
May/June 2023

arm.com/developerprogram

Get fresh insights directly from
Arm experts .
Connect with like-minded
developers .
Build on your expertise and
become an Arm Ambassador.
There is something for everyone
in our global community.

3FreeBSD Journal • May/June 2023

J O U R N A L
®

Editorial Board
 John Baldwin • Member of the FreeBSD Core Team and
 Chair of FreeBSD Journal Editorial Board

 Tom Jones • FreeBSD Developer, Internet Engineer
 and Researcher at the University of
 Aberdeen

 Ed Maste • Senior Director of Technology,
 FreeBSD Foundation and Member
 of the FreeBSD Core Team

 Benedict Reuschling • FreeBSD Documentation Committer
 and Member of the FreeBSD Core Team

 Mariusz Zaborski • FreeBSD Developer

Advisory Board
 Anne Dickison • Marketing Director, FreeBSD Foundation

 Justin Gibbs • Founder of the FreeBSD Foundation,
 President and Treasurer of the FreeBSD
 Foundation Board

 Allan Jude • CTO at Klara Inc., the global FreeBSD
 Professional Services and Support
 company

 Dru Lavigne • Author of BSD Hacks and
 The Best of FreeBSD Basics

 Michael W Lucas • Author of more than 40 books including
 Absolute FreeBSD, the FreeBSD
 Mastery series, and git commit murder

 Kirk McKusick • Lead author of The Design and
 Implementation book series

 George Neville-Neil • Past President of the FreeBSD Foundation
 Board, and co-author of The Design
 and Implementation of the FreeBSD
 Operating System

 Hiroki Sato • Director of the FreeBSD Foundation
 Board, Chair of AsiaBSDCon,
 and Assistant Professor at Tokyo
 Institute of Technology

 Robert N. M. Watson • Director of the FreeBSD Foundation
 Board, Founder of the TrustedBSD
 Project, and University Senior Lecturer
 at the University of Cambridge

S&W PUBLISHING LLC
PO BOX 3757 CHAPEL HILL, NC 27515-3757

 Editor-at-Large • James Maurer
 maurer.jim@gmail.com

 Design & Production • Reuter & Associates

FreeBSD Journal (ISBN: 978-0-61 5-88479-0) is published 6 times
a year (January/February, March/April, May/June, July/August,

September/October, November/December).
Published by the FreeBSD Foundation,

3980 Broadway St. STE #103-107, Boulder, CO 80304
ph: 720/207-51 42 • fax: 720/222-2350

email: info@freebsdfoundation.org

Copyright © 2023 by FreeBSD Foundation. All rights reserved.
This magazine may not be reproduced in whole or in part without written

permission from the publisher.

LETTER
from the Foundation

Welcome to a special edition celebrating 30 years
of FreeBSD! FreeBSD began as a small group of
volunteers building on a rich inheritance from

UNIX and BSD. Thirty years later, FreeBSD has grown into
a large, open source project with its own vibrant history.
That history is full of individual stories with various twists
and turns. There have been moments of worry and doubt
(thanks AT&T), laughter (Christmas trees, who knew?),
conflict, and triumph (13 major releases and counting). Each
of us has played a part in FreeBSD’s story to date and we,
along with many new faces, will shape the next 30 years.

This issue contains a variety of articles reflecting on that
long history. There are many personal anecdotes and hidden
nuggets in these stories. This collection is by no means
exhaustive, but it does give a glimpse into the breadth of
work that many, many people have put into FreeBSD over
the years. Join with us in celebrating not just the software
FreeBSD has produced, but all the individuals who have
contributed their time, talent, and treasure to FreeBSD’s
success.

John Baldwin
Chair of FreeBSD Journal Editorial Board

The robust unix-like operating system TwinCAT/BSD:
 vertically fully integrated Beckhoff solution
 BSD license for the entire value chain
 for all Beckhoff IPCs, from ARM to XEON
 implements TwinCAT real time
 easy to update through public update server
 freely configurable, familiar TwinCAT 3 Engineering
 can install own software (e.g. database, VPN, web server, etc.)

Beckhoff through and
through: TwinCAT/BSD

| E
C1

1-
18

E
|

Scan to
learn
more!

5FreeBSD Journal • May/June 2023

May/June 2023

 3 Foundation Letter
 By John Baldwin

 6 I’m Not From Yorkshire, I Promise!
 By Poul-Henning Kamp

 11 How Time Flies: A Personal Timeline
 By Greg Lehey

 15 FreeBSD and the Early Unix Communities
 By Warner Losh

 18 Early FreeBSD Ports
 By Doug Rabson

 21 Recollections: An Interview
with David Greenman Lawrence
By Tom Jones

 24 FreeBSD at 30 Years: Its Secrets to Success
 By Marshall Kirk McKusick

 27 WeGet Letters
 By Michael W. Lucas

 31 FreeBSD in Japan: A Trip Down Memory Lane
and Today’s Reality
By Hiroki Sato

 38 A Dozen Years of CheriBSD
 By Brooks Davis

 42 How ZFS Made Its Way into FreeBSD
 By Pawel Dawidek

 45 AArch64: Bringing a New FreeBSD Architecture
 to Tier-1
 By Ed Maste

 48 A Brief History of FreeBSD Journal
 By George V. Neville-Neil

 51 Installing FreeBSD 1:0: Thirty Years On
 By Tom Jones

6 FreeBSD Journal • May/June 2023

I’m Not from Yorkshire,
I Promise!
BY POUL HENNING-KAMP

My first draft of this article is filed away under the filename
“Unix_from_Yorkshire.txt”, because the longer it became,
the more it read like a UNIX version of Monty Python’s

“Four Yorkshiremen” sketch:
Running an entire oil-company on a Zilog Z8001 16-bit CPU

with 4MB RAM?
Installing UNIX from 103 single-density floppies, where number

92 was bad?
1200 bits per second modems?
No source code?
Binary patching of TZ rules?
Email addresses with exclamation marks in them?
X.25 instead of Internet?
But you try and tell the young people today that... and they

won’t believe ya’
And they probably would not read it either, because while such

tales make decent entertainment when beer is quaffed, it makes
for dull and monotonous reading in daylight.

But I guess I should present myself:
I’m phk@FreeBSD.org, my laptop “critter” has run

FreeBSD-current for almost 30 years, and for more than a decade
I committed to the FreeBSD src repository every 18 hours on
average, only to disappear when some Norvegian Newspaper had
HTTP performance problems.

How to Make UNIX Not Suck
I wound up in FreeBSD because UNIX truly sucked, because I

was good at making it not suck as much and was determined to
do so.

The UNIX I was used to, around 1990, was bastardized by some
or other mini- or micro-computer vendor, who had jumped on the
UNIX bandwagon, wanting to lure in new customers with promis-
es of “portable UNIX”, and then hell-bent on locking them in, with
their own “enhancements”.

As a rule, the vendor support was useless. In many cases they
were newer to UNIX than their customers.

There was not one of the dozen or so UNIX machines I had
been root on, where I had not been forced to disassemble some
program or the kernel, in order to find out what was going on, and
more often than not, to patch in binary, just to make things work.

I downloaded and tried 386BSD 0.0 when it was released in
spring 1992, but it was too fragile to be useful for me. I did print
out a lot of source code at work, to read on the train home.

In summer 1992, 386BSD 0.1 was released and was followed
within days by 386BSD “0.1-newer”, and that looked a lot more
promising.

To give it a workout, I installed it on a discarded “UNISYS Pro-
fessional UNIX Workstation”, (A wildly overpriced 486 PC with a
QIC-120 cartridge tape drive and a UNIX binary license, for a list
price north of $10K at today’s prices) hauled it into the PBX room
and set it to work logging and accounting traffic.

As a harbinger of things to come, my first comp.unix.bsd
posting two weeks after the release was about disk-drive geome-
try trouble, due to the infamous 1024-cylinder limitation.

In September, my first patch was the nineteenth and final patch
in the first installment of Terry Lambert’s “unofficial 386BSD
patchkit”:

patch00019
PATCH: CLEAN UP SLIP INTERFACE TO KEEP FROM HANGING
AUTHOR: Poul-Henning Kamp (p...@data.fls.dk)
DESCRIPTION:

Here is a patch to clean up the interface between the tty-drivers, in
particular the com driver, and the sl# interfaces, this is not a work-around
but a genuine bug-fix.

Symptoms: after a number of “com#: silo overflow” SLIP ceases to work.

Overview of the problem: the slip interface will disregard any notice
from the tty-driver on problems (parity errors, framing errors or overruns),
which basicly means the one might as well throw the packet away right away.
Also overrun in the packetizing will go relatively unnotized.

As it says in the title: I’m not from Yorkshire. I’m from the un-
fashionable and poor southwestern corner of Sjælland, the largest
island in Denmark.

But in 1992, I had TCP/IP connectivity on my home-PC.
I called the call-back security-box at work, waited for it to call

back, pressed the button on my V.22bis modem, logged into the
386BSD machine at work, started SLIP there, started SLIP on my
PC, and I was on the Internet via my work’s connection to the
Danish Unix User’s Group’s network “DKNet”.

Life was good at 200 bytes per second, but then things got
weird.

Bill Jolitz, who had ported the NET/2 sources and added what it
took to make it run on a i386, did not respond to the many people
who offered him help and patches, the promised 0.2 version
never materialized, and the patchkit grew and grew, topping out at
138 “official unofficial” patches, 3 1/2 of which were mine.

In spring 1993, Chris G. Demetriou et al. gave up waiting for Bill
Joliz and founded the “NetBSD” project, starting a new CVS-tree
consisting of 386BSD+patchkit.

Then, three months later, 30 years ago, Jordan Hubbard et al.
did the exact same thing, under the name FreeBSD.

Why?
I have no idea: I was on the other side of the planet, and, at that

time, a very minor contributor.

7FreeBSD Journal • May/June 2023

To me NetBSD seemed to be more idealistic: They wanted a
very portable, pure BSD UNIX, running on all sorts of hardware:
HP, Sun, Digital, IBM PCs, most of which I had neither access to
nor an interest in. The NetBSD crew also seemed very academic
and more concerned with doing things “right” than getting them
to work soon.

In all fairness: They have very competently done exactly what
they set out to do, so a big hat-tip from here to our marginally
older sibling.

FreeBSD focused exclusively on the i386 PC platform, which is
what I had access to, so I gravitated towards the FreeBSD pro-
ject where people also seemed to be “production-oriented” like
myself.

In late November 1993, FreeBSD 1.0 was released, and I had
enough patches in it to be listed under “Additional FreeBSD
Contributors”, and I even received a free courtesy CD-ROM from
Walnut Creek CD-ROM some weeks later.

On February 26, 1994, almost precisely 29 years ago as I write
this, Jordan gave me the 21st commit-bit in the FreeBSD project.

Your Mission, Should You Choose to Accept It
According to the CVS log Jordan did this: “… so that he can help

me with the ports cleanup,” and as the 1.1.5.1-tree CVS commit-log
as my witness: I did make two commits to ports before I noncha-
lantly sauntered into src and committed a bunch of my time-nut-
tery patches to the kernel and NTPD.

Next, I committed an unsanitary concoction of shell and Tcl
scripts that could munge a GCC 2.5.8 compiler source tree into
the form expected by the FreeBSD Makefiles in case anybody else
wanted to upgrade from GCC 1.39.

At the same time, I was negotiating a new job as on-site
SW-engineer for a very large document imaging system for
“Giro” post-cheques, to be delivered to the Danish Post Bank
on a very aggressive schedule by “TRW Financial Services” from
Oakland, CA.

Julian Elischer, who I knew from 386BSD & FreeBSD, worked
there, and got himself a referral bonus by pointing the “DGB” pro-
ject my way. That probably made me the second person to land a
job because of FreeBSD, Jordan being the first, working at Walnut
Creek CD-ROM.

I landed the job and landed in California where I happened
to settle into an apartment in Pleasant Hill, just a few miles from
Jordan and Walnut Creek CDROM. That soon came in handy.

Nominally, I was in the USA for training, but I soon found myself
responsible for installing Solaris and 3rd party software on five
presumably performant Sun Sparc 1000 servers with a literal
ton of disks, configuring a couple of Cisco 7010 routers, an ATM
switch made by Fore Systems, and dozens of ethernets to the 135
PCs running NT.

The USL-BSD lawsuit settled out of court in February 1994, with
a 3-month grace period which also applied to FreeBSD 1.0.

So, we had to start over, and did, as soon as we could get the
“4.4 BSD(Lite)” release from UCB, and then we had to reintegrate
the “unencumbered” bits and pieces of FreeBSD 1 as best we
could, just to get feature parity with FreeBSD 1.0.

Rod Grimes did most of that work and, as I remember it, he had
the new CVS tree ready for us sometime in May 1994.

Not long after, I was inducted into the core team and almost
immediately appointed release-engineer for 2.0, together with
Jordan.

In FreeBSD, the releng@ is the designated pilot responsible for

rowing the locomotive onto firm ground, and Jordan and I set a
precedent that almost unlimited powers come with the job.

As release engineers, we had to write the code to build the
release, pack the release into media-agnostic distribution files, the
code to start the installer, the installer itself, the code to partition
the hard disk, the code to extract the distribution files from all
sorts of media and network services, and the code to do the mag-
ic boot-block swizzle stuff.

But we only had to do that once. Subsequent releases were a
breeze by comparison, and it took over a decade before some-
body finally had had enough and wrote bsdinstall.

Jordan wrote almost all of the sysinstall program, and it
lived up to our design goal of asking all questions up front instead
of sometime later when the answer was needed--like Windows or
Solaris did, much to everybody’s annoyance. What’s the point of
installing from a CD-ROM or tape, if you have to babysit it all the
time?

However, the disk-partitioning editor fell to me to write, causing
several people to argue that I should be prevented, by injunction,
if necessary, from ever writing user-interface code again.

See the `make world` with Releng Cruises
One thing that took a lot of time and commits was “sterilizing”

the release process so that no “dirty laundry” leaked from the
system on which the release was built into the distribution files of
the release.

For instance, a fair number of Makefiles would have:
 CFLAGS+= -I/sys
instead of the correct:
 CFLAGS+= -I${.CURDIR}/../../sys
We did not quite get to reproducible builds, because back then

it was surprisingly common to compile transient information such
as __DATE__, __TIME__ and similar things into programs.

Three weeks before the release, I slammed GCC 2.6.1 into the
tree, hoping it would solve some of the many issues we had, with
a commit message (fe7dee47009525) making it clear that this
was not up for discussion. GCC 2.6.2 came out a week before the
release, I rushed the changes in, and FreeBSD-2.0 came out with a
non-crummy C-compiler.

ITAR dual-use export regulations forbade export of cryp-
tographic software without an explicit license from the US gov-
ernment, and we had neither the time, the money, nor the lawyers
to even contemplate that, and we were unlikely to get permission

In FreeBSD, the releng@ is the
designated pilot responsible for
rowing the locomotive onto firm
ground, and Jordan and I set a
precedent that almost unlimited
powers come with the job.

8 FreeBSD Journal • May/June 2023

to export the sources, and certainly not in a relevant timeframe.
The futility of this regulatory scheme was obvious: A copy of

the relevant source files were in South Africa, from where Mark
Murray made them available via anonymous FTP, and anybody
in the whole world, including the USA, could freely fetch those
files and use them, because the USA did not forbid import, only
export.

Personally, I would just have ignored ITAR, pointing to the glob-
al availability if trouble came later, but Jordan vetoed that because,
while the FreeBSD project might get away with that, Walnut Creek
could not put “contraband” on their CD-ROMs if they wanted to
sell them abroad—or in case anybody else did.

The single place where this really mattered was the crypt(3)
function which is used to scramble passwords for storage: In tra-
ditional UNIX, it was derived from the DES encryption algorithm
and thus the source code could certainly not be exported.

Somebody, and I am not entirely sure who, had written an
ersatz crypt(3) function during FreeBSD-1 days, but it really was
no good, and we were certainly not going to ship it in 2.0. Since
nobody else had done anything, I did, two weeks before the 2.0
release.

I had previous experience with brute-forcing traditional UNIX
passwords. In one job I found that the company policy of “letters
and digits” made everybody use their license plate as a password.
In a later job, I found out that a lot of people at Olivetti’s research
center in Ivrea used “Gloria” as a password, and having met her, I
did not blame them.

First, I had to do some experiments to see what I could get
away with. How much code assumed the length of the scrambled
password? Up to 80 characters was not a problem. What char-
acters could you get away with using? Pretty much all the visible
ones. And so on.

I made hacking passwords a lot harder. I made the “salt” much
bigger to thwart precomputed dictionaries. I designed the algo-
rithm to take much more CPU time, 34 milliseconds on a 60 MHz
Pentium, and to be very hard to implement in FPGAs.

To mark the new kind of passwords, I picked the prefix 1,
committed the code with a suitably scary commit message—and
continued to the next item on the still far too long TODO list.

The resulting code, far from perfect, became known as “md-

5crypt”. Because it used the already RFC-published MD5 cryp-
tographic hash function, we were free to export it, source and all,
and we never got into any trouble.

BSD, BSD, BSD, GNU, BSD and Beer
That is: If you ignore the license.
There had just been one of the periodic GNU vs. BSD license

mail storms and just to tick off everybody equally, I revived my
old “beer-ware” license and slapped that on md5crypt before I
committed it.

I have never fully grokked why md5crypt was copied all over
the place, but it was. All sorts of FOSS imported it, from Perl to
Apache. A version with the serial number filed off appeared in
GNU libc. Somebody wrote md5crypt in COBOL. Somebody pro-
duced a JavaScript version, including the underlying MD5, using
some kind of C->JS transpiler.

Closed source also embraced it: Macromedia Flash used it.
Cisco put it in IOS, and eventually, even Microsoft supported 1
passwords.

But as it spread, it also landed in front of lawyers doing “due dil-
igence” before some FOSS-based company or other got bought,
and some lawyers had a really hard time figuring out precisely
who owed who how much beer.

IBM bought Whistle Communications, makers of a FreeBSD-
based communication appliance. A polite junior IBM lawyer called
me, asked for permission to record the call, apologized for taking
my time, and ran me through the Very Serious Legal Questions
prepared by the Senior Lawyers. We both giggled a lot.

But I also received a registered letter from Very Serious Senior
Lawyer demanding that I reply “forthwith”, in writing and no-
tarized, to the following questions: Was I the sole author of the
md5crypt function? Did I have full legal control of the copyright to
offer licenses? Was I offering the beer-ware license to $BigCorp?
If so, would it be the specific division of $BigCorp, all of $BigCorp,
$BigCorp’s distributors and agents, or was it the end-users of
$BigCorp products who owed me beer? And if so, how much beer
did they owe me, how was it to be delivered and who would be
responsible for customs, levies, and fees thereon? How did the
amount of beer owed relate to the amount of use and/or per-
ceived usefulness of the software to the legal entity in question?
Could other alcoholic beverages be substituted if beer was not
available in the relevant jurisdiction? Were people unable to send
me alcoholic beverages, for legal or any other reason, prevented
from using my software? He had clearly thought a lot about it. I
did not reply.

Interestingly, not one single lawyer ever asked me if I were
willing to make their job easier by offering md5crypt under a
standard FOSS license. I guess that is not how lawyers roll?

Finally on the 22nd of November 1994, we released FreeBSD 2.0
right in time for the dot-com boom already in progress.

Walnut Creek CD-ROM pushed out FreeBSD 2.0 on CD-ROM,
aiming for December 1994, missed the fabrication deadline,
edited the date to “January 1994”, produced the CD-ROMs, dis-
covered the mistake, produced a new batch of CD-ROMs with a
“January 1995” date, and distinguished the cover by giving Beastie
the bright green sneakers, he has proudly worn ever since in
FreeBSD-context.

After some more releases, I got out of releng@ on good
behavior, but Jordan was stuck with release engineering as long
as he worked at Walnut Creek, because FreeBSD became a major
product for them.

They produced a new batch of
CD-ROMs with a “January 1995”
date, and distinguished
the cover by giving Beastie
the bright green sneakers,
he has proudly worn ever since
in FreeBSD-context.

9FreeBSD Journal • May/June 2023

Critter Always Runs -current
I continued hacking FreeBSD in my copious spare time and

bought a Gateway Handbook/486 so that I could spend the daily
“BART” commute productively. That was the first “critter” and
the best laptop I ever had, but the name was passed on to the
dozen or so laptops I have had ever since, all of them running
FreeBSD-current.

In 1995, RAM prices had gone through the roof because
everybody bought PCs, and with only 4MB in “critter”, I noticed
that FreeBSD was not using RAM too efficiently. I dived into it and
found a spot where the “VM revolution” had passed UNIX by.

The traditional implementation of malloc(3) can be found
on pages 173-177 in the K&R Old Testament, and it works great on
a pre-VM system where entire processes are swapped in and out.
But with virtual memory, keeping the metadata about free chunks
of memory in those chunks of free memory means you might
page in a lot of unused pages, just to free even more memory.

Somebody between K&R and FreeBSD had “solved” that by
not really bothering with reusing free memory, until the kernel
refused to hand out more with sbrk(2).

After some hacking around, partly inspired by a very old com-
puter’s filesystem, I came up with phkmalloc which was one of
the first truly page-organized malloc(3) implementations, and
it made my tiny laptop noticeably faster.

One side effect of the design was that several classes of wrong
use, notably double frees and freeing modified pointers, could
be deterministically detected before they created any havoc, so
I added several debugging flags to phkmalloc, where A meant
abort(2) on any trouble, J meant fill with Junk and
so on.

When I set AJ globally on “critter”, fsck(8) dumped core on
the next reboot, and so did far too much other code over the
coming years, including inetd(8), cvs(1), getpwent(3), BIND
and OpenSSH.

The Great Wizard Convention of 1998
Summer 1998 was peak-dot-com-mania, and thanks to spon-

sors swimming in virtual money, we were able to gather the entire
core team physically, for the first and possibly only time ever, at
the USENIX Annual Technical Conference in New Orleans.

Bruce Evans from Australia resisted the idea for a long time,
eventually revealing that he was in fact almost totally deaf, but
he was persuaded to come anyway and got at least one Wayne’s
World style “We’re not worthy! We’re not worthy!” greeting.

Bruce died a couple of years ago, but he was already a legend
back then. Andrew Tanenbaum had thanked him for Minix386,
Linus Torvalds had thanked him in the original Linux announce-
ment, and we in FreeBSD were eternally thankful for his countless
code reviews, patient explanations, and wry humor. May he rest in
peace.

For good measure, I had proposed a talk about phkmalloc and
it was accepted for the “FreeNix” track, which were clearly meant
as the kid’s side-show to the grown-up’s serious UNIX conference.

I am chronically unable to remember names and faces, but I
instantly recognized Kirk McKusick’s trademark mustache in the
front row. His picture had been over numerous articles in USENIX
and European Unix Users Group’s magazine over the years.

I had never mingled with UNIX nobility before, and I decided
to skip foil 20, where Kirk’s fsck(8) program topped the list of
buggy software phkmalloc had spotted so far. But when I got
there, I was so high on adrenaline, I just plowed through, until

solid laughter from both the first row and elsewhere in the room
stopped me. Kirk was not the only person in audience with code
on my list.

All the “victims” I talked with were nice about it, and thought it
was perfectly fair to show that list to document that this was a real
and present problem.

Kirk turned out to be a particularly cool guy and I would get to
work on UFS2 with him a few years later. At Kirk’s and Eric Allman’s
“secret wizard party” I learned that UNIX nobility knows how to
party. If the punch had been poisoned that evening, you would all
be running Windows NT today.

