AOTHOR TITLE

- INSTITOTION

SPONS AGENCY
REPORT NO
pob date CONTRACT NOTE
AVAILABLE PROM

EDRS PRICE
DESCRIPTORS
\cdots

IDENTIFIERS

ABSTRACT

Neal; J. P
The CGE-PLATO Electronic Laboratory Statión structure and Operation.
Illinois Univ., Urbana. Computer-Based Education Lab.
Advanced Besearch Projects Agency (DOD), Hashington, D.C.

HTC-R-4
Jul 74
DABC-15-73-C-0077
105p.
PLATO Publicatións, Computer-based Education Research Lab, 252 Engineering Research Lab, Oniversitỳ of Illinois, Jrbana, Illinois 6.1801 ($\$ 0.50$, prepayment required)
MP-\$1. 83 HC-\$6.01 Plus Postage. Computer Assisted Instruction; *Computer Based Laboratories; Computer Programs; Computers; Computer Science; Educational Technology; *Electromechanical. Technology; *Electronic Equipment; Engineering'
 Systees; Instructional Media; *Instrumentation; Instirumentation Technicians; Laboratory Equipment; Laboratory Training; Science Laboratories; Sinulators
Computer Guided Experimentation; Computer Hardware; Electronic Laboratories; *PLATO IV;, Programmed Logic , for automatic Teaching Operations
an electronic laboratory station was designed for student use in learning electronic instrumentation and measurement by means of the computer-guided experimentation (CGE) system./ The station features rack-mounted electronic laboratory equiphent on a laboratory table adjacent to a plato IV terminal. An integrated logic system behind the laboratory instrument panel interfaces the terminal and dial sensors within the laboratory equipment with the pLaTO systen. The logic interface provides PLATO with the ability to sense student-nade interconnections between 30 terminals and the student-made settings of 22 dials on the laboratory equipment. PLATO guides and CGE hardware through the connection checks and stores the results for subsequent use in displays or in instructional programs. a complete record of the actual external interconnections between 30 terminals of experimentation equipment is generated in less than 5 seconds. A complete. record of the settings of 22 dials of the experimentation equipment is generated in less than 4 seconds. (Author/CH)

[^0]
Military Training Centers Project

MTC Report \#4

THE CGE-PLATO ELECTRONIC LABORATORY STATION STRUCTURE AND OPERATION

US DEPARTMENTOF HEALTH.

THIS DOCUMENT WAS BEEN REPRO.
DUCEO EXACTIY AS PETENE THE PERSON OR ORGANIZATION ORIGON ATING IT POINTS OF VIEW OR OPINIONS
STATEDETONOI NECESSARUY REPRE
SENTOFGICIAL NATIONAI INSTITUTE OF
J. P. Neal

CERL

THE CGE-PLATO ELECTRONIC LABORATORY STATION STRUCTURE AND OPERATION
J. P. Neal

> Eléctrical Engineering Department and Computer-Based Education Research Laboratory University of Illinois at Urbana-Champaign Urbana, Illinois 61801

This report describes the electronic laboratory station designed for student use in learning electronic instrumentation and measurements by means of the Computer-Guided Experimentation system. The station is located in Room 248 Electrical Engineering Building and features rack-mounted electronic laboratory equipment on a laboratory table adjacent to a PLATO IV terminal. An Integrated Logic System behind the laboratory instrument panel interfaces the terminal and dial 'sensors within the laboratory equipment with the Plato system. The logic interface provides PLATO with the ability to sense student-made interconnections between thirty terminals and the student-made settings of twenty-two dials on the laboratory equipment. CGE-PLATO software subroutines enable instructors to program complete Connection Checks and/or Dial Checks whenever desired. For either case, PLATO guides the CGE hardware through the check and stores the result for subsequent use in displays or in instructional programs. A complete record of the actual external interconnections between thirty terminals of the experimentation equipment is generated in less than five seconds. A complete record of the settings of twenty-two dials of the experimentation equipment is generated in less than four seconds.

This work was supported in part by
U.S. Army/DAHC 15-73-C-0077.

Reproduction in whole or in part is permitted for any purpose of the United States Government.
Page
CHAPTER 1 - INTRODUCTION. 1
1.0 Characteristics of a CGE ${ }^{\text {Station }}$ 1
1.1 The CGE Research Project! 1
1.2 History of CGE. 7
CHAPTER 2 - GE HARDWARE. 14
2.0 List of CGE-PLATO Hardware Items. 14
2.1 Modifications of Laboratory Instruments and Circuit Boards for the Sensing of Terminal Interconnections. 14
2.2 Modifications of Laboratory Instruments for the Sensing of Dial Settings. 16
2.3 Schematic Diagrams of the CGE-PLATO Interface Hardware. 20
2.4 Descriptions of Important Hardware Components 31
2.5 Item Wiring Records and Parts Lists 43
'CHAPTER 3 - OPERATION OF THE CGE-PLATO INTERFACE SYSTEM 80
3.0 Use of the PLATO EXT OUT Command. 80
3.1 Summary of a Single Connection Check Operation. 82
3.2 Detailed Flow of a Single Connection Check Operation 83
3.3 Summary of a Single Dial Check Operation 88 88
3.4 Detailed Flow of a Dial Check 88 88
CHAPTER 4 - SOFTWARE OF THE CGE-PLATO SYSTEM. 91
4.0 Control of Connection and Dial Checks by the CGE Software Subroutines 91
4.1 Author Usage of the CGE-PLATO Subroutines 92
4.2 Summary of the CGE-PLATO Lessons 98 98

LIST OF FIGURES

Figure Page

1. The Computer-Guided Experimentation Station 3
2. CGE-PLATO IV̀ Block Diagram 4
3. Introductory Electrical Engineering Laboratory Station 5
4. Dials and Terminals Sensed on the Rack-Mounted Experimentation Equipment.
5. Correlations Student-Instructor-Computer8
6. Analog-to-Digital Conversions of Dial Sensor Voltages. 17
7. Dial Setting Codes 188. 'PLATO EXT' OUT Signal Timing.81
8. CGE Hardware Processing of a PLA'TO Connection Check Request 84
9. CGE Hardware Processing of a PLATO Dial Check Request 89
10. Basic Flow Dlagram of the CKC Series of Subroutines. 96

1.0 Characteristics of a CGE Station

This report desc̃ribes the, Structure and operation of the laboratory. station hardware and software designed for use in the CGE-PLATO IV Compu'ter-Guided Experimentation (CGE) system of laboratory instruction.

Therełare four general requirements which may be used to characterize a CGE-PLATO station. First, the station must be capable of serving the ńeeds of a broad class of relatively unsóphisticated users, most of whom will be encountering a CAI terminal and electronic laboratory equipment for the first time. Second, the electronic instruments and the parts of the circuit boards must be commercially ayailable general-purpose type equipment suitable for use in the variety of ways useful to introductory electronic 1aboratory instruction in electronic instrumentation and measurements. Third, modifications of the instruments and circuit boards which provide terminal and dial sensor connections to the interface logic system should be relatively inconspicuous and not change the external appearance or method of operation of the laboratory equipment. For new multiple installations, the internal instrument modifications should be made by their manufacturers prior to delivery. -Four, the logic system interfacing the sensors of the CGE laboratory equipment with the PLATO system should be compact, accurate, reliable, and fast operating so the programmed connection and dial checking does not significantly distract from or impede the student's learning and experimentation.

1.1 The CGE Research Project

The object of this CGE research project is to demonstrate that the Computer-Guided Experimentat fon system will provide unique and worthwhile improvements in undergraduate or technician laboratory instruction, when properly used by competent. Anstructors.

The CGE station consists of a PLATO IV console, Serial No. .324, Station No. 7-27, a CGE-PLATO Interface Logic System, *ave rack-mounted electronic instruments, and various experimentation circuit boards for student use in learning electronic instrumentation and measurements. The layout of the CGE station equipment is illustrated in Figure 1. A block diagram of the CGE-PLATO IV system is shown in Figure 2."

The CGE-PLATO Interface Logic System enables any instructor-author to program the automatic sensing of the interconnections between thirty terminals on the rack-mounted equipment or on the currently-used circuit board and/or 'the settings of twenty-twor the dials', knobs, or switches on the equipment. Records of the checks are stored by PLATO for subsequent use as however programmed.

The CGE station experimentation equipment is illustrated in Figure . 3. The CGE rack-mounted instruments are:

1 Analab Dual-Trace Scope Type 1120 and PlugIn Type 700
1 Exact Function Generator Type 251
1 Hewlett-Packard Audio Oscillator Model 200AB
1 Hewlett-Packard Vacuum Tube Voltmeter Model 400D
1 Harrison Lab. Model 865B Power Supply.
The CGE-PLATO Interface Logic System is mounted behind the instrument rack panel, beneath the ${ }^{\text {e }}$ Function Generator.

The automatically sensed terminals are identified by T numbers, and the automatically sensed dials are identified by'D numbers in Figure 4.

Actual laboratory experiments are programmed by knowledgeable laboratory instructors on the CAI system. The instructor writing a program provides for the automatic sensing of terminal interconnections and/or dial settings
-

TABLE-TOP VIEW

Figure 1 The Computer-Guided Experimentation Station.

DIALS AND TERMINALS/SENSED ON THE RACCK-MOUNTED - EXPERIMENTATION EQUIPMENTT

- 寒•

Figure 4 Dials and Terminals* Sensed on the Rack-Mounted Experimentation Equipment
wherever he deems necessary.. The response of the program to the fed back -information of the'student's physical operations can be used in any manner the instructor devises for improving the student's learning.

- Each student can work independentily at a CGE station and learn at his own rate how to ûse the equipment, and perform or devise meaningful experiments.

CGE is an entirely new instructional system, and research is required to develop, its teaching capabilities and demonstrate its superiority in \because comparison with conventional laboratory idstruction or training simulators. CGE is not simply a new teaching aid, it is a new teaching method with - unexplored and unknown capabilities.

A student at a CGE station in' a laboratory is provided ready access to ladoratory facilities, theoretical material, computer assistance, ańd , \& instructor assistance as visualized in Figure 5.

1.2 History of CGE

The concept of Computer-Guided Experimentation originated in 1968 from discussions of che capabilities of automatically monitoring the terminal interdonnections and dial settings made, by a, student while performing an electrical laboratory experiment. These discussions were infitiated by J. P. Neal with D. L. Bitzer and R. L. Johnson on 21 June 1968.

Beginning in October 1968, Larry, Weber worked with R. L. Johnson to develop and demonstrate in January 1969 a system for automatically measuring and graphically displaying on"a PLATO screen the interconnections between four terminals.
"Also beginning in October 1968, Tony Maher and Rod Parks worked with Neal in developing means for automatically sensing the settings of dials and the terminal interconnections of the rack-mounted electrical experimentation equipment. A study of the possible positions of all the dials on the

laboratory equipment, révealed that twenty-four angular positions evenly spaced at 15° included all possibledetented dial positions. Furthermore, sensing the position of any continuously variable dial shaft to within 15° would also be adequate. Therefore, a circular wafer was designed for dial position sensing so that it would provide a unique five-digit binary number for indicating each of the twenty-four different dial settings. Transmission of this five-digit binary number electrically would•require five parallel. sensing lines from every dial.

In a discussion on 13 December 1968, D. L. Bitzer suggested ant alternate scheme, namely, thé use of a shaft potentiometer which would deliver a voltage proportional to the dial shaft position via a single, sensing line. Then, at a single point in the logic hardware, convert these analog voltages: to five-bit binary numbers for transmission to PLATO. This scheme greatly simplified the internal wiring modifications necessary within the laboratory instruments.

During the spring of 1969, Bob Bradley joined Neal on this project and, with the assistance of the Electrical Engineering Electronic's Shop, installed potentiometer units or wafers on the shafts of the twenty-two rack-mounted instrument dials whose positions should be monitored. Relays for disconnecting, fifteen of the external instrument ferminals from the interior instrument circuits were also installed so that the remote-sensing of interconnections would see only those connections made externally by a student' during an experiment.
 the Computer-Guided Experimentation Research Laboratory (CGERL) Station was moved to Room 261, Engineering Research Laboratory, adjacent to PLATO İII, and

Interfacing it with PLATO III began. In the meantime, David L. Meller and other students working with Neal developed and programmed- saftware for the CGE system and explored ways of programming worthwhile electrical engineering" laboratory experiments.
. Thereafter, Robert Arthur and other students working with Neal continued to develop and construct the CGE-PLATO III Interface Logic System. This logic system was designed to respond to commands programmed in the CGE lessons and automatically measure and report to PLATO III the external interconnections between thirty terminals on the laboratory equipment, and/or automatically sense and repört to PLATO. III the settings of twenty for dials on the rack-mounted laboratory instruments at the CGE station.

On 3 August 1971, the CGE-PLATO III Interface Logic 'System became "fully. operational. The sensing and report to PLATO III of the thirty terminal interconnections was reliably accomplished in three seconds, and the sensing and reporting of the twenty-two dial settings was reliably accomplishéd in less than one second.

