DOCUMENT RESUME ED 135 952 08 CE 009 736 AUTHOR Cooper, Gloria S., Ed.; Magisos, Joel H., Ed. TITLE Metrics for Agricultural Mechanics. INSTITUTION Ohio State Univ., Columbus. Center for Vocational Education. SPONS AGENCY Bureau of Occupational and Adult Education (DHEW/OE), Washington, D.C. PUB DATE 76 CONTRACT OEC-0-74-9335 NOTE 59p.; For related documents see CE 009 736-790 EDRS PRICE MF-\$0.83 HC-\$3.50 Plus Postage. DESCRIPTORS Agribusiness: *Agricultural Engineering: *Curriculum: Instructional Materials; Learning Activities; Measurement Instruments; *Metric System; Natural Resources; Secondary Education; Teaching Techniques; Units of Study; *Vocational Education #### ABSTRACT Designed to meet the job-related metric measurement needs of agricultural mechanics students, this instructional package is one of four for the agribusiness and natural resources occupations cluster, part of a set of 55 packages for metric instruction in different occupations. The package is intended for students who already know the occupational terminology, measurement terms, and tools currently in use. Each of the five units in this instructional package contains performance objectives, learning activities, and supporting information in the form of text, exercises, and tables. In addition, suggested teaching techniques are included. At the back of the package are objective-based evaluation items, a page of answers to the exercises and tests, a list of metric materials needed for the activities, references, and a list of suppliers. The material is designed to accommodate a variety of individual teaching and learning styles, e.g., independent study, small group, or whole-class activity. Exercises are intended to facilitate experiences with measurement instruments, tools, and devices used in this occupation and job-related tasks of estimating and measuring. Unit I, a general introduction to the metric system of measurement, provides informal, hands-on experiences for the students. This unit enables students to become familiar with the basic metric units, their symbols, and measurement instruments; and to develop a set of mental references for metric values. The metric system of notation also is explained. Unit 2 provides the metric terms which are used in this occupation and gives experience with occupational measurement tasks. Unit 3 focuses on job-related metric equivalents and their relationships. Unit 4 provides experience with recognizing and using metric instruments and tools in occupational measurement tasks. It also provides experience in comparing metric and customary measurement instruments. Unit 5 is designed to give students practice in converting customary and metric measurements, a skill considered useful during the transition to metric in each occupation. (HD) Documents acquired by ERIC include many informal unpublished materials not available from other sources. ERIC makes every effort to obtain the best copy available. Nevertheless, items of marginal reproducibility are often encountered and this affects the quality of the microfiche and hardcopy reproductions ERIC makes available via the ERIC Document Reproduction Service (EDRS). EDRS is not responsible for the quality of the original document. Reproductions supplied by EDRS are the best that can be made from the original. 230 ERÎC Mar gran, sign segregar, gran dige sign segres gran, serin, selega gran, sign segres gran, dige sign segres gran Mar gran, sign segres granti dige sign segres grandi de segres grandi de segres de segres digentes segres gran Ali yang ayayang yang dag ayay yang dag ayang dag ayang ayang ayang dag ayay ayang ayang ayang ayang ayang aya A handa a da a dag ayang dag ayang ang ayang ang a Alle Marie Mar La la Marie Mar And the metrics for agricultural mechanics DUCATION i) ## TEACHING AND LEARNING THE METRIC SYSTEM This metric instructional package was designed to meet job-related metric measurement needs of students. To use this package students should already know the occupational terminology, measurement terms, and tools currently in use. These materials were prepared with the help of experienced vocational teachers, reviewed by experts, tested in classrooms in different parts of the United States, and revised before distribution. Each of the five units of instruction contains performance objectives, learning activities, and supporting information in the form of text, exercises, and tables. In addition, suggested teaching techniques are included. At the back of this package are objective-based evaluation items, a page of answers to the exercises and tests, a list of metric materials needed for the activities, references, and a list of suppliers. Classroom experiences with this instructional package suggest the following teaching-learning strategies: - 1. Let the first experiences be informal to make learning the metric system fun. - 2. Students learn better when metric units are compared to familiar objects. Everyone should learn to "think metric." Comparing metric units to customary units can be confusing. - 3. Students will learn quickly to estimate and measure in metric units by "doing." - 4. Students should have experience with measuring activities before getting too much information. - 5. Move through the units in an order which emphasizes the simplicity of the metric system (e.g., length to area to volume). - 6. Teach one concept at a time to avoid overwhelming students with too much material. Unit 1 is a general introduction to the metric system of measurement which provides informal, hands-on experiences for the students. This unit enables students to become familiar with the basic metric units, their symbols, and measurement instruments; and to develop a set of mental references for metric values. The metric system of notable is explained. Unit 2 provides the metric terms which are used in this occupation and gives experience with occupational measurement tasks. Unit 3 focuses on job-related metric equivalents and their relationships. Unit 4 provides experience with recognizing and using metric instruments and tools in occupational measurement tasks. It also provides experience in comparing metric and customary measurement instruments. Unit 5 is designed to give students practice in converting customary and metric measurements. Students should learn to "think metric" and avoid comparing customary and metric units. However, skill with conversion tables will be useful during the transition to metric in each occupation. #### Using These Instructional Materials This package was designed to help students learn a core of knowledge about the metric system which they will use on the job. The exercises facilitate experiences with measurement instruments, tools, and devices used in this occupation and job-related tasks of estimating and measuring. This instructional package also was designed to accommodate a variety of individual teaching and learning styles. Teachers are encouraged to adapt these materials to their own classes. For example, the information sheets may be given to students for self-study. References may be used as supplemental resources. Exercises may be used in independent study, small groups, or whole-class activities. All of the materials can be expanded by the teacher. Gloria S Cooper Joel H. Magisos Editors This publication was developed pursuant to contract No. OEC-0-74-9335 with the Bureau of Occupational and Adult Education, U.S. Department of Health, Education and Welfare. However, the opinions expressed herein do not necessarily reflect the position or policy of the U.S. Office of Education and no official endorsement by the U.S. Office of Education should be inferred. ## UNIT 1 #### SUGGESTED TEACHING SEQUENCE - These introductory exercises may require two or three teaching periods for all five areas of measurement. - 2. Exercises should be followed in the order given to best show the relationship between length, area, and volume. - Assemble the metric measuring devices (rules, tapes, scales, thermometers, and measuring containers) and objects to be measured.* - Set up the equipment at work stations for use by the whole class or as individualized resource activities. - 5. Have the students estimate, measure, and record using Exercises 1 through 5. - 6. Present information on notation and make Table 1 available. - 7. Follow up with group discussion of activities. *Other school departments may have devices which can be used. Metric suppliers are listed in the reference section. #### **OBJECTIVES** The student will demonstrate these skills for the Linear, Area, Volume or Capacity, Mass, and Temperature Exercises, using the metric terms and measurement devices listed here. | | | exercises | | | | | | |----|---|---|--------------------------------------|--|--|---|--| | | SKILLS | Linear
(pp. 3 · 4) | Area
(pp. 5 - 6) | Volume or Capacity
(pp. 7 - 8) | М гы
(pp. 9 • 10) | Temperature (p. 11) | | | 1. | Recognize and use the unit and its symbol for: | millimetre (mm) | square
centimetre
(cm²) | cubic centi-
metre (cm ³) | gram (g)
kilogram (kg) | degree Celsius
(°C) | | | 2. | Select, use, and read the appropriate measuring instruments is at | metre (m) | aquare
metre
(m ²) | cubic metre (m ¹) litre (l) | | | | | 3, | State or show a physical reference for: | · | | millilitre (ml) | | | | | 4. | Estimate within 25% of the actual measure | height, width, or
length of objects | the area of
a given surface | capacity of containers | the mass of objects
in grams and kilo-
grams | the temperature of
the air or a liquid | | | 5, | Read correctly | metre stick, metric
tape measure, and
metric rulers |
 measurements on graduated volume measur- ing devices | a kilogram scale
