STANDARD OPERATING PROCEDURE BIOLOGICAL MONITORING

STREAM FISH COMMUNITY ASSESSMENT PROGRAM

NORTH CAROLINA
A NCDENR

DWR

Division of Water Resources

REVISION LOG

STREAM FISH COMMUNITY ASSESSMENT PROGRAM

 STANDARD OPERATING PROCEDURE
*Actions older than five years may be removed from this log.

Date Edited	Editor	Version Edited	Section Edited	Changes/updates
11/19/2013	Bryn H. Tracy	Ver. 5	Cover page and footers	Updated document date to December 15, 2013 and version number to Version 5.
11/19/2013	Bryn H. Tracy	Ver. 5	Entire document	All references to Division of Water Quality (DWQ) were changed to Division of Water Resources (DWR).
11/19/2013	Bryn H. Tracy	Ver. 5	Entire document	All references to Biological Assessment Unit (BAU) and Intensive Survey Unit were changed to Biological Assessment Branch (BAB) and Intensive Survey Branch.
11/19/2013	Bryn H. Tracy	Ver. 5	Entire document	Corrected spelling and typographic mistakes
11/19/2013	Bryn H. Tracy	Ver. 5	Entire document	Updated photographs
11/19/2013	Bryn H. Tracy	Ver. 5	Page 2, Revision Log	Added a Revision Log
11/19/2013	Bryn H. Tracy	Ver. 5	URL links	All Internet hyperlinks were checked and functioned correctly.
11/19/2013	Bryn H. Tracy	Ver. 5	Entire document	Changed Environmental Biologist III to Sr. Environmental Specialist
11/19/2013	Bryn H. Tracy	Ver. 5	Entire document	Changed responsibility of the program from Environmental Biologist III and Environmental Biologist II to Sr. Environmental Specialist to reflect existing work responsibilities and staffing resources.
11/19/2013	Bryn H. Tracy	Ver. 5	Page 4, Signature and Approval	Updated
11/19/2013	Bryn H. Tracy	Ver. 5	Entire document	Changed Microsoft Access® 2000 to 2010.
11/19/2013	Bryn H. Tracy	Ver. 5	Objectives	Changed ". . . more than 1,000 samples from 700 sites " to "more than 1,700 samples from more than 900 sites . .".
11/19/2013	Bryn H. Tracy	Ver. 5	Figure 2	Updated map to reflect number of sites that have been sampled through 12/31/2013.
11/19/2013	Bryn H. Tracy	Ver. 5	Species Richness and Composition, Metric No. 4, Number of Species of Sunfish, Bass, and Trout (Inner Piedmont, Foothills, and Eastern Mountains)	Added Pomoxis to correct a mistake in Version 4
11/19/2013	Bryn H. Tracy	Ver. 5	Table 4	Added Southern Brook Silverside, Golden Topminnow, Bluefin Killifish, Least Killifish, Carolina Fantail Darter, Roanoke Logperch
11/19/2013	Bryn H. Tracy	Ver. 5	Table 4	Removed Dusky Darter (incorrect state listing)
11/19/2013	Bryn H. Tracy	Ver. 5	Table 5	Added Roanoke Logperch
11/19/2013	Bryn H. Tracy	Ver. 5	Entire document	NCDENR (2003) updated to NCDENR (2011)
11/19/2013	Bryn H. Tracy	Ver. 5	Figure 4	Previous figure deleted and a new figure was inserted to reflect current basin monitoring cycles
11/19/2013	Bryn H. Tracy	Ver. 5	Field Water Quality Measurements	Deleted: "The only acceptable exception is pH. Most field pH meters are not waterproof; therefore, pH is measured from a water sample within five minutes of sample collection" because it is no longer a valid statement.
11/19/2013	Bryn H. Tracy	Ver. 5	Table 10	Re-ordered parameters.
11/19/2013	Bryn H. Tracy	Ver. 5	Field Water Quality Measurements	Deleted reference to a two point calibration for specific conductance. Specific conductance calibration standards changed from 147 and $718 \mu \mathrm{~S} / \mathrm{cm}$ to 500 and 1,000 $\mu \mathrm{S} / \mathrm{cm}$.
11/19/2013	Bryn H. Tracy	Ver. 5	Field Water Quality Measurements	Updated calibration paragraph
11/19/2013	Bryn H. Tracy	Ver. 5	Field Water Quality Measurements	Changed: "Meters should be checked, . . ." to "Meters may be checked, . . ."
11/19/2013	Bryn H. Tracy	Ver. 5	Acquired Data	Added -http://water.usgs.gov/osw/streamstats/north carolina.htm
11/19/2013	Bryn H. Tracy	Ver. 5	Components of the QA/QC Plan	Re-wrote how samples are randomly chosen for QA.

$11 / 19 / 2013$	Bryn H. Tracy	Ver. 5	LeGrand et al. 2004	Changed to Legrand et al. 2012
$11 / 19 / 2013$	Bryn H. Tracy	Ver. 5	Table 11	Updated to reflect current listings in LeGrand et al (2012).
$11 / 19 / 2013$	Bryn H. Tracy	Ver. 5	Appendix 2	Deleted "Subbasin" and Added "8 Digit HUC".
$11 / 19 / 2013$	Bryn H. Tracy	Ver. 5	Appendix 3	Updated to reflect existing field data sheet that is used and an example of its use.
$11 / 19 / 2013$	Bryn H. Tracy	Ver. 5	Appendix 4	Updated with Version 06/05/2012.
$11 / 19 / 2013$	Bryn H. Tracy	Ver. 5	Appendix 5	Updated with Revision 8 to reflect existing habitat assessment field data sheet - Mountain/Piedmont streams that is used.
$11 / 19 / 2013$	Bryn H. Tracy	Ver. 5	Appendix 6	Updated with Revision 9 to reflect existing habitat assessment field data sheet - Coastal Plain streams that is used.
$11 / 19 / 2013$	Bryn H. Tracy	Ver. 5	Appendix 8	Updated to reflect existing fish community report that is generated from the Microsoft Access® 2010 database.

Standard Operating Procedures Stream Fish Community Assessment Program
Environmental Sciences Section
Biological Assessment Branch

NORTH CAROLINA DEPARTMENT OF ENVIRONMENT AND NATURAL RESOURCES
 Division of Water Resources

This report has been approved for release
Original signed by Dianne Reid
Environmental Sciences Section Chief
Date: December 01, 2013

INTRODUCTION

It is the purpose of this manual to provide details on standard operating procedures of the Biological Assessment Branch (BAB) of the Division of Water Resources (DWR or Division) for the collection and analysis of stream fish community assessment data. Consistency in data collection and analysis is the cornerstone for evaluating biological integrity. The procedures provided are a synthesis of widely used methods and methods developed from the experience of personnel within the Branch. These methods have been shown to provide repeatable and useful data for water quality evaluation.

This document will be reviewed regularly and revised as necessary. The prior approved version (Version 4) was dated August 01, 2006. All current employees and new employees within the Branch will be provided with this document to serve as a guideline of the Branch's activities, methods, and procedures. Revisions to this document will be provided to each employee and it will be the responsibility of the Sr . Environmental Specialist to insure that the procedures are current.

The standard operating procedures (SOP) and quality control procedures (QC) in this manual will be the basis for all stream fish community assessment monitoring and the subsequent data provided in memoranda and reports prepared by the Biological Assessment Branch. Deviations from these procedures for unusual sampling situations shall be documented in the appropriate report or memorandum.

SAFETY PROGRAM

The Biological Assessment Branch is required to sample throughout North Carolina at times and places where medical facilities may not be readily available. It is imperative that all employees are instructed in and follow safety precautions when using sampling equipment and hazardous materials. The Environmental Sciences Section has a Safety Committee which is responsible for maintenance and development of current safety procedures. The Committee also maintains the safety standard operating procedures document which all personnel should be familiar. All personnel involved in electrofishing activities should be trained in First Aid and CPR and should be familiar with standard electrofishing safety procedures.

Sampling conditions are the primary safety factor to be considered for field work. If any field conditions such as high flows or thunderstorms raise the question of whether a sample can be safely collected, then decisions should always be made with the safety of personnel of prime concern. This same concern for safety of staff must be of primary importance when scheduling the amount of time to be spent in the field. Long days combined with strenuous effort increase the probability of accidents occurring. "Safety first" must always be the rule.

Employees should promptly report on-the-job accidents to the Branch Supervisor. If an accident occurs during field operations, the first responsibility of the team leader is to get first aid treatment for the injured employee; their second responsibility is to promptly notify the Branch Supervisor. The Safety Committee maintains a written record of accidents.

STUDY PLANS

All investigations conducted by the Biological Assessment Branch will follow a written study plan including but not limited to the:

- Introduction - Identify the nature and history of the area being investigated and the person or agency requesting the study.
- Objectives - The purpose of the investigation.
- Sampling Location Selection - Location of the sampling points is of extreme importance in the initiation of stream fish community assessment monitoring. The variables in watersheds are many and should be considered in as much detail as possible before sites are selected to monitor any body of water. Land use (i.e., urban, rural, forested, agricultural, and industrial) should be considered when locating sample sites, because man-made activities significantly affect the amount of sedimentation, nutrients, and organic or inorganic compounds entering a given segment of a river or stream. The location of permitted dischargers should be reviewed, using
the database provided by the Division's Basinwide Information Management System. Discussion of the proposed study with regional office personnel can also provide additional information useful for determining sampling locations. Pre-study planning of this nature will enhance data analyses and interpretation after the collections have been made.
- Methods - Sampling techniques should be listed with reference to those described in this manual. Any deviation from these standard methods must be noted and described.
- Analytical Requirements - All physico-chemical variables to be collected and analyses that will be required should be noted.
- Logistics - Shall include estimates of manpower requirements, equipment needed, time requirements, methods of sample transport to laboratories, etc. The study plan must be submitted and approved by the Branch Supervisor prior to conducting the investigation.

A study is complete when a report or memorandum is sent to and approved by the appropriate level of management within the Division (typically the Environmental Sciences Section Chief). Each memorandum should contain these sections: an Introduction or Background, Sampling Sites, Methods, Results and Discussion, and Summary or Recommendations. Any figures, maps, and photographs needed to allow a reader to easily locate the sampling sites should also be included. When the report or memorandum is approved, a Biological Assessment Branch file number is assigned. Finally, the report or memorandum is filed in a Projects File that is organized by basin and subbasin.

STREAM FISH COMMUNITY ASSESSMENT PROGRAM

OBJECTIVES

North Carolina consists of 17 major river basins (Figure 1). Each of these basins is assessed every five years to support the Planning Section's Basinwide Water Quality Management Plans. The Division utilizes several water quality programs and tools to assess the quality of the state's waters. One of the more recently developed (and still developing) programs is the Stream Fish Community Assessment Program. The primary objective of this program is to provide fish community ratings for wadeable streams to the Basinwide Planning Section for use support determinations and for the Section's Basinwide Water Quality Management Plans.

Figure 1. Major river basins of North Carolina.

Secondary objectives of the Program are to provide data suitable for supporting these DWR activities:

- Planning Section
* Biennial 303(d) and 305(b) reporting to EPA, including identification of areas of impairment or degradation,
* TMDL development,
* Prioritization of restoration activities, and
* Background information for Use Attainability studies such as trout survival and propagation waters, High Quality Waters, and Outstanding Resource Waters.
- Surface Water Protection Section
* Identification of background levels of constituents for determination of NPDES permit limits, and
* Identification of dischargers causing unacceptable impacts.
- Regional Offices
* Background information to assist with water quality management activities in each region.

The Stream Fish Community Assessment Program was designed as an additional basinwide assessment tool and has been in existence since 1991. It's core mission is to sample a set of fixed sites on lower Strahler order wadeable creeks, streams, and rivers on a five-year rotating basis to support the DWR's Basinwide Management Plan Program. To date, more than 1,700 samples from more than 900 sites have been assessed (Figure 2), primarily in the Piedmont and Mountains. Most of the stations are located at bridge crossings or other public accesses and are accessible by land. Nonwadeable and higher Strahler order rivers, estuaries, and reservoirs are not monitored. The program compliments other DWR programs such as the Benthic Macroinvertebrate and Ambient Monitoring System programs which tend to focus monitoring efforts on larger waterbodies and watersheds.

Figure 2. Stream fish community sampling sites, 1991-2012. Colored regions indicate select Level III and IV ecoregions and dots indicate fish community sampling sites.

THE NORTH CAROLINA INDEX OF BIOTIC INTERGRITY

The Division has been monitoring the biological integrity of stream fish communities since the early 1990s. The biological monitoring tool that is used is referred to as the North Carolina Index of Biological Integrity (NCIBI). The NCIBI method was developed for assessing a stream's biological integrity by examining the structure and health of its fish community. The North Carolina Administrative Code defines Biological Integrity as: ". . . the ability of an aquatic ecosystem to support and maintain a balanced and indigenous community of organisms having species composition, diversity, population densities, and functional organization similar to that of reference conditions" (15A NCAC 02B .0200; NCAC 2004). The NCIBI is a modification of the Index of Biotic Integrity (IBI) initially proposed by Karr (1981) and Karr, et al. (1986).

The NCIBI incorporates information about species richness and composition, trophic composition, fish abundance, and fish condition. The NCIBI summarizes the effects of all classes of factors influencing aquatic faunal communities such as water quality, energy source, habitat quality, flow regime, and biotic
interactions. While any change in a fish community can be caused by many factors, certain aspects of the community are generally more responsive to specific influences. Species composition measurements reflect habitat quality effects. Information on trophic composition reflects the effect of biotic interactions and energy supply. Fish abundance and condition information indicates additional water quality effects. It should be noted, however, that these responses may overlap. For example, a change in fish abundance may be due to decreased energy supply or a decline in habitat quality, not necessarily a change in water quality.

The scores derived from this index are a measure of the ecological health of the waterbody and may not directly correlate to water quality. For example, a stream with excellent water quality, but with poor or fair fish habitat, may not be rated excellent with this index. However, a stream which rated excellent on the NCIBI should be expected to have excellent water quality.

APPLICATION OF THE NCIBI

The NCIBI is continually being refined for greater applicability to wadeable streams in North Carolina. Currently, the NCIBI is applicable only to streams that are wadeable from one shoreline across to the other and for a distance of 600 feet. The NICIBI is only applicable to wadeable streams in the Western and Northern Mountains (French Broad, Hiwassee, Little Tennessee, New, and Watauga River basins), the Inner Piedmont, Foothills, and Eastern Mountains (Broad, Catawba, Savannah, and Yadkin (exclusive of the Sand Hills) River basins); and the Outer Piedmont (Cape Fear, Neuse, Roanoke, and Tar River basins).