The CGE-PLATO III interface hardware had grown to occupy four rows of an eighteen-inch relay rack and consisted of about sixty, $4^{\prime \prime}$ x' $61 / 2^{\prime \prime}$ integrated. circuit boards, including eight dc power supply boards. No funds were available for the CGE project, but space and materials were furnished by, the Computer-Based Educational Research Laboratory in the Engineering Research Laboratory. Student participation in the CGE project continued because of their interest and they were able to earn limited academic credit for special problems.

CGERL efforts continued towards the following goals:

1. Modifications of the logic hardware to interface with PLATO IV, soon to become operational.
2. Reduction in the size and complexity of the CGE interface hardware:
3. Improvement of the use of the CGE 'system in guiding students to learn. laboratory work.
\therefore Modifications of the CGN-PLATO interface were hade so that it could be operated with either PLATO III or PLATO IV. The interface with PLATO IV, Serial No. 118, became operational in Room 261, Engineering Research Lab, on 25 September 1972.

PLATO III was being phased-out. Therefore, on 23/ October 1972, the interface was permanently modified to operate only with Plato IV, and the IC boards necessary for PLATO Inf \dot{I}, were removed.

On 24 October 1972, CGERL and the CGE-PLATO. IV station was moved from Room 261 ERL to Room 248 Electrical Engineering Building, where, they are now located. Communication with the central PLATO IV system was now established over a/pair of telephone lines. Furthermore, the telephone lines terminated at plato in a site controller witch communicated with/ the central computer over a high-speed link. The site controllers are programmed to receive signals from stations af a rate not exceeding five keys/second. This materially slowed CGE operation. Where we had previously completed a connection check requiring the equivalent of 150 keys in'three seconds', a connection check now required thirty seconds: This was an untenable situation and it justified a complete review of the method of . operation.

Another advantageous Situation developed. In the spring of 1973, salid-state switches became commercially available. Use of these integrated
U
\qquad .6

A moire sophisticated IC chip (Inselek LO5) became available during the summer of 1973. These IC chips provided a rellably uniform low resistance in the "on" position so that it became feasfle to replace the sixty magnetic reed relays and associated multiplexing chips used in the connection checker. Consequently, with the start of the funding of the CGE project in the middle of 1973, efforts were concentrated on a complete redesign and reconstruction of the entire CGE-PLATO/IV Interface hardware and software. - Dowden, Gunther Frank; Pa 1 Diyfault and Douglas Zanter, working with Neal, accomplished this redesign, and reconstruction. During this ? reconstruction, terminal deactivating relays were also installed for the fifteen cirfuit board terminals. One breakthrough was the incorporation of a procedure for checking one terminal or dial at" a "time, rather than automatically reporting an entire series of checks, of all dials or all terminals as a block operation. This method placed the burden on Plato software for memory and processing, and reduced the complexity of the hardware.

Douglas C. "Dowden worked out the entirely new sof tware routines required and Gunther Frank led the hardware redesign. With this new system, only 30 equivalent keys need be sent to PLATO fọ a complete connection "check, instead of the 150 equivalent keys previously required., Consequentiy, the time for a complete connection check by PLATO IV was reduced from about thirty seconds to less than five seconds. Furthermore, the more sophisticated hardware system occupied space equivalent to only four IC boards, instead of the sixty IC bards formenly used with the original. system.

The reduction in volume of the CGE hardware interface permitted it to be concealed and ventilated in the rack-supporting the experimentation inspruments and the separate relay rack was discarded.

This entirely new CGE system interfaced with a new type PLATO IV console; Serial No. 324, became fully óperational on 3 December 1973 as Station 7-27. This practically completed the hardware and software subroutines for the CGE-PLATO IV Interface Logic System. Minor improvements or repairs continue to be made as needed.

Now, the major effort of the CGERL group is directed towards testing, evaluating, and improving the instructional value of the CGE experimentation lessons.

CHAPTER 2 - CGE HARDWARE

2.0 List of CGE-PLATO Hardware Items

The electronic laboratory equipment at the CGE-PLATO station is on loan
'from the Electrical Engineering. Department of the University of Illinols at Urbana. The major items of equipment at the CGE-PLATO station, including the CGE-PLATO interface, are:

Item No. * . Item Name
CGE Logic System:
Front Interface Logic Board
Rear Interface Logic Board
Relay Driver Board
Connection-Check 36PDT Relay
DC Logic Power Supplies
Rack-Mounted Instruments:
Scope (Analab Dual-Trace Scope Type 1120)
Plug-In (Analab Plug-In Type 700)
Function Generator (Exact type 251)
Audio Oscillator (HP Model 200AB)
Vacuum Tube Voltmeter (HP Model 400D)
DC Supply (Harrison Lab Model 865B)
Circuit* Board Panel-Socket
PLATO Terfinnai Connectors:
25° EXT OUT Cónnector (PLATO console 非324)
26 EXT IN Connector (PLATO consóle \#324).
Experimentation Circuit Boards:
31
32
33
34
35
36. 37 38

General Purpose Board
Resistor Boards
RC Board
RL Board
Impedance. Board
Two Port Network
Thevenin Board
Superposition Board

2.1 Modifications of Laboratory Instruments and Circiuit Boards for the Sensing of Terminal Interćonnections

Internal to each rack-mounted electronic laboratory instrument and underneath each circuit board, a* sensing lead is extended from every terminal to be sensed. Each terminal sensor lead terminates on a pole of a

* Number's 6-10, 18-24, and 27-30 are unassigned.

62R4 terminal-deactivating relày. There is one normally open contact and one normally closed contact associated with each relay pole. The terminaldeactivating relays for each instrument are installed within that instrument. The terminal-deactivating relays for the circuit boards are on Item 3, the Relay. Driver Board. ${ }^{\prime}$

For the sensofs of instrument terminals, the interior wiring to a sensed terminal is connected to the normally closed contact of a terminal-deactivating relay, and the terminal is connected to the associated relay pole. Hence, when , no Connection Check is in progress; the interior circuit connection to the instrument terminal is closed and the instrument operates normally.

The circuit board terminals are also connected to poles of terminaldeactivating felays. However, the normally closed contacts of these terminaldeactivating relays are left unconnected. Therefore, when no Connection Check is in progress, the circuit boards of the experimentation system operate normally. When an order from PLATO causes the CGE interface to initiate a Connection Check, all terminal-deactivating relays operate. First, each circuit terminal: connected to a relay pole is disconnected from the normally closed terminaldeactivating relay contact, and then connected to the normally open terminaldeactivating relay contact. Each of the normally open contact of the terminaldeactivating relay poles are wired to poles of the CC 36PDT relay, which at this moment is unoperated. Each of the normally closed contacts of the CC relay are conne ted to ground through individual forty-seven ohm resistors. Hence, the operation of the terminal-deactivation relays disconnects all instrument sources and circuits from the experimentation circuit, then grounds all terminals of the experimentation circuit for the purpose of dissipating all circuit-stored energy. In other words, the student's experimentation circuit is deeñergized.

The twenty-four volt supply to the CC relay coil loops serially through a pole and normally open contact on every terminal-deactivating relay. After all terminal-deactivating relays have operated, the path supplying twenty-four volts to the CC relay coil is closed and that relay operates. This disconnects all terminal sensors from ground through the normally closed contacts of the CC relay and then connects all terminal sensors through the normally open contacts of that reflay to the inputs of the L05's. This' situation remains until an EXT \emptyset or DC signal is received from PLATO, or, if CC is not reactivated by PLATO within 5.5 seconds, the CGE system will clear futomatícally - first releasing the CC relay, then releasing all the terminal-deactivating relays and returning the experimentation circuit to normal.

2.2 Modifications of Laboratory Instruments for the Sensing of Dial Settings

 Inside each instrument, for each instrument dial whose angular position is" remotely sensed by the CGE Logic System, a wafer potentiometer or, r twenty-four-position rotary switch has been installed and keyed to the dial shaft. This wafer provides an analog voltage proportional to the dial position. Linear potentiometers are used for sensing the positions of continuously variabled dials. Single-pole rotary switches with discrete positions uniformly space at $\frac{15^{\circ}}{}$ angularly are used for sensing the positions of discrete-position dials, because every discrete-position dial on the rack-mounted experimentation instruments has twenty-four discreţe positions or some submiltiple of twenty-four discrete positiensy namely, twelve, six, or three.The rotary-dial-position-sensing switches are made into potentiometers by connecting equal-resistance resistors between adjacent contacts.

All dial-position sensing potentiometers (continuously or discretely varying) have their initial end connected to the chassis ground and the
final or high end connected to +5 volts de through a trim resisfor. The trim resistors and the intercontact resistors are designed to cause the $\mathrm{n}^{\text {th }}$ position of every dial to produce the same analog sensor voltage. The total. resistance of each continuously pariable potentiometer is about 23,000 ohms. For sensing thenty-four discrete posittons evenly spaced angularly, one 1,000 ohm resistor is connected between each pair of adjacent terminals of .. each twenty-four position rotary switch.

The Analog-to-Digital Conversions of the Dial Sensor Voltages arefisted in Figure 6. The Dial Setting Codes sensed and stored by PLATO for the various settings of the twenty-two sensed dials are tabulated in Figure 7.

Figure 6. Analog-to-Digital Conversions of Dial Sensor Voltages.

Figure 7. Diàl Setting Codes

Figure 7. Dial Setting Codes (cont.)
$\frac{\text { Letter }}{\text { DC SUPPLL }}$ Setting D16: METER

\section*{| D18: \quad CURRENT |
| :--- |
| (SC \& D17 FCCW) |}

a	$-.02 \pm .01$	FCCW
b	$-.01 \pm .01$	
c	$.01 \pm .01$	
d	$.03 \pm .01$	
\vdots	--	
v	$.03 \pm .01$	FCW

$\frac{\text { Letter }}{\text { D18:. }} \frac{\text { Setting }}{\text { CURRENT }} . \quad-\frac{\text { Eetter }}{\text { D20: }} \frac{\text { Setting }}{\text { RANGE }}$
D18:- CURRENT

FCW.
AUD. OSC.
$\frac{\text { D19: AMPLITUD }}{(0 C \& 1000 \mathrm{~Hz})}$
Vrms
$1 \pm 1 \quad$ FCCW
19 ± 1
21 ± 1
22 ± 1
24 ± 1
25 ± 2
28 ± 2
31 ± 2
35 ± 2
40 ± 3

| $\quad: r$ | 122 ± 8 |
| :--- | :--- | :--- |
| s | 140 ± 10 |
| s | 160 ± 10 |

185 ± 15
210 ± 10 FCCW.

VTVM
D22: RANGE
7 ± 1
8 ± 1
10 ± 1
12. ± 1
13 ± 1
$14 \neq 1$
16 ± 1
17 ± 1
$19 . \pm 1$
20 ± 1
21 ± 1.
23
24
26
27
$29 \pm$
30 ± 1
31 ± 1

Vrmśsine
.001
.003
.01
.
$\because 3$
1
10
.30
300

FCW ${ }^{-}$

An alternate method is used for sensing the positions of switches on circuit boards. In those cases the switches simply change circuit connections, and terminals; of each switch are sensed like other circuit terminals, and the terminal interconnections sensed by the Connection Check* reveal the switch , positions to Plato.

2.3 Schematic Diagrams of the CGE-PLATO Interface Hardwares

The next ten sheets of schematic diagrams cover the CGE-PLATO interface hardware and are sepatately indexed as follows:

Topic:
Sheet No.
CGE Input from PLATO \quad. $\quad 1$
The Connection Checker
The Connected-Términal Selector
The CC Relay
3

Terminal Sensors 1 : $\quad 5$
Terminal Seņsors II $\quad *$ - 6
The. Dial Checker . . 7
Dial Setting Sensors 8
CGE Output to Plato $\cdot \because \quad \ldots \quad 9$
Power Supplies
10

* For details see Chaptero 3 and 4 .

$$
8 \mathrm{APR} 74 \mathrm{JPN}
$$

$$
\therefore
$$INTERITEM CONNECTORINTRAITEM CONNECTOR

THE: CONNECTION CHECKER

THE CC RELAY

TERMINAL SENSORS I
8 APR TH JPN

TERMINAL SENSORS II.
M FED 7\%. JPN

dial setting sensors

MAR 74 JPN.

GE OUTPUT TO PLATO

POWER SUPPLIES
$-12 \mathrm{NAR}^{2} 7 \mathrm{JPN}$
SHEET 10 OF 10°
/11 5VAC 60 Hz.

Throighout the CGE-PLATO Interface Logic "System, resistors, capacitors, and diodes have been introduced to stabilize the operation, or prevent transient effects that may damage the integrated circuit components. Every component used has been found necessary through practical experience with the system. The last" modification to "the hardware" was made on 25 Marctr 1974 and no significant CGE hardware failures have occurred since that time. As of 8 April 1974, complete Connection Checks and complete Dial Checks have been performed since 3 December 1973.

Certain hardware components materially contributed to increasing the speed and reliability of the interface and enabled a tremendous reduction in the number and size of its discrete components. Therefore, it seems desirable to reproduce the manufacturer's descriptions of these components in this report, as follows:

Component
Inselek ${ }^{*} 02$ SOS/MOS 8 Channel Multiplexer
Inselek L05 Low Resistance 8 Channel Multiplexer AbC - Econoverter

Servotron EE5S200 +5 V DC Supply-
LCD 2.15.200 ± 15 V DC Supply and
LCD 1.5.1000 V DC Supp1y

Pages
32-33
34-36
37-38
39-40

41-42
37.