and a gram scale | A Celsius thermometer | | #### **RULES OF NOTATION** - 1. Symbols are not capitalized unless the unit is a proper name (mm not MM). - 2. Symbols are not followed by periods (m not m.). - 3. Symbols are not followed by an s for plurals (25 g not 25 gs). - 4. A space separates the numerals from the unit symbols (4 1 not 41). - 5. Spaces, not commas, are used to separate large numbers into groups of three digits (45 271 km not 45,271 km). - 6. A zero precedes the decimal point if the number is less than one (0.52 g not .52 g). - 7. Litre and metre can be spelled either with an -re or -er ending. ## METRIC UNITS, SYMBOLS, AND REFERENTS | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | | | | |--------------------|--|-----------------|--|--|--| | Quantity | Metric Unit | Symbol | Useful Referents | | | | Length | millimetre | mm | Thickness of dime or paper clip wire | | | | | centimetre | con | Width of paper clip | | | | * | metre | p | Height of door about 2 m | | | | age and the second | kilometre | km | 12-minute walking distance | | | | Area | square
centimetre | em² | Area of this apace | | | | | square metre | m ² | Area of card table top | | | | | hectare | ha | Football field including sidelines and end zones | | | | Volume and | millilitre | ml | Teaspoon is 5 ml | | | | Capacity | litre | l | A little more than 1 quart | | | | | cubic
centimetre | em ³ | Volume of this container | | | | | | | | | | | | cubic metre | m ³ | A little more than a cubic yard | | | | Mass | milligram | mg | Apple seed about 10 mg, grain of salt, 1 mg | | | | | gram | g | Nickel about 5 g | | | | | kilogram | kg | Webster's Collegiate Dictionary | | | | | metric ton
(1 000 kilograms) | t | Volkswagen Beetle | | | Table 1-a ## METRIC PREFIXES | Multiples and
Submultiples | Prefixea | Symbols | |-------------------------------|----------------|-------------| | 1 000 000 = 10 ⁶ | mega (meg'à) | M | | 1 000 = 10 ³ | kilo (kil ō) | k | | $100 = 10^2$ | hecto (hēk'tō) | h | | 10 = 10 ¹ | deka (děk'a) | ds | | Base Unit 1 = 10 ⁰ | | | | 0.1 = 10 ⁻¹ | deci (des i) | d | | 0.01 = 10 ⁻² | centi (sĕn'tj) | · · · · · · | | 0,001 = 10 ⁻³ | milli (mil'i) | m | | 0,000 001 = 10 ⁻⁶ | micro (mi'kro) | μ | Table 1-b ## LINEAR MEASUREMENT ACTIVITIES ## Metre, Centimetre, Millimetre #### I. THE METRE (m) #### A. DEVELOP A FEELING FOR THE SIZE OF A METRE 1. Pick up one of the metre sticks and stand it up on the floor. Hold it in place with one hand. Walk around the stick. Now stand next to the stick. With your other hand, touch yourself where the top of the metre stick comes on you. #### THAT IS HOW HIGH A METRE IS! 2. Hold one arm out straight at shoulder height. Put the metre stick along this arm until the end hits the end of your fingers. Where is the other end of the metre stick? Touch yourself at that end. THAT IS HOW LONG A METRE IS! at your side. Move apart so that you can put one end of a metre stick on your partner's shoulder and the other end on your shoulder. Look at the space between you. THAT IS THE WIDTH OF A METRE! #### B. DEVELOP YOUR ABILITY TO ESTIMATE IN METRES Now you will improve your ability to estimate in metres. Remember where the length and height of a metre was on your body. For each of the following items: Estimate the size of the items and write your estimate in the ESTIMATE column. Measure the size with your metre stick and write the answer in the MEASUREMENT column. Decide how close your estimate was to the actual measure. If your estimate was within 25% of the actual measure you are a "Metric Marvel." | | | Estimate
(m) | Measurement (m) | How Close
Were You? | |------|---------------------------------|-----------------|-----------------|------------------------| | 1. | Height of door knob from floor. | | | | | 2. | Height of door. | ~~~~ | | | | 3. | Length of table. | | | | | 4. | Width of table. | | | | | 5. ^ | Length of wall of this room. | | | | | 6. | Distance from you to wall. | | | | | II. ' | THE | CENTIMETRE | (cm) | ١ | |-------|-----|------------|------|---| | | | | | | There are 100 centimetres in one metre. If there are 4 metres and 3 centimetres, you write 403 cm [$(4 \times 100 \text{ cm}) + 3 \text{ cm} = 400 \text{ cm}$ + 3 cm]. #### A. DEVELOP A FEELING FOR THE SIZE OF A CENTIMETRE | 1. | How wide is it? cm | |----|--| | 2. | Measure your thumb from the cm | | 3. | Use the metric ruler to find the when of your palm. | | 4. | Measure your index or pointing finger. How long is it? | | 5. | Measure your wrist with a tape measure. What is the distant around it?cm | | 6. | Use the tape measure to find your waist size cm | ### DEVELOP YOUR ABILITY TO ESTIMATE IN CENTIMETRES You are now ready to estimate in centimetres. For each of the following items, follow the procedures used for estimating in metres. How Close 1. 2. 3. of paper. or desk top. Thickness of a button. Thickness of a board Estimate Measurement Were You? (cm) | | clip. | ************ | | | |----|-----------------------------|---------------------|----------------|----| | 2. | Diameter (width) of a coin. | | | · | | 3. | Width of a postage stamp. | · | | | | 4. | Length of a pencil. | | | | | | Width of a sheet of paper. | e dan kasa sa sa sa | and the second | ., | (cm) #### III. THE MILLIMETRE (mm) There are 10 millimetres in one centimetre. When a measurement is 2 centimetres and 5 millimetres, you write 25 mm [(2 x 10 mm) +5 mm = 20 mm + 5 mm]. There are 1 000 mm in 1 m. #### A. | 1. | Thickness of a pa | per clip wir | e. <u> </u> | mm | |---|---|---|--|--| | 2. | Thickness of you | r fingernail. | | mm | | 3. | halth of your fin | gernail. | | mm | | 4, | Diameter (width) | | | mm | | 5. | Diameter (thickn | ess) of your | pencil | mm | | 6. | Width of a postag | e stamp. | e ya ar Tanzal seki Tana | mm | | : | | | | | | | VELOP YOUR AR | | | | | Yoı
foll | VELOP YOUR AR
u are now ready to
owing items, follow
ares. | estimate in | millimetres. For | r each of the | | You
foll
met | u are now ready to
owing items, follow
res.
ckness of a | estimate in
v the proced | millimetres. For | reach of the
timating in
How Close | | You
foll
met
Thick | u are now ready to
owing items, follow
res.
ckness of a | estimate in
v the proced
Estimate | millimetres. For
lures used for es
Measurement | r each of the | | You
foll
met
Thi
nicl
Diam
of a | u are now ready to
owing items, follow
res.
ckness of a
kel.
meter (thickness) | estimate in
v the proced
Estimate | millimetres. For
lures used for es
Measurement | reach of the
timating in
How Close | Length of a paper How Close #### AREA MEASUREMENT ACTIVITIES ## Square Centimetre, Square Metre WHEN YOU DESCRIBE THE AREA OF SOMETHING, YOU ARE SAYING HOW MANY SQUARES OF A GIVEN SIZE IT TAKES TO COVER THE SURFACE. | THE SQUARE CENTIMETRE | |---| |---| #### A. DEVELOP A FEELING FOR A SQUARE CENTIMETRE - 1. Take a clear pla rid, or use the grid on page 6. - 2. Measure the length | 1 dth of one of these small squares when a cent | tre ruler. #### THAT IS ONE SQUARE CENTIMETRE! - 3. Place your fingernail over the grid. About how many squares does it take to cover your fingernail? - 4. Place a coin over the grid. About how many squares does it take to cover the coin? _____cm² - 5. Place a postage stamp over the grid. About how many squares does it take to cover the postage stamp? - 6. Place an envelope over the grid. About how many squares does it take to cover the envelope? | squares | does it | take to | cover | the envel | ope? | |---------|---------|---------|-------|-----------|------| | | .cm² | , . | | | | 7. Measure the length and width of the envelope in centimetres. Length _____ cm; width _____ cm. Multiply to find the area in square centimetres. cm x cm = cm². How | cm | X | _cm = | | | cm ² . | How | |---------------|------------|----------|-------|-----|-------------------|-----| | close are the | answers yo | u have i | in 6. | and | in 7.? | | ## B. DEVELOP YOUR ABILITY TO ESTIMATE IN SQUARE CENTIMETRES You are now ready to develop your ability to estimate in square centimetres. Remember the size of a square centimetre. For each of the following items, follow the procedures used for estimating in metres. | | | | Measurement (cm ²) | Were You? | |----|--------------------------|---|--------------------------------|-----------| | 1. | Index card. | , | | | | 2. | Book cover. | | | | | 3. | Photograph. | | | | | 4. | Window pane or desk top. | - | | | #### II. THE SQUARE METRE (m²) #### A. DEVELOP A FEELING FOR A SQUARE METRE - Tape four metre sticks together to make a square which is one metre long and one metre wide. - 2. Hold the square up with one side on the floor to see how big it is. - 3. Place the square on the floor in a corner. Step back and look. See how much floor space it covers. - 4. Place the square over a table top or desk to see how much space it covers. - 5. Place the square against the bottom of a door. See how much of the door it covers. How many squares would it take to cover the door? ____m² | THIS IS HOW | BIG.A.S | QUARE. | METRE IS! | |-------------|---------|--------|-----------| | | | | | Exercise 2 (continued on next page) | B. | DEVE
METR | LOP Y | YOUR | ABII | LITY T | O ES |
TIMA' | re in s | QUA | RE | | | 1 | | CI | ENT | IMI | TR | E G | RID | | | | |----------------|---|------------------|-------|--------------------|-------------------|--|------------------|--|-------|-----------------|----------|--------------|--------|--------------|----------|-------------|----------|-------------------|--------------|---------------------------------------|-----------|--------------|--------------| | | You ar | e nov | read | y to es
or esti | stimate
mating | in sq
in me | uare n
etres. | etres. | Follo | w the | | | | | - | | | | | | | | | | | | | | | Estim
(m² | | Measur
(m | rement | | v Clos
e You | | | | | | | | | | | | | | | 1. | Door. | | | | | | | ************************************** | | | _ | | | | | | | | | | | | | | 2. | Full sh | | • | | | | | | | , | _ | | | | | - | | 1.1 | | - | | | | | 3. | Chalkb | oard | or | ٠. | | | | | | | | | × | | | | | | . , . | | | | | | | bulleti | | | | | ······································ | | | | | . | | | | ! | | 7 100-00 | | | | | | | | 4. | Floor. | | | | | | | | | | | | - | | | | | | |