For me personally, the highlight of the trip to New Orleans was
running into Dennis Ritchie at the breakfast buffet, and talking
UNIX history, timekeeping, device nodes and networking with
him, for so long that we missed the first talk of the morning.
Getting his blessing on what I did with DEVFS meant everything
to me.

Disks, Partitions, Buffers and VNODEs
The sysinstall disk editor had revealed to me that the inter-

face between filesystems and storage devices was fairly kludged
together. For instance, the disk partioning was implemented in
the individual device drivers. Hard disks mostly did, but ramdisks,
floppies and optical media did not.

If you look at pre-VM UNIX, it’s all neat and sorted, but the
way virtual memory was added on top, made me coin the slightly
derogative term “phd-ware”. A pile of proof-of-concept source
code dropped on the doorstep, like an orphan at the monastery
before sunrise.

When I started, we had three instances of phdware in the stor-
age-domain: Heidemann’s extensible VNODEs, Seltzer’s LFS, and
Kirk’s FFS/UFS. To his credit, Kirk came back later, and he main-
tains FFS/UFS to this day.

At work, I wrangled a bass-ackwards disk layout. Veritas Volume
Manager forced us make 9 slices per disk (for performance) and
then mirror the slices pairwise across disks (for reliability), before
finally concatenating the mirrored slices into ten partitions for our
image storage filesystems.

It would have been so much more sensible and much easier to
setup, manage and operate if we could have mirrored the disks
pairwise first, slice those mirrors, and then concatenate to parti-
tions, but Veritas could not do that.

I hope someday,
there will be a definitive book
about the history of FreeBSD,
written by a
competent historian.

10 FreeBSD Journal • May/June 2023

To make matters even worse, we had five servers but only four
disk cabinets, three disks per SCSI-bus, but two SCSI-busses per
power-supply.

Within a year of starting production, that particular architectur-
al “limitation” in Veritas was the root cause that wiped out half a
million images of financial transaction documents.

Fortunately, they were still available for rescanning, but produc-
tion was delayed for most of a week.

That incident, more than anything else, caused me to desire
and design a Lego™ style volume management system, without
any kind of silly restrictions.

But before I could implement it, there were a lot of weeds to
whack, which I did, and so much so that “Danish axes” became a
standing joke on the core team for some years. I like to think of it
as retiring technical debt before that became cool.

I cannot claim to have worked from a master kernel architec-
ture blueprint, it was more a long sequence of “well, that could be
smarter…,” in many cases circling back over the same parts of the
kernel multiple times to implement another set of improvements.

Finally, the core parts of GEOM were developed in 2002 on a
DARPA contract under the “CHATS” research program, thanks to
the young and ambitious Robert Watson, who also coauthored
the paper about jails with me.

Later, I again found voids in my one-man-company’s calendar
for the second half of 2004 and decided to see if “community
funding” could keep my FreeBSD-habit going. That succeeded
beyond all expectations, manifesting in 530 commits that cleaned
up ttys, linedisciplines, filedescriptors, VNODE-switch, VFS-switch
and more.

Core’s Dirty Laundry
But I also had another role in the project—I was on the first core

team.
The core team was the nominal governing board of the project,

but there were no formal definitions of any of those things, we
had no bylaws, and we had three huge internal handicaps:

First, we were global, and the culture differences were very real.
In Denmark, we joke that if three people wait more than 5 min-

utes for a bus, they will have formed an association by the time it
arrives. In other countries, forming associations and organizations
were very formal events, involving lawyers, notaries with stamps,
filing fees, or downright governmental preapproval.

Second, and much worse, we were all primarily very good
coders, a demographic rightly not famous for interpersonal skills,
and we were all used to being the smartest person in the room,
building and probably also zip code. Take it from me, lynx are no
good at cat herding.

Third, the FreeBSD core team grew organically on the general
principle of “he does good work, pull him in!” But out of some
kind of misguided respect, we never retired anybody, even if they
had wandered off and we hadn’t heard from them for years.

Eventually we peaked at 18 nominal members, of which much
less than half could be expected to cast a vote when it came down
to that, often causing the losing side to argue that no quorum was
reached.

And with these three handicaps, the core team had work to do,
most importantly, handing out commit bits, something we should
never take lightly. In a few ugly cases, it involved taking them away
again, when strongly encouraging the misfitting or misbehaving
person to volunteer it back had failed.

If You Can Keep It...
A particular “personnel-issue” brought the legitimacy crisis

of core@ to a breaking point, and while various minor patches
were proposed, they would not, and could not, have fixed the
fundamental problem: Core’s unwillingness and inability to make
unpleasant, but necessary decisions.

Eventually, I proposed that we should simply let the committers
elect a new core team, but that idea did not appeal to people from
countries with a history of less than fair elections. It would only lead
to “politics”, “campaigning”, and “corruption” they extrapolated.

I suspect the argument which finally sold them on my idea was
when I said that I would not be a candidate if an election were
held, but otherwise I would cling to my core bit to the bitter end,
or until they pried it away from me, in bright daylight and in public.

This would not be a hard promise for me to fulfill, as my person-
al life was quite chaotic. My (then) wife’s mental illness had forced
me to become self-employed and work from home to take care
of our two toddlers.

One way or another: I eventually got my election after we had
agreed to a very minimal set of bylaws for FreeBSD.

At the BSD Conference in Monterey in autumn 2000, the first
core team election result was officially announced, a competent
9-person core team was elected, and the “press-release” email
contained:

Departing Core Team member Poul-Henning Kamp said, “I’m
very proud of what we have done together in the Core Team
over the last 8 years. The new Core and the fact that
they are elected by the committers, means that the project
will be much more responsive to change in the future.”

In the past 24 years, the committers have taken their job as
voters seriously, we are on our 12th duly elected core team, none
of which have been any worse than we were on “core.0” and many
of them have been obviously better.

To me, democracy was my most important contribution to
FreeBSD.

And That’s Enough of That...
I think I managed to avoid a copyright claim for planking “Four

Yorkshiremen” in this second attempt, but it still feels fundamen-
tally wrong to me, because there is so much more to FreeBSD’s
history than the haphazard selection of the egocentric memories
I have laid out above.

The number of people I have mentioned by name is the least I
could get away with, because there are literally far too many who
deserve to be mentioned to fit into an article of this length.

I hope someday, there will be a definitive book about the histo-
ry of FreeBSD, written by a competent historian, with no or little
beef of his own in the pot, where everybody who contributed,
including myself, gets their fair bit of attention.

Until them, to all FreeBSD Friends, past, present, and future:
Thanks for all and keep caring!
/phk

POUL HENNING-KAMP is phk@FreeBSD.org, his laptop “critter”
has run FreeBSD-current for almost 30 years, and for more than
a decade he has committed to the FreeBSD src repository every
18 hours on average, only to disappear when some Norvegian
Newspaper had HTTP performance problems.

11FreeBSD Journal • May/June 2023

How Time Flies:
A Personal Timeline
BY GREG LEHEY

FreeBSD is 30 years old!
Where do I fit in? I wasn’t one of the founders, but I was

waiting in the wings. Here’s how things happened from my
perspective.

Pre-FreeBSD
By the time FreeBSD came around, I had been in the industry

for almost exactly 20 years. In May 1973, I started working for UNI-
VAC in Frankfurt/Main. I later joined Tandem, also in Frankfurt.
From 1987, I worked with Tandem’s new Unix systems (System V)
and formed the European Unix Technical Support team. In 1990,
in true “eat your own dog food” tradition, we installed the first
desktop Unix machines in Tandem Europe, Intel 80386 machines
with a whopping 8 MB of memory running Interactive Unix Sys-
tem V/386.

In March 1992, I left Tandem and became a consultant. No
more Unix source access for me! In fact, hardly any Unix: I couldn’t
take my company equipment with me, I thought, though I dis-
covered I was left with what may be the very last Tandem LXN
system. But that wasn’t appropriate for desktop use, and Unix was
very expensive in those days. By coincidence, a product called
BSD/386 came out at almost exactly the time I left Tandem. Only
$1000 with complete sources!

Yes, it wasn’t System V, but it should be acceptable. Surprise,
surprise! It was much easier to use than System V. I wrote an
article that was published in the June 1992 edition of the German
iX magazine.

I also kept my eyes open, of course. In mid-1992, Bill Jolitz
released 386BSD, which seemed surprisingly close to BSD/386,
not just in name. I downloaded it, installed it, watched it crash and
moved on.

1993
And FreeBSD? When did people find out about it? 19 June 1993

was really just the date when people decided on a name. I had
been following developments on USENET, but especially after my
experience with 386BSD, nothing made me feel that I should try
FreeBSD, especially with the horrendous sums that network traffic
cost in those days.

But on 27 September 1993, I was in Walnut Creek to meet Jack
Velte and Bob Bruce, the owners of Walnut Creek CDROM: I had
published a CD-ROM called “Applications for Unixware,” and I
wanted them to market it for me. While I was there, I saw some-
body working on a computer on the other side of the hall. Jack
told me it was the development machine for FreeBSD. I was in-
terested, and he promised to send me a CD as soon as it became
available.

1994
My FreeBSD 1.0 CD-ROM arrived! I must have installed it and

tried it out, but I didn’t intend to use it. But then, I found a bug in

BSD/386 sort. Was it there in FreeBSD as well? No! And what’s
more, the binary worked perfectly well on BSD/386. My opinion of
FreeBSD improved, of course.

1995
In May 1995, I was in Singapore working as a consultant for Tan-

dem Computers on a project for Singapore Telecom. We were all
using Tandem’s version of Unix System V, but most people in the
office used Microsoft, and in those days, networking was some-
thing new and strange. They appeared not to have heard of the
Domain Name System, and they connected to other machines by
IP address.

One day, I wanted to print out something. Over to the printer,
found a sticker with its IP address on it, and printed to it. The print
job went out, but the printer didn’t print anything. I later discov-
ered that it had belonged to the Tandem office in Jakarta, but it
had failed and been sent to Singapore for repair, after which it
remained in the office. But they hadn’t changed the label, and my
print job went to Jakarta.

We need a name server! I found a little-used PC, installed
FreeBSD, and bind on it and hid it under a desk. Presto! The zone
sing.tandem.com came into being.

Later in the year, in October, a number of people from Walnut
Creek CDROM came to visit us in Germany. I had just submitted
my first book, Porting UNIX Software, for publication, and showed
off the drafts. Jack Velte was impressed and said, “Can’t you write
a book about how to install FreeBSD? Doesn’t need to be long,
just about 50 pages or so.”

That sounded like a good idea, so I set to work on it. I had had
issues with Porting UNIX Software: the proofreaders disagreed
with my wording and my markup, producing a final result that had
significant errors. So, one of my conditions would be that I would
submit the final PDF myself. I almost certainly started work with
BSD/386, but clearly, I needed to understand FreeBSD better, and

And FreeBSD?
When did people find out about it?
19 June 1993 was really just
the date when people decided
on a name.

12 FreeBSD Journal • May/June 2023

so I moved the work to a FreeBSD machine. I also wanted to make
a point of creating the whole book only on a FreeBSD platform.

What was it like writing a book on FreeBSD in the mid-1990s? I
have heard suggestions that it must have been much more diffi-
cult than nowadays. But no, that’s not the issue: it’s not the tools
but the content that causes the pain. And that hasn’t changed.
The book went through a total of 5 editions, and in each edition,
I had to rearrange things to make them sound more logical. Yes,
the machine was slow—a 66 MHz Intel 486, I think—and it took
a couple of minutes to format each chapter. But I devised some
Makefile tricks that made it possible to build one chapter at a time
and still maintain the cross-references to the other chapters.

1996
On 24 February 1996, I submitted the final copy for Running

FreeBSD 2.1, which Jack changed (only on the outside cover) to In-
stalling And Running FreeBSD. It wasn’t exactly the 50 pages Jack
had asked for: it had swollen to 200 pages of editorial content and
another 100 pages of man pages, contents, and index.

Was Jack happy? Of course not! He wanted something much
bigger. I hardly had time to breathe before I started on the next
edition, to be titled The Complete FreeBSD (Jack’s title). He want-
ed 1000 pages!

We didn’t make it. On 19 July 1996, less than 5 months later, I
submitted what we decided was the first edition of The Complete
FreeBSD, with only 844 pages. How did I do it? Man pages are your
friend: there were 542 of them.

In this time frame, I gradually migrated to FreeBSD and spent
some time working on an ISDN subsystem. This had an unexpect-
ed side effect: while working on the logging, I received a phone
call. Answered it, but the caller hung up immediately.

But I had a log entry, and it contained the caller number, some-
thing unusual in those days. So, I called back and asked if I could
help. Yes, he wanted to buy my house!

1997
Selling our house was a long-drawn-out matter. We had decid-

ed to leave Germany because of the climate, but where should we
go? Ultimately, we decided on Australia, and the move there took
us 6 months to complete.

In September 1997, I was playing around with ccd, a tool to
concatenate disks. It didn’t work well, and I thought “there must
be something better.” I had just returned from China, where I had
taught some courses on Tandem’s NonStop-UX product, which

included the Veritas Volume Manager (VxVM). That’s what we
needed! How hard can it be?

I set to implement a clone of VxVM, which for obvious reasons
I called Vinum. That brought me much closer to the FreeBSD
development community, of course, and clearly it also kept me
busy for some time. The development of Vinum was helped by
Cybernet, who were looking for a RAID-5 implementation, so I
implemented that as well. It must have been some of the most
complex code I have ever written. On the day that I finally thought
I had nailed it, three kookaburras started flying round the house,
laughing their heads off. I’ve never experienced that before.

1998
In June 1998, I went to the USENIX annual technical conference

in New Orleans and met a number of the FreeBSD developers.
I discovered that my design for Vinum conflicted with plans for
implementing GEOM.

Later in the year, Vinum was ready for inclusion into the
FreeBSD source tree. I presented a paper at the AUUG annual
conference in September, at which Peter Wemm, the CVS-
Meister, was also present. He helped me to commit the Vinum
code, my first-ever commit. A good thing, too: for some reason,
probably network flakiness, the commit failed. The second time it
was successful, but in the meantime, we had managed to commit
an extra file: emacs.core, which caused general excitement.

Later in the year, Wes Peters talked me into writing articles
about FreeBSD in the now-defunct Daemon News. We alternated
every month: each of us wrote 6 articles per year, and I continued
until 2004.

1999
FreeBSD has come of age! In October we had a conference

(“FreeBSDCon”) in Berkeley, at which I demonstrated Vinum.
Compared to the meeting New Orleans only the year before,
things seemed much more professional, and for the first time,
we got the feeling that there were people out there who were
interested in FreeBSD without being part of the project. We have
followers!

2000
When did I stop using BSD/OS (as BSD/386 was now called)?

The last CDs I have are for release 3.0, which was released in Feb-
ruary 1997. My guess is that I stopped when I moved to Australia:
I had to set up new machines and FreeBSD was just as good as
BSD/OS.

It seems that BSDI thought so too: in March 2000, they
“merged” with Walnut Creek CDROM, under conditions that
I never found out. There were initial announcements that the
FreeBSD and BSD/OS code bases would be merged into a single
product, though there was also vocal opposition to the idea, nota-
bly from Mike Karels. And as we all know, it never happened.

Also in March 2000, I received an offer that I couldn’t refuse:
join Linuxcare, a company created to support Linux. What did that
have to do with me? They wanted to branch out into BSD support,
and they already had one employee, Ceren Ercen, who proved to
be a friend of Mike Smith. The good news was that I could work
from home, and I’d be paid to do BSD work.

In April, a core team member committed changes that broke
Vinum! It wasn’t that I had not been discussing the matter with
him, but it seems that he couldn’t be bothered. Much discussion,
eventually coming up with Jordan Hubbard’s opinion that the cur-

In October we had a conference
(“FreeBSDCon”) in Berkeley,
at which I demonstrated Vinum.

13FreeBSD Journal • May/June 2023

rent core structure (the 17 oldest members, whether still active or
not) had passed its use-by date. In the end, people came up with
the idea of an elected core team, and I was elected to the first
team (“core.2”). And gradually, the team was more international: 3
Australians, 3 Americans, 2 British and 1 Japanese.

The big technical issue of the year was performance, related
to multiprocessor systems, which were just becoming a thing. To
our horror, we had discovered that Microsoft had out-performed
FreeBSD on web server applications. We understood why: the
Unix kernel was built for single processor machines, and only
one process could be in the kernel at any one time. To enter the
kernel, a process had to acquire a lock called Giant, waiting, if
necessary, until its owner had left the kernel. This resulted in a lot
of processor idle time.

Fortunately, round this time (the “Dot-com bubble”), many
project members, myself included, were employed by companies
prepared to fund this kind of work. Though BSDI had merged
with Walnut Creek CDROM, we still didn’t have access to their
code base. They had done some work in this area for BSD/OS
5.0, and they were prepared to let us use the code. On 15 June
2000, a number of us got together atYahoo! In Sunnyvale and
hacked out the details, one of which was a project name: SMPng.
In principle, we would incorporate the SMP-related BSD/OS code
into FreeBSD. In the end, only Matt Dillon, Jason Evans, and myself
ended up on the implementation team. I had been working with
multiprocessor systems for almost my entire professional career,
so I was really keen to participate. And since this was my day job,
funded by Linuxcare, I had plenty of time.

It soon eventuated that we had different expectations. Matt
left the team, John Baldwin joined, and Jason became project
leader. He committed the first version of SMPng on 7 September
2000, less than 3 months later. And by then I had understood
Mike Karels’ objections to the code merge: even merging the rela-
tively small number of differences between BSD/OS and FreeBSD
was like pulling teeth.

In October 2000, we had the first BSDCon (and not FreeBSD-
Con) in Monterey, California. This was also the first time ever that
all core team members got together. I also discovered that Justin
Gibbs had formed a FreeBSD Foundation. I was puzzled by the
duplication, and it wasn’t really clear to me where the boundaries
lie, nor why there should be two bodies. A quarter of a century
later I still don’t understand.

2001
In 2001 the members of the Core Team learnt what the New

Order was like: not specifically technical, but administrative. We
were no longer a small group of hobbyists, but a bureaucracy.
The core team no longer set technical direction; instead, we were
mainly dispensers of commit bits, and our main involvement was
with squabbles between committers.

In early 2001, Linuxcare began to disintegrate. Our “OzLabs”
department, with such Linux luminaries as Andrew Tridgell and
Rusty Russell, was disbanded. Paul Mackerras had good contacts
with IBM, and he managed to get most of the group working for
IBM very quickly. That would have to be pure Linux, of course, and
I spent some time looking for alternatives, but didn’t come up
with anything good, and ultimately joined IBM in May 2001.

That required learning Linux more intimately. People decided
that I would be the person to create a clone of IBM’s JFS version 1
to run on Linux. Why a clone? It was a different part of the com-
pany, and we didn’t have access to anything more than the header

files. It was quite an experience, but that’s another story. From
my point of view, I got to see Linux from the inside, and it didn’t
inspire me. I also ran Linux on one of my normal machines, and
from time to time, when some FreeBSD misfeature irritates me, I
experiment with converting to Linux. None of these experiments
were successful: as of 2023, I still run only FreeBSD in my house
network.

During this time, I did a number of presentations and tutori-
als about FreeBSD, including the last of my “installing FreeBSD”
tutorials and papers at the USENIX ATC in Boston and the AUUG
conference in Sydney. Vinum and SMPng had required lots of
debugging, of course, and I built a tutorial around that, which I

presented multiple times, first at the EuroBSDCon in Brighton in
November 2001.

The debugging tutorial was interesting. Part of it involved a
demonstration of the techniques, of course. On the first pres-
entation in Brighton, I didn’t have much of an idea of what to
show, but when we came back after lunch, I opened my laptop
and... it panicked! So, I had a panic to analyze without any prepa-
ration. And it was an interesting one: I had rebooted my laptop,
but the system had checked some random memory location to
see whether it needed to restart services. It turned out that the
memory hadn’t been completely drained, and much of the mem-
ory still had the old contents. The system had thus assumed that
no reboot had taken place, tried to access memory elsewhere,
and ran into trouble. By the evening, one of the participants had
worked out a fix and committed it. A very satisfactory outcome.

On another occasion, though, things didn’t work as well. At the
first AsiaBSDCon in Taipei, I decided to do a real demonstration
with two laptops and Warner Losh’s help. In front of a packed
main auditorium, we connected the machines, put one of them
into debug... and the other one hung: it was trying to access kernel
sources on the first laptop. Both machines needed a reboot. Egg
on my face.

2002
Gradually my activity in the project slowed down: I no longer

had an employer who was prepared to fund my development
activity, and somehow that had become a requirement for
any significant work on the project. But I continued with other

To our horror, we had discovered
that Microsoft had out-performed
FreeBSD on web server
applications.

14 FreeBSD Journal • May/June 2023

aspects, like the Daemon’s Advocate articles and presentations
and tutorials at conferences. Now that Walnut Creek was gone,
O’Reilly also agreed to publish the fourth edition of The Complete
FreeBSD.

Life in the core team was not much fun. We had a surprising
number of rogue committers, in particular a high-profile case
where two committers fought each other in the open. We ulti-
mately came to the conclusion that we would have to expel one,
Matt Dillon, though it was by no means clear that he was more at
fault. He went on to create the DragonFlyBSD project.

The stress showed: in relatively short succession, Jordan Hub-
bard and Mike Smith resigned from the core team, and also from
the project. To quote Jordan,

“Finally, it also bears noting that while being part of the
FreeBSD project is many things, it should always be “fun” to at
least some degree for its participants or there’s really not much
point in being involved.”

And Mike echoed his sentiment: “It’s not fun anymore.” Some-
how that symbolized the changes that had happened in the first
ten years.

2003
From my perspective, things continued to wind down. In April,

the fourth edition of The Complete FreeBSD was published, and
I presented my debugging tutorial a couple of times. And I con-
tinued to commit to the source and ports trees, but by this time I
was more a hanger-on. My time had passed.

Twenty years on: 2023
Now, the time frame of this overview looks like the distant past

to some. Many project members, even a core team member, wer-
en’t even born when the project started. How do things look now?

They’ve changed, of course. More than I expected. From the
outside things didn’t look that different, I stood for election for
the core team again in 2022 and I was elected. And from the inside
much has changed, mostly, but not all, for the better.

Part of the “early days” were concepts like “we’re ahead of the
crowd” and “eat your own dog food.” But they don’t seem to
apply any more. I wrote The Complete FreeBSD in troff, using only
FreeBSD tools. When asked to submit this article, I was given the
choice of plain text or (Microsoft) “Word”. Nobody would have
thought of that in the olden days, though “Word” was around
then too. And many of our communication tools are external to
the project. I’m still trying to understand the Brave New World.

GREG LEHEY was born in Australia and was educated in Malaysia,
England and Germany. He spent most of his professional career
in Germany, returning to Australia 10 years before retiring. He
has worked for numerous computer manufacturers, the German
space research agency, nameless software houses, a large user,
and also for himself as a consultant.

Over the course of 35 years in the industry, he has performed
most jobs. About the only thing he hasn’t done is write commer-
cial applications software or understood Microsoft software.

He has been involved in the free software movement since
1989 and has been a member of the FreeBSD developer team
since 1998, serving 3 terms on the FreeBSD Core Team, of which
he is a current member. He has also been a NetBSD developer
and the President of AUUG, the Australian Unix User Group.

He is the author of Porting UNIX Software (O’Reilly and Associ-
ates, 1995) and The Complete FreeBSD (Walnut Creek, 1996 and
O’Reilly and Associates, 2003). He retired in 2007 but is still active
in the FreeBSD community.

all the storage; we use ZFS to replicate the data between cluster nodes; we use
compression and snapshots. And we heavily use Capsicum to make it all secure.