SOS/MOS
 8 Channel Multiplexer

GENERAL DESCRIPTION

The LO2 is an 8 channel multiplex switch with ${ }^{*}$ output enable control and 1 -out-of-eight decoder incluided on the chip. Vastly superior characteristics are obtained through the unique process of forming SOS/MÖS transistors on an insulating substrate. The ogic inpuit lines of the LO2 can be used directly. with TTL logic levels with no level shifting interface required. The channel switching time is typically 20 times faster, while power dissipation is only one tenth that for conventional P-MOS multiplexers.

FEATURES

- TiTL Compatible Input Logic Leve's
- One-Out-Of-Eight Decoder on the Chip
- 'High On-Off Ratio
- Output Enable Control
- Fast Switching Time 50 ns
- Low Power Dissipation
- Input Gate Protection
- Low Leakage Current

- Zero Offset Voltage
- $\ddagger 5 \vee$ Analoc Signal Range

APPLICATIONS

- A/D Cónverters
- Data-Transmission Multiplexing
- Signal Selectors

Supply voltage $V_{\infty 0}$ with respeci to mosi positive supply voltage $V^{\text {sfa }}$	$\underline{-22 V}$
Control input voltages with respect to $\mathrm{V}_{\text {ss }}$	-22V
Data input and output voltages with respect to $\mathrm{V}_{\text {ss }}$	-22V
Storage temperature TA	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
${ }^{\circ}$ Operating temperature ${ }^{\text {a }}$ TA ${ }^{\text {a }}$	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

SYambol	CHARACTERISTICS	MIN.	TYP.	max.	UNITS	- TEST CONDITIONS
$\boldsymbol{R}_{\mathbf{O N}}$	Data Channel "ON" Resistance	\because	250	400	$\boldsymbol{\Omega}$	$\mathrm{N}_{\text {OUT }}=-5.0 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=-100 \mu \mathrm{~A}$
${ }^{R}$ OFF	Oata Channel 'OFFF: Resistance	1.5	3.0	.	G Ω	$V_{\text {OUT }}=0 \mathrm{~V} . \mathrm{OE}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=-5 \mathrm{~V}$.
7110	Output Shunt Leakage Current		50	200	pA	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V} . \mathrm{OE}=0 \mathrm{~V} . \mathrm{V}_{\text {IN }}=\mathrm{N} . \mathrm{C}^{\text {. }}$
'LDI	Data Input Shunt Leakage Current		100	. 500	DA	$v_{\text {IN }}=-5 \mathrm{~V} . O E=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=N . C$.
$V_{\text {IL }}$.	, Logic Gate Input "Low" Level			0.8	V	
$\mathrm{V}_{1 H}$	Logic Gate Input "High"' Level	3.2			v	-
's	Cbannel Switching Tıme		45	70	ns	FIG. 1
, C_{db}	- Outpui Capacitance	!	8.5		pf	$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}, 1-1.0 \mathrm{MHz}$
${ }^{\prime} C_{\text {is }}$	Data Input Capseitance ir	.	2.5		pF -	VIN $-5 \mathrm{~V}, \mathrm{I}=1,0 \mathrm{MHz}$
$\mathrm{P}_{\mathrm{D}}{ }^{\text {a }}$	- Power Disssiparion		- 50	150	mW	OE \rightarrow OV .r

16

Fig. 1- switching time test Circuit

LOGIC INPUTT

6.

University Park Plaza
743 Alexander Road.
Princeton, New Jersey 08540
Phone: (609) 452-2222
Cable Inselek

- The outpul transition time is a function of external R and C and the Ron of the selected switch

- Low On Resistance:

15 Ohms

- Dual Mode:

Single 8 / Dual 4 Channel - Fast: 75 nS

Channel To Channel

- ití Compatible
- Expandable:

Outpot Enable Provided

GENERAL DESCRIPTION

The LO5 is a lowiresistance 8-channel multiplex switch with decoding and output-enable (chip select) controls (Three address input lines are decoded to select one of the eight channels. Alternatively, the most significant address line ${ }^{\prime}\left(2^{2}\right)$ may be connected to $V_{D D}$, thereby changing the switch mode to dual 1-out-of-4. The remaining address lirfés (2^{\prime} and 2°) then are decoded to select the desired pair of channels.

The TTL-compatible address and output-enable input buffers incorporate a unique latch feature; these input terminals retain their last logic state when the input terminal is floated.

OPERATION

1-out-of-8 Mode: Connect Output A to Output B. Apply binary address codes to the three address lines.

Dual 1-out-of-4 Mode: Connect $\mathbf{2}^{\mathbf{2}}$ address line to $V_{D D}$ supply. Apply binary codes to 2^{1} and $\mathbf{2}^{\circ}$ address lines.

All switches are disconnected when Output Enable (OE) is low.

ABSOLUTE MAXIMUM RATINGS

Supply voltage $V_{D O}$ with respect to most positive supply voltage $V_{S S}$	-25 V	
Control input voltages with respect to $V_{S S}$	-25 V	
Data input and output voltages with respect to $V_{S S}$	-25 V	
Data (switch) current		50 mA
Storage temperature T_{A}		$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating temperature T_{A}		$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

CAUTION: Care in handling of this device is mandatory to prevent damage to the outputs due to static electricity. To retain the inherent high impedance levels of the device, no protective circuitry is used at the outputs. Recommendations include use of. conductive foam or trays for out-of-circuit handling, grounding of soldering iron tips, and device removal or insertion only with power supplies turned off. Operators handling the components during test or assembly should wear grounded wrist-straps.

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right) \quad V_{S S}=5.0 \mathrm{~V} . V_{O D}-16 \mathrm{~V},-5.0 \mathrm{~V}<V_{\text {OUT }}<5.0 \mathrm{~V}$

- A transient current of maximum value - 1.6 ma occurs during o one to zero transition at each input terminal.

SWITCHING CHARACTERISTICS (Fig. !)

$$
V_{\text {SS }}=5 \mathrm{~V} \quad V_{O O}=-16 \mathrm{~V} \quad, \quad T_{A}=25^{\circ} \mathrm{C}
$$

V
 $L 05$

OE - $\cdot 5 \mathrm{~V}$

ADDRESS STABLE

FIGURE 1
SWITCHING TESTS

FIGURE 2
TYPICAL ON RESISTTANCE VERSUS

ANALOG - INPUT VOLTAGE $36 \quad 42$

ANALOG -TO-DIGITAL CONVERTER

ADC ECONOVERTER

Datel Systems has achieved op major breakihrough in Analog to Digital con verter design by use of a proprietary measuremeht technique and state of the art packaging fabricauen. The Econoverter is completely self contained in a mintatuce plastic case measuring $2^{\prime \prime} \times 2^{\prime \prime} \times .375^{\prime \prime}$

Simplified operation, small size, and low cost make this converter ideally suited to OEM applications. Market areas in: ctude avionics, automatic semiconductor test equipment, computer. equipment, process control, geophysical instruments, medical electronic instru. ments/systems, oceanographic. instruments, data transmission or any require: ment where high resolution is, not of prime importance
Econoverter is availablel with six bit resolution with a digitizing speed of 50 $\mu \mathrm{sec}$ for a full scale input excursion and is proportionally faster for less than full scale inpùts. Analog input voltage range can be either unipolar (0 V to +5 V or 0 V
to +10 V) or bipolar (+2.5 V or $\pm 5 \mathrm{~V}$) by meañs of externally programming the unit via pin strapping. Overall accuracy is adjustable to $+1 / 2$ LSB. Output digital coding is straight binary for unipolar inputs and offset binary for bipolar inputs.
The Econoverter is adjustment free over an operating temperature range of 0° to $+70^{\circ} \mathrm{C}$ and has a temperature coefficięnt of $\pm 1.00 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ with long ${ }^{\circ}$ term stability of $\pm 0.1 \% /$ year: All digital inputs and outputs are compatible with standard TTL/DTL logic tevels. Input power requirements are $+5 \mathrm{VDC} @ 80$ ma, f15VDC @ 15 ma ; and - 15VDC @ 5 ma.
Econoverter is fully encapsulated and features dual-in line pinning compatibility, . 100' grid pin spacing.

ELECTRICAL

Performance:

Revolution One part in 64.
Linesity' $\pm 1 / 2$ LS8.
Full seste accuracy ± 1 LSB.

NOTE 1: The +15VDC power supply input is used as. tha referanca voltage. Tharefore, the F.S. voltage is directly'propor. tional to this voltage.
NOTE 2: The full scala accuracy can be improved by ax;
turnal irimming.
To reduce tha F.S. voltage connact a trim resistor from pin 21 to pin 18.

To increase the F.S. voltage connect a trim resistor from pin 21 to pin 22: Trim'rasistor rangis 50K to 2 Meg .

Long term stability ...
: Encoding time
Rending rato

Input power
requirements
$\pm 0.1 \% /$ yoìr
$\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Min: 0.5μ sec (zaro scale) Max: 50μ sec (full scala) Up to 20,000 sambles/sec. for tull scale,yproportionally fastar for less than F.S. inputs.
$+15 V D C, \pm 0.5 V D C$ © 15 fis max
-15VOC, $\pm 0.6 V D C$ © 5 ma max

+ 5 VDC. $\pm 0.25 V D C$ © 80 ma max

PHYSICAL-ENVIRONMENTAL

Operazing zamp. range. . . 0° tó $+70^{\circ} \mathrm{C}$
Storage temp. range $-65^{\circ} \mathrm{C} 10+85^{\circ} \mathrm{C}$
Relative humidity Up to $\mathbf{1 0 0 \%}$ non-condensing
Size $2^{\prime \prime} W \times \mathbf{V}^{\prime \prime} \mathrm{L} \times \mathbf{0 . 3 7 5 ^ { \prime \prime } \mathrm { H }}$
Pins. $0.020^{\prime \prime}$ round gold plated, $0.250^{* *}$
Cose material Black Dially! Phthalate, per
§ Weight MIL.M.14. C̣onvarters fullī ropairable
4 02. max.
Mating Socket .

UNIT PRICE . . . \$29.95 ea.

OUTPUT CODING FOR ECONOVERTEM

$\begin{aligned} & \text { ANALOG inPUT } \\ & \text { RAMOE } \\ & \text { (ASV, FSi) } \end{aligned}$	OFFSET IINAAY	$\left\{\begin{array}{c} \text { AMALOQ tMP UT } \\ \text { GANOE } \\ \text { CO ROQ IOY. FOY } \end{array}\right.$	Stmaleht minany,
+4.04	11119r	+9.04	111111
*4.37 -	111100	+0.75	111900
+3.75	111,000	+ 7.50	$1: 0000$
$3+2.30$	110000	+ 8.00	100000
0.00	100000	+2.30\%	010000
-2.30	018000	+1.23	001000
-3.75	$00: 000$: 0.00	000000
-4.37	000100		. -
-4.04	00000 -		?
. -5.00	000000	.	.

ecomony encapsulatio LIME TO DC regulated power suppliss

SERVOTRON'S EE SERIES of regulated power supplies was. de. signed to provide the "power fit" in performance, price and packaging for the new, low cost LED, MOS, TTL, DTL, D.A Coñverters, Function Modules and Operational Amplifiers.
'WOULO YOU BELIEVÉ???
Regulated (0.25%) dual and single outputs . . .
Compact (2" $\times 2^{\prime \prime}$ " $\ddot{x}=875$ ") modular packaging
Priced at \$12** in unit quantities
UNBELIEVABLE?, BUT TROE!

SPECIAL FEATURES:

- $\$ 9.97$ "* (1K quantities)
- Short Circuit Protected
- Miniature Size
- No Derating Over Specified Temperature Range

SPEGIFICATIÓNS:

[^1]

BOTTOM VIEW
NOTE:

1. FIVE PINS .046 DIA. $\times .250$ LG. MIN

CONNECTIṄG INSTRUCTIONS

SINGLE OUTPUT MODELS
SERVOTRON SC-3A
CONNECTING INSTRUCTIONS
PIN 1. ac input
2. ac input
3. -Vdc output
4. No connection
5. +Vdc output

DUAL OUTPUT MODEI.S
SERVOTRON SC-3B
CONNECTING INSTRUCTIONS
PIN 1. ace input
2. ac input
3. $:-V d c$ output
4. Common.
5. ' $+V d c$ output

OPTIONS: (Add as suffix to part number)

E Input, 200 to $\mathbf{2 4 0 ~ V a c , ~} 50$ to $\mathbf{4 4 0 ~ H z}$
($\mathbf{\$ 2 . 0 0}$ additional charge, 1:99)

ORDERING INFORMATION:

Prices are F.O.B. Haverhill, Mass. Terms are net 30 days to accounts that have established credit with Servotron. Orders of tess than $\$ 25$ with accompanying
remittance must include $\mathbf{\$ 1 . 0 0}$ for ${ }^{-t r a n s}$ portation cost. Orders of less than \$25 without accompanying remittarice will be shipped ${ }^{\text {C.O.D. }}$.

SCI CREED: "To furnish the best possible solytion. . . at a most favorable price."