The delineations of the Mountains, Piedmont, and Sand Hills in these river basins are based upon a North Carolina State University Co-operative Extension Service map (North Carolina Watersheds by J. Fels published in 1997) (Figure 3) and Griffith, et al. (2002). More specifically, the Outer Piedmont includes:

- Cape Fear River Basin -- except for the streams draining the Sand Hills in Moore, Lee, and Harnett counties, the entire basin upstream of Lillington, NC;
- Neuse River Basin -- the entire basin above Smithfield and Wilson, NC, except for the south and southwest portions of Johnston County and the eastern two-thirds of Wilson County;
- Roanoke River Basin -- the entire basin in North Carolina upstream of Roanoke Rapids, NC and a small area between Roanoke Rapids and Halifax, NC; and
- Tar River Basin -- the entire basin above Rocky Mount, NC, except for the lower southeastern one-half of Halifax County and the extreme eastern portion of Nash County.

Figure 3. Physiographic regions and river basins in North Carolina.

The Index is undergoing revisions for the Upper Coastal Plain (Chowan, Neuse, Pasquotank, Roanoke, Tar, and White Oak River basins), the Lower Coastal Plain (Cape Fear and Lumber River basins), and the Sand Hills (Cape Fear, Lumber, and Yadkin River basins).

NCIBI QUALIFIERS

The North Carolina Index of Biological Integrity is only applicable if the methods of collection and data analyses described herein are strictly followed. The Index has not been tested using other collection techniques. Nonwadeable streams and larger rivers that must be sampled with a boat are not currently evaluated with the NCIBI. Neither are high elevation, cold water trout streams. Southern Appalachian trout streams are typically high gradient streams with plunge pools, Rhododendron- and Eastern hemlock-lined within a forested watershed, have cold water with low specific conductance, have a naturally low fish species diversity (usually brook trout, rainbow trout, or brown trout, blacknose dace, and mottled sculpin), have few tolerant fish, and support a reproducing population of one or more species of trout. Finally, young-of-year fish are excluded from all NCIBI calculations.

NCIBI ANALYSIS

The NCIBI incorporates information about species richness and composition, pollution indicator species, trophic composition, fish abundance, fish condition, and reproductive function by the cumulative assessment of 12 parameters or metrics (Tables $1-3$). Each metric is designed to contribute unique information to the overall assessment. The values provided by the metrics are converted into scores on a 1,3 , and 5 scale. A score of 5 represents conditions commonly associated with undisturbed reference streams in the specific river basin or ecoregion. A score of 1, however, indicates that conditions deviate greatly from those typically observed in undisturbed streams of the region. All metrics for each of the three regions were calibrated using regional reference sites.

The scores for all metrics are then summed to obtain the overall NCIBI score, an even number between 12 and 60. The score is then used to determine the biological integrity class of the stream (i.e., Poor, Fair, Good-Fair, Good, or Excellent) (Karr 1981, Karr, et al. 1986). A fish community rated Excellent is comparable to the best situations with minimal human disturbance; all regionally expected species for the habitat and stream size, including the most intolerant forms, are present along with a full array of size classes and a balanced trophic structure. Conversely, a fish community rated Poor deviates greatly from the reference condition. The number of fish is fewer than expected, usually fewer than expected number of species, an absence of intolerant species, and an altered trophic structure. Communities rated Good, Good-Fair, or Fair fall within this disturbance gradient.

Currently, if a fish community is rated Excellent, Good, or Good-Fair it is deemed to be Fully Supporting its Aquatic Life Use Support stream classification. If a fish community is rated Fair or Poor it is deemed to be Not Supporting its Life Use Support stream classification and the water quality standard is not being met. Waters that have an Excellent fish community rating are also eligible for reclassification to a Outstanding Resource Waters or to a High Quality Waters supplemental classifications.

NCIBI METRICS

These 12 metrics (Tables $1-3$) are grouped into five categories with each metric designed to contribute unique information to the overall assessment:

1. Species richness and composition (Metric Nos. 1 and 3-5)
2. Indicator species (Metric Nos. 6 and 7)
3. Trophic function (Metric Nos. 8-10)
4. Abundance and condition (Metric Nos. 2 and 11)
5. Reproductive function (Metric No. 12)

Eight of the metrics involve species composition, pollution tolerance, and trophic composition. Table 4 lists, phylogenetically, the pollution tolerance ratings and trophic guild assignments of the freshwater fish found throughout North Carolina. Several of the species (for example, Paddlefish, American Shad, and Sauger) will not be encountered in streams that are sampled adhering to these procedures. Estuarine
species, extirpated species, and species found in nearby drainages of bordering states (but not in North Carolina) are not included. Revisions and updates to this table will be published periodically.

SPECIES RICHNESS AND COMPOSITION (Metric Nos. 1 and 3-5)

Distributional data for these four metrics were obtained from Menhinick (1991), Lee, et al. (1980), Biological Assessment Branch studies, North Carolina State Museum of Natural Sciences, Tennessee Valley Authority, and many other sources.

- Metric No. 1. Number of Species

The total number of species supported by a stream of a given size in a given region decreases with environmental degradation. In addition, some streams with larger watersheds or drainage areas can be expected to support more species than streams with smaller watersheds. In other instances, the number of species and the watershed size are not correlated. This metric is rated according to the river basin from which the sample was taken and, in the case of the Inner Piedmont, Foothills, and Eastern Mountains region, the drainage area size at the sampling point. Drainage area size is calculated from USGS 7.5 minute series topographic maps or from the Division's geographic information system, if not otherwise known (ambient database, USGS publications, or a USGS masterfile printout which gives drainage areas for many streams at given road crossings). This metric is a count of all the species in the sample.

- Metric No. 3. Number of Species of Darters

Darters are sensitive to environmental degradation particularly as a result of their specific reproductive and habitat requirements (Page 1983, Kuehne and Barbour 1983). Darter habitats are degraded as a result of channelization, siltation, and reduced oxygen levels. The collection of fewer than the expected number of species of darters can indicate that some degree of habitat degradation is occurring. This metric is a count of all the species of Etheostoma and Percina in the sample (Table 4).

As with Metric No. 1, the total number of species of darters supported by a stream of a given size in a given region decreases with environmental degradation. In addition, some streams with larger watersheds or drainage areas can be expected to support more species than streams with smaller watersheds. In other instances, the number of species and the watershed size are not correlated. This metric is rated according to the river basin from which the sample was taken and, in the case of the Inner Piedmont, Foothills, and Eastern Mountains region, the drainage area size at the sampling point.

- Metric No. 4. Number of Species of Rockbass, Smallmouth Bass, and Trout (Western and Northern Mountains)
Rock Bass, Smallmouth Bass, and the three species of trout are particularly responsive to habitat degradation such as the filling in of pools with sediment and the loss of instream cover. This metric is a count of these five species in the sample. Stocked trout (characterized by pale colors and worn or deformed fins) are not counted.
- Metric No. 4 Number of Species of Sunfish, Bass, and Trout (Inner Piedmont, Foothills, and Eastern Mountains)
Sunfish, black bass, and trout species are particularly responsive to habitat degradation such as the filling in of pools with sediment and the loss of instream cover. This metric includes Lepomis (all species), Centrarchus macropterus, Ambloplites rupestris, Pomoxis (both species) Micropterus (all species), and all three species of trout (Table 4). Stocked trout (characterized by pale colors and worn or deformed fins) are not counted.
- Metric No. 4 Number of Species of Sunfish (Outer Piedmont)

Sunfish species are particularly responsive to habitat degradation such as the filling in of pools with sediment and the loss of instream cover. This metric includes Lepomis (all species), Enneacanthus (all species), Centrarchus macropterus, Acantharchus pomotis, and Ambloplites cavifrons (Table 4).

- Metric No. 5 Number of Species of Cyprinids (Western and Northern Mountains) Many species of minnows are intolerant of habitat and chemical degradation and, because some of the species may have life spans up to six years, provide a multiyear integrated perspective. They also reflect the condition of the benthic community which may be harmed by sedimentation or by sediment contamination. In the Western and Northern Mountains, the Number of Species of Cyprinds (Minnows) is used as a substitute metric for the Number of Species of Suckers. This metric is a count of all the species within the family Cyprinidae in the sample (Table 4).
- Metric No. 5. Number of Species of Suckers (Inner Piedmont, Foothills, and Eastern Mountains and Outer Piedmont)
Many species of suckers are intolerant of habitat and chemical degradation and, because they are long lived, provide a multiyear integrated perspective. They also reflect the condition of the benthic community which may be harmed by sedimentation or by sediment contamination. This metric is a count of all the species within the family Catostomidae in the sample (Table 4).

INDICATOR SPECIES (Metric Nos. 6 and 7)

The tolerance ratings for these two metrics were derived from Karr, et al. (1986), Saylor and Scott (1987), from polling various university, federal, and state fisheries management personnel using the Delphi Technique (Zuboy 1981), Etnier and Starnes (1993), Jenkins and Burkhead (1993), Rohde, et al. (1994), and from Biological Assessment Branch data.

- Metric No. $6 \quad$ Number of Intolerant Species

Intolerant species are those which are most affected by environmental perturbations and therefore should disappear, at least as viable populations, by the time a stream is rated as "Fair". Intolerant species also includes some species that have a very restricted zoogeographic distribution or are considered rare, endangered, or threatened. Of the approximately 219 species of freshwater fish found in North Carolina, 54 species are considered intolerant. This metric is a count of all intolerant species in the sample (Tables 4 and 5).

- Metric No. $7 \quad$ Percentage of Tolerant Individuals

Tolerant species are those which are often present in a stream in low or moderate numbers but as the stream degrades, they can become dominant. Of the approximately 219 species of freshwater fish found in North Carolina, 21 species (and one hybrid) are considered tolerant. This metric is a percentage metric. The number of individuals of the tolerant species (Tables 4 and 5) is summed and divided by the total number of fish collected to obtain the percentage of tolerant fish in the sample.

TROPHIC FUNCTION (Metric Nos. 8-10)

These three trophic composition metrics are used to measure the divergence from expected production and consumption patterns in the fish community that can result from environmental degradation. The main cause for a shift in the trophic composition of the fish community, generally a greater proportion of omnivores and lesser proportion of insectivores than what is expected, is nutrient enrichment. However, in some instances, the percentage of insectivores, especially Redbreast Sunfish Lepomis auritus, may increase dramatically due to environmental degradation and nutrient enrichment. And where the herbivorous Central Stoneroller Campostoma anomalum is found, canopy removal, riparian alteration, and nutrient enrichment may lead to its dramatic increase.

The trophic guild data for these three metrics were derived from the literature (Lee, et al. (1980), Karr, et al. (1986), Plafkin, et al. (1989), Etnier and Starnes (1993), Jenkins and Burkhead (1993), Rohde, et al. (1994)), and from Biological Assessment Branch data.

- Metric No. 8 Percentage of Omnivorous + Herbivorous Individuals

This metric is a percentage metric. The number of individuals of omnivores and herbivores (Table 4) is summed and divided by the total number of fish collected.

- Metric No. 9 Percentage of Insectivores

The number of individuals of insectivores (Table 4) is summed and divided by the total number of fish collected.

- Metric No. 10 Percentage of Piscivores

The number of individuals of piscivores (Table 4) is summed and divided by the total number of fish collected. This metric was not used in the Western and Northern Mountains region because the metric failed to discriminate between the impaired and the reference sites and was not significantly correlated with the total NCIBI score. No substitute or alternative metrics were found suitable.

ABUNDANCE AND CONDITION (Metric Nos. 2 and 11)

- Metric No. 2 Number of Fish

The total number of fish supported by a stream of a given size in a given region decreases with environmental degradation. However, in some instances, nutrient enrichment or environmental degradation may actually increase the number of fish supported by the stream. This metric is a count of all the fish in the sample.

- Metric No. 11 The Percentage of Diseased Fish

This metric occurs infrequently, and in most instances, is absent entirely. The metric does occur below point sources and in areas where toxic chemicals are concentrated (e.g., Sanders, et al. 1999). This metric is: "an excellent measure of the aesthetic value of game and nongame fish" (Barbour, et al. 1999).

DELT (Disease, fin Erosion, Lesions, and Tumors) may not be observed in streams the size of which are typically sampled because the worst (urban and industrial) streams are often not sampled. Neither are the larger streams and rivers where NPDES dischargers are typically located and which may have a greater DELT rate than the smaller streams. Generally, North Carolina fish are healthy.

To rate this metric, the number of fish in the sample which have sores, lesions, skeletal anomalies (as evident externally), or diseased, damaged, or rotten fins is summed and divided by total number of fish collected to obtain the percentage of diseased fish. Fin or other external damage as a result of spawning should not be counted. Fish are considered to be in spawning condition when tubercles or breeding colors are evident.

This metric was not used in the Western and Northern Mountains region because the metric failed to discriminate between the impaired and the reference sites and was not significantly correlated with the total NCIBI score. No substitute or alternative metrics were found suitable.

Blackspot and Other Diseases

Blackspot and yellow grub diseases are naturally occurring, common infections of fish by an immature stage of flukes. The life cycle involves fish, snails, and piscivorous birds. Although heavy, acute infections can be fatal, especially to small fish, fish can carry amazingly high worm burdens without any apparent ill effects (Noga 1996). Although some researchers incorporate the incidence of black spot and yellow grub into indices of biotic integrity (e.g., Steedman 1991), others, because of a lack of a consistent, inverse relationship to environmental quality, do not (e.g., Sanders, et al. 1999). The diseases are not considered in the NCIBI because it is widespread, affecting fish in all types of streams.

REPRODUCTIVE FUNCTION (Metric No. 12)

- Metric No. 12 Percentage of Species with Multiple Age Groups

This metric was developed by the Division in 1989 as an indicator of the suitability of the habitat for reproduction. Other researchers have used proportion of individuals as hybrids, proportion of individuals as introduced species, simple lithophils (species of fish that spawn where the egg can develop in the interstices of sand, gravel, and cobble substrates without parental care), and
number of simple lithophils (Barbour, et al. 1999). This metric is strongly influenced by rare species (species represented by 1 or 2 fish) that are not reproducing in the stream. A community may be diverse but if a large proportion of the species are represented by only 1 or 2 fish per species, these rarer species may depress the metric value.

For each species, the total length distribution data are used to determine the presence of different age groups and, thus, the degree of reproductive success. This metric is calculated by first counting the total number of species present in the sample. Then, the total lengths of all the fish of each species are examined to determine whether or not all the fish of that species are of one or multiple age groups. Finally, the percentage of species with multiple age groups is determined by dividing the number of species with multiple age groups by the total number of species collected in the sample. Although some species are rare and some species have fewer age groups than others, at least three individuals per species must have been collected to determine the presence of multiple age groups within the population. In some instances, professional judgment may also be used to determine the reproductive success of a particular species.