We want to be sure that even if someone breaks into a single session, he can-
not access other sessions. He cannot actually access anything, because if he
breaks in before authentication, he won't be granted access to connect to the
server. Only after successful authentication will we provide a connection to the
destination server.

And Capsicum makes it really clean and very efficient actually.
Al lan: You don't have to enumerate all the things you can't do. You're saying
you're only allowed to do these things?

• Pawel: Yes. This is capability ideology. You only grant the exact rights or access
to resources that the process requires. Which is not UNIX ideology because, of
course, if you are running a UNIX program, it has access to everything.
Al lan: Was there anything else you wanted to talk about?

• Pawel: Not really. •

Sept/Oct 2019 23

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number

full source code.

The FreeBSD Community is proudly supported by

T

Help Create the Future.
Join the FreeBSD Project!

The FreeBSD Project is looking for

Find out more by

Checking out our website

Downloading the Software

for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don�t forget to check out the latest
grant opportunities at
freebsdfoundation.org

15FreeBSD Journal • May/June 2023

FreeBSD and
the Early Unix Communities
BY WARNER LOSH

FeeBSD is a collaborative and supportive community that
allows users to help each other build wonderful products on
a common, open platform. We can trace the community’s

roots and dynamics back to the vibrant mid-1970s Unix users
groups. This aspect of Unix history is often glossed over; however,
without these mutually beneficial early communities, we would
not have a FreeBSD story or even a Unix story to tell today.

Out of these early communities (and others for similar hard-
ware and software of the 1960s and 1970s) grew the open source
community that thrives today. These early communities, such as
IBM’s SHARE and DEC’s DECUS, formed because computers
of the time were quite expensive, and users often had similar
problems that might not align with the manufacturer. Community
members shared not only modifications to the vendor software,
but also interesting programs that solved problems the vendors
had no interest in solving.

Batteries Not Included
Unix started out life as a reaction to a canceled project on

cast-aside hardware as a skunk works project at Bell Labs, AT&T’s
research department in the
early 1970s. At the 1973 ACM
Symposium on Operating
Systems Principles (SOSP),
Ken Thompson and Dennis
Ritchie presented the first
public talk on Unix. The July
1974 edition of The Com-
munications of the ACM
published the first paper.
For complicated legal reasons, AT&T had to give away, for the cost
of duplication, any cool, non-telephone technology it created for
non-commercial use. Requests for Unix started pouring in after
this publication.

The first copies of Unix went out in early 1974. AT&T was also
prohibited from offering support, so recipients were on their own.
AT&T guaranteed the tape could be read, but little else. AT&T was
also prohibited from selling any products that weren’t telephone
services, so these tapes were not a supported product. Techni-
cally, users had to figure out how to use and install the system
on their own, but Ken Thompson was involved in many early
installations. Once the system was installed, it was up to the users
to figure out for themselves how to solve any problems they en-
countered. This stood in stark contrast to large computer makers
like IBM or DEC, who provided extensive support to their users. If
you wanted to run Unix, you really had to want it.

Shortly after the first tapes went out, the first user group
meetings started in New York City. People would gather around
and talk about Unix, how to use it, bugs they were encountering,
etc. People from AT&T would attend some of these meetings in
an unofficial capacity. After the first few meetings, word spread

about them, attendance grew, and a newsletter, Unix News,
was soon published to record the interesting bits of news and
gossip for people who couldn’t attend. The first issue went out
to 37 people, but it listed the names and addresses of about 50
Unix users—like a directory—so users could contact each other,
exchange information, and help each learn how to use this new
operating system.

Although it’s hard to get exact numbers for Unix’s early pop-
ularity, we can make some educated guesses. In the first half of
1974, maybe 10 tapes went out. By the start of 1975, there were
more than 50 installations. By mid-1975 there were almost a hun-
dred. By the end of the year there were close to 200. Unix grew
substantially inside of AT&T during this time as well.

These user groups weren’t limited to the United States. Groups
in the UK and Australia produced their own newsletters. In Cana-
da and Europe, these groups operated as special interest groups
inside of DECUS. Even the early Unix News address list included
people from 10 different countries. Unix quickly became an
international affair from a very early date. We know many of these
details because sometimes the newsletters would republish pages
from other groups using Unix.

First Legal Battles
AT&T’s legal department was good at protecting the Unix name

and rights, but it wasn’t very good at community relations. First,
they objected to talking about Unix without a strict legal notice.
The Unix license requires that the source, methods and concepts
remain confidential, so the legal department forced Unix News to
use a legal disclaimer.

Next, they didn’t like the name Unix News, since it infringed
on their trademark of Unix, so they forced them to change their
name to ;login: The Unix Newsletter. It seemed like a needless
fight to move the name to a subtitle.

Within a couple of years, other newsletters sprang up in the
UK, Australia, and Europe. Each included this legal disclaimer. The
confidentiality colored many of the early discussions about Unix,
and limited publication of cool aspects of Unix in the early days,
despite the fact that most of the methods and concepts were
published in the CACM article. As you might imagine, this rubbed
people the wrong way.

16 FreeBSD Journal • May/June 2023

Tapes a Plenty
Unix users exchanged software from the very beginning. The

preferred form of transfer was magnetic tape or removable hard
disk (both of these could hold on the order of 10MB). Within a year
of the CACM publication, a vibrant software swap had sprout-
ed. The first two organized distributions were from Toronto and
Harvard. Toronto’s distribution contained a number of additional
drivers and some bug fixes. Harvard’s included optimizations to
the system, improvements to the interactive responsiveness,
and some security hardening needed for university computing.
Both of these were discussed in the first Unix News in mid-1975
when there were only about 100 external Unix systems (and a few
hundred users).

Also, less than a year after the CACM article, Unix had been
adopted to run on a multiprocessing system (MUNIX). The MU-
NIX paper discussed now-familiar ways to make a kernel that de-
pended on global variables that could have locking added to make
it thread safe. This software was also available on tapes from the
Naval Research Station in Monterey Bay. One processor handled
all the data acquisition, while the other handled displaying the
data and status to the user.

Net Unix, from the University of Illinois, connected PDP-11s
to the ARPAnet, the precursor to the Internet. Net Unix, also
produced within a year of the CACM article, was discussed in the
first Unix News, and would make the PDP-11 the most popular
computer on the ARPAnet by the following year. Since it was easily
available in source form, many networking protocol researchers
based their work on Net Unix. It would go on to influence the
TCP/IP stack that BBN gave to Berkeley, which formed the basis
for almost all early TCP/IP networking stacks in the 1980s and
1990s.

First Public Use
The Boston Children’s Museum appears to be the first museum

to have used Unix in its exhibits. Mere months after the CACM
article, the museum had already childproofed this complicated
system so that even children could interact with it. The museum
exhibit allowed children to explore programming through a fun
graphical game.

How on earth could this have happened? The museum, which
had close ties to Harvard, was running the Harvard modifications
of Unix. The museum would share several more versions of its
Unix innovations over the years.

Porting Unix
Three groups completed ports of Unix to completely differ-

ent machines at about the same time. Richard Miller and Ross
Nealson at the Wollongong University ported Unix to the Intersil
7/32 (a 32-bit machine). Tom Lyon and Eric Schmidt, students at
Princeton, ported Unix to IBM’s VM/360. And AT&T did its own
port of Unix to the Intersil 8/32.

The Wollongong port was by far the most interesting. Profes-
sor Miller was hired on to the University with the promise that
a PDP-11 would be purchased to allow him to run Unix. Instead,
when he arrived, he discovered that the school had purchased an
Intersil 7/32 instead, and there was no money for the PDP-11. So,
he carefully modified the C compiler to produce Intersil code. But
he had no way to run this C compiler, since it required Unix. So,
he drove the 90 minutes to Sydney to use a PDP-11 there, running
Unix a couple of times to bootstrap the compiler. He then ported
the rest of Unix to the Intersil 7/32, first as a user library, then with

the Unix kernel as a user process and then a native port—all of this
in under six months, with the system being robust enough to go
live after nine months. It was an incredibly inspiring effort from
someone who had never used Unix before, getting the tape and
beginning this undertaking.

Community Commentary
John Lions, also at Wollongong, wrote

a book about the Unix kernel to use while
teaching his Operating Systems class. Initial-
ly, AT&T gave him permission to distribute
this book, but later withdrew the permission
because the book was too good. AT&T’s
legal department yet again created bad PR
for AT&T in the Unix community.

Things turned out well for Professor
Lions, however. His fame from the book
helped him to secure a sabbatical at Bell
Labs. Of course, John wrote back to the Aus-

tralian Unix User Group with the story, who published it in their
newsletter. He wrote with news of his travels to this group, much
as one would write an old friend:

(lots of information about the forthcoming 7th Edition, and
other info about AT&T omitted)

One of Professor Lions’ graduate students, David Hunt, went
on sabbatical from Rutgers University. Ian Johnstone, the editor of
the AUUGN, published Hunt’s report about safeguarding copies
of the Lions commentary.

Conferences and More Tapes
The informal USENIX meetings grew in size and complexity. By

1977, gatherings featuring formal presentations were happening
on both coasts in the US. In September 1977, over 100 people
attended the gathering in Menlo Park. Usenix collected innovative

17FreeBSD Journal • May/June 2023

software from about 30 different early Unix users for the oldest
surviving tape, known as “The Third Software Distribution.” This
innovative tape included original software to make it easier to
produce future tapes.

The content the user communities created for Unix helped
Unix to grow. The user group newsletters spread the word and
created connections between people. In fact, user groups pub-
lished articles from each other’s newsletters frequently, increasing
and strengthening the connections between the user group com-
munities. The generous sharing of code and welcoming atmos-
phere would serve as the basis for today’s thriving open source
communities, like FreeBSD.

Enabling Unix
Unix wasn’t the only operating system for the PDP-11. DEC pro-

duced several other operating systems, aimed at different niche
industries. For real-time control, they offered RT-11. For business
and numerical applications, they offered RSX/11M. DEC also
had the best FORTRAN compiler at the time (much better than
the one in Unix). Many universities had data collection PDP-11s
running RT-11, with other PDP-11s running RSX/11M to do the data
analysis. So, there was resistance to running Unix, initially, because
it couldn’t run programs written for these environments. Many
resorted to running the DEC OS during the day, when professors
were typically around, and Unix at night, when the weirdos that
hung out and used Unix were around.

At the time, DEC distributed many of its programs to universi-
ties in source form. So, within a couple of years of the CACM arti-
cle, they had ported FORTRAN and other programs to Unix using
emulation libraries that translated what would be RT-11 or RSX/11M
system calls into Unix system calls. If you had all the right licenses,
and could provide the right paperwork, you could get copies of
these programs from the university that did the port.

However, that was too cumbersome, so some clever people
noticed that PDP-11 had many ways to make system calls. For-
tunately, RT-11 and RSX/11M used one method, and Unix used a
different method. These clever folks then added trap handlers in
the Unix kernel, translating them into signals to the program. They
used this to create emulation programs for RT-11 and RSX/11M, so
users didn’t need the source code to run the DEC software on
Unix. In addition, university professors who had programs running
on RT-11 could run them unmodified on Unix with the help of
these emulation programs. Bill Webb at the University of British
Columbia wrote the earliest emulators in 1976.

Suddenly, Unix could run 24 hours a day because it did
everything these proprietary OSes did, paving the way for it to ex-
pand beyond computer labs to wider scientific applications. Unix
users had created something useful that not only enabled the
community to grow larger, but also broadened its sphere of influ-
ence. Unix could do more than these proprietary OSes, thanks to
the cooperation of its users and their generously shared code.

DARPA Funding
I came across this interesting notice in one of the AUUGN

issues:

These two sentences, presented as just rumors, announce two
of the biggest developments for Unix. “Level 7 Unix” announced

the Seventh Edition of Unix, the last version of Unix from Bell
Labs. The Seventh Edition would launch AT&T’s Unix commerciali-
zation efforts and bring Unix to non-academic users.

The “special agreement” was AT&T giving Berkeley an early
version of the Seventh Edition, ported to the VAX known as “32V”.
Berkeley would enhance 32V and turn it into the Berkeley Soft-
ware Distribution (BSD). The US Government, through DARPA,
funded Berkeley to add advanced features to Unix for the VAX.
It funded their addition of the network stack to Unix. Although
AT&T had a version of Unix for the VAX, nearly everybody ran
the Berkeley version of Unix. Even Bell Labs would base its later
research versions of Unix on BSD.

Coda
The highly collaborative community continued developing in-

novative and beneficial systems and software. Berkeley’s releases
brought a robust Unix to many universities and companies. It too
was widely ported. The companies porting it, like Sun, would often
make major contributions back to the community. Tiring of the
ever-increasing legal burdens from Unix, Berkeley rewrote the few
remaining parts of the Unix system they hadn’t already enhanced
and released an unencumbered distribution dubbed Net/2.

Net/2 was quickly ported to the IBM PC. In addition to a free
version anyone could download, companies produced their own
versions that also included support. BSD Unix was poised to take
over the world. But in a final act of self-destruction, AT&T’s legal
folks sued over these releases. The resulting confusion and un-
certainty led to the rise of Linux, which would put AT&T out of the
Unix business several years later. This story, though, is too long to
tell in more detail.

Nevertheless, the BSD community in general, and the FreeBSD
community specifically, survived. A spirit of mutual competition
developed between FreeBSD and Linux, leading to an active
exchange of ideas and techniques. The same spirit of community
and sharing has survived the last 30 years and continues to thrive
today. FreeBSD’s community of mutual support carries on the tra-
ditions of the early Unix user groups on a scale that’s many times
larger than those early efforts. FreeBSD is used on hundreds of
thousands of computers worldwide.

It has attracted corporate users who give back as well to keep
their storage and network appliances competitive. Isilon and
NetApp use FreeBSD for their storage appliances. Netflix uses it
to deliver all its videos. Juniper’s routers use it to move network
packets. These corporate users have also contributed back to
the project, as do numerous other users, both old and new. The
community remains strong and has welcomed several new gener-
ations of Unix users since the original ones who founded the Unix
News. We all owe a debt of gratitude to the Unix pioneers whose
early perseverance and innovation have blossomed into the ro-
bust and supportive open source community we enjoy today.

WARNER LOSH has been contributing to open source since
before the FreeBSD project existed or the term “open source” was
formally defined. He’s recently been delving into the early history
of Unix to discover its rich, hidden legacy. He lives in Colorado
with his wife and daughter in a strawbale house heated by the sun,
a small boiler, and the occasional antique computer.

18 FreeBSD Journal • May/June 2023

Early FreeBSD Ports
BY DOUG RABSON

From its inception, FreeBSD focused on providing solid sup-
port for the i386 architecture. The PC platform was com-
monly available and relatively inexpensive and concentrating

our existing resources on this helped to make FreeBSD on i386
stable and performant. However, after a few years, we decided to
broaden our support; the first target was the DEC Alpha platform
which was a good choice given its 64-bit architecture. A few years
later, we added IA-64 support, then being positioned by Intel as a
successor to the i386.

FreeBSD on Alpha
In early May of 1997, Jordan Hubbard asked for volunteers to

work on porting FreeBSD to the DEC Alpha platform. The Alpha
was a 64-bit, load/store architecture, which was quite different
to i386 with more registers and a RISC instruction set. Available
hardware used the familiar PCI and ISA bus interfaces.

I volunteered for the project. Clem Cole at DEC loaned us
some hardware which arrived in July 1997 (apart from Peter
Wemm’s machine which I seem to remember got lost in cus-
toms). At this point, I think it started to sink in how much work this
project was going to take, with changes needed in many different
areas.

Drivers
Device drivers in FreeBSD, especially for ISA, were going to

need changes to support the new architecture where hardware
access was quite different. To make this work and share as much
code as possible between i386 and Alpha, we needed an abstrac-
tion layer.

I had some ideas for this which eventually turned into FreeBSD’s
newbus framework. My plan for this was to discover devices
automatically, starting from the top-level system device bus which
was typically PCI and ISA for both i386 and Alpha. The kernel
would dynamically build a tree of devices and then match these
with available drivers. I also wanted to be able to combine this with
earlier work on the Kernel Linker (KLD) to allow drivers to be added
after the initial boot. I worked on a prototype for this in late 1997

but didn’t get as far as supporting any ‘real’ hardware drivers.
File Formats

In 1997, FreeBSD was using the a.out file format which was a
very simple 32-bit format. Most other Unix-like systems were
using ELF format by this time which provided more flexibility and
already supported 64-bit platforms including Alpha.

Moving to the new format involved changes in the build system
to support the new format and also to support dynamic linking,
which is implemented in userland using the Runtime Linker
(RTLD). Lots of people worked on this including John Polstra,
Jordan Hubbard, Peter Wemm and myself over several months in
early 1998.
Booting

This was initially an area of uncertainty for the project. The
Alpha ‘pre-boot’ environment was fragmented with Digital Unix
(DUX) and VMS using the SRM Console, NT using AlphaBIOS and
Linux using both of these as well as their own MILO.

Any operating system on Alpha needs something called
PALcode to handle virtual page translation, caches, interrupts and
transitions between user-mode and kernel-mode. There were var-
iants of PALcode for DUX, NT and VMS. While the DUX PALcode
was likely to be our best choice, it wasn’t clear if we could use it
without an expensive licence. As it turned out, all the Alpha hard-
ware we ended up supporting had support for the SRM Console
which came with DUX PALcode, so this ceased to be a problem.

The i386 boot code was limited in size to just 7.5k. The limit came
from the UFS filesystem format which reserves an 8k area for the
bootstrap, and we needed a 512 byte sector from that to allow the
PC BIOS to boot. This was just enough to read the a.out format
kernel file from the root filesystem into memory and start it.

Alpha would have a similar limit; the SRM Console used the first
sector of the disk to identify a contiguous range of sectors to load,
which left 7.5k from the UFS boot area in the same way as i386.
On Alpha, the 7.5k limit probably wasn’t going to be enough due
to the lower code density of the RISC architecture and the extra
complexity needed for the ELF format. We ended up rewriting
the bootstrap so that the 7.5k boot stage loaded a larger boot
program (in modern FreeBSD systems this is /boot/loader). This
gave us enough flexibility to fully support booting ELF format
kernels on both i386 and Alpha as well as other new features such
as pre-loading kernel modules, network booting, and more. Mike
Smith worked on the multi-stage boot and Peter Wemm imple-
mented module pre-loading. Somewhere along the way, a Forth
interpreter was added—I think Jordan Hubbard was responsible
for that.
Userland

When we started this project, the FreeBSD source tree was not
set up for easy cross-compiling. This made building user-mode
utilities a little challenging. John Birrell worked on getting most
of the FreeBSD source tree to build on a NetBSD host and had a
system with a fairly complete FreeBSD userland running with a
NetBSD kernel.

The NetBSD system call interface was a little different from
FreeBSD, so John’s early userland work used NetBSD’s ABI. A
native FreeBSD kernel would need utilities that used the FreeBSD

Device drivers in FreeBSD,
especially for ISA, were going
to need changes to support
the new architecture where
hardware access was quite
different.

19FreeBSD Journal • May/June 2023

ABI, but this was a significant step forward. Once we had a work-
ing kernel, it was a relatively straightforward process to move
from the hybrid NetBSD/FreeBSD system to a working native
FreeBSD system.
Kernel

This was probably the largest part of the project and involved
filling in all the machine-dependent parts of the kernel which
provide low-level support for virtual memory, interrupt handling,
process context switching etc.

I approached this by building an Alpha cross compiler and just
attempting to build a kernel, seeing what failed to compile, then
filling in the gaps, either with empty stubs or by importing code
from NetBSD where it was similar enough to work for FreeBSD.
This was a fairly tedious process which took several days, but
eventually ended with a non-functional kernel binary.

The next, longer, part of the port was to attempt to run this ker-
nel, seeing how far it got until something broke and then fix that
problem before trying again. To run each test, I used a tool called
SimOS. This simulated an Alpha-based computer complete with
simulated hardware such as disks and serial ports. SimOS support-
ed debugging the simulated kernel with gdb; this was extremely
helpful since I was able to single step through the very early kernel
initialization process which sets up the kernel virtual memory,
etc. before moving onto the machine-independent initialization
sequence.

To shorten the porting process, I used code from NetBSD/
alpha where it made sense. Unfortunately, I omitted the NetBSD
copyright in a few places. This had to be fixed in public after the
code was committed which was quite embarrassing. This is one of
the very few times where FreeBSD’s commit history was altered—
we removed the revisions with incorrect copyrights.

One area where using NetBSD code wasn’t going to work was
in the virtual memory support where FreeBSD was quite differ-
ent. The Alpha page tables were similar to i386 with a tree-based
structure using three levels (where i386 used two levels at the
time). I copied the i386 code and changed it to add the extra level.

Initial support for Alpha was committed in July 1998 with sup-
port for the SimOS emulator and real hardware support followed
over the next few months. The release notes for FreeBSD 3.0
mention this: ‘A port to the DEC Alpha architecture has entered
“ALPHA” (haha) status’.

FreeBSD on IA-64
This project got started in 2000 when Paul Saab brought a set

of IA-64 documentation to Usenix ATC and asked me if I would be
interested in porting to this new platform. At the time, Yahoo! was
a large-scale user of FreeBSD on i386 and some of their workloads
were running up against limitations of the 32-bit platform.

The IA-64 architecture was interesting in several ways. The
instruction encoding was in 128-bit instruction bundles, each of
which contained up to three 41-bit instructions which may exe-
cute simultaneously. This allowed for a large register set with 128
general purpose registers and 128 floating point registers.

The general-purpose registers are divided into two groups--32
‘static’ registers and 96 ‘stacked’ registers which the processor
would allocate from a large pool of registers and automatically
save and restore on function call and return. Each register is 64
bits plus one NaT (‘Not a Thing’) bit used for speculative execu-
tion.

Conditional execution is via 64 predicate registers which are
each a single bit and hold the result of compare instructions. Each

instruction can be conditionally executed based on the value of a
predicate register.

Indirect branches (e.g., function pointers) are supported using 8
branch registers which can help with branch prediction.

Virtual memory management is controlled by a Virtual Hash
Page Table (VHPT) which contains a subset of possible virtual to
physical mappings. A software TLB miss handler is used to find
translations which are not in the VHPT. The VHPT supported
two formats, a ‘short’ format which could be used to emulate
traditional tree-based page tables or a ‘long’ format which was a
simple hash table with collision chains.
Booting

The IA-64 hardware used the EFI pre-boot environment. I add-
ed very basic support for EFI to the multi-stage boot loader. In the
IA-64 EFI environment, programs were relocatable; this needed to
be done in the EFI program itself which was difficult to debug.

Userland
Porting the FreeBSD user-space tools and utilities was fairly

straightforward—the FreeBSD build supported cross-compiling
by this time and only needed the addition of IA-64 versions of
low-level library code for things like string comparison, memory
copy, and system calls.
Kernel

We were lucky enough to have access to an HP IA-64 emulator
(SKI) from which Marcel Moolenaar made a FreeBSD port. This
included an instruction-level debugger which was very helpful in
debugging early kernel initialisation and trap handling.

The kernel port was a little more difficult than Alpha. This time,
there wasn’t another BSD port which could be used for reference,
so all the low-level support was new code. The IA-64 architecture
required two stacks, one for registers and one for regular data.
Trap handling was significantly more difficult than most other
architectures due to the extra register state and the complexity of
speculative execution and the stacked registers.

The long-form VHPT format ended up being a reasonable fit
for FreeBSD’s virtual memory system. The machine-independent
VM system makes requests to the platform’s pmap system to
make virtual to physical mappings. These were just added to the
VHPT.
32 Bit Compatibility

During development of the port, we used Perforce for source
code control and there was only an i386 binary available at the

Initial support for Alpha
was committed in July 1998
with support for the SimOS
emulator and real hardware
support followed over
the next few months.