SEMICDNDUCTOR,CIRCLITS, INC:

OUTLINE DIMENSIONS

Fig. 1

Fig. 2

Fig. 3

ndtions: See Page 11 For Details
48 Other Models Available Upon Request.

INPUT VOLTAGE AND FREQUĖNCY:
105 to $125 \mathrm{Vac}-50$ to 440 Hz
RIPPLE AND NOISE (PARD): 1 mV rms
TEMPERATURE COEFFICIENT:
$0.02 \% /{ }^{\circ} \mathrm{C}$-typical
OUTPUT VOLTAGE TOLERANCE:
Factory set at $\pm 1 \%$ (fixed)
OPERATING TEMPERATURE RANGE:
$-25^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$
STORAGE TEMPERATURE RANGE:
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

$$
-25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
$$

- SHORT CIRCUIT PROTECTED - NO DERATING UP THRU $+71^{\circ} \mathrm{C}$ - COMPACT SIZE
- ECONOMICALLY PRICED
- FLEXIBLE MOUNTING PINS .

LOW COST MINIẤTURE POWER SUPPLY SERIES WITH BETXER THAN AVERAGE REGUL̇ATION

MODEL	OUTPUT Voltage Vdc	OUTPUT. CURRENT mA	REgULATION		$\begin{gathered} \text { PACKAGE } \\ \text { SIZE } \end{gathered}$	UNIT PRICES 1.9
NO			LINE	LOAD		
$+$						
SQ1.5.20)	5	- 200	0.25	0.25	* 1	
SQ2.12.30	± 12	± 30	0.25	0.25	1	\$19.95
SQ2.12.50	t12	± 50	0.25	0.25	1	19.95
SQ2.15.30	± 15	± 30	0.25	0.25	1	28.95 19.95
SQ2.15.50	± 15	± 50	0.25	0.25	1	19.95 28.95
P741:5005S	5	500	0.20	0.20	2	\$29.95
P741.1012	± 12	± 100	0.20	0.20	2	39.95
P741-1015	± 15	± 100	0.20	0.20	- 2	33.95
DPS 1.5. 1000	5	1000	0.50	0.50	3-8	\$29.95
\&CD1.5.500	5	500	0.20	0.20	3.A	\$37.95
LCD1.5.1000	5	1000	0.20	0.20	3-8	49.95
LCD2.6.50	± 6	± 50	0.20	0.20	3-A	43.00
LCD2.12.100.	± 12	± 100	0.20	0.20	$3 \cdot \mathrm{~A}$	45.00
LCD2.12.200	± 12	± 200	0.20	0.20	3-B	59.95
LCD2.15.25	± 15	± 25	0.20	0.20	$3 . A$	19.95
LCD2.15.50	± 15	± 50	0.20	0.20	$3 . \mathrm{A}$	35.00
LCD2.15.100	± 15	± 100	0.20	0.20	3.A	45.00
LCD2.15.200	± 15	± 200	0.20	0.20	$3 \cdot \mathrm{~B}$	59.95

2.5 Item Wiring Records and Parts Lists

The wiring lists and parts for the CGE-PLATO Interface Items, listed in Section 2.0 above, are reproduced on the folluwiug pages.

Part: 1 44-Contact Vector Plugbord Receptacle Type R-644 (\$2.62)
Date 1 March 74 By J.P.Neal

Connected Item				This Item	
Use	No.	Pin	Cable Wire	Term	Chip
GRD			Chassis.	A	
-15	$5 \cdot$	4	GN (Blk)	B	$\begin{array}{\|c\|} \hline 72741 \\ 4 \end{array}$
NC				C	
NC				D	
NC				E	
NC		-	\sim	F	
NC				H	
NC			-	J	
NC				K	
NC				L	
+15	5	5	Red (Blu)	M	$\begin{gathered} 72741 \\ 7 \\ \hline \end{gathered}$
$\begin{gathered} \text { CGE } \\ \text { qeady } \end{gathered}$	26	10	Red (B1k)	N	$\begin{aligned} & \hline 74123 \\ & \mathrm{c} / 12 \\ & \hline \end{aligned}$
$\overrightarrow{2}$	26	1	Ora (Blk)	P	$\begin{aligned} & 7450 \\ & \text { A/6 } \end{aligned}$
2'	26	2	Yel (B1k)	R	$\begin{aligned} & 7450 \\ & \mathrm{~B} / 8 \end{aligned}$
$\overline{2^{2}}$	26	3	Blu (Blk)	S	
2^{3}	26	4	Wh (Grn)	T	$\begin{aligned} & 7450 \\ & \mathrm{C} / 8 \end{aligned}$
24	26	5	Wh (Blk)	0	$\begin{aligned} & 7450 \\ & c / 6 \end{aligned}$
$\begin{array}{\|r\|} \hline \text { Test } \\ \text { bit } \end{array}$	26	7	Brn (Blk)	V	$\begin{aligned} & 7404 \\ & \mathrm{~A} / 12 \end{aligned}$
D16	16	- 3	Red	W,	$\begin{aligned} & \text { LO2 } \\ & \mathrm{c} / 12 \end{aligned}$
D17	16	4	Ora	X	$\begin{aligned} & 102 \\ & c / 11 \end{aligned}$
D18	16	5	Grn	Y	$\begin{aligned} & \mathrm{LO2} \\ & \mathrm{C} / 10 \end{aligned}$
T30	4	$\begin{gathered} \text { N.O. } \\ 30 \end{gathered}$	Red (Brn)	2	$\begin{aligned} & \text { LO5 } \\ & \mathrm{D} / 6 \end{aligned}$

Connected Item				This	Item
Use	No.	Pin	Cable Wire	Term	Chip
+5	5	1		1	
$\begin{gathered} +5 \\ \text { Flt. } \end{gathered}$	5	2	Red (Brn)	${ }^{\square} 2$	
	N.C.		.	3	
DATA	25	1	Red (B1k)	4	$\begin{array}{\|c} 7404 \\ B / I \end{array}$
CLK	25	2	Grn (B1k)	5	7404 $B / 3$
$\overline{\text { WE }}$	25	3	Wh (Blk)	6	$\begin{gathered} 7404 \\ \mathbf{A} / 1 \end{gathered}$
NC		;	-	7.	
NC				8	
NC.		.		9	
NC				10	1
NC	-		'-	11	(
NC			2	12	
ov.	5	3	Brn(Rd-Brn)	13	
CC5	4	$\begin{array}{\|c\|c\|} \hline \text { POLE } \\ 36 \end{array}$	Yel (Red)	14	$\begin{gathered} 74123 \\ \mathrm{~B} / 2 \end{gathered}$
CC1	$3{ }^{\prime \prime}$	C	Red (Yel)	15	$\begin{aligned} & 7411 \\ & c / 12 \end{aligned}$
+5				16	
010	13	3	Blu	17	$\begin{aligned} & \mathrm{LOL} \\ & \mathrm{~B} / 10 \end{aligned}$
011	13	4	Ora	18	$\begin{aligned} & \mathrm{L} 02 \\ & \mathrm{~B} / 9 \end{aligned}$
D12	13	5	Grn	19	$\begin{aligned} & \mathrm{LO} \\ & \mathrm{~B} / 8 \end{aligned}$
D13	13	6	Grey	20	$\begin{aligned} & \mathrm{LOL} \\ & \mathrm{~B} / 7 \\ & \hline \end{aligned}$
014	13	7	Blk	21	$\begin{aligned} & \mathrm{LO2} \\ & \mathrm{~B} / 6 \end{aligned}$
p15	13	8	Wh	22	$\begin{aligned} & \text { LO2 } \\ & \text { B/5. } \end{aligned}$

PART: 144 -CONTACT VECTOR PLUGBORD RECEPTACLE TYPE R-644
Dat'e 4 DEC. 73 By JPN

Connected Item				This	Item
Use	No.	Pin	Cable Wire	Term	Chip
\%	NC		.	A	${ }^{2} 0512$
D8	11	2	BRN	B	$\begin{array}{\|c} \hline \text { LO2B } \\ 12 \\ \hline \end{array}$
D9	11	3	BLU	C	$\begin{array}{\|c} \text { LO2B } \\ 11 \end{array}$
D19	14	3	GRAY	D	$\begin{array}{\|c\|} \hline \text { LO2C' } \\ 9 \end{array}$
D20	14	4	WH	E ${ }^{-}$	$\begin{gathered} \text { LO2C } \\ 8 \\ \text { EO2C } \end{gathered}$
D21	14	5	VIO	F	7
D22.	15	3	GRN	H	102 C 6
T15	4	$\begin{array}{\|c\|} \hline \text { N:0. } \\ 15 \\ \hline \end{array}$	YEL (RED)	J;	$\begin{gathered} \text { LO5B } \\ 5 \end{gathered}$
T16	4	$\begin{array}{\|c\|} \hline \text { N. } 0 \\ 16 \end{array}$	RED (YEL)	K .	$\begin{gathered} \mathrm{LO5C} \\ 12 \\ \hline \end{gathered}$
T17	4	$\begin{array}{\|c\|} \hline \mathrm{N} .0 \\ 17 \end{array}$	RED (BLU)	L	$\begin{array}{\|c\|c} \hline \text { LO5C } \\ \hline 11 \end{array}$
T18	4	$\begin{array}{\|c\|} \hline \text { N.0. } \\ 18 \\ \hline \end{array}$	BLU (RED)	M	$\begin{array}{\|c\|} \hline \text { LO5C } \\ 10 \\ \hline \end{array}$
T19	4	$\begin{array}{\|c\|} \hline \text { N: } 04 \\ 19 \end{array}$	WH (GRN)	N	$\begin{array}{\|c} \hline \text { LO5C } \\ 9 \\ \hline \end{array}$
T20	4	$\begin{array}{\|c} \hline \text { N.O. } \\ 20 \end{array}$	GRN (W̌H)'	P'	$\begin{array}{\|c} \hline \text { LO5C } \\ \hline 8 \end{array}$
T 21	4	$\begin{array}{\|c\|} \hline \text { N.0. } \\ 21 \end{array}$	RED (ORA)	R	$\begin{array}{\|c} \hline \text { LQ5C } \\ \hline \end{array}$
T22	4	$\begin{gathered} \hline \text { N.O. } \\ 22 \\ \hline \end{gathered}$	ORA (RED)	S	$\begin{gathered} \mathrm{LO} \mathrm{C} \\ 6 \\ \hline \end{gathered}$
T23	4	$\begin{array}{\|c\|} \hline \text { N.O. } \\ 23 \\ \hline \end{array}$	BLU (GRN)	T	$\begin{gathered} \hline 25 \overline{5} C \\ 5 \end{gathered}$
T24	4	$\begin{array}{\|c\|} \hline \text { N.O. } \\ 24 \\ \hline \end{array}$	GRN (XTR)	U	$\begin{gathered} \hline \text { LO5D } \\ 12 \end{gathered}$
T25	4	$\begin{array}{\|c\|} \hline \text { N.O. } \\ \hline 25 \end{array}$	BLU (BLK)	v	$\begin{gathered} \text { LO5D } \\ 11 \end{gathered}$
T26	4	$\begin{array}{\|c\|} \hline \text { N.O. } \\ 26 \end{array}$	BLK (BLU)	W	$\begin{array}{\|c} \mathrm{LO} \mathrm{D} \\ 10 \end{array}$
T27	4	$\begin{gathered} \text { N.O. } \\ 27 \end{gathered}$	ẎEL (BLK)	$/ x$	$\begin{gathered} \text { LO5D } \\ 9 \end{gathered}$
T28	4	$\begin{gathered} \hline \text { N.O. } \\ 28 \end{gathered}$	BLK (YEL)	Y	$\begin{gathered} \hline \text { LO5D } \\ 8 \\ \hline \end{gathered}$
T29	4	$\begin{gathered} \text { N.O. } \\ 29 \end{gathered}$	BRN (RED)	2	LO5D 7.