Publications such as Carlander (1969 and 1977), Kuehne and Barbour (1983), Page (1983), Manooch (1984), Etnier and Starnes (1993), Jenkins and Burkhead (1993), and Rohde, et al. (1994) may also be consulted to determine length-age class relationships.

Table 1. Scoring criteria for the NCIBI for wadeable streams in the Western and Northern Mountains of the French Broad (including the Pigeon River), Hiwassee, Little Tennessee, New, and Watauga River basins with watersheds ranging between 3.1 and $161 \mathrm{mi}^{2}$.

${ }^{1}$ Tentative for the Watauga River basin; also includes Cottus bairdi (Mottled Sculpin) and Noturus insignis (Margined Madtom). The Watauga River Basin and the Toxaway River (Savannah River Basin) are the only river basins in North Carolina where these three benthic, insectivorous groups (darters, Mottled Sculpin, and Margined Madtom) are sympatric.

Table 2. Scoring criteria for the NCIBI for wadeable streams in the Inner Piedmont, Foothills, and Eastern Mountains of the Broad, Catawba, Savannah, and Yadkin River basins with watershed drainage areas ranging between 2.8 and $245 \mathrm{mi}^{2}$.

No.	Metric	Score
1	No. of species where Y is the number of species in the sample and X is the stream's drainage area in mi^{2} : $\begin{aligned} & Y \geq 9.5^{*} \log _{10} X+1.6 \\ & 4.8^{*} \log _{11} X+0.8 \leq Y<9.5^{*} \log _{10} X+1.6 \\ & Y<4.8^{*} \log _{10} X+0.8 \end{aligned}$	$\begin{aligned} & 5 \\ & 3 \\ & 1 \end{aligned}$
2	No. of fish Mountains Piedmont ≥ 300 fish ≥ 150 fish $200-299$ fish $100-149$ fish <200 fish <100 fish	$\begin{aligned} & 5 \\ & 3 \\ & 1 \end{aligned}$
3	No. of species of darters where Y is the number of species of darters in the sample and X is the stream's drainage area in mi^{2}. $\begin{aligned} & Y \geq 1.6^{\star} \log _{10} X \\ & 0.8^{\star} \log _{10} X \leq Y<1.6^{\star} \log _{10} X \\ & Y<0.8^{*} \log _{10} X \end{aligned}$ If the drainage area is $>70 \mathrm{mi}^{2}$, then ≥ 3 species $=5,2$ species $=3$, and 0 or 1 species $=1$	$\begin{aligned} & 5 \\ & 3 \\ & 1 \end{aligned}$
4	No. of species of sunfish, bass, and trout ≥ 3 species 2 species 0 or 1 species	$\begin{aligned} & 5 \\ & 3 \\ & 1 \\ & \hline \end{aligned}$
5	No. of species of suckers ≥ 2 species 1 species 0 species	$\begin{aligned} & 5 \\ & 3 \\ & 1 \end{aligned}$
6	No. of intolerant species Mountains Piedmont ≥ 3 species ≥ 1 species 1 or 2 species (no middle criteria or score) 0 species 0 species	$\begin{aligned} & 5 \\ & 3 \\ & 1 \\ & \hline \end{aligned}$
7	Percentage of tolerant individuals Mountains Piedmont $\leq 12 \%$ $\leq 25 \%$ $13-25 \%$ $26-35 \%$ $>25 \%$ $>35 \%$	$\begin{aligned} & 5 \\ & 3 \\ & 1 \\ & \hline \end{aligned}$
8	$\begin{aligned} & \text { Percentage of omnivorous + herbivorous individuals } \\ & 10-35 \% \\ & 36-50 \% \\ & >50 \% \\ & <10 \% \end{aligned}$	$\begin{aligned} & 5 \\ & 3 \\ & 1 \\ & 1 \end{aligned}$
9	Percentage of insectivorous individuals $\begin{aligned} & 60-90 \% \\ & 45-59 \% \\ & <45 \% \\ & >90 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & 3 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$
10	Percentage of piscivorous individuals $\begin{aligned} & \geq 1.0 \% \\ & 0.25-1.0 \% \\ & <0.24 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & 3 \\ & 1 \\ & \hline \end{aligned}$
11	$\begin{aligned} & \text { Percentage of diseased fish (DELT = diseased, fin erosion, lesions, and tumors) } \\ & <0.75 \% \\ & 0.76-1.25 \% \\ & >1.25 \% \end{aligned}$	$\begin{aligned} & 5 \\ & 3 \\ & 1 \end{aligned}$
12	Percentage of species with multiple age groups \quad Mountains Piedmont $\geq 65 \%$ of all species have multiple age groups $\geq 55 \%$ of all species have multiple age groups $45-64 \%$ all species have multiple age groups $35-54 \%$ all species have multiple age groups $<45 \%$ all species have multiple age groups $<35 \%$ all species have multiple age groups	$\begin{aligned} & 5 \\ & 3 \\ & 1 \\ & \hline \end{aligned}$

Table 3. Scoring criteria for the NCIBI for wadeable streams in the Outer Piedmont of the Cape Fear, Neuse, Roanoke, and Tar River basins ranging between 3.1 and $328 \mathrm{mi}^{2}$.

No.	Metric	Score
1	No. of species ≥ 16 species 10-15 species < 10 species	$\begin{aligned} & 5 \\ & 3 \\ & 1 \\ & \hline \end{aligned}$
2	No. of fish ≥ 225 fish 150-224 fish <150 fish	$\begin{aligned} & 5 \\ & 3 \\ & 1 \end{aligned}$
3	No. of species of darters Cape Fear Neuse, Roanoke, and Tar ≥ 2 species ≥ 3 species 1 species 1 or 2 species 0 species 0 species	$\begin{aligned} & 5 \\ & 3 \\ & 1 \\ & \hline \end{aligned}$
4	No. of species of sunfish ≥ 4 species 3 species 0 , 1 , or 2 species	$\begin{aligned} & 5 \\ & 3 \\ & 1 \\ & \hline \end{aligned}$
5	No. of species of suckers Cape Fear Neuse, Roanoke, and Tar ≥ 2 species ≥ 3 species 1 species 1 or 2 species 0 species 0 species	$\begin{aligned} & 5 \\ & 3 \\ & 1 \\ & \hline \end{aligned}$
6	No. of intolerant species Cape Fear Neuse, Roanoke, and Tar ≥ 1 species ≥ 3 species no middle score 1 or 2 species 0 species 0 species	$\begin{aligned} & 5 \\ & 3 \\ & 1 \end{aligned}$
7	Percentage of tolerant individuals $\begin{aligned} & \leq 35 \% \\ & 36-50 \% \\ & >50 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & 3 \\ & 1 \end{aligned}$
8	Percentage of omnivorous and herbivorous individuals $\begin{aligned} & 10-35 \% \\ & 36-50 \% \\ & >50 \% \\ & <10 \% \end{aligned}$	$\begin{aligned} & 5 \\ & 3 \\ & 1 \\ & 1 \end{aligned}$
9	Percentage of insectivorous individuals $\begin{aligned} & 65-90 \% \\ & 45-64 \% \\ & <45 \% \\ & >90 \% \end{aligned}$	$\begin{aligned} & 5 \\ & 3 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$
10	Percentage of piscivorous individuals $\begin{aligned} & \geq 1.4-15 \% \\ & 0.4-1.3 \% \\ & <0.4 \% \\ & >15 \% \end{aligned}$	$\begin{aligned} & 5 \\ & 3 \\ & 1 \\ & 1 \end{aligned}$
11	Percentage of diseased fish (DELT = diseased, fin erosion, lesions, and tumors) $\begin{aligned} & \leq 1.75 \% \\ & 1.76-2.75 \% \\ & >2.75 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & 3 \\ & 1 \\ & \hline \end{aligned}$
12	Percentage of species with multiple age groups $\geq 50 \%$ of all species have multiple age groups $35-49 \%$ all species have multiple age groups $<35 \%$ all species have multiple age groups	$\begin{aligned} & 5 \\ & 3 \\ & 1 \\ & \hline \end{aligned}$

Table 4. North Carolina freshwater fishes tolerance ratings, adult trophic guild assignments, and young-of-year (YOY) cut-off lengths (total length in millimeters). Common and scientific names follow Nelson, et al. (2004), except for Scartomyzon.

Family/ Species	Common Name	Tolerance Rating	Trophic Guild of Adults	$\begin{gathered} \text { YOY } \\ \text { (< } \mathrm{TL} \mathrm{~mm}) \end{gathered}$
Petromyzontidae	Lampreys			
Ichthyomyzon bdellium	Ohio Lamprey	Intermediate	Parasitic	50
l. castaneus	Chestnut Lamprey	Intermediate	Parasitic	
I. greeleyi	Mountain Brook Lamprey	Intermediate	Non-feeding	40
Lampetra aepyptera	Least Brook Lamprey	Intolerant	Non-feeding	50
L. appendix	American Brook Lamprey	Intermediate	Non-feeding	40
Petromyzon marinus	Sea Lamprey	Intermediate	Parasitic	100
Acipenseridae	Sturgeons			
Acipenser brevirostrum	Shortnose Sturgeon	Intermediate	Insectivore	200
A. oxyrinchus	Atlantic Sturgeon	Intermediate	Insectivore	200
Polyodontidae	Paddlefishes			
Polyodon spathula	Paddlefish	Intermediate	Planktivore	200
Lepisosteidae	Gars			
Lepisosteus osseus	Longnose Gar	Tolerant	Piscivore	200
Amiidae	Bowfins			
Amia calva	Bowfin	Tolerant	Piscivore	200
Hiodontidae	Mooneyes			
Hiodon tergisus	Mooneye	Intermediate	Insectivore	100
Anguillidae	Freshwater Eels			
Anguilla rostrata	American Eel	Intermediate	Piscivore	100
Clupeidae	Herrings and Shads			
Alosa aestivalis	Blueback Herring	Intermediate	Insectivore	100
A. mediocris	Hickory Shad	Intermediate	Insectivore	100
A. pseudoharengus	Alewife	Intermediate	Insectivore	50
A. sapidissima	American Shad	Intermediate	Insectivore	100
Dorosoma cepedianum	Gizzard Shad	Intermediate	Omnivore	100
D. petenense	Threadfin Shad	Intermediate	Omnivore	100
Cyprinidae	Carps and Minnows			
Campostoma anomalum	Stoneroller	Intermediate	Herbivore	60
Carassius auratus	Goldfish	Tolerant	Omnivore	50
Clinostomus funduloides	Rosyside Dace	Intermediate	Insectivore	40
Ctenopharyngodon idella	Grass Carp	Tolerant	Herbivore	200
Cyprinella analostana	Satinfin Shiner	Tolerant	Insectivore	40
C. chloristia	Greenfin Shiner	Intermediate	Insectivore	40
C. galactura	Whitetail Shiner	Intermediate	Insectivore	50
C. labrosa	Thicklip Chub	Intolerant	Insectivore	40
C. Iutrensis	Red Shiner	Tolerant	Insectivore	30
C. nivea	Whitefin Shiner	Intermediate	Insectivore	40
C. pyrrhomelas	Fieryblack Shiner	Intolerant	Insectivore	40
C. spiloptera	Spotfin Shiner	Intermediate	Insectivore	40
C. zanema	Santee Chub	Intolerant	Insectivore	40
C. sp. cf. zanema	"Thinlip" Chub	Intolerant	Insectivore	40
Cyprinus carpio	Common Carp	Tolerant	Omnivore	150
Erimonax monachus	Spotfin Chub	Intolerant	Insectivore	40
Erimystax insignis	Blotched Chub	Intermediate	Omnivore	40
Exoglossum laurae	Tonguetied Minnow	Intolerant	Insectivore	50
E. maxillingua	Cutlip Minnow	Intolerant	Insectivore	50
Hybognathus regius	Eastern Silvery Minnow	Intermediate	Herbivore	50
Hybopsis amblops	Bigeye Chub	Intermediate	Insectivore	50
H. hypsinotus	Highback Chub	Intolerant	Insectivore	40
H. rubifrons	Rosyface Chub	Intolerant	Insectivore	50
Luxilus albeolus	White Shiner	Intermediate	Insectivore	50
L. cerasinus	Crescent Shiner	Intermediate	Insectivore	50
L. chrysocephalus	Striped Shiner	Intermediate	Omnivore	50
L. coccogenis	Warpaint Shiner	Intermediate	Insectivore	50

Table 4 (continued).