20 FreeBSD Journal • May/June 2023

time. I wanted to be able to use this on the target platform during
the port, so I ended up implementing i386 compatibility which
used the built-in i386 support in the IA-64 processor. This built on
earlier work on Linux and SVR4 emulation which had made a clear
separation between the syscall ABI and implementation.

Legacy
The Alpha port prompted a great deal of necessary supporting

development which has helped to shape the modern FreeBSD
kernel. The transition from a.out to ELF format was a necessary
step for the Alpha port, but since ELF rapidly became the de-facto
standard, moving away from a.out on all platforms saved us from
having to spend large amounts of effort supporting and extend-
ing an obsolete format. The multi-stage boot loader has proven to
be a flexible platform, making new architecture ports easier and
supporting booting from modern file systems such as OpenZFS.
The newbus device framework facilitates driver compatibility
across architectures and supports dynamic device discovery
which is required in modern systems where devices can be added
or removed at any time.

Adding support for Alpha forced us to tackle 64-bit com-
patibility problems across both kernel and user. The load/store
architecture uncovered other problems such as the assumption
that read-modify-write operations on memory to set flags or
increment counters could not be affected by hardware interrupts.
This was solved by adding a set of ‘atomic’ operations to the
kernel. The atomics framework was extended by John Baldwin to

support IA-64’s acquire/release semantics and is used extensively
to support multi-cpu platforms.

The IA-64 port was inspired by the need to get past the limita-
tions of the 32-bit i386 platform while retaining compatibility with
legacy software. While these goals were achieved, the platform
itself did not reach the price/performance of the simpler i386
architecture. IA-64 eventually found its niche in large-scale Super-
computing, but it was not a good fit for most FreeBSD workloads
and was superseded by AMD’s x86-64 extension to the i386 archi-
tecture, which is pervasive in modern compute environments.

Support for both platforms has since been removed from
FreeBSD. The Alpha architecture was a casualty of the Digital/
Compaq merger, although it continued to be available as a prod-
uct until 2007. FreeBSD support was removed in 2006. Support
for IA-64 survived a little longer; Marcel Moolenaar made many
improvements over the years to support multi-processor and
NUMA variants of the platform. Support was removed from
FreeBSD in 2014 and the platform was discontinued in 2021.

DOUG RABSON is a Software Engineer with more than thirty
years of experience ranging from 8-bit text adventure games back
in the 1980s to terabyte-per-second distributed log aggregation
systems in the 2020s. He has been a FreeBSD project member
and committer since 1994 and is currently working on improving
FreeBSD support for modern container orchestration systems
such as podman and kubernetes.

https://www.youtube.com/c/FreeBSDProject

Looking for FreeBSD
Video Content?

The FreeBSD YouTube Channel has it all:

Past Conference and Summit Videos
FreeBSD Office Hours
FreeBSD Fridays
and more!

For even more FreeBSD video content, be sure to check out the community
resources at: https://freebsdfoundation.org/freebsd-project/resources/

21FreeBSD Journal • May/June 2023

Recollections:
An Interview with
David Greenman Lawrence (dg@)
BY TOM JONES

T he FreeBSD project started out with contributions from
many hands, but the early days of the project and the peo-
ple behind our favourite Operating System haven’t been

covered in much detail. As part of the 30th Anniversary Issue of
the FreeBSD Journal I set out to speak to those involved at the
start of development and learn how they became involved.

This first installment is with David Greenman Lawrence, an early
contributor who helped give FreeBSD its “high performance server”
reputation. Further installments will follow in subsequent issues.

TJ: Can you explain generally what you were up to in the late 80s/
early 90s in the period before the start of the FreeBSD project?

DGL: This was the period of my early twenties, and I was involved
in a lot of different things simultaneously and going in a lot of
seemingly unrelated directions. For example, I was the Technical
Director for a video production company that produced arts
programs for Cable Access. I co-founded a company that was
involved in establishing US trade in Portland’s “Sister City” in
the Russian far-east (this was in the early days of the new Yeltsin
democracy in Russia). I founded a company that installed TVRO
home satellite systems (the 12-foot dishes for C-band satellite,
not the tiny Ku-band dishes of today), while also working as an
independent contractor providing satellite uplink engineering ser-
vices for a TV broadcasting company. I was also an independent
contractor with expertise in DEC PDP-11 and VAX systems (mostly
repairing customer hardware). And finally, I was a computer hob-
byist with an interest in Operating Systems development. I hacked
RSTS/E and VAX/VMS for fun. This was rather difficult, however,
as DEC only provided limited source code for RSTS/E and nothing
more than assembler listings for old VAX/VMS utilities. I learned
to be a pretty good DEC machine code hacker! For a short time,
I was also the President of the “Portland Computer Society” (a
501(c)(3) non-profit organization of local computer hobbyists).

Fun times, but it was my hobbyist interest in Operating Systems
development that ultimately led to playing with the source code
for 2.9 BSD, which I ran on one of my PDP-11 systems. This led me
to Bill Jolitz’s release of 386BSD 0.0 in 1992 and getting involved
with the development of the “386BSD Patchkit” (a project led by
Rod Grimes, a fellow Portlander). I built my first Intel PC - a 386SX
with 4MB of RAM just for this purpose. However, Bill Jolitz wasn’t
really much of a “team player.”He generally rejected and even
publicly ridiculed patches and improvements that people offered
and even eventually objected to the use of his “386BSD” trade-
mark in connection with the Patchkit and an “interim” release of
the patched system (which we were calling “386BSD Interim-0.1.5”
at the time). He insisted that we stop calling it that, and, ultimately,
this forced our group of hobbyists to organize our own develop-
ment project, completely independent of Bill Jolitz.

TJ: How did you come across FreeBSD/the efforts that led to
FreeBSD? There is a lack of accounts where people discuss how
they found information, was it USENET? (if so, how did you con-
nect?). Were any of the PC BSD efforts covered in more conven-
tional media (magazines, etc.)?

DGL: Julian Elischer posted a message on comp.unix.bsd (dated
November 17, 1992) about a series of mailing lists that he had set
up for discussing 386BSD (Bill Jolitz’s baby). I read the posting and
subscribed to some of them—probably on the same day. Julian
also set up some logins on “ref” (which was running 386BSD)
for people to hopefully use constructively. I may have already
had an account on that machine, however, prior to the creation

of the mailing lists. I’m not sure because my real time access to
the Internet was very spotty and limited at the time. Netnews
and email were being delivered by UUCP, for example. I think I
had to dial up another system using a modem for telnet access.
Anyway, Julian’s ‘ref’ resources wasn’t the first contact with other
386BSD’ers. I know I had contact directly with Bill Jolitz and some
other 386BSD enthusiasts. I knew Rod Grimes because of an-
other Portland area project called “RAINet” (the “Research And
Information Network”), which was an early-days attempt to get
local computer hobbyists (Inter)connected to the newfangled
“Global Internet,” mostly using SLIP over dialup modems. Many
of the local computer hobbyists at the time—some of whom
worked at Intel or Tektronix, or attended or taught at Portland
State University, knew each other through various events and
social circles (including the Portland Computer Society that I
mentioned earlier).

It was my hobbyist interest in
Operating Systems development
that ultimately led to playing
with the source code for 2.9 BSD.

22 FreeBSD Journal • May/June 2023

TJ: Julian’s machine isn’t something I have heard of before. I’ll
certainly dig more in that direction in future projects.

DGL: Also, Nate Williams had set up a mailing list for the major
players in 386BSD called interim@bsd.coe.montana.edu. Most of
the discussion occurred about 386BSD, after 0.1, while we were
waiting for Bill Jolitz to release 0.2—which seemed to be delayed
indefinitely.

TJ: Could you tell me a little about how you came to write send-
file(2) and other optimizations that allowed ftp.cdrom.com to
serve so much traffic?

DGL: Wcarchive (AKA ftp.cdrom.com) became my obsession
and it was the driving factor behind much of my development
with FreeBSD. Rod Grimes built the first PC-based version of it in
1993, but I soon became involved in dealing with the machine’s
daily reliability problems. I took over the management of both the
hardware and software shortly after that. One of the first chal-
lenges was the very limited bandwidth available on Walnut Creek
CDROM’s 1.5Mbps T1 connection to BARRnet. Even in those very
early days, wcarchive was a very popular FTP distribution archive

for the most popular Shareware of the day. The T1 was maxed-out
24x7 with packet loss that exceeded 50% most of the time. In fact,
the T1 was so overwhelmed, that the congestion caused major is-
sues at BARRnet, adversely affecting other customers. Bob Bruce
(cdrom.com owner) proposed upgrading the T1 to a (45Mbps)
T3, but that idea turned out to not be practical (or perhaps even
possible) at the time.

I think it was someone at BARRnet/BBN who suggested the
server could be moved to the Stanford University data center in
San Jose (the main BARRnet/BBN POP in the region), which would
mitigate the congestion issues with the T1. So, in September 1994,
I built a new machine and deployed it at Stanford. Of course, no
one really knew just how oversubscribed the T1 had been. BARR-
net/BBN assumed the load would be just 1.5Mbps. Much to their
dismay, traffic immediately jumped to over 30Mbps as soon as we
brought the server online at the data center which caused a bit of
a panic with the BARRnet/BBN network engineers. We contin-
ued to operate the server, but it was clear that BBN really didn’t
see the financial case for hosting such a bandwidth-expensive
resource, and I think they had to put on some bandwidth caps to
keep the cost under control. Ultimately, within a year or so, I had
to find a new home for the machine—where there were no limits.

FreeBSD’s reputation was at stake here after all. An average user
downloading from wcarchive couldn’t tell the difference be-
tween the server just being overwhelmed and the network being
congested, and I was also keen to set new records and push the
boundaries of what a single server running FreeBSD was capable
of doing. So, I found a new home at San Francisco based ISP “CRL
Network Services”. In February 1996, I moved the machine to CRL
where we were given 100Mbps of bandwidth to start.

In the years that followed, it was a constant struggle to keep
up with the demand. There were many hardware and network
upgrades, but it was really the performance of FreeBSD where I
focused. With extensive testing and kernel profiling, it was obvious
that there were significant performance and scalability issues in
both the TCP/IP and the socket layer code. Some of these issues
could be optimized (and I did), but the Holy Grail really was much
bigger than that—I needed to get rid of all copying of the file and
network data as well. While there were some “zero-copy socket”
tricks that had been implemented in other operating systems,
these were kind of a mess architecturally, were difficult to use in
the application, and still left performance overhead related to
user-kernel context switching and many other issues. What was
needed, I thought, was a magic system call that did pretty much
everything—you just give it a file descriptor and a socket descrip-
tor and it would send the contents of the file out to the network.

While attending a technical conference in 1998 (probably
Usenix ATC), I told several colleagues about my sendfile() idea.
Someone suggested that Sun Microsystems may have imple-
mented something like the sendfile() I was proposing. I was very
curious about the API (for compatibility), but when I reached out
to Sun to find out about their API, I quickly found that the rumor
wasn’t true. I think someone at Sun suggested that something
like sendfile() might have been implemented in HP/UX. Anyway,
I didn’t have any contacts at HP (or know if that rumor might also
be false), so decided to move forward with my own API. What I
came up with had more arguments being passed on the stack
than any other syscall in FreeBSD, which concerned me a bit, but
it was nonetheless the most efficient way to do it. sendfile() was a
difficult syscall to write. It seemed to touch just about every sub-
system in the kernel—file I/O, VM system, network buffers, etc.
Anyway, the initial version of sendfile() reduced total CPU time on
the server by about 75%, or in other words, made wcarchive about
4 times faster. It was a huge win.

TJ: Can you tell me what drove you to get more involved with the
organization and management of the project?

DGL: I’ve been thinking about this question, and I finally figured
out why I was having trouble answering it: The “What drove you”
phrase makes an incorrect assumption--it implies that there were
some forces that pushed me toward an organizational and man-
agement role, but that really wasn’t the case. While some manag-
ers are pushed into their positions, I would call those unfortunate
people “reluctant managers,” and more often than not, they
usually are not well suited for their job. For me, it was more of an
attraction to a needed organizational role, and it was in my nature
to fulfill that.

With that said, managing and organizing a freeware volunteer
project is very different from managing employees in a for-profit,
private enterprise. In an all-volunteer project with no budget and
limited donated resources, a manager has almost no authority to
command people to do things. If you try to command a volunteer

With extensive testing and kernel
profiling, it was obvious that there
were significant performance
and scalability issues in both the
TCP/IP and the socket layer code.

23FreeBSD Journal • May/June 2023

to do a thing, they’re likely to just get angry with you, ignore you,
or go away. Instead, you have to be much more subtle by guiding
people in a direction--through discussion, consensus, collabo-
ration, and be willing to do (at least) the proof-of-concept first
yourself. With a proper display of ambition and direction (or sense
of direction), others will follow.

Oh, and “herding cats” also comes to mind. ;-)

TJ: Were there specific problems you wanted to address as a
member of the core team?

DGL: Well, of course, my main focus in the project was the
development of the software (and the kernel in particular). I was
focused on reliability and performance, but also on the archi-
tectural direction of FreeBSD. I felt that having a Core Team was
pretty important to managing the legendary quality of the BSD
codebase. There was definitely a contingent of anarchists in the
group, however, that objected to any sort of formal order and
preferred FreeBSD to be just a cabal of unorganized developers,
but that isn’t what I wanted.

TJ: How did the project change during your time on core?

DGL: I was a Core member for a total of 10 years. The first 8 years
as a founding member of the unelected/self-appointed Core
Team, and then 2 years on the first elected Core Team.

The first Core Team started out as a collection of very talented
software developers that had a common admiration for BSD Unix
and a keen interest in continuing the legacy as an open-source
project. In the early days, it was mostly about just trying to make
FreeBSD work reliably enough to be useful. As FreeBSD became
a thing in its own right, the size of the project grew with over 300
developers who contributed all sorts of things that I never would
have imagined in the beginning. Jordan’s wonderful idea of the
FreeBSD ports tree, for example, was huge in furthering the adop-
tion and ease of use of the system and it attracted a large number
of additional (ports tree) contributors as well. This is all good,
except that as the development team grew, so did the diversity of
opinions, frequency of disagreements, and challenges to the pro-
ject’s leadership. With the Core Team being self-appointed, there
was an ongoing question about where the Core Team’s authority
comes from. This ultimately led to the Core Team reorganizing
into an elected body—elected by the developers. I have to say
that this didn’t really change anything with respect to how things
operated day-to-day within the Core Team, but it did perhaps give
a little boost of legitimacy to our authority.

The project changed in many other ways as well. With FreeBSD
maturing into one of the best server operating systems available,
the project was increasingly able to attract donations and specific
project sponsorships from various corporate users. These were a
bit difficult to make and accept in some cases, because FreeBSD
was, in fact, not a legal entity. Even the FreeBSD trademark had
to be held by Walnut Creek CDROM, and I personally owned the
freebsd.org domain name. This all changed, however, when Justin
Gibbs (a Core Team alumnus) founded the FreeBSD Foundation
in December 2000, as a US non-profit 501(c)(3) legal entity.

TJ: What is the lasting legacy of FreeBSD?

DGL: There are so many legacies to choose from. The fact is the
average human on planet Earth is using software developed in

part by the FreeBSD Project every day--from shortly after they
wake up in the morning until they go to bed at night. If you use
a mobile phone based on Android or iOS, then these platforms
borrowed significantly from FreeBSD for their libraries and user
applications. If you use Microsoft Windows, Apple MacOS, or iOS,
then you’re using a kernel networking stack that mostly came
from FreeBSD. If you sit down at night to watch some stream-
ing movies on Netflix, then that content is being served to you
by servers running FreeBSD. If you’re a gamer with a Nintendo
Switch console, then you’re using a platform powered by FreeBSD.
If you do online banking, or trade stocks on the stock market, or
ship a package around the world, then you’re probably doing it
with servers that are running FreeBSD (although I could never get
them to admit this publicly!).

In all the cases of borrowing code or completely basing plat-
forms on FreeBSD, there is a reason why companies have chosen
to use FreeBSD instead of Linux. It’s the most important legacy of
all and something we inherited from BSD before us. If you ask a

software professional what the de facto standard most permissive
software license is, they’ll tell you “the (N-clause) BSD license.”
From BSD, it was the 4-clause license, but FreeBSD took that a
step further and cut that down to just a simple 2-clause license.
Pretty much what it says is that as long as you don’t claim to have
written the code yourself, you can use the software in whatever
way you want. You can change it to suit your needs and keep your
changes proprietary. You can make a ton money from it and not
give a penny back to the original authors. It means that it is truly
FREE software in every sense of the word. I can tell you that this
was forefront in my mind (we ALL had this in mind) when the
project adopted the “FreeBSD” name on June 19, 1993. Although
it wasn’t planned or even thought of at the time, it was a happy
coincidence that this also occurred on the anniversary of “June-
teenth”—a day celebrated as the day that slavery formally ended
in the United States—June 19th, 1865.

FreeBSD’s lasting legacy is the very concept of truly FREE
software.

TOM JONES is a FreeBSD committer interested in keeping the
network stack fast, during the day he manage FreeBSD develop-
ment at Klara Inc.

FreeBSD’s lasting legacy
is the very concept
of truly FREE software.

24 FreeBSD Journal • May/June 2023

FreeBSD at 30 Years:
Its Secrets to Success
BY MARSHALL KIRK MCKUSICK

This year the FreeBSD Project is celebrating its thirtieth year
of providing a complete system distribution. The goal of this
article is to understand what it is that has made FreeBSD

one of the few long-term, viable, open-source projects. Most
projects with long-term successes are sponsored by companies
that base their products around the open-source software that
they actively nurture. While FreeBSD has companies actively using
and supporting it, they have come and gone over the years and no
single company has been the primary long-term proponent.

Origin
Many open-source projects start with code written by one

person and begin building from there. FreeBSD started from a
solid code base, the 4.4BSD-Lite open-source distribution from
the University of California at Berkeley. The Berkeley Software
Distribution (BSD) had been in development and distribution for
over a decade and the BSD distribution started from the Unix
distribution from Bell Laboratories that had been in development
for a decade before BSD. Though BSD was not open source, its
code was widely licensed and had many contributors from both
academia and industry. Nearly all of BSD was ultimately released

as open source in the 4.4BSD-Lite distribution.
The BSD kernel introduced important operating-system inter-

faces still used today:
• the socket networking interface and the original and widely

used implementation of TCP/IP,
• the set of system calls used to operate on filesystems, the

virtual filesystem (VFS) interface to support multiple filesys-
tem implementations, and the fast file system and network
filesystem (NFS) implementations,

• the mmap memory model, and
• the interface to manage processes (signals, process groups,

job control, etc.)
The BSD distributions also established the model of complete

system distributions that included the operating system, a core
set of libraries and utilities, contributed software (that would even-
tually become FreeBSD’s ports), and complete manual pages and
system documentation.

Leadership
Most open-source projects are started by a single person who

then becomes the czar-for-life leader of the project. A well-known
example is Linus Torvalds who created and still leads the Linux
project. Projects usually go dark when the leader loses interest
and stops working on it. Contributors often get frustrated if the
leader is not good at reviewing and critiquing or accepting input
from others.

When the FreeBSD organization was set up, the organizers de-
cided to establish a group of seven people called the Core group
that oversaw the project. The original Core group was self-select-
ed. The people who set up the project deputized themselves onto
the Core team. They were ‘‘Czars for life.’’ The Core team decides
project direction and awards and removes the privilege of being a
committer; committers are the people who are allowed to make
changes to the project repository.

While this approach was better than having a single leader, it
still had the problem that committers could only rise to a middle
level in the project, thus leading to frustration and abandonment
if their ideas were not accepted. To remedy this, the FreeBSD
project decided to make Core an elected position. Core was also
expanded to nine people. The entire Core is elected every two
years. Core members are nominated from and elected by the
committers. Any active committer can run for Core. Candidates
are self-selecting and no nomination is required. The effect of this
change is that newcomers can rise to leadership roles. As a result,
the project leadership evolves over time, and the project is much
less susceptible to collapse if its leader departs.

Development
From its inception, the FreeBSD project used centrally located

tools (source-code control and bug reporting). This tooling ena-
bled remote development from the start. Though common today,
at the time FreeBSD was started, the usual approach was to have
a single person who maintained the distribution, and changes by
others had to be sent to them for inclusion. As the project grew,
the person maintaining the master copy of the source would get
overloaded and limit the speed with which the project could move
forward. It also made it difficult to keep track of who was work-
ing on what when bugs would arise and needed to be assigned.
Happily, the modern tool sets available today like gitlab and github
mitigate these issues.

The FreeBSD project has also benefited greatly from adopting
ideas and code from the NetBSD and OpenBSD projects. NetBSD
has lead the way in efficiently supporting multiple architectures
which was very helpful as FreeBSD began expanding from its

When the FreeBSD organization
was set up, the organizers
decided to establish a group
of seven people called the Core
group that oversaw the project.

25FreeBSD Journal • May/June 2023

initial focus on the Intel architecture to support additional archi-
tectures. NetBSD also has provided many tests that have been
incorporated into the FreeBSD continuous-integration testing.
OpenBSD has focused on system security and FreeBSD has
incorporated many of their security improvements. OpenBSD
has also provided several of the key security components used in
FreeBSD such as the ssh remote access and login program and
the software components that support https encryption.

Distributions
Many open-source projects are simply a collection of code that

must be downloaded, compiled, and installed to be used. They
often depend on other libraries and infrastructure which must
also be found, built, and installed. In recent years, projects are
beginning to provide containers that can be spun up, though they
are an inefficient use of resources since they include the entire
software stack all the way down to and often including the operat-
ing system, thus duplicating vast amounts of software already on
the machine.

Early in the FreeBSD project history it began distributing CD-
ROMs with the complete system on them that could be booted
on PC computers. Users could boot up the system from the
CD-ROM to try it out and then install it on their hard disk if they
wished to do so. And--since it was derived from the BSD system
from which it started--all the commands and libraries that they
needed were already there. Prolific documentation was provided,
making installation easy even for non-experts.

Hardware Support
Most open-source projects try to support everything, which

usually means much hardware performs poorly and often fails
under load. From the start of the FreeBSD project, the decision
was made to curate hardware and decide what worked well with
FreeBSD. Once the hardware was selected, significant effort
was made to write robust and complete device drivers to run it.
FreeBSD published a list of hardware that they recommended and
supported that hardware by fixing reported problems and updat-
ing drivers as newer versions of the hardware were released. This
curated list made it easy to put together server machines that ran
well under load. FreeBSD became the system of choice for com-
panies running dial-up servers and later Internet and web server
providers because they had great performance and ran reliably.

Communication
Since nearly all the FreeBSD developers were working remotely,

it was important to set up mailing lists to discuss core design deci-
sions. Topic areas included networking, filesystems, core architec-
ture, etc. A frequent issue with mailing lists, especially when most
folks on them have never met, is that discussion can get off-track
and distinctly nasty. Flamewars were not uncommon in the first
few years of the project, so the mailing lists began to be actively
monitored to tamp down bad behavior and ensure civil discussion.
Sadly, many projects even today have toxic mailing lists. Once
a project gets a reputation for bad behavior, it often results in
it entering a death spiral. Alternatively, it is possible to go to the
opposite extreme and become so controlling that folks abandon
the project as they feel overly constrained. And for projects like
FreeBSD that have developers worldwide, it can be difficult to find
rules that work in the large diversity of cultures of its developers.
The problem is never solved; ultimately there needs to be an
ever-evolving methodology on how to keep the project moving

forward on an even keel.