Connected Item				This	Item
Use	No.	Pin	Cable Wire	Term	Chip
	NC			1	$\mathrm{LOS5}^{\text {D }}$
D1	12	3	WH	2	$\begin{gathered} \hline \mathrm{LO} 2 \mathrm{~A} \\ 11 \\ \hline \end{gathered}$
D2	12	. 4	GRAY	3	$\begin{array}{\|c} \text { LO2A } \\ 10 \end{array}$
D3	12	5	RED/GN	4	$\begin{gathered} \hline \mathrm{LO2A} \\ 9 \end{gathered}$
D4	12	6	RED/YEL	5	$\begin{gathered} \hline 102 A \\ 8 . \end{gathered}$
D5	12	7	RED/BLK	6	$\begin{gathered} \hline \text { LO2A } \\ 7 . \end{gathered}$
D6	12	8	TAN	7	$\begin{gathered} \hline \text { LO2A } \\ \hline 6 \\ \hline \end{gathered}$
D7	12	12	YEL.	8	$\begin{gathered} \hline \text { LO2A } \\ 5 \end{gathered}$
T1	4	$\underset{1}{\mathrm{~N} .0}$	BRN (BLK)	9	$\begin{gathered} \text { LO5A } \\ 11 \end{gathered}$
T2	4	$\begin{gathered} \mathrm{N} .0 \\ 2 \end{gathered}$	BLK (BRN)	10	$\begin{gathered} \mathrm{LO} 05 \mathrm{~A} \\ 10 \end{gathered}$
T3	4	$\begin{gathered} \mathrm{N} . \mathrm{O} \\ 3 \end{gathered}$	ORA (BLK)	11.	$\begin{array}{\|c\|} \hline \text { LO5A } \\ 9 \\ \hline \end{array}$
T4	4	$\begin{aligned} & \mathrm{N} .0 \\ & .4 \end{aligned}$	BLK (ORA)	12	$\begin{gathered} \text { LO5A } \\ 8 \\ \hline \end{gathered}$
T5	4	$\begin{gathered} \mathrm{N} . \mathrm{O} \\ 5 \end{gathered}$	RED (WH)	13	$\begin{gathered} \text { L05A } \\ : 7 \end{gathered}$
T6	4	$\begin{gathered} \mathrm{N} .0 \\ 6 \end{gathered}$	WH (RED)	14	$\begin{gathered} \mathrm{LO} 05 \mathrm{~A} \\ 6 . \end{gathered}$
T7	4	$\begin{gathered} \text { N.O. } \\ 7 \\ \hline \end{gathered}$	RED (BLK)	15	$\begin{gathered} \hline \mathrm{COFA} \\ 5 \\ \hline \end{gathered}$
T8	4	$\begin{array}{\|c} N_{1} . O_{4} \\ 8 \end{array}$	BLK (RED)	16	$\begin{array}{\|c} \hline 205 B \\ 12 \end{array}$
T9	4	$\begin{gathered} \mathrm{N} .0 \cdot \\ 9 \end{gathered}$	BLK (WH)	17	$\begin{array}{\|c} \hline 205 \mathrm{~B} \\ 11 \end{array}$
. T10	4	$\begin{aligned} & \text { N.O. } \\ & 10 \end{aligned}$	WH (BLK)	18	$\begin{array}{\|c} \hline 205 B \\ 10 \end{array}$
T11	4	$\begin{aligned} & \mathrm{N} .0 . \\ & 11 \end{aligned}$	GRN (BLK)	19	$\begin{gathered} 205 \mathrm{~B} \\ 9 \end{gathered}$
T12	4	$\begin{aligned} & \text { N.O. } \\ & 12: \end{aligned}$	BLK (GRN)	- 20	$\begin{gathered} 605 B \\ 8 \\ \hline \end{gathered}$
T13	4	$\begin{aligned} & \mathrm{N} .0 . \\ & 13 \end{aligned}$	RED (GRN)	21	$\begin{gathered} 205 B \\ 7 \end{gathered}$
T14	4	$\frac{N}{N .0}=$	GRN (RED)	22	$\begin{gathered} 105 \mathrm{~B} \\ 6 \end{gathered}$

PART: $141 / 2^{\prime \prime} \times 61 / 2^{\prime \prime}$ Vactor 838 WE-ION IC Board
3016 plir D.I.P. sockots
2 Adjustable POT.

CHIP ELEMENTS

Chip side of RC socke \dagger

	R1	C1	R2	C2
74123 B	10k	6.8رF	10.e	. 01
74123C	10k	. $01{ }_{\mu} \mathrm{F}$	10k	. $01 \mu \mathrm{~F}$
74123D	22免	. $01 \mu \mathrm{~F}$	22ヶ	$6.8 \mu \mathrm{~F}$

G. Filanis

Pagtes Layaut

29 NOU 73
CHIP SIDE

: CVERVILTAGE PRO:ECTION FRK NES INPUTS:

TYPICAL"LETTEREO" 3OASD ternamaic connectory \#t $2 / J-2 / Z+1 / Z$

N914's: 6b TOTAC (Z9PER CCTHRMIIAL) * 53

Date 4 DEC. 73 By JPN

\% Connected Item				This Item	
Use	No.	Pin.	Cable Wire	Term	Chip
$\begin{array}{r} 24 \mathrm{~V} \\ \mathrm{AC} \end{array}$	5	8		A	\cdot
$\begin{aligned} & \dot{C C 2} \\ & 24 \mathrm{~V} \end{aligned}$	$\begin{array}{\|l\|} \hline 12 \\ 13 A \\ \hline \end{array}$	$\begin{array}{\|r} 14 \\ 8 \end{array}$	$\begin{array}{\|ll\|} \hline 14 / 8 & \\ 15 / 8 & 16 / 8 \\ \hline \end{array}$	B	
$\begin{array}{r} \mathrm{CC1} \\ 5 \mathrm{~V} \end{array}$	1	15	RED (YEL)	C	
T1	4	$\begin{array}{\|c} \hline \text { POLE } \\ 1 \\ \hline \end{array}$	RED	D	
T2	4	$\begin{gathered} \text { POLE } \\ 2 \end{gathered}$	WH	E	
T3.	4	$\begin{array}{\|c\|} \hline \text { POLE } \\ 3 \\ \hline \end{array}$	BLK/WH	F	
T4	4	$\begin{array}{\|c\|} \hline \text { POLE } \\ 4 \end{array}$	BLU/BLK	H	
T5	4	$\begin{array}{\|c} \hline \text { POLE } \\ 5 \end{array}$	ORA/BLK	J	
T6.	4	$\begin{gathered} \text { POLE } \\ 6 \end{gathered}$	GRN/WH	K	
T7	4.	$\begin{gathered} \text { POLE } \\ 7 \end{gathered}$	GRN/BLK	L	
T8	4	$\begin{array}{\|c\|} \hline \text { POTE } \\ 8 \\ \hline \end{array}$	RED/WH	M	
T9	4	$\begin{gathered} \text { POLE } \\ 9 \end{gathered}$	BLU/WH	N	
T10	4	$\begin{gathered} \text { POLE } \\ 10 \end{gathered}$	GRN :	P	
T11	4	$\begin{gathered} \text { POLE } \\ 11 \end{gathered}$	RED / BLK	R	
T12	\because	$\begin{aligned} & \text { POLE } \\ & \text { P12 } \end{aligned}$	WH/BLK	s ${ }^{\prime}$	
T13*******	4	$\begin{gathered} \text { POLE } \\ 13 \end{gathered}$	BLU	T	
T14	4	$\begin{gathered} \text { POLE } \\ 14 \end{gathered}$	BLK	U	
T15	4	$\begin{gathered} \hline \text { POLE } \\ 15 \end{gathered}$	OR	V	
				W	
				X	
$\begin{aligned} & \text { CONTR } \\ & \text { GRD } \\ & \hline \end{aligned}$	$\begin{gathered} \text { OLLED } \\ 4 \end{gathered}$	$\begin{gathered} \text { COIL } \\ 2 \end{gathered}$	RED (BLK)	Y	
$\begin{aligned} & \hline \mathrm{CC} \\ & \mathrm{ATCH} \\ & \hline \end{aligned}$	4	$\begin{gathered} \text { POLE } \\ 31 \end{gathered}$	BLK (RED) ${ }^{\circ}$	2	

Connected Item				This	Item ${ }^{\circ}$
Use	No.	Pin	Colile Wire	Term	Chip
$\begin{array}{r} 24 \mathrm{~V} \\ \mathrm{AC} \end{array}$	5	7 :	is...	1	
GND.				2	
$\begin{array}{\|l\|} \hline \text { CCI } \\ 24 \mathrm{~V} \end{array}$. 12	13	BLU	3	
T1	17	1	PINK	14	
T2	17	2	WH	5	
T3	17	3.	GRAY	6	
T4	17.	4	VIO	$7)^{\circ}$	
T5	17	5	BLK	8	
T6	17	6	YEL	9	\because
T7	17	7	BRN	10	
T8	17	8.	BLU	11	
T9,	17	9	TAN	12	
T10	17	10	GRN	13	
T11	17	111.	GRN/RED	14	
T12	17	12	YEL/RED	15	j
,		$7 \because 1$	-	16	6.
T14	17°	14	BLK/RED	17	
T15	$1 / 7$	15	ORA \because	18	.
$\begin{array}{\|l\|} \hline \text { CC3 } \\ 24 v^{2} \end{array}$	$13 \mathrm{~A}$	9	SLATE	19	
-	NC			20	
	NC			21	
	NC			22	

1 Vector No. $3662.6 .5^{\prime \prime} \times 4.5^{\prime \prime}$ Plugboard
1' Vector R644 PC Receptacle
1 RCA 2N2270 Transistor
1 Int. Rect. IR 18DB2A, F.W. Rectifier
h $500 \Omega, 1$ watt, 5% resistor
1 Int. Rect. 1N270 Diode
1: 3 mF capacitor
$111.5 / 25.2 \mathrm{~V}$ transformer
1 Sigma 62R2-24.V Relay
5 Sigma 62R4-24 V Relay
1 Sigma AD-22 Relay Socket
5. Sigma AD-24 Relay Socket
$1_{\text {a }}$ ON-OFF power switch with pilot' lamp

*	Counucted Item			This	Item
Use	No.	Pin	Cable Wire	Teras	
T23	i3A	5	BLU	23	
T24	13A	7	V̇IO	24	
225	16	7	WH	25	.
T26	16	6	BRN	26	
T27	14	6	RED	27	:
T28	14	7	BLK	28	
T29	15	6	BLK	29.	
T30	15	7	RED	30°	
CC LATC:	3	z	BLK (RED)	31	
	,		\&	. 32	
			-	33	
			,	34	
$\because \cdot$				35	
CC5	1°	14	YEL	36	

Connected Item				lhis	Itcr.a
Use	No.	Pin	Cuble Wire	Term	
T1	3	D	RED	1	
T2	3	E	WH	2	
T3.	3	F	BLK/WH	. 3	
14	3	H	. BLU'/BLR	4	
T5*'	3	J	ORA' / BLK	5	
T6	3	K	GRN/WH .	6	\cdots
T7	3	L^{1}	GRN/BLK	$\checkmark 7$	
T8	3	M.	RED/WH	8	
T9	3	N	BiLU/WH	9	
T10.	3.	P	GRN	10	
Tll.	3	R	RED/BLK	11	γ
T12	3	S	WH/BLK	12	
T13	3	T	BLU	13	
T14	'3	U	BLK	14	
T15	3	v	OR	15	1
T16	12	9	YEL	16	\checkmark
T17	12	10	GRAY	17	
T18	12	11	ORA	18	
119	13A	1		19	
T20	13A	2		20	
$12 x$	$13 \mathrm{~A}$	3	RED	21.	
T22	13A	4	ORA	22	

Date 1 MAR 74. By JPN

Each N.C. CONTACT No. .1-30 is connected through a 47Ω, $\frac{3}{4} \mathrm{~W}$. resistor to Chassis Ground.

57

Date 1 MAR 73 By JPN

-	Connected Item			This	Item	Connected, Item				This	Item
Use	No.	Pin	Cable Wire	Term		Use	No.	Pin	Cable Wire	Term	
T23	2	T.	BLU (GRN)	23		T1		9	BRN (BLK)	1	
T24	2	, U	GRN (XTR)	24		$\mathrm{T} 2$	2	10	BLK (BRN)	2	
T25	2	V	BLU (BLK)	25	,	T3	2	11	ORA (BLK)	3	
T26	2	W	BLK (BLU)	26		T4	2	12	BLK (ORA)	4.	
T27	2	. x	YEL (BLK)	27		T5	2	13	RED (WH)	5	
T28	${ }^{2}$	Y	BLK (YEL)	28		T6	2	14	WH (RED)	. 6	
T29	2\%	8	BRN (RED)	29		T7	2	15	RED (BLK)	7	
T30	1	z	RED (BRN)	30		T8	2	$\cdot 16$	BLK (RED)	8	
GND	CHAS GN			31		T9	2	17	BLK (WH)	9	
	.		。	32		T10	2	18	WH (BLK)	10	
			, \because	33		T11	2	19	GRN (BLK)	15	
	'			34		T12	2	20.	BLK (GRN)	12	
\cdots	.		\cdots	35		T13	2	21.	'RED (GRN)	13	
+5V	1	1	BLU •	36		T14	2	22	- GRN (RED)	14	
			-			T15	2.	J	YEL (RED)	15	.
						T16	2	K	RED (YEL)	16	
					-	T17	2	L	RED (BLU)	17	
\therefore						T18	2	M	BEU $=$ (RED)	$\therefore 18$	
						T19	2	N	WH (GRN)	19	
			-	\cdots		T20	2.	P	GRN (Wh)	20°	\because
		.		-		T21	2	R	RED (ORA)	21	
						' 222	$\frac{7}{2}$	S	ORA (RED)	22	

1 36PDT T-Bar Type 801 Electronic Controls No. 36 C 24
2. $651 \mathrm{k} \Omega, 1 / 4$ watt, 5% resistors ($36+29$)

TII 115 vace egone
(1) (3)

- 60

CE MODIFICATION SCHEMATIC
DIAL SENSING:-

PaRTS:
1 AMPNENOL 17-20090. GPIN PLWG
1..." 17-311-01 CAELE CLAMF

Fine sENSING: "X DISPLAY FUNCTIOA" DIAL POBITION:
1 OAK.SERIES F, 3-POSITION, I-POLE, NONSHORTING TYPE ROTARY SWITCH WAFER:
$21 \ell \Omega, 1 / 2 \mathrm{~W}, 5 \%$ RESISTORS (BETWEEN CONTACTS) 20 K Ω; $1 / 2 W$, TRIM RESISTOR (BETWEEN LAST CONTACT \& + ' $5 . V$) FDR SENSING "Y DISPLAY FUNCTION" DIAL POSITION:

1 OAK SERIES F, 5-POSITION, 1-POLE, NDNSHDRTING TYPE ROTARY SWITCH WAFER.

41 R $\Omega, 1 / 2 W, 5 \%$ RESistoRs (Brmbion coniticisj)
 * Item Numbers 6-10 are unassigned.

JPNEAL
26 SEP 73
SCOPE - PLUGIN
ITEM :12
(ANALAB TYPE 700 PLUGIN)
GE MODIFICATION SCHEMATIC
CONNECTION SENSING:

1 Amphenol 17-10150 15 pin Connector*
Conneçtion-Sensing Parts:
1 Cable $\# 79$ CC
1 Sigma 4PDT-24 V Relay
1 Sigma AD-24 Relay Socket
1 relay-mounting bracket

Dial-Sensing Parts:

1 Cable \#79
1 Amphenol 17-10150 15 pin Connector "B Volts" and "A Volts," each:

1 Centralab Series 4000, 17-position, 1-pole, shorting type rotary switch
$161 \mathrm{k} \Omega, 1 / 4$ watt, 5% resistors
$1.5 \mathrm{k} \Omega, 1 / 4$ watt trim resistor "TIME":

1 Centralab Series 4000, 22-position, 1-pole, shorting type rotary switch
$211 \mathrm{k} \Omega, 1 / 4$ watt, 5% resistors
"A PREAMP" and "B PREAMP," each:
1 Oak Series F, 6-position, i-pole; non-shorting type rotary switch
$55.6 \mathrm{k} \Omega, 1 / 4$ watt, 5% resistors
$1100 \mathrm{k} \Omega, 1 / 4$ watt trim resistor
"TRIGGER SOURCE":
1 Oak Series F, 8-position, 1-pale non-shorting type rotary switch
$75.6 \mathrm{k} \Omega, 1 / 4$ watt, 5% resistors
$1100 \mathrm{k} \Omega, 1 / 4$ watt trim resistor
"SWEEP MODE":
1 Oak Serfes F, 6-position, 1-pole non-shorting type rotary switch
$5 \cdot 5.6 \mathrm{k} \Omega, 1 / 4$ watt, 5% resistors
$1100 \mathrm{k} \Omega, 1 / 4$ watt trim .resistor

CGE MOOIFICATION SCHENAIIC
DiAl SENSING:

J. P. NEAL EXACT ZS FUNCTION GENERATOR 26 Ster 73

GE MODIFICATION SCHEMATIC

CONNECTION SENSING:
RELAYS

FUNCTION GENERATOR EXACT MODEL 251 MODIFICATION PARTS

Dial Sensing Parts:

1 Amphenol 17-20090 9-pin Connector (Top, Right) For "TRIGGER":

1. PA-60 switch wafer (2 positions: ground and + 4.TV)

For "MULTIPLIER":
1 PA-60 switch wafer
$\because 61 \mathrm{k} \Omega, 1 / 4$ watt, 5% resistors
$115 \mathrm{k} \Omega, 1 / 4$ watt, 5% trim resistar
For "CYCLES/SEC":
1 3-sections IRS-CTC potentiometer: $30 \mathrm{k} \Omega, 20 \mathrm{k} \Omega, 25 \mathrm{k} \Omega$ trim resistor "*For "OUTPUT":

1 PA-60 switch wafer: $3.1 \mathrm{k} \Omega$ and $118 \mathrm{k} \Omega$ trim resistors For "ATTENUATOR":

1 Ohmit Dual $100 \mathrm{k} \Omega$ Potentiometer
For "DC dEVEL":
1 Mallory RU-54DT353 3-section Potentiometer: 1 FP14R, 1 US43, and 1 SL45

Connection-Sensing Parts:
1 Cable \#81CC
1 Amphenol-17-20090 9-pin-Connector (Bottom, Right)
2 Sigma 4PDT-24 V relays
2 Sigmá AD-24 relay sockets

1. melay mounting bracket

ITEM 14
HP 200 AB AUDIO OSCILLATOR
2 OCT 73
CE MODIFICATION SCHEMATIC
CONNECTION SENSING:

Dial Sensing

> AMPLITUDE

RANGE

FREQUENCY

63.

62
ERIC
\therefore Hip zooab audio osctllator modification parts

Amphenol' 17-200.90 9-pin Connector
Connection-Sensing Parts:
1 Cable " 8 3 $\overline{\mathrm{c}} \mathrm{C}$

- . 1 Sigma 4PDT-24 V Relay

1 Sigma AD-24 Relay Socket
1 relay-mounting bracket
Dial-Position-Sensing Parts:
"AMPLITUDE,". D19
1 Ohmite" AB Dual 25 k Ω. Potentiometer.
"RANGE," D20
1... Centralab AD, 6-posftion, l-pole shorting switch
$3.1 .5 \mathrm{k} \Omega, 1 / 4$ watt, 5% resistors
$1100 \mathrm{k} \Omega$! trim resistor
"FREQUENCY," D21

1. Ohmite $A B 25 \mathrm{k}\{$ Potentiometer

| | | Equipment | Wire | Connector |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Dial | ID\# | Pin | Color | Pin |
| AMPLITUDE | D19 | 3 | gray | D-19 |

$$
\begin{aligned}
& \text { JPrICIL } \\
& \text { HOCT } 73 \\
& \text { HOOD CGE MODIFICATION SCHEMATIC VTVVM }
\end{aligned}
$$

COINECTION SENŞING:
\$/GMA HPDT-ZHV RELAY

$\lambda^{\text {VTVM HP 400D MODIFICATION PARTS. }}$
1 Amphenol (17-20090 9-pin Connector
Connection-Sensing Parts:
1 Cable \#84CC
1 Sigma 4PDT-24 Relay
1 Sigma AD-24 Relay Socket
''1 relay-mounting bracket

- Dial-Position-Sensing Parts:
"RANGE," D22
1 Centralab AD, 23-position, 1-pole shorting switch PA-4000
$111 \mathrm{k} \Omega, 1 / 4$ watt, 5% resistors
$120 \mathrm{k} \Omega$ trim resistọ

ITEM 16 .

- CGE MODIFICATION SCHEMATIC

CONNECTION SENSING
SIGMA 4PDT-24
RELAY.

73

HARRİSON 865B DC SUPPLY MODIFICATIO

1 Amphenol 17-20090 9-pin Connector Connection-Sensing Parts:

1. Cable \#85cc

1 Sigma 4PDT-24 V Relay
i Sigma AD-24 Relay Socket
1 relay-maunting bracket
Dial-Position-Sensing Parts:
"METER," D16

1. Centralab AD, 4-position, 1-pole shorting switch :
$31: 5 \mathrm{k} \Omega, 1 / 4$ watt, 5% resistors
2. $100 \mathrm{k} \Omega \mathrm{trim}$ resistor
"VOLTAGE,":D17
1 Ohmite AB Dual $25 \mathrm{k} \Omega$ Potentiometer (1 is used for dial position sensor, the other is used for Power Supply voltage control)
"CuRRENT, " D18
1 Ohmite AB'Dual $25 \mathrm{k} \Omega$ Potentiometer (1 is used for dial position sensor, the other is used for Power Supply current control)

CIRCUIT BOARD. SOCIKET
(ON INAMVMENT-RACR PINEL)
Parts List:
1 Amphenol * 17-10150 Receptaile, 17 -31101 chidy...
CLAMP, AND 17-529. LD<KING RSSEMELY.
2' 15 \#22. AWG STKA
WIRING DIAGRAM:
SANSORS Socket tins caghe ceme Code Connected Item

Connected Item				This	Item
Use	No.	Pin	Cable Wire	Term	
DATA	1	4		1	
CLK	1	5		2	
$\begin{array}{\|c\|} \hline \text { WORD } \\ \hline \end{array}$	1	6		3	
GND	il	A	.	4	
"	1	A		5	
"	1	A		6	
			.	7	
8				8	
			-	9	

6^{\prime} of $\# 22$ AWG 3 Twisted-Pair Cable 1 Connector for J26 PLATO Console Socket

* Item Numbers 18-24 are unassigned.

Connected Item				This Item		Connected Item				This	Item
Use	No.	Pin	Cabie Wire	Term		Use	No.	Pin.	Cable Wire	Term	,
GND	1	A	RED (BLU)	23		$\frac{L S B}{00}$	1	P	ORA (BLK)	. 1	
	NC		7	24		$\overline{01}$	1	.R	YEL (BLK)	2	
*						$\overline{02}$	1	S	BLU (BLK)	3	
3						$\overline{03}$	1	T	GRN (BLK)	4	
						$\overline{M S B}$	1	U	WH (BLK)	5	
-			-				NC			6	
	\%			.		$\begin{array}{\|c\|} \hline \text { TEST } \\ \text { BIT } \end{array}$	1	V	BRN (RED)	$\because 7$	
							NO		1	8	
				-			NC			9	
		?				RDY	1	N	RED (BLK)	10	
			.				NC		$\therefore \quad-$	11	
							NC			12.	
\cdots					.	GND	1	A	BLK (ORA)	1.3	
						" ${ }^{\prime}$	1	A	BLK (YEL)	14	
						"	d	A	BLK (BLU)	15	
		- \cdot		.		"	1	A.	BLK (GRN)	16	
\cdots			- 0			"	1*	$A^{-\cdots}$	BLK (WH)	17	
		-	${ }^{\circ} \cdot$	-		"	1	A	RED (ORA)	18	
:					.	"	1	A	RED (BRN)	19^{*}	
			π			${ }^{\prime \prime}$	1	A	RED (YEL) ${ }^{\circ}$	20	
					-		NC			21	
		\because	-			GND	1	A	BLK (RED)	22	\cdots

PARTS:

1 Mifcarta Board $8^{\prime \prime} \mathrm{L} \times 5$. ${ }^{5} \mathrm{~W} \times{ }^{4} \mathrm{z}^{\prime \prime} \mathrm{T}$.
4 Brass space er $\frac{1}{4}$ " Dis. x 1 " L with machine screw bumpers
14 Johntson.111-104 6-wáy green ginding posts
1 Amphenol 17-20150 Plug, 17-311-01 Caibe clamp
$3^{\prime} 15$ Pr. \#22 AWG Cable
72-78
ERIC * Item Numbers 27-30 are unassigned.
\qquad S.P.NERL
\qquad 1 of \qquad sheets.

Cable Connector: Amphenol 17-311-01 with latches.

Pin	Cable Wire Color
1	BLACK/BLUE
2	BLACK/WHITE
3	$B L U E$
4	WHITE
5	BROWN
6	YELLOW
7	BLACK/GREEN
8	BLACK/RED

Pin	Cable Wire Color
9	GREEN
10	RED
11	
12	
13	
14	
15	

PARTS: 1 MICARTA BOARD $8^{\prime \prime} L \times 5^{*} \mathrm{~W} \times \mathrm{Y}_{4}{ }^{n} T$
4 BRASS SṔRCERS V_{4} "DIN. $\times 1 / \mathrm{L}$ W/BUMPEER
10 JACKS TYPE 27.4 J

1. AMPHENOL $17-20150$ PLVG \& 17-311-01 CALLE CLAMP,

- $315 \mathrm{PR} \times 22$ AVG $\angle A B L E$

5. OItMITE. RESISTORS SNOWN AEOVE. 13

By J.P. NEAL
ITEM NAME. ITEM NO. \qquad 33

Date _2 APR If \qquad Sheet $L_{\text {of }}$ of sheets.
\square
3' CABLE
Cable Connector: Amphénol 121-311-01 with latches: 4 Typo $274 \mathcal{J}$ Tracks.

Parts : see have.

Pin	Cable Wire Color	
9		
10		
11		
12		
13		
14		
15		

80

Pin	Cable Wire Color	
1	RED	TI
2	BROWN	$T 2$
3	YELDUV	$T 3$
4	RLUE	$T 4$
5		
6		
7		
8		

FPAFITS: 1 MICARTA EORRD 8"L× $5^{\prime \prime} W \times 1 / 4 " T$
 \& TyPE $274 \mathcal{J}$ Jacks
1 Resistor, 33 ce, Ω, 12
1 Induetor, CoLLin's MP-206-23B, 0.240 It.

Cable Connector: Amphenol 17-311-01 with latches.

17 rs.
ERIC

82

Date 26 Mar 74
\qquad 36

\because

Pin	Cable wire Color	
1	RED	
2	BROWN	TI
3	YEWCW	TR
4	BLUE	TB
5	0	GREEN
6		
7		
8		

Pin	Cable Wire Color	
9		
10		
11	\cdots	
12		
13	\ddots	
14	\cdots	
15		

- PARTS: \because MMCARTA BOARD $8^{\prime \prime \prime} \times 5^{\prime \prime} W^{\prime} \times 1 / 4 " T$.
 6. Ty pro 2.74. J Jocks
\qquad of \qquad 1 sheets.

