 mg/m ³ Cu dust and mist

### **Appropriate Engineering Controls**

**Engineering Controls** Use process enclosures, local exhaust ventilation, or other engineering controls to control airborne levels below recommended exposure limits. Eyewash stations. Showers.

### Individual Protection Measures, such as Personal Protective Equipment

Eye/Face Protection	Wear safety glasses with side shields (or goggles).
Skin and Body Protection	Wear long-sleeved shirt, long pants, and shoes plus socks. Wear waterproof gloves. Discard clothing and other absorbent materials that have been drenched or heavily contaminated with product's concentrate. Do not reuse them. Keep and wash PPE separately from other laundry.
Respiratory Protection	If necessary, wear an approved respirator for dusts or mists: MSHA/NIOSH approved number prefix TC-21C, or a NIOSH approved respirator with any R, P or HE filter. Alternatively, provide respiratory protection in accordance with Paragraph 1910.134 of Title 29 of the Code of Federal Regulations.

General Hygiene Considerations Handle in accordance with good industrial hygiene and safety practice.

### 9. PHYSICAL AND CHEMICAL PROPERTIES

### Information on Basic Physical and Chemical Properties

Physical State Appearance	Solid Transparent blue crystals or blue powder	Odor	Odorless
Color	Blue	Odor Threshold	Not determined
<u>Property</u> pH Melting Point/Freezing Point Boiling Point/Boiling Range Flash Point Evaporation Rate Flammability (Solid, Gas)	<u>Values</u> Not Applicable 110 °C / 230 °F 150 °C / 302 °F Not determined Not Applicable Not determined	<u>Remarks • Method</u>	

Page 4/9

Upper Flammability Limits	Not determined	
Lower Flammability Limit	Not determined	
Vapor Pressure	Not Applicable	
Vapor Density	Not Applicable	
Specific Gravity	2.284	
Water Solubility	22.37%	@ 0 °C / 32 °F
Solubility in Other Solvents	Soluble in methanol, glycerol and	
	slightly soluble in ethanol	
Partition Coefficient	Not determined	
Autoignition Temperature	Not determined	
Decomposition Temperature	Not determined	
Kinematic Viscosity	Not determined	
Dynamic Viscosity	Not determined	
Explosive Properties	Not determined	
Oxidizing Properties	Not determined	

### **10. STABILITY AND REACTIVITY**

### Reactivity

Not reactive under normal conditions.

### **Chemical Stability**

Stable under recommended storage conditions.

### **Possibility of Hazardous Reactions**

None under normal processing. Does not react with water.

Hazardous Polymerization Hazardous polymerization does not occur.

### **Conditions to Avoid**

Keep out of reach of children. Solutions are mildly corrosive to steel. Store in plastic or rubber or 304, 347 or 316 stainless steel.

### **Incompatible Materials**

Aluminum powders. Acetylene. Hydroxylamine. Magnesium. Moisture. Contact with magnesium can generate dangerous levels of hydrogen gas.

### **Hazardous Decomposition Products**

Under normal conditions of storage and use, hazardous decomposition products should not be produced. If dry heated above 600° C/ 1112°F toxic sulfur may evolve.

### **11. TOXICOLOGICAL INFORMATION**

### Information on Likely Routes of Exposure

Product Information	
Eye Contact	Avoid contact with eyes.
Skin Contact	Harmful in contact with skin.
Inhalation	Avoid inhalation of dust.
Ingestion	Harmful if swallowed.

### Component Information

Chemical Name	Oral LD50	Dermal LD50	Inhalation LC50
Copper sulfate pentahydrate 7758-99-8	= 472 mg/kg (Rat)	> 2 g/kg (Rat)	> 2.95 mg/L (Rat)

### Information on Physical. Chemical and Toxicological Effects

Symptoms Please see section 4 of this SDS for symptoms.

### Delayed and Immediate Effects as well as Chronic Effects from Short and Long-term Exposure

**Carcinogenicity** This product does not contain any carcinogens or potential carcinogens as listed by OSHA, IARC or NTP.

### **Numerical Measures of Toxicity**

Not determined

### **12. ECOLOGICAL INFORMATION**

### **Ecotoxicity**

Very toxic to aquatic life with long lasting effects.

Chemical Name	Algae/aquatic plants	Fish	Toxicity to	Crustacea
			microorganisms	
Copper sulfate pentahydrate		0.66 - 1.15: 96 h Lepomis		0.147 - 0.227: 48 h Daphnia
7758-99-8		macrochirus mg/L LC50		magna mg/L EC50 Static
		semi-static 0.96 - 1.8: 96 h		
		Lepomis macrochirus mg/L		
		LC50 static 0.1478 - 0.165:		
		96 h Oncorhynchus mykiss		
		mg/L LC50 flow-through 0.09		
		- 0.19: 96 h Oncorhynchus		
		mykiss mg/L LC50 static		
		0.6752: 96 h Pimephales		
		promelas mg/L LC50 static		

### Persistence and Degradability

Not determined

### **Bioaccumulation**

Not determined

Mobility Not determined

### Other Adverse Effects

Not determined

### **13. DISPOSAL CONSIDERATIONS**

### Waste Treatment Methods

Disposal of Wastes	Disposal should be in accordance with applicable regional, national and local laws and regulations. With prior approval the material can be returned to the manufacturer.
Contaminated Packaging	Disposal should be in accordance with applicable regional, national and local laws and regulations.

Chemical Name	California Hazardous Waste Status
Copper sulfate pentahydrate	Toxic
7758-99-8	

### 14. TRANSPORT INFORMATION

Note
------

Please see current shipping paper for most up to date shipping information, including exemptions and special circumstances.

When shipped domestically in non-bulk packages weighing less than 10 lbs., product is NOT REGULATED for ground transportation. The following DOT description for shipping as REGULATED only applies when shipping in packages containing more than 10 lbs. of

### DOT

	product. When this is the case, drivers are required to have Hazmat Certification.
UN/ID No	UN3077
Proper Shipping Name	Environmentally Hazardous Substance, solid, n.o.s. (Cupric Sulfate)
Hazard Class	9
Packing Group	
Reportable Quantity (RQ)	10 lbs
Marine Pollutant	This product contains a chemical which is listed as a severe marine pollutant according to
	DOT.
Emergency Response Guide	171
Number	

### IATA

UN/ID No	UN3077
Proper Shipping Name	Environmentally Hazardous Substance, solid, n.o.s. (Cupric Sulfate)
Hazard Class	9
Packing Group	III

### IMDG

UN/ID No	UN3077
Proper Shipping Name	Environmentally Hazardous Substance, solid, n.o.s. (Cupric Sulfate)
Hazard Class	9
Packing Group	
Marine Pollutant	This product contains a chemical which is listed as a severe marine pollutant according to IMDG/IMO

### **15. REGULATORY INFORMATION**

### International Inventories

### TSCA Listed

Legend:

**TSCA** - United States Toxic Substances Control Act Section 8(b) Inventory

DSL/NDSL - Canadian Domestic Substances List/Non-Domestic Substances List

EINECS/ELINCS - European Inventory of Existing Chemical Substances/European List of Notified Chemical Substances

ENCS - Japan Existing and New Chemical Substances

IECSC - China Inventory of Existing Chemical Substances

KECL - Korean Existing and Evaluated Chemical Substances

PICCS - Philippines Inventory of Chemicals and Chemical Substances

### US Federal Regulations

### **CERCLA**

Chemical Name	Hazardous Substances RQs	CERCLA/SARA RQ	Reportable Quantity (RQ)
Copper sulfate pentahydrate 7758-99-8	10 lbs	10 lbs	10 lbs

### SARA 311/312 Hazard Categories

### Acute health hazard

Yes

### SARA 313

Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 (SARA). This product contains a chemical or chemicals which are subject to the reporting requirements of the Act and Title 40 of the Code of Federal Regulations, Part 372

Chemical Name	CAS No	Weight-%	SARA 313 - Threshold Values %
Copper sulfate pentahydrate - 7758-99-8	7758-99-8	100	1.0

### CWA (Clean Water Act)

Component	CWA - Reportable Quantities	CWA - Toxic Pollutants	CWA - Priority Pollutants	CWA - Hazardous Substances
Copper sulfate pentahydrate 7758-99-8 (100)		Х		

### US State Regulations

### U.S. State Right-to-Know Regulations

Chemical Name	New Jersey	Massachusetts	Pennsylvania
Copper sulfate pentahydrate	Х		Х
7758-99-8			

### **16. OTHER INFORMATION Health Hazards** Flammability Instability Special Hazards Not NFPA determined Personal 3 0 0 HMIS **Health Hazards** Flammability **Physical Hazards** Protection Not 3 0 0 determined **Issue Date** 02-May-2013 **Revision Date** 03-May-2013 **Revision Note** New format

**Disclaimer** 

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text.

### **End of Safety Data Sheet**

Page 9/9

### Warning



COPPER SULFATE PENTAHYDRATE

Harmful in contact with skin - Harmful if swallowed

Do not eat, drink or smoke when using this product. - IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell. - IF ON SKIN: Wash with plenty of soap and water. - Take off contaminated clothing and wash before reuse.

Old Bridge Chemicals, Inc.

Please refer to the original SDS for more information



Revision date : 2010/05/12 Version: 1.1 Page: 1/7 (30479152/SDU_GEN_US/EN)

### **1. Product and Company Identification**

Company BASF CORPORATION 100 Campus Drive Florham Park, NJ 07932, USA 24 Hour Emergency Response Information CHEMTREC: 1-800-424-9300 BASF HOTLINE: 1-800-832-HELP

Registrant:

Chemical family:

polyacrylamide, anionic

### 2. Hazards Identification

### **Emergency overview**

Signal word:	NOTICE!!
Colour:	off-white
Appearance:	powder
State of matter:	solid
Odour:	odourless
Health:	Dust may cause mechanical irritation to eyes and skin., May cause some irritation to the
	respiratory system if dust is inhaled.
Physical/Chemical	Slip hazard when wet.
hazards:	

### Potential health effects

### **Primary routes of entry:**

Eyes, Skin, Inhalation, Ingestion

### 3. Composition/Information on Ingredients

This material is classified as not hazardous under OSHA regulations.

### 4. First-aid Measures

### Inhalation:

Remove to fresh air, if not breathing give artificial respiration. If breathing is difficult, give oxygen and get immediate medical attention.

Revision date : 2010/05/12

Version: 1.1

### Skin:

Remove contaminated clothing. Wash affected skin with plenty of water, shower if necessary. Get medical attention if irritation occurs.

### Eyes:

Immediately flush the eye(s) with lukewarm, gently flowing water for 15 minutes or until the chemical is removed. Get immediate medical attention if irritation persists.

Page: 2/7

(30479152/SDU GEN US/EN)

### Ingestion:

Do not induce vomiting. If vomiting occurs naturally, have casualty lean forward to reduce the risk of aspiration. Seek medical attention immediately.

### 5. Fire-fighting Measures

### Suitable extinguishing media:

water, water spray, foam, carbon dioxide, dry powder

### **Unsuitable Extinguishing Media:**

If water is used, restrict pedestrian and vehicular traffic in areas where slip hazard may exist.

### Hazardous combustion products:

Carbon and nitrogen oxides.

### Hazards during fire-fighting:

Very slippery when wet.

Do not release chemically contaminated water into drains, soil or surface water. Sufficient measures must be taken to retain the water used for extinguishing. Dispose of contaminated water and soil according to local regulations.

### **Protective equipment for fire-fighting:**

Wear self-contained breathing apparatus and chemical-protective clothing.

### 6. Accidental Release Measures

### **Cleanup:**

Sweep up and shovel into suitable containers for disposal. Wear suitable protective equipment. Avoid raising dust. Should not be released into the environment.

### 7. Handling and Storage

### <u>Handling</u>

### General advice:

As with all industrial chemicals, use good industrial practices when handling. Avoid eye, skin, and clothing contact. Do not inhale. Do not taste or swallow. Use only with adequate ventilation.

### **Storage**

### General advice:

Keep containers tightly closed in a dry, cool and well ventilated place. Store between 0 -  $35^{\circ}C$  (32 -  $95^{\circ}F$ )

Revision date : 2010/05/12 Version: 1.1

> for industrial use only <

### 8. Exposure Controls and Personal Protection

### **Engineering Controls:**

Work in well ventilated areas. Do not breathe dust.

### Personal protective equipment

### **Respiratory protection:**

Wear a NIOSH-certified respirator as necessary.

### Eye protection:

Safety glasses with side-shields (frame goggles) (EN 166)

### **Body protection:**

Wear chemical resistant gloves and protective clothing.

### General safety and hygiene measures:

There are no OSHA or ACGIH exposure guidelines available for component(s) in this product.

### 9. Physical and Chemical Properties

Colour:	off-white	
Form:	powder	
State of matter:	solid	
Odour:	odourless	
pH value:	4 - 9	(5 g/l)
Evaporation rate:		Not tested
Flash point:		Not applicable
Melting point:		Not applicable
Boiling point:		Not applicable
Vapour pressure:		Not applicable
Bulk density:	approx. 800 kg/m3	
Partitioning coefficient n- octanol/water (log Pow):		Not tested
Viscosity, dynamic:	approx. 1,000 mPa.s	(0.5 %(m))
Solubility in water: Autoignition:		Forms a viscous solution Not applicable

### **10. Stability and Reactivity**

### **Stability:**

Stable.

**Conditions to avoid:** Avoid extreme temperatures.

Substances to avoid: oxidizing agent

Possibility of Hazardous Reactions: No hazardous reactions if stored and handled as prescribed/indicated.

Hazardous decomposition products: No decomposition expected under normal storage conditions.

Revision date : 2010/05/12 Version: 1.1

### Acute oral toxicity:

LD50 / oral / rat: > 5,000 mg/kg

### Acute inhalation toxicity:

Not tested

### Acute dermal toxicity:

### dermal:

not determined

### Skin irritation:

rabbit: non-irritant

### Eye irritation:

: non-irritant

### Skin Sensitization:

Sensitization / guinea pig: Non-sensitizing.

### Subacute Toxicity:

not determined

### Subchronic Toxicty:

not determined

### Chronic toxicity:

(Rat) 2-year oral study showed no significant toxic effects.

### Genetic toxicity:

Not determined.

### **Carcinogenicity:**

None of the components in this product at concentrations greater than 0.1% are listed by IARC; NTP, OSHA or ACGIH as a carcinogen.

### **Reproductive toxicity:**

not determined

### Developmental toxicity/teratogenicity:

not determined

### **12. Ecological Information**

### Toxicity to fish:

Brachydanio rerio/96 h/LC50: > 100 mg/l (OECD 203/EC C.1) By analogy with a product of similar composition

### Toxicity to aquatic invertebrates:

Daphnia magna/48 h/EC50: > 100 mg/l (OECD 202) By analogy with a product of similar composition

### Toxicity to aquatic plants:

Scenedesmus subspicatus/72 h/IC50: > 100 mg/l (OECD 201/EC C. 3) By analogy with a product of similar composition

Revision date : 2010/05/12

Version: 1.1

### Toxicity to microorganisms:

Not tested

### **Biodegradation:**

**Evaluation**:

Not readily biodegradable.

### **Bioaccumulation:**

Does not accumulate in organisms.

### 13. Disposal Considerations

### Waste disposal of substance:

Dispose of in accordance with national, state and local regulations.

Resource Conservation and Recovery Act (RCRA): Not a hazardous waste under RCRA (40 CFR 261).

### **14. Transport Information**

### **U.S. Department of Transportation**

The listed Transportation Classification does not address regulatory variations due to changes in package size, mode of shipment or other regulatory descriptors.

### **Road transport:**

Special shipping information:	Not classified as a dangerous good under transport regulations.
Air transport:	
Special shipping information:	Not classified as a dangerous good under transport regulations.
Inland-waterway transport:	
Special shipping information:	Not classified as a dangerous good under transport regulations.

### **15. Regulatory Information**

US: Toxic Substances Control Act (TSCA):	All component(s) comprising this product are either exempt or listed on the TSCA inventory
Canada: Domestic Substances List (DSL):	All components either exempt or listed on the DSL

### **United States - Regulations**

### SARA Section 311/312 Hazard Communication Standard:

Acute Health:	Ν	Fire:	Ν
Chronic Health:	Ν	Reactivity:	Ν
		Sudden release of pressure:	Ν

### SARA Section 313 Toxic Chemical List:

This product does not contain any components reportable under Sec 313 (40 CFR 372).

### **OSHA** hazard category:

Revi	ision	da	ate	:	2010/05/12

Version: 1.1

This material is classified as not hazardous under OSHA regulations.

### Toxic Substances Control Act (TSCA) Significant New Use Rule (SNUR):

This product is not subject to a Significant New Use Rule (SNUR).

### Toxic Substances Control Act (TSCA) Section 5(e) Consent Orders:

This product is not subject to a Section 5(e) Consent Order.

### Toxic Substances Control Act (TSCA) Section 5(f):

This product is not subject to a Section 5(f)/6(a) rule.

### Toxic Substances Control Act (TSCA) Section 12(b) Export Notification:

No components listed.