Documentation
The FreeBSD project started off with a solid base of documen-

tation based on the documentation in the 4.4BSD-Lite distribu-
tion which was in turn derived from documentation in the UNIX
system from which BSD evolved. Early in its evolution, FreeBSD
embraced contributors that focused on system documentation.
Folks writing code were encouraged to work with those writing
the documentation to ensure that the documentation was com-
plete and correct.

The project set up a documentation committer group for
the folks doing the documentation. This group was given all the
rights and privileges of code committers. They could run for Core,
had equal voting rights, and their own group leaders that han-
dled adding and removing documentation committers, setting
up the documentation structure and tools, and overseeing the
document repository. Under their direction the documentation
was structured with a framework that allowed it to easily support

multiple languages. Many of the documentation committers
started out by doing translations of documents into their native
language. This translation task often helped them get up to speed
both on how the documentation tools worked and how FreeBSD
itself worked.

The Ports Collection
The 4.4BSD-Lite distribution had a collection of contributed

software that consisted of about fifty utilities and libraries that
had been developed outside Berkeley but were included in the
BSD distributions. These included things like the X window sys-
tem, the gated routing daemon, the emacs editor, etc. FreeBSD
started with this set of core contributed programs and greatly
expanded on it with what became the ports collection. Unlike the
BSD distribution which installed all the contributed programs,
FreeBSD ports provided them separately so that individual sites
could install only those that they needed. The ports collection en-
sured that the program would compile and run on FreeBSD with
reasonable defaults. It also ensured that fixes for bugs found in
the BSD environment were up streamed to the maintainer of the

Since nearly all the FreeBSD
developers were working
remotely, it was important to set
up mailing lists to discuss core
design decisions.

26 FreeBSD Journal • May/June 2023

software and that changes made up stream were brought down
to the FreeBSD port. Most users could just use the compiled ver-
sion of the port though those needing site-specific changes could
make them and then build their own binaries. The port collection
made it easy to use other open-source software on FreeBSD. Hav-
ing a ports equivalent is done by most open-source distributors
today but was new at the time.

The ports collection has continued to evolve over the years.
Recent innovations are the addition of pkg system to manipulate
ports. The pkg system handles registering, adding, removing,
and upgrading packages. The other key component is Poudriere
that is a utility for creating and testing FreeBSD packages. It uses
FreeBSD jails to set up isolated compilation environments. These
jails can be used to build packages for versions of FreeBSD that
are different from the system on which it is installed and to build
packages for a different architecture than the host system. Once

the packages are built, they are in a layout identical to the official
mirrors. These packages are usable by the pkg system and other
package management tools.

FreeBSD provides a base platform that can be modified to build
a customized OS along with all the infrastructure needed to build
a full OS distribution including not just the base system but also a
collection of the ports. The OS can be customized to support an
appliance as all the bits for how to build the release image for the
customized OS along with automated building of packages via
Poudriere for the customized OS are public and well-document-
ed. None of the Linux distributions are as turnkey as FreeBSD in
this regard. For example, it would be much more difficult to build
your own Debian-fork on top of a modified kernel and system
libraries, etc.

Project Culture
Port, documentation, and development committers are all

given equal say in how the project is run. Notably, they all can run
for Core and get the same voting rights. In most projects, the
developers have more say and others are treated as inferior. The
FreeBSD project has worked on building a culture of inclusion
from its start. The culture values ‘‘plays well with others’’ above
anything else. It does not tolerate a diva just to get their docu-
mentation, port, or code (though sometimes it can take a while to

get to the point of a diva leaving or getting kicked out).
The FreeBSD project is not set up to train people how to write or
program. Folks joining the FreeBSD project are expected to know
their trade. Documentation writers are expected to know how
to write technical documents. Port and source contributors are
expected to know C and any other relevant languages along with
the tools used to write, build, debug, and profile them. That said,
FreeBSD has been involved with mentoring students through
programs such as Google’s Summer of Code. Indeed, many of the
students in Summer of Code have gone on to become commit-
ters on the FreeBSD Project.

The FreeBSD project is welcoming to new folks. It is not
necessary to survive a gauntlet of hazing or needing to ingratiate
yourself to the project leader to become a project committer.
There is a well-documented process on how to become involved
with the project.

Project Support
When FreeBSD started, its infrastructure was a machine in a

developer’s home. As it grew, its infrastructure was supported first
by Walnut Creek CD-ROM and later by Yahoo. Being dependent
on a company’s goodwill was a recipe for disaster, so the FreeBSD
Foundation was created to raise money whose initial use was to
provide the machines and hosting for FreeBSD infrastructure.
While Foundation support for projects is common today, FreeBSD
was one of the first projects to set up a foundation to support the
project. The Foundation was originally run by its (unpaid) board
of directors. After a few years, it was able to hire its first part-
time employee. Today it has nearly twenty staff and contractors
supporting infrastructure, development, marketing, tooling, fund
raising, and other project-related services.

Licensing
FreeBSD uses a Berkeley license which does not require

companies to make their code available to others. The use of
the Berkeley license has played a big role in FreeBSD’s success,
particularly with companies that have their proprietary code in the
kernel. FreeBSD is heavily used in the appliance and embedded
operating system market where companies need to put their
intellectual property inside the operating system and thus cannot
use Linux due to its GNU Public License (GPL) that requires
source code for all changes be made available.

Conclusions
FreeBSD is still going strong. Its strength comes from having

built a strong base in its code, documentation, and culture. It has
managed to evolve with the times, continuing to bring in new
committers, and smoothly transition through several leadership
groups. It continues to fill an important area of support that is an
alternative to Linux. Specifically, companies needing redundancy
require more than one operating system, since any single oper-
ating system may fall victim to a failure that could take out the
entire company’s infrastructure. For all these reasons, FreeBSD
has a bright future. In short, FreeBSD is awesome!

DR. MARSHALL KIRK MCKUSICK writes books and articles,
teaches classes on UNIX- and BSD-related subjects, and provides
expert-witness testimony on software patent, trade secret, and
copyright issues. He has been a developer and committer to the
FreeBSD Project since its founding in 1993.

Port, documentation,
and development committers
are all given equal say
in how the project is run.

27FreeBSD Journal • May/June 2023

Mr. Lucas,

Your love of FreeBSD is obvious and lifelong. This issue of
the FreeBSD Journal has turned into a trip down memory
lane, so the editorial board asked me to write you and
ask how you got started. Why do you do keep hanging
around us? Why do you write all these books?

— John Baldwin,
FreeBSD Journal Editorial Chair

Dear John,
I never expected to write a “Dear John” letter, but life is a bot-

tomless font of disappointment. You do realize that this is the thir-
tieth column I have provided to your Journal, do you not? Thirty of
these meticulously reasoned clear-sighted epistles over five years.
People get shorter sentences for abusing kittens. Your question
provides abundant evidence that you have not read a single one.
Fortunately, for your tenure as Editorial Chair, your remit is filling
the pages with technically accurate information and not ensuring
the quality of editorial blather. It doesn’t matter how erudite the
Letters column is, so long as you have one.

Are you aware that I have previously been asked this very same
question by many organizations and publications? Including your
own Foundation, so that’s at least one group that’s not direct-
ly tied to international law enforcement? People keep asking.
Presumably that’s because nobody reads the answers, in each
instance liberating me to provide tissue-thin lies if not outright
calumny. I accepted the Lawrence Technologies interview to
challenge my ability to maintain a straight face while improvising
whoppers. Wonderland Press has interviewed me repeatedly, but
only in the spirit of marketing. Everyone understood that honesty
would interfere with selling books. The story about the monkeys?
Utter fabrication. This time, however, with an entire editorial board
of the greatest esteem and probity exercising their usual immacu-
late oversight, I feel compelled to at last reveal the truth.

Yes, the truth!
Pinky swear.
My life-long love affair with FreeBSD had to begin at birth,

obviously. Fact-checkers might note that was years before Dennis
Ritchie and Ken Thompson came down off the mountain to
prophesy the holy word of Unix, but the potent concepts already
stirring within their minds lured my vacuous, unformatted brain
into their radiance. Contemplations of a simpler multitasking
operating system were quickly brushed aside by life’s disgusting
necessities, however, and I wasn’t able to turn my attention to
computing until I got my grubby paws on a secondhand Sinclair
ZX80. No, not a ZX81 or one of those fancy Timexes. A ZX80.

That’s where I learned how to program Perl. Fact-checkers will
also note that Perl was not yet a language, but everything I know
about algorithms I learned from the ZX80 BASIC interpreter, so I
figure Sir Clive owes the world quite the apology. That’s also how I
acquired my knowledge of C and shell, and the ZX80’s 1K of RAM
provided quite the education on memory exhaustion. Adding the
ZX80’s esoteric peek() and poke() operators taught me all I need
to know about interpersonal relations.

Meanwhile, I learned how to write. Grammar school teaches
trivialities like syntax and spelling, but these have nothing to do

with proper writing. My teachers pointlessly obsessed over get-
ting me to draw my Zs and the Ss the right way around, when all I
cared about was learning to express my inner self. Working on my
own, I figured out the “inner self” business in the fifth grade and
promptly got to work closing that mess right back up. My repu-
tation was already soiled, however, condemning me to become
either a writer or a television propagandist. Fortunately, I have a
face for radio and a voice for paper, so I was spared the indignity
of broadcast media.

My life-long love affair with
FreeBSD had to begin at birth,
obviously.

BY MICHAEL W LUCAS

28 FreeBSD Journal • May/June 2023

Then it’s just practice, the same as any other stupid career.
A college classmate would say, “Hey, I’m throwing a backyard
barbeque Friday night and inviting a bunch of folks of the gender
and orientation you find attractive, and they all have poor taste
and lower standards so you should show up” and I would say
“thanks but no, I’m working on this piece that will get rejected by
a hundred thirty-six markets before I bury it in the Box of Failure.
I’ll pay postage for every rejection, of course. By the way, the crate
the stove came in is filling up, so I need a new Box of Failure, let
me know when you buy a fridge.”

Stuffing the Box of Failure to overflowing is its own reward. You
don’t get paid for it.

I needed a job.
In 1995, one of my “friends” was the DNS administrator for one

of the brand-new Internet backbones. They needed a dispos-
able body to answer phones, yell at the phone company, and run
poorly documented commands as root. It paid terribly, but my
experience consisted of running “trn” and “elm” as well as the oc-
casional failure at FTP so that seemed fair. It was even on the night

shift, which meant I didn’t have to spend extra energy debugging
why my peek() and poke() operations failed to provoke people
correctly. People are buggy and have no interface for dispassion-
ately accepting bug reports. I did learn to find the joy in making
callers dump core, however.

Nobody explained the dangers of having the root password
before handing it to me—specifically that if you break it, you must
fix it. In their defense, warning me would have ruined their fun.
I needed to actually learn this FreeBSD thing before I yet again
wiped a server and had to reinstall 2.0.5. Walnut Creek CDROM,
FreeBSD’s earliest commercial backer, had published Greg
Lehey’s Complete FreeBSD. I acquired one and began studying.

Scope creep is not only for projects. It is also for junior systems
administrators. The “friend” who got me hired taught me how
to do her job and promptly departed for an employer that still
offered hope, which showcased her wisdom until she emailed
and asked for help finding yet another job and I cheerily avenged
myself. By then I had learned about NNTP and ldd(1) and realized
that systems administration was the closest thing our society
has to black magic and if only I understood library versioning I
could become the modern Aleister Crowley. It’s not that I wanted
the endless wild parties, nor the ability to borrow vast large

sums without consideration of repayment, but the thought of
absorbing that much public vituperation made me believe I could
make a difference in people’s lives. Fortunately, time has beaten
that youthful foolishness from my heart and left me my present
happy wholesome self, perfectly well adapted to the carefree
work of network and systems administration.

Back in the exciting days of the early Internet, we had these
things called “print magazines.” They were like printed-out blogs,
glued together with a shiny cover. One was called “Sys Admin,”
demonstrating that spelling is an optional social convention.
My quest to understand the pit I’d ignorantly dug myself into
led me to subscribe, which was like RSS except they show up
at your house every month even when you forget to check the
feed. I fondly remember reading an article that contained useful
information, once I deciphered the appalling writing. My gut
reaction was that I could write better during a colonoscopy. I
turned the page to see a Write For Us! box. Annoyed that I was
working on my third Box of Failure while some doofus who could
barely nail a verb to a noun had gotten published, I spewed
something about CVS, CVSup, and building world and sent it to
the editor.

Spite is its own reward, yes, but sometimes it offers special
bonus rewards. They sent me a contract, a check that covered
that month’s mortgage payment, and a request to be permitted
to send me more checks. They even printed that article in their
September 1999 issue and put my name on the cover. Every few
months afterwards, I would indulgently spit out a couple thousand
words on some topic that annoyed me, polish it into formal
magazine text, and let the editors send me money.

If your writing is less awful than other people’s, strangers will
appear out of nowhere and ask you to do more of it.

In the late 1990s, tech publisher O’Reilly decided to branch out
into web-based publishing. They convinced one Chris Coleman to
collect articles for the brand-new online BSD DevCenter. I’m sure
it sounded simple when they proposed he take the job, but Chris
quickly discovered that the world contained about two FreeBSD
authors and Greg Lehey had learned better. Chris introduced
himself and offered to exchange words for cash. Fortunately,
Chris persuaded Dru Lavigne to join us, or the BSD DevCenter
would been renamed Lucas Whinges Like A Frustrated Toddler
and nobody would click on that.

The Big Scary Daemons column was basically “what program
is annoying Lucas this week, and how can it be bludgeoned into
submission?” Since the column was on the web, it wasn’t like my
articles were real. It freed me to write random gobbledygook,
including daft things like the “sharing swap space between Linux
and FreeBSD on multiboot systems” column that people still try
to discuss with me even though multiboot has gone the way of
the 5¼-inch floppy.

I established the O’Reilly column just in time for Sys Admin
magazine to implode. Sending me those checks wrecked the
publisher. Oh, well.

In early 2001, Bill Pollock asked Chris if he knew anyone
interested in writing a FreeBSD book for No Starch Press. Chris
threw out my name and fled before Bill could sucker him into it.

I signed the contract for Absolute BSD just in time for O’Reilly’s
BSD DevCenter to implode. I’m not saying I am frequently seen
fleeing publishers going down in flames, but it’s not uncommon.

Absolute BSD led to Absolute OpenBSD, then Absolute
FreeBSD, Cisco Routers for the Desperate, Network Flow Analysis,
and more. I had innumerable other book ideas, but my experience

Back in the exciting days
of the early Internet,
we had these things called
“print magazines.”

29FreeBSD Journal • May/June 2023

with PGP & GPG showed the warehoused oblivion awaiting
unpopular books and the market for a book on PAM, sudo, or
ed(1) was minuscule. My notes languished in my scrapbooks,
surrounded by conference call doodles: obscene occult sigils,
solitaire games of tic-tac-toe, pleas for euthanasia. You know,
the usual. When self-publishing became cost-effective, that let
me put out the less commercial books like SSH Mastery and
FreeBSD Mastery: Jails. No commercial publisher will touch niche
novels like $ git commit murder and $ git sync murder, but I
now have the tools so nobody can stop me from trebucheting
these BSD-themed works into the public eye. My fifty-second
book will escape into the wild about the time this issue appears.
Fortunately, that’s insufficiently notable for Wikipedia. I don’t care
if I have an entry therein, but I would object if said entry contained
even a soupçon of the precious truth.

There. The truth. You have it.
I consider my obligation to the editorial board fulfilled.
The aforementioned “truthfulness” compels me to mention,

however, that I did notice the question hidden within your letter.

Why do you do keep hanging around us? Why do you write all
these books? I cannot conceive a more obvious disguise for
asking how can we make you go away? In that regard, I must again
disappoint. I am not only aware of the sunk cost fallacy, I embrace
it. Besides, someone warned the Linux folks about me. I fully
expect to remain here until this esteemed Journal pays off the
debt of gelato it promised me in my first column. And promptly
implodes.

Have a question for Michael?
Send it to letters@freebsdjournal.org

MICHAEL W LUCAS (https://mwl.io) has been scribbling this col-
umn for five years. He’s currently writing a book on running your
own mail server and scratching his back on the doorframe. Letters
to ed(1) collects the first three years of this drivel.

Books that will
 help you.

While we appreciate Mr Lucas’ unique
contributions to the Journal, we do feel his
specific talents are not being fully utilized. Please
buy his books, his hours, autographed photos,
whatever, so that he is otherwise engaged.

— John Baldwin
FreeBSD Journal Editorial Board Chair

“
”

Or not.

https://mwl.io

Happy

Thank you to the FreeBSD Community for
 your hard work and dedication in creating

our favorite open source operating system!
Cheers to 30 years!

31FreeBSD Journal • May/June 2023

FreeBSD in Japan:
A Trip Down Memory Lane
and Today’s Reality
BY HIROKI SATO

Mainframes and Large-Scale Computers
To understand Japan’s computer industry, you must know how

it has grown. In terms of commercial computers, mainframes
were most popular in the US from the 1950s on. IBM System/360,
in 1964, is one of the most famous models. Japanese companies
started to develop computers after the research phase, and since
the required technologies were premature in the 1960s, compat-
ible models were developed under business partnerships with
RCA, Honeywell, and General Electric. The players in Japan were
Fujitsu, Hitachi, NEC, Toshiba, Mitsubishi, and Oki, and they were
supported by funded projects from the Japanese government to
develop the domestic industry. They are also known as “NTT fami-
ly companies,” which have developed communication equipment
and infrastructure for some time.

In 1970, minicomputers such as DEC PDP-11 and VAX became
popular as office computers in the US, and Japanese companies
developed similar models. While imported minicomputers were
used with UNIX and BSD as engineering workstations in uni-
versities, research institutes, and some software development
companies, they gained a small market share because they were
too tricky for office users and had relatively poor support service

compared to the domestic models.
Personal Computers

Figure 1: PC-8001 (a photo under CC-BY-2.0 taken by Tom West, a user of Flickr)

Personal computers also emerged in this timeframe. Japan ob-
tained microprocessor technology in the 1970s, however, the mi-
croprocessor business was not going well except for calculators.
People did not know what was good about it. In 1974, the Altair
8800 microcomputer was released in the US and is considered
the spark that ignited the microcomputer revolution. Although
it arrived in Japan in 1975, it was too expensive due to import fees
and thus caused no major impact. In 1976, NEC released a TK-80
training kit, an Intel 8080-based microcomputer board. To be

Japan is one of the regions where BSD and BSD-derived operat-
ing systems have been popular. Most of the evolution in com-
puters and software technology has been in North America

and Europe, however, Japan has had a significant domestic market
for computers and ambitions toward the future backed by success
in the semiconductor industry in the 1980s. In this same time-
frame, commercialized Unix and BSD operating systems evolved.
While much happened in the Japanese computer industry and

user communities, these stories are rarely told because the re-
cords are only in Japanese, there are piles of failures, and there was
less significant impact outside Japan.

Although the topic is dense, this article will focus on the history
of BSD and Japan and the use of FreeBSD today. You will learn why
and when Japanese people started using BSD and how they now
feel about it.

1970-1980: Japanese-Domestic Computers

32 FreeBSD Journal • May/June 2023

exact, the processor was NEC’s uPD8080A, a software-compat-
ible clone of Intel’s 8080. It rapidly became quite popular and
recorded sales of 17,000 units for a year. This motivated NEC to
develop “personal computers” and the Japanese computer indus-
try entered the personal computer era.

In the US, several companies—such as Commodore and
Apple—released personal computers in 1977, and the 16-bit IBM
PC was released in 1981. In Japan, NEC released PC-8001 in 1979.
It was one of the first “made in Japan” personal computers that
has a Z80-based processor, 16 kB RAM, and N-BASIC (enhanced
version of Microsoft BASIC). PC-8001 recorded sales of 250,000
units for four years with 40% of the market share.

NEC released the PC-8000 series in 1979, the PC-6000 series
in 1981, and the PC-9800 series in 1982, and was strongest in the
market until 1997. The PC-8000 and PC-6000 are Z80-based,
and the PC-9800 is Intel x86 from 8086 to Pentium II. These
three series were independently developed in separate divisions
of NEC. To avoid competition, PC-6000 was terminated, and PC-

8000 and PC-9800 were refocused for hobbyists and business
users respectively.
Technical Differences: Japanese Language Support

A major difference from computers in the US is that Japanese
computers must handle Japanese characters. The Japanese lan-
guage uses three groups of characters: Hiragana, Katakana, and
Kanji. The former two groups are phonetic lettering systems with
about 100 characters and the latter is logographic. While there
are about 100,000 Kanji characters, you need to understand at
least 2,200 selected characters to read a newspaper—Japanese
elementary schools teach 1,026 characters in 6 years. And glyphs
for Kanji require at least 16 x 16 pixels on a display or paper. This
means that a single character requires 16-bit encoding and dis-
playing one requires 16 x 16 bitmap data.

Obviously, computers in the US market needed non-trivial
modifications to support the Japanese language. However, having
all Kanji characters challenging even for Japanese models at
that time because it required a lot of memory. The first models
supported only Katakana using a modified ASCII code as the
single-byte encoding.

PC-8001 has 160 x 100 resolution and no Kanji support. PC-
9801, which is designed for office use, has 640 x 400 and Kanji
support. Kanji is mandatory for serious business machines. To
support it, we had to develop an encoding for Kanji characters.
A standard of character set JIS C 6226 was issued in 1978, four
years before the release of PC-9800. C 6226 has 6,802 Kanji and
non-Kanji characters and is split into Level-1 and Level-2 based on
the frequency of use. Level 1 has 3,418 characters—the minimum
requirement to support Kanji. And to encode them, encoding
standards were developed; Microsoft, Digital Research, ASCII (a
Japanese corporation), and Mitsubishi collaboratively developed
“Shift JIS” encoding in 1982. The maximum number of characters
this encoding scheme can hold is 11,438, and it was sufficient to
support Kanji in the JIS C 6226 character set.

Another problem was Kanji font glyphs. If all Kanji in C 6226
Level 1 are supported, it consumes 14 kB of memory to hold the 16
x 16 bitmap font. The PC-9800 series has text VRAM with a Kanji
character generator. VRAM is a dual-ported DRAM used as the
frame buffer for graphics display. On the IBM-PC, displaying Jap-
anese relied on software. Reading the glyph data and rendering
them into the frame buffer takes much longer than hardware-as-
sisted VRAM on the PC-9800 series.

These language-specific factors are part of the reason why the
PC-9800 series was strong in the market before Windows 95.
In 1987, the PC-9800 series had over 90% of the market sales of
domestic, 16-bit, personal computers. They can be divided into
the PC-9801 and PC-9821 series. The former series was manu-
factured from 1982 to 1995, and the latter was from 1992 to 2003.
All models are basically compatible. ROM BASIC or disk BASIC
was popular in the early phase, then MS-DOS, and eventually
Microsoft Windows arrived. This sequence of events was like the
IBM-PC in the US. In short, Japanese people also enjoyed Intel x86
machines with games and business software such as Lotus 1-2-3 as
well as computer geek culture such as BBS using phone lines.

Figure 2: Usage share of personal computers at home as of 1989. 509 Japanese busi-
nessmen responded. Source: Nikkei Personal Computing Journal 1989-4-10 issue (a
public domain chart from Wikipedia).

There were also exciting machines by other companies. No-
table were MSX in 1983 and Sharp X68000 in 1987. They focused
on hobbyists and quickly disappeared from the market. At BSD
conferences, the author often asks, “what was your first comput-
er?” Amiga 500? Sinclair ZX80? If you ever see me, please share
your story.