Family/ Species	Common Name	Tolerance Rating	Trophic Guild of Adults	$\begin{gathered} \text { YOY } \\ (<\mathrm{TL} \mathrm{~mm}) \end{gathered}$
Lythrurus ardens	Rosefin Shiner	Intermediate	Insectivore	50
L. matutinus	Pinewoods Shiner	Intolerant	Insectivore	50
Nocomis leptocephalus	Bluehead Chub	Intermediate	Omnivore	50
N. micropogon	River Chub	Intermediate	Omnivore	50
N. platyrhynchus	Bigmouth Chub	Intermediate	Omnivore	50
N. raneyi	Bull Chub	Intermediate	Omnivore	50
Notemigonus crysoleucas	Golden Shiner	Tolerant	Omnivore	75
Notropis alborus	Whitemouth Shiner	Intermediate	Insectivore	40
N. altipinnis	Highfin Shiner	Intermediate	Insectivore	40
N. amoenus	Comely Shiner	Intermediate	Insectivore	50
N. bifrenatus	Bridle Shiner	Intermediate	Omnivore	40
N. chalybaeus	Ironcolor Shiner	Intolerant	Insectivore	40
N. chiliticus	Redlip Shiner	Intermediate	Insectivore	40
N. chlorocephalus	Greenhead Shiner	Intermediate	Insectivore	40
N. cummingsae	Dusky Shiner	Intermediate	Insectivore	40
N. hudsonius	Spottail Shiner	Intermediate	Omnivore	50
N. leuciodus	Tennessee Shiner	Intermediate	Insectivore	50
N. Iutipinnis	Yellowfin Shiner	Intermediate	Insectivore	40
N. maculatus	Taillight Shiner	Intolerant	Insectivore	40
N. mekistocholas	Cape Fear Shiner	Intermediate	Omnivore	40
N. micropteryx	Highland Shiner	Intolerant	Insectivore	40
N. petersoni	Coastal Shiner	Intermediate	Insectivore	40
N. photogenis	Silver Shiner	Intolerant	Insectivore	50
N. procne	Swallowtail Shiner	Intermediate	Insectivore	40
N. rubricroceus	Saffron Shiner	Intermediate	Insectivore	40
N. scabriceps	New River Shiner	Intolerant	Insectivore	40
N. scepticus	Sandbar Shiner	Intermediate	Insectivore	40
N. spectrunculus	Mirror Shiner	Intermediate	Insectivore	40
N. telescopus	Telescope Shiner	Intolerant	Insectivore	40
N. volucellus	Mimic Shiner	Intolerant	Insectivore	40
N. sp. cf. chlorocephalus	"Piedmont" Shiner	Intermediate	Insectivore	40
N. sp. cf. rubellus	"Rosyface" Shiner	Intolerant	Insectivore	40
Phenacobius crassilabrum	Fatlips Minnow	Intermediate	Insectivore	50
P. teretulus	Kanawha Minnow	Intolerant	Insectivore	50
Phoxinus oreas	Mountain Redbelly Dace	Intermediate	Herbivore	40
Pimephales notatus	Bluntnose Minnow	Tolerant	Omnivore	30
P. promelas	Fathead Minnow	Tolerant	Omnivore	30
Rhinichthys cataractae	Longnose Dace	Intermediate	Insectivore	50
R. obtusus	Western Blacknose Dace	Intermediate	Insectivore	50
Semotilus atromaculatus	Creek Chub	Tolerant	Insectivore	50
S. lumbee	Sandhills Chub	Intolerant	Insectivore	40
Catostomidae	Suckers			
Carpiodes carpio	River Carpsucker	Intermediate	Omnivore	100
C. cyprinus	Quillback	Intermediate	Omnivore	100
C. velifer	Highfin Carpsucker	Intermediate	Omnivore	100
C. sp. cf. cyprinus	(no common name)	Intermediate	Omnivore	100
C. sp. cf. velifer	(no common name)	Intermediate	Omnivore	100
Catostomus commersonii	White Sucker	Tolerant	Omnivore	100
Erimyzon oblongus	Creek Chubsucker	Intermediate	Omnivore	100
E. sucetta	Lake Chubsucker	Intermediate	Insectivore	100
Hypentelium nigricans	Northern Hog Sucker	Intermediate	Insectivore	100
H. roanokense	Roanoke Hog Sucker	Intermediate	Insectivore	100
Ictiobus bubalus	Smallmouth Buffalo	Intermediate	Omnivore	100
l. cyprinellus	Bigmouth Buffalo	Intermediate	Insectivore	100
I. niger	Black Buffalo	Intermediate	Insectivore	100
Minytrema melanops	Spotted Sucker	Intermediate	Insectivore	100
Moxostoma anisurum	Silver Redhorse	Intermediate	Insectivore	100
M. breviceps	Smallmouth Redhorse	Intermediate	Insectivore	100
M. collapsum	Notchlip Redhorse	Intermediate	Insectivore	100
M. carinatum	River Redhorse	Intermediate	Insectivore	100
M. duquesnei	Black Redhorse	Intermediate	Insectivore	100
M. erythrurum	Golden Redhorse	Intermediate	Insectivore	100
M. macrolepidotum	Shorthead Redhorse	Intermediate	Insectivore	100
M. pappillosum	V-Lip Redhorse	Intermediate	Insectivore	100

Table 4 (continued).

Family/ Species	Common Name	Tolerance Rating	Trophic Guild of Adults	$\begin{gathered} \text { YOY } \\ (<\mathrm{TL} \mathrm{~mm}) \end{gathered}$
M. robustum	Robust Redhorse	Intolerant	Insectivore	100
M. sp. cf. erythrurum	Carolina Redhorse	Intermediate	Insectivore	100
M. sp. cf. macrolepidotum	Sicklefin Redhorse	Intermediate	Insectivore	100
Scartomyzon ariommus	Bigeye Jumprock	Intolerant	Insectivore	100
S. cervinum	Blacktip Jumprock	Intermediate	Insectivore	75
S. rupiscartes	Striped Jumprock	Intermediate	Insectivore	100
S. sp. cf. lachneri	"Brassy" Jumprock	Intermediate	Insectivore	100
Thoburnia hamiltoni	Rustyside Sucker	Intolerant	Insectivore	
Ictaluridae	North American Catfishes			
Ameiurus brunneus	Snail Bullhead	Intermediate	Insectivore	75
A. catus	White Catfish	Tolerant	Omnivore	100
A. melas	Black Bullhead	Tolerant	Insectivore	75
A. natalis	Yellow Bullhead	Tolerant	Omnivore	75
A. nebulosus	Brown Bullhead	Tolerant	Omnivore	75
A. platycephalus	Flat Bullhead	Tolerant	Insectivore	75
Ictalurus furcatus	Blue Catfish	Intermediate	Piscivore	100
I. punctatus	Channel Catfish	Intermediate	Omnivore	100
Noturus eleutherus	Mountain Madtom	Intermediate	Insectivore	40
N. flavus	Stonecat	Intermediate	Insectivore	40
N. furiosus	Carolina Madtom	Intolerant	Insectivore	40
N. gilberti	Orangefin Madtom	Intolerant	Insectivore	40
N. gyrinus	Tadpole Madtom	Intermediate	Insectivore	40
N. insignis	Margined Madtom	Intermediate	Insectivore	40
N. sp. cf. leptacanthus	Broadtail Madtom	Intolerant	Insectivore	40
Pylodictis olivaris	Flathead Catfish	Intermediate	Piscivore	150
Esocidae	Pikes			
Esox americanus americanus	Redfin Pickerel	Intermediate	Piscivore	100
E. masquinongy	Muskellunge	Intermediate	Piscivore	200
E. niger	Chain Pickerel	Intermediate	Piscivore	100
Umbridae	Mudminows			
Umbra pygmaea	Eastern Mudminnow	Intermediate	Insectivore	50
Salmonidae	Trouts and Salmons			
Oncorhynchus mykiss	Rainbow Trout	Intolerant	Insectivore	100
Salmo trutta	Brown Trout	Intermediate	Piscivore	100
Salvelinus fontinalis	Brook Trout	Intolerant	Insectivore	100
Aphredoderidae	Pirate Perches			
Aphredoderus sayanus	Pirate Perch	Intermediate	Insectivore	50
Amblyopsidae	Cavefishes			
Chologaster cornuta	Swampfish	Intermediate	Insectivore	25
Atherinopsidae	New World Silversides			
Labidesthes sicculus	Brook Silverside	Intermediate	Insectivore	50
L. vanhyningi	Southern Brook Silverside	Intermediate	Insectivore	50
Menidia beryllina	Inland Silverside	Intermediate	Insectivore	50
M. extensa	Waccamaw Silverside	Intolerant	Insectivore	50
Fundulidae	Topminnows			
Fundulus chrysotus	Golden Topminnow	Intermediate	Insectivore	40
F. diaphanus	Banded Killifish	Intermediate	Insectivore	40
F. lineolatus	Lined Topminnow	Intermediate	Insectivore	40
F. rathbuni	Speckled Killifish	Intermediate	Insectivore	40
F. waccamensis	Waccamaw Killifish	Intolerant	Insectivore	40
Lucania goodei	Bluefin Killifish	Tolerant	Omnivore	15
Poeciliidae	Livebearers			
Gambusia affinis	Western Mosquitofish	Tolerant	Insectivore	20
G. holbrooki	Eastern Mosquitofish	Tolerant	Insectivore	20
Heterandria formosa	Least Killifish	Tolerant	Omnivore	10

Table 4 (continued).

Family/ Species	Common Name	$\begin{gathered} \hline \text { Tolerance } \\ \text { Rating } \\ \hline \end{gathered}$	Trophic Guild of Adults	$\begin{gathered} \mathrm{YOY} \\ \text { (< TL mm) } \\ \hline \end{gathered}$
Cottidae	Sculpins			
Cottus bairdii	Mottled Sculpin	Intermediate	Insectivore	50
C. carolinae	Banded Sculpin	Intermediate	Insectivore	50
C. caeruleomentum	Blue Ridge Sculpin	Intermediate	Insectivore	50
Moronidae	Temperate Basses			
Morone americana	White Perch	Intermediate	Piscivore	75
M. chrysops	White Bass	Intermediate	Piscivore	200
M. saxatilis	Striped Bass	Intermediate	Piscivore	175
Centrarchidae	Sunfishes			
Acantharchus pomotis	Mud Sunfish	Intermediate	Insectivore	50
Ambloplites cavifrons	Roanoke Bass	Intermediate	Piscivore	50
A. rupestris	Rock Bass	Intolerant	Piscivore	50
Centrarchus macropterus	Flier	Intermediate	Insectivore	50
Enneacanthus chaetodon	Blackbanded Sunfish	Intermediate	Insectivore	40
E. gloriosus	Bluespotted Sunfish	Intermediate	Insectivore	40
E. obesus	Banded Sunfish	Intermediate	Insectivore	40
Lepomis auritus	Redbreast Sunfish	Tolerant	Insectivore	50
L. cyanellus	Green Sunfish	Tolerant	Insectivore	50
L. gibbosus	Pumpkinseed	Intermediate	Insectivore	50
L. gulosus	Warmouth	Intermediate	Insectivore	50
L. macrochirus	Bluegill	Intermediate	Insectivore	50
L. marginatus	Dollar Sunfish	Intermediate	Insectivore	50
L. microlophus	Redear Sunfish	Intermediate	Insectivore	50
L. punctatus	Spotted Sunfish	Intermediate	Insectivore	50
Lepomis sp.	Hybrid Sunfish	Tolerant	Insectivore	50
Micropterus coosae	Redeye Bass	Intermediate	Piscivore	100
M. dolomieu	Smallmouth Bass	Intolerant	Piscivore	100
M. punctulatus	Spotted Bass	Intermediate	Piscivore	100
M. salmoides	Largemouth Bass	Intermediate	Piscivore	100
Pomoxis annularis	White Crappie	Intermediate	Piscivore	75
P. nigromaculatus	Black Crappie	Intermediate	Piscivore	75
Percidae	Perches			
Etheostoma acuticeps	Sharphead Darter	Intolerant	Insectivore	40
E. blennioides	Greenside Darter	Intermediate	Insectivore	40
E. brevispinum	Carolina Fantail Darter	Intermediate	Insectivore	30
E. chlorobranchium	Greenfin Darter	Intolerant	Insectivore	40
E. collis	Carolina Darter	Intermediate	Insectivore	30
E. flabellare	Fantail Darter	Intermediate	Insectivore	30
E. fusiforme	Swamp Darter	Intermediate	Insectivore	30
E. gutselli	Tuckasegee Darter	Intermediate	Insectivore	40
E. inscriptum	Turquoise Darter	Intolerant	Insectivore	40
E. jessiae	Blueside Darter	Intolerant	Insectivore	40
E. kanawhae	Kanawha Darter	Intolerant	Insectivore	40
E. mariae	Pinewoods Darter	Intolerant	Insectivore	30
E. nigrum	Johnny Darter	Intermediate	Insectivore	30
E. olmstedi	Tessellated Darter	Intermediate	Insectivore	40
E. perlongum	Waccamaw Darter	Intolerant	Insectivore	30
E. podostemone	Riverweed Darter	Intolerant	Insectivore	30
E. rufilineatum	Redline Darter	Intermediate	Insectivore	40
E. serrifer	Sawcheek Darter	Intolerant	Insectivore	30
E. swannanoa	Swannanoa Darter	Intermediate	Insectivore	40
E. thalassinum	Seagreen Darter	Intolerant	Insectivore	40
E. vitreum	Glassy Darter	Intermediate	Insectivore	30
E. vulneratum	Wounded Darter	Intolerant	Insectivore	40
E. zonale	Banded Darter	Intermediate	Insectivore	40
Perca flavescens	Yellow Perch	Intermediate	Piscivore	80
Percina aurantiaca	Tangerine Darter	Intolerant	Insectivore	40
P. burtoni	Blotchside Logperch	Intolerant	Insectivore	40
P. caprodes	Logperch	Intermediate	Insectivore	40
P. crassa	Piedmont Darter	Intolerant	Insectivore	40
P. evides	Gilt Darter	Intolerant	Insectivore	40
P. gymnocephala	Appalachia Darter	Intolerant	Insectivore	40

Table 4 (continued).

Family/ Species	Common Name	Tolerance Rating	Trophic Guild of Adults	$\begin{gathered} \text { YOY } \\ \text { (< TL mm) } \end{gathered}$
P. nevisense	Chainback Darter	Intolerant	Insectivore	40
P. nigrofasciata	Blackbanded Darter	Intolerant	Insectivore	40
P. oxyrhynchus	Sharpnose Darter	Intolerant	Insectivore	40
P. rex	Roanoke Logperch	Intolerant	Insectivore	40
P. roanoka	Roanoke Darter	Intolerant	Insectivore	30
P. squamata	Olive Darter	Intolerant	Insectivore	
Sander canadensis	Sauger	Intermediate	Piscivore	
S. vitreus	Walleye	Intermediate	Piscivore	
Elassomatidae	Pygmy Sunfishes			
Elassoma evergladei	Everglades Pygmy Sunfish	Intermediate	Insectivore	20
E. zonatum	Banded Pygmy Sunfish	Intermediate	Insectivore	20
E. boehlkei	Carolina Pygmy Sunfish	Intolerant	Insectivore	20
Sciaenidae	Drums			
Aplodinotus grunniens	Freshwater Drum	Intermediate	Insectivore	

Table 5. Intolerant species of fish found in North Carolina.