 | | | | | 5. | Wall, | | | | | | | | | | | | | | | | | | , | | | | | | 6. | Wall ch | art or | poste | er. | - | | | | | | | - | - | | | | - | - | | | | | | | 7. | Side of | file c | abine | t. | - | | | | | | • | | | | | | | | | | | | | | 4111 | , , i en la compaña de c | proteina se ti i | , | | 17 11 10 . | | *, | | | | | | ans da | | | الماض لاومت | | alaggar () () () | (154, - 46 K | ng jeun Mig - tu p | 2 2017 | 57-0-1-1-1 | n Bangan dan | | | | Γ | T | 1 | <u></u> | | Τ | | | Γ | | ļ · | | " | <u> </u> | - | | | | | | | | | | - | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | 1 | | 1 | | - | | | | | | | | | | | | | | | | | | | 6. | | | | | el 19 a y Billyrian h | | | | | | | | | | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | , | | | | | | | | | | | | | | | | • | , | | | | + | - | - | | | - | 1 | | - | | | | | | | | | | | | | | | | | | _ | | | _ | <u> </u> | | | - | | _ | | | -
 | | | . : | | | | | | | - | | | The Section of | Marie Market Marzani de | | | | ļ | | | 2 (1 agr (1 ages) 1 | | | | 1, 140, 1,11 | | الم بيون | n orgina | | | | | | دسوه ديست | an a estarba | ** **/**** | How Close: ## VOLUME MEASUREMENT ACTIVITIES ## Cabic Centimetre, Litre, Millilitre, Cubic Metre | • | THI | E CUI | BIC CENTIMETRE (cm³) | |-----------|---------------|---------|--| | | A. | DE | VELOP A FEELING FOR THE CUBIC CENTIMETRE | | | mann in | 1. | Pick up a colored plastic cube. Measure its length, height, and width in centimetres. | | | | | THAT IS ONE CUBIC CENTIMETRE! | | | | 2. | Find the volume of a plastic litre box. | | | | | a. Place a ROW of cubes against the bottom of one side of the box. How many cubes fit in the row? | | get a tax | 1 Fawr et ann | est ar' | b. Place another ROW of cubes against an adjoining side of the box. How many rows fit inside the box to make one layer of cubes? | | | | | How many cubes in each row? | | | | | How many cubes in the layer in the bottom of the box? | | | | | c. Stand a ROW of cubes up against the side of the box. How many LAYERS would fit in the box? | | | | | How many cubes in each layer? | | | | | How many cubes fit in the box altogether? | | | | | THE VOLUME OF THE BOX ISCUBIC CENTIMETRES. | | | | | d. Measure the length, width, and height of the box in centimetres. Lengthcm; widthcm; heightcm. Multiply these numbers to find the volume in cubic centimetres. | | В. | DEVELOP YOUR | ABILITY | TO | ESTIMATE | IN CUBIC | |----|--------------|---------|----|----------|----------| | | CENTIMETRES | | • | | | You are now ready to develop your ability to estimate in cubic centimetres. Remember the size of a cubic centimetre. For each of the following items, use the procedures for estimating in metres. | | | (cm ³) | (cm ³) | ARIC TOU: | |---------|--------------------|--------------------|--------------------|-----------| | | Index card file | | · · | | | • | box. | | | | |)
•• | Freezer container. | | - | | | }. | Paper clip box. | | | | | l | Box of staples. | | | | #### II. THE LITRE (1) #### A. DEVELOP A FEELING FOR A LITRE - Take a one litre beaker and fill it with water. - 2. Pour the water into paper cups, filling each as full as you usually do. How many cups do you fill? THAT IS HOW MUCH IS IN ONE LITRE! - 3. Fill the litre container with rice. THAT IS HOWMUCH IT TAKES TO FILL A ONE LITRE CONTAINER! Are the answers the same in c. and d.? ## B. DEVELOP YOUR ABILITY TO ESTIMATE IN LITRES You are now ready to develop your ability to estimate in litres. To write two and one-half litres, you write 2.5 l, or 2.5 litres. To write one-half litre, you write 0.5 l, or 0.5 litre. To write two and three-fourths litres, you write 2.75 l, or 2.75 litres. For each of the following items, use the procedures for estimating in metres. | 1. | Medium-size | Estimate (1) | Measurement (l) | | |----|--------------------------|--------------|-----------------|--| | | freezer container. | | | | | 2. | Large freezer container. | **** | 474 | | | 3. | Small freezer container. | | | | | 4. | Bottle or jug | | | e de la composition della comp | Have Class #### III. THE MILLITRE (ml) There are 1 000 millilitres in one litre. 1 000 ml = 1 litre. Half a litre is 500 millilitres, or 0.5 litre = 500 ml. ## A. DEVELOP A FEELING FOR A MILLILITRE - 1. Examine a centimetre cube. Anything which holds 1 cm³ holds 1 ml. - 2. Fill a 1 millilitre measuring spoon with rice. Empty the spoon into your hand. Carefully pour the rice into a small pile on a sheet of paper. THAT IS HOW MUCH ONE MILLILITRE IS! 3. Fill the 5 ml spoon with rice. Pour the rice into another pile on the sheet of paper. THAT IS 5 MILLILITRES, OR ONE TEASPOON! 4. Fill the 15 ml spoon with rice. Pour the rice into a third pile on the paper. THAT IS 15 MILLILITRES, OR ONE TABLESPOON! CENTER FOR VOCATIONAL EDUCATION ## DEVELOP YOUR ABILITY TO ESTIMATE IN MILLILITRES You are now ready to estimate in millilitres. Follow the procedures used for estimating metres. | | | | Estimate
(nd) | Measurement (ml) | How Close
Were You? | |----|-----------------------|---|------------------
--|------------------------| | 1. | Small juice can. | | | | | | 2. | Paper cup or tea cup. | : | | The second secon | | | 3. | Soft drink can. | | | a an a state of | grand pagengin disent | | 4. | Bottle. | | | | | #### IV. THE CUBIC METRE (m3) ## A. DEVELOP A FEELING FOR A CUBIC METRE - Place a one metre square on the floor next to the wall. - Measure a metre UP the wall. - 3. Picture a box that would fit into that space. THAT IS THE VOLUME OF ONE CUBIC METRE! ## DEVELOP YOUR ABILITY TO ESTIMATE IN CUBIC METRES For each of the following items, follow the estimating procedures used before. | | | Estimate (m³) | Measurement (m³) | How Close
Were You? | |------------|---------------|---------------|------------------|------------------------| | . . | Office desk. | | | | | ? . | File cabinet. | | | | | }. | Small room. | | • • • | | ## MASS (WEIGHT) MEASUREMENT ACTIVITIES ## Kilogram, Gram The mass of an object is a measure of the amount of matter in the object. This amount is always the same unless you add or subtract some matter from the object. Weight is the term that most people use when they mean mass. The weight of an object is affected by gravity; the mass of an object is not. For example, the weight of a person on earth might be 120 pounds; that same person's weight on the moon would be 20 pounds. This difference is because the pull of gravity on the moon is less than the pull of gravity on earth. A person's mass on the earth and on the moon would be the same. The metric system does not measure weight—it measures mass. We will use the term mass here. The symbol for gram is g. The symbol for kilogram is kg. There are 1 000 grams in one kilogram, or 1 000 g = 1 kg. Half a kilogram can be written as 500 g,or 0.5 kg. A quarter of a kilogram can be written as 250 g,or 0.25 kg. Two and three-fourths kilograms is written as 2.75 kg. #### I. THE KILOGRAM (kg) DEVELOP A FEELING FOR THE MASS OF A KILOGRAM Using a balance or scale, find the mass of the items on the table. Before you find the mass, notice how heavy the object "feels" and compare it to the reading on the scale or balance. | | | Mass
(kg) | |----|-------------------|--------------| | l. | 1 kilogram box. | | | 2. | Textbook. | | | 3. | Bag of sugar. | | | 1. | Package of paper. | | | 5. | Your own mass. | | #### B. DEVELOP YOUR ABILITY TO ESTIMATE IN KILOGRAMS For the following items ESTIMATE the mass of the object in kilograms, then use the scale or balance to find the exact mass of the object. Write the exact mass in the MEASUREMENT column. Determine how close your estimate is: | | | How (
Estimate Measurement Were | | |----|---------------------------|--|--| | | | (kg) (kg) | | | 1. | Bag of rice. | | | | 2. | Bag of nails. | | | | 3. | Large purse or briefcase. | | | | 4. | Another person. | | | | 5 | A few books | and the second s | | #### II. THE GRAM (g) ## A. DEVELOP A FEELING FOR A RAM 1. Take a colored plastic cube. Hold it in your hand. Shake the cube in your palm as if shaking dice. Feel the pressure on your hand when the cube is in motion, then when it is not in motion. THAT IS HOW HEAVY A GRAM IS! 2. Take a second cube and attach it to the first. Shake the cubes in first one hand and then the other hand; rest the cubes near the tips of your fingers, moving your hand up and down. THAT IS THE MASS OF TWO GRAMS! 3. Take five cubes in one hand and shake them around. THAT IS THE MASS OF FIVE GRAMS! ## B. DEVELOP YOUR ABILITY TO ESTIMATE IN GRAMS You are now ready to improve your ability to estimate in grams. Remember how heavy the 1 gram cube is, how heavy the two gram cubes are, and how heavy the five gram cubes are. For each of the following items, follow the procedures used for estimating in kilograms: | | | | Estimate (g) | Measurement
(g) | How Close
Were You? | |-----|-------------------------------|----------|--------------------------------|--|------------------------| | 1. | Two thumbtacks. | iju ; s. | gar in angalaga galawan ya kay | a ta patenari da de se fedda da est est a se a se a esta de se est | الإدارة والمراجعة | | 2. | Pencil. | | | | | | 3, | Two-page letter and envelope. | : | | | | | 4. | Nickel. | | | | | | 5., | Apple. | :
• | | | | | 6. | Package of | aranta. | | | | Exercise 4 ## TEMPERATURE MEASUREMENT ACTIVITIES ## Degree Celsius | | | ECELSIUS (°C) | В. | DEVELOP YOUR ABI | LITY TO E | STIMATE IN D | EGREES | |-------------|----------------|---|----|--|------------------|---------------------|------------------------| | egree C | eisius | s (°C) is the metric measure for temperature. | | Obboloo | | | district the second | | 4 A. | | VELOP A FEELING FOR DEGREE CELSIUS te a Celsius thermometer. Look at the marks on it. | | For each item, ESTIMA
Celsius you think it is.