Japanese elementary schools
teach 1,026 characters in 6 years.
And glyphs for Kanji require at
least 16 x 16 pixels on a display
or paper. This means that a
single character requires 16-bit
encoding and displaying one
requires 16 x 16 bitmap data.

33FreeBSD Journal • May/June 2023

Until 1980, all commercial
computers in Japan were clones
or slightly modified versions
of computers from the US.

Before moving on to the 386BSD porting topic, let’s see
hardware and software technology in the Japanese industry at
that time. In the 1980s, mainframes or minicomputers were still
popular as larger-scale computers in Japan. Many applications
written in FORTRAN or COBOL were used in government facili-
ties, offices, banks, etc. and major electric companies partnered
with US companies to learn the technology, including hardware
and software. Until 1975, foreign companies were not able to enter
the Japanese market. Fostering the industry was done under the
protection of the Japanese government. Even after that, in 1979,
Fujitsu surpassed IBM in sales in the domestic computer market
and the companies gained technology comparable to the US.

Until 1980, all commercial computers in Japan were clones or
slightly modified versions of computers from the US. Japan man-
aged to get technology, but there needed to be more innovation
and better originality. To overcome this situation, the Japanese
government started software projects in the same manner
as hardware and the major electric companies joined them.
The motivation came from the fact that software businesses
emerged in the US in the same timeframe. In 1980, US President
Jimmy Carter signed the Computer Software Copyright Act
into law and IBM started to dissolve the bundling of hardware
and software and to sell software independently. The same law
in Japan took effect in 1986, after lengthy discussion. Until that
time, IBM’s software was the source of software technology, and
the code was available in the public domain. Japanese companies
could learn everything from MVS for System/360, which is an
operating system released in 1974 for the IBM mainframe Sys-
tem/360 series. They needed to pay software license fees if they
were to continue to depend on IBM’s software.

In 1982, a project called Fifth Generation Computer Systems
(FGCS) launched. FGCS aimed at hardware and software for
artificial intelligence. This was one of Japan’s first attempts at de-
veloping original hardware and software technology. They stuck
to Prolog, though LISP was popular in the field of AI outside Japan.
Parallel computing and concurrent logic programming were the
target technologies. This project ended in 1992 with processors,
operating systems, and application software that were dedicated
to logic programming. Then an article was published in Inter-
national Herald Tribune, entitled The Japanese Give Up on New
Wave of Computers—Vaunted Threat to US Of a New Superiority

Fails to Meet Its Goals. FGCS produced no practical commercial
impact, although the research results provided academic contri-
butions. This decade-long project had yet to be able to displace
the US leadership in super-computing.

In 1985, the Sigma Project launched. The government thought
Japan needed a standard development platform to foster more
software developers. The lack of programmers was believed to
be a big problem in the 1990s as the number of computers and
software business was rapidly growing. The Sigma platform was
designed by companies involved in the mainframe business and
transferring the accumulated technology to domestic office com-
puters was the primary target.

Sigma and UNIX Workstation Business
From the end-users’ perspective, the derivations of this project

were Sigma Workstation and Sigma OS. The goal was 32-bit 1 MIPS
MPU, 4 MB RAM, 80 MB HDD, and IEEE802.3 (Ethernet). AT&T’s
UNIX System V 2.0 (SVR2) and some functionality of 4.2BSD for
the OS. Sigma Workstation is a SysV UNIX workstation, but the
OS is supposed to be a heavily modified version to fit the spe-

1980-1990: National Software Projects

The IBM-PC and PC-9800 are incompatible regarding the
I/O port and memory mapping, but porting software is possible
and straightforward except for handling the Japanese language.

So, when 386BSD was released, some people were interested in
porting to PC-9800.

34 FreeBSD Journal • May/June 2023

cific needs of Sigma Tools, which were supposed to be reusable,
useful software distributed through the Sigma Project’s network
infrastructure.

The workstation and OS were being developed at companies
independently—there were Sigma-compliant workstations and
Sigma-compliant OSes. While the hardware of the Sigma work-
station was a relatively easy target, the development of Sigma OS
was chaotic. UNIX rapidly evolved in the same timeframe. SVR2
was released in 1984, SVR3 in 1986, and SVR4 in 1988. The project
could not catch up with this release speed and their SVR2-based
implementations became obsolete. Since Sigma OSes were de-
veloped independently, compatibility was also a big issue.

All the big companies already had UNIX workstations in their
product lineups, so motivation to develop the Sigma OS was low.
The market size of computers was 1.3 million units as of 1988. The
workstation held only about 25,000 units. Sun, Apollo, and HP
had already appeared and very few big companies considered
Sigma very seriously.

The project had only two years to implement the first version.
Eventually, 199 companies were involved. In 1990, Nikkei Com-
puter, a magazine covering the computer industry, summarized
“five years and one hundred million US dollars did not produce
anything.” Developing the non-hardware part was too ambitious.

On the other hand, UNIX was introduced to Japan and Kouichi
Kishida formed the Japan UNIX society. In 1983, two years before
the Sigma project launched. Mr. Kishida was the founder of SRA

(Software Research Associates, Inc., a private software company
in Japan since 1967) and the first person to use UNIX in a commer-
cial company in 1980. While the mainframers joined the Sigma
project, some companies decided not to join and SRA and Sony
were some of them. They started to develop a UNIX workstation
named Sony NEWS, which has nothing to do with NeWS, Net-
work extensible Window System.

Meanwhile, Sun Microsystems was founded in 1982 and they
were selling Sun-3, 68k-based workstations with BSD when the Sig-
ma project began. Sony wanted to develop their own workstations
and thought making them a part of Sigma was a good idea. Mr.
Kishida was disappointed with the plan of Sigma at the very early
stage, and he and Sony agreed to go their own ways. The goal was
to develop something better than Sun. The advent of Sony NEWS
greatly impacted the Sigma project because NEWS was affordable
and performant compared to Sigma workstations available at that
time. The Japanese government reportedly requested a delay in
the product release. UNIX users in Japan loved Sony NEWS.

At the end of the Sigma project, only four companies, NEC,
Hitachi, Fujitsu, Omron, were selling Sigma workstations and they
were just modified versions of their UNIX workstations. They work
as Sigma if running Sigma OS and they also support SysV, BSD,
or traditional OSes which they had for business purposes. It is
believed that no innovative result was obtained, however, software
engineers in Japan learned UNIX through Sigma.

1990-2000: BSD and FreeBSD in Japan

Sony NEWS

Figure 3: Sony NEWS workstation (a public domain photo from Wikipedia). As
mentioned, many Japanese companies were involved in the workstation business.
UNIX was the promising OS, but SysV vs BSD had cast a shadow over the market in a
different way from the US because of Sigma. On the other hand, Sun’s workstation
gradually gained market share.

From a historical point of view, Sony NEWS and Omron LUNA
were “made in Japan” machines that seriously considered porting
BSD and were officially supported by 4.4BSD released in 1993. Oth-
er than those, the HP-9000 300 series, DECstation 3100/5000,
and SPARCstation 1/2 were supported. CSRG at UC Berkeley was
using the HP-9000 300 series as the reference machine then.

The first model of the Sony NEWS series was released in 1987.
While the Sigma project stuck to System V because AT&T was
driving it, developers at Sony and Mr. Kishida believed BSD was
better. It was 68k-based until 1990, and the later models adopted
MIPS R3000, R4000, and R10000. NEWS-OS 1.0 was a ported
version of 4.2BSD and supported Shift JIS instead EUC-JP. Versions
2.0 to 4.0 were 4.3BSD-based. The final version was 6.1.2 in 1996,
but it was switched to SVR4-based after 1993. WIDE project mem-
bers used many Sony NEWS workstations as a research platform
and had a collaborative project with Sony to port 4.3BSD and

35FreeBSD Journal • May/June 2023

4.4BSD. LUNA was 68k-based, like the HP-9000 300 series, and
NEWS was MIPS-based similar to the DECstation 3100. Some of
the source files in 4.4BSD were shared because of it.

The famous UNIX wars between OSF and UI were from 1988
to 1994. The above models were discontinued around 1993. There
were few Japan-specific innovative developments during the time
Japanese software engineers were involved in the porting efforts
and the vendors caught up with the evolution in SysV and BSD
through them.

Anyway, Japanese software engineers learned UNIX and BSD
and there were engineering workstations that ran them. What’s
next?

FreeBSD(98) and FreeBSD/pc98
In 1992, 386BSD version 0.0 was released. Of course, it was for

the IBM-PC/AT, so it did not run on PC-9800. Students at KMC
(Kyoto University Micro Computer Club) with Internet access and
Sun workstations ported it and released 386BSD(98) in 1992. The
updated versions of 386BSD were distributed as patch kits and the
KMC team released 386BSD(98)-0.1 based on the patch-kit 0.1.

The FreeBSD and NetBSD project started in 1993. FreeBSD 1.0
and NetBSD 0.8 were released in 1993 and based on 386BSD-0.1
and patch-kit 0.2.2. There was no porting effort for a while after
386BSD(98)-0.1. In 1994, four students were independently trying
to port FreeBSD. They communicated via Netnews, and the result
was eventually released as FreeBSD(98) 1.1.5.1.

The FreeBSD project was working on 4.4BSD-Lite-based
FreeBSD as 2.0-RELEASE. It was released in November 1994. The
FreeBSD(98) development team tried to catch up with it and
released FreeBSD(98) 2.0-ALPHA in December 1994. After that,
it was maintained until FreeBSD 5.4R-Rev01. From the 5.5-RE-
LEASE and 6.0-RELEASE, the FreeBSD for PC-9800 series start-
ed to be released as an officially supported distribution named
FreeBSD/pc98.

The differences between PC-9800 and IBM-PC/AT are boot-
strap stages, memory layouts, I/O port mapping, and devices. It
was easy to maintain the ported versions once routines to handle
these hardware-dependent parts were written. Although it was
actively maintained until 2010, it became Tier-2 at the point when
FreeBSD dropped floppy disk support in the boot loader. Most
of the models do not support bootstrap from a CD-ROM drive.
Before the 12.0-RELEASE in 2018, the support was unfortunately
removed.

Projects and User Groups of FreeBSD
As FreeBSD(98) was actively developed, there were BSD user

and developer communities in Japan. UNIX users had BSD on
workstations such as Sony NEWS and the SPARCstation with
SunOS4. There were many developers in companies who knew
BSD well. In 1988, Jun Murai, a professor at Keio University who
is recognized as the father of Japan’s Internet infrastructure,
established WIDE, a research project having to do with the
Internet and related technology. Many software engineers in
companies and professors at universities have been involved,
and BSD was the popular research platform. One of the notable
projects was the IPv6 network stack started in 1998. It was called
KAME, which means a turtle in Japanese. IIJ—Internet Initiative
Japan, the first commercial ISP in Japan, NEC, Toshiba, Hitachi,
Fujitsu, and Yokogawa Electric joined the project. Not only IPv6,
but emerging technology such as mobile IP and IPsec have also
been implemented and evaluated using BSD for eight years. They

were also active on standardizing bodies, such as IETF, and took
leadership in academic research and commercial network design
in Japan. The results have been merged into FreeBSD, NetBSD,
and OpenBSD.

In 1999, several Japanese FreeBSD committers formally estab-
lished JFUG, Japan FreeBSD Users Group. They tried to organize
the ongoing activities by Japanese users whom a company or
university had not supported. The translated version of www.
FreeBSD.org was hosted as www.jp.FreeBSD.org, and several
companies donated the necessary infrastructure. The author was
was one of the people who started to get involved in FreeBSD
via JFUG around 2000, when he was an undergraduate student.
Another group of people formed JNUG, Japan NetBSD Users
Group. While both user groups have become inactive these days,
the members are largely overlapped and still have. still have small-
er-scale meetings to discuss BSD.

One of the notable JFUG projects was PAO. It started by
Tatsumi Hosokawa at Keio University (hosokawa@FreeBSD.
org) around 1995 before JFUG was formed, and the goal was to
improve mobile device support. At that time, IBM ThinkPad 535
and DEC HiNote Ultra were popular, and there were a lot of small
gadgets in the Japanese market. Laptops (which Japanese people
call “notebook” PCs) needed device drivers and frameworks to
support power management, suspend/resume, battery, hot-plug-
ging of PCMCIA cards, etc.

PAO was the distribution name which, interestingly, means a
portable, rounded tent used by nomadic groups in Central Asia.
Laptop users are nomads, and the PAO project provides them a
safe dwelling!

Hosokawa began to work on 2.1.0 and led the PAO project. The
results have been merged into the main tree, including various
drivers and changes for dynamic resource allocation for kernel
subsystems to support hot-plugging. 3.5.1-RELEASE was the last
PAO snapshot release, and the project was concluded in 2001, as

As FreeBSD(98) was actively
developed, there were
BSD user and developer
communities in Japan.

36 FreeBSD Journal • May/June 2023

all the changes were merged to the 5.x and 4.x branches. The pre-
vious version of FreeBSD USB stack was also from a member of
this project. The current version has been rewritten by Hans-Pet-
ter Selasky (hps@FreeBSD.org).

Another related project was ACPI. Takanori Watanabe (tak-
awata@FreeBSD.org) and Mitsuru Iwasaki (iwasaki@FreeBSD.
org) started this project in 1999 to implement the ACPI driver.
While PAO was based on APM BIOS, newer models needed ACPI
support because APM BIOS was being replaced with ACPI. The
announcement to the FreeBSD project was made in October
1999. In 2000, Intel released ACPI CA (Component Architecture)
as a reference implementation under a permissive license. It
partially replaced their efforts and eventually merged into the
main tree. Around 2004, most ACPI-related discussions were held

on freebsd-acpi in English. Because of that, this JFUG project was
concluded in 2005.

The activities were more than just technical ones. Providing
information about FreeBSD in Japanese was one of the critical
roles of JFUG. The members actively worked on translating man-
ual pages, the official website, and book-like documents, such as
FreeBSD Handbook. Kazuo Horikawa (horikawa@FreeBSD.org)
led the manual page translation, and Ryusuke Suzuki (ryusuke@
FreeBSD.org) worked on the others.

However, this kind of contribution did not always go well. In the
late 1990s, some Japanese BSD developers were working on the
dynamic configuration of the kernel to support hot-plugging as
described. A developer tried to extend BSD config(8) framework
to support it. His implementation was named newconfig, which
extended the bus framework to handle dynamic configurations
in addition to the traditional static ones. It was merged into PAO,
and PAO depended on it for a long time. The development group
wanted to merge newconfig to the main tree. Meanwhile, new-
bus was discussed in the FreeBSD project. The new-bus, what we
have now in the main tree, was another implementation that can
handle dynamic resource allocation. Technically speaking, the
capabilities are similar. The challenge for the team was how to
convince the FreeBSD project members to accept their patch.

Supporters of newconfig believed it was a less intrusive
extension to the existing framework and also possible to main-
tain device driver compatibility with NetBSD. The new-bus was
discussed in a closed mailing list, and they were frustrated to the
unclear decision process. The team rewrote a lot of drivers and
released snapshots to prove the usefulness and practicality. In the
end, new-bus was committed and the team gave up newconfig. It
was a sad thing that a substantial number of project members dis-
appointed and went to NetBSD. PAO was rewritten as a new-bus
based implementation before the merge happened.

From the author’s perspective, JFUG had fulfilled the duty well
for about five years. Over 50 people were active in social and
technical contributions to JFUG activities. And at the same time,
they recognized that Japanese-only groups did not work well for
development. The members who were still interested joined the
FreeBSD project directly. While JFUG was no longer active in and
after 2005, the author was still one of the JFUG members and
felt the user community was rapidly shrinking. To overcome this
situation, he started to host AsiaBSDCon in Tokyo in 2007—with
great help from George Neville-Neil (gnn@FreeBSD.org), one
of the authors of Design and Implementation of FreeBSD and a
columnist for ACM Queue magazine. The author had attended
BSDCan and EuroBSDcon several times to learn from people
outside Japan. BSD conferences are beyond the topics covered
by this article, but AsiaBSDCon is one of the activities that has
remained in Japan.

BSD in Business and Industry—Wide Adoption of Linux
So, what was it like after 2005, and how is it today?
The number of FreeBSD users around 2000 was the largest in

the PC-UNIX market, partially because only FreeBSD had descent
PC-9800 series support. Linux and NetBSD were also used but
had no stable ported version. FreeBSD’s user base was strong,
even after IBM-PC/AT became popular. On the commercial front,
FreeBSD and NetBSD were used for Internet servers and used to
implement embedded systems such as a router box and an Eth-
ernet board for printers. This happened because many software
engineers were familiar with UNIX and BSD in the 1990s. Both
hobbyist and business user communities were quite active and
there were a lot of magazines, books, and conferences relating to
FreeBSD and Linux.

On the other hand, Linux eventually dominated the market in
Japan. During 2000 to 2010, a significant change occurred in the
Japanese UNIX market. As mentioned, several big computer man-
ufacturers were selling UNIX workstations. Whether SysV or BSD-
based, the sales were descending because imported machines
such as Sun Microsystems were strong and they were looking for
a way to offload the development costs. On the other hand, in
the 1990s, Internet companies such as Yahoo! started to use PC-
UNIX and commodity hardware for their businesses. The future of
expensive UNIX workstations became questionable, especially for
vendors who were just following the US market.

In 2000, Toshiba, Hitachi, Fujitsu, and IBM Japan independent-
ly announced that they would support Linux as their business
foundation. IBM Japan’s move in May 2000 made a significant
impact. Hitachi did this in September 2000, and Toshiba did it in
October. By the end of the 1990s, their UNIX workstation business
was based on commercial UNIX such as Solaris and HP-UX and
not on domestic versions of SVR4 or BSD. After the announce-
ments, each company started to build a business structure to
adopt PC-UNIX and went for Linux-centric businesses. They have

Linux eventually dominated
the market in Japan.

37FreeBSD Journal • May/June 2023

established Linux support companies and, more importantly, have
collaboratively established a Linux education infrastructure.

Japan has a unique hiring practice when big Japanese com-
panies hire new university graduates. It is called “simultaneous
recruiting of new graduates.” Most students hunt for jobs before
graduation from university, seeking “formal letter of employ-
ment.” The government controls this process, and companies are
allowed to begin the selection process, usually in April. Attaining
a position as a regular employee at any other time of year, or any
later in life, is generally difficult in Japan. This means that most
new employees have no business experience at the time of hiring
and the companies are responsible for their education. Thus,
the above big companies formed LPI-Japan (Linux Professional
Institute Japan) as a non-profit offering the education service in
a vendor-neutral manner. LPI (Linux Professional Institute, Inc.)
is a Canadian non-profit organization founded in 1999 for Linux
certifications. LPI-Japan was established as a Japan branch.

A substantial amount of investment by big companies was
made to LPI to develop the Japanese version of the educational
materials and exams. As a result, most new employees at big com-
puter companies learn Linux as the reference platform. The num-
ber is more than 1,000 per year. Official adoption of Linux and this
education system increased the user base, and young people had
no chance to learn UNIX or BSD. This was one of the reasons why
Japanese BSD user groups lost popularity. Older people still enjoy
BSD, but there is no such motivation for younger generations.
While FreeBSD was one of the most popular PC-UNIX in 1999, Li-
nux became standard around 2005. All business sectors that used
BSD, such as embedded system development, were also shifted
toward Linux. Many old developers who used to work on BSD at
companies have also left.

Sadly, this situation warrants no optimism about the future
of FreeBSD in Japan. The FreeBSD Foundation continuously
approaches enterprise FreeBSD users in Japan to bridge them
with the FreeBSD project. Even with the nationwide movement
toward Linux, several companies still use BSD. IIJ has been using

NetBSD to build their router products, and Sony’s famous gaming
consoles, PlayStation 4 and 5, are using the FreeBSD kernel as the
core component. The business use of FreeBSD has been changed
from a complete OS to a component-level adoption. For exam-
ple, FreeBSD’s network stack is often used to implement TCP/
IP functionality in various products. The author suggests that the
FreeBSD project should recognize the demands for these use
cases, and investment in them would be worth doing to reinforce
its strength even after Linux became the standard choice.

Conclusion
This article has traced some aspects of a 50-year history of the

domestic industry in Japan. Although the author tried to make this
as accurate as possible by using various references and his own
experiences, please let him know if you find anything in error.

The BSD community in Japan, including all flavors of BSD-de-
rived operating systems, has been active for quite a long time.
Since communication in English was always challenging, the
activities were often invisible from places where the official BSD
projects run. Regarding FreeBSD, many people outside Japan have
helped communicate by visiting Japan. I would like to thank Jordan
Hubbard (jkh@FreeBSD.org), one of the founders of the FreeBSD
project, Warner Losh (imp@FreeBSD.org) an ex-FreeBSD Core
Team member and long-term BSD contributor, Murray Stoke-
ly (murray@FreeBSD.org), a release engineer of 4.X-RELEASE,
and George Nevile-Neil for their great support and, of course,
AsiaBSDCon attendees over 15 years.

HIROKI SATO is an assistant professor at Tokyo Institute of
Technology. His research topics include transistor-level integrat-
ed circuit design, analog signal processing, embedded systems,
computer network, and software technology in general. He was
one of the FreeBSD core team members from 2006 to 2022, has
been a FreeBSD Foundation board member since 2008, and has
hosted AsiaBSDCon, an international conference on BSD-derived
operating systems in Asia, since 2007.

Write
For Us!
Write

For Us!
Contact Jim Maurer

with your article ideas.
(jmaurer@freebsdjournal.com)

38 FreeBSD Journal • May/June 2023

A Dozen Years of CheriBSD
BY BROOKS DAVIS

Since late 2010, the CHERI research project at the University
of Cambridge and SRI International has striven to develop,
demonstrate, and transition to real-world products architec-

tural extensions providing memory safety and efficient compart-
mentalization. CheriBSD, our CHERI-enhanced fork of FreeBSD,
is one of the most important products of our work. Adapting
FreeBSD to support CHERI has informed our architectural chang-
es while demonstrating that our ideas can work at the scale of a
large modern operating system.

A Brief Introduction to CHERI
CHERI extends existing architectures (Armv8-A, MIPS64 (re-

tired), RISC-V, and x86_64 (in development)) with a new hardware
type, the CHERI capability. In CHERI systems, all access to mem-
ory is via CHERI capabilities either explicitly via new instructions
or implicitly via a Default Data Capability (DDC) and Program
Counter Capability (PCC) used by instructions with integer argu-
ments. Capabilities grant access to specific ranges of (virtual, or
occasionally, physical) memory via a base and length, and can fur-
ther restrict access with permissions, which are compressed into a
128-bit representation (64-bits for the address and 64-bits for the
metadata). In memory and in registers, capabilities are protected
by tags that are cleared when the capability data is modified by a
non-capability instruction or if a capability instruction would in-
crease the access the capability grants. Tags are stored separately
from data and cannot be manipulated directly.

CHERI 128-bit capabilities

1

12
8-
bi
t	

ca
pa

bi
lit
y

Allocation

Virtual	
address	
space

v

1-
bi
t	

ta
g

permissions
Bounds	compressed	
relative	to	address

otype

Virtual	address	(64	bits)

CHERI	capabilities	extend	pointers	with:	
• Tags	protect	capabilities	in	registers	and	memory	

• Dereferencing	an	untagged	capability	throws	an	exception	
• In-memory	overwrite	automatically	clears	capability	tag	

• Bounds	limit	range	of	address	space	accessible	via	pointer	 	
• Floating-point	compressed	64-bit	lower	and	upper	bounds	
• Strengthens	larger	allocation	alignment	requirements	
• Out-of-bounds	pointer	support	essential	to	C-language	compatibility	

• Permissions	limit	operations	–	e.g.,	load,	store,	fetch	
• Sealing:	immutable,	non-dereferenceable	capabilities	–	used	for	non-monotonic	transitions

Our initial work on CHERI extended the MIPS64 architecture
as part of the DARPA CRASH program. In 2014 we began collab-
oration with Arm, exploring the possibility of adapting CHERI to
the Armv8-A architecture. In 2017 we began a port of CHERI to
RISC-V informed by both our MIPS work and our collaboration
with Arm. This port was performed as part of the DARPA MTO
SSITH program. Our collaboration with Arm became public in
2019, with the announcement of the £190m Digital Security by
Design program, which has resulted in the Morello architecture
prototype, a SoC based on the Neoverse N1 core used in cloud
platforms such as Amazon Web Services’ Graviton nodes.