### Clean Air Act - Hazardous Air Pollutants (HAP):

Chemical name	CAS Number	Notification
2-Propenamide	79-06-1	Listed

### Clean Air Act 602 - Ozone Depleting Substances (ODS):

This product neither contains, nor was manufactured with, a Class I or Class II ozone depleting substance (ODS), as defined by the U.S. Clean Air Act Section 602 (40 CFR 82, Subpt. A, App. A+B).

### Clean Water Act - Priority Pollutants (PP):

This product does not contain any priority pollutants listed under the U.S. Clean Water Act Section 307(2)(1) Priority Pollutant List (40 CFR 401.15).

### Pennsylvania Right to Know:

Chemical name	CAS Number	Notification
2-Propenamide	79-06-1	Environmental hazard.
2-Propenamide	79-06-1	Listed

### California Proposition 65 - Chemicals Known to the State to Cause Cancer:

Chemical name	CAS Number	<b>Notification</b>
2-Propenamide	79-06-1	Carcinogenic.

WARNING: This product contains a chemical known to the State of California to cause cancer.

### International Regulations

### **Chemical Weapons Convention:**

This product does not contain any component(s) listed under the Chemical Weapons Convention Schedule of Chemicals.

### **16. Other Information**

MAGNAFLOC® 10 (US) is a registered trademark of BASF Corporation or BASF SE IMPORTANT: WHILE THE DESCRIPTIONS, DESIGNS, DATA AND INFORMATION CONTAINED HEREIN ARE PRESENTED IN GOOD FAITH AND BELIEVED TO BE ACCURATE, IT IS PROVIDED FOR YOUR GUIDANCE ONLY. BECAUSE MANY FACTORS MAY AFFECT PROCESSING OR APPLICATION/USE, WE RECOMMEND THAT YOU MAKE TESTS TO DETERMINE THE SUITABILITY OF A PRODUCT FOR YOUR PARTICULAR PURPOSE PRIOR TO USE. NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE MADE REGARDING PRODUCTS DESCRIBED OR DESIGNS, DATA OR INFORMATION SET FORTH, OR THAT THE PRODUCTS, DESIGNS, DATA OR INFORMATION MAY BE USED WITHOUT

Revision date : 2010/05/12 Version: 1.1 Page: 7/7 (30479152/SDU GEN US/EN)

INFRINGING THE INTELLECTUAL PROPERTY RIGHTS OF OTHERS. IN NO CASE SHALL THE DESCRIPTIONS, INFORMATION, DATA OR DESIGNS PROVIDED BE CONSIDERED A PART OF OUR TERMS AND CONDITIONS OF SALE. FURTHER, YOU EXPRESSLY UNDERSTAND AND AGREE THAT THE DESCRIPTIONS, DESIGNS, DATA, AND INFORMATION FURNISHED BY BASF HEREUNDER ARE GIVEN GRATIS AND BASF ASSUMES NO OBLIGATION OR LIABILITY FOR THE DESCRIPTION, DESIGNS, DATA AND INFORMATION GIVEN OR RESULTS OBTAINED, ALL SUCH BEING GIVEN AND ACCEPTED AT YOUR RISK.

Due to the merger of CIBA and BASF Group all Material Safety Data Sheets have been reassessed on the basis of consolidated information. This may have resulted in changes of the Material Safety Data Sheets. In case you have questions concerning such changes please contact us at the address mentioned in Section I.

END OF DATA SHEET

## 56458981 Magnafloc® 10 MAT NO:

# Caution - Slippery when wet!

water with evelids held open. Seek medical attention. INGESTION: Rinse mouth and then drink plenty of water. Do not induce vomiting. Immediate medical attention required. INHALATION: If difficulties occur after dust has FIRST AID: GENERAL: Remove contaminated clothing. SKIN: Wash thoroughly with soap and water. If rritation develops, seek medical attention. EYES: Wash affected eyes for at least 15 minutes under running exposure. Wear NIOSH-certified chemical goggles. Take precautionary measures against static discharges. May cause some eye irritation which should cease after removal of the product. May cause some irritation o the respiratory system if dust is inhaled, MAY CAUSE SKIN IRRITATION, This type of product has a lammable dust clouds may be formed in air. Use NIOSH approved respirator as needed to mitigate endency to create dust if roughly handled. It does not burn readily but as with many organic powders, been inhaled, remove to fresh air and seek medical attention.

slippery when wet. Wear a self-contained breathing apparatus. The degree of risk is governed by the burning substance and the fire conditions. Contaminated extinguishing water must be disposed of in accordance with N CASE OF FIRE: EXTINGUISHING MEDIA: dry powder, foam MAY BE EMITTED: carbon oxides nitrogen oxides The substances/groups of substances mentioned can be released in case of fire. Very official regulations.

N CASE OF SPILLS OR LEAKS: Use personal protective clothing. Do not discharge into drains/surface waters/groundwater. Spilled product which becomes wet or spilled aqueous solution create a hazard because of their slippery nature. Avoid raising dust.

EMPTY CONTAINERS: Dispose of in a licensed facility. Recommend crushing, puncturing or other means to prevent unauthorized use of used containers.

V1.7

Store in unopened original containers in a cool and dry place. Avoid wet, damp or humid conditions, temperature extremes HANDLING AND STORAGE: Breathing must be protected when large quantities are decanted without local exhaust ventilation. Handle in accordance with good industrial hygiene and safety practice. Forms slippery surfaces with water. DISPOSAL: Must be disposed of or incinerated in accordance with local regulations.

N CASE OF CHEMICAL EMERGENCY: Call CHEMTREC day or night for assistance and information concerning spilled ATTENTION: Refer to our technical bulletin and material safety data sheet regarding safety, usage, application, hazards, material, fire, explosive, and other chemical accidents. 800-424-9300 or 703-527-3887 outside the US procedures and disposal of this product. Consult your supervisor for additional information. and ignition sources

RTK: Proprietary Copolymer TSRN 161090809-5200; urea 57-13-6; Water 7732-18-5; Proprietary Alcohol TSRN 161090809-5222

### **PROPER SHIPPING NAME:** NOT REQUIRED

10:1	<u>GROSS</u>	25.2	55.6
PKG NO:1	NET	25.0	55.1
		KG	LB
	<b>BASF CORPORATION</b>	2301 WILROY RD.	SUFFOLK, VA, 23434 USA

_			_	
	0	1	0	Х
	Н	LL.	R	Р

B-65

### **Technical Information**

Page 1 of 2

**Global Mining Solutions** 

TI/EVH 0050 e March 2013

Supersedes edition dated June 2010



	Magnafloc [®] 10					
	Anionic flocculant					
Description	Magnafloc 10 is a very high mole flocculant supplied as a free flow	ecular weight, slightly anionic polyacrylamide ving granular powder.				
Principal uses	Magnafloc 10 has found applica operations including the followin	tion in a wide variety of mineral processing g:				
	<ol> <li>Acid leach CCD (copper)</li> <li>Acid leach (zinc)</li> <li>Iron ore tailings clarification</li> </ol>	<ol> <li>Potash slimes clarification and dewatering</li> <li>Acid leach CCD (copper)</li> <li>Acid leach (zinc)</li> <li>Iron ore tailings clarification</li> <li>Base metal concentrates thickenings and filtration</li> </ol>				
	Dosage depends on application 2-200 g/tonne of dry substrate	but normally lies in the range flocculated.				
Typical properties	Physical form: Particle size: Bulk density: pH of 1 % solution at 25 °C: Viscosity at 25 °C:	Off-white granular powder 98% < 1000 μm 0.7 g/cm ³ 6.5 See graph and table				
	Apparent Viscosity-Com (Fann Viscometer-Shear 1200 1000 800 600 400 200 0 0 0.2 0.4 Magnafloc 10 Co	r Rate 5.11 sec ⁻¹ )				

Page 2 of 2

Application & Storage	Recommended solution concentrations:				
	Stock solution: Feed solution:	0.25-0.5% max. 0.025-0.1% max.			
Shelf life	2 years from receipt of goods				
	Stock solution:	1-2 days			
	Storage of polyme	er should be in a cool, dry place.			
	Details on prepara representative.	ation and application can be obtained from a BASF			

Magnafloc 10	Shear rate (sec ⁻¹ )						
concentration (%)	5.11	10.22	170	340	511	1022	
	Viscosity (	cP)					
1.(	0 1100	700	126	87	74	63	
0.5	5 350	250	48	35	29	24	
0.25	5 200	125	24	18	15	12	
0.10	0 100	63	12	9	7	6	
Shipping & HandlingMagnafloc 10 is supplied in 25 kg nett plastic bags shrinkwra pallet suitable for export shipment. The product can also be intermediate big bags or bulk tanker. Specific details of bag a can be obtained on request.Corrosivity towards most standard materials of construction aluminium and galvanised equipment should be avoided.					n also be sup Is of bag and Istruction is lo	oplied via I tanker siz	
echnical service	Advice and assistance in the running of laboratory and plant tests to select the correct product and determine the best application can be provided by representatives of BASF, who are experienced in mineral processing applications.						
lealth & Safety	Magnafloc 10 exhibits a very low order of oral toxicity and does not present any abnormal problems in its handling or general use.						
	Detailed infor use of the pro health and sa	oduct(s) deso	cribed in this				
Note	The data cor and experien and applicati carrying out t any guarante a specific pu portions, wei and do not c the responsit proprietary rig	ce. In view o on of our pro their own invo e of certain p rpose. Any d ghts etc. give onstitute the bility of the re	f the many fa oduct, these of estigations and properties, no escriptions, of en herein ma agreed cont ecipient of ou	actors that m data do not r nd tests; neit or the suitabii drawings, ph y change wit ractual qualit r products to	ay affect process elieve process ther do these lity of the pro otographs, d hout prior inf y of the prod o ensure that	cessing data imply duct for ata, pro- ormation luct. It is any	
	March 2013						

BASF SE Global Mining Solutions 67056 Ludwigshafen, Germany www.basf.com/miningsolutions



Revision date : 12.05.2010 Version: 1.1

Page: 1/9 (30476016/SDU GEN US/EN)

### **1. Product and Company Identification**

Company BASF CORPORATION 100 Campus Drive Florham Park, NJ 07932, USA 24 Hour Emergency Response Information CHEMTREC: 1-800-424-9300 BASF HOTLINE: 1-800-832-HELP

Registrant:

### 2. Hazards Identification

### Emergency overview

Signal word:	CAUTION: !
Colour:	white
Appearance:	powder
State of matter:	solid
Odour:	ammonia-like
Health:	This product is an eye, skin and respiratory irritant.
Physical/Chemical	Slip hazard when wet., Organic powders may be capable of generating static discharges
hazards:	and creating explosive mixtures in air. Handle with caution., Refer to MSDS Section 7
	for Dust Explosion information.

### Potential health effects

### **Primary routes of entry:**

Eyes, Skin, Inhalation, Ingestion

### Potential environmental effects

Releases to the environment are to be avoided.

### **3.** Composition/Information on Ingredients

Chemical name	CAS Number	Content (Weight)	Hazardous
Urea	57-13-6	1.0 - 3.0 %	Y
Acrylamide Copolymerc	Trade Secret	86.0 - 90.0 %	Y
Hexanedioic-acid-	124-04-9	3.0 - 5.0 %	Y

This material is classified as hazardous under OSHA regulations.

Revision date : 12.05.2010 Version: 1.1

### 4. First-aid Measures

### Inhalation:

Remove to fresh air, if not breathing give artificial respiration. If breathing is difficult, give oxygen and get immediate medical attention.

### Skin:

If clothing is contaminated, remove and launder before reuse. After contact with skin, wash immediately with plenty of water and soap. Get medical attention if irritation occurs.

### Eyes:

Immediately flush the eye(s) with lukewarm, gently flowing water for 15 minutes or until the chemical is removed. Get immediate medical attention if irritation persists.

### **Ingestion:**

Do not induce vomiting. If vomiting occurs naturally, have casualty lean forward to reduce the risk of aspiration. Seek medical attention immediately.

### 5. Fire-fighting Measures

### Suitable extinguishing media:

carbon dioxide, dry powder, foam

### **Unsuitable Extinguishing Media:**

If water is used, restrict pedestrian and vehicular traffic in areas where slip hazard may exist.

### Hazardous combustion products:

Carbon and nitrogen oxides.

### Hazards during fire-fighting:

Standard procedure for chemical fires. Dust in sufficient concentration can result in an explosive mixture in air. Handle to minimize dusting and eliminate open flame and other sources of ignition.

### **Protective equipment for fire-fighting:**

Wear self-contained breathing apparatus and chemical-protective clothing.

### 6. Accidental Release Measures

### **Cleanup:**

Product becomes slippery and difficult to handle when wet. Sweep up and shovel into suitable containers for disposal. Avoid raising dust. Wear suitable protective equipment. Should not be released into the environment.

### 7. Handling and Storage

### <u>Handling</u>

General advice:

Revision date : 12.05.2010 Version: 1.1

### Page: 3/9 (30476016/SDU GEN US/EN)

As with all industrial chemicals, use good industrial practices when handling. Avoid eye, skin, and clothing contact. Do not inhale. Do not taste or swallow. Use only with adequate ventilation. Slip hazard when wet. Clean up spills promptly

### Protection against fire and explosion:

Combustible powder. Avoid creating dusty conditions. - Grounding is required when emptying into a conductive container. - When flammable solvents are present, the container must be inerted or the system otherwise designed to prevent or contain an explosion. Seek expert advice. In addition, for products packaged in fused-lined (coated) fiberdrums, fiber drums with conductive liners, steel drums, steel pails, andType "C" FIBC (bulk bags), or other conductive the following instructions also apply: - Always ground this package before emptying. The user is responsible for designing the system to handle solid and ensuring proper training of employees in the system's use.

### Storage

### General advice:

Keep container tightly closed in a dry, cool and well-ventilated place. Avoid wet, damp or humid conditions, temperature extremes and ignition sources.

> for industrial use only <

### 8. Exposure Controls and Personal Protection

ORGANIC DUST	ACGIH	TWA value: 10 mg/m3 Inhalable particles.
		TWA value: 3 mg/m3 Respirable particles.
	OSHA	PEL: 5 mg/m3 Respirable fraction.
		PEL: 15 mg/m3 Total dust.
	Z1A	TWA value: 5 mg/m3 Respirable fraction.
		TWA value: 15 mg/m3 Total dust.
	OSHA	TWA value: 15 millions of particles per cubic foot of air Respirable fraction.
		TWA value: 50 millions of particles per cubic foot of air Total dust.
		TWA value: 5 mg/m3 Respirable fraction.
		TWA value: 15 mg/m3 Total dust.
Hexanedioic-acid- (124-04-9)	ACGIH	TWA value: 5 mg/m3

### Exposure Guidelines

### **Engineering Controls:**

Work in well ventilated areas. Do not breathe dust. Ensure good ventilation and local exhaust.

### Personal protective equipment

### **Respiratory protection:**

Wear a NIOSH-certified respirator as necessary.

Eye protection:

Revision date : 12.05.2010 Version: 1.1 Page: 4/9 (30476016/SDU GEN US/EN)

Wear safety goggles (chemical goggles) if there is potential for airborne dust exposures.

### **Body protection:**

Wear chemical resistant gloves and protective clothing.

### General safety and hygiene measures:

Eye wash station and safety shower should be available in immediate work area., Select additional protective equipment based upon potential for exposure.

### 9. Physical and Chemical Properties

Colour:	white	
Form:	powder	
State of matter:	solid	
Odour:	ammonia-like	
pH value:		Not tested
Evaporation rate:		Not tested
Flash point:		Not applicable
Melting point:		Not applicable
Boiling point:		Not applicable
Vapour pressure:		Not tested
Bulk density:	approx. 600 kg/m3	
Vapour density:		Not tested
Partitioning coefficient n-		Not applicable
octanol/water (log Pow):		
Viscosity, dynamic:		Not tested
% Volatiles:		not determined
Solubility in water:		Forms a viscous solution
Solubility in other		Not tested
solvents:		

### 10. Stability and Reactivity

### **Stability:**

Stable.

**Conditions to avoid:** Avoid humidity. Avoid high temperatures. Avoid handling conditions that create dust. Avoid electro-static discharge. Avoid sources of ignition.

Substances to avoid: Strong oxidizing agents., (may degrade polymer)

**Possibility of Hazardous Reactions:** Product has a high minimum ignition energy; however, dust may be ignited under some conditions.

Hazardous decomposition products: No decomposition expected under normal storage conditions.

### **11. Toxicological Information**

### Acute oral toxicity:

LD50 / oral / rat: > 2,000 mg/kg

### Acute inhalation toxicity:

Not determined.

### Acute dermal toxicity:

dermal: Not tested

Revision date : 12.05.2010

Version: 1.1

Page: 5/9 (30476016/SDU_GEN_US/EN)

Skin irritation:

not determined

Information on: Urea

(Humans) Mild skin irritant.

-----

### Eye irritation:

Not determined.

Information on: Urea

: Irritant. (Humans)

_____

-----

Information on: Hexanedioic-acid-

(Rabbits) Severe Irritant.