Family/Species	Common Name	Family/Species	Common Name
Petromyzontidae	Lampreys	Atherinopsidae	New World Silversides
Lampetra aepyptera	Least Brook Lamprey	Menidia extensa	Waccamaw Silverside
Cyprinidae	Carps and Minnows	Fundulidae	Topminnows
Cyprinella labrosa	Thicklip Chub	Fundulus waccamensis	Waccamaw Killifish
C. pyrrhomelas	Fieryblack Shiner		
C. zanema	Santee Chub	Centrarchidae	Sunfishes
Erimonax monachus	Spotfin Chub	Ambloplites rupestris	Rock Bass
Exoglossum laurae	Tonguetied Minnow	Micropterus dolomieu	Smallmouth Bass
E. maxillingua	Cutlip Minnow		
Hybopsis hypsinotus	Highback Chub	Percidae	Perches
H. rubifrons	Rosyface Chub	Etheostoma acuticeps	Sharphead Darter
Lythrurus matutinus	Pinewoods Shiner	E. chlorobranchium	Greenfin Darter
Notropis chalybaeus	Ironcolor Shiner	E. inscriptum	Turquoise Darter
N. maculatus	Taillight Shiner	E. jessiae	Blueside Darter
N. micropteryx	Highland Shiner	E. kanawhae	Kanawha Darter
N. photogenis	Silver Shiner	E. mariae	Pinewoods Darter
N. scabriceps	New River Shiner	E. perlongum	Waccamaw Darter
N. telescopus	Telescope Shiner	E. podostemone	Riverweed Darter
N. volucellus	Mimic Shiner	E. serrifer	Sawcheek Darter
N. sp. cf. rubellus	Rosyface Shiner	E. thalassinum	Seagreen Darter
Phenacobius teretulus	Kanawha Minnow	E. vulneratum	Wounded Darter
Semotilus lumbee	Sandhills Chub	Percina aurantiaca P. burtoni	Tangerine Darter Blotchside Logperch
Catostomidae	Suckers	P. crassa	Piedmont Darter
Moxostoma robustum	Robust Redhorse	P. evides	Gilt Darter
Scartomyzon ariommus	Bigeye Jumprock	P. gymnocephala	Appalachia Darter
Thoburnia hamiltoni	Rustyside Sucker	P. nigrofasciata	Blackbanded Darter
Ictaluridae	North American Catfishes	P. oxyrhynchus	Sharpnose Darter
Noturus furiosus	Carolina Madtom	P. rex	Roanoke Logperch
N. gilberti	Orangefin Madtom	P. roanoka	Roanoke Darter
N. sp. cf. leptacanthus	Broadtail Madtom	P. squamata	Olive Darter
Salmonidae	Trouts and Salmons	Elassomatidae	Pygmy Sunfishes
Oncorhynchus mykiss Salvelinus fontinalis	Rainbow Trout	Elassoma boehlkei	Carolina Pygmy Sunfish

Table 6. Tolerant species of fish found in North Carolina.

Family/Species	Common Name	Family/Species	Common Name
Lepisosteidae	Gars	Catostomidae	Suckers
Lepisosteus osseus	Longnose Gar	Catostomus commersonii	White Sucker
Amiidae	Bowfins	Ictaluridae	North American Catfishes
Amia calva	Bowfin	Ameiurus catus	White Catfish
Cyprinidae	Carps and Minnows	A. melas	Black Bullhead
Carassius auratus	Goldfish	Yellow Bullhead	
Ctenopharyngodon idella	Grass Carp	A. nebulosus	Brown Bullhead
Cyprinella analostana	Satinfin Shiner	Red Shiner	Poeciliidae
C. lutrensis	Common Carp	Gambusia affinis	Flat Bullhead
Cyprinus carpio	Golden Shiner	holbrooki	Livebearers
Notemigonus crysoleucas	Bluntnose Minnow	Western Mosquitofish	
Pimephales notatus	Fathead Minnow	Eastern Mosquitofish	
P. promelas	Creek Chub	Lepomis auritus	Sunfishes
Semotilus atromaculatus		L. cyanellus	Redbreast Sunfish
		Lepomis sp.	Green Sunfish
			Hybrid Sunfish

INTEGRITY CLASS ASSIGNMENT

The scores for all 10 or 12 metrics are then summed to obtain the overall NCIBI score. Finally, the score (an even number between 12 and 60) is then used to determine the biological integrity class of the stream from which the sample was collected (Table 7).

Table 7. Revised scores and classes for evaluating the fish community of a wadeable stream in select streams using the North Carolina Index of Biological Integrity.

River Basin	NCIBI Score	Integrity Class
French Broad, Hiwassee, Little	58 or 60	Excellent
Tennessee, New, and Watauga	Good	
	$48,50,52,54$, or 56	Good-Fair
	$40,42,44$, or 46	Fair
	34,36, or 38	Poor
Broad, Catawba, Savannah, and Yadkin	≤ 32	
	$54,56,58$, or 60	Excellent
	48,50, or 52	Good
	42,44, or 46	Good-Fair
	36,38, or 40	Fair
	≤ 34	Poor
Cape Fear, Neuse, Roanoke, and Tar		Excellent
	$44,56,58$, or 60	Good
	$46,48,50$, or 52	Good-Fair
	40,42, or 44	Fair
	34,36, or 38	Poor

${ }^{1}$ In the Western and Northern Mountains (French Broad, Hiwassee, Little Tennessee, New, and Watauga River basins), the NCIBI is based upon 10 rather than 12 metrics (Table 1). Using 10 metrics with each metric's criteria scored a 1, 3, or 5 and desiring to keep 60 as the maximum NCIBI Total Score, the total score was multiplied by $1.2(60 / 50=1.2)$. Scores were rounded up or down to the nearest whole even number (e.g., 57.6 rounded up to $58 ; 50.4$ rounded down to 50). Using 10 metrics instead of 12 and following the conversions as described, the final Total NCIBI Scores of 54, 42, 30, and 18 are no longer possible. This slight flaw should not affect the usefulness and applicability of the 10 metric NCIBI for the Western and Northern Mountains

Total Score based upon 10 Metrics before Multiplier	Total Score based upon 10 Metrics after Applying a 1.2 Multiplier	Final Total Score after Rounding (if necessary)
50	60	60
48	57.6	58
46	55.2	56
44	52.8	52
42	50.4	50
40	48	48
38	45.6	46
36	43.2	44
34	40.8	40
32	38.4	38
30	36	36
28	33.6	34
26	31.2	32
24	28.8	28
22	26.4	26
20	24	24
18	21.6	22
16	19.2	20
14	16.8	16
12	14.4	14

OTHER WATER QUALITY INDICATORS

Although the North Carolina Index of Biological Integrity is the primary tool used in the Stream Fish Community Assessment Program, other water quality measurements (e.g., water temperature, dissolved oxygen, pH , specific conductance, and water clarity are also monitored at every site in accordance with the Intensive Survey Branch's SOP (NCDENR 2011). At each site, a non-regulatory stream and riparian habitat assessment is conducted (Appendices 5 and 6).

FIELD SAMPLING AND LABORATORY PROCESSING METHODS

SAMPLING SCHEDULE AND FREQUENCY

Sites that are part of the Basinwide Monitoring Program are sampled once every five years and, due to staffing constraints, usually between April and June. For example, basinwide sites in the Yadkin River Basin were sampled in 1996, 2001, 2006, 2011, and will be sampled again in 2016 (Figure 4).
Watershed-specific special study sites that are designed to address a specific, short-term question (e.g., Use Attainability, impacts from a permitted discharger, watershed modifications, etc.) are usually sampled only once and may be sampled anytime between March and December.

Figure $4 \quad$ North Carolina's rotating basinwide planning schedule for its 17 river basins. Individual Basins are grouped (as indicated by the green boxes) and assessed on a 5 -year rotating cycle.

FISH COLLECTION LICENSES AND PERMITS

Collection permits are required to collect fish from North Carolina freshwater ecosystems and must accompany the field staff whenever collections are made. Annually, it is the responsibility of the Sr. Environmental Specialist to insure that a Scientific Collection License and an Endangered Species Permit have been obtained from the North Carolina Wildlife Resources Commission's Division of Boating and Inland Fisheries and from the Division of Wildlife Management.

SITE LOCATIONS

Sites are established at publicly accessible, fixed locations (i.e., specific latitude and longitude), generally at bridge crossings. Lists of all the sites ever monitored, by river basin, may be found at:
http://portal.ncdenr.org/web/wq/ess/bau/ncibi-data. Locations and their geo-references were originally
identified using USGS 7.5 minute topographic maps or Maptech Terrain Navigator ${ }^{\circledR}$ s software. Stations are strategically located to monitor a specific area of concern such as:

- overall water quality in a larger watershed,
- effect of point source discharges,
- effect of non-point sources of pollution (e.g., urban areas, animal operations, agriculture),
- effect of land use changes,
- waters of significant ecological, recreational, political, or municipal use, or
- waters that show an impairment due to unknown causes.

Sites that have been monitored between 1991 and 2012 were previously shown in Figure 2. Because this is a relatively new program, many of the current sites have been active for only 1 to 3 basinwide monitoring cycles. However, maintenance of many of these sites on a long-term basis is integral to identifying temporal patterns within a watershed and to gaining an understanding of the variability within the fish community. Consequently, requests from DWR staff for station establishment and/or discontinuation will be assessed on the value gained from a long-term perspective. Requests for additional sampling of sites (usually a one-time sampling event within a watershed) are handled through special studies. Adjustments to site locations and sampling regimens may be made with sufficient reason, such as:

- safety concerns of field staff,
- changes to location accessibility,
- the reason for sampling is no longer valid (i.e., a discontinued discharge),
- the emergence of new water quality concerns, or
- resource constraints, particularly staff vacancies.

If any of these concerns arise, the Sr . Environmental Specialist will meet with the BAB Supervisor to determine if it is appropriate for the site to be discontinued.

Sampling condition limitations are dictated by extremes in water clarity (turbidity), stream width and depth (too wide and deep), substrate (deep muck), precipitation (rainfall and electrical storms), aquatic macrophyte growths (excessive), flow (not flowing or too much flow), dangerous sampling conditions, time of day (lateness in the afternoon), etc.

A representative wadeable site of approximately 600 ft . is selected. Wadeable streams are those that can be safely waded by the sampling crew while wearing a backpack electrofisher unit and still allow the sampler and netter to reach all areas of the stream with the electrofishing probes and dipnet. When possible, the delineated reach should be located upstream from the bridge access area. If possible, personnel measuring the stream segment should avoid walking in the stream segment to avoid scaring fish out of the sample segment and to minimize habitat disturbance.

FIELD VARIABLES

The Stream Fish Community Assessment Program Samples Log Sheet (Appendix 1) is updated and a Stream Fish Community Assessment Program Field Data Sheet (Appendix 2) is completed whenever a sample is collected. Data that are recorded include: stream name, sample location, county, river basin, subbasin, latitude, longitude, drainage area, stream index number and classification (obtained from Basinwide Information Management System), habitat score, elevation, sample number, sample date, time, number of shocking units, duration of shocking, sampling personnel, location of sample reach, and use of a seine (yes or no). An example of a completed sheet is shown in Appendix 3. These data sheets are kept in a folder in the field vehicle under the custody of the Sr. Environmental Specialist returned to the ESS Building. After the sampling trip has been completed, samples are transported to the Fish Community Assessment Laboratory, located in the ESS building.

The sample information (sample number, waterbody, location, etc.) is recorded on the Log Sheet from NC DWR Stream Fish Community Assessment Program Samples (Appendix 1). This log sheet tracks all the samples that have been collected for a particular year. The Sr. Environmental Specialist assigns the Sample Number in numerical order. The first sample collected each year is Sample No. 1, the second sample is Sample No. 2, the third sample is Sample No. 3, etc. The sample numbers for 2005 took the form of 2005-01, 2005-02, 2005-03, etc. A sample number is assigned to a sample only after the sample has been collected. The log sheet and the field data sheets are stored in a 3 -ring binder labeled "Field Data Sheets" in the Sr. Environmental Specialist's office at the ESS Building.

Physical habitat and water quality data that are collected include specific conductance, dissolved oxygen, temperature, pH , habitat description, average stream width and depth, water clarity (e.g., clear, slightly turbid, turbid, tannin stained, or blackwater, etc.), and substrate. These data are also recorded on the Stream Fish Community Assessment Program Field Data Sheet (Appendix 2).

SAMPLE COLLECTION

Essential sampling equipment that should accompany the Staff when sampling are listed in Table 8.

Table 8. Field sampling equipment.

County, state, and topographic maps	Chest waders and rubber gloves
Digital camera and charger	Measuring boards
Appropriate identification keys and field guides	Data sheets, pens, pencils, and waterproof markers
Assorted jars and plastic buckets with lids	Formalin and 95 percent ethanol
GPS unit	Measuring chain, thread, tape measure, and flagging tape
Dipnets (1/8 in. mesh) and assorted sizes of seines	Identification labels, tags, and rubber bands
Backpack electrofishing units	First aid kit, cardiac resuscitation unit, and insect repellent
Electrofishing batteries and chargers	Large fish preservation containers
Electrofishing probes and replacement rings	Water quality instruments

The number of personnel required to efficiently and effectively sample a 600 ft . wadeable section of stream is listed in Table 9. Typically, one-half of the sampling crew is outfitted with backpack electrofishing units and the other half with dip nets and buckets.

Table 9. Sampling personnel required to effectively sample streams of varying widths.

Stream width (\mathbf{m})	No. of electrofishers	No. of netters
≤ 3	1	1
3 to 10	2	2
10 to 15	2 or 3	2 or 3
>15	3 or 4	3 or 4

Fish in the delineated stretch of stream are collected in a two-pass depletion technique using backpack electrofishing units and persons netting the stunned fish. Staff members collect samples by first moving in an upstream direction. After a short break, 5 to 10 minutes to allow the water to clear, sample collection is continued by staff members moving back downstream. All micro- and macrohabitats (riffles, pools, runs, snags, undercuts, deadfalls, quiescent leaf-covered substrates, etc.) should be thoroughly sampled. Electrofishing downstream into a seine should also be performed wherever there are significant riffles. Stunned fish are netted and placed into buckets with water that is frequently changed to minimize stress and mortality.

Details of the backpack electrofisher use and operation are given in the operator's manual and should be read carefully by all staff before using the equipment. Safety concerns require the wearing of chest waders and rubber gloves when the electrofishing unit is in operation.

After collection, all readily identifiable fish are examined for diseases, sores, lesions, fin damage, and skeletal anomalies, measured (total length to the nearest 1 mm), and then released. All data are recorded on the Stream Fish Community Assessment Program Field Data Sheet (Appendix 2). If a species is represented by multiple ages, a " Y " (for yes) is written in the margin of the data sheet across from the species name. If a species is not represented by multiple ages, a " N " (for no) is written. Deformed or diseased fish are also noted on the data sheet by circling the total length measurement of the affected fish. In addition, it is suggested that digital pictures be taken of any unusually deformed or diseased fish.

Once the first 50 specimens of a species are measured, the remaining fish of that particular species are just counted and released. All other fish (i.e., those fish that are not readily identifiable) are preserved in 10 percent formalin and returned to the laboratory for identification, examination, and total length measurement. If large ($>300 \mathrm{~mm}$), unidentifiable fish are retained, the abdominal cavity should be injected with formalin soon after preservation or as soon as possible before the end of the sampling day.

SAMPLE IDENTIFICATION TAGS

Two sample identification tags (containing waterbody name, road crossing, county, date, and sample
collection number) are completed and placed inside and attached outside every sample container (plastic bucket or jar). Because formalin is the only preservative used, it is understood by staff that the samples are preserved in formalin and labeling of the sample container as to containing formalin is not necessary. Collectors' names are not listed on the labels because that information has been previously recorded on the Fish Community Assessment-IBI Data Sheet (Appendix 2). It is not necessary to record on the data sheet or the sample identification tag what analysis is to be done on the sample because samples are only preserved and returned to the laboratory if the species level identification is to be performed in the laboratory.