MENT. See how close | Then meas | ure and write th | e MEASURE | | | 1.
******** | Find 0 degrees. WATER FREEZES AT ZERO DEGREES CELSIUS (0°C) | | ments are. | Estimate
(°C) | Measurement
(°C) | How Close
Were You? | | | | WATER BOILS AT 100 DEGREES CELSIUS (100°C) | 1. | Mix some hot and | | | | | | 2. | Find the temperature of the room. C. Is the room cool, warm, or about right? | | cold water in a container. Dip your finger into the | | | | | 15 | 3. | Put some hot water from the faucet into a container. | | water. | | | | | | • | Find the temperature. C. Dip your finger quickly in and out of the water. Is the water very hot, hot, or just warm? | 2. | Pour out some of
the water. Add some
hot water. Dip your | | | | | | 4. | Put some cold water in a container with a thermometer.
Find the temperature°C. Dip your finger into | | finger quickly into the water. | | | | | • | 5. | the water. Is it cool, cold, or very cold? Bend your arm with the inside of your elbow around the | 3. | Outdoor tempera-
ture. | | | 1 | | | υ, | bottom of the thermometer. After about three minutes | 4. | Sunny window sill. | | | | | | | find the temperature. °C. Your skin temperature is not as high as your body temperature. | 5. | Mix of ice and water. | | | | | | 4030 gada | NORMAL BODY TEMPERATURE IS 37 DEGREES CELSIUS (37°C). | 6. | Temperature at floor. | | | | | • | | A FEVER IS 39°C. A-VERY-HIGH-FEVER IS 40°C. | 7. | Temperature at ceiling. | - | 9. | | # UNIT 2 #### **OBJECTIVES** The student will recognize and use the metric terms, units, and symbols used in this occupation. - Given a metric unit, state its use in this occupation. - Given a measurement task in this occupation, select the appropriate metric unit and measurement tool. #### SUGGESTED TEACHING SEQUENCE - 1. Assemble metric measurement tools (rules, tapes, scales, thermometers, etc.) and objects related to this occupation. - 2. Discuss with students how to read the tools. - Present and have students discuss Information Sheet 2 and Table 2. - 4. Have students learn occupationallyrelated metric measurements by completing Exercises 6 and 7. - Test performance by using Section A of "Testing Metric Abilities." ## METRICS IN THIS OCCUPATION Changeover to the metric system is under way. Largezon parations are already using metric measurement to compete in the world market. The true system has been used in various parts of industrial and scientific communities for year. Legislation passed in 1975, authorizes an orderly transition to use of the metric system. As business and industries make this metric changeover, employees will need to use metric measurement in job-related tasks. Table 2 lists those metric terms which are most commonly led in this occupation. These terms are replacing the measurement units used currency hat kinds of jobrelated tasks use measurement? Think of the many different lines of measurements you now make and use Table 2 to discuss the metric terms which them. See if you can add to the list of uses beside each metric term. Metric Units for Agricultural Mechanics | Quantity | Unit | Symbol | | |------------------|--------------------------------|--------------------|---| | Length | millimetre | mm | Spark pilogn; parts sizes; length and diameter of bolts aminorews; drill hits; wrench openings; part classances. | | | ceptimetre | cm | Tools; lever adjustments; implement settings;
pedsi travel; belts; pulleys. | | Mass | fram | g | Mailing and shipping charges; grease; wheel "weights"; parts; powders and dry chemicals. | | | kilogram | kg | weights , paragraph where and my chemicas. | | | metric ton | t | Massof vehicles and equipment. | | Temperature | degree Celsius | °C | Thermostat opening; operating temperatures of engines. | | Volume/Capacity | millilitre | ml | Cranhease oil; fues; additives; liquid sprays;
measuring granular materials by volume to mix
calcium chloride solution. | | | litre | 1 | Fuel; hydraulic system; turbo charger; antifreeze. | | | cubic centimetre | cm ³ | Compression chamber; cylinders; engine displacement. | | Power | kilowatt | kW | Power of an engine (80 hp is about 60 kW). | | Denaity | kilograms per cubic centimetre | kg/cm ³ | Fiuids. | | Flow rate | millilitres per second | ml/s | Fuel and transfer pump output rates; radiator flow rate | | , | litres per second | 1/s | | | Torque | newton metres | N·m | Tightening spark plugs and engine cylinder heads (40 N·m to tighten spark plug). | | Pressure, Vacuum | kilopsscals | kPa | Fuel pump pressure differential; hydraulic cylinder;
turbo charger. | | Speed | kilometres per hour | km/h | Vehicle. | ^{*}Tanks and engine displacement can be measured either in millilitres and litres or in cubic centimetres and cubic metres. ## THYING OUT METRIC UNITS To give you practice with ne ic units, first estimate the measure-Estimate Actual ments of the items below. Write own your best guess next to the item. Then actually measure the item and write down your answers using the 16. Oil can correct metric symbols. The mass you practice, the easier it will be. 17. Gas tank Estimate Actual 18. Engine xylinder Leegth 1. Balm width 19. Enginegadiator 20. Small box or package 2. Hand span 21. Seed box on planter 3. Your height 22. Parts cleaning basin 4. Room length 5. Space between plant rows Mass 23. Textbook 6. Shop doorway width 7. Shop doorway height 24. Nickel 8. Tire trend width 25. Yourself 9. Rim size 26. Paper clip Azea 27. Hoist load limit 10. Desk top 28. A littre of water (net) 11. Classroom floor Temperature 12. Shop bench 29. Room temperature 13. Lawn or plot 30. Outside temperature 14 Sheet of paper 31. Radiator coolant Volume/Capacity 32. Gran kease oil 15. Small bottle | | ħ - | . " | | | <u> </u> | | |-----|-----|------|-----|--------------------------|----------------|--| | | - | | | $\Delta m t t \Delta$ | TTYPTTT | MEMRICS | | | I | | | | 14/ PT 1: La B | AT METALE HOURS. | | - 1 | • | : 44 | RWR | ~ | | VI 1:2/1 1 1 1 2 2 1 1 | | | | _ | | | ***** | AT THE OWNER OF THE PARTY TH | | It is important to know what measurement to use. Show what measurement to use in the following situations. | 20. Pump flow rate | | |--|--|-------------| | 1. Radiator coolant temperature | 21. Mass of grease | | | 2. Tire pressure | 22. Coolant capacity | | | 3. Mass of wheel "weights" | | | | 4. Nutraize | · | | | 5. Bolt size | | | | 6. Wrench size | | | | 7. Power of an engine | | | | 8.