We have designed CHERI capabilities to be suitable for use
as C and C++ language pointers and have modified the Clang
compiler to support them in two modes. In hybrid mode, point-
ers annotated with _capability are capabilities, while other

pointers remain integers. In pure-capability mode, all pointers are
capabilities, including implied pointers such as return addresses
on the stack. Coupled with kernel support and modest changes to
the C startup code, run-time linker, and standard library, we have
produced a memory safe C/C++ runtime environment called
CheriABI1. The refinement of this environment is a key thrust of
our work on CheriBSD alongside creation of a pure-capability
kernel environment and explorations of temporal memory safety
and compartmentalization.

In addition to memory safety, CHERI enables fine-grained
compartmentalization. Because all memory accesses are via
capabilities, the portion of an address space a given thread can
reach is defined by its register set and the memory that can be
(transitively) reached from there. With appropriate mechanisms
to transition between register sets, we can switch rapidly among
compartments. Various CHERI implementations implement
different mechanisms for this; which one(s) are most appropriate
to a commercial implementation remains the subject of active
research.

What is CheriBSD?
CheriBSD is FreeBSD modified to support CHERI. But what

does that actually mean?
When the kernel is compiled for CHERI, the default ABI is

a pure-capability ABI (CheriABI) where all pointers including
system-call arguments are capabilities. We also support both
hybrid binaries and standard FreeBSD binaries via the freebsd64
ABI compatibility layer derived from the freebsd32 32-bit compat-
ibility layer. Likewise, we build libraries, programs, and the run-
time linker for CheriABI by default and build libraries for hybrid
binaries that are installed in /usr/lib64 just like /usr/lib32
for freebsd32. All of this means that by default users are presented
with a memory-safe Unix userland which retains the ability to run
unmodified FreeBSD binaries.

The kernel can be compiled as either a hybrid or a pure-ca-
pability program. This adds some complexity to the changes we
need to make (every pointer to userspace requires an annotation
(_capability) for hybrid), but we started out with hybrid in the
early days of the project when we didn’t have strong C compiler
support, and pure-capability kernels do have somewhat higher
inherent overhead due to the increased pointer size. All internal
kernel development is done with pure-capability support in mind.
This work includes ensuring that all access to userspace is via a
capability2, changes to the VM system to create capabilities when
allocating memory and altering device drivers including the DRM
GPU framework to use capabilities.

Historically, CheriBSD has mostly been a compile-from-source
proposition. This is familiar to FreeBSD developers, and has many
benefits; however, for people who just want to port a custom
codebase to CHERI, that’s a big hurdle. With the release of Arm’s
Morello prototype, we’ve started producing full releases with an
installer and packages. We use a lightly customized version of the
FreeBSD installer that adds support for installing a GUI desktop
environment based on KDE and removes some dialog boxes we
deemed confusing. The GUI environment is comprised of pack-

39FreeBSD Journal • May/June 2023

ages built from our fork3 of the FreeBSD ports collection. Because
not all software has been ported to CHERI, we build two sets of
packages and build and install two versions of the pkg command
with pkg being a script that redirects callers to the other names.
There is a CheriABI set which is managed by the pkg64c com-
mand and installed under /usr/local and a hybrid set managed
by the pkg64 command and installed under /usr/local64.
Most of the desktop environment is CheriABI binaries, with the
big exception being web browsers (a CheriABI port of Chromium
is in progress). Post-install, hybrid packages are also useful for in-
stalling not-yet ported software such as emacs and Morello LLVM.

Beyond memory safety, CheriBSD plays host to much of our
research on software compartmentalization. In the MIPS era, we
implemented a compartmentalization framework (libcheri) that
we applied to the integrated version of tcpdump. While we did
not port this work forward to RISC-V and Morello, it informed our
early thinking on the use of compartmentalization for increased
availability. Our latest release contains a library compartmentali-
zation model where the dynamically linked library runs in its own
sandbox. The current implementation is experimental but shows
considerable promise at compartmentalizing programs with
little or no modification. Additionally, in a stack of development
branches, we have a co-process compartmentalization model in
which multiple processes share the same virtual address space,
relying on CHERI to provide memory isolation. Coupled with a
trusted switcher component, this enables extremely fast tran-
sition of execution from a thread in one process to a thread in
another process. We expect a signification portion of future work
on CheriBSD will be motivated by compartmentalization, as we
refine our models in the face of an increasing corpus of compart-
mentalized software.

CheriBSD is both a research artifact under active development
and a product servicing dozens or hundreds of users doing their
own R&D. Even for users targeting other domains (embedded
systems, Linux, Windows, etc.) CheriBSD is currently the easiest
place to test CHERI technologies.

Why CheriBSD?
Historically hardware research has focused on bare metal

benchmarks or embedded operating systems. They have a
lower memory footprint and usually execute fewer instructions
(important for simulation) as well as simply having less code to
understand and change. Unfortunately, results don’t always scale

to real world operating systems and it’s too easy to hand wave at
things like dynamic linking as “a small matter of programming.”
Adapting FreeBSD was undeniably more work, but doing so has
given us the ability to evaluate CHERI with an unmatched level
of realism. Some of our ability to use a real, multi-user operating
system stems from timing. In 2010, FPGAs big enough to run sim-
ple cores supporting full instruction set architectures at decent
speeds (100MHz) were finally available for reasonable prices ($5-
10k vs $100k or much more). Likewise, desktop computers were
big enough and fast enough to support full system emulators like
QEMU with relative ease.

People do ask: “why not Linux?” FreeBSD offers a number of
advantages for a research project like CHERI. On the technical
front, FreeBSD’s integrated build system and early adoption
of LLVM has made it relatively easy to build large corpuses of
software with experimental compilers (C/C++ compiler research
is mostly done in LLVM today) both in the base system and via the
ports tree. The clean ABI (Application Binary Interface) abstrac-
tions to support Linux binaries and the freebsd32 32-bit compati-
bility layer greatly simply ABI experimentation. (By contrast, Linux
supports a single alternative ABI that must be 32-bit, and Windows
does all the translation within userspace via a DLL.) While not part
of our initial decision, it later emerged that choosing FreeBSD
over Linux was fortuitous due to extensive use of long in the Li-

nux kernel for both integers and pointers, which cause capabilities
to be invalidated. While people are working on Linux ports at Arm
and elsewhere, the use of long is a major stumbling block.

On less technical fronts, BSD and FreeBSD have a long history
of successful research and transition to real-world products. From
the Fast File System (FFS) and sockets APIs for TCP/IP in 4.2BSD
to Capsicum and pluggable TCP/IP stacks in FreeBSD, many ideas
in daily use by billions of people have been incubated in BSD. One
factor in this success is FreeBSD’s permissive license. Publishing
our work under the two-clause BSD license means potential
adopters can easily evaluate our work even within companies with
proprietary operating systems and strict controls around GPL-li-
censed software. This has enabled successes like a very positive
evaluation4 of past Windows security vulnerabilities by the Micro-
soft Security Response Center.

Ultimately, the success of CHERI depends on adoption by mul-
tiple operating systems. Today, CheriBSD leads the pack with the
latest features and most active research.

Historically hardware research
has focused on bare metal
benchmarks or embedded
operating systems.

40 FreeBSD Journal • May/June 2023

A CheriBSD Timeline

• October 2010—The first CHERI Project begins
• May 2012—CheriBSD running on CHERI-MIPS CPU.
• November 2012—Sandboxed custom application demo on

CheriBSD.
• October 2013—Migrated development to git.
• January 2014—CheriBSD compiled with CHERI LLVM.
• November 2014—Sandboxed tcpdump (sandbox

per-decoder).
• June 2015—CheriBSD with compressed capabilities (128-bit vs

256-bit).
• September 2015—CheriABI pure-capability process environ-

ment up and running.
• January 2016—Began merging RISC-V support from FreeBSD.

• April 2019—CheriABI paper wins Best Paper award at
ASPLOS 2019.

• September 2019—Morello CPU, SoC, and board announced.
• August 2020—CheriBSD ported to CHERI-RISC-V.
• June 2021—Pure-capability kernel (RISC-V)
• January 2022—First official Morello boards ship. CheriBSD

aided in validation.
• May 2022—CheriBSD 22.05 release targets Morello board

users. This is an initial support release focusing on the installer
and basic package infrastructure. The package set included a
basic set of tools including the Morello LLVM compiler.

• December 2022—CheriBSD 22.12 release includes li-
brary-based compartmentalization, ZFS support, DRM
support for the on-die GPU, and a basic GUI environment
where everything except the web browsers is a pure-capabili-
ty program.

Benefits to FreeBSD
Research projects like CHERI can provide significant benefits to

FreeBSD. We have contributed changes ranging from typo fixes
to a port to the RISC-V architecture. We’ve also given talks, added
new committers, and introduced many organizations to FreeBSD.

There are over 1800 commits to the FreeBSD source tree with
“Sponsored by:” lines indicating they were likely funded by work
on CHERI5. This amounts to over 1.5% of commits outside contrib
and sys/contrib since January 2011. These contributions have
been made possible by funding over a dozen committers so far

including two new ones.
Notable contributions:

• External toolchain support—I contributed initial support, lat-
er enhanced by Baptiste Daroussin to add the CROSS_TOOL-
CHAIN variable used today. This functionality was added to
support compiling with the CHERI Clang compiler as well as
custom compilers developed for two other projects: TESLA
and SOAAP. TESLA enabled construction and dynamic en-
forcement of temporal logic assertions, and SOAAP allowed
exploration of compartmentalization hypotheses for large
applications.

• Unprivileged installs and images—I ported the ability to
store the owner and permission metadata of installed files
in a METALOG file from NetBSD in January 2012. This allows
the intallworld command to be run without root privi-
leges. Coupled with support in makefs it was then possible
to build UFS filesystems of either endianness. Followed by
my complaints that there wasn’t a way to embed a filesystem
in a partition table without mounting it, Marcel Moolenaar
contributed the mkimg command in March 2014 to complete
the required toolking.

• MIPS64 maintenance—While FreeBSD had a MIPS port (es-
sential for our use), it didn’t have a lot of users, and didn’t get
much maintenance. We did quite a bit to keep it running, and
improved things that hit our pain points. It served us well, but
we breathed a sigh of relief when we’d transitioned our last
work to RISC-V and MIPS was removed from the main branch.

• RISC-V port—While MIPS had served us well, and we were
trying to build a community around our base BERI MIPS FPGA
implementation, it become clear that the research communi-
ty was moving to RISC-V. As a result, we tasked Ruslan Bukin
with porting FreeBSD to RISC-V; he landed it in the tree in
January 2016.

• Arm N1SDP platform support—The Morello platform is
based on Arm’s N1SDP development board. Ruslan worked
with Andrew Turner to support the attached peripherals,
including the PCI root complex and IOMMU in 2020.

• Cross build from macOS and Linux—In September 2020,
Alex Richardson contributed a make wrapper (tools/
build/make.py) that allows bmake and other build tools to
be bootstrapped on a non-FreeBSD system. This allows builds
on users’ non-FreeBSD desktops and laptops, and in CI envi-
ronments that don’t support FreeBSD. Alex and Jessica Clarke
maintain this support on an ongoing basis.

• Consolidated compatibility system call stubs—Historically,
system calls have been declared in sys/kern/syscalls.
master with compatibility versions declared in sys/compat/
freebsd32/syscalls.master. Developers would fail to
keep them in sync or misunderstand if they needed a com-
patibility wrapper. As part of adding two ABIs to CheriBSD, I
extended the syscalls.master file format and stub gener-
ation code with enough understanding of ABIs for the script
to know what is required. Now there is only one list of system
calls and freebsd32 has a syscalls.conf that specifies ABI
details. I upstreamed this work in early 2022.

• Unprivileged, cross release builds—As part of supporting
hundreds of users of Morello hardware we needed to start
producing releases. Most of our CI and build infrastructure
does unprivileged builds on Linux hosts so Jessica closed the
last gaps in unprivileged builds and cross build support allow-
ing us to build release images in February 2022.

There are over 1800 commits
to the FreeBSD source tree
with “Sponsored by:” lines
indicating they were likely
funded by work on CHERI.

41FreeBSD Journal • May/June 2023

In addition to these changes, we’ve made many smaller im-
provements along the way. With over 1,800 commit messages, I’d
use up all my word count use listing a fraction of them.

Beyond technical contributions, the CHERI project has contrib-
uted to the community. We’ve added two new committers: Alex-
ander Richardson and Jessica Clarke. We’ve also had contributions
from graduate students including Alfredo Mazzinghi and Dapeng
Gao. From short-term contracts to full-time employment, at one
time or another we’ve supported committers including: Jonathan
Anderson, John Baldwin, Ruslan Bukin, David Chisnall, Jessica
Clarke, Brooks Davis, Mark Johnston, Ed Maste, Edward Napierala,
George Neville-Neil, Philip Paepes, Alexander Richardson, Hans
Petter Selasky, Stacey Son, Andrew Turner, Robert Watson, Kon-
rad Witaszczyk, and Bjoern Zeeb

Further, we’ve exposed many people to FreeBSD as a research
platform. We’ve been part of three DARPA programs (CRASH
and MRC from the I2O program office and SSITH from MTO)
where people gained FreeBSD experience as part of supporting
and evaluating our work. With the UK Digital Security by Design
program, dozens of organizations are now using CheriBSD in
demonstration projects funded by Digital Catapult and the De-
fence Science and Technology Laboratory (DSTL).

Conclusions
As research projects go, CHERI has been enormously suc-

cessful, and FreeBSD has played a major role in that success.

Having a well-integrated base OS and monolithic build system,
coupled with the ports collection’s massive scale, has allowed us
to demonstrate CHERI’s potential to a wide audience—leading
to real-world implementations ranging from Arm’s server-class
Morello design to Microsoft’s CHERIoT microcontroller. In turn,
CheriBSD development has led to significant improvements in
FreeBSD from the RISC-V port to build system improvements.
Footnotes
1. https://www.cl.cam.ac.uk/research/security/ctsrd/

pdfs/201904-asplos-cheriabi.pdf
2. A few subsystems access userspace via the direct map, and

those are validated rather than using capabilities directly.
3. https://github.com/CTSRD-CHERI/cheribsd-ports
4. https://msrc-blog.microsoft.com/2020/10/14/security-

analysis-of-cheri-isa/
5. A portion of lines matching “Sponsored by:.*DARPA” are from

the CADETS project which focused on Dtrace work, but the
vast majority are CHERI related.

BROOKS DAVIS is a Principal Computer Scientist in the Comput-
er Science Laboratory at SRI International and a Visiting Research
Fellow at the University of Cambridge Department of Computer
Science and Technology (Computer Laboratory). Leads devel-
opment of CheriBSD, a fork of FreeBSD supporting CHERI ISA
extensions. He has been a FreeBSD user since 1994, a FreeBSD
committer since 2001, and has served 4 terms on the core team.

Thank you!
The FreesBSD Foundation would like to
acknowledge the following companies for their
continued support of the Project.

Because of generous donations such as these
we are able to continue moving the Project
forward.

Are you a fan of FreeBSD? Help us give back to the
Project and donate today! freebsdfoundation.org/donate/

Please check out the full list of generous community investors at
freebsdfoundation.org/donors/

Gold

Platinum

Silver

42 FreeBSD Journal • May/June 2023

How ZFS Made Its Way
into FreeBSD
BY PAWEL DAWIDEK

T he story of how the ZFS file system made its way into the
FreeBSD operating system is a tale of passion for program-
ming, love for technology, and a journey that led to my most

valuable contribution to the FreeBSD project. It was the summer
of 2005. Although I’m not great with dates, I do remember the
circumstances surrounding my first encounter with ZFS. I was with
my friends in the Masurian region of Poland, near one of its 2,000
beautiful lakes. One of my friends worked at a Polish telecom-
munications company at the time, and they used a lot of Sun
Microsystems hardware and Solaris. He brought a printed copy of
the announcement they had received from Sun, describing a new
file system that had been in development for some time and was
about to be released as part of OpenSolaris. But before I continue,
let’s take a step back in time for a bit of context…

Love at First Sight!
I fell in love with programming at first sight. I was 12 years old,

and my cousin—Tomek—introduced me to Basic on a C-64. I was
hooked. I felt like a young god: you take this soulless piece of hard-
ware, create a program, and watch it come to life! This was the
coolest thing; I couldn’t think of anything better. As a result, I was
never into video games. Back then, growing up in a small Polish
town, it wasn’t easy to find people interested in programming, so
I was pretty much on my own (well, except when I was testing the
limits of Tomek’s patience).

When I switched to the Amiga 500, I finally found some friends
from the demo scene with whom I could exchange my work using
3.5-inch floppy disks through the postal service. Latency was not
the best, but I didn’t complain. When my next computer—the
Amiga 1200—started to show its age, it was clear it was time to
move on. I knew Microsoft Windows was not for me. I’d tried
Linux briefly, but I still wasn’t convinced. Finally, a friend pointed
me to FreeBSD. The installation was a breeze, I couldn’t ask for a
better experience. Ha! If you didn’t cringe at that last sentence,
then you clearly haven’t had the “pleasure” of using sysinstall. No,
the installation wasn’t a breeze—it took multiple attempts for me
to finally enjoy my first FreeBSD system. My understanding was

that sysinstall must be like Navy Seals Hell Week, where the strong
are separated from the weak, where real hackers are forged! And
I made it! I set my next goal and dream to not only be a hacker
who can install FreeBSD but to be a kernel hacker and a FreeBSD
committer.

I accomplished my goal in 2003 when I officially joined the
FreeBSD project as an src committer. Yes, I threw a party to
celebrate that. Since I joined, I have worked in many areas of
the system, but mainly with the GEOM framework. The GEOM
framework in FreeBSD sits between disk drivers and file systems,
allowing plug-ins of various transformations, like mirroring, RAID,
block-level encryption, etc. I really liked the GEOM design and
loved working with it, so I had decent experience with at least part
of the storage stack. As for file systems, I knew enough to stay
away from VFS, which is one of the most complicated parts of the
kernel.

The curse. UFS has been the default file system in FreeBSD
since the very beginning. In fact, UFS is much older than FreeBSD
itself. UFS2, which was introduced in FreeBSD 5.0, addressed
some shortcomings of UFS1, but some important ones were still
not addressed. The main issue was the fsck time after a system
crash or power outage. With disks getting bigger and bigger, fsck
could take many hours to complete. The solution to this problem
was obvious—we either needed to add journaling to UFS or port
some other journaled file system to FreeBSD. Easier said than
done. In Linux, there were plenty of file systems to choose from,
and many people tried to port them to FreeBSD, but for some
weird reason, those ports were never finished, so we ended up
with extfs without journaling, read-only ReiserFS, and read-only
XFS. There was even a read-write HFS+ port from Mac OS X,
but, of course, no journaling, and I remember at least one failed
attempt to add journaling to UFS. What was this mystery? Had the
UNIX gods turned their backs on us?

Let’s come back to my vacation in Masuria. My friend starts
to read the ZFS announcement while my eyes and my mouth
open wider and wider: Pooled storage—you can create as many
file systems as you want, and they will all share available space.
Unlimited snapshots that take no time to create. Unlimited clones.
Built-in compression. End-to-end data verification. Self-healing
of corrupted data. Transactional copy-on-write model—always
consistent—no need for fsck. EVER. How? How is that even possi-
ble? This is not an evolution, but a clear revolution in file systems.
I remember dreaming about this perfect marriage: the best file
system running on the best operating system... Wouldn’t that be
amazing?

A few months later, ZFS was released, and it took not only the
open-source community but the entire storage industry by storm.
Some people hated it, most loved it, others feared it, but nobody
was ignoring it. It was called the last word in file systems. It was
called a rampant layering violation. However, it was never called
just another file system. Almost every operating system wanted

I fell in love with programming
at first sight. I was 12 years old
and my cousin introduced me
to Basic on a C-64..

43FreeBSD Journal • May/June 2023

ZFS: Linux userland port started under FUSE, DragonFlyBSD
announced ZFS would be ported soon, and Apple started to port
ZFS to Mac OS X. ZFS will be everywhere soon, just not in our
beloved FreeBSD...

To write this article, I had to analyze a lot of IRC logs from
that era. What struck me the most was how much skepticism
there was about ZFS itself: too complicated, too many layers, just
demoware, design flaws are going to be found soon, just wait for
the first disaster story, it will never be ported to a community-de-
veloped OS, it’s just hype, it’s hilarious. I guess people are used to
the fact that if something looks too good to be true, it often is.
Fortunately, love is blind, and I didn’t notice this at that time.

After waiting 10 months after the ZFS release and seeing
nobody starting the work, I thought I might as well give it a shot.
With almost zero knowledge about the VFS layer, I’d likely fail
quickly, but who could stop me from trying? At the very least,
I’d learn something new. My porting work started on August 12,
2006. To not raise people’s hopes too high, the perforce branch
I created had “This is not a ZFS port!” as its description. My initial
estimates were six months to have a read-only prototype.

I must admit that even though ZFS was not my creation, work-
ing on ZFS was the most engaging project in my career. I love to
work hard, and I love to work late. I like to hyperfocus on projects,
and I have been fortunate to work on many amazing projects. For
many years, I was one of the most productive FreeBSD commit-
ters while still developing my own business. But no other project
kept me awake for 48 hours straight with almost no breaks and
only short naps between those 48 hour periods. What I’m about
to tell you sounds impossible, even for me today, but it did hap-
pen, I can assure you :)

When I work on big projects, I still like to have something that I
can run as quickly as possible and then incrementally implement
missing bits. The first step was to port userland components like
libzpool, ztest, and zdb. This went mostly ok. The next challenge
was to compile and load the ZFS kernel module. When you try to
load a kernel module with missing symbols, the FreeBSD kernel
linker reports the first missing symbol and returns an error. I had
so many missing symbols that I had to hack the linker to report
them all at once. It was taking too much time to fix them one by
one. After five days, I loaded zfs.ko for the first time. In theory,
there were four main meeting points between the FreeBSD kernel
and the ZFS code:

1. On the bottom of the stack, we have to teach ZFS how to talk
to block devices in FreeBSD, so this means connecting ZFS
to GEOM, which in GEOM terms is creating a consumer-only
GEOM class. Because of my GEOM experience, it was trivial.

2. On the top of the stack, we need to connect ZFS to
FreeBSD’s VFS, so port the ZPL layer.

3. Also, on the top of the stack, ZFS storage can be accessed
through ZVOLs, and because ZVOLs are block devices, this is
again GEOM, but this time provider-only GEOM class.

4. The last component is the /dev/zfs device that is used by
userland ZFS tools (zfs(8) and zpool(8)) to communicate with
the ZFS kernel module.

