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A Theorem by Giusto Bellavitis on
a Class of Quadrilaterals

Eisso J. Atzema

Abstract. In this note we prove a theorem on quadrilaterals first published by
the Italian mathematician Giusto Bellavitis in the 1850s, but that seems to have
been overlooked since that time. Where Bellavitis used the functional equivalent
of complex numbers to prove the result, we mostly rely on trigonometry. We
also prove a converse of the theorem.

1. Introduction

Since antiquity, the properties of various special classes of quadrilaterals have
been extensively studied. A class of quadrilaterals that appears to have been little
studied is that of those quadrilaterals for which the products of the two pairs of
opposite sides are equal. In case a quadrilateral ABCD is cyclic as well,ABCD
is usually referred to as aharmonic quadrilateral (see [2, pp.90–92], [3, pp.159–
160]). Clearly, however, the class of all quadrilateralsABCD for which AB ·
CD = AD · BC includes non-cyclic quadrilaterals as well. In particular, all kites
are included. As far as we have able to ascertain, no name for this more general
class of quadrilaterals has ever been proposed. For the sake of brevity, we will
refer to the elements in this class asbalanced quadrilaterals. In hisSposizione
del metodo delle equipollenze of 1854, the Italian mathematician Giusto Bellavitis
(1803-1880) proved a curious theorem on such balanced quadrilaterals that seems
to have been forgotten.1 In this note, we will give an elementary proof of the theo-
rem. In addition, we will show how the converse of Bellavitis’ theorem is (almost)
true as well. Our proof of the first theorem is different from that of Bellavitis. The
converse is not discussed by Bellavitis at all.

2. Bellavitis’ Theorem

Let the lengths of the sidesAB, BC, CD and DA of a (convex) quadrilat-
eral ABCD be denoted bya, b, c andd respectively. Similarly, the lengths of
the quadrilateral’s diagonalsAC andBD will be denoted bye andf . Let E be
the point of intersection of the two diagonals. The magnitude of∠DAB will be

Publication Date: May 15, 2006. Communicating Editor: Paul Yiu.
1Bellavitis’ book is very hard to locate. We actually used Charles-Ange Laisant’s 1874 translation

into French [1], which is available on-line from the Biblioth`eque Nationale. In this translation, the
theorem is on p.26 as Corollary III of Bellavitis’ derivation of Ptolemy’s theorem.
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referred to asα, with similar notations for the other angles of the quadrilateral.
The magnitudes of∠DAC, ∠ADB etc will be denoted byαB , δC and so on (see
Figure 1). Finally, the magnitude of∠CED will be referred to asε.
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Figure 1. Quadrilateral Notations

With these notations, the following result can be proved.

Theorem 1 (Bellavitis, 1854). If a (convex) quadrilateral ABCD is balanced,
then

αB + βC + γD + δA = βA + γB + δC + αD = 180◦.

Note that the convexity condition is a necessary one. The second equality sign
does not hold for non-convex quadrilaterals. A trigonometric proof of Bellavitis’
Theorem follows from the observation that by the law of sines for any balanced
quadrilateral we have

sin γB · sin αD = sin αB · sin γD,

or

cos (γB + αD) − cos (γB − αD) = cos (αB + γD) − cos (αB − γD).

That is,

cos (γB + αD) − cos (γB − α + αB) = cos (αB + γD) − cos (αB − γ + γB),

or
cos (γB + αD) + cos (δ + α) = cos (αB + γD) + cos (δ + γ).
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By cycling through, we also have

cos (δC + βA) + cos (α + β) = cos (βC + δA) + cos (α + δ).

Sincecos (α + β) = cos (δ + γ), adding these two equations gives

cos (γB + αD) + cos (δC + βA) = cos (αB + γD) + cos (βC + δA),

or

cos
1
2
(δC + γB + βA + αD) · cos 1

2
(γB + αD − δC − βA)

= cos
1
2
(αB + βC + γD + δA) · cos 1

2
(αB + γD − βC − δA).

Now, note that

γB + αD − δc − βA = 360 − 2ε − δ − β

and, likewise

αB + γD − βC − δA = 2ε − β − δ.

Finally,

1
2
(δC + γB + βA + αD) +

1
2
(αB + βC + γD + δA) = 180◦.