Skin Sensitization:

not determined

Chronic toxicity: not determined

Subacute Toxicity:

not determined

### Subchronic Toxicty:

Information on: Hexanedioic-acid-

Contains adipic acid, which exhibited the following - male and female rats exposed to adipic acid in the form of an aerosol dust (126 mcg/l) for 6 hours a day for 15 days showed no signs of toxicity.

### Genetic toxicity:

Not determined.

 Information on: Hexanedioic-acid-
 Information on: Urea
Information on: Hexanedioic-acid-

### **Carcinogenicity:**

_____

-----

None of the components in this product at concentrations greater than 0.1% are listed by IARC; NTP, OSHA or ACGIH as a carcinogen.

Information on: Hexanedioic-acid-

Information on: Urea

Revision date : 12.05.2010 Version: 1.1

ation on: Hexanedioic-acid- ation on: Urea
ation on: Urea
ation on: Urea
ation on: Hexanedioic-acid-
ation on: Hexanedioic-acid-
rg on days 6 through 15 of gestation. No effects on maternal or fetal rved
ation on: Urea
ation on: Hexanedioic-acid-
rg on days 6 through 15 of gestation. No effects on maternal or fetal rved

### **12. Ecological Information**

Toxicity to fish:

Fish general (Pisces)/96 h/LC50: 1 - 10 mg/l

Toxicity to aquatic invertebrates:

48 h/EC50: 10 - 100 mg/l

Toxicity to aquatic plants:

/72 h/EC50: 1 - 10 mg/l

Toxicity to microorganisms:

Not tested

**Biodegradation:** 

Not tested

### **Bioaccumulation:**

Considered to be zero due to charge and high molecular weight

Revision date : 12.05.2010 Version: 1.1

### **13.** Disposal Considerations

### Waste disposal of substance:

Dispose of in accordance with national, state and local regulations.

Resource Conservation and Recovery Act (RCRA): Not a hazardous waste under RCRA (40 CFR 261).

### **14. Transport Information**

### **U.S. Department of Transportation**

The listed Transportation Classification does not address regulatory variations due to changes in package size, mode of shipment or other regulatory descriptors.

### **Road transport:**

Special shipping information:	Not classified as a dangerous good under transport regulations.
Air transport:	
Special shipping information:	Not classified as a dangerous good under transport regulations.
Inland-waterway transport:	
Special shipping information:	Not classified as a dangerous good under transport regulations.

### **15. Regulatory Information**

US: Toxic Substances Control Act (TSCA):	All component(s) comprising this product are either exempt or listed on the TSCA inventory
Canada: Domestic Substances List (DSL):	All components either exempt or listed on the DSL

### **United States - Regulations**

### SARA Section 311/312 Hazard Communication Standard:

Acute Health:	Y	Fire:	Ν
Chronic Health:	Ν	Reactivity:	Ν
		Sudden release of pressure:	Ν

### SARA Section 313 Toxic Chemical List:

No components listed.

### **OSHA hazard category:**

This material is classified as hazardous under OSHA regulations.

### Toxic Substances Control Act (TSCA) Significant New Use Rule (SNUR):

This product is not subject to a Significant New Use Rule (SNUR).

### Toxic Substances Control Act (TSCA) Section 5(e) Consent Orders:

This product is not subject to a Section 5(e) Consent Order.

### Toxic Substances Control Act (TSCA) Section 5(f):

This product is not subject to a Section 5(f)/6(a) rule.

### Toxic Substances Control Act (TSCA) Section 12(b) Export Notification:

Revision date : 12.05.2010 Version: 1.1 Page: 8/9 (30476016/SDU GEN US/EN)

No components listed.

### Clean Air Act - Hazardous Air Pollutants (HAP):

Chemical name	CAS Number	Notification
2-Propenamide	79-06-1	Listed
This product does not contain any Hazardous Air Pollut	ants (HAP), as defined by the	he U.S. Clean Air Act
Section 112 (40 CFR 61).		

### Clean Air Act 111 - Volatile Organic Compounds (VOC):

Chemical name	CAS Number	<b>Notification</b>
Urea	57-13-6	Listed
2-Propenamide	79-06-1	Listed
Hexanedioic-acid-	124-04-9	Listed

### Clean Air Act 602 - Ozone Depleting Substances (ODS):

This product neither contains, nor was manufactured with, a Class I or Class II ozone depleting substance (ODS), as defined by the U.S. Clean Air Act Section 602 (40 CFR 82, Subpt. A, App. A+B).

### Clean Water Act - Priority Pollutants (PP):

This product does not contain any priority pollutants listed under the U.S. Clean Water Act Section 307(2)(1) Priority Pollutant List (40 CFR 401.15).

### Pennsylvania Right to Know:

Chemical name	CAS Number	Notification
2-Propenamide	79-06-1	Environmental hazard.
2-Propenamide	79-06-1	Listed
Hexanedioic-acid-	124-04-9	Environmental hazard.
Hexanedioic-acid-	124-04-9	Listed

### California Proposition 65 - Chemicals Known to the State to Cause Cancer:

Chemical name	CAS Number	<b>Notification</b>	
2-Propenamide	79-06-1	Carcinogenic.	
WARNING: This product contains a chemical known to the State of California to cause cancer.			

### California Proposition 65 - Chemicals Known to the State to Cause Reproductive Toxicity:

No components listed.

### International Regulations

### **Chemical Weapons Convention:**

This product does not contain any component(s) listed under the Chemical Weapons Convention Schedule of Chemicals.

### **16. Other Information**

MAGNAFLOC® 455 (US) is a registered trademark of BASF Corporation or BASF SE IMPORTANT: WHILE THE DESCRIPTIONS, DESIGNS, DATA AND INFORMATION CONTAINED HEREIN ARE PRESENTED IN GOOD FAITH AND BELIEVED TO BE ACCURATE, IT IS PROVIDED FOR YOUR GUIDANCE ONLY. BECAUSE MANY FACTORS MAY AFFECT PROCESSING OR APPLICATION/USE, WE RECOMMEND THAT YOU MAKE TESTS TO DETERMINE THE SUITABILITY OF A PRODUCT FOR YOUR PARTICULAR PURPOSE PRIOR TO USE. NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE MADE REGARDING PRODUCTS DESCRIBED OR DESIGNS, DATA OR INFORMATION

Revision date : 12.05.2010

Version: 1.1

Page: 9/9 (30476016/SDU GEN US/EN)

SET FORTH, OR THAT THE PRODUCTS, DESIGNS, DATA OR INFORMATION MAY BE USED WITHOUT INFRINGING THE INTELLECTUAL PROPERTY RIGHTS OF OTHERS. IN NO CASE SHALL THE DESCRIPTIONS, INFORMATION, DATA OR DESIGNS PROVIDED BE CONSIDERED A PART OF OUR TERMS AND CONDITIONS OF SALE. FURTHER, YOU EXPRESSLY UNDERSTAND AND AGREE THAT THE DESCRIPTIONS, DESIGNS, DATA, AND INFORMATION FURNISHED BY BASF HEREUNDER ARE GIVEN GRATIS AND BASF ASSUMES NO OBLIGATION OR LIABILITY FOR THE DESCRIPTION, DESIGNS, DATA AND INFORMATION GIVEN OR RESULTS OBTAINED, ALL SUCH BEING GIVEN AND ACCEPTED AT YOUR RISK.

Due to the merger of CIBA and BASF Group all Material Safety Data Sheets have been reassessed on the basis of consolidated information. This may have resulted in changes of the Material Safety Data Sheets. In case you have questions concerning such changes please contact us at the address mentioned in Section I.

END OF DATA SHEET

# MAGNAFLOC® 455 US MAT NO: 50184792 We create chemistry

### CAUTION:

The product can cause skin and eye irritation., May cause some irritation to the respiratory system if dust is 7 for Dust Explosion information. Caution - Slippery when wet! Combustible organic powder. Avoid creating nhaled., Avoid the formation and deposition of dust., Avoid sources of ignition. Refer to MSDS Section dusty conditions, dust build-up or formation of dust clouds. Avoid all sources of ignition: heat, sparks, open flame.

water with eyelids held open. Seek medical attention. INGESTION: Rinse mouth and then drink plenty of water. Do not induce vomiting. Immediate medical attention required. INHALATION: If difficulties occur after dust has FIRST AID: GENERAL: Remove contaminated clothing. SKIN: Wash thoroughly with soap and water. If rritation develops, seek medical attention. EYES: Wash affected eyes for at least 15 minutes under running been inhaled, remove to fresh air and seek medical attention.

slippery when wet. Wear a self-contained breathing apparatus. The degree of risk is governed by the burning substance and the fire conditions. Contaminated extinguishing water must be disposed of in accordance with N CASE OF FIRE: EXTINGUISHING MEDIA: dry powder, foam MAY BE EMITTED: carbon oxides nitrogen oxides The substances/groups of substances mentioned can be released in case of fire. Very official regulations.

N CASE OF SPILLS OR LEAKS: Use personal protective clothing. Do not discharge into drains/surface waters/groundwater. Spilled product which becomes wet or spilled aqueous solution create a hazard because of their slippery nature. Avoid raising dust.

EMPTY CONTAINERS: Dispose of in a licensed facility. Recommend crushing, puncturing or other means to prevent unauthorized use of used containers.

DISPOSAL: Dispose of in accordance with national, state and local regulations.

Store in unopened original containers in a cool and dry place. Avoid wet, damp or humid conditions, temperature extremes HANDLING AND STORAGE: Breathing must be protected when large quantities are decanted without local exhaust ventilation. Handle in accordance with good industrial hygiene and safety practice. Forms slippery surfaces with water. and ignition sources

Avoid extreme heat.

IN CASE OF CHEMICAL EMERGENCY: Call CHEMTREC day or night for assistance and information concerning spilled ATTENTION: Refer to our technical bulletin and material safety data sheet regarding safety, usage, application, hazards, material, fire, explosive, and other chemical accidents. 800-424-9300 or 703-527-3887 outside the US. procedures and disposal of this product. Consult your supervisor for additional information.

RTK: Ethanaminium, N,N,N-trimethyl-2-[(1-oxo-2-propenyl)oxy]-, chloride, polymer with 2-propenamide 69418-26-4; Water 7732-18-5; adipic acid 124-04-9; urea 57-13-6; Ethanaminium, N,N,N-trimethyl-2-[(1-oxo-2-propenyl)oxy]-, chloride 44992-01-0; acrylamide 79-06-1

### **PROPER SHIPPING NAME:** NOT REQUIRED

NO:1	GROSS	0.0	0.0
	NET	0.0	0.0

5 D В

B-77

2	1	0	Х
Н	ш	R	٩

### **Technical Information**

Page 1 of 3

### **Global Mining Solutions**

TI/EVH 0058 e March 2013

Supersedes edition dated April 2011



Magnafloc[®] 455

### **Cationic flocculant**

Description

**Principal uses** 

**Typical properties** 

Dosage depends on application but normally lies in the range 2-200 g/tonne of dry substrate flocculated. Physical form: Particle size: Bulk density: pH of 1 % solution at 25 °C:

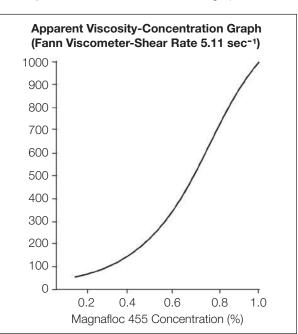
operations including the following:

2. Metal hydroxide thickening and filtration

1. Acid leach CCD (uranium)

3. Acid leach (zinc)

Viscosity at 25 °C:


Off-white granular powder  $98\% < 1400 \mu m$ 0.75 g/cm³ 4.0 See graph and table

Magnafloc 455 is a high molecular weight slightly cationic polyacrylamide

Magnafloc 455 has found application in a variety of mineral processing

flocculant supplied as a free flowing granular powder.

4. Base metal concentrates thickening and filtration



Application & Storage	olution concentrations:	
		0.25-0.5% max. 0.025-0.1% max.
	Recommended s	torage periods:
	Solid: Stock solution:	up to two years 1–2 days
	Storage of polym	er should be in a cool, dry place.
	Details on prepar representative.	ation and application can be obtained from a BASF
Solution viscosity data		

Magnafloc 455		Shear rate (sec ⁻¹ )					
concentration (%)		5.11	10.22	170	340	511	1022
		Viscosity (	cP)				
	1.0	990	650	113	80	70	55
	0.5	200	150	30	27	24	19
	0.25	80	50	15	12	10	8
	0.10	50	25	6	5	5	4
fechnical service		request. Corrosivity towards most standard materials of construction is low, but aluminium and galvanised equipment should be avoided. Advice and assistance in the running of laboratory and plant tests to se the correct product and determine the best application can be provide by representatives of BASF, who are experienced in mineral processing applications.				sts to select	
Health & Safety		Magnafloc 455 has a low order of oral toxicity and does not present any abnormal problems in its handling or general use. However as with all cationic polyelectrolytes the product exhibits toxicity towards fish. It is important that precautions are taken where the product may come into direct contact with fresh water courses, streams and rivers.					
			roduct(s) des	andling and a cribed in this tion sheet.			

Note

The data contained in this publication are based on our current knowledge and experience. In view of the many factors that may affect processing and application of our product, these data do not relieve processors from carrying out their own investigations and tests; neither do these data imply any guarantee of certain properties, nor the suitability of the product for a specific purpose. Any descriptions, drawings, photographs, data, proportions, weights etc. given herein may change without prior information and do not constitute the agreed contractual quality of the product. It is the responsibility of the recipient of our products to ensure that any proprietary rights and existing laws and legislation are observed.

March 2013

BASF SE Global Mining Solutions 67056 Ludwigshafen, Germany www.basf.com/miningsolutions



### MATERIAL SAFETY DATA SHEET

Page 1 of 5 Rev. Date: 6/09/2009

1. <b>IDENTIFIC</b>	ATION OF THE PR	ODUCT AN	D THE C	OMPANY		
Product Name:		NS 6655				
Company:		<b>Neo Solution</b> P.O. Box 26 Beaver, PA 1				
Emergency Telephone N	umber:	(724) 728-184	17		Fax:	(724) 728-3440
Product Use:		Process aid fo	r industrial	applications.		
2. HAZARDS I	DENTIFICATION					
Appearance and Odor:	Form: Granul	lar solid	Color:	White	Odor:	None
Emergency Overview						
Aqueous solutions or pov	wders that become wet rend	der surfaces extr	emely slipp	ery.		
3. COMPOSIT	ION / INFORMATI	ON ON ING	<b>REDIEN</b> '	TS		
Identification:	Anionic water-soluble po	olymer.				
Regulated Components:	None					
4. FIRST AID	MEASURES					
Inhalation:	No hazards which requir	e special first aid	d measures.			
Skin contact:	Wash with water and soap as a precaution. In case of persistent skin irritation, consult a physician.					
Eye contact:	Rinse thoroughly with plenty of water, also under the eyelids. In case of persistent eye irritation, consult a physician.					
Ingestion:	No hazards which requir	e special first aid	d measures.	The product i	is not conside	red toxic based on studies

### 5. FIRE-FIGHTING MEASURES

on laboratory animals.

Unsuitable extinguishing media: None

Product Name:	NS 6655	Page 2 of 5 Rev. Date: 6/09/2009
Suitable extinguishing media:	Carbon dioxide (CO ₂ ). Foam. Dry powder. Water. Water spray.	
Special fire-fighting precautions:	Aqueous solutions or powders that become wet render surfaces extre	mely slippery.
Special protective equipment for firefighters:	No special protective equipment required.	
Flash point:	Not applicable	
Autoignition temperature:	Not applicable	

### 6. ACCIDENTAL RELEASE MEASURES

Personal precautions: No special precautions required.

Environmental precautions: As with all chemical products, **DO NOT** flush into surface water.

Methods for cleaning up: DO NOT flush with water. Clean up promptly by scoop or vacuum. Keep in suitable and closed containers for disposal. <u>After cleaning</u>, flush away traces with water.

### 7. HANDLING AND STORAGE

### <u>Handling</u>

Safe handling advice:	Avoid contact with skin and eyes. Avoid dust formation. <b>DO NOT</b> breathe dust. Wash hands before breaks and at the end of workday.
Storage:	Keep in a cool, dry place (5 - 35° C).

### 8. EXPOSURE CONTROLS / PERSONAL PROTECTION

### Occupational Exposure Limits

No exposure limits noted for ingredient(s).

### Engineering measures

Use local exhaust if dusting occurs. Natural ventilation is adequate in absence of dusts.

### Personal protection equipment

Respiratory protection:	Dust safety masks are recommended where concentration of total dust is more than 10 mg / $m^3$ .
Hand protection:	Rubber gloves.
Eye protection:	Safety glasses with side-shields. DO NOT wear contact lenses.

 Product Name:
 NS 6655
 Page 3 of 5

 Rev. Date: 6/09/2009

Skin and body protection:

Chemical resistant apron or protective suit if splashing or repeated contact with solution is likely.

Hygiene measure

Handle in accordance with good industrial hygiene and safety practice. Wash hands before breaks and at the end of workday.

