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Introduction

The radius of curvature formula is usually introduced in a university calculus 
course. Its proof is not included in most high school calculus courses and 

even some first-year university calculus courses because many students find 
the calculus used difficult (see Larson, Hostetler & Edwards, 2007, pp. 870–
872). Fortunately, there is an easier way to motivate and prove the radius of 
curvature formula without using formal calculus. An additional benefit is that 
the proof provides the coordinates of the centre of the corresponding circle of 
curvature. Understanding the proof requires only what advanced high school 
students already know: e.g., algebra, a little geometry about circles, and the 
intuition that both a circle and a curve have a slope and curvature. The proof 
is suitable for first-year university and advanced high school students.

In terms of algebra, students need to know how to solve two simultaneous 
linear equations with two unknowns. In terms of geometry, students need to 
know that:
1.	 The radius of a circle drawn to a point of tangency between the circle 

and a tangent line is perpendicular to the tangent line.
2.	 If two separate lines are tangent to a circle at two different points, 

the lines drawn perpendicular to the tangent lines at their points of 
tangency intersect each other at the circle’s centre.

3.	 Each perpendicular line’s segment from its point of tangency to the 
point of intersection is a radius.

The paper’s development of the radius of curvature formula can be used as 
an insightful application of the mathematics advanced high school students 
already know.
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The procedure for finding the radius of curvature

Consider a curve given by a twice differentiable function y = f(x).1 This 
function gives a curve (x, f(x)) consisting of points in the Cartesian plane. 
Here is the procedure for finding the centre of curvature at any point (x0, y0) 
on the curve. Definitions and formulae for the radius and circle of curvature 
follow naturally.

Students can gain intuition by considering a circle. Students will readily 
accept that a circle’s curvature is constant. Considering any two points on the 
circle, the perpendiculars to the tangents at these two points will meet at the 
centre of the circle. This is true for any two points on the circle, so students 
will readily accept that the circle’s centre is the centre of curvature for any 
point on the circle, the radius of curvature at any point on the circle is the 
radius of the circle, and the circle of curvature is the circle itself. 

In general:
•	 Consider two close points on the curve, (x0, y0) and (x1, y1).
•	 Consider the line perpendicular to the tangent to the curve at (x0, y0) and 

the line perpendicular to the tangent to the curve at (x1, y1).
•	 Find the point of intersection of these two perpendicular lines and denote 

it by (x, y).2 
•	 Keeping x0 fixed. (x, y) may approach a limiting point as x1 approaches x0.

3 
This point is defined to be the curve’s centre of curvature at (x0, y0).

•	 The radius of curvature at (x0, y0) is defined to be the distance from (x, y), 
the centre of curvature, to (x0, y0).

•	 The circle of curvature at (x0, y0) is defined to be the circle whose centre 
is the centre of curvature at (x0, y0) and whose radius is the radius of 
curvature at (x0, y0).

The intuition behind the procedure

The intuition behind the procedure is that:
•	 The curvature of a circle usually is defined as the reciprocal of its radius 

(the smaller the radius, the greater the curvature).
•	 A circle’s curvature varies from infinity to zero as its radius varies from zero 

to infinity.
•	 A circle’s curvature is a monotonically decreasing function of its radius. 

Given a curvature, there is only one radius, hence only one circle that 
matches the given curvature.

1	 Twice differentiable can be presented to advanced high school students as ‘smooth’.
2	 There will be a point of intersection for most functions of interest. An obvious exception is a straight 

line.
3	 This will be true for most functions of interest, except at particular points, e.g., critical points or points 

of inflection.
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•	 For any two close points on a curve, at least one circle minimises the 
absolute area between the curve and the circle between the two points. 
This circle’s radius can be viewed as approximating the curve’s radius of 
curvature.

•	 A curve’s curvature between two points approaches its curvature at a point 
as the two points approach each other.

•	 The curvature of a circle that minimises the absolute area between the 
curve and the circle between two close points on the curve approaches the 
curve’s curvature as the two points approach each other.