Cable Connector: Amphenol 17-311-01 with latches.

'Prats

\therefore By J.P. $N_{\text {GAL }}$ \qquad
\qquad 1 of \qquad sheets.

Cable Connector: Amphenol 17-311-01 with latches.

Pin	Cable Wire Color
1	RED.
2	BROWN
3	YELLOW
4	BLUE
5	GREEN
6	WHITE
7	BLACK/Y/ELLEW
8	BLACK/BLUE

\therefore

Pin	Cable wine Color
9	$B_{L A C K} /$ GREEN $^{\prime}$
10	\therefore
11	
12	
13	
14	

PaRts see above

3.0 Úse of the PLATO EXT OUT Command

This operational description refers directly to the ten sheets of schematic diagrams in Section 2.3, p. 21-30. Signal flow should be followed on the schematic diagrafins as the operation id described. A component number followed by a sheet number refers to one of the schematic dlagram sheets.
(1) When an EKT Command is executed in a CGE-PLATO program, the EXT OUT data channel connector on the back side of the PLATO IV Console, Setial No. 324, deilvers a fifteen-bit data word serially, highest-order bit first, into the shifit register SN74164, Sheet 1 of the schematic diagrams. However, only the lowest-order eight bits are retained in the latch $\operatorname{SN} 74100$, Sheet 1.
(2) Each serial input to the shift register consists of a three-bit binary word in negative true logic as follows:

Code $\overline{\mathrm{WE}} \overline{\mathrm{CLK}} \overline{\mathrm{DATA}}$
where
WE means Word-End Bit (called EXT TRANSFER by PLATO)
"CLK means Clock Bit
DATA means Data Bit
Serial sigaal timing is shown in Figure 8.
(a) The clock bit sequences the shift register and sets the simultaneous data bit in the lowest-order output bit position of the shift register.
(b) As Hllustrated in Figure 8, the Word-End Bit reqains low until the 15 th data bit is being sent, then its $2-\mu s$ pulse caus s the latch SN74100 to store and output the highest-order seven bits of the shift . regisfer.

FOR PLATO IV CONSOLES WITH ID NO. 3262

Fig. 8. PLATO EXT OUT Signal Timing.
(3). The format assigned by CGE to \& he eight-bit binary number output of the latch can be displayed as follows:

| Bit isó.: | 8 | 7 | 6 | 5 | 4 | 3 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |c| 1 |
| :---: |
| |
| |
| |
| |

(a) Bits 8 and 7 order the CGE interface to operate as follows:
$\phi \phi \quad$ Clear the CGE interface
$\phi \mathrm{I}$ Report the first, terminal found connected the the addressed terminál, after checking in sequence from the addressed terminal to higher-numbered tegrminals
$1 \dddot{\phi}$ Report the setting of the dial addressed. 1.
(b) Consequently, Bit 7 is called CC for. Conrection Check and Bit 8 is called DC for Dial Check. When Bits 8 and 7 -are both \emptyset all CGE outputs and relays are deactivated.
(c) Bits 6 through 2 form the five-bit binary address of the partïcular terminal or dial to be reported on by CGE.
(α) Bit. 1 is a parity bit used by the PLATO terminal and is disregarded by the CGE system.
3.1 Summary of a Single Connection Check Operation
(1) An EXT CCrPLATO signal Ølxxxxx (in binary form at GGE) says, in effedt: Begin with the terminal next. higher in number to the address number and measure the externally-connected resistance between that forne connected) terminal and the addresked terminal.
(2) If the resistance measured \$chematic diagram, Sheet 2) is less than 36 ohms, report to PLATO the number Qf the connected terminal:

(3) If the resistance measured by W. B. is greater than 36 ohms, sequence and connect to thext higher-numbered terinhai and repeat the W. B. measurement:
(4) Conduct this search cyclically through the entire thirty terminals, sequencing from terminal 30 to terminal 1 , until a connection to the addressed terminal is found and reported. Hence, if no other terminal is connected to the addressed terminal, the hardware will sequence through all the terminals (in about 3 ms) and simply report that the addressed terminal is connected ${ }^{\prime} 0$ itself. - If other terminals are ekternally connected to the addressed terminal, -the hardware will report the numben of the connected terminal next higher in number to the addressed tetminal.
(5) Software routines programmed into the CGE-PLATO lessons determine what PLATO does with the report of the next connected terminal from CGE, and establish the next PLATO command.
(6) If the next EXT signal from-plato is either 90 xxaxx or $10 \times x \times x \times x$, the connection checker system is deactivated.
(7) The step-by-step signal flow of a Connection Check command through the CGE-PLATG interface hardware is summarized on the accompanying flow. chart, Figure 9.

3.2. Detailed Flow of a Single Connection Check Operation

(1) When a connection check signal is received from PLATO, the EXT TRANSFER (called WE for Word-End in CGE) pulse goes high before the CCO output of latch SN74100, Sheet 1, goes high. Timing of the EXT OUT -serial-data signals is shown in Figure. 7.
(2) Output 10 of Monostable $\| 1$, SNT $4123 A$, Sheet 1 , goes high with the falling edge of the $2-\mu s$ WE pulse, because the CCO signal" at Input ${ }^{\circ} 1 B_{1}$ is 'high by that time. The 5.5 -second length of the $1 Q$ output pulse is. restarted at each ending of a Wq pulse, in each check of a sequençe of

84
connection checkis. If no EXT signal is received from PLATO within
5.5 seconds, the $1 Q$ output will go low automatically and deactivate the CC system through the subsequent CCl signal as a safety preçaution, even though the CCO signal output of latch SN74100 remains high.
(3) Output $1 Q$ of Monostable \#1, SŃ74123A, is added with CCO to produce the CCI signal: This CCl signal controls the terminal deactivation system (Sheets 5 and 6), and the clock-counter system (Sheets 2، and 3) producing the CC connected-terminal address: In the GC clock system, the CCl signal releases the preset of Monostable $1, \operatorname{SN} 7476$, Sheet 2 , so it can be clocked later by the $1 Q$ output of SN74123B, Sheet 2.
(4) Consider the terminal deactivation system beginqing on Sheet 5. The CCI signal turns on transistors Q1 and Q2. Q1 closes the ground path to the CC relay, Sheat - Praduce the 24 V ech signal which' causes all the $62 \mathrm{R} 4-24 \mathrm{~V}$ de terminal deactitation relays, Shéets 5 and 6, to operate.
(5) When all 62 R 4 relays, Sheets 5 and 6, have operated, the 24 V CC2 signal, passigg in series as the CC3 signal through one normally-opened contact on each of those relays, is sent as the CC4 signal to the CC relay coil, Sheet 4, and causes the CC relay to operate."
(6) Operation of the 36PDT CC relay, Sheet 4, connects the thirty deactivated terminals of the experimentation equipment, Sheets. 5 and 6, to the inputs of the address-terminal $L 02^{\prime} \mathrm{s}$, Sheet 2 , and the connected-terminal L02's, Sheet 3.
(7) The 62R4 terminal deactivation relays disconnect the instrument terminals from the interior circuits of the instruments and connect the thirty instrument and circuit board terminals' to the normallymelosed contacts of the CC relay. During the short interval between the operation of the

62R4 relays and the CC relay, the 47 ohm grounded resistors permanently connected to the normally-closed contacts of the CC relay cause any charges or currents in the experimentation circuit to be drained to zero before the - CC relay operates. This is essential, because the solid-state switches, Sheets 2 and 3, will not tolerate high voltages (see ratings of Inselek LO2's and L05's on pages $32-36$).
(8) Operation of the CC relay, Sheet 4 , also sends the $+5 . V$ CC'5 signal to 'Input' $1 \mathrm{~B}, \mathrm{SN} 74123 \mathrm{~B}$, Sheet 2 , causing Output $1 Q$ to deliver a $23 \mathrm{~ms},+5 \mathrm{~V}$ pulsé. This pulse width is provided to allow all relay bounces to settle to zero. The falling edge of this pulse clocks Monostable 1, SN7476, Sheet 2. Subsequently, the $\overline{1 Q}$ and $2 Q$ outputs of SN7476 and the $\overline{2 Q}$ output of SN74123B are all, high and arè added to deliver +5 V to Input 1 B of SN74123C,

Sheet 2. This starts the CC clock formed by Monostable \#2, SN74123B, ${ }^{\text {a }}$ and Monostables 1 and 2, of SN74123C, Sheet 2. The $\overline{1 Q}$ output of SN7476 also sends the CC6 signal to the CGE output network, Sheet 9.
(9) Meanwhile, the SN74193A and B counters, Sheet 3, have been loaded with the terminal address received from Latch SN74100, Sheet 1 , by the $\bar{W} E$ zero pulse. Consequently, at this time the addressed-terminal L05's, Sheet 3, and the coinnected-terminal L05's, Sheet 4, are both set to the same: addressed terminal. This terminal, addressed by PLATO, is called Terminal N hereafter.
(10) The period of the. CC clock consists of three distinct pulse lengths, and each pulse length is 34 us in length. The +5 V signal into 1β of SN7f123C starts the, first pulselof the CC clock period, a zero pul\$e at Output $\overline{1 Q} . \int^{6}$ The trailing edge of that zero pulse drives Input $2 B$ and starts the second pulse of the CC clock, Monostable \#2. of SN74123C. Also the trailing edge of the first pulse counts the CC counter composed of SN74193A
and B; Sheet. $\mathbf{3}^{\text {, }}$, advancing the connected-terminal L05's to Terminal $\mathrm{N}_{\mathrm{N}} .+1$. The second pulse drives Input $2 B$ of SN74123B. The trailing edge of the second pulse starts the third pulse of the CC clock at Output $\overline{2 Q}$ of SN74123B. During the second pulse, Output 2Q, of SN74123B is high and is added wíth the output of the comparator SN72710, Sheet 2, to drive the clear input of Monostable 2, SN7476, Sheet 2.
(11) If Terminal $N+1$ is connected to Terminal N, Montostable 2, $5 N 7476$, will be cleared, its output $2 Q$ will go low and top the CC clock, as its output $\overline{2 Q}$ goes high, sending the. CC READY sigual inverted to Input $1 A$ of SN74123D, Sheet 9. At that time, the connected-terminal $N+1$ address is set into the SN7450, Sheet 9, output system to PLATO. The leading edge of the inverted CC READY signal triggers Monostable 1 of SN74123D, Sheet 9, so the leading edge of the zero pulse of Output $\overline{1 Q}$ triggers the Monostable 2, SN74123D, which sends a 49 ms zero pulse as the CGE $\overline{\operatorname{READY}}$ signal to the PLATO console. Quite reliably, the PLATO console records the EXT IN data within 15 ms .
(12) If Terminal $N+1$ is not connected to Terminal N, Monostable 2, SN7476, will not be cleared by the comparator, and the trailing edge of the third pulse during the first CC clock period will initiate the first pulse of the second CC clock' period as Output $\overline{2 Q}$ of SN74123B drives Input 1B of SN74123C. As described above for the first CC clock period, the CC counter again advances to make the connected-terminal $\mathrm{N}+2$. This CC clock and counter sequencing continues at the rate of about $100 \mu \mathrm{~s}$ per CC clock period until a terminal is found connected to the addressed terminal. The sequencing wraps around
fromerminal 30 to Terminal. 1 continuing until a terminal is fơnd connected, to Terminal N. Hence, if no terminal. is found connected to Terminal N, CGE will report to PLATO within 3 ms that Terminal N is connected to Terminal N. -
(13) The GE $_{4}$ software routines process each CC report of a terminal connection, and order checks of surcessive terminals as needed in the Plato programmed lesson. As far as the CGE hardware is concerned, the complete - check of thirty terminals need only require an initial 23 ms for relay bounce to dissitpate plus 30 times 3 ms , or a total of about 113 ms . The actual time 1 required for plato to order and receive a complete check of thirty terminals is on the order of six seconds becalise the round-trip transmission time of a single CC terminai report through the PLATO site controller to PLATO and return is about 200 ms per sisnal transmission.