### 9. PHYSICAL AND CHEMICAL PROPERTIES

- Form: Color: Odor: pH: Melting point (° C): Flash point (° C): Autoignition temperature (° C): Approx. bulk density: Water solubility: L_{og}P_{ow}:
- granular solid white none 4 - 9 @ 5 g/L Not applicable. Not applicable. 0.80 Completely miscible ~0

### **10. STABILITY AND REACTIVITY**

Stability:	Hazardous polymerization does not occur. Stable.
Materials to avoid:	Oxidizing agents may cause exothermic reactions.
Hazardous decomposition products:	Thermal decomposition may produce: Nitrogen oxides (NOx). Carbon oxides (COx).

### 11. TOXICOLOGICAL INFORMATION

### Acute toxicity

Skin:	The results of testing on rabbits showed this material to be non-toxic even at high dose levels.
Oral:	LD50 / oral / rat > 5000 mg / kg
Inhalation:	The product is not expected to be toxic by inhalation.
Irritation	
Skin:	The results of testing on rabbits showed this material to be non-irritating to the skin.
Eyes:	Testing conducted according to the Draize technique showed the material produces no corneal or iridial effects and only slight transitory conjuctival effects similar to those which all granular materials have on conjuctivae.

### Sensitization

The results of testing on guinea pigs showed this material to be non-sensitizing.

Product Name:	NS 6655	Rev. Date: 6/09/2009
2	A two-year feeding study on rats did not reveal adverse health ef did not reveal adverse health effects.	ffects. A one-year feeding study on dogs
12. ECOLOGICA	L INFORMATION	
Aquatic toxicity		
Toxicity to fish:	LC50 / 96 hours > 100 mg/L (OECD 203)	
Toxicity to daphnia:	LC50 / Daphnia m./ 48 hours > 100 mg/L (OECD 202)	
Toxicity to algae:	IC50 / Scenedesmus subspicatus / 72 hours > 100 mg/L $$	L (OECD 201)
Environmental fate		
Persistence and degradabili	ty Not readily biodegradable	
Hydrolysis:	Does not hydrolyze.	
$L_{og}P_{ow}$ :	~0	

Page 4 of 5

### 13. DISPOSAL CONSIDERATIONS

Disposal: Not classified as dangerous in the meaning of DOT regulations.

Does not bioaccumulate.

Contaminated packaging: Rinse empty containers with water and use the rinse water to prepare the working solution. Can be landfilled or incinerated, when in compliance with local, state/provincial and federal regulations.

### 14. TRANSPORT INFORMATION

Remarks: Not classified as dangerous in the meaning of transport regulations.

### **15. REGULATORY INFORMATION**

### US SARA Reporting Requirements

### SARA Title III Sections

### State Regulations

**Bioaccumulation:** 

California Proposition 65 Information:

The following statement is made in order to comply with the California Safe Drinking Water and Toxic Enforcement Act of 1986. This product contains the following substance(s) known to the State of California to cause cancer: Acrylamide.

		1 age 5 61 5
Product Name:	NS 6655	Rev. Date: 6/09/2009
International Inventories		
USA (TSCA):	All components of this product are either listed on the inventory or are	exempt from listing.
Australia (AICS):	All components of this product are either listed on the inventory or are	exempt from listing.
Canada (DSL):	All components of this product are either listed on the inventory or are	exempt from listing.
China (IECSC):	All components of this product are either listed on the inventory or are	exempt from listing.
European Union (EINECS/ELINCS):	All components of this product are either listed on the inventory or are	exempt from listing.
Japan (ENCS):	All components of this product are either listed on the inventory or are	exempt from listing.
Korea (ECL):	All components of this product are either listed on the inventory or are	exempt from listing.
Philippines (PICCS):	All components of this product are either listed on the inventory or are	exempt from listing.

Page 5 of 5

### 16. OTHER INFORMATION

Person to contact: Product Manager

#### NFPA and HMIS Ratings

	NFPA	HMIS
Health	1	1
Flammability	1	1
Instability	0	
Physical Hazard		0

This MSDS was prepared in accordance with the following:

ISO 11014-1: Material Safety Data Sheet for Chemical Products

ANSI Z4000.1-2004; Material Safety Data Sheets - Preparation

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information, and belief at the date of its publication. The information given is designed only as a guide for safe handling, use, processing, storage, transportation, disposal, and release, and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process unless specified in the text.

			Label Elements	
	NFPA/HMIS®	FLAMMABILTY (REB)	<u>Hazard symbol(s):</u> none <u>Signal Word</u> : none <u>Hazard statement(s):</u> Aqueous	
	4 = EXTREME 3 = HIGH 2 = MODERATE 2 = MODERATE 0 = NSIGNEFICANT	1 0 REACTIVITY	solutions or powders that become wet render surfaces extremely slippery <u>Precautionaly Statement(s)</u> :. none Prevention	
PO Box 26, Beaver, PA 15009 Emergency Phone Number 724-728-1847		SPECIAL	P280 – Wear protective gloves / protective clothing / eye protection / face	e
DOT: Not classified as dangerous in the meaning of transport regulations.	oort regulations.		protection. P273 – Avoid release to the environment.	
First Aid Measures Inhalation: Move to fresh air. No hazards which require special first aid measures. Skin contact: Wash with water and soap as a precaution. Get medical attention if i develops and persists.	oecial first aid measures. Get medical attention if irritation		Response IF INHALED: P304+P341 – If breathing is difficult, remove victim to fresh air. IF ON SKIN: P302+352 – Wash with	b
Eye contact: Rinse thoroughly with plenty of water, also under the eyelids. Get medical attention.	s. Get medical de which require first		plenty of soap and water. <u>IF IN EYES:</u> P313+P337 – If eye irritation persists: Get medical	
nigeston. Anise mount with water. <u>Convor</u> mouce vorming. No nazar aid measures. <b>Fire-Fichting Measures</b>			advice/attention. IF SWALLOWED: P301+P331 – Rinse	<u>ں</u>
Suitable extinguishing media: Water. Water spray. Foam. Dry powder. Carbon dioxide (CO ₂ ).	Carbon dioxide		mouth. Do NOT induce vomiting. Disposal	
Special fire-fighting precautions: Aqueous solutions or powders that become wet render surfaces extremely slippery. Special protective equipment for firefighters: No special protective equipment required. This product <b>MUST NOT</b> be discharged into drains.	me wet render nent required.		P501 – Dispose of contents/container in an approved waste disposal plant.	Ē
Personal precautions: No special precautions required. Environmental precautions: As with all chemical products. DO NOT flush into surface water.	into surface water.	Fill Weight:	lbs.	I
Methods for cleaning up: <b>DO NOT</b> flush with water. Clean up promptly by scoop or vacuum. Keep in suitable and closed containers for disposal. <u>After cleaning</u> , flush away traces with water.	y scoop or vacuum. away traces with	Gross Weight:	lbs.	Ι
		Lot Number:		I
Disposal: Dispose of in accordance with local, state, provincial and federal regulations. Container: Can be landfilled or incinerated, when in compliance with local, state, provincial and federal requisions.	al regulations. I, state, provincial	Fill Date:		I
ô		Refer to cur	Refer to current SDS for further information.	l



#### Section: 1. PRODUCT AND COMPANY IDENTIFICATION

Product name	:	OPTIMER® 83949
Other means of identification	:	Not applicable.
Recommended use	:	FLOCCULANT
Restrictions on use	:	Refer to available product literature or ask your local Sales Representative for restrictions on use and dose limits.
Company	:	Nalco Company 1601 W. Diehl Road Naperville, Illinois 60563-1198 USA TEL: (630)305-1000
Emergency telephone number	:	(800) 424-9300 (24 Hours) CHEMTREC
Issuing date	:	04/24/2014

#### Section: 2. HAZARDS IDENTIFICATION

#### **GHS Classification**

Not a hazardous substance or mixture.

#### GHS Label element

Precautionary Statements	<ul> <li>Prevention: Wash hands thoroughly after handling.</li> <li>Response: Specific measures: consult MSDS Section 4.</li> <li>Storage: Store in accordance with local regulations.</li> </ul>

Other hazards

: None known.

Section: 3. COMPOSITION/INFORMATION ON INGREDIENTS

No hazardous ingredients

Section: 4. FIRST AID MEAS	SURES
In case of eye contact	: Rinse with plenty of water. Get medical attention if symptoms occur.
In case of skin contact	: Wash off with soap and plenty of water. Get medical attention if symptoms occur.
If swallowed	: Rinse mouth. Get medical attention if symptoms occur.
If inhaled	: Get medical attention if symptoms occur.
Protection of first-aiders	: In event of emergency assess the danger before taking action. Do not put yourself at risk of injury. If in doubt, contact emergency responders. Use personal protective equipment as required.
	1/8

Notes to physician : No specific measures identified.

See toxicological information (Section 11)

Section: 5. FIREFIGHTING M	IEA	SURES	
Suitable extinguishing media	:	Use extinguishing measures that are appropriate to local circumstances and the surrounding environment.	
Unsuitable extinguishing media	:	None known.	
Specific hazards during firefighting.	:	Not flammable or combustible.	
Hazardous combustion products	:	Carbon oxides	
Special protective equipment for firefighters	:	Use personal protective equipment	
Specific extinguishing methods	:	Fire residues and contaminated fire extinguishing water must be disposed of in accordance with local regulations. In the event of fire and/or explosion do not breathe fumes.	
Section: 6. ACCIDENTAL RELEASE MEASURES			
Personal precautions, protective equipment and emergency procedures	:	Refer to protective measures listed in sections 7 and 8.	
Environmental precautions	:	Do not allow contact with soil, surface or ground water.	
Methods and materials for containment and cleaning up	:	Stop leak if safe to do so. Contain spillage, and then collect with non-combustible absorbent material, (e.g. sand, earth, diatomaceous earth, vermiculite) and place in container for disposal according to local / national regulations (see section 13). Flush away traces with water. For large spills, dike spilled material or otherwise contain material to ensure runoff does not reach a waterway.	
Section: 7. HANDLING AND STORAGE			
Advice on safe handling	:	Do not ingest. Wash hands thoroughly after handling. Use only with adequate ventilation.	
Conditions for safe storage	:	Keep out of reach of children. Keep container tightly closed. Store in suitable labeled containers.	
Packaging material	:	Suitable material: Keep in properly labelled containers.	
		Unsuitable material: not determined	
Section: 8 EXPOSURE CON	тр		

## Section: 8. EXPOSURE CONTROLS/PERSONAL PROTECTION

#### Components with workplace control parameters

Contains no substances with occupational exposure limit values.

Engineering measures	:	Good general ventilation should be sufficient to control worker exposure to airborne contaminants.
Personal protective equipmer	nt	
Eye protection	:	Safety glasses
Hand protection	:	Wear protective gloves. Gloves should be discarded and replaced if there is any indication of degradation or chemical breakthrough.
Skin protection	:	Wear suitable protective clothing.
Respiratory protection	:	No personal respiratory protective equipment normally required.
Hygiene measures	:	Handle in accordance with good industrial hygiene and safety practice. Remove and wash contaminated clothing before re-use. Wash face, hands and any exposed skin thoroughly after handling.

HUMAN EXPOSURE CHARACTERIZATION :

Based on our recommended product application and personal protective equipment, the potential human exposure is: Low

### Section: 9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance Colour Odour	::	Powder White Slight
Flash point	:	Not applicable.
рН	:	7.4, 0.3 % Method: ASTM E 70
Odour Threshold	:	no data available
Melting point/freezing point	:	no data available
Initial boiling point and boiling range	:	no data available
Evaporation rate	:	no data available
Flammability (solid, gas)	:	no data available
Upper explosion limit	:	no data available
Lower explosion limit	:	no data available
Vapour pressure	:	no data available
Relative vapour density	:	no data available
Relative density	:	no data available
Density	:	no data available
Water solubility	:	completely soluble
Solubility in other solvents	:	no data available
Partition coefficient: n- octanol/water	:	no data available

Auto-ignition temperature	:	no data available
Thermal decomposition	:	Carbon oxides
Viscosity, dynamic	:	no data available
Viscosity, kinematic	:	no data available
VOC	:	0.05 %

### Section: 10. STABILITY AND REACTIVITY

Chemical stability	ble under normal conditions.	
Possibility of hazardous reactions	dangerous reaction known under conc	litions of normal use.
	ie known.	
Incompatible materials	tact with strong oxidizers (e.g. chloring c acid, perchlorate, concentrated oxyg erate heat, fires, explosions and/or to	en, permanganate) may
Hazardous decomposition products	des of carbon des of nitrogen	

#### Section: 11. TOXICOLOGICAL INFORMATION

Information on likely routes of	:	Eye contact, Skin contact
exposure		

#### **Potential Health Effects**

Eyes	:	Health injuries are not known or expected under normal use.
Skin	:	Health injuries are not known or expected under normal use.
Ingestion	:	Health injuries are not known or expected under normal use.
Inhalation	:	Health injuries are not known or expected under normal use.
Chronic Exposure	:	Health injuries are not known or expected under normal use.

#### Experience with human exposure

Eye contact	:	No symptoms known or expected
Skin contact	:	No symptoms known or expected
Ingestion	:	No symptoms known or expected
Inhalation	:	No symptoms known or expected
Toxicity		
Toxicity <u>Product</u>		
	:	Acute toxicity estimate : > 5,000 mg/kg

## **OPTIMER® 83949**

Acute dermal toxicity	: no data available
Skin corrosion/irritation	: no data available
Serious eye damage/eye irritation	: no data available
Respiratory or skin sensitization	: no data available
Carcinogenicity	: no data available
Reproductive effects	: no data available
Germ cell mutagenicity	: no data available
Teratogenicity	: no data available
STOT - single exposure	: no data available
STOT - repeated exposure	: no data available
Aspiration toxicity	: no data available

#### HUMAN HAZARD CHARACTERIZATION

Based on our hazard characterization, the potential human hazard is: Low

#### Section: 12. ECOLOGICAL INFORMATION

#### Ecotoxicity

Environmental Effects	:	This product has no known ecotoxicological effects.
Product		
Toxicity to fish	:	LC50 Zebra Danio: > 100 mg/l Exposure time: 96 hrs Test substance: Representative polymer tested in water with DOC
Toxicity to daphnia and other aquatic invertebrates.	:	LC50 Ceriodaphnia dubia: 56.1 mg/l Exposure time: 48 hrs Test substance: Product
		LC50 Daphnia magna: > 100 mg/l Exposure time: 48 hrs Test substance: Representative polymer tested in water with DOC
Toxicity to algae	:	no data available
Toxicity to daphnia and other aquatic invertebrates. (Chronic toxicity)	:	LOEC: 5 mg/l Exposure time: 7 Days Species: Ceriodaphnia dubia Test substance: Product
		EC50: 9.04 mg/l Exposure time: 7 Days Species: Ceriodaphnia dubia

5/8

Test substance: Product

EC25 / IC25: 4.58 mg/l Exposure time: 7 Days Species: Ceriodaphnia dubia Test substance: Product

#### Persistence and degradability

The organic portion of this preparation is expected to be poorly biodegradable.

#### Mobility

The environmental fate was estimated using a level III fugacity model embedded in the EPI (estimation program interface) Suite TM, provided by the US EPA. The model assumes a steady state condition between the total input and output. The level III model does not require equilibrium between the defined media. The information provided is intended to give the user a general estimate of the environmental fate of this product under the defined conditions of the models. If released into the environment this material is expected to distribute to the air, water and soil/sediment in the approximate respective percentages;

Air	:	<5%
Water	:	5 - 10%
Soil	:	> 90%

The portion in water is expected to be soluble or dispersible.

#### **Bioaccumulative potential**

This preparation or material is not expected to bioaccumulate.

#### Other information

no data available

ENVIRONMENTAL HAZARD AND EXPOSURE CHARACTERIZATION Based on our hazard characterization, the potential environmental hazard is: Moderate

Based on our recommended product application and the product's characteristics, the potential environmental exposure is: Low

#### Section: 13. DISPOSAL CONSIDERATIONS

If this product becomes a waste, it is not a hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA) 40 CFR 261, since it does not have the characteristics of Subpart C, nor is it listed under Subpart D.

Disposal methods	:	Where possible recycling is preferred to disposal or incineration. If recycling is not practicable, dispose of in compliance with local regulations. Dispose of wastes in an approved waste disposal facility.
Disposal considerations	:	Dispose of as unused product. Empty containers should be taken to an approved waste handling site for recycling or disposal. Do not re-use empty containers.

#### Section: 14. TRANSPORT INFORMATION

The shipper/consignor/sender is responsible to ensure that the packaging, labeling, and markings are in compliance with the selected mode of transport.

#### Land transport (DOT)

Proper shipping name	: PRODUCT IS NOT REGULATED DURING TRANSPORTATION
Air transport (IATA)	
Proper shipping name	: PRODUCT IS NOT REGULATED DURING TRANSPORTATION
Sea Transport (IMDG/IMO)	
Proper shipping name	: PRODUCT IS NOT REGULATED DURING TRANSPORTATION
Section: 15. REGULATORY	INFORMATION

#### EPCRA - Emergency Planning and Community Right-to-Know Act

#### **CERCLA Reportable Quantity**

This material does not contain any components with a CERCLA RQ.