FIELD WATER QUALITY MEASUREMENTS

Measurements made in the field include water temperature, specific conductance, pH , stream flow (low, normal, high), water clarity (clear, slightly turbid, turbid, tannin stained, or blackwater), and dissolved oxygen. Field measurements are discrete and are made in situ by field staff at the time of the station visit. All field activities are to be performed in accordance with the Intensive Survey Branch's SOP (NCDENR 2011). In addition to the NC DWR's Intensive Survey Branch's SOP sections cited in Table 10, the instruction manual for the appropriate meter should also be consulted.

Table 10. Field measurement method references and reporting levels. Adopted from the Intensive Survey Branch's SOP (NCDENR 2011).

Parameter	Intensive Survey Branch's SOP \& section ${ }^{1}$	EPA method	Reported to nearest
Water temperature	III.1	170.1	$0.1^{\circ} \mathrm{C}$
Dissolved oxygen	III.3	360.1	$0.1 \mathrm{mg} / \mathrm{L}$
pH	III.4	150.1	$0.1 \mathrm{~s} . \mathrm{u}$.
Specific conductance	III. 5	120.1	$1 \mu \mathrm{~S} / \mathrm{cm}$

${ }^{1}$ Section numbers III. 1 - III. 5 refer to use of YSI combination meters.
All field meters are to be inspected and calibrated before each sampling trip and at minimum at the end of each day used. Field staff should record calibration information on the Field Meter Calibration Sheet (Appendix 4). This calibration form, which was adopted from the NC DWR's Intensive Survey Branch's SOP, is stored in a 3 -ring binder labeled "Stream Fish Community Assessment Water Quality Meter Calibration Log" in the Stream Fish Community Assessment Program's Laboratory. Specific calibration procedures are documented in each meter's manufacturers' instruction manual. For pH , a two-point calibration (4.0 and 7.0 s.u.) is performed. Dissolved oxygen meters should be calibrated using the air calibration method. Specific conductance is calibrated against $1000 \mu \mathrm{~S} / \mathrm{cm}$ and checked against 500 $\mu \mathrm{S} / \mathrm{cm}$ standards.

Meters may be checked against standards periodically throughout the day and recalibrated if any of the following conditions occur:

- Physical shock to meter;
- Dissolved oxygen membrane is touched, fouled, punctured, or dries out;
- Unusual (high or low for the particular site) or erratic readings, or excessive drift;
- Extreme readings (e.g., extremely acidic or basic pH ; dissolved oxygen saturation >120 percent); or
- Measurements are outside of the range for which the meter was calibrated.

HABITAT ASSESSMENT

A method has been developed by the Biological Assessment Branch to evaluate the physical habitats of a stream (Appendices 5 and 6). The narrative descriptions of eight (Mountain/Piedmont) or seven (Coastal Plain and Sand Hills) habitat characteristics, including channel modification, amount of instream habitat, type of bottom substrate, pool variety, riffle frequency, length and width, bank stability, light penetration, and riparian zone width, are converted into numerical scores. The total habitat score ranges between 1 and 100. Higher numbers suggest better habitat quality, but criteria have not been developed to assign impairment ratings.

SAMPLE HANDLING AND CUSTODY

Stunned fish are collected and temporarily stored in a bucket filled with stream water. Readily identifiable
fish are counted and measured in the field and then released. If the sampling trip necessitates an overnight stay, samples are stored in the cargo portion of the field vehicle, which is kept locked whenever staff members are away from the vehicle.

Samples are stored on bench space in the Fish Community Assessment Laboratory in the ESS Building until the fish have been properly preserved in formalin (usually 1-2 weeks or until the fish no longer are floating in the preservative). Once properly preserved, the sample can then be processed.

LABORATORY PROCESSING OF FISH SAMPLES

After the fish have been properly preserved in formalin (usually 1-2 weeks or until the fish no longer are floating in the preservative), the sample can be processed. The preservative is decanted under a hood (or other means providing appropriate ventilation) and discarded. The sample is rinsed with tap water several times and then allowed to soak in tap water for approximately one hour. The sample is sorted and each fish is identified to the species level and its total length measured to the nearest 1 millimeter. All laboratory-derived data are recorded on the Stream Fish Community Assessment Program Field Data Sheet (Appendix 3). Deformed or diseased fish are also noted on the data sheet by circling the total length measurement of the affected fish. If a species is represented by multiple ages, a " Y " (for yes) is written in the margin of the data sheet across from the species name. If a species is not represented by multiple ages, a " N " (for no) is written. Problematic identifications are verified by personnel from the North Carolina State Museum of Natural Science.

YOUNG-OF-YEAR CONSIDERATIONS AND ADJUSTMENTS

Young-of-year (YOY) fish may pose several challenges when applying the IBI metrics to a fish community sample (Angermeier and Karr (1986) and Angermeier and Schlosser (1987). Assessments made during the spring and early summer (April-June) tend to avoid these challenges. However, samples collected later in the summer and fall may contain an abundance of YOY fish. Individuals of a species who spawn in late summer or fall or from a late hatching cohort are not considered YOY when collected the following year (after January $1^{\text {st }}$) even though such individuals may be noticeably smaller than an earlier hatching cohort.

In some instances, depending upon the mildness of the winter and early spring, YOY fish (for example, redfin pickerel, creek chubsucker, bluegill, and redbreast sunfish), may already be present in samples collected during the spring. Assessments made in mid- to late June require careful attention and sometimes, professional judgment.

Efforts are made to not collect YOY fish, and, if collected, all YOY fish are excluded from all NCIBI calculations. Between July 1 and December 30, when most YOY may be collected, Table 4 should used as a guidance for the determination of YOY cut-off lengths. If a length for a particular species is not listed, best professional judgment or new knowledge of the life history of the species in North Carolina or the Southeast may be used for individuals collected where there may be doubt as to whether or not a fish is a YOY fish.

ACQUIRED DATA

All data are generated through the Stream Fish Community Assessment Program field activities and consequent laboratory analyses, with three exceptions:

- Geo-referenced (latitude and longitude) data are obtained from Maptech Terrain Navigator® software or from a Garmin GPS meter. These data are used in Geographic Information System mapping software and in describing the exact location from which a sample was collected.
- Watershed drainage areas for each site are obtained from the U. S. Geological Survey (http://water.usgs.gov/osw/streamstats/north carolina.html) or from DWR's geographical information system software/data layers.
- Species lists for each basin are compiled from up-to-date taxonomic keys listed in the Literature Cited and Suggested References section, from data previously collected by the Stream Fish Community Assessment Program, and from other researchers at universities and state and federal resource agencies. These data aid in the accurate identification of fish species by listing which species are typically found or are not found in a particular river basin. Species lists are available at: http://portal.ncdenr.org/web/wq/ess/bau/nativefish.

COMPONENTS OF THE QA/QC PLAN

A detailed description of the Stream Fish Community Assessment Program Quality Assurance Project Plan can be found at http://portal.ncdenr.org/web/wq/ess/bau.

The Sr. Environmental Specialist will be responsible for overseeing the collection of all stream fish community assessment program samples. Personnel from the Biological Assessment Branch will provide primary sampling assistance. Other experienced field biologists within the Environmental Sciences Section or other agencies may be used as needed.

Prior to sampling, a fish species list will be compiled of all the species known or suspected to occur within the basin or stream under study. Such a list is compiled from species distribution maps (Menhinick 1991 and amended with Biological Assessment Branch data and data from other regional fisheries researchers). The list will also show which species may be afforded protection at the federal or state level and which would require field identification and immediate release.

As discussed in the Sample Collection section, as many readily and easily identifiable fish are processed stream-side as possible. A fish whose specific identity is unknown, questionable, or disputed between the fisheries biologists is properly preserved for later laboratory identification.

Examples of a species or a specimen(s) that should be preserved are ones that:

- can not be readily and easily identified in the field;
- are not represented in the Reference Collection (a list of species in the Reference Collection is kept with the Reference Collection in the Fish Laboratory and should be consulted prior to sampling);
- are of known taxonomic value (e.g., a poorly understood or undescribed species (such as the Carolina redhorse) or rarely collected size classes of a species);
- represent a new distributional record; or
- may be a hybrid

Additional suggested guidelines for when to preserve specimens may be found in Walsh and Meador (1998).

Random samples, identified in the laboratory, are re-processed for accurate and correct determinations of identity and presence or absence of multiple age classes. Because of the relatively limited icthyofauna within any specific river basin, the likelihood of misidentifications is not as great as is the case for other taxonomic groups (e.g., benthic invertebrates or phytoplankton). Consequently, at least 10% of the samples from each river basin are selected for re-identification using a electronic random number generator or electronic dice (http://www.random.org/ or http://www.roll-dice-online.com/). The sample
number (sorted in numerical order) corresponding with the random number or die number is re-identified. Any misidentifications or inaccuracies in multiple age class determinations are resolved. The data sheet from which the sample was chosen for verification is signed and dated attesting to the accuracy and completeness of the sample.

A Reference Collection shall be maintained. Except for federally- and state-recognized rare, endangered, or threatened species (Table 11), the Reference Collection should include at least one specimen of every freshwater species found in the state. Species afforded the extra state or federal protection and which were collected accidentally (Incidental Take) shall be deposited in the North Carolina State Museum of Natural Sciences (NCSMNS). The Reference Collection shall be maintained and utilized for laboratory identifications of problematic species. Comparisons of such specimens or species may also be made to specimens in the NCSMNS. A list of species in the Reference Collection is kept with the Reference Collection in the Stream Fish Community Assessment Program's Fish Laboratory and should updated as needed.

Table 11. Phylogenetic listing of the state and federally protected endangered and threatened species (from LeGrand, et al. 2012).

Species	Common Name	State Status	Federal Status
Lampetra aepyptera	Least Brook Lamprey	Threatened	
L. appendix	American Brook Lamprey	Threatened	Endangered
Acipenser brevirostrum	Shortnose Sturgeon	Endangered	Endangered
Polyodon spathula	Paddlefish	Threatened	Threatened
Erimonax monachus	Spotfin Chub	Threatened	
Hybopsis rubifrons	Rosyface Chub	Endangered	Endangered
Notropis bifrenatus	Bridle Shiner	Endangered	Endangered
Notropis mekistocholas	Cape Fear Shiner	Threatened	
Moxostoma robustum	Robust Redhorse	Threatened	
M. sp. cf. macrolepidotum	Sickelfin Redhorse	Threatened	
M. sp. cf. erythrurum	Carolina Redhorse	Endangered	
Scartomyzon ariommus	Bigeye Jumprock	Endangered	
Thoburnia hamiltoni	Rustyside Sucker	Threatened	
Noturus flavus	Stonecat	Threatened	
N. furiosus	Carolina Madtom	Threatened	
N. gilberti	Orangefin Madtom	Threatened	
Menidia extensa	Waccamaw Silverside	Threatened	
Cottus carolinae	Banded Sculpin	Enreatened	
Etheostoma acuticeps	Sharphead Darter	Threatened	
E. inscriptum	Turquoise Darter	Endangered	Threatened

All specimens returned to the laboratory for identification which do not become part of the Reference Collection or of the Teaching Collection (a collection maintained to educate school groups, tours, or citizens at public fair and forums) will be donated to the NCSMNS. The State Ichthyologist (and staff) will serve as the qualified, independent fish taxonomic specialist(s). All specimens are verified for correctness of species identification prior to being incorporated into the NCSMNS Collection. Any misidentifications or other discrepancies will be communicated back by the NCSMNS staff.

DATA MANAGEMENT

Field- and laboratory-generated data from a single sampling event are recorded on the same Stream Fish

Community Assessment Program Field Data Sheet (Appendices 2 and 3). A vertical bar "I" is used to separate and distinguish field data (specimens identified, measured, and released in the field) from lab data (specimens identified and measured in the lab). This distinction is made so that staff members know and can keep track of which specimens were processed in the field and which specimens were returned to the laboratory.

Data are keyed by the Sr. Environmental Specialist into the Stream Fish Community Assessment Program's Microsoft Access® 2010 database. Annually, this results in almost 1,500 records (~ 20 species per site $X 75$ sites sampled annually $=1,500$ species records). The biologists review the data for completeness, data entry errors, unlikely or impossible values, etc. Copies of this database reside on the Sr. Environmental Specialist's drive on the ESS server and on BAB's drive on the ESS server. Tape backups are run daily on the ESS servers. The database is updated on a as needed basis whenever samples are completed or whenever errors in previously entered data are identified.

All calculations that result in any data summaries as shown in the North Carolina Fish Community Reports (Appendix 8) are generated by programs in the Stream Fish Community Assessment Program's Microsoft Access® 2010 database.

LITERATURE CITED AND SUGGESTED REFERENCES

Angermeier, P. L. and J. R. Karr. 1986. Applying an Index of Biotic Integrity based on stream - fish communities: considerations in sampling and interpretation. N. Amer. J. Fish. Manage. 6:418429.

Angermeier, P. L. and I. J. Schlosser. 1987. Assessing biotic integrity of the fish community in a small Illinois stream. N. Amer. J. Fish. Manage. 7:331-338.

Barbour, M. T., J. Gerritsen, B. D. Snyder, and J. B. Stribling. 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates, and fish. $2^{\text {nd }}$ edition. EPA 841 - B-99-002. U.S. Environmental Protection Agency. Office of Water, Washington, DC.

Carlander, K. D. 1969. Handbook of freshwater fishery biology, Vol. 1. Life history data on freshwater fish of the United States and Canada, exclusive of the Perciformes. Iowa State University Press, Ames, IA.
\qquad . 1977. Handbook of freshwater fishery biology, Vol. 2. Life history data on centrarchid fishes of the United States and Canada. Iowa State University Press, Ames, IA.

Etnier, D. A. and W. C. Starnes. 1993. The fishes of Tennessee. The University of Tennessee Press, Knoxville, TN.

Fausch, K. D., J. R. Karr, and P. R. Yant. 1984. Regional application of an index of biotic integrity based on stream fish communities. Trans. American Fish. Soc. 113: 39-55.

Fels, J. 1997. North Carolina watersheds map. North Carolina State University Cooperative Extension Service. Raleigh, NC.
Gibson, G. R., Jr. (ed.). 1996. Biological criteria. Technical guidance for streams and small rivers. Revised edition. EPA 822-B-96-001. U.S. Environmental Protection Agency. Office of Water, Washington, DC.

Griffith, G., Omernik, J. and J. Comstock. 2002. Ecoregions of North Carolina. United States Environmental Protection Agency. Research and Development. NHEERL. Western Ecology Division. Corvallis, OR.