Plowshare settings | | | | 9. Tompue | | | | 10. Oil pressure | · · · · · · · · · · · · · · · · · · · | | | 11. Tractor mass | | | | 12. Sprayer tank capacity | | | | 13. Turbo charger capacity | | \subseteq | | 14. Hosetenath | | | | 15. V-belt-size | | | | 16. Pulley:size | | | | 17. Disc blade width | The state of s | | | 18. Tractorspeed | | | | 19. Seed planter capacity | | | # UNIT 3 #### **OBJECTIVE** The student will recognize and use metric equivalents. Given a metric unit, state an equivalent in a larger or smaller metric unit. #### SUGGESTED TEACHING SEQUENCE - Make available the Information Sheets (3-8) and the associated Exercises (8-14), one at a time. - 2. As soon as you have presented the Information, have the students complete each Exercise. - Check their answers on the page titled ANSWERS TO EXERCISES AND TEST. - 4. Test performance by using Section B of "Testing Metric Abilities." ## METRIC-METRIC EQUIVALENTS Centimetres and Millimetres Look at the picture of the nail next to the ruler. The nail is 57 mm long. This is 5 cm + 7 mm. There are 10 mm in each cm, so 1 mm = 0.1 cm (one-tenth of a centimetre). This means that 7 mm = 0.7 cm, so 57 mm = 5 cm + 7 mm = 5 cm + 0.7 cm = 5.7 cm. Therefore 57 mm is the same as 5.7 cm. Now measure the paper clip. It is 34 mm. This is the same as 3 cm + ____mm. Since each millimetre is 0.1 cm (one-tenth of a centimetre), 4 mm = ____cm. So, the paper clip is 34 mm = 3 cm + 4 mm = 3 cm + 0.4 cm = 3.4 cm. This means that 34 mm is the same as 3.4 cm. ## Information Sheet 3 Now you try some. - a) 26 mm = ____ cm - : - - e) 132 mm = _____ cm - b) 583 mm = ____ cm - f) 802 mm = ____ cm - c) 94 mm = _____ cm - g) 1400 mm = ____ cm - h) 2307 mm = ____ cm **Exercise 8** ## Metres, Centimetres, and Millimetres There are 100 centimetres in one metre. Thus, 2 m = 2 x 100 cm = 200 cm. 3 m = 3 x 100 cm = 300 cm. 8 m = 8 x 100 cm = 800 cm 36 m = 36 x 100 cm = 3 600 cm. There are 1 000 millimetres in one metre, so 2 m = 2 x 1 000 mm = 2 000 mm, 3 m = 3 x 1 000 mm = 3 000 mm, $6m = 6 \times 1000 \, \text{mm} = 6000 \, \text{mm}$ 24 m = 24 x 1 000 mm = 24 000 mm. From your work with decimals you should know that one-half of a metre can be written 0.5 m (five-tenths of a metre), one-fourth of a centimetre can be written 0.25 cm (twenty-five hundredths of a centimetre). This means that if you want to change three-fourths of a metre to millimetres, you would multiply by 1 000. So $0.75 \,\mathrm{m} = 0.75 \,\mathrm{x} \, 1000 \,\mathrm{mm}$ $=\frac{75}{100} \times 1000 \text{ mm}$ $= 75 \times \frac{1000}{100} \text{mm}$ 75 x 10 mm = 750 mm. This means that 0.75 m = 750 mm. #### **Information Sheet 4** Fill in the following chart. 38 | metre
m | centimetre
cm | millimetre
mm | |------------|------------------|------------------| | 1 | 100 | 1 000 | | 2 | 200 | | | 3 | | | | 9 | | | | | 2 444 | 5 000 | | 74 | | 1.00 | | 0.8 | 80 | | | 0.6 | | 600 | | | 2.5 | 25 | | | | 148 | | | 639 | | #### Millilitres to Litres There are 1 000 millilitres in one litre. This means that 2 000 millilitres is the same as 2 litres. 3 000 ml is the same as 3 litres. 4 000 ml is the same as 4 litres. 12 000 ml is the same as 12 litres. Since there are 1 000 millilitres in each litre, one way to change millilitres to litres is to divide by 1 000. For example, $000 \text{ mi} = \frac{1000}{1000} \text{ litre} = 1 \text{ litre}.$ $2\ 000\ ml = \frac{2\ 000}{1\ 000}\ litres = 2\ litres.$ And, as a final example, 28 000 ml = $$\frac{28\ 000}{1\ 000}$$ litres = 28 litres. What if something holds 500 ml? How many litres is this? This is worked the same way. > $500 \text{ ml} = \frac{500}{1000} \text{ litre} = 0.5 \text{ litre (five-tenths of a litre)}$. So 500 ml is the same as one-half (0.5) of a litre. Change 57 millilitres to litres. $57 \text{ ml} = \frac{57}{1.000} \text{ litre} = 0.057 \text{ litre}$ (fifty-seven thousandths of a #### Information Sheet 5 Now you try some. Complete the following chart. | 4 | | |---|---------------| | millilitres
(ml) | litres
(1) | | 3 000 | 3 | | 6 000 | | | . City | 8 | | 14 000 | | | estable gwellering | 23 | | 300 | 0.3 | | 700 | | | in the second | 0.9 | | 250 mg | | | $\mathbb{Q}_{\mathbb{Q}_{2}}(G_{\mathbb{Q}_{2}}) \cong \mathbb{Q}_{\mathbb{Q}_{2}}(G_{\mathbb{Q}_{2}})$ | 0.47 | | 275 | | | | | #### 18 ## Litres to Millilitres What do you do if you need to change litres to millilitres? Remember, there are 1 000 millilitres in one litre, or 1 litre = 1 000 ml. So, 2 litres = $$2 \times 1000 \text{ ml} = 2000 \text{ ml}$$, 7 litres = $$7 \times 1000 \text{ ml} = 7000 \text{ ml}$$. $0.65 \text{ litre} = 0.65 \times 1000 \text{ ml} = 650 \text{ ml}.$ #### Information Sheet 6 Now you try some. Complete the following chart. | litres
1 | millilitres
mi | |-------------|-------------------| | 8 | 8 000 | | 5
46 | | | 46 | | | | 32 000 | | 0.4 | | | 0.53 | | | | 480 | Exercise 11 ## Grams to Kilograms There are 1 000 grams in one kilogram. This means that 2 000 grams is the same as 2 kilograms, 5 000 g is the same as 5 kg, 700 g is the same as 0.7 kg, and so on. To change from grams to kilograms, you use the same procedure for changing from millilitres to litres. #### Information Sheet 7 Try the following ones. | grams
g | kilograms
kg | |-------------|-----------------| | 4 000 | 4 | | 9 000 | | | 23 000 | | | Contract of | 8 | | 300 | | | 275 | | Exercise 12 ## Kilograms to Grams To change kilograms to grams, you multiply by 1 000. Information Sheet 8 Complete the following chart. | kilograms
kg | grams
g | |-----------------|-------------------| | 7 | 7 000 ·- | | 11 | 1 1 1 1 1 1 1 1 1 | | | 25 000 | | 0.4 | Str. Ca | | 0.63 | a tres or ready | | Eq. (A.) | 175 | Exercise 13 ## Changing Units at Work Some of the things you use in this occupation may be measured in different metric units. Practice changing each of the following to metric equivalents by completing these statements. | a) | | | m | |------------|------------------------------|---|-----| | | 250 ml of solution is | | 1 | | | | and the second of | mm | | d) | 2 500 g wheel "weight" is | e a sila isolo il la la cina e signi ee | kg | | e) | 120 mm belt is | | cm | | f) | 0.25 l of starting fluid is | | ml | | g) | 2 000 kg tractor is | | t | | h) | 0.5 litre of oil is | | ml | | <u>i_)</u> | 2 m shaft is | | -mm | | j) | 2 cm bolt is | | mm | | k) | 500 ml of engine enamel is | a was | 1 | | 1). | 0.5 t of calcium chloride is | | kg | | m) | 10 m of wire is | | cm | | n) | 2.5 cm diameter hose is | | mm | | 0) | 2 400 mm of hydraulic line i | S | cm | ## UNIT 4 #### **OBJECTIVE** The student will recognize and use instruments, tools, and devices for measurement tasks in this occupation. - Given metric and Customary tools, instruments, or devices, differentiate between metric and Customary. - Given a measurement task, select and use an appropriate tool, instrument or device. - Given a metric measurement task, judge the metric quantity within 25% and measure within 5% accuracy. #### SUGGESTED TEACHING SEQUENCE - Assemble metric and Customary measuring tools and devices (rules, scales, °C thermometer, drill bits, wrenches, micrometer, feeler gages) and display in separate groups at learning stations. - Have students examine metric tools and instruments for distinguishing characteristics and compare them with Customary tools and instruments. - 3. Have students verbally describe characteristics. - 4. Present or make available Information Sheet 9. - 5. Mix metric and Customary tools or equipment at learning station. Give students Exercises 15 and 16. - 6. Test performance by using Section C of "Testing Metric Abilities." ## SELECTING AND USING METRIC INSTRUMENTS, TOOLS AND DEVICES Selecting an improper tool or misreading a scale can