#### SARA 304 Extremely Hazardous Substances Reportable Quantity

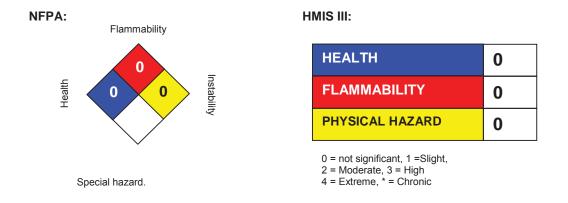
This material does not contain any components with a section 304 EHS RQ.

SARA 311/312 Hazards	: No SARA Hazards
SARA 302	: SARA 302: No chemicals in this material are subject to the reporting requirements of SARA Title III, Section 302.
SARA 313	: SARA 313: This material does not contain any chemical components with known CAS numbers that exceed the threshold (De Minimis) reporting levels established by SARA Title III, Section 313.

#### California Prop 65

This product does not contain any chemicals known to State of California to cause cancer, birth defects, or any other reproductive harm.

INTERNATIONAL CHEMICAL CONTROL LAWS :


TOXIC SUBSTANCES CONTROL ACT (TSCA) The substances in this preparation are included on or exempted from the TSCA 8(b) Inventory (40 CFR 710)

CANADIAN ENVIRONMENTAL PROTECTION ACT (CEPA) The substance(s) in this preparation are included in or exempted from the Domestic Substance List (DSL).

#### EUROPE

The substance(s) in this preparation are included in or exempted from the EINECS or ELINCS inventories

Section: 16. OTHER INFORMATION		



Due to our commitment to Product Stewardship, we have evaluated the human and environmental hazards and exposures of this product. Based on our recommended use of this product, we have characterized the product's general risk. This information should provide assistance for your own risk management practices. We have evaluated our product's risk as follows:

* The human risk is: Low

* The environmental risk is: Low

Any use inconsistent with our recommendations may affect the risk characterization. Our sales representative will assist you to determine if your product application is consistent with our recommendations. Together we can implement an appropriate risk management process.

Revision Date	:	04/24/2014
Version Number	:	1.0
Prepared By	:	Regulatory Affairs

REVISED INFORMATION: Significant changes to regulatory or health information for this revision is indicated by a bar in the left-hand margin of the SDS.

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text.

For additional copies of an MSDS visit www.nalco.com and request access.

OPTIMER® 83949	MET WEIGHT FLOCCULANT	of paper and and fatty foods apper and on skin, on clothing. Do not take internally. Avoid generating dusts. Do not breathe dust. Use with adequate ventilation. In case of contact with eyes, breathe dust. Use with plenty of water and seek medical advice. After contact uitne of paper ture of paper with skin, wash immediately with plenty of water. Use a mild soap if available. Wear suitable protective clothing.	ATTENTION: For more information refer to the material safety data sheet. Empty containers may contain residual product. DO NOT reuse containers unless properly reconditioned.	EMERGENCY TELEPHONE NUMBER(S): (800) 424-9300 (24 Hours) CHEMTREC	0 Nalco Global Eqt Soln, Door 29 0 6233 West 65th Street, CHICAGO, IL, USA 60638 630-305-CHEM 0 Material: 83949.02 Generated: 1/22/2015	U.S. DOT Shipping Name: PRODUCT IS NOT REGULATED DURING TRANSPORTATION MARINE TRANSPORT (IMDG/IMO): PRODUCT IS NOT REGULATED DURING TRANSPORTATION
NALC	An Ecolab Company LOT NO. DENSITY NET WEIGH	<b>FDA:</b> 21 CFR 176.170 Components of paper and paperboard in contact with aqueous and fatty foods and 21 CFR 176.180 Components of paper and paperboard in contact with dry foods. Limitation: For use as an adjuvant in the manufacture of paper and paperboard in an amount not to exceed that necessary to accomplish the technical effect and not to exceed 2 percent (as polymer) by weight of the paper or paperboard.		NFPA HMIS	<pre>Degree of Hazard 4 = Extreme 3 = High 2 = Moderate 1 = Low 0 = Insignificant 0 = Insignificant A = See MISDS UNLESS OTHERWISE INDICATED</pre>	U.S. DOT Shipping Name: PRODUCT IS NOT MARINE TRANSPORT (IMDG/IMO): PRODUC



PRODUCT

# **OPTIMER® 9877 PULV**

EMERGENCY TELEPHONE NUMBER(S) (800) 424-9300 (24 Hours) CHEMTREC

### 1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME :

**OPTIMER® 9877 PULV** 

APPLICATION :

COMPANY IDENTIFICATION :

Nalco Company 1601 W. Diehl Road

FLOCCULANT

Naperville, Illinois 60563-1198

EMERGENCY TELEPHONE NUMBER(S): (800) 424-9300 (24 Hours) CHEMTREC

NFPA 704M/HMIS RATING

HEALTH : 0 / 1 FLAMMABILITY : 1 / 1 INSTABILITY : 0 / 0 OTHER : 0 = Insignificant 1 = Slight 2 = Moderate 3 = High 4 = Extreme * = Chronic Health Hazard

## 2. COMPOSITION/INFORMATION ON INGREDIENTS

Based on our hazard evaluation, none of the substances in this product are hazardous.

## 3. HAZARDS IDENTIFICATION

#### **EMERGENCY OVERVIEW**

#### CAUTION

May cause irritation with prolonged contact.

Do not get in eyes, on skin, on clothing. Do not take internally. Avoid generating dusts. Do not breathe dust. Use with adequate ventilation. In case of contact with eyes, rinse immediately with plenty of water and seek medical advice. After contact with skin, wash immediately with plenty of water.

Wear suitable protective clothing.

May form explosive dust-air mixtures. Handling operations may generate combustible dust in the finely divided and suspended state. To reduce the potential for dust explosions and/or fire, do not permit dust to accumulate. Empty product containers may contain product residue. Do not pressurize, cut, heat, weld, or expose containers to flame or other sources of ignition. May evolve oxides of carbon (COx) under fire conditions. May evolve oxides of nitrogen (NOx) under fire conditions.

PRIMARY ROUTES OF EXPOSURE : Eye, Skin, Inhalation

HUMAN HEALTH HAZARDS - ACUTE :

EYE CONTACT :

May cause irritation with prolonged contact.

SKIN CONTACT :

May cause irritation with prolonged contact.



PRODUCT

# **OPTIMER® 9877 PULV**

EMERGENCY TELEPHONE NUMBER(S) (800) 424-9300 (24 Hours) CHEMTREC

**INGESTION**:

Not a likely route of exposure. There may be irritation to the gastro-intestinal tract with nausea and vomiting. May be harmful if swallowed.

INHALATION :

Irritant to respiratory system. If dust is generated, can cause mucous membrane irritation. Repeated or prolonged exposure may irritate the respiratory tract. A single brief inhalation exposure (minutes) is not likely to cause serious effects.

#### SYMPTOMS OF EXPOSURE :

Acute :

A review of available data does not identify any symptoms from exposure not previously mentioned. Chronic :

A review of available data does not identify any symptoms from exposure not previously mentioned.

#### AGGRAVATION OF EXISTING CONDITIONS :

A review of available data does not identify any worsening of existing conditions.

### 4. **FIRST AID MEASURES**

#### EYE CONTACT :

Immediately flush eye with water for at least 15 minutes while holding eyelids open. If only one eye is affected be sure to use care not to contaminate the other eye with the run-off. If irritation persists, repeat flushing. Get medical attention.

#### SKIN CONTACT :

Immediately wash with plenty of soap and water. Get medical attention.

#### INGESTION :

Do not induce vomiting without medical advice. If conscious, washout mouth and give water to drink. If reflexive vomiting occurs, rinse mouth and repeat administration of water. Get medical attention. If unconsious, do not give anything by mouth, place in the recovery position, check breathing and pulse. If necessary give artifical respiration.

#### INHALATION :

Remove to fresh air, treat symptomatically. Get medical attention.

#### NOTE TO PHYSICIAN :

Based on the individual reactions of the patient, the physician's judgement should be used to control symptoms and clinical condition.

#### 5. FIRE FIGHTING MEASURES

FLASH POINT :

None

#### EXTINGUISHING MEDIA :

Foam, Dry powder, Carbon dioxide, Other extinguishing agent suitable for Class B fires Use extinguishing media appropriate for surrounding fire. Not expected to burn.



PRODUCT

# **OPTIMER® 9877 PULV**

EMERGENCY TELEPHONE NUMBER(S) (800) 424-9300 (24 Hours) CHEMTREC

UNSUITABLE EXTINGUISHING MEDIA : Water spray, Do not use water jets.

#### FIRE AND EXPLOSION HAZARD :

May form explosive dust-air mixtures. Handling operations may generate combustible dust in the finely divided and suspended state. To reduce the potential for dust explosions and/or fire, do not permit dust to accumulate. Empty product containers may contain product residue. Do not pressurize, cut, heat, weld, or expose containers to flame or other sources of ignition. May evolve oxides of carbon (COx) under fire conditions. May evolve oxides of nitrogen (NOx) under fire conditions.

SPECIAL PROTECTIVE EQUIPMENT FOR FIRE FIGHTING : In case of fire, wear a full face positive-pressure self contained breathing apparatus and protective suit.

### 6. ACCIDENTAL RELEASE MEASURES

#### PERSONAL PRECAUTIONS :

Restrict access to area as appropriate until clean-up operations are complete. Ensure adequate ventilation. Remove sources of ignition. Ensure clean-up is conducted by trained personnel only. Use personal protective equipment recommended in Section 8 (Exposure Controls/Personal Protection). Notify appropriate government, occupational health and safety and environmental authorities. Spill may be slippery.

#### METHODS FOR CLEANING UP :

For powder: Remove as much as possible with broom, scoop or vacuum, as the addition of water causes slippery floor conditions. Reclaim into recovery or salvage drums. Dispose of material in compliance with regulations indicated in Section 13 (Disposal Considerations).

**ENVIRONMENTAL PRECAUTIONS :** 

Do not contaminate surface water.

### 7. HANDLING AND STORAGE

#### HANDLING :

Do not get in eyes, on skin, on clothing. Do not take internally. Use with adequate ventilation. Avoid generating dusts. Keep the containers closed when not in use. Ensure all containers are labeled. Use personal protective equipment recommended in Section 8 (Exposure Controls/Personal Protection). Empty product containers may contain product residue. Do not pressurize, cut, heat, weld, or expose containers to flame or other sources of ignition. Do not use, store, spill or pour near heat, sparks or open flame. Maintain good housekeeping practices.

#### STORAGE CONDITIONS :

Store in a cool well ventilated area away from direct sunlight. Store separately from oxidizers. Keep in dry place. Store away from heat and sources of ignition. Connections must be grounded to avoid electrical charges.

#### SUITABLE CONSTRUCTION MATERIAL :

Compatibility with Plastic Materials can vary; we therefore recommend that compatibility is tested prior to use.



PRODUCT

# **OPTIMER® 9877 PULV**

EMERGENCY TELEPHONE NUMBER(S) (800) 424-9300 (24 Hours) CHEMTREC

### 8. EXPOSURE CONTROLS/PERSONAL PROTECTION

#### OCCUPATIONAL EXPOSURE LIMITS :

Exposure guidelines have not been established for this product. Available exposure limits for the substance(s) are shown below.

Substance(s)	Category:	ppm	mg/m3	Non-Standard Unit
Inhalable (Total Dust) Nuisance Particulates (Inhalable particles.)	ACGIH/TWA		10	Unit
Inhalable (Total Dust) Nuisance Particulates (Respirable particles.)	ACGIH/TWA		3	
Inhalable (Total Dust) Nuisance Particulates (Respirable fraction.)	OSHA Z1/PEL		5	
Inhalable (Total Dust) Nuisance Particulates (Total dust.) Inhalable (Total Dust) Nuisance Particulates (Respirable	OSHA Z1/PEL Z3/TWA		15	15 MPPCF
fraction.) Inhalable (Total Dust) Nuisance Particulates (Total dust.)	Z3/TWA			50 MPPCF
Inhalable (Total Dust) Nuisance Particulates (Respirable fraction.)	Z3/TWA		5	
Inhalable (Total Dust) Nuisance Particulates (Total dust.)	Z3/TWA		15	

#### **ENGINEERING MEASURES :**

Use general ventilation with local exhaust ventilation. Local exhaust ventilation may be necessary when dusts or mists are generated.

#### **RESPIRATORY PROTECTION :**

Due to its low toxicity, the hazard potential associated with this material is relatively low. If dusts are generated, use an approved air-purifying respirator. A particulate cartridge may be used.

#### HAND PROTECTION :

When handling this product, the use of chemical gloves is recommended. The choice of work glove depends on work conditions and what chemicals are handled. Please contact the PPE manufacturer for advice on what type of glove material may be suitable. Gloves should be replaced immediately if signs of degradation are observed.

#### SKIN PROTECTION :

Wear chemical resistant apron, chemical splash goggles, impervious gloves and boots.

#### EYE PROTECTION :

Wear chemical splash goggles.

#### HYGIENE RECOMMENDATIONS :

Use good work and personal hygiene practices to avoid exposure. Keep a safety shower available. Keep an eye wash fountain available. Always wash thoroughly after handling chemicals. When handling this product never eat, drink or smoke. If clothing is contaminated, remove clothing and thoroughly wash the affected area. Launder contaminated clothing before reuse.

#### HUMAN EXPOSURE CHARACTERIZATION :

Based on our recommended product application and personal protective equipment, the potential human exposure is: High



PRODUCT

# **OPTIMER® 9877 PULV**

EMERGENCY TELEPHONE NUMBER(S) (800) 424-9300 (24 Hours) CHEMTREC

### 9. PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL STATE Powder

APPEARANCE White

ODOR Slight

SOLUBILITY IN WATERInsolublepH (1 %)5.5 - 7.5VOC CONTENT0 % Calculated

Note: These physical properties are typical values for this product and are subject to change.

### 10. STABILITY AND REACTIVITY

STABILITY : Stable under normal conditions.

HAZARDOUS POLYMERIZATION : Hazardous polymerization will not occur.

CONDITIONS TO AVOID :

Avoid extremes of temperature. Moisture Heat and sources of ignition including static discharges. Avoid generating dusts.

MATERIALS TO AVOID : Contact with strong oxidizers (e.g. chlorine, peroxides, chromates, nitric acid, perchlorate, concentrated oxygen, permanganate) may generate heat, fires, explosions and/or toxic vapors.

HAZARDOUS DECOMPOSITION PRODUCTS : Under fire conditions: Oxides of carbon, Oxides of nitrogen

### 11. TOXICOLOGICAL INFORMATION

No toxicity studies have been conducted on this product.

SENSITIZATION :

This product is not expected to be a sensitizer.

CARCINOGENICITY :

None of the substances in this product are listed as carcinogens by the International Agency for Research on Cancer (IARC), the National Toxicology Program (NTP) or the American Conference of Governmental Industrial Hygienists (ACGIH).



PRODUCT

# **OPTIMER® 9877 PULV**

EMERGENCY TELEPHONE NUMBER(S) (800) 424-9300 (24 Hours) CHEMTREC

HUMAN HAZARD CHARACTERIZATION :

Based on our hazard characterization, the potential human hazard is: Low

## 12. ECOLOGICAL INFORMATION

ECOTOXICOLOGICAL EFFECTS :

No toxicity studies have been conducted on this product.

#### MOBILITY :

The environmental fate was estimated using a level III fugacity model embedded in the EPI (estimation program interface) Suite TM, provided by the US EPA. The model assumes a steady state condition between the total input and output. The level III model does not require equilibrium between the defined media. The information provided is intended to give the user a general estimate of the environmental fate of this product under the defined conditions of the models.

If released into the environment this material is expected to distribute to the air, water and soil/sediment in the approximate respective percentages;

Air	Water	Soil/Sediment
<5%	< 5%	> 90%

The portion in water is expected to be soluble or dispersible.

#### **BIOACCUMULATION POTENTIAL**

This preparation or material is not expected to bioaccumulate.

#### ENVIRONMENTAL HAZARD AND EXPOSURE CHARACTERIZATION

Based on our hazard characterization, the potential environmental hazard is: Low Based on our recommended product application and the product's characteristics, the potential environmental exposure is: Moderate

If released into the environment, see CERCLA/SUPERFUND in Section 15.

#### 13. DISPOSAL CONSIDERATIONS

If this product becomes a waste, it is not a hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA) 40 CFR 261, since it does not have the characteristics of Subpart C, nor is it listed under Subpart D.

As a non-hazardous waste, it is not subject to federal regulation. Consult state or local regulation for any additional handling, treatment or disposal requirements. For disposal, contact a properly licensed waste treatment, storage, disposal or recycling facility. Dispose of wastes in an approved incinerator or waste treatment/disposal site, in accordance with all applicable regulations. Do not dispose of wastes in local sewer or with normal garbage.