•	 The radius of the absolute area minimizing circle approaches the curve’s 
radius of curvature as the two points approach each other.

The algebra

Consider a curve given by:

	 y = f(x)	 (1)

Consider two points on the curve, (x0, y0) and (x1, y1). The two points are 
presumed not to be problematic, e.g., critical points or points of inflection. 
Using the point-slope form of a line and denoting its slope by m0, the tangent 
line to the curve at (x0, y0) is:

	 (y – y0) = m0(x – x0)	 (2)

Using the property that the slope of a line perpendicular to another line is 
the negative inverse of that line’s slope, the line perpendicular to the tangent 
line at (x0, y0) is:

	

y − y0( ) = −
x −x0( )

m0
	

(3)

Similarly, the corresponding tangent and perpendicular lines at the point   
are:

	 (y – y1) = m1(x – x1)	 (4)
and

	

y − y1( ) = −
x −x1( )

m1
	

(5)

The intersection of the two perpendicular lines approximates the curve’s 
centre of curvature. As x1 approaches x0, the intersection becomes the centre 
of the circle of curvature that matches exactly the curve’s curvature at the 
point (x0, y0).
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The intersection is the solution of equations (3) and (5).

Substitute from equation (3) into equation (5).

	
y − y0( ) = y − y1( ) + y1 − y0( ) = −

x −x0( )
m0 	

(6)

	
y − y1( ) = −

x −x0( )
m0

− y1 − y0( )
	

(7)

	 x −x1( ) = x −x0( ) − x1 −x0( ) 	 (8)

	
−

x −x0( )
m0

− y1 − y0( ) = −
x −x0( )

m1

+
x1 −x0( )

m1 	
(9)

	
−

x −x0( )
m0

= −
x −x0( )

m1

+
x1 −x0( )

m1

+ y1 − y0( )
	

(10)

Since f(x) is twice differentiable, (y1 – y0) = m(x1 – x0), where m denotes the 
curve’s slope somewhere in the interval [x0, x1].

	
x −x0( ) 1

m1

− 1
m0

⎛
⎝⎜

⎞
⎠⎟
=

x1 −x0( )
m1

+m x1 −x0( )
	

(11)

	
x −x0( ) m0 −m1

m0m1

⎛
⎝⎜

⎞
⎠⎟
= 1

m1

+m
⎛
⎝⎜

⎞
⎠⎟

x1 −x0( )
	

(12)

	

x −x0( ) =
1

m1

+m
⎛
⎝⎜

⎞
⎠⎟

m0 −m1

m0m1

⎛
⎝⎜

⎞
⎠⎟

x1 −x0( )

	

(13)

	
x −x0( ) = m0 1+mm1( )

m0 −m1( ) x1 −x0( )
	

(14)

Substitute equation (14) into equation (3) to obtain

	

y − y0( ) = −
x −x0( )

m0

= −
1+mm1( )
m0 −m1( ) x1 −x0( )

	

(15)

One way of helping students gain intuition about the original function and 
the function that represents its slope (its derivative) is to point out that:
•	 a function (the curve) has a slope at each point;
•	 these slopes can be viewed as another function;
•	 just as the tangent line to the original curve at (x0, y0), e.g., y – y0 = m0(x – x0), 

is a good approximation to the original curve near (x0, y0), the tangent line 
to the slope function at (x0, y0), e.g., (m – m0) = n0(x – x0), where n0 denotes 
the slope (rate of change) of the slope function is a good approximation to 
the slope function near (x0, y0).
The (m1 – m0) term in equation (15) is the difference in the original curve’s 

slopes at the two points (x1, y1) and (x0, y0), respectively. Since the function is 
twice differentiable,
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m1 −m0( ) = n x1 −x0( )

	
(16)

where n denotes the slope function’s slope somewhere in the interval [x0, x1].