result in an improper sales form, damaged materials, or injury to self or fellow workers. For example, putting 207 pounds per square inch of pressure (psi) in a tractor tire designed for 207 kilopascals (about 30 psi) could cause a fatal accident. Here are some suggestions: - 1. Find out in advance whether Customary or metric units, tools, instruments, or products are needed for a given task. - 2. Examine the tool or instrument before using it. - 3. The metric system is a decimal system. Look for units marked off in whole numbers, tens or tenths, hundreds or hundredths. - 4. Look for metric symbols on the tools or gages such as m, mm, kg, g, kPa. - 5. Look for decimal fractions (0.25) or decimal mixed fractions (2.50) rather than common fractions (3/8) on drill bits, feeler gages, etc. - 6. Some products may have a special metric symbol such as a block M to show they are metric. - 7. Don't force bolts, wrenches, or other devices which are not fitting properly. - 8. Practice selecting and using tools, instruments, and devices. ## WHICH TOOLS FOR THE JOB? Practice and prepare to demonstrate your ability to identify, select, and use metric-scaled tools and instruments for the tasks given below. You should be able to use the measurement tools to the appropriate precision of the tool, instrument, or task. Select and demonstrate or describe use of tools, instruments, or devices to: - 1. Make valve-clearance adjustments. - 2. Determine length of a belt. - 3. Determine size of a pulley. - 4. Measure bearing and order replacement. - 5. Inflate tires. - 6. Check engine thermostat. - 7. Change spark plugs. - 8. Tighten engine cylinder head. - 9. Tighten fuel line nut. - 10. Tighten wheel lugs. - 11. Set distance between tractor wheels. - 12. Check oil pressure. - 13.—Replace hydraulic line. ## MEASURING UP IN AGRICULTURAL MECHANICS For the tasks below, estimate the metric measurement to within 25% of actual measurement, and verify the estimation by measuring to within 5% of actual measurement. | | | Estimate |
Verify | |-------|--|--|-----------------| | 1. | Gas tank capacity | | | | 2. | Volume of oil for oil change | | | | 3. | Distributor points gap | | | | 4. | Coolant temperature | and the second s | | | 5. | Coolant capacity | | | | 6. | Torque setting | | | | 7. | Space between seed drop | | | | -8. | Pulley diameter | | | | 9. | Belt length | | | | 10. | Spark plug gap | | | | 11. | Pedal travel | and the second | was to a second | | 12. | Box or open-end wrench size | | | | 13. | Seed box capacity | | | | -14:- | -Plowshare-length | | | | 15. | Disc blade diameter | | | | 16. | Volume of degreaser or trans-
mission fluid in a partly-filled
container | | W | | | | | | # UNIT 5 #### **OBJECTIVE** The student will recognize and use metric and Customary units interchangeably in ordering, selling, and using products and supplies in this occupation. - Given a Customary (or metric) measurement, find the metric (or Customary) equivalent on a conversion table. - Given a Customary unit, state the replacement unit. #### SUGGESTED TEACHING SEQUENCE - L. Assemble packages and containers of materials. - Present or make available Information Sheet 10 and Table 3. - 3. Have students find approximate metric-Customary equivalents by using Exercise 17. - 4. Test performance by using Section D of "Testing Metric Abilities." ## METRIC-CUSTOMARY EQUIVALENTS During the transition period there will be a need for finding equivalents between systems. Conversion tables list calculated equivalents between the two systems. When a close equivalent is needed, a conversion table can be used to find it. Follow these steps: - 1. Determine which conversion table is needed. - 2. Look up the known number in the appropriate column; if not listed, find numbers you can add together to make the total of the known number. - Read the equivalent(s) from the next column. Table 3 on the next page gives an example of a metric-Customary conversion table which you can use for practice in finding approximate equivalents. Table 3 can be used with Exercise 17, Part 2 and Part 3. Below is a table of metric-Customary equivalents which tells you what the metric replacements for Customary units are.* This table can be used with Exercise 17, Part 1 and Part 3. The symbol means "nearly equal to." | $1 \text{ cm} \approx 0.39 \text{ inch}$ $1 \text{ m} \approx 3.28 \text{ feet}$ $1 \text{ m} \approx 1.09 \text{ yards}$ $1 \text{ km} \approx 0.62 \text{ mile}$ $1 \text{ cm}^2 \approx 0.16 \text{ sq in}$ $1 \text{ m}^2 \approx 10.8 \text{ sq ft}$ | 1 inch ≈ 2.54 cm | 1 ml ≈ 0.2 tsp | 1 tsp \approx 5 ml | |--|---|------------------|--| | | 1 foot ≈ 0.305 m | 1 ml ≈ 0.07 tbsp | 1 tbsp \approx 15 ml | | | 1 yard ≈ 0.91 m | 1 l ≈ 33.8 fl oz | 1 fl oz \approx 29.6 ml | | | 1 mile ≈ 1.61 km | 1 l ≈ 4.2 cups | 1 cup \approx 237 ml | | | 1 sq in ≈ 6.5 cm ² | 1 l ≈ 2.1 pts | 1 pt \approx 0.47 l | | | 1 sq ft ≈ 0.09 m ² | 1 l ≈ 1.06 qt | 1 qt \approx 0.95 l | | $1 \text{ m}^{2} \approx 1.2 \text{ sq yd}$ $1 \text{ m}^{2} \approx 1.2 \text{ sq yd}$ $1 \text{ hectare} \approx 2.5 \text{ acres}$ $1 \text{ cm}^{3} \approx 0.06 \text{ cu in}$ $1 \text{ m}^{3} \approx 35.3 \text{ cu ft}$ $1 \text{ m}^{3} \approx 1.3 \text{ cu yd}$ | 1 sq yd ≈ 0.8 m ²
1 acre ≈ 0.4 hectare
1 cu in ≈ 16.4 cm ³
1 cu ft ≈ 0.03 m ³
1 cu yd ≈ 0.8 m ³ | 1 l ≈ 0.26 gal | 1 gal ≈ 3.79 l
1.oz ≈ 28.3 g
1 lb ≈ 0.45 kg
1 ton ≈ 907.2 kg
1 psi ≈ 6.895 kPa | ^{*}Adapted from Let's Neusure Metric. A Teacher's Introduction to Metric Measurement. Division of Educational Redesign and Renewal, Ohio Department of Education, 65 S. Front Street, Columbus, OH 43215, 1975. ## **CONVERSION TABLES** #### MILLIMETRES AND CENTIMETRES TO INCHES | mm | CID. | in. | mm. | cm | in. | mm | cm in. | mm | cm | in. | |------|-------|-------|-----|-----|------|----------|----------|-------|--|--------| | 100 | 10.0 | 3.94 | 10 | 1.0 | 0.39 | 1 | 0.1 0.04 | 0.1 | 0.01 | 0.004 | | 200 | 20.0 | 7.87 | 20 | 2.0 | 0.79 | 76 76 2 | 0.2 0.08 | 0.2 | 0.02 | 0.008 | | 300 | 30.0 | 11.81 | 30 | 3.0 | 1.18 | 3 | 0.3 0.12 | 0.3 | 0.03 | 0.012_ | | 400 | 40.0 | 15.75 | 40 | 4.0 | 1.57 | 4 | 0.4 0.16 | 0.4 | 0.04 | 0.016 | | 500 | 50.0 | 19.68 | 50 | 5.0 | 1.97 | 5 | 0,5 0,20 | 0.5 | 0.05 | 0.020 | | 600 | 60.0 | 23,62 | 60 | 6.0 | 2.36 | 6 | 0.6 0.24 | 0.6 | 0.06 | 0.024 | | 700 | 70,0 | 27.56 | 70 | 7.0 | 2.76 | 7 | 0.7 0.28 | 0.7 | 0.07 | 0.028 | | 800 | 80,0 | 31.50 | 80 | 8.0 | 3.15 | 8 | 0.8 0.91 | 0.8 | 0.08 | 0,031 | | 90v | 90.0 | 35.43 | 90 | 9.0 | 3.54 | 9 | 0.9 0.35 | 0.9 | 0.09 | 0.035 | | 1000 | 100.0 | 39.37 | | | | | | | | | | | | | | | | | | ـــــ | and the second s | | | | INC | CHES TO | CENTIMI | et re s A | M DN | LLIMETRE | S | | | | | | MET | RES TO F | EET | | | FEE | T TO ME | TRES | | |----|-----|--------------|---------|------------------|------|----------|----------|-------|------|-------|--------------|------------------------|-----|----------|-----|-------|-----------|-----|---------|------|------| | | in. | cm | mm | in. | cm | mm | in, | mm . | in. | mm | | insignity
ijus de l | n | ít. | m | ft. | | ft. | m | fi. | m | | | 1 | 2.5 | 25.4 | 0.1 | 0.25 | 2.54 | .01 | 0.254 | .001 | 0.025 | | | 10 | 32.81 | 1 |
3.28 | | 10 | 3.05 | 11 | 0.81 | | ď. | 2 | 5.1 | 50.8 | 0.2 | 0.51 | 5.08 | .02 | 0.508 | .002 | 0.050 | tagenda i en | sarteri jan | 20 | 65.62 | 2 | 6.56 | Section 1 | 20 | 6.10 | 2 | 0.61 | | _ | 3 | 7.6 | 76.2 | 0.3 | 0.76 | 7.62 | .03 | 0.762 | .003 | 0.076 | | | 30 | 98.43 | 3 | 9.84 | | 30 | 9.14 | 3 | 0.91 | | | 4 | 10.2 | 101.6 | 0.4 | 1.02 | 10.16 | .04 | 1.02 | .004 | 0.102 | - 15