PRODUCT

**OPTIMER® 9877 PULV** 

EMERGENCY TELEPHONE NUMBER(S) (800) 424-9300 (24 Hours) CHEMTREC

### 14. TRANSPORT INFORMATION

The information in this section is for reference only and should not take the place of a shipping paper (bill of lading) specific to an order. Please note that the proper Shipping Name / Hazard Class may vary by packaging, properties, and mode of transportation. Typical Proper Shipping Names for this product are as follows.

LAND TRANSPORT :

Proper Shipping Name :

PRODUCT IS NOT REGULATED DURING TRANSPORTATION

AIR TRANSPORT (ICAO/IATA) :

Proper Shipping Name :

PRODUCT IS NOT REGULATED DURING TRANSPORTATION

MARINE TRANSPORT (IMDG/IMO) :

Proper Shipping Name :

PRODUCT IS NOT REGULATED DURING TRANSPORTATION

### 15. **REGULATORY INFORMATION**

This section contains additional information that may have relevance to regulatory compliance. The information in this section is for reference only. It is not exhaustive, and should not be relied upon to take the place of an individualized compliance or hazard assessment. Nalco accepts no liability for the use of this information.

NATIONAL REGULATIONS, USA :

OSHA HAZARD COMMUNICATION RULE, 29 CFR 1910.1200 : Based on our hazard evaluation, none of the substances in this product are hazardous.

CERCLA/SUPERFUND, 40 CFR 117, 302 : Notification of spills of this product is not required.

SARA/SUPERFUND AMENDMENTS AND REAUTHORIZATION ACT OF 1986 (TITLE III) - SECTIONS 302, 311, 312, AND 313 :

SECTION 302 - EXTREMELY HAZARDOUS SUBSTANCES (40 CFR 355) : This product does not contain substances listed in Appendix A and B as an Extremely Hazardous Substance.

SECTIONS 311 AND 312 - MATERIAL SAFETY DATA SHEET REQUIREMENTS (40 CFR 370) : Our hazard evaluation has found that this product is not hazardous under 29 CFR 1910.1200.

Under SARA 311 and 312, the EPA has established threshold quantities for the reporting of hazardous chemicals. The current thresholds are: 500 pounds or the threshold planning quantity (TPQ), whichever is lower, for extremely hazardous substances and 10,000 pounds for all other hazardous chemicals.



PRODUCT

# **OPTIMER® 9877 PULV**

EMERGENCY TELEPHONE NUMBER(S) (800) 424-9300 (24 Hours) CHEMTREC

SECTION 313 - LIST OF TOXIC CHEMICALS (40 CFR 372) : This product does not contain substances on the List of Toxic Chemicals.

#### TOXIC SUBSTANCES CONTROL ACT (TSCA) :

The substances in this preparation are included on or exempted from the TSCA 8(b) Inventory (40 CFR 710)

FOOD AND DRUG ADMINISTRATION (FDA) Federal Food, Drug and Cosmetic Act :

When use situations necessitate compliance with FDA regulations, this product is acceptable under : 21 CFR 176.170 Components of paper and paperboard in contact with aqueous and fatty foods and 21 CFR 176.180 Components of paper and paperboard in contact with dry foods.

FEDERAL WATER POLLUTION CONTROL ACT, CLEAN WATER ACT, 40 CFR 401.15 / formerly Sec. 307, 40 CFR 116.4 / formerly Sec. 311 :

Substances listed under this regulation are not intentionally added or expected to be present in this product. Listed components may be present at trace levels.

CLEAN AIR ACT, Sec. 112 (40 CFR 61, Hazardous Air Pollutants), Sec. 602 (40 CFR 82, Class I and II Ozone Depleting Substances) :

Substances listed under this regulation are not intentionally added or expected to be present in this product. Listed components may be present at trace levels.

CALIFORNIA PROPOSITION 65 :

Substances listed under California Proposition 65 are not intentionally added or expected to be present in this product.

#### MICHIGAN CRITICAL MATERIALS :

Substances listed under this regulation are not intentionally added or expected to be present in this product. Listed components may be present at trace levels.

STATE RIGHT TO KNOW LAWS :

Substances listed under this regulation are not intentionally added or expected to be present in this product. Listed components may be present at trace levels.

NATIONAL REGULATIONS, CANADA :

WORKPLACE HAZARDOUS MATERIALS INFORMATION SYSTEM (WHMIS) : This product has been classified in accordance with the hazard criteria of the Controlled Products Regulations (CPR) and the MSDS contains all the information required by the CPR.

WHMIS CLASSIFICATION : Not considered a WHMIS controlled product.

CANADIAN ENVIRONMENTAL PROTECTION ACT (CEPA) : The substance(s) in this preparation are included in or exempted from the Domestic Substance List (DSL).



PRODUCT

# **OPTIMER® 9877 PULV**

EMERGENCY TELEPHONE NUMBER(S) (800) 424-9300 (24 Hours) CHEMTREC

#### AUSTRALIA

All substances in this product comply with the National Industrial Chemicals Notification & Assessment Scheme (NICNAS).

#### CHINA

All substances in this product comply with the Provisions on the Environmental Administration of New Chemical Substances and are listed on the Inventory of Existing Chemical Substances China (IECSC).

#### EUROPE

The substances in this preparation have been reviewed for compliance with the EINECS or ELINCS inventories.

#### JAPAN

All substances in this product comply with the Law Regulating the Manufacture and Importation Of Chemical Substances and are listed on the Existing and New Chemical Substances list (ENCS).

#### KOREA

All substances in this product comply with the Toxic Chemical Control Law (TCCL) and are listed on the Existing Chemicals List (ECL)

#### PHILIPPINES

All substances in this product comply with the Republic Act 6969 (RA 6969) and are listed on the Philippines Inventory of Chemicals & Chemical Substances (PICCS).

### 16. OTHER INFORMATION

Due to our commitment to Product Stewardship, we have evaluated the human and environmental hazards and exposures of this product. Based on our recommended use of this product, we have characterized the product's general risk. This information should provide assistance for your own risk management practices. We have evaluated our product's risk as follows:

- * The human risk is: Low
- * The environmental risk is: Low

Any use inconsistent with our recommendations may affect the risk characterization. Our sales representative will assist you to determine if your product application is consistent with our recommendations. Together we can implement an appropriate risk management process.

This product material safety data sheet provides health and safety information. The product is to be used in applications consistent with our product literature. Individuals handling this product should be informed of the recommended safety precautions and should have access to this information. For any other uses, exposures should be evaluated so that appropriate handling practices and training programs can be established to insure safe workplace operations. Please consult your local sales representative for any further information.

#### REFERENCES

Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices, American Conference of Governmental Industrial Hygienists, OH., (Ariel Insight CD-ROM Version), Ariel Research Corp., Bethesda, MD.



PRODUCT

# **OPTIMER® 9877 PULV**

EMERGENCY TELEPHONE NUMBER(S) (800) 424-9300 (24 Hours) CHEMTREC

Hazardous Substances Data Bank, National Library of Medicine, Bethesda, Maryland (TOMES CPS CD-ROM Version), Micromedex, Inc., Englewood, CO.

IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man, Geneva: World Health Organization, International Agency for Research on Cancer.

Integrated Risk Information System, U.S. Environmental Protection Agency, Washington, D.C. (TOMES CPS CD-ROM Version), Micromedex, Inc., Englewood, CO.

Annual Report on Carcinogens, National Toxicology Program, U.S. Department of Health and Human Services, Public Health Service.

Title 29 Code of Federal Regulations, Part 1910, Subpart Z, Toxic and Hazardous Substances, Occupational Safety and Health Administration (OSHA), (Ariel Insight CD-ROM Version), Ariel Research Corp., Bethesda, MD.

Registry of Toxic Effects of Chemical Substances, National Institute for Occupational Safety and Health, Cincinnati, OH, (TOMES CPS CD-ROM Version), Micromedex, Inc., Englewood, CO.

Ariel Insight (An integrated guide to industrial chemicals covered under major regulatory and advisory programs), North American Module, Western European Module, Chemical Inventories Module and the Generics Module (Ariel Insight CD-ROM Version), Ariel Research Corp., Bethesda, MD.

The Teratogen Information System, University of Washington, Seattle, WA (TOMES CPS CD-ROM Version), Micromedex, Inc., Englewood, CO.

Prepared By : Product Safety Department Date issued : 08/28/2009 Version Number : 1.10

NALCO	<b>OPTIMER® 9877 PULV</b>
An Ecolab Company LOT NO. DENSITY NET WEIGHT	FLOCCULANT
<b>FDA:</b> 21 CFR 176.170 Components of paper and paperboard in contact with aqueous and fatty foods and 21 CFR 176.180 Components of paper and paperboard in contact with dry foods.	<b>CAUTION!</b> May cause irritation with prolonged contact. Do not get in eyes, on skin, on clothing. Do not take internally. Avoid generating dusts. Do not breathe dust. Use with adequate ventilation. In case of contact with eyes, rinse immediately with plenty of water and seek medical advice. After contact with skin, wash immediately with plenty of water. Wear suitable protective clothing.
	ATTENTION: For more information refer to the material safety data sheet. Empty containers may contain residual product. DO NOT reuse containers unless properly reconditioned.
NFPA HMIS	EMERGENCY TELEPHONE NUMBER(S): (800) 424-9300 (24 Hours) CHEMTREC
<pre>Degree of Hazard</pre>	Nalco Global Eqt Soln, Door 29 6233 West 65th Street, CHICAGO, IL, USA 60638 630-305-CHEM Material: 9877 PULV.02 Generated: 1/22/2015
U.S. DOT Shipping Name: PRODUCT IS NOT REGULATED DURING TRANSPORTATION MARINE TRANSPORT (IMDG/IMO): PRODUCT IS NOT REGULATED DURING TRANSPOI	T IS NOT REGULATED DURING TRANSPORTATION PRODUCT IS NOT REGULATED DURING TRANSPORTATION

B-106

00002365		SAFETY DAT		Page 1
CHARLES TENNANT & Company/Compagnie	div of CHARLES	ES TENNANT & CO TENNANT & CO ( N RD., TORONTC M9M 2G8	CANADA) LTD	CACD
PRODUCT: TENNAPRESS PE26				
Section 01: CHEM		CT AND COMP	PANY IDENTIFICATIO	DN
MANUFACTURERS	SUPPLIED BY P.O. BOX 3478 FORT SASKA ^T ALBERTA, CA T8L 2T4	TCHEWAN	MICALS	
PRODUCT NAME CHEMICAL NAME: MATERIAL USE: CHEMICAL FAMILY: CHEMICAL FORMULA: MOLECULAR WEIGHT:	(780) 992-1522 TENNAPRESS SODIUM CARI MINING CHEM CARBOHYDR/ NOT AVAILAB	S PE26 BOXYMETHYL CE MCALS. ATE. LE.	ELLULOSE (CAS NO. 9004	I-32-4).
Sectio	on 02: HAZARI	DS IDENTIFIC	TION	
ROUTE OF ENTRY:       NOT CONSIDERED TOXIC BY SKIN CONTACT.         SKIN CONTACT:       NOT AVAILABLE.         EYE       MAY CAUSE SLIGHT IRRITATION.         INHALATION       SLIGHT IRRITANT.         INHALATION CHRONIC:       NOT AVAILABLE.         INGESTION:       NOT AVAILABLE.         EFFECTS OF ACUTE EXPOSURE:       NOT AVAILABLE.         EFFECTS OF CHRONIC EXPOSURE:       NOT AVAILABLE.         NOT AVAILABLE.       NOT AVAILABLE.         EFFECTS OF CHRONIC EXPOSURE:       NOT AVAILABLE.				
Section 03: CC	MPOSITION/I	NFORMATION	ON INGREDIENTS	
Hazardous Ingredients % I	Exposure Limit	C.A.S.#	LD/50, Route,Species	LC/50 Route, Species
SODIUM CARBOXYMETHYL 60-100 N CELLULOSE	IOT AVAILABLE	9004-32-4	ORAL RAT 27000 MG/KG	NOT AVAILABLE
Sec	tion 04: FIRST	AID MEASUR	ES	
SKIN: EYE: INHALATION: INGESTION: NOTES TO PHYSICIAN: GENERAL ADVICE:	REMOVE CON 15 MINUTES. I EYE TISSUE. I MEMOVE PER DEVELOP. NO EMERGEN NO SPECIAL F	ITACT LENSES, I FORCIBLY HOLD IF IRRITATION PE SON TO FRESH ICY CARE ANTIC FIRST-AID NEEDE	F WORN. FLUSH CONTIN EYELIDS APART TO ENS RSISTS GET MEDICAL A AIR. SEEK MEDICAL ATTI IPATED. ED.	SURE IRRIGATION OF ALL
Section 05: FIRE FIGHTING MEASURES				
FLAMMABLE LIMITS IN AIR IF YES, UNDER WHICH CONDITIONS? MEANS OF EXTINCTION: SPECIAL PROCEDURES: FLASH POINT, F, COC AUTO IGNITION TEMPERATURE °C: T.D.G. FLAMMABLE CLASS: UPPER EXPLOSION LIMIT: LOWER EXPLOSION LIMIT: HAZARDOUS COMBUSTION PRODUCTS EXPLOSION DATA:	DUSTY COND WATER. CARE PROTECTIVE CHEMICAL SU NOT APPLICA IN APPROX. 370 IN AIR IS 0.150 NON REGULA NOT AVAILAB	ITIONS. 30N DIOXIDE. FC NED, POSITIVE F CLOTHING SHOU JBSTANCE. BLE. (UNDER DUSTY ( 0 KG/M3). TED. LE. LE.	PRESSURE BREATHING A	APPARATUS AND PROPER NG FIRES INVOLVING ANY
SENSITIVITY TO STATIC DISCHARGE: SENSITIVITY TO IMPACT: RATE OF BURNING: EXPLOSIVE POWER:	NOT AVAILAB NOT AVAILAB	LE. LE.	INDER DUSTY CONDITIO	NS.

#### 00002365

#### **MATERIAL SAFETY DATA SHEET**

#### **PRODUCT: TENNAPRESS PE26**

#### Section 06: ACCIDENTAL RELEASE MEASURES

CLEAN-UP PROCEDURES, LEAK/SPILL:... AVOID OPEN FLAMES, SMOKING, FRICTION SPARKS, STATIC SPARKS, WELDING AND CUTTING TOOLS IN DUSTY SURROUNDINGS.

#### Section 07: HANDLING AND STORAGE

STORAGE NEEDS:
HANDLING PROCEDURES AND
SPECIAL SHIPPING INSTRUCTIONS

STORE IN A COOL AND DRY PLACE, FOR PRODUCT INTEGRITY. AVOID CREATING DUSTY CONDITIONS.

PROTECT AGAINST PHYSICAL DAMAGE. USE PRECAUTION WHEN HANDLING OR SHIPPING ANY CHEMICAL SUBSTANCE.

#### Section 08: EXPOSURE CONTROLS/PERSONAL PROTECTION

**PROTECTIVE EQUIPMENT:** 

GLOVES/TYPE:	RUBBER.
RESPIRATOR/TYPE:	AN APPROVED DUST MASK IS RECOMMENDED UNDER DUSTY CONDITIONS.
EYE/TYPE:	SAFETY GLASSES.
FOOTWEAR/TYPE:	NOT REQUIRED.
	WEAR ADEQUATE PROTECTIVE CLOTHES.
OTHER/TYPE:	AN EYE WASH STATION AND SAFETY SHOWER SHOULD BE NEAR THE WORK
	AREA.
ENGINEERING CONTROLS:	GOOD GENERAL VENTILATION IS NORMALLY ADEQUATE.

#### Section 09: PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL STATE: ODOUR/APPEARANCE: ODOUR THRESHOLD: VAPOUR PRESSURE: REL. VAPOUR DENSITY. % VOLATILE:	SOLID (POWDER). WHITE TO TAN. NOT AVAILABLE. NOT APPLICABLE. NOT APPLICABLE.
% VOLATILE. BY VOLUME. BY WEIGHT. EVAPORATION RATE: BROWNING TEMPERATURE oC: BOILING POINT °C: FREEZING POINT °C: pH: SPECIFIC GRAVITY: SOLUBILITY IN WATER (20 °C): COEFFICIENT WATER/OIL DIST.	NOT AVAILABLE. NOT AVAILABLE. 227 (440 F). NOT AVAILABLE. NOT AVAILABLE. 6-12. 0.6-0.9. COMPLETE. NOT AVAILABLE.

#### Section 10: STABILITY AND REACTIVITY

CHEMICAL STABILITY: YES NO, WHICH CONDITIONS? COMPATIBILITY WITH OTHER SUBSTANCES:	YES UNDER NORMAL CONDITIONS OF LIGHT, PRESSURE AND TEMPERATURE.
YES NO. WHICH ONES?	NOT AVAILABLE.
REACTS VIOLENTLY WITH DECOMPOSITION:	

#### Section 11: TOXICOLOGICAL INFORMATION

REPRODUCTIVE EFFECTS: REPRODUCTIVE TOXICITY: MUTAGENICITY: TERATOGENICITY & EMBRYOTOXICITY: SYNERGISTIC MATERIALS:	NOT AVAILABLE. NOT AVAILABLE. SLIGHT. NOT AVAILABLE. NOT LISTED BY NTP. NOT REGULATED BY OSHA. NOT EVALUATED BY IARC. NOT AVAILABLE. NOT AVAILABLE. NOT AVAILABLE. NOT AVAILABLE.