Substitute equation from (16) into equations (14) and (15).

	
x −x0( ) = −

m0 1+mm1( )
n 	

(17)

	
y − y0( ) = 1+mm1( )

n 	
(18)

As x1 approaches x0, all the slopes approach their values at (x0, y0), hence 
(x – x0) and (y – y0) approach:

	
x −x0( ) = −

m0 1+m0
2( )

n0 	
(19)

	
y − y0( ) = 1+m0

2( )
n0 	

(20)

Equations (19) and (20) give the x and y coordinates of the centre of the 
circle corresponding to the radius of curvature at (x0, y0).

The radius of curvature, R, is the distance between the point (x, y) given by 
equations (19) and (20) and the point (x0, y0).

	

R 2 = x −x0( )2 + y − y0( )2

=
m0

2 1+m0
2( )2

n0
2 +

1+m0
2( )2

n0
2

=
1+m0

2( )3
n0

2

	
(21)

	

R =
1+m0

2( )
3
2

n0
	

(22)

For students that have not had calculus, note that in calculus, the term m0 
is denoted by dy

dx  or f '(x) or y '(x) and the term n0 is denoted by d2y

dx2  or f "(x) 
or y "(x), so that they can see that equation (22) is equivalent to the various 
formulas, below, found in calculus textbooks.

	

R =
1+ dy

dx
⎛
⎝

⎞
⎠

2⎛
⎝⎜

⎞
⎠⎟

3
2

d 2y
dx 2

=
1+ f ' x( )( )2( )

3
2

f " x( )
=

1+ y ' x( )( )2( )
3
2

y" x( )

	

(23)
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Teaching the radius of curvature formula

First year university and advanced high school students can evaluate 
equation  (22) without calculus by evaluating the slopes (derivatives) and 
changes in slopes (second derivatives) using an Excel spreadsheet and suitably 
small values for (x1 – x0) and the changes in x used to compute the slopes 
and changes in slopes. Additional insight can be gained by evaluating (x, y) 
found from equations (14) and (15) for a decreasing sequence of values for 
(x1 – x0), plotting the resultant points, (x, y), and observing how they approach 
a limiting point that is the centre of the circle of curvature corresponding to 
the curve’s radius of curvature.

Example

Consider the function y = x3 and the points on this curve at (0.5, 0.125) and 
(0.5 + ∆x, ).125 + ∆y). Figure 1 plots the function and the (x, y) points from 
equations (14) and (15) for several values of ∆x ranging from 0.5 to 0.0001. 
The slopes at the two points are computed using changes in x that are one-
tenth of the ∆x values. Figure 1 also contains a plot of the radius of curvature 
for each value of ∆x and a plot of the function.

Figure 1

The iterations for the centre of the circle of curvature are shown by the 
square markers, which run from upper left to lower right as ∆x changes from 
0.5 to 0.0001. The points converge to the coordinates given by equations (19) 
and (20) evaluated with calculus of (0.1094, 0.6458). The iterations for the 
radius of curvature are shown by the triangular markers, which run from upper 
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right to lower left as ∆x changes from 0.5 to 0.0001. The points converge to 
the radius of curvature given by equation (23), about 0.6510.

Conclusion

This paper presented an easier way to motivate and prove the radius of 
curvature formula that uses mostly high school mathematics and no formal 
calculus. An additional benefit is that the proof provides the coordinates of 
the centre of the corresponding circle of curvature. Understanding the proof 
requires what high school students already know: algebra, a little geometry 
about circles, and the intuition that both a circle and a curve have a slope and 
curvature. The proof is suitable for first-year university and advanced high 
school students.

Advanced high school students can find a function’s radius of curvature 
and the centre of the corresponding circle of curvature without use of 
calculus by evaluating the required slopes and changes in slopes along a curve 
using an Excel spreadsheet and suitably small distances between two points 
on the curve. Additional insight can be gained by doing so for a decreasing 
sequence of values for the distance between the points, plotting the resulting 
sequence of radii of curvature and their centres of the corresponding circles 
of curvature, and observing how they approach a limit.
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