3.3 Summary of a Single Dial Check Operation

(1) An EXT DC PLATO signal Dlxxxxx (in binary form at CGE) says, in effect: Report the dial setting of the address-numbered dial. Lhe Dial Setting Codes autómatically reported by CGE to PLATO are in Figure 7.
(2) The step-by-step signal flow of a Dial Check command through the CGE-PLATO interface hardware is summarized on the accompanying flow chart, Figure 10.
?
(3) Software routines programmed'into the CGE-PLATO lessons guide PLAT'O to store the reported dial setting and request the setting of the next dial. It is unnecessary to turn any hardware fff after sending any dial setting. 3.4 Detailed Flow of a Dial Check
(1) When a dial check signal $1 \emptyset_{\text {exxxx }}$ is received from PLATO, the DC signal from Output Q8 of the latch SN74100, Schematic Diagrams, Sheet ly triggers a $40 \mu \mathrm{~s}$ pulse in Monostable $\# 2$, SN 74123 A , Sheet 1 . The leading qdge of this $40 \mu \mathrm{~s}$ pulse resets the Analog-Digital Converter ADC Econoferters Sheet 7, while the sensor address output of the latch SN 74100 , Sheet 1 , causes the L02's, Sheet 7 , to connect the dial sensor áddressed through the buffer amplifier, 5×1741 Sheet 7, to Analog Input I2 of the ADC:

Figure 10." CGE Hardware Processing of a PLATO Dial Check Request
(2) The falling edge of the $40 \mu \mathrm{~s}$ pulse causes the ADC to convert, ie., put put the binary digital number corresponding to the input dial sensor \therefore voltage. This sensed dial setting code is set into the $\sin 7450$, Sheet 9 , output system to plato.
(3) The leading edge of the inverted DC ready signal from Monostable SN74123A, Sheet. 1, triggers \#1 Mondstable of SN74123D, Sheet 9 , then the leading edge of the zeto pulse of Output $\overline{1 Q}$ triggers \#2 Monostable of SN74123D which sends a 49 ms zero pulse as the CGE READY signal to the PLATO console. Quite reliably, the PLATO console records the EXT IN data within 15, ms.
(4) The CGE software routines process each DC report and order successivedial checks as needed in the PLATO programmed lesson. As far as the CGE hardware is concerned, the complete check of twenty-two dials need only require 22 times the $40 \mu \mathrm{~s}$ pulse delay or a total of about $880 \mu \mathrm{~s}$. The actual time for PLATO to order: and receive a compete check of twenty-two dial settings is on the order of four seconds because the roundtrip transmission of a single - dial check through the plato site controller is about 200 ms per signal transmission.

4.0 Controil of Connection and Dial Checks by the CGE-Software Subroutines

As can be seen from Figures 9 and 10 in the explanation of the operation of the CGE hardware, one command fromplato for a connection check or a dial, check elicits a single responge from the hardware. Consequently, a complete check of either all the termipal interconnections or all the dial settings requires a serites of commands and responses.*

The original design of the CGE-PLATO interface performed and reported to PLATO a complete check of all terminal interconnections or all dial settings in response to a single command from PLATO. Though simple in concept, this report of a string of data into PLATO was found to be unreliable, becaíse charaeters of the string would occasionally be lost in the transmission. High trañmission reliability was achieved by reporting a single data word in response to a request from PLATO and holding this data on the line until a second PLATO request is received. So far, it has not been found necessary to have PLATO repeat back each data word as a check. Though hardware was designed to handle such a check, it was not built.

The minimum amount of hardware and the maximum relifability were achieved tive with the present system. The CK software subroutines organize and conduct each complete check terminal by،terminal or dial by dial.

For a connection check, PLATO begins by asking the CGE station, "To what terminal is Terminal 1 connected?" The CGE hardware, then tests for an external connection between Terminal 1 and each of the other terminals in a numerical and cyclical sequence. in which one follows thirty. If CGE replies "Terminal 1, " the hardware must have cycled through "all of the terminals and found that none of them were interconnected with Terminal 1. Instead, suppose CGE repíled "Terminal 11.". This would mean that no terminal between 1 and 11 ".
was intarconnected with 1. In this case, Plato would ask, "To what terminal is Terminal 11 connected?" If one other terminal is interconnected with 1 and 11, CGE would report that? terminal number. If not, CGE would report "Terminal 1."

The CGE subroutines order the connection check in the above manner and Ilag each terminal number as it is reported. All terminals, of an interconnected set are'similarly flagged. Such a set is called a nodé in electrical. circuit theory, In the above case where only Terminals 1 and $\cdot 11$ were found in the Lst node, PLATO would then ask, "To what terminal is' Terminal 2 connected?" CGE would reply, "and the queries and responses would continue until CGE reports on each of the thirty terminals. When PLATO, in sequencing through the list Uf thirty terminals, encकunters a terminal previously flagged as having been reported on by CGE, it skips that terminal and resumes"its check with the next higher numbered terminal that has not been so flagged. Thus, only thirty queries and responses establish all the possible interconnections between the thirty terminals.

Compared to a connection check, a complete dial check is quite simple. PLATO simply asks the setting of each dial and CGE reports that dial setting. PLȦTU continues, dial by dial, until twenty-two queries and responses have enabled PLATO to receive and store the setting of each of the twenty-tho.dials. 4.1 Author Usage of the GGE-PLATO Subroutines

A11 CGE experimentation lessons "use" the CK (checker) subroutine package contained in lesson eex $\varnothing \emptyset$. The various subroutines in this package provide C̣GE authors with severde convgnient and flexible means of using the CGE-PLATO hardware interface to, automatically check the terminal interconnections and the dial settings of the CGE experimentation equipment, and judge the actual setup against author-specified correct setups. Each author can use the results of the connection and dial checks in any manner, he can devise for improving
student learning. Considerable experience indicates that the least instructive method is to 'simply display the errors in the student's setup.

The identification numbers of the terminals and dials sensed by the CGE-PLATO Gfnterface are displayed in Figure 4, Dials and Terminals Sensed on the Rack-Mounted Experimentation Equipment.

The TUTOR commands "do" or "join", are used to call a subroutine. Before the call is made to the subyoutine, it is necessary to tell the subroutine what the correct setup is supposed to be. This is accomplished through the use of the TUTOR command "pack." All CK subroutines expect to find the correct. setup codes starting in student variable n33. Thus the following two commands first establish the correct or author setup connection codes and then call a subroutine which directs the CGE interface to perform a connection check.

pa		\$\$ packs conn. codes
	ckc	\$\$ performs conn. check

When the subroutine "ckc" is called, it causes CGE to perform a connection check, temporarily store the resuit, judge the student setup against the author setup cuŕrently in $n 33$, and then sets the number of errors in $n 47$.

All the $C K$ subroutines return with variable $n 47=$ - (number of, errors fourd in setup). There are 150 student variables. The CK subroutines use student variables, nl through n49. . Therefore NO CGE experiment is allowed to use ; student variables nl through n 49 .

A Connection Check author setup code is specified as follows:
pack
$\mathrm{n} 33,+\varnothing+\emptyset \emptyset \mathrm{a}$ aba $\emptyset \mathrm{b} \emptyset \mathrm{n} \emptyset \emptyset \mathrm{n} \varnothing \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset$
\$ $\$ 30$ sharacters
This code specifies the following situation as the correct of author setup

Terminals 6,8 , and 10 should be connegted together as a node.
Terminals 9 and 12 should be connected together as a node.
Terminals 14 and 17 should be connected together as a node.
Terminals 1 and 3 are "don't cares" it doesn't matter what they are connected. to.

Terminals $2,4,5,7,11,13_{\mathrm{p}} 15,16,18,19,20, \ldots, 29,30$ should not be connected to anything.

Note the character \emptyset (zero) specifies NO CONNECTIONS.
The character + (plus) specifies a "don't care."
Any other character may be used to indicate nodes; e.g., a, b^{\prime}, and n were used above.

The dial codes which correspond to the dial settings are listed in Figure 7, Dial Setting Codes. "PLATO lesson CGERL is also u'seful for determining the actual settings of dials.

Dial Check Codes should be packed in variable n33 as in the following example:
pack

$$
\text { n } 33, d+a c+(d e f)++(g h)++1+1+1+1+
$$

This code specifies the "correct setup" as being:

Dial		set to position	"d"
Dial	3	set to position	"a"
Dial	4	set to position	"c"
Dial	6	set to position	"d," "e,"
Dial	10	set to position	"g". or "h'

Judge any of these as being correct Judge either correct
and Dials $2,5,7,8,9,11,12,13, \ldots, 21,22$ "don't care" judge anything correct.

Note that the group of codes within parentheses allow you to specify multiple settings on a single dial to be korrect. This is particularly useful in allowing. for tolerances when' specifying the settings, of continuously adjustable dials.

- Another method of packing permits an author to specify various acceptable pairs of dial settings for any two dials which have adjacent; Identification numbers. For this method, two or more acceptable pairs of settings are
$\because \quad 9^{94} 100$
enclosed in angle brackets. For example, çonsider the Audio Oscillator. For 2100 Hertz, the RANGE and FREQUENCY dials could be set at, 10 and 210 , respectively (codes bv), or at 100 and 21 , respectively (cades cc). To accept either of these pairs of setyings, the pack for dials 20 and 21 would be: bvce. . The second letter for any pair can be shown as a multiple setting in parentheses as illustrated in the preceding paragraph. This is not true for the first letter of any pair. For example, if the code for a pair of dials is entered as $c(f g h) d e$, then acceptable pairs would be $c f$, cg, 'ch, or de.

Two basic setis of CGE checking subroutines are available. The CKC series checks and judges a student's connections. The CKD series'checks and - judges a student's dial séttings̀. Fiow diagrams for the CKC series are shown. in Figure 11. The CKD series flow diagrams are simjlar to those for the CKC series.-

The following subroutines comprise the CKC series:*
CKC Performs a complete connection check using the CGE interface hardware and stores the student setup data. It also judges the student, setup sagainst the current author setup in $n 33$ and returns $n 47=$-(number of errors). It also initializes the "Best Match Setup" to the current author setup in $n 33$.

CKCW Same as CKC but additionally it performs a full screen eráse and generates an error display for the student. (w because it writes)

CKC1. Takes the student setup data which were stored by either CKC or CKCW and judges them-against the current author setup in n33 and returns n47 as above. If the number of errors found in this setup is fewer than. that, found in the previous "Best Match Setup" then the "Best Match Setup" is set to the current author code in n33.

CKC1W .Same as CKCl but ift does á full-screen erase and generates a dísplay of the incorrect. connections and the missing connections.

CKC2 Takes the student setup data which were stored by either CKC or CḰCW and judges them against the current ""Best Match Setup." It does this by automatially packing n33 with the, "Best Match Setup." It returns n 47 as above.

CKC2W Same as, CKC2 but it does a full-screen erase and generates an error display.

Both the CKC series of subroutine entries and the CKD series iof subroutine entries have the same overall structure.

The following subroutines comprise the CKD series:
CKD Performs a complete dial check using the CGE interface hardware and stores the data about the student setup in character form starting in variable n30. (It remains there after use of the subroutine. If you desire to access specific'dial codes, use the TUTOR command "move" in order to move tharacters out individually.) It then judges the student setup against the current author setup in n33 and returns $n 47=-$ (number of errors). It also, Initializes the "Best Match Setiup" to the current author setup in n33.

CKDW , Same 'as CKD but' also a full-screen eraseqand generates a display showing ` only those dials which were incorrectly set, without showing the correct settings.

CḰDl Takes the student setup which is stored in n30 and judges it against the current author setup in $n 33$ and returns $n 47$ as above. If the number of errors found in this setup is fewer than that found in the previous "Best Match Setup," then the "Best Match Setup" is set to the current. code in n33.

CKDIW Same as CKDI but also does a fuil-screen erase and generates an error display.

CKD2 - Takes the student setup which is stored in n30 and judges it against the current "Best Match Setup" by first packing n33 with the "Best. Match.". It then returns $n 47=-$ (number of errors found).

CKD2W Same as CKD2 put also does a full-screen erase and generates an error display.

PLATO lesson CGERL allows experimentotion with the various subroutines and with packing codes inte, n33. The following examples should be useful, in addition to other options mentioned above, in helping authors determine what the author codes should be for a particular setup:

It is usually desirable to NOT give an error display and instead send the student to some special help unit on the basis of the type of error he made.

In every event, "解'e author should be súre the student is not trapped in a loop without advice on how to proceed or repeat some task.

4.2 Summary of the CGE-PLATO Lessons

Names of the TUTOR language, PLATO lessons or files used by CGE are given below. The "inspect" code is cge for all these files:

- A hull
cge - A suminary description of the Computer-Gulded Experimentation Research project for general. Information. This, lesson is accessible to any student from lesson "SAMPLE. The CGE station" equipment is described, in this ${ }^{3}$ lesson.
cgerl - This file contans CGE hardware test routines and information fór ${ }^{*}$, CGE authors.
èe 244 and eecge - These are the PLATO courses assigned to CGE.
\because cgeindex - This file is the router lesson for the CGE laboratory lessons in PLATO courses ee244 and eecge. "All CGE experiments have PLATO names beginning with eex, and are indexed in this file and are accessed from this lesson.
cgedata - This is the student data record file for courses ee244 and eecge. eex \emptyset - This is the introductory CGE lesson which assures that a student can communicate with Plíito, is oriented with the laboratory station, and learns the Safe Initial Mode in which the experimentation equipment is to be set at the beginning of each experiment. The CGE subrautines, used in all CGE experimentation lessons, are included in this file. eex $\emptyset 1$ - The Oscilloscope. eex@2 - The Function Generator. eexø3 - The Audio Oscillator. eex 04 - The DC.Supply. eexø5 - The Vacuum Tube Voltmeter.
eex $\emptyset 6$ - Transients.
eex $\emptyset 7$ - Impedance.
eex $\emptyset 8$ - Twơ Port Networks.

[^0]: Documents acquired by ERIC include many informal unpublished materials not available from other sources. ERIC makes every effort to obtain the best copy available. Nevertheless, items of marginal reproducibility are often encountered and. this affects thie quality of the microfiche and hardcopy reproductions ERIC makes available via the ERIC Document Reproduction Service (EDRS). EDRS is not responsible for the quality of the original document. Reproductions supplied by EDRS are the best that can be made from the original.

[^1]: - Indicates maximu'm spacifications. . For Dual Output Models.