#### 00002365

#### **MATERIAL SAFETY DATA SHEET**

Page 3

#### **PRODUCT: TENNAPRESS PE26**

#### Section 12: ECOLOGICAL INFORMATION

BIODEGRADABILITY NOT AV/ ENVIRONMENTAL NOT AV/
---------------------------------------------------

#### Section 13: DISPOSAL CONSIDERATIONS

**REGULATIONS.** 

#### Section 14: TRANSPORT INFORMATION

T.D.G. CLASSIFICATION:	OT APPLICABLE.
------------------------	----------------

#### Section 15: REGULATORY INFORMATION

WHMIS CLASSIFICATION:	NOT A CONTROLLED PRODUCT. THIS MSDS IS PROVIDED AS A CUSTOMER
CPR COMPLIANCE	SERVICE. THIS PRODUCT HAS BEEN CLASSIFIED IN ACCORDANCE WITH THE HAZARD
	CRITERIA OF THE CPR AND THE MSDS CONTAINS ALL OF THE INFORMATION REQUIRED BY THE CPR.

#### **Section 16: OTHER INFORMATION**

	MANUFACTURERS MSDS DATE: MSDS REVISION DATE: NOTE:	JUNE 20, 2014. The information on this Material Safety Data Sheet has been obtained from the manufacturer, and where applicable, from other reliable sources such as CCOHS and RTECS. However, CHARLES TENNANT & (COMPANY) CANADA LIMITED makes no warranties, expressed or implied, as to the accuracy, completeness or adequacy of the information contained herein, and shall not be held liable (regardless of fault) to anyone directly or indirectly for damages or injuries in the use of this product arising out of or in connection with the accuracy, completeness or adequacy of such information. Regulatory Affairs
I	PREPARATION DATE	Jun20/14

# Carboxymethylcellulose sodium salt

Harmful to aquatic life

Avoid release to the environment. - IF INHALED: Call a POISON CENTER or doctor/physician if you feel unwell. - IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. - Dispose of contents/container in accordance with municipal, provincial and federal regulations.

Sigma Chemical Company

Please refer to the original SDS for more information



# HIGH CALCIUM HYDRATED LIME

# GRAYMONT

# Section 1. Identification

GHS product identifier	: HIGH CALCIUM HYDRATED LIME
Other means of identification	: Hydrated Lime, Calcitic Hydrated Lime, Lime, Slaked lime, Lime Putty, Lime Slurry, Milk of Lime, Calcium Hydroxide.
Product code	: Not available.
Product type	: Solid.
Identified uses	
Neutralization, focculation, s	stabilization, absorption.
Supplier/Manufacturer	: GRAYMONT #200-10991 Shellbridge Way Richmond, BC V6X 3C6 Canada Phone: 1 604 207-4292 Toll free : 1 866 207-4292 Fax: 1 604 207-9014 Web Site: http://www.graymont.com/
Emergency telephone number (with hours of operation)	: CANUTEC (613-996-6666) CHEMTREC, US (800-424-9300 INTERNATIONAL: (703-527-3887)
Continu O Homen	de identification

# Section 2. Hazards identification

OSHA/HCS status	: This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200).
Classification of the substance or mixture	<ul> <li>SKIN CORROSION/IRRITATION - Category 2 SERIOUS EYE DAMAGE/ EYE IRRITATION - Category 1 CARCINOGENICITY (inhalation) - Category 1A SPECIFIC TARGET ORGAN TOXICITY (SINGLE EXPOSURE) (Respiratory tract irritation) - Category 3 SPECIFIC TARGET ORGAN TOXICITY (REPEATED EXPOSURE) - Category 1</li> </ul>
<u>GHS label elements</u> Hazard pictograms	
Signal word	: Danger
Hazard statements	<ul> <li>H318 - Causes serious eye damage.</li> <li>H315 - Causes skin irritation.</li> <li>H350 - May cause cancer if inhaled.</li> <li>H335 - May cause respiratory irritation.</li> <li>H372 - Causes damage to organs through prolonged or repeated exposure.</li> </ul>

#### Precautionary statements

Tel:+1-888-GHS-7769 (447-7769) / +1-450-GHS-7767 (447-7767) www.kmkregservices.com www.askdrluc.com www.ghssmart.com GRAYMONT

# Section 2. Hazards identification

Prevention	<ul> <li>P201 - Obtain special instructions before use.</li> <li>P202 - Do not handle until all safety precautions have been read and understood.</li> </ul>
	P281 - Use personal protective equipment as required.
	P280 - Wear protective gloves. Wear eye or face protection.
	P271 - Use only outdoors or in a well-ventilated area.
	P260 - Do not breathe dust. P270 - Do not eat, drink or smoke when using this product.
	P264 - Wash hands thoroughly after handling.
Response	: P314 - Get medical attention if you feel unwell.
	P308 + P313 - IF exposed or concerned: Get medical attention.
	P304 + P340 + P312 - IF INHALED: Remove victim to fresh air and keep at rest in a
	position comfortable for breathing. Call a POISON CENTER or physician if you feel unwell.
	P302 + P352 + P362 + P363 - IF ON SKIN: Wash with plenty of soap and water. Take off contaminated clothing. Wash contaminated clothing before reuse. P332 + P313 - If skin irritation occurs: Get medical attention. P305 + P351 + P338 + P310 - IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Immediately call a POISON CENTER or physician.
Storage	: P401 - Store to minimize dust generation.
Disposal	: P501 - Dispose of contents and container in accordance with all local, regional, national and international regulations.
azards not otherwise cla	ssified (HNOC)
Physical hazards not otherwise classified	: None known.

(PHNOC)	
Health hazards not otherwise classified (HHNOC)	: None known.

# Section 3. Composition/information on ingredients

Substance/mixture	: Mixture
Other means of	<ul> <li>Hydrated Lime, Calcitic Hydrated Lime, Lime, Slaked lime, Lime Putty, Lime Slurry, Milk</li></ul>
identification	of Lime, Calcium Hydroxide.

#### **CAS number/other identifiers**

CAS number	: Not applicable.
Product code	: Not available.

Ingredient name	%	CAS number
Calcium Hydroxide	90 - 100	1305-62-0
Crystalline silica, quartz	0.0001 - 1	14808-60-7

Crystalline silica has been found in some products at or above detection level 0.1%. Concentration is dependent upon limestone source.

Any concentration shown as a range is to protect confidentiality or is due to batch variation.

There are no additional ingredients present which, within the current knowledge of the supplier and in the concentrations applicable, are classified as hazardous to health or the environment and hence require reporting in this section.

Occupational exposure limits, if available, are listed in Section 8.

# Section 4. First aid measures

#### Description of necessary first aid measures

Eye contact	: Get medical attention immediately. Call a poison center or physician. Immediately flush eyes with plenty of water, occasionally lifting the upper and lower eyelids. Check for and remove any contact lenses. Continue to rinse for at least 20 minutes. Chemical burns must be treated promptly by a physician. Get medical attention immediately. Call a poison center or physician.
Inhalation	: Remove victim to fresh air and keep at rest in a position comfortable for breathing. If not breathing, if breathing is irregular or if respiratory arrest occurs, provide artificial respiration or oxygen by trained personnel. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation. Get medical attention. If necessary, call a poison center or physician. If unconscious, place in recovery position and get medical attention immediately. Maintain an open airway. Loosen tight clothing such as a collar, tie, belt or waistband.
Skin contact	: Get medical attention immediately. Call a poison center or physician. Flush contaminated skin with plenty of water. Wash contaminated clothing thoroughly with water before removing it, or wear gloves. Continue to rinse for at least 20 minutes. Chemical burns must be treated promptly by a physician. Wash clothing before reuse. Clean shoes thoroughly before reuse.
Ingestion	: Get medical attention immediately. Call a poison center or physician. Wash out mouth with water. Remove dentures if any. Remove victim to fresh air and keep at rest in a position comfortable for breathing. If material has been swallowed and the exposed person is conscious, give small quantities of water to drink. Stop if the exposed person feels sick as vomiting may be dangerous. Do not induce vomiting unless directed to do so by medical personnel. If vomiting occurs, the head should be kept low so that vomit does not enter the lungs. Chemical burns must be treated promptly by a physician. Never give anything by mouth to an unconscious person. If unconscious, place in recovery position and get medical attention immediately. Maintain an open airway. Loosen tight clothing such as a collar, tie, belt or waistband.

#### Most important symptoms/effects, acute and delayed

Potential acute health effects	5	
Eye contact	:	Causes serious eye damage.
Inhalation	:	May cause respiratory irritation.
Skin contact	:	Causes skin irritation.
Ingestion	:	No known significant effects or critical hazards.
Over-exposure signs/sympto	om	<u>15</u>
Eye contact	:	Adverse symptoms may include the following: pain watering redness
Inhalation	:	Adverse symptoms may include the following: respiratory tract irritation coughing burning sensation
Skin contact	:	Adverse symptoms may include the following: pain or irritation redness blistering may occur
Ingestion	:	Adverse symptoms may include the following: burning sensation abdominal cramps and pain vomiting

Tel: +1-888-GHS-7769 (447-7769) / +1-450-GHS-7767 (447-7767) www.kmkregservices.com www.askdrluc.com www.ghssmart.com

# Section 4. First aid measures

#### Indication of immediate medical attention and special treatment needed, if necessary

Notes to physician	<ul> <li>Treat symptomatically. Contact poison treatment specialist immediately if large quantities have been ingested or inhaled.</li> </ul>
Specific treatments	: No specific treatment.
Protection of first-aiders	: No action shall be taken involving any personal risk or without suitable training. If it is suspected that fumes are still present, the rescuer should wear an appropriate mask or self-contained breathing apparatus. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation. Wash contaminated clothing thoroughly with water before removing it, or wear gloves.

See toxicological information (Section 11)

# Section 5. Fire-fighting measures

Extinguishing media	
Suitable extinguishing media	: Use an extinguishing agent suitable for the surrounding fire.
Unsuitable extinguishing media	: None known.
Specific hazards arising from the chemical	: No specific fire or explosion hazard.
Hazardous thermal decomposition products	: None.
Special protective actions for fire-fighters	: No special measures are required.
Special protective equipment for fire-fighters	: Fire-fighters should wear appropriate protective equipment and self-contained breathing apparatus (SCBA) with a full face-piece operated in positive pressure mode.

# Section 6. Accidental release measures

#### Personal precautions. protective equipment and emergency procedures

For non-emergency personnel	No action shall be taken involving any personal risk or without suitable training. Keep unnecessary and unprotected personnel from entering. Do not touch or walk through spilled material. Provide adequate ventilation. Wear appropriate respirator when ventilation is inadequate. Put on appropriate personal protective equipment.
For emergency responders	If specialized clothing is required to deal with the spillage, take note of any information Section 8 on suitable and unsuitable materials. See also the information in "For non- emergency personnel".
Environmental precautions	Avoid dispersal of spilled material and runoff and contact with soil, waterways, drains and sewers. Inform the relevant authorities if the product has caused environmental pollution (sewers, waterways, soil or air).
Methods and materials for co	tainment and cleaning up
Spill	Move containers from spill area. Approach release from upwind. Prevent entry into

Move containers from spill area. Approach release from upwind. Prevent entry into sewers, water courses, basements or confined areas. Avoid dust generation. Do not dry sweep. Vacuum dust with equipment fitted with a HEPA filter and place in a closed, labeled waste container. Dispose of via a licensed waste disposal contractor. Note: see Section 1 for emergency contact information and Section 13 for waste disposal.

HIGH CALCIUM HYDRATED LIME

# Section 7. Handling and storage

### Precautions for safe handling

Protective measures	:	Put on appropriate personal protective equipment (see Section 8). Avoid exposure - obtain special instructions before use. Do not handle until all safety precautions have been read and understood. Do not get in eyes or on skin or clothing. Do not ingest. Use only with adequate ventilation. Wear appropriate respirator when ventilation is inadequate. Keep in the original container or an approved alternative made from a compatible material, kept tightly closed when not in use. Empty containers retain product residue and can be hazardous.
Advice on general occupational hygiene	:	Eating, drinking and smoking should be prohibited in areas where this material is handled, stored and processed. Workers should wash hands and face before eating, drinking and smoking. See also Section 8 for additional information on hygiene measures.
Conditions for safe storage, including any incompatibilities	:	Store in accordance with local regulations. Store in original container protected from direct sunlight in a dry, cool and well-ventilated area, away from incompatible materials (see Section 10) and food and drink. Store to minimize dust generation. Keep container tightly closed and sealed until ready for use. Containers that have been opened must be carefully resealed and kept upright to prevent leakage. Do not store in unlabeled containers. Use appropriate containment to avoid environmental contamination.

# Section 8. Exposure controls/personal protection

#### **Control parameters**

#### **United States**

#### **Occupational exposure limits**

Ingredient name	Exposure limits
Calcium Hydroxide Crystalline silica, quartz	OSHA PEL (United States, 2/2013). TWA: 5 mg/m ³ 8 hours. Form: Respirable fraction TWA: 15 mg/m ³ 8 hours. Form: Total dust ACGIH TLV (United States, 4/2014). TWA: 5 mg/m ³ 8 hours. NIOSH REL (United States, 10/2013). TWA: 5 mg/m ³ 10 hours. MSHA PEL TWA 8/40 hours: 5 mg/m ³ OSHA PEL Z3 (United States, 2/2013). TWA: 10 mg/m ³ 8 hours. Form: Respirable TWA: 250 mppcf 8 hours. Form: Respirable NIOSH REL (United States, 10/2013). TWA: 0.05 mg/m ³ 10 hours. Form: Respirable dust ACGIH TLV (United States, 4/2014). TWA: 0.025 mg/m ³ 8 hours. Form: Respirable fraction MSHA PEL TWA 8/40 hours: 30 mg/m ³ /(%SiO2)+2 mg/m ³ Form: Total dust 10 mg/m ³ /(%SiO2)+2 mg/m ³ Form: Respirable dust

#### Canada

Occupational exposure limits			TWA (8 hours)		STEL (15 mins)			Ceiling			
Ingredient	List name	ppm	mg/m ³	Other	ppm	mg/m³	Other	ppm	mg/m ³	Other	Notations
Calcium dihydroxide	US ACGIH 4/2014		5	-	-	-	-	-	-	-	5
AB 4 BC	AB 4/2009	-	5	-	020	020	<u></u>	2	2	-	[3]
	BC 7/2013	-	5	÷	(m)	-	-	=	-	-	
	ON 1/2013	-	5	2	646		-	-	2	2	
	QC 1/2014	-	5	-	020	020	<u> </u>	2	2	2	
Crystalline silica, quartz	<b>US ACGIH 4/2014</b>	-	0.025	-	-	-	-	=	-	-	[a]
AB 4/20	AB 4/2009	-	0.025	<u> </u>	648	-	20	ш.	<b>2</b>	2	[a] [b]
	BC 7/2013	-	0.025	-	-	-	<b>T</b>	-	-	-	[C]
	ON 1/2013	-	0.1	-	-	-	-3	-	-	-	[c] [a]
	QC 1/2014	-	0.1	<u> </u>	5225	120	27	<u> </u>	<u> </u>	2	[d]



# Section 8. Exposure controls/personal protection

[3]Skin sensitization

Form: [a]Respirable fraction [b]Respirable particulate. [c]Respirable [d]Respirable dust

Appropriate engineering controls	: Use only with adequate ventilation. If user operations generate dust, fumes, gas, vapor or mist, use process enclosures, local exhaust ventilation or other engineering controls to keep worker exposure to airborne contaminants below any recommended or statutory limits. Engineering controls may be required to control the primary or secondary risks associated with this product.
Environmental exposure controls	: Emissions from ventilation or work process equipment should be checked to ensure they comply with the requirements of environmental protection legislation.
Individual protection measu	
Hygiene measures	: Wash hands, forearms and face thoroughly after handling chemical products, before eating, smoking and using the lavatory and at the end of the working period. Appropriate techniques should be used to remove potentially contaminated clothing. Wash contaminated clothing before reusing. Ensure that eyewash stations and safety showers are close to the workstation location.
Eye/face protection	: Safety eyewear complying with an approved standard should be used when a risk assessment indicates this is necessary to avoid exposure to liquid splashes, mists, gases or dusts. If contact is possible, the following protection should be worn, unless the assessment indicates a higher degree of protection: chemical splash goggles and/ or face shield. If inhalation hazards exist, a full-face respirator may be required instead.
Skin protection	
Hand protection	: Chemical-resistant, impervious gloves complying with an approved standard should be worn at all times when handling chemical products if a risk assessment indicates this is necessary. Considering the parameters specified by the glove manufacturer, check during use that the gloves are still retaining their protective properties. It should be noted that the time to breakthrough for any glove material may be different for different glove manufacturers. In the case of mixtures, consisting of several substances, the protection time of the gloves cannot be accurately estimated.
Body protection	<ul> <li>Personal protective equipment for the body should be selected based on the task being performed and the risks involved and should be approved by a specialist before handling this product.</li> </ul>
Other skin protection	<ul> <li>Appropriate footwear and any additional skin protection measures should be selected based on the task being performed and the risks involved and should be approved by a specialist before handling this product.</li> </ul>
Respiratory protection	: Use a properly fitted, particulate filter respirator complying with an approved standard if a risk assessment indicates this is necessary. Respirator selection must be based on known or anticipated exposure levels, the hazards of the product and the safe working limits of the selected respirator. Wear an appropriate NIOSH approved respirator if concentration levels exceed the safe exposure limits.