It follows that

cos
1
2
(δC + γB + βA + αD) · cos (ε +

1
2
(β + δ))

= − cos
1
2
(δC + γB + βA + αD) · cos (ε − 1

2
(β + δ)),

or

cos
1
2
(δC + γB + βA + αD) · cos (ε) cos

1
2
(δ + β) = 0.

This almost concludes our proof. Clearly, if neither of the last two factors are equal
to zero, the first factor has to be zero and we are done. The last factor, however, will
be zero if and only ifABCD is cyclic. It is easy to see that any such quadrilateral
has the angle property of Bellavitis’ theorem. Therefore, in the case thatABCD
is cyclic, Bellavitis’ theorem is true. Consequently, we may assume thatABCD
is not cyclic and that the third term does not vanish. Likewise, the second factor
only vanishes in caseABCD is orthogonal. For such quadrilaterals, we know that
a2 + c2 = b2 + d2. In combination with the initial conditionac = bd, this implies
that each side has to be congruent to an adjacent side. In other words,ABCD has
to be a kite. Again, it is easy to see that in that case Bellavitis’ theorem is true.
We can safely assume thatABCD is not a kite and that the second term does not
vanish either. This proves Bellavitis’ theorem.
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3. The Converse to Bellavitis’ Theorem

Now that we have proved Bellavitis’ theorem, it is only natural to wonder for
exactly which kinds of (convex) quadrilaterals the angle sumsδC + γB +βA +αD

andαA + βC + γD + δA are equal. Assuming that the two angle sums are equal
and working our way backward from the preceding proof, we find that

sin γB · sin αD + K = sin αB · sin γD

for someK. Likewise,

sin δC · sinβA = sin βC · sin δA + K.

So,
sin γB

sin αB
− sin γD

sin αD
= − K

sinαB · sin αD

and
sin δC

sinβC
− sin δA

sin βA
=

K

sin βA · sin βC

or
d

c
− a

b
= − K

sinαB · sinαD
,

a

d
− b

c
=

K

sin βA · sin βC
.

If K = 0, we havebd = ac andABCD is balanced. IfK �= 0, it follows that

d

b
=

sinβA · sin βC

sinαB · sin αD
.

Cycling through twice also gives us

b

d
=

sin δC · sin δA

sin γD · sin γB
.

We find

sin βA · sinβC · sin δC · sin δA = sin αB · sin αD · sin γD · sin γB .

Division of each side byabcd and grouping the factors in the numerators and de-
nominators appropriately shows that this equation is equivalent to the equation

RABC · RADC = RBAC · RBCD,

whereRABC denotes the radius of the circumcircle to the triangleABC etc. Now,
the area ofABC is equal to bothabe/4RABC and 1

2e · EB · sin ε with similar
expressions forADC, BAC, andBCD. Consequently, the relation between the
four circumradii can be rewritten to the formEB ·EC = EA ·EC. But this means
thatABCD has to be cyclic. We have the following result:

Theorem 2. Any (convex) quadrilateral ABCD for which

αB + βC + γD + δA = βA + γB + δC + αD = 180◦

is either cyclic or balanced.
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4. Conclusion

We have not been able to find any references to Bellavitis’ theorem other than
in theSposizione. Bellavitis was clearly mostly interested in the theorem because
it allowed him to showcase the power of his method of equipollences.2 Indeed,
the Sposizione features a fair number of (minor) results on quadrilaterals that are
proved using the method of equipollences. Most of these were definitely well-
known at the time. This suggests that perhaps our particular result was reasonably
well-known at the time as well. Alternatively, Bellavitis may have derived the the-
orem in one of the many papers that he published between 1833, when he first
published on the method, and 1854. These earlier publications, however, are ex-
tremely hard to locate and we have not been able to consult any.3 Whether the
theorem originated with Bellavitis or not, it is not entirely surprising that this result
seems to have been forgotten. The sumsαB+βC +γD+δA andβA+γB+δC +αD

do not usually show up in plane geometry. We do hope to finish up a paper shortly,
however, in which these sums play a role as part of a generalization of Ptolemy’s
theorem to arbitrary (convex) quadrilaterals.
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2This method essentially amounted to a sometimes awkward mix of vector methods and the use of
complex numbers in a purely geometrical disguise. In fact, for those interested in the use of complex
numbers in plane geometry, it might be a worthwhile exercise to rework Bellavitis’ equipollences
proof of his theorem to one that uses complex numbers only. This should not be too hard.

3See the introduction of [1] for a list of references.