- 1 | | 10 | 181.23 | 4 | 13.12 | | 40 | 12.19 | 4 | 1.22 | | | 5 | 12.7 | 127.0 | 0.5 | 1.27 | 12.70 | .05 | 1.27 | .005 | 0.127 | | | 50 | 164,04 | 5 | 16.40 | | 50 | 15.24 | 5 | 1.52 | | - | 6 | 15.2 | 1824 | 0,6 | 1.52 | 15,24 | .06 | 1.52 | .006 | 0.152 | === | = | 30 | 196.85 | 6 | 19.69 | | 60 | 18.29 | 6 | 1.83 | | _ | 7 | 17.8 | 177.8 | 0.7 | 1.78 | 17.78 | .07 | 1.78 | .007 | 0,178 | | 7 | 0 | 229,66 | 7 | 22.97 | | 70 | 21.34 | 7 | 2.13 | | | 8 | 20.3 | 203.2 | 0.8 | 2.03 | 20.32 | .08 | 2.03 | .008 | 0.203 | | { | 30 | 262.47 | 8 | 26.25 | ~ | 80 | 24.38 | 8 | 2,44 | | | 9 | 22.9 | 228.6 | 0.9 | 2.29 | 22.86 | .09 | 2.29 | .009 | 0.229 | | { | 0 | 295,28 | 9 | 29,53 | | 90 | 27.43 | 9 | 2.74 | | 1 | 0 | 325.4 | 254.0 | | | | | | | 1 | | | | | | | - | | | | | Table 3 #### ANY WAY YOU WANT IT 1. You are working in a farm implement shop. With the change to metric measurement some of the things you order, sell or use are marked only in metric units. You will need to be familiar with appropriate Customary equivalents in order to communicate with customers and suppliers who use Customary units. To develop your skill use the Table on Information Sheet 10 and give the approximate metric quantity (both number and unit) for each of the following Customary quantities. | | | | |-----|--|--| | | Customary Quantity | Metric Quantity | | a) | 2 lbs. of grease | 100 | | b) | 4 qts. of oil | | | c) | 3/4 in. bolt | | | d) | 10 acres | | | e) | 100 lb. weight | | | f) | 18 in. belt | | | g) | two-gallon can of antifreeze | | | h) | 1 pt. of hydraulic fluid | | | i) | 1 fl. oz. of spray paint | | | j) | 3 mile distance | | | k) | 1/2 in. pipe | | | 1) | 5000 lb. tractor | | | m) | 2 ft. row space | in comment of the second th | | n) | 6 in. plant space | | | 0) | 1/4 in. seed depth | | | | والمروب والمستقد والمستقد والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع | وبالوبية الأليطونية لوالوالوالوالوالسوية ويور | 2. Use the conversion tables from Table 3 to convert the following: | a). | 125 mm = | in. | f) 4 in. = | mm | |------|-----------|-----|--|----| | b) | 150 mm = | in. | g) 2.5 in. = | cm | | c) | 1 200 mm= | in. | h) 18 in. = | mm | | d) | 240 cm = | in. | i) .005 in.= | mm | | e) | 25 m = | ft. | j) 25 ft. = | m | | | | | and the second s | | - 3. Complete the Requisition Form using the items listed. Convert the Customary quantities to metric before filling out the form. Complete all the information (Date, For, No., etc.). Order the following agricultural mechanic supplies: - a) 10 lbs. of grease - b) 55 gals, of oil - c) 1000 gals. of gas - d) 5 ft. of hydraulic line - e) 2 bristle brushes, 2 in. wide | For | marati kan kanak d | REQ | VUISITION | |--|--|---------------------------|-------------| | No. Date Wanted Deliver to QTY UNIT ITEM | | | Date | | QTY UNIT ITEM | For | | | | QTY UNIT ITEM | | | | | QTY UNIT ITEM | No. | | Date Wanted | | QTY UNIT ITEM | Deliver to | | | | | | | -1 | | Requested by | QTY | UNIT | ITEM | | Requested by | | | | | Requested by | e de la companya l | at a state of the comment | | | Requested by | | | | | Requested by | • | , | | | Requested by | | | | | Requested by | | | | | | Requeste | ed by | | | Approved by | Approve | d by | | #### SECTION
A - 1. One kilogram is about the mass of a: - [A] nickel - [B] apple seed - [C] basketball - [D] Volkswagen "Beetle" - 2. A square metre is about the area of: - [A] this sheet of paper - [B] a card table top - [C] a bedspread - [D] a postage stamp - 3. Fuel would be purchased in quantities of: - [A] watts - [B] litres - [C] metres - [D] grams - 4. The mass of gear box grease is measured in: - [A] grams - [B] centimetres - [C] millilitres - [D] metres - 5. The correct way to write twenty grams is: - [A] 20 gms - [B] 20 Gm. - [C] 20 g. - [D] 20 g - 6. The correct way to write twelve thousand millimetres is: - [A] 12,000 mm. - [B] 12.000 mm - [C] 12 000mm - [D] 12 000 mm #### SECTION B - 7. A board 20 centimetres wide also has a width of: - [A] 200 millimetres - [B] 2 000 millimetres - [C] 2 millimetres - [D] 0.2 millimetre - 8. A 750 gram box of screws is the same as: - [A] 75 kilograms - [B] 0.75 kilogram - [C] 750 kilograms - [D] 7.5 kilograms #### SECTION C - 9. For measuring in millimetres you would use a: - [A] scale - [B] container - [C] ruler - [D] pressure gage - 10. For measuring kilopascals you would use a: - [A] pressure gage - [B] scale - [C] ruler - [D] container - 11. Estimate the length of the line segment below: - [A] 23 grams - [B] 6 centimetres - [C] 40 millimetres - [D] 14 pascals - 12. Estimate the length of the line segment below: - [A] 10 millimetres - [B] 4 centimetres - [C] 4 pascals [D] 23 milligrams Use this conversion table to answer questions 15 and 16. | mm | in, | mm in. | |-----|------|--------| | | 1,20 | | | 10 | 0.39 | 1 0.04 | | 20 | 0.79 | 2 0.08 | | 30 | 1.18 | 3 0.12 | | 40 | 1.57 | 4 0.16 | | 50 | 1.97 | 5 0.20 | | 60 | 2.36 | 6 0,24 | | 70 | 2.76 | 7 0.28 | | 80 | 3.15 | 8 0.31 | | 90 | 3.54 | 9 0.35 | | 100 | 3.94 | | #### SECTION D - 13. The metric unit for liquid measure which replaces the fluid ounce is: - [A] gram - [B] cubic metre - [C] litre - [D] millilitre - 14. The metric unit for liquid measure which replaces the gallon is: - [A] cubic metre - -[B]—millilitre - [C] litre - [D] kilogram - 15. The equivalent of 155 mm is: - [A] 150 in. - [B] 3.94 in. - [C] 5.91 in. - [D] 15 in. - 16. The equivalent of 51 mm is: - [A] 2.01 in. - [B] 25.5 in. - [C] 0.24 in. - [D] 51 in. ## ANSWERS TO EXERCISES AND TEST #### EXERCISES 1 THRU 6 The answers depend on the items used for the activities. #### **EXERCISE 7** Currently accepted metric units of measurement for each question are shown in Table 2. Standards in each occupation are being established now, so answers may vary. #### **EXERCISE 8** | a) | 2.6 | cm | e) | 13.2 | cm | |----|------|-----|----|-------|----| | b) | 58.3 | cm | f) | 80.2 | cm | | c) | 9,4 | cm | g) | 140.0 | cm | | 4) | 68.0 | em. | ĥΊ | 230.7 | ٥m | #### **EXERCISES 9 THRU 13** Tables are reproduced in total. Answers are in parentheses. #### Exercise 9 | metre
m | centimetre
cm | millimetre
mm | |------------|------------------|------------------| | 1 | 100 | 1 000 | | 2 | 200 | (2 000) | | 3 | (300) | (3 000) | | 9 | (900) | (9 000) | | (5) | (500) | 5 000 | | . 74 | (7 400) | (74 000) | | 0.8 | 80 | (800) | | 0.6 | (60) | 600 | | (0.025) | 2.5 | 25 | | (0.148) | (14.8) | 148 | | (6.39) | 639 | (6 390) | #### Exercise 10 | millilitres
ml | litres
I | |-------------------|-------------| | F | - | | 3 000 | 3 | | 6 000 | (6) | | (8 000) | 8 | | (14 000) | (14) | | (23 000) | 23 | | 300 | 0.3 | | 700 | (0.7) | | (900) | 0.9 | | 250 | (0.25) | | (470) | 0.47 | | 275 | (0.275) | | | | #### Exercise 11 | litres
1 | millilitres
ml | |-------------|-------------------| | 8 | 8 000 | | 5 | (5 000) | | 46 | (46 000) | | (32) | 32 000 | | 0.4 | (400) | | 0.53 | (530) | | (0.48) | 480 | #### Exercise 12 | | rams
g | kilograms
kg | |---|-----------|-----------------| | | 1 000 | 4 | | | 9 000 | (9) | | 2 | 3 000 | (23) | | | 8 000) | 8 | | | 800 | (0.3) | | | 275 | (0.275) | #### Exercise 13 | kilograms
kg | grams
g | |-----------------|------------| | 7 | 7 000 | | 11 - | (11 000) | | (25) | 25 000 | | 0.4 | (400) | | 0.63 | (630) | | (0.175) | 175 | #### Exercise 14 | a) | 5 m | i) | 2 000 mm | |-----|------------|------|-----------| | b) | 0.25 litre | j) | 20 mm | | - i | E0 | 1. 1 | 0 E litra | | c) | 50 mm | k) | 0.5 lit | |-----|--------|-----|---------| | d) | 2.5 kg | 1) | 500 k | | f) | 250 ml | n) | 25 mm | |------------|--------|----|--------| | z) | 2 t | 0) | 240 cm | h) 500 ml #### EXERCISES 15 AND 16 The answers depend on the items used for the activities. > 29.6 ml i) 4.83 km k) 1.27 cm 1) 2250 kg m) 0.61 m n) 15.24 cm o) 0.635 cm #### **EXERCISE 17** a) 0.9 kg b) 3.8 litres c) 1.905 cm 4 ha e) 45 kg f) 45.72 cm g) 7.58 litres h) 0.47 litre | Part | 1 | | |------|---|--| | | | | | S | kilograms