Hughes, R. M. 1995. Defining acceptable biological status by comparing with reference conditions. Pages 31-47. in Davis, W. S. and T. P. Simon, eds. Biological assessment and criteria: tools for water resource planning and decision making. Lewis Press, Boca Raton, FL.
\qquad , Kaufmann, P. R., A. T. Herlihy, T. M. Kincaid, L. Reynolds, and D. P. Larsen. 1998. A process for developing and evaluating indices of fish assemblage integrity. Can. J. Fish. Aquat. Sci. 55: 1618-1631.

Hughes, R. M. and T. Oberdorff. 1999. Applications of IBI concepts and metrics to waters outside the United States and Canada. Pages 79-93. in Simon, T. P., ed. Assessing the sustainability and biological integrity of water resources using fish communities. CRC Press. Boca Raton, FL.

Jenkins, R. E. and N. M. Burkhead. 1993. Freshwater fishes of Virginia. Amer. Fish. Soc., Bethesda, MD.

Karr, J. R. 1981. Assessment of biotic integrity using fish communities. Fisheries. 6:21-27.
___, Fausch, K. D., Angermeier, P. L., Yant, P. R, and I. J. Schlosser. 1986. Assessing biological integrity in running water: a method and its rationale. III. Nat. Hist. Surv. Spec. Publ. 5.

Karr, J. R. and E. W. Chu. 1999. Restoring life in running waters. Better biological monitoring. Island Press, Washington, DC.

Kuehne, R. A. and R. W. Barbour. 1983. The American darters. Univ. Press of KY. Lexington, KY.
Lee, D. S., C. R. Gilbert, C. H. Hocutt, R. E. Jenkins, D. E. McAllister, and J. R. Stauffer, Jr. 1980, et. seq. Atlas of North American freshwater fishes. North Carolina State Museum of Natural History, Raleigh, NC.

LeGrand, H. E., Finnegan, J. T., Hall, S. P., Leslie, A. J. and J. A. Ratcliffe. 2012. Natural Heritage Program list of the rare animal species of North Carolina. North Carolina Natural Heritage Program, Office of Conservation, Planning, and Community Affairs, North Carolina Department of Environment and Natural Resources. Raleigh, NC.

Manooch, C. S, III. 1984. Fisherman's guide, Fishes of the southeastern United States. North Carolina State Museum of Natural History, Raleigh, NC.

Meador, M. R., T. F. Cuffney, and M. E. Gurtz. 1993. Methods for sampling fish communities as part of the National Water - Quality Assessment Program. U.S. Department of the Interior. U.S. Geological Survey. Water Resource Investigations Report 93-104. Raleigh, NC.

Menhinick, E. F. 1991. The freshwater fishes of North Carolina. North Carolina Wildlife Resources Commission. Raleigh, NC.
and A. L. Braswell (eds). 1997. Endangered, threatened, and rare fauna of North Carolina. Part IV. A reevaluation of the freshwater fishes. Occas. Papers N.C. State Mus. Nat. Sci. and N.C. Biol. Surv. No. 11. Raleigh, NC.

NCAC. 2007. North Carolina administrative code. Effective May 1, 2007. Environmental Management Commission. North Carolina Department of Environment and Natural Resources. Division of Water Quality. Raleigh, NC.

NCDENR. 2011. Intensive Survey Unit standard operating procedures. North Carolina Department of Environment and Natural Resources. Division of Water Quality. Water Quality Section. Environmental Sciences Branch. Raleigh, NC. August 29, 2003.

Nelson, J. S., Crossman, E. J., Espinosa - Pérez, H., Findley, L. T., Gilbert, C. R., Lea, R. N., and J. D.

Williams. 2004. Common and scientific names of fishes from the United States, Canada, and Mexico. American Fisheries Society, Special Publication 29, Bethesda, MD.

Noga, E. J. 1996. Fish disease. Diagnosis and treatment. Mosby - Year Book, Inc. St. Louis, MO.
Page, L. M. 1983. Handbook of darters. T. F. H. Publications, Inc. Neptune City, NJ.
Plafkin, J. L., M. T. Barbour, K. D. Porter, S. K. Gross, and R. M. Hughes. 1989. Rapid bioassessment protocols for use in streams and rivers: benthic macroinvertebrates and fish. Report No. EPA/444/4-89-001. U.S. EPA, Washington, DC.

Rohde, F. C., R. G. Arndt, D. G. Lindquist, and J. F. Parnell. 1994. Freshwater fishes of the Carolinas, Virginia, Maryland, and Delaware. The University of North Carolina Press. Chapel Hill, NC. 222 pp.

Sanders, R. E., R. J. Miltner, C. O. Yoder, and E. T. Rankin. 1999. The use of external deformities, erosion, lesions, and tumors (DELT anomalies) in fish assemblages for characterizing aquatic resources: a case study of seven Ohio streams. Pages 25-246. in Simon, T. P., ed. Assessing the sustainability and biological integrity of water resources using fish communities. CRC Press. Boca Raton, FL.

Saylor, C. and E. M. Scott. 1987. Application of the index of biotic integrity to existing TVA data. Tennessee Valley Authority, Norris, TN.

Simon, T. P. (ed.). 1999. Assessing the sustainability and biological integrity of water resources using fish communities. CRC Press. Boca Raton, FL.
\qquad and J. Lyons. 1995. Application of the Index of Biotic Integrity to evaluate water resource integrity in freshwater ecosystems. Pages 245-262. in Davis, W. S. and T. P. Simon, eds. Biological assessment and criteria: tools for water resource planning and decision making. Lewis Press, Boca Raton, FL.

Smoger, R. A. and P. L. Angermeier. 1999. Effects of drainage basin and anthropogenic disturbance in relations between stream size and IBI metrics in Virginia. Pages 249-272. in Simon, T. P., ed. Assessing the sustainability and biological integrity of water resources using fish communities. CRC Press. Boca Raton, FL.

Steedman, R. J. 1991. Occurrence and environmental correlates of blackspot disease in stream fishes near Toronto, Ontario. Trans. American Fisheries Soc. 120: 494-499.

Walsh, S. J. and M. R. Meador. 1998. Guidelines for quality assurance and quality control of fish taxonomic data collected as part of the National Water-Quality Assessment Program. U.S. Department of the Interior. U.S. Geological Survey. Water Resource Investigations Report 984239. Raleigh, NC.

Warren, M. L., Jr., Burr, B. M., Walsh, S. J., Bart, H. L., Jr., Cashner, R. C., Etnier, D. A., Freeman, B. J., Kuhajda, B. R., Mayden, R. L., Robison, H. W., Ross, S. T. and W. C. Starnes. 2000. Diversity, distribution, and conservation status of the native freshwater fishes of the southern United States. Fisheries. 25: 7-29.

Yoder, C. O. and M. A. Smith. 1999. Using fish assemblages in a state biological assessment and criteria program: essential concepts and considerations. Pages 17-56. in Simon, T. P., ed. Assessing the sustainability and biological integrity of water resources using fish communities. CRC Press. Boca Raton, FL.

Zuboy, J. R. 1981. A new tool for fishery managers: the Delphi Technique. N. Amer. J. Fish. Manage. 1: 55-59.

Appendix 1. Stream Fish Community Assessment Program Samples Log Sheet.

NC DIVISION OF WATER RESOURCES

STREAM FISH COMMUNITY ASSESSMENT PROGRAM SAMPLES LOG SHEET
YEAR

$\begin{gathered} \text { Sample } \\ \text { No. } \\ \hline \end{gathered}$	Waterbody	Location	County	Collection Date	Basin	Study

Appendix 2. Stream Fish Community Assessment Program Field Data Sheet.

PAGE 1 OF
NC DIVISION OF WATER RESOURCES

STREAM FISH COMMUNITY ASSESSMENT PROGRAM FIELD DATA SHEET

UNIQUE SITE IDENTIFIER	SAMPLE NO.
STREAM	SAMPLE DATE
LOCATION	TIME
COUNTY	NO. OF SHOCKING UNITS
RIVER BASIN	DURATION (sec.)
8 Digit HUC	SAMPLING PERSONNEL
LATITUDE	LOCATION OF REACH
LONGITUDE	SEINE USED ? (Y/N)
DRAINAGE AREA (mi. ${ }^{2}$)	SAMPLE IDENTIFIED BY
STREAM INDEX NO.	DATE SAMPLE IDENTIFIED
STREAM CLASSIFICATION	DATA ENTERED BY
HABITAT SCORE	DATE OF DATA ENTRY
ELEVATION (ft.)	SPECIFIC CONDUCTANCE $(\mu S / c m)$ DISSOLVED OXYGEN $(\mathrm{mg} / \mathrm{L})$ AVG. STREAM WIDTH (m) TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$ AVG. STREAM DEPTH (m) pH WATER CLARITY (clear, turbid, blackwater) HABITAT DESCRIPTION SUBSTRATE TYPE(s)

Species	Total No.	Length								

NC DIVISION OF WATER RESOURCES
STREAM FISH COMMUNITY ASSESSMENT PROGRAM FIELD DATA SHEET
STREAM
SAMPLE LOCATION

Species	Total No.	Length								

Appendix 3. Example of a completed Stream Fish Community Assessment Program Field Data Sheet. Note: this data sheet was the version used between 2006 and 2013.
STREAM FISH COMMUNITY ASSESSMENT PROGRAM FIELD DATA SHEET

Appendix 3 (continued).

Version 3
Fabruary 23, 2006

Appendix 4. Field meter calibration sheet.

Water Quality Monitoring Field Meter Calibration Sheet

Collector(8):
Study:
Sampiling Location:
Meter Model:
Meter / Sonde Serial No:

	Date ywimmod	Time 24rrnimm	Initlals
Pre-Samping Callbration			
Post-Sampiling Check			

Miscellaneous (Doer not apply to Yal or Acoumet metorc)

	Battery Level (V)	Stirer Working?
Pre-Sampling Callbration		Y / N
Post-Sampling Check		Y / N

Barometer Calibration (mmHg)
*YSI Pro Plus Meters On'y

Inital Reading	Calbrated Value

Dissolved Oxygen (mg/L)

	Temp. ${ }^{\circ}$	intral \% Saturation	Barometic Presaure (montial	Athude (t)	D.O. Table Value	Intiol Meter Reading (mgh)	Calloreted Mete Readngimgl)	Calbrated \% Saturation
Pre-Sampling Calbration								
Post-Sampling Check								
					Within ± 0.5 ? Y/N			

Specific Conductance ($\mu \mathrm{S} / \mathrm{cm}$ at $\mathbf{2 5}^{\circ} \mathrm{C}$)			Lot \#:		Lot \#:		
	$\begin{aligned} & \text { Dry Alr } 1,2 \\ & \text { Zero (0) } \end{aligned}$		Conductivity standard ${ }^{2}$ Value: \qquad		Callbration Check Value: \qquad		
	Intily Meter Reading	Calbrated ${ }^{4}$ Meter Readng	Inlial Meter Reading	Calbrated ${ }^{4}$ Meter Resding	Intilal Meter Reading	$=10 \%$ Ranges for sp . Cond. standard Ranoe	
Pre-Sampling Callbration							
Post-Sampling Check							
	$\begin{gathered} \text { W/fin } \pm 2 ? \\ \mathrm{Y} / \mathrm{N} \end{gathered}$		$\begin{array}{\|c\|c\|} \hline \text { W } F T \mathrm{n} \pm 10 \% \text { ? } \\ Y / \mathrm{N} \\ \hline \end{array}$		$\begin{gathered} \text { WFThn } \pm 10 \% \\ Y / N \end{gathered}$		
NOTE: Ouanta reade in mSiom move decima 3 places ngit for μ Sicm.							

${ }^{1}$ Dry Ar CNLERATIONS are conducted for 4 a and M85 Hycroisto only.
${ }^{2}$ Dry Ar CHECXS (corfrmation of zero in dry ari) are conducted for Y31 85 , Y81 6920 , Y3i Pro Pus a Ouanta metera.

${ }^{4}$ Does not spply to Dry Ar CHECKS or Conductivi Standard CHECKS jesve blank).

pH (SU)	Lot \#:		Lot \#			
	$\begin{gathered} \text { Buffer \#1 } \\ 7.0 \\ \text { Bufter Temp: } \\ \hline \end{gathered}$		Buffer \#2$4.0 / 10.0$Buter Tempx:		$\begin{gathered} \text { slope } \\ \text { Emolency } \end{gathered}$	Confimation Butfer 7.0
	Intial Meter Reading	Calorated Meter Reading	InIIal Meter Reading	Caltrosted Meter Resading		Meerer Resaling
Pre-Sampling Callbration						
Post-Sampling Check						$\begin{gathered} \text { Wivin } \pm 0.1 ? \\ Y / N \end{gathered}$
	$\begin{gathered} \text { Werin } \pm 0.2 ? \\ Y / \mathrm{N} \\ \hline \end{gathered}$		$\begin{gathered} \text { WiFh } \pm \pm 0.2 ? \\ Y / N \end{gathered}$			

${ }^{5}$ siope efficiency spples to Accumet meters only (does not spply to Hydrolst or YSi mesers).
Comments:
\qquad

Appendix 5. Habitat assessment field data sheet -- Mountain/Piedmont streams.

Chaunel Flow Status

Useful especially under abnormal or low flow conditions,
A. Water reaches base of both lower banks, minimal channel substrate exposed \qquad
B. Waler fills $>/ 15 \%$ of avalable channel, or $<25 \%$ of channel substrate is exposed
C. Water fills $25-75 \%$ of available channel, many logs/snags exposed
D. Root mats out of water
E. Very little water in channel, mostly present as standing pools \qquad \square

Weather Conditions: \qquad Photos: ■N $\square \mathrm{Y} \square$ Digital $\square 35 \mathrm{~mm}$

Remarks:

\qquad
\qquad

Appendix 5 (continued).

I. Channel Modification
Score A. channel natural, frequent bends 5
B. channel natural, infrequent bends (channelization could be old) 4
C. some channelization present 3
D. more extensive channelization, $>40 \%$ of stream disrupted. 2
E. no bends, completely channelized or rip rapped or gabioned, etc. 0
\square Evidence of dredging पEvidence of desnagging=no large woody debris in stream ■Banks of uniform shape/heightRemarks
\qquad
II. Instream Habitat: Consider the percentage of the reach that is favorable for benthos colonization or fish cover. If $>70 \%$ of the reach is rocks, 1 type is present, circle the score of 17 . Definition: leafpacks consist of older leaves that are packed together and have begun to decay (not piles of leaves in pool areas). Mark as Rare. Common, or Abundant.