# Section 9. Physical and chemical properties

Appearance	
Physical state	: Solid. [Fine powder.]
Color	: White.
Odor	: Sweet, soil like odor.
Odor threshold	: Not available.
рН	: 12.45 [ Sat. soln.] at 25°C
Melting point	: Not available.

KMK Regulatory Services

Tel: +1-888-GHS-7769 (447-7769) / +1-450-GHS-7767 (447-7767) www.kmkregservices.com www.askdrluc.com www.ghssmart.com

# Section 9. Physical and chemical properties

Boiling point	:	Not available.
Flash point	:	Not applicable.
Evaporation rate	:	Not available.
Flammability (solid, gas)	5	Not applicable.
Lower and upper explosive (flammable) limits	:	Not applicable.
Vapor pressure	:	Not available.
Vapor density	:	Not available.
Relative density	:	2.3 to 2.4
Solubility	:	Not available.
Solubility in water	:	0.165 g/100 g at 20°C
Partition coefficient: n- octanol/water	:	Not available.
Auto-ignition temperature	:	Not applicable.
<b>Decomposition temperature</b>	:	540°C (1004°F)
Viscosity	:	Not available.
Volatility	:	Not available.
VOC (w/w)	:	0 % (w/w)

# Section 10. Stability and reactivity

	· · · · · · · · · · · · · · · · · · ·
Reactivity	: No specific test data related to reactivity available for this product or its ingredients.
Chemical stability	: The product is stable.
Possibility of hazardous reactions	: None.
Conditions to avoid	: Do not allow quicklime to come into contact with incompatible materials. e.g. Water, acids, reactive fluoridated compounds, reactive brominated compounds. reactive powered metals, organic acid anhydrides, nitro-organic compounds, reactive phosphorous compounds, interhalogenated compounds.
Incompatible materials	: Reactive or incompatible with the following materials: oxidizing materials and acids.
Hazardous decomposition products	: None.

# Section 11. Toxicological information

Eyes - Severe irritant

# Information on toxicological effects

#### Acute toxicity

Calcium Hydroxide

Product/ingredient name	Result		Species		Dos	e	Expo	osure
Calcium Hydroxide	LD50 Oral		Rat		7340 n	ng/kg	-	
Irritation/Corrosion	·							
Product/ingredient name	Result	Spec	ies	Score		Exposure		Observation

# KMK Regulatory Services

Tel: +1-888-GHS-7769 (447-7769) / +1-450-GHS-7767 (447-7767) www.kmkregservices.com www.askdrluc.com www.ghssmart.com

10 mg

Rabbit

# Section 11. Toxicological information

#### Sensitization

#### There is no data available.

#### Carcinogenicity

#### **Classification**

Product/ingredient name	OSHA	IARC	NTP	ACGIH	EPA	NIOSH
Crystalline silica, quartz	-	1	Known to be a human carcinogen.	A2	-	+

#### Specific target organ toxicity (single exposure)

Name		Route of exposure	Target organs
Calcium Hydroxide	Category 3	Not applicable.	Respiratory tract irritation

#### Specific target organ toxicity (repeated exposure)

Name		Route of exposure	Target organs
Crystalline silica, quartz	Category 1		kidneys, respiratory tract and testes

: No known significant effects or critical hazards.

#### Aspiration hazard

Ingestion

There is no data available.

Information on the likely routes of exposure	1	Dermal contact. Eye contact. Inhalation. Ingestion.
Potential acute health effects		
Eye contact	:	Causes serious eye damage.
Inhalation	5	May cause respiratory irritation.
Skin contact	:	Causes skin irritation.

# Symptoms related to the physical, chemical and toxicological characteristics

ernptenne related to the phy-	
Eye contact	: Adverse symptoms may include the following: pain watering redness
Inhalation	: Adverse symptoms may include the following: respiratory tract irritation coughing burning sensation
Skin contact	: Adverse symptoms may include the following: pain or irritation redness blistering may occur
Ingestion	: Adverse symptoms may include the following: burning sensation abdominal cramps and pain vomiting

### Delayed and immediate effects and also chronic effects from short and long term exposure Short term exposure



B-118

# Section 11. Toxicological information

Potential immediate effects	No known significant effects or critical hazards.
Potential delayed effects	No known significant effects or critical hazards.
Long term exposure	
Potential immediate effects	No known significant effects or critical hazards.
Potential delayed effects	No known significant effects or critical hazards.
Potential chronic health eff	<u>S</u>
General	Causes damage to organs through prolonged or repeated exposure.
Carcinogenicity	May cause cancer if inhaled. Risk of cancer depends on duration and level of exposure
Mutagenicity	No known significant effects or critical hazards.
Teratogenicity	No known significant effects or critical hazards.
<b>Developmental effects</b>	No known significant effects or critical hazards.
Fertility effects	No known significant effects or critical hazards.

#### Numerical measures of toxicity

Acute toxicity estimates

There is no data available.

# Section 12. Ecological information

#### **Toxicity**

Product/ingredient name	Result	Species	Exposure
Calcium Hydroxide	Acute LC50 33884.4 µg/L Fresh water	Fish - Clarias gariepinus - Fingerling	96 hours

#### Persistence and degradability

There is no data available.

<b>Bioaccumulative potential</b>		
There is no data available.		
<u>Mobility in soil</u>		
Soil/water partition coefficient (Koc)	:	Not available.

Other adverse effects : No known significant effects or critical hazards.

# Section 13. Disposal considerations

Disposal methods : The generation of waste should be avoided or minimized wherever possible. Disposal of this product, solutions and any by-products should comply with the requirements of environmental protection and waste disposal legislation and any regional local authority requirements. Dispose of surplus and non-recyclable products via a licensed waste disposal contractor. Waste should not be disposed of untreated to the sewer unless fully compliant with the requirements of all authorities with jurisdiction. Waste packaging should be recycled. Incineration or landfill should only be considered when recycling is not feasible. This material and its container must be disposed of in a safe way. Care should be taken when handling empty containers that have not been cleaned or rinsed out. Empty containers or liners may retain some product residues. Avoid dispersal of

#### HIGH CALCIUM HYDRATED LIME

Section 13. Disposal considerations

spilled material and runoff and contact with soil, waterways, drains and sewers.

# Section 14. Transport information

	DOT	TDG	IMDG	IATA
UN number	Not regulated.	Not regulated.	Not regulated.	Not regulated.
UN proper shipping name	-	-	-	-
Transport hazard class(es)	-	-	-	-
Packing group	-	-	-	-
Environmental hazards	No.	No.	No.	No.
Additional information	-	-	-	-

AERG : Not applicable.

Special precautions for user : Transport within user's premises: always transport in closed containers that are upright and secure. Ensure that persons transporting the product know what to do in the event of an accident or spillage.

Transport in bulk according : Not available. to Annex II of MARPOL 73/78 and the IBC Code

# Section 15. Regulatory information

U.S. Federal regulations	: TSCA 8(a) CDR Exempt/Partial exemption: Not determined
	<b>United States inventory (TSCA 8b)</b> : Calcium Hydroxide is subject to inventory update reporting (IUR).
	RCRA classification: Calcium Hydroxide is not listed or classified.
	<b>CWA-311</b> : Calcium Hydroxide has been withdrawn from the Clean Water Act (CWA) list of hazardous subtances. (11/13/79) (44FR65400).
	CERCLA: Calcium Hyrdoxide is not listed.
	<b>FDA</b> : Calcium Hydroxide has been determined as Generally Recognized As Safe (GRAS by FDA. See 21CFR184.1205. (CFR Title 21 Part 184 Direct food substances affirmed as generally recognized as safe).
Clean Air Act Section 112 (b) Hazardous Air Pollutants (HAPs)	: Not listed
Clean Air Act Section 602 Class I Substances	: Not listed
Clean Air Act Section 602 Class II Substances	: Not listed



# Section 15. Regulatory information

DEA List I Chemicals : Not listed

DEA List I Chemicals : Not listed

(Precursor Chemicals)

(Precursor Chemicals)

#### SARA 302/304

#### **Composition/information on ingredients**

#### No products were found.

SARA 304 RQ

#### : Not applicable.

#### SARA 311/312

Classification

: Immediate (acute) health hazard Delayed (chronic) health hazard

#### Composition/information on ingredients

Name	%		Sudden release of pressure	Reactive	(acute)	Delayed (chronic) health hazard
Calcium Hydroxide Crystalline silica, quartz		No. No.		No. No.	Yes. No.	No. Yes.

#### **SARA 313**

	Product name	CAS number	%
Form R - Reporting requirements	Not listed	-	<b>7</b> .1
Supplier notification	Not listed	-	-

SARA 313 notifications must not be detached from the SDS and any copying and redistribution of the SDS shall include copying and redistribution of the notice attached to copies of the SDS subsequently redistributed.

#### State regulations

Massachusetts : The following components are listed: Calcium Hydroxide; Crystalline silica, quartz

New York

: None of the components are listed.

New Jersey

The following components are listed: Calcium Hydroxide; Crystalline silica, quartz
 The following components are listed: Calcium Hydroxide; Crystalline silica, quartz

# Pennsylvania

California Prop. 65

WARNING: This product contains a chemical known to the State of California to cause cancer.

Ingredient name	Cancer			Maximum acceptable dosage level
Crystalline silica, quartz	Yes.	No.	No.	No.

#### <u>Canada</u>

<u>Canadian lists</u>

- Canadian NPRI
- : None of the components are listed.

CEPA Toxic substances Canada inventory

- None of the components are listed.All components are listed or exempted.
- International lists
  - National inventory

B-12



GRAYMONT

# Section 15. Regulatory information

Australia	: All components are listed or exempted.
China	: All components are listed or exempted.
Europe	: All components are listed or exempted.
Japan	: All components are listed or exempted.
Malaysia	: Not determined.
New Zealand	: All components are listed or exempted.
Philippines	: All components are listed or exempted.
Republic of Korea	: All components are listed or exempted.
Taiwan	: Not determined.

# Section 16. Other information

#### Hazardous Material Information System (U.S.A.)

#### Health: 3 * Flammability: 0 Physical hazards: 1

Caution: HMIS® ratings are based on a 0-4 rating scale, with 0 representing minimal hazards or risks, and 4 representing significant hazards or risks Although HMIS® ratings are not required on SDSs under 29 CFR 1910.1200, the preparer may choose to provide them. HMIS® ratings are to be used with a fully implemented HMIS® program. HMIS® is a registered mark of the National Paint & Coatings Association (NPCA). HMIS® materials may be purchased exclusively from J. J. Keller (800) 327-6868.

The customer is responsible for determining the PPE code for this material.

#### National Fire Protection Association (U.S.A.)

#### Health : 3 Flammability : 0 Instability :

Reprinted with permission from NFPA 704-2001, Identification of the Hazards of Materials for Emergency Response Copyright ©1997, National Fire Protection Association, Quincy, MA 02269. This reprinted material is not the complete and official position of the National Fire Protection Association, on the referenced subject which is represented only by the standard in its entirety.

1

Copyright ©2001, National Fire Protection Association, Quincy, MA 02269. This warning system is intended to be interpreted and applied only by properly trained individuals to identify fire, health and reactivity hazards of chemicals. The user is referred to certain limited number of chemicals with recommended classifications in NFPA 49 and NFPA 325, which would be used as a guideline only. Whether the chemicals are classified by NFPA or not, anyone using the 704 systems to classify chemicals does so at their own risk.

#### **History**

Date of issue mm/dd/yyyy Version	-	04/15/2015 1
Prepared by	:	KMK Regulatory Services Inc.
Key to abbreviations	:	ATE = Acute Toxicity Estimate BCF = Bioconcentration Factor GHS = Globally Harmonized System of Classification and Labelling of Chemicals IATA = International Air Transport Association IBC = International Air Transport Association IBC = International Maritime Dangerous Goods LogPow = logarithm of the octanol/water partition coefficient MARPOL 73/78 = International Convention for the Prevention of Pollution From Ships, 1973 as modified by the Protocol of 1978. ("Marpol" = marine pollution) UN = United Nations

#### Notice to reader

To the best of our knowledge, the information contained herein is accurate. However, neither the above-named supplier, nor any of its subsidiaries, assumes any liability whatsoever for the accuracy or completeness of the information contained herein. Final determination of suitability of any material is the sole responsibility of the user. All materials may present unknown hazards and should be used with caution. Although certain hazards are described herein, we cannot guarantee that these are the only hazards that exist.

B-122

# Danger

# HIGH CALCIUM HYDRATED LIME



Causes skin irritation - Causes serious eye damage - May cause cancer (state route of exposure if it is conclusively proven that no other routes of exposure cause hazard) - May cause respiratory irritation; or; May cause drowsiness or dizziness

#### GRAYMONT

Obtain special instructions before use. - Do not handle until all safety precautions have been read and understood. - Do not breathe dust/fume/gas/mist/vapours/spray. - Wash hands thoroughly after handling. - Do not eat, drink or smoke when using this product. - Use only outdoors or in a well- ventilated area. - Wear protective gloves/protective clothing/eye protection/face protection. -Use personal protective equipment as required. - IF ON SKIN: Wash with plenty of soap and water. - IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. - IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. - IF exposed or concerned: Get medical advice/attention. - Immediately call a POISON CENTER or doctor/physician. - Call a POISON CENTER or doctor/physician if you feel unwell. - Get medical advice/attention if you feel unwell. -If skin irritation occurs: Get medical advice/attention. - Take off contaminated clothing and wash before reuse. - Wash contaminated clothing before reuse. - Store to minimize dust generation. - D

Please refer to the original SDS for more information

# Appendix C

Industrial Stormwater Pollution Prevention Plan (SWPPP) Outline (Draft)

# NorthMet Project Tailings Basin

# Industrial Stormwater Pollution Prevention Plan (SWPPP) Outline

July 2016 Draft

# Contents

- 1 Introduction
- 2 Pollution Prevention Team
- 3 Facility Description
  - 3.1 Industrial Activities
  - 3.2 Drainage Areas and Receiving Waters
- 4 Facility Maps
- 5 Assessment of Industrial Activities and Materials
  - 5.1 Assessment of Industrial Activities and Associated Pollutants
  - 5.2 Assessment of Materials and Associated Pollutants
- 6 Best Management Practices (BMPs)
  - 6.1 Non-Structural BMPs
    - 6.1.1 Good Housekeeping
    - 6.1.2 Eliminating and Reducing Exposure
    - 6.1.3 Salt Storage
    - 6.1.4 Chemical Additive Use
    - 6.1.5 Facility Inspection Requirements
    - 6.1.6 Maintenance Requirements
      - 6.1.6.1 BMP Maintenance
      - 6.1.6.2 Equipment Preventative Maintenance
    - 6.1.7 Elimination of Unauthorized Non-Stormwater Discharges
    - 6.1.8 Spill Prevention and Response Requirements
    - 6.1.9 Mercury Minimization Plan
    - 6.1.10 Employee Training Program
  - 6.2 Structural BMPs
    - 6.2.1 Erosion Prevention and Sediment Control
      - 6.2.1.1 Vegetative BMPs
      - 6.2.1.2 Stabilization BMPs

- 6.2.1.3 Structural BMPs
- 6.2.2 Management of Runoff
- 6.3 Summary of BMPS
- 7 Benchmark Monitoring Requirements
  - 7.1 Benchmark Monitoring Locations
  - 7.2 Applicable Benchmark Parameters and Benchmark Values
  - 7.3 Monitoring Schedule
  - 7.4 Benchmark Monitoring Records
  - 7.5 Stormwater Monitoring Reports
  - 7.6 Evaluating Benchmark Monitoring Results and Steps for Continued Compliance
    - 7.6.1 Benchmark Values are Not Exceeded
    - 7.6.2 Benchmark Values are Exceeded
- 8 Administrative Requirements
  - 8.1 SWPPP Modifications
  - 8.2 Annual Reporting
  - 8.3 Recordkeeping and Records Retention

# List of Appendices

- Appendix A NPDES/SDS Permit No. MN TBD
- Appendix B Application for Authorization to Discharge Industrial Stormwater
- Appendix C Industrial Stormwater Site Inspection Records
- Appendix D BMP Maintenance Records
- Appendix E Documentation of Evaluation of Non-Stormwater Discharges
- Appendix F Spill Records
- Appendix G Employee Training Records
- Appendix H Benchmark Monitoring Records
- Appendix I Industrial Stormwater Monitoring Reports (SWMRs)
- Appendix J SWPPP Modification Records
- Appendix K Industrial Stormwater Annual Reports