kg | | |----|-----------------|--------| | 0 | 4 | | | 0 | (9) | | | 0 | (23) | | | 0) | 8 | .41.20 | | 0 | (0.3) | | | 5 | (0.275) | I | #### Part 2. | - + | | | | |------|-----------|-----|----------| | a) | 4.93 in. | f) | 101.6 mm | | b) | 5.91 in. | g) | 6.37 cm | | c) | 47.24 in. | h) | 457.2 mm | | d) | 94.48 in. | i) | 0.127 mm | | e). | 82.02 ft. | j) | 7.62 m | #### Part 3. | a) 🗀 | 4.5 kg | |-------|--------| |-------|--------| | b) | 208.45 lit | es: | |----|------------|-----| #### e) 2.5.08 cm #### TESTING METRIC ABILITIES | | 1. | C | 9. | C | | |---|----|---|-----|--------------|---| | | 2. | В | 10. | A | | | , | 3. | В | | а В « | , | | | 4. | A | 12. | A | | | | 5. | D | 13. | D | | | | 6. | D | 14. | C | | | | 7. | A | 15. | C | | | | 0 | מ | 16 | Å | | ☆ U.S. GOVERNMENT PRINTING OFFICE: 1976-757-069/6201 Region No. 5-11 #### SUGGESTED METRIC TOOLS AND DEVICES NEEDED TO COMPLETE MEASUREMENT TASKS IN EXERCISES 1 THROUGH 5 (* Optional) #### LINEAR Metre Sticks Rules, 30 cm Measuring Tapes, 150 cm *Height Measure *Metre Tape, 10 m *Trundle Wheel *Area Measuring Grid #### VOLUME/CAPACITY *Nesting Measures, set of 5, 50 ml - 1 000 ml Economy Beaker, set of 6, 50 ml - 1 000 ml Metric Spoon, set of 5, 1 ml - 25 ml Dry Measure, set of 3, 50, 125, 250 ml Plastic Litre Box Centimetre Cubes #### MASS Bathroom Scale *Kilogram Scale *Platform Spring Scale 5 kg Capacity 10 kg Capacity Balance Scale with 8-piece mass set *Spring Scale, 6 kg Capacity #### TEMPERATURE **Celsius Thermometer** ## SUGGESTED METRIC TOOLS AND DEVICES NEEDED TO COMPLETE OCCUPATIONAL MEASUREMENT TASKS In this occupation the tools needed to complete Exercises 6, 15, and 16 are indicated by "*." - * A. Assorted Metric Hardware—Hex nuts, washers, screws, cotter pins, etc. - ★ B. Drill Bits—Individual bits or sets, 1 mm to 13 mm range - * C. Vernier Caliper-Pocket slide type, 120 mm range - ★ D. Micrometer—Outside micrometer caliper, 0 mm to 25 mm range - ★ E. Feeler Gage—13 blades, 0.05 mm to 1 mm range - F. Metre Tape-50 or 100 m tape - G. Thermometers—Special purpose types such as a clinical thermometer - H. Temperature Devices—Indicators used for ovens, freezing/cooling systems, etc. - ★ I. Tools—Metric open end or box wrench sets, socket sets, hex key sets - J. Weather Devices—Rain gage, barometer, humidity, wind velocity indicators - K. Pressure Gages—Tire pressure, air, oxygen, hydraulic, fuel, etc. - L. Velocity-Direct reading or vane type meter - M. Road Map-State and city road maps - ★ N. Containers—Buckets, plastic containers, etc., for mixing and storing liquids - O. Containers—Boxes, buckets, cans, etc., for mixing and storing dry ingredients Most of the above items may be obtained from local industrial, hardware, and school suppliers. Also, check with your school district's math and science departments and/or local industries for loan of their metric measurement devices. ¹ Measuring devices currently are not available. Substitute devices (i.e., thermometer) may be used to complete the measurement task. **Tools and Devices List** ## REFERENCES Let's Measure Metric. A Teacher's Introduction to Metric Measurement. Division of Educational Redesign and Renewal, Ohio Department of Education, 65 S. Front Street, Columbus, OH 43215, 1975, 80 pages; \$1.50, must include check to state treasurer. Activity-oriented introduction to the metric system designed for independent or group inservice education study. Introductory information about metric measurement; reproducible exercises apply metric concepts to common measurement situations; laboratory activities for individuals or groups. Templates for making metre tape, litre box, square centimetre grid. Measuring with Meters, or, How to Weigh a Gold Brick with a Meter-Stick. Metrication Institute of America, P.O. Box 236, Northfield, IL 60093, 1974, 23 min., 16 mm, sound, color; \$310.00 purchase, \$31.00 rental. Film presents units for length, area, volume and mass, relating each unit to many common objects. Screen overprints show correct use of metric symbols and ease of metric calculations. Relationships among metric measures of length, area, volume, and mass are illustrated in interesting and unforgettable ways. Metric Education, An Annotated Bibliography for Vocational, Technical and Adult Education. Product Utilization, The Center for Vocational Education, The Ohio State University, Columbus, OH 43210, 1974, 149 pages; \$10.00. Comprehensive bibliography of instructional materials, reference materials and resource list for secondary, post-secondary, teacher education, and adult basic education. Instructional materials indexed by 15 occupational clusters, types of materials, and educational level. Metric Education, A Position Paper for Vocational, Technical and Adult Education. Product Utilization, The Center for Vocational Education, The Ohio State University, Columbus, OH 43210, 1975, 46 pages; \$3.00. Paper for teachers, curriculum developers, and administrators in vocational, technical and adult education. Covers issues in metric education, the metric system, the impact of metrication on vocational and technical education, implications of metric instruction
for adult basic education, and curriculum and instructional strategies. Metrics in Career Education. Lindbeck, John R., Charles A. Bennett Company, Inc., 809 W. Detweiller Drive, Peoria, IL 61614, 1975, 103 pages, \$3.60, paper; \$2.70 quantity school purchase. Presents metric units and notation in a well-illustrated manner. Individual chapters on metrics in drafting, metalworking, woodworking, power and energy, graphic arts, and home economics. Chapters followed by several learning activities for student use. Appendix includes conversion tables and charts, Tractor Maintenance, Principles and Procedures. W. Harold Parady and J. Howard Turner, American Association for Vocational Instructional Materials, 120 Engineering Center, Athens, GA 30602, 1975, fourth edition, 152 pages, \$7.95, paper, school discounts available. Easy to use, well-illustrated manual for tractor maintenance with Customary and metric equivalents given for many maintenance procedures. Taking the Tricks Out of Metrics. Metric Training Department, Creative Universal, Inc., Tower 14, 21700 Northwestern Highway, Southfield, MI 48975, 1976, 4 booklets; \$3.00 each, \$12.00 set, discounts. Series of booklets presents step-by-step directions, questions, answers on how to read metric measurement tools: micrometers, vernies calipers, rules, dial indicators. #### METRIC SUPPLIERS Brown & Sharpe Manufacturing Co., Precision Park, North Kingstown, RI 02852 Industrial quality micrometers, steel rules, screw pitch and thickness gages, squares, depth gages, calipers, dial indicators, conversion charts and guides. Regal-Beloit Corporation, P.O. Box 38, South Beloit, IL 61080. Audio-cassettes, books, charts and posters, films, filmstrips, industrial measuring instruments and metric fasteners, kits, periodicals, reports and pamphlets, slides and transparencies. #### INFORMATION SOURCES American National Metric Council, 1625 Massachusetts Avenue, N.W., Washington, D C 20036 Charts, posters, reports and pamphlets, Metric Reporter newsletter. National metric coordinating council representing industry, government, education, professional and trade organizations. American Society of Agricultural Engineers, Metric Policy Subcommittee, St. Joseph, —MI-49085. Information on the metric system, ASAE standards and engineering practices. National Bureau of Standards, Office of Information Activities, U.S. Department of Commerce, Washington, D C 20234. Free and inexpensive metric charts and publications, also lends films and displays,