\square No woody vegetation in riparian zone Remarks Subtotal \qquad
III. Bottom Substrate (silt, sand, detritus, gravel, cobble, boulder) Look at entire reach for substrate scoring, but only look at riffle for embeddedress, and use rocks from all parts of riflle-look for "mud line" or difficulty extracting rocks.
A. substrate with good mix of gravel, cobble and boulders \quad Score

1. embeddedness $<20 \%$ (very little sand, usually only behind large boulders).........................

2. embeddedness 40-80\%... 8

B. substrate gravel and cobble

3. embeddedness 40-80\% .. 6
4. embeddedness $>80 \%$.. 2
C. substrate mostly gravel
5. embeddedness $<50 \%$
6. embeddedness $>50 \%$. 8
D. substrate homogeneons
7. substrate nearly all bedrock.. 3
8. substrate nearly all sand .. 3
9. substrate nearly all detritus... 2
10. substrate nearly all sill/ clay.
2
Remarks \qquad Subtotal \qquad
IV. Pool Variety Pools are areas of deeper than average maximum depths with little or no surface turbulence. Water velocities associated with pools are always slow. Pools may take the form of "pocket water", small pools behind boulders or obstructions, in large high gradient streams, or side eddies.
A. Pools present
a. variety of pool sizes. 10
b. pools about the same size (indicates pools filling in) 8
11. Pools Infrequent ($<30 \%$ of the 200 m area surveyed)
b. pools about the same size 6
4
B. Pools absent 0
Subtotal

\qquad
\square Pool bottom boulder-cobble=hard \square Bortom sandy-sink as you walk \square Silt bottom \square Sume pools over wader depth Remarks \qquad
Page Total

Appendix 5 (continued).

V. Riffle Habitats
Definition: Riffle is area of reaeration-can be debris dam, or narrow channel area. Riffles Frequent Riffles Infrequent
A. well defined riffle and run, riffle as wide as stream and extends 2 X widh of Score
B. riffle as wide as stream but riffle length is not 2 X stream width 14
C. riffle not as wide as stream and riffle length is not 2 X stream width 10
D. riffles absent..
Channel Slope: \square Typical for area \square Steep-fast flow \square Low-like a coastal stream Subtotal

VI. Bank Stability and Vegetation

A. Erosion

1. No, or very little, erosion present.. 7
2. Erosion mostly at outside of meanders....................................... 6
3. Less than 50% of banks croding... 3
4. Massive crosion.. 0
Erosion Score
B. Bank Vegetation
5. Mostly mature trees ($>12^{\prime \prime} \mathrm{DBH}$) present 7
6. Mostly small trees ($<12^{\prime \prime} \mathrm{DBH}$) present, large trees rare 5
7. No trees on bank, can have some shrubs and grasses............ 3
8. Mostly grasses or mosses on bank ... 2
9. Little or no bank vegetation, bare soil everywhere 0

Remarks

\qquad Subtotal \qquad
VII. Light Penetration Canopy is defined as tree or vegetative cover directly above the stream's surface. Canopy would block out sunlight when the sun is directly overhead. Note shading from mountains, but not use to score this metric.
A. Stream with good canopy with some breaks for light penetration
Score
B. Stream with full canopy - breaks for light penetration absent. 10
C. Stream with partial canopy - sunlight and shading are essentially equal 8
D. Stream with minimal canopy - full sun in all but a few areas 72

E. No canopy and no shading
E. No canopy and no shading. 0

Remarks
Subtotal \qquad
VIII. Riparian Vegetative Zone Width

Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyond floodplain). Definition: A break in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly enter the stream, such as paths down to stream, storm drains, uprooted trees, otter slides, etc.

FACE UPSTREAM
Dominant vegetation: \square Trees \square Shrubs \square Grasses \square Weeds/old field \square Exotics (kudzm, A. Riparian zone intact (no breaks)

1. width >18 meters.

$$
\begin{aligned}
& \text { 2. width } 12-18 \text { meters. } \\
& \text { 3. width } 6-12 \text { meters... }
\end{aligned}
$$

4. width <6 meters
B. Riparian zone not intact (breaks)
5. breaks rare
a. width >18 meters
b. width 12-18 meters \qquad
c. width 6-12 meters
d. width <6 meters. \qquad
6. breaks common
a. width >18 meters.
b. width $12-18$ meters. \qquad
c. width 6-12 meters.
d. width <6 meters.

Remarks \qquad

Lft. Bank Score	Rt. Bank Score
5	5
4	4
3	3
2	2
4	4
3	3
2	2
1	1
3	3
2	2
1	1
0	0
	Subtotal

Page Total \qquad
\square Disclamer-form filled out, but score doesn't match subjective opinion-atypical stream.
TOTAL SCORE \qquad

Appendix 5 (continued).

Supplement for Habitat Assessment Field Data Sheet

Site Sketch:

Appendix 6. Habitat Assessment Field Data Sheet - Coastal Plain Streams.

1/13 Revision 9

Habitat Assessment Field Data Sheet Coastal Plain Streams

Biological Assessment Branch, DWR
Directions for use: The observer is to survey a minimum of 100 meters with 200 meters preferred of stream, preferably in an upstream direction starting above the bridge pool and the road right-of-way. The segment which is assessed should represent average stream conditions. To perform a proper habitat evaluation the observer needs to get into the stream. To complete the form, select the description which best fits the observed habitats and then circle the score. If the observed habitat falls in between two descriptions, select an intermediate score. A final habitat score is determined by adding the results from the different metrics.

Stream \qquad Location/road: \qquad (Road Name \qquad)County Date \qquad CCH \qquad Basin \qquad Subbasin \qquad
Observer(s) Type of Study: \square Fish $\square B e n t h o s ~ \square B a s i n w i d e \quad \square S p e c i a l ~ S t u d y ~(D e s c r i b e) ~$
\qquad
Latitude \qquad Longitude \qquad Eooregion: $\square \mathrm{CA} \square$ SWP Sandhills $\square \mathrm{CB}$

Water Quality: Temperature \qquad ${ }^{\circ} \mathrm{C}$ DO \qquad $\mathrm{mg} / 1$ Conductivity (corr.) \qquad $\mu \mathrm{S} / \mathrm{cm} \quad \mathrm{pH}$ \qquad
Physical Characterization: Visible land use refers to immediate area that you can see from sampling location. Check off what you observe driving thru the watershed in watershed land use.

Visible Land Use:	\%Forest	\%Residential	\%Active Pasture	\% Active Crops
_ \%Fallow Fields	\% Commercial	\% Industrial	\%Other - Describe:	

Watershed land use \square Forest \square Agriculture \square Urban \square Animal operations upstream
Width: (meters) Stream \qquad Channel (at top of bank) \qquad Stream Depth: (m) Avg \qquad Max \qquad \square Width variable DBraided channel \square Large river $>25 \mathrm{~m}$ wide
Bank Height (from deepest part of channel to top of bank): (m) \qquad
Flow conditions: $\square H i g h \quad \square$ Normal \square Low Channel Flow Status

Useful especially under abnormal or low flow conditions.
A. Water reaches base of both banks, minimal channel substrate exposed \qquad \square
\square
\square
\square
\square

Turbidity: \square Clear \square Slightly Turbid \square Turbid \square Tannic \square Milky \square Colored (from dyes) \square Green tinge Good potential for Wetlands Restoration Project?? \square YES \square NO Details
\square Channelized ditch

-Deeply incised-steep, straight banks	-Both banks undercut at bend	- Channel filled in
$\square \mathrm{Recent}$ overbank deposits	$\square \mathrm{Bar}$ development	\square - ${ }^{\text {Sewage smell }}$
\square Excessive periphyton growth	-Heavy filamentous algae growth	

Manmade Stabilization: $\square \mathrm{N} \quad \square \mathrm{Y}: \square R i p-r a p$, cement, gabions \square Sediment/grade-control structure \square Berm/levee
Weather Conditions: \qquad Photos: पN $\square \mathrm{Y}$ पDigital $\square 35 \mathrm{~mm}$

Remarks:

TYPICAL STREAM CROSS SECTION DIAGRAM ON BACK

Appendix 6 (continued).

I. Channel Modification

A. Natural channel-minimal dredging...
B. Some channelization near bridge, or historic (>20 year old), and/or bends beginning to reappear..
C. Extensive channelization, straight as far as can see, channelized ditch...................
D. Banks shored with hard structure, $>80 \%$ of reach disrupted, instream habitat gone.......
Remarks
II. Instream Habitat: Consider the percentage of the reach that is favorable for benthos colonization or fish cover. If $>50 \%$ of the reach
is snags, and 1 type is present, circle the score of 16 . Definition: leafpacks consist of older leaves that are packed together and have begun
to decay (not piles of leaves in pool areas). Mark as Rare. Common. Or Abundant. to decay (not piles of leaves in pool areas). Mark as Rare, Common, or Abundant,

Remarks \qquad Subtotal \qquad
IV. Pool Variety Pools are areas of deeper than average maximum depths with little or no surface turbulence. Water velocities associated with pools are always slow.
A. Pools present Score

1. Pools Frequent ($>30 \%$ of 100 m length surveyed)
a. variety of pool sizes. 10
b. pools about the same size (indicates pools filling in) 8
2. Pools Infrequent ($<30 \%$ of the 100 m length surveyed) a. variety of pool sizes. 6
b. pools about the same size. 4
B. Pools absent
3. Deep water/run habitat present. 4
4. Deep water/run habitat absent. 0

Subtotal \qquad

Remarks
Page Total
\qquad
\qquad

Appendix 6 (continued).

V. Bank Stability and Vegetation
 A. Erosion

1. No, or very little, erosion present .. 10

2. Less than 50% of banks eroding .. 3
3. Massive erosion ... 0
B. Bank Vegetation
4. Mostly mature trees ($>12^{-\prime} \mathrm{DBH}$) present............................. 10
5. Mostly small trees ($<12^{\circ} \mathrm{DBH}$) present, large trees rare....... 7
6. No trees on bank, can have some shrubs and grasses 4
7. Mostly grasses or mosses on bank... 3
8. Little or no bank vegetation, bare soil everywhere................ 0

Remarks \qquad
VI. Light Penetration (Canopy is defined as tree or vegetative cover directly above the stream's surface. Canopy would block out sunlight when the sun is directly overhead).

	Score
A. Stream with good canopy with some breaks for light penetration	10
B. Stream with full canopy - breaks for light penetration absent.	8
C. Stream with partial canopy - sunlight and shading are essentially equal.	7
D. Stream with minimal canopy - full sun in all but a few areas.	2
E. No canopy and no shading.	0

Remarks
Subtotal

Vegetation Score \qquad
Subtotal \qquad
Erosion Score \qquad4
\qquad
VII. Riparian Vegetative Zone Width

Definition: A break in the riparian zone is any area which allows sediment to enter the stream. Breaks refer to the near-stream portion of the riparian zone (banks); places where pollutants can directly enter the stream.

	Lft. Bank	Rt. Bank
	Score	Score
A. Riparian zone intact (no breaks)		
1. zone width >18 meters.,	5	5
2. zone width 12-18 meters.	4	4
3. zone width 6-12 meters..	3	3
4. zone width <6 meters...	2	2
B. Riparian zone not intact (breaks)		
1. breaks rare		
a. zone width >18 meters.	4	4
b. zone width 12-18 meters..	3	3
c. zone width 6-12 meters...	2	2
d. zone width <6 meters..	1	1
2. breaks common		
a. zone width >18 meters.	3	3
b. zone width $12-18$ meters.	2	2
c. zone width 6-12 meters.	1	1
d. zone width <6 meters....	0	0

Remarks \qquad Subtotal

Page Total \qquad

TOTAL SCORE \qquad

Appendix 6 (continued).

Appendix 7. Stream Fish Community Assessment Program Data Entry Log Sheet.

NC DIVISION OF WATER RESOURCES
STREAM FISH COMMUNITY ASSESSMENT PROGRAM DATA ENTRY LOG SHEET

$\begin{gathered} \hline \text { Sample } \\ \text { No. } \\ \hline \end{gathered}$	Waterbody	$\begin{gathered} \text { Date } \\ \text { Identified } \\ \hline \end{gathered}$	Date Data Entered	Date Data Checked	Date Data "Clean"

Appendix 8. Example of a North Carolina Fish Community Report.

11/19/2013 2:59:55 PM

NCIBI Metrics

Metric	Value	Score
Number of Species:	21	5
Number Fish:	394	5
Number Darter Sp:	3	5
No. Sunfish,Bass,Trout:	3	5
Number Sucker Sp:	3	5
Number Intolerant Sp.	4	5
Percent Tolerant Fish:	13	5
Percent Omni + Herb:	31	5
Percent Insectivores:	69	5
Percent Piscivores:	0.00	1
Percent Diseased Fish:	0.76	3
Percent Sp Multiple Ages:	57	5

Exotics
Number Exotic Fish $\quad 0$ Number Exotic Species 0 Notes Collectors = DeBerardinis, Simonson, Tracy, Vander Borgh. Substrate = cobble, boulder, bedrock. Sampled 60 ft. upstream, beginning at high arched concrete culvert. No seine used, used green nets; if flow is sufficient seine would be very effective. Low gradient near the culvert (1st 100 ft.), high gradient with plunges (next 500 ft.). Plunge pools, chutes and riffles, soft bottom pool at the bridge. No Carolina Fantail Darter. One Sandbar Shiner, Rosyside Dace, and Spottail Shiner with popeye. Largemouth Bass represented only by young-of-year. Water easily silted.

Appendix 9. Web Links

Digital Pictures of Fish - The Southeastern Fishes Council (http://www.sefishescouncil.org/fishes/) and EFISH, the Virtual Aquarium, the Department of Fisheries and Wildlife Sciences, Virginia Polytechnic Institute and State University (http://www.cnr.vt.edu/efish/).

NC Division of Water Resources (NCDWR) -- http://www.ncwater.org/
NCDWR Basinwide Assessment Reports -- http://portal.ncdenr.org/web/wq/ess/reports
NCDWR Basinwide Planning -- http://portal.ncdenr.org/web/wq/ps/bpu
NCDWR Biological Assessment Branch -- http://portal.ncdenr.org/web/wq/ess/bau
NCDWR Intensive Survey Branch Standard Operating Procedure -http://portal.ncdenr.org/web/wq/ess/isuf

NCDWR Stream Fish Community Assessment Program Raw Data --http://portal.ncdenr.org/web/wq/ess/bau/ncibi-data

NCDWR Stream Fish Community Assessment Program NCIBI Scores and Ratings --http://portal.ncdenr.org/web/wq/ess/bau/ncibi-scores

NCDWR Water Quality Standards -- http://portal.ncdenr.org/web/wq/ps/csu/swstandards
Native and Exotic Freshwater Fish in North Carolina -- http://portal.ncdenr.org/web/wq/ess/bau/nativefish