Porting the ZPL layer and attaching ZFS to FreeBSD’s VFS was,
of course, the hardest part. The first kernel mount on FreeBSD
happened on August 19, 2006, so, one week in. After exactly ten
days (and nights) of work, I had a read-write prototype ready. I
could create pools, create file systems, and mount them, create
ZVOLs whose behavior was really stable, create files and directo-
ries, list them, and change permissions and ownership. My initial

estimates of six months for a read-only prototype turned out to
be “a little” off. There was still a huge amount of work to do, but
the encouragement from the community gave me the needed
motivation to continue and finish the project. In 2007, ZFS was
officially released with an experimental status in FreeBSD 7.0, and
in FreeBSD 8.0 (2009), it was declared as production-ready.

No other port that was announced before my work came to
fruition, so I guess to reverse a curse you just need to work hard
enough :)

Just to be fair, a working read-write prototype in ten days
wouldn’t have been possible without one very important decision
that was made by the ZFS creators at the early stage of ZFS devel-
opment. They wanted most of the code to compile in userland, so
it could be easily tested and debugged. This was an immense help
in my porting efforts because most of the code was already highly
portable.

This was an amazing journey, and I wish every software devel-
oper a similar experience. While writing this, I’d like to recognize
some people. First, I’d like to thank Jeff Bonwick, Matt Ahrens,
and the whole ZFS team at Sun for creating this revolutionary
technology and always supporting my work. Alexander Kabaev,
for all his patience and help with VFS. Robert Watson, for all his
encouragement and for being a role model I always looked up
to. Kris Kennaway, for being a ruthless early tester—we didn’t call
him BugMagnet for nothing. Martin Matuska, for stepping up and
taking over ZFS maintenance when the time came. And last, but
not least, I’d like to thank the entire FreeBSD community—there is
nothing that brings more satisfaction than feeling that your work
is appreciated and provides real value.

A lot has happened in the 20 years since ZFS was initially re-
leased: NetApp started a legal battle against Sun. Apple discon-
tinued the ZFS port. Licensing issues prevented ZFS from being
a native component of the Linux kernel. Sun Microsystems no
longer exists, and the new owner closed ZFS development. And
yet, this great technology prevailed, and the project lives on under
the OpenZFS flag. Long live OpenZFS! Long live FreeBSD!

PAWEL DAWIDEK is Co-Founder and CTO at Fudo Security, a
security vendor building products for secure remote access. He is
also involved in the FreeBSD operating system where he works on
security- and storage-related projects, like GELI disk encryption,
Capsicum capability and sandboxing framework, jail containers,
ZFS and various GEOM classes. Pawel’s passion outside of tech-
nology is training Brazilian Jiu Jitsu.

When I work on big projects,
I still like to have something that
I can run as quickly as possible
and then incrementally
implement missing bits.

Donate to the Foundation!

Support
 FreeBSD

You already know that FreeBSD is an internationally
recognized leader in providing a high-performance,
secure, and stable operating system. It�s because of
you. Your donations have a direct impact on the Project.

Please consider making a gift to support FreeBSD for the
coming year. It�s only with your help that we can continue
and increase our support to make FreeBSD the high-
performance, secure, and reliable OS you know and love!

Your investment will help:

Funding Projects to Advance FreeBSD

Increasing Our FreeBSD Advocacy and

Providing Additional Conference
Resources and Travel Grants

Continued Development of the FreeBSD
Journal

Protecting FreeBSD IP and Providing
Legal Support to the Project

Purchasing Hardware to Build and
Improve FreeBSD Project Infrastructure

Making a donation is quick and easy.
freebsdfoundation.org/donate

®

®

45FreeBSD Journal • May/June 2023

AArch64: Bringing a New
FreeBSD Architecture to Tier-1
BY ED MASTE

FreeBSD descended from 386BSD and began with support
for a single CPU architecture, the Intel 80386. Support for
a second architecture, DEC Alpha, arrived in FreeBSD 3.2

and support for 64 bit x86 (amd64) came next. The concept of
support tiers wasn’t yet fully cemented, but amd64 was promoted
to Tier-1 status in 2003. The 64-bit Arm architecture AArch64, also
known as arm64, obtained Tier-1 status in 2021. We’ll explore what
that means and how we got here.

Bringing up a new Tier-1 architecture in FreeBSD is a challeng-
ing task, and it requires significant effort to ensure that the ar-
chitecture is fully supported, stable, performant, and compatible
with the existing FreeBSD ecosystem.

Tier-1 Status
The FreeBSD project website [https://docs.freebsd.org/en/

articles/committers-guide/#archs] documents the three support
tiers. Tier-1 references fully-supported architectures, Tier-2 is
developmental or niche architectures, and Tier-3 are experimental
architectures.

The documented Tier-1 status refers primarily to the guaran-
tees the FreeBSD project makes with respect to the architecture,
including generating release artifacts, providing prebuilt pack-
ages, support by the security team, and backwards compatibility
goals across updates. Tier-1 also implies that the platform is
actively maintained, regularly tested, and receives timely bug fixes
and security updates. A Tier-1 platform is expected to be fully
integrated into the FreeBSD build system so that all components

of the tool chain are functional and developers can easily build,
install and maintain the operating system on that platform.

Tier-1 status also covers some implicit characteristics, such
as hardware availability. FreeBSD doesn’t explicitly require Tier-1
platforms to be widely available or popular, but in practice, Tier-1
status requires that a variety of hardware platforms exist and are
available with a reasonable cost. This is because FreeBSD relies
on a combination of community support and vendor contribu-
tions to maintain and improve its support for different hardware
platforms and to build and test third-party software for the
architecture.

Tier-1 platforms are also expected to be self-hosting—that
is, it is possible to build a new version of the kernel, C runtime,
userland tools, and the rest of the base system on FreeBSD on
that platform.

Platform Genesis
Like several other platforms, FreeBSD/arm64 began with the

interest of a motivated developer. Andrew Turner is a longtime
FreeBSD/arm developer who started looking at Arm’s AArch64
architecture shortly after it was announced. The FreeBSD Founda-
tion saw potential in 64-bit Arm, and also learned of other entities
with an interest in a FreeBSD port to the platform. The Founda-
tion formed a project to coordinate and sponsor both Andrew
Turner and engineering firm Semihalf, with the support of Arm,
and CPU vendor Cavium.

The earliest commit in the FreeBSD that references arm64
added build infrastructure for the kernel-toolchain build target. As
the name suggests, this target builds the tool chain (the compiler,
linker, and so on) that is then used to compile, link and convert a
kernel. Clang was part of the FreeBSD base system at the time this
work was done, so compiler support was fairly straightforward.
However, at the time, FreeBSD still included an older version of
the GNU ld linker, which predated support for AArch64. Thus, the
early build support relied on having the aarch64-binutils port or
package installed, and it used the provided linker automatically.
First kernel change for arm64:

commit 412042e2aeb666395b3996808aff3a8e2273438f
Author: Andrew Turner <andrew@FreeBSD.org>
Date: Mon Mar 23 11:54:56 2015 +0000

 Add the start of the arm64 machine headers. This is the subset
 needed to start getting userland libraries building.

 Reviewed by: imp
 Sponsored by: The FreeBSD Foundation

The FreeBSD Foundation saw
potential in 64-bit Arm,
and also learned of other entities
with an interest in a FreeBSD
port to the platform.

46 FreeBSD Journal • May/June 2023

After several years of development, FreeBSD had a basic, but
functional, self-hosted FreeBSD/arm64 port, with some ports and
packages available. A lot of development effort, debugging, per-
formance tuning, documentation, and other work remained, but
FreeBSD was on the path to adding another architecture to the
supported list. FreeBSD 11.0 became the first release to include
arm64 support and installable artifacts, as a Tier-2 platform.

Tool Chain
Beginning of arm64/AArch64 support:

commit 8daa81674ed800f568b87f5e4b8881d028c92aea
Author: Andrew Turner <andrew@FreeBSD.org>
Date: Thu Mar 19 13:53:47 2015 +0000

 Start to import support for the AArch64 architecture from ARM. This
 change only adds support for kernel-toolchain, however it is expected
 further changes to add kernel and userland support will be committed
 as they are reviewed.

 As our copy of binutils is too old the devel/aarch64-binutils port needs
 to be installed to pull in a linker.

 To build either TARGET needs to be set to arm64, or TARGET_ARCH

 set to aarch64. The latter is set so uname -p will return aarch64 as
 existing third party software expects this.

 Differential Revision: https://reviews.freebsd.org/D2005
 Relnotes: Yes
 Sponsored by: The FreeBSD Foundation

One of the first requirements for a Tier-1 platform is to have
a fully-supported, integrated tool chain. Clang is the primary
compiler used in building FreeBSD and it has received significant
and ongoing AArch64 development effort from several large
companies. Thus, compiler support was quite good for the entire
duration of platform bring-up.

Other tool chain components, like the linker, debugger,
and miscellaneous binary utilities needed more work. As initial
FreeBSD/arm64 porting effort was nearing completion, FreeBSD
still used the GNU binutils linker (“BFD linker”) and had not
updated the version of the linker for some time due to licensing
concerns. As a result, the linker included in the base system did
not support AArch64 and initial support depended on having a
binutils port or package installed. We made this as convenient as
possible for end users, but it did not meet the requirements for a
Tier-1 architecture.

Fortunately, rapid progress was also being made on LLVM’s
LLD linker within the LLVM community. LLD offered the potential
for much faster link times, facilitated optimizations not available
with the BFD linker, and wider architecture support. At the end of
2016, we were able to switch to using LLD as the system linker for
FreeBSD/arm64. In fact, it was the first FreeBSD architecture to
do so.

FreeBSD uses the ELF Tool Chain project for miscellaneous
binary utilities such as strings or strip. These have some ma-
chine-dependent functionality (such as lists of relocation types),
but the effort required to add arm64 was relatively small.

The final tool chain component that required significant devel-
opment effort was LLDB, the LLVM family debugger. Fortunately

development work was being done to support other operating
systems, and it required only incremental effort to add FreeBSD.

We were able to merge much of this tool chain work into the
FreeBSD 11 stable branch, and FreeBSD 11.1 was the first release to
avoid workarounds and include a functional linker.

Ports and Packages Collection
FreeBSD provides over 30,000 third-party software packages

in its ports collection, and many of these have architecture-de-
pendent characteristics. Machine-dependent infrastructure (e.g.,
controls for a given port to opt-in or opt-out of building on a given
architecture) are fundamental parts of the ports tree. FreeBSD/
arm64 was available as a Tier-2 architecture and FreeBSD com-
munity members experimented and discovered ports that failed
to build. These were either fixed, or excluded from building on
aarch64 if appropriate. Mark Linimon was one of the key develop-
ers who took on this work.

The goal of bringing FreeBSD/arm64 to Tier-1 brought with it
some additional requirements of the ports tree. The ports col-
lection does not have an official hierarchy or tier categorization
of ports, but there are some ports that are critical. This includes
ports that provide tool chain components or other dependencies
required to build large ports of the full collection. We had to make

sure that these were available and consistently built for FreeBSD/
arm64.

We also need to build package sets in a timely manner for
Tier-1 architectures, which requires capable server hardware. The
FreeBSD Foundation purchased servers from Ampere Com-
puting, and the project received additional servers donated by
Ampere. This hardware allows the arm64 package sets to be built
on the same weekly cadence as x86

Support from FreeBSD Teams
Bringing a new architecture to Tier-1 status requires the sup-

port and agreement of several teams within the FreeBSD project.
This includes the ports management and package management
teams as mentioned above, along with the security team, release
engineering team, and the core team.

Bringing a new architecture
to Tier-1 status requires
the support and agreement
of several teams within
the FreeBSD project.

47FreeBSD Journal • May/June 2023

The Release Engineering team is responsible for building and
testing release artifacts including ISO and USB memory stick
images, as well as cloud computing targets. These artifacts can be
cross-built from other architectures, so arm64 build hosts are not
absolutely required by the Release Engineering team, but test and
QA hardware is needed.

To be Tier-1, an architecture requires the security team to pro-
vide source updates for security issues and errata as well as binary
updates via freebsd-update.

Finally, the core team’s support is necessary to coordinate with
the other teams, with the community, and make the official decla-
ration that the platform is officially Tier-1

Hardware Ecosystem
An implicit requirement for a platform to be Tier-1 is the

availability of suitable hardware, as alluded to earlier. Hardware is
needed at many different price/performance combinations:

• high-end servers to build packages,
• mid-range, sever-class hardware for developer workstations,

remote access for porting and testing, and so on,
• low-end embedded style platforms for ubiquitous testing and

developer use,
• cloud resources at various levels for development, testing,

and production.
AArch64 started with some notable gaps in the available

hardware, in particular, related to mid-range (and mid-price)
platforms for developer and porting efforts. There were very few
options in the mid-late 2010s. The SoftIron OverDrive 1000 was a
well-priced, capable system in a convenient developer form factor
based on the AMD A1100 processor. Unfortunately, both the
A1100 and the OverDrive 1000 were discontinued not long after
being introduced.

Hardware availability continues to improve with platforms like
the Raspberry Pi 4 and Pine A64-LTS at the lower end, Apple de-
vices and the Microsoft AArch64 developer platform in the mid-
dle, and high-end Ampere Altra-based server systems. AArch64
virtual machines are also offered by major cloud vendors, using ei-
ther Ampere platforms or a bespoke CPU design (AWS’ Graviton).

Bringing FreeBSD/arm64 to Tier-1 status required a significant
investment of time and resources. The 64-bit Arm ecosystem
has captured a significant portion of the server market, with no
signs of slowing down. FreeBSD will benefit from tapping into this
market with this Tier 1 platform.

ED MASTE is the Senior Director of Technology for the FreeBSD
Foundation, managing the Foundation’s technology roadmap, de-
velopment team and sponsored projects. He is also a member of
the elected FreeBSD Core Team for the current term. Aside from
FreeBSD, he has contributed to a number of other open-source
projects, including LLVM, ELF Tool Chain, QEMU, and Open
vSwitch. He lives in Kitchener-Waterloo, Canada, with his with his
wife Anna and children.

AWS Graviton

Ampere “Mount Jade”

Raspberry Pi 4

Pine A64 LTS

Microsoft Arm Developer Kit

48 FreeBSD Journal • May/June 2023

A Brief History of
FreeBSD Journal
BY GEORGE V. NEVILLE-NEIL

It was May of 2013, and a couple hundred developers had
descended on the University of Ottawa for our annual North
American conference. Tutorials, talks, and wandering around

ByWard Market in Ottawa
while looking for things to eat
were part of the deal. Dinners
on the first two nights were
held in residence, in a big room on the ground floor with a lot of us
milling around and discussing the finer points of whatever sub-sys-
tems we happened to be working on.

I was talking with a few folks from the project and remember
Robert Watson standing just to my left, as he said, “What we
could use is a magazine about FreeBSD, something with good
technical content, written by developers, for the community.”
He had a gleam in his eye that I’ve seen when he’s about to ask
someone to do something they probably want to do but should
think about more carefully before actually agreeing. And yet, they
say “Yes.”

Robert knew I’d been working on a magazine called Queue for
over a decade, so I guess he thought I was the kind of person who
might want to start a magazine, which, of course, I was. Robert
knows me well and that isn’t always an advantage. I answered
with, “Huh....,” and then looked off into the distance to consider it.
“We could...,” I continued, and at that point, I knew I would at least
give it a try.

Most important things we achieve in life happen with a mixture
of luck, skill, and knowing the right people. The FreeBSD Journal
got its start due to a lot of luck, some great people, and some
skill. The Journal is the intellectual grandchild of a venerated trade
journal from the 1980s, UNIX Review. The Review was started and
run by Mark Compton, who would later be brought in to help cre-
ate ACM’s practitioner-oriented publication called Queue, where I
would serve on the editorial board, and by so doing, learn enough
about publishing to help start the FreeBSD Journal.

It was as a member of the Queue editorial board that I came

to understand how a magazine is produced. With software, we’re
used to listening to the sound that deadlines make as they go
whooshing by, and then recovering by pushing the latest code
to the servers, or whatever. But when you publish in print, there
is a drop-dead date, and if you miss it, you don’t get a magazine
that month, full stop. That kind of pressure runs right back into
the editorial process, meaning you must not only select authors
who write well, but they also need to do it on a deadline. And if
too many authors miss the deadline, you get a magazine that’s
very slim, or nonexistent. You also want to establish a board that
is respected, collegial, and gets along well. Imagine, if you will,
a room full of luminaries arguing a about a topic, but instead of
anyone grandstanding and taking up all the air in the room, they
build upon each other’s ideas in a sort of techno-nerd version of
improv. The best editorial boards and board meetings are like that,
and that’s what we set out to do with FreeBSD Journal.

I thought I knew where to start, and the first person I talked
with was the executive editor of Queue, Jim Maurer, who had
also been running a boutique magazine publishing business for a
number of years. Queue had published a few pieces by folks in the
FreeBSD community and Jim had mentioned that he had enjoyed
working with them. It’s always cheered me to know that it was the
quality of people in the FreeBSD community that had convinced
Jim to work on the Journal. With Jim on board, I was slightly less
panicked, because someone I trusted and who knew the industry
had said, “Yes,” rather than, “You’re crazy!”

Working in open source usually means working with limited
budgets, and I knew I wasn’t going to get the FreeBSD Founda-
tion to fund monthly, in-person, editorial board meetings at fine
restaurants—per the ACM Queue model, but I still needed to
convince a group of smart people from the community to form
an editorial board. All I could offer was some recognition and the
chance to work with other smart people on an interesting, shared
project, which, effectively, is why many of us started working in
open source in the first place. I began emailing people I thought
might be interested and made a direct pitch to each one, “Can I
convince you to...” —is my usual opener when I want someone to
write or join a board or contribute to the project. It’s not subtle,
but it does get the job done!

I convinced eight people to give it a try, and the first FreeBSD
Journal editorial board was: John Baldwin, Daichi Goto, Joseph
Kong, Dru Lavigne, Michael W. Lucas, Kirk McKusick, Hiroki Sato,
Robert Watson, and me. I was shocked by my good luck.

For a magazine like the Journal, the editorial board is its beating
heart. The board members understand technology and also writ-
ing about technology, and they are also the Rolodex (an ancient,
rotating paper product that has been replaced by the contacts
app in your phone) which is to say, they also have to be connected
and reach out to people who also can understand and write about
technology. An essential quality for an editorial board member is
the ability to ask for the moon and not take “No” for an answer. In
the academic world, people must “publish or perish,” but not in

The FreeBSD Journal got its start
due to a lot of luck, some great
people, and some skill.

49FreeBSD Journal • May/June 2023

the practitioner world. How the board consistently comes up with
great authors who produce great articles is shrouded in mystery,
but I suspect it has something to do with being very friendly and
buying people strong drinks at conferences.

With the board in place, we set out to find funding. We were
planning a print magazine, and while the authors were kind
enough to write for free, we had to pay for editorial and pro-
duction services and printing costs. Two early backers were the
FreeBSD Foundation and iX Systems. Later, we would solicit
advertising, and several companies who were using FreeBSD took
out ads to help support the effort.

With the basics in place, the editorial board began bi-weekly,
video calls to hash out issue topics. Before we approached even a
single author, we had to work out what topics we wanted to cover,
issue by issue, for the first year of the magazine. Each topic had
to be broad enough to include several articles, and we were also
looking to establish regularly appearing columns to give the
Journal continuity. Our goal was to publish the first issue at the
start of 2014, the Jan/Feb issue, and I’m happy to say we made
our deadline and the magazine got off
to a great start. The main articles in the
first issue covered “The New Toolchain”
in FreeBSD 10 (Clang/LLVM) as well as
booting FreeBSD on the Beaglebone
Black, an article all about ZFS, and a piece
on FreeBSD for commercial systems. We
had columnists in place with Dru Lavigne
taking up both the Events Calendar and
“This Day in BSD,” Thomas Abthorpe
on the Ports Report and Glen Barber
on SVN Update, which tracked new and
interesting features entering the code base. We were off and
running.

Over the almost 10 years of its publication, the Journal has
evolved—as it should. What began as a magazine readers paid for,
is now free and fully supported by the Foundation. The publishing
technology has changed as well, moving over time from print to
app-based to PDF-based delivery. The editorial board continues
to change when people move on to other projects as they bring in
new people and new voices.

My proudest moment with the Journal, second only to getting
the first issue published, was when I handed over the editorial
reins to a new Editor in Chief, John Baldwin. I have always felt that
the best projects should outlive us, and that long term continuity
and quality are the hallmarks of great systems, be they software,
magazines, or any other endeavor you put your mind to. I could
think of no better person to guide the FreeBSD Journal in its
9th year, and I’m very happy that the Journal is still here to help
FreeBSD celebrate it’s 30th.

GEORGE V. NEVILLE-NEIL works on networking and operat-
ing system code for fun and profit. He also teaches courses on
various subjects related to programming. His areas of interest
are computer security, operating systems, networking, time
protocols, and the care and feeding of large code bases. He is the
author of The Kollected Kode Vicious and co-author with Marshall
Kirk McKusick and Robert N. M. Watson of The Design and Imple-
mentation of the FreeBSD Operating System. Since 2014 he has
been an Industrial Visitor at the University of Cambridge where
he is involved in several projects relating to computer security. His
software not only runs on Earth but has been deployed, as part
of VxWorks in NASA’s missions to Mars. He is an avid bicyclist and
traveler who currently lives in New York City.

Write
For Us!
Write

For Us!
Contact Jim Maurer

with your article ideas.
(jmaurer@freebsdjournal.com)

Nov/Dec 2019 57

November/December 2022

Writing Custom
Commands in FreeBSD’s
DDB Kernel Debugger

DTrace: New Additions
to an Old Tracing System

Certificate-based
Monitoring with Icinga

activitymonitor.sh

Pragmatic IPv6 (Part 4)

Observability and Metrics

2023 Editorial Calendar
• Building a FreeBSD Web Server

(January-February)

• Embedded (March-April)

• FreeBSD at 30 (May-June)

• Containers and Cloud (Virtualization)

(July-August)

• FreeBSD 14 (September-October)

• To be decided (November-December)

51FreeBSD Journal • May/June 2023

Installing FreeBSD 1.0:
30 Years On
BY TOM JONES

Getting FreeBSD 1.0 running on real hardware is an oppor-
tunity for me to explore computing from before my time.
My earliest memories of using computers pop up with

Windows 98—I’m sure there were other computers in my life. The
machine on which my friends and I played Castle Wolfenstein was
probably a hand me down or a surplus office machine. It wasn’t
until I had the first computer that was really mine (a G4 iBook in
the mid 2000s) that I started to look inside things and explore
operating systems.

I jumped at the chance to cover the subject of this article. I am
sure the editorial board was envisioning this would cover getting
FreeBSD 1.0 to run in one of the many x86 emulators, but I am not
one to let an opportunity to overdo something go by.

Retro computing is a growing interest. For a long time in the
UK, Charity Shops (think Goodwill) were unable to take electron-
ics. That created a situation where throwing away computers was
the easy option for those unwilling to try to sell them on a cold
Sunday morning at a car boot sale.

This key factor created an absolutely perfect situation for our
computing history to be disposed of and destroyed. For the last
decade, I have tried to save the machines I could as they came by.
This is why I have an inventory of 50 machines waiting for space
in the Center for Computing History, a vt320 on my desk, and a
DEC-PRO350 as a conversation piece in the hackerspace.

A collection is one thing, but these machines don’t want to be
in a museum, they want to run!

In the last decade, there has been a growing movement of
retro computing enthusiasts. There are channels like Action
Retro, Lazy Game Reviews, and This Does Not Compute which
go to obsessive extremes to push old machines to their absolute
limits. This can be done by installing
accelerator cards from when the
machines were still supported and
through adapters, modern storages,
and peripherals that get machines
to scream-along at speeds the
original owners could only have
imagined.

In this world of renewed interest in classic computers, we get to
learn from the large enthusiast community and use the excellent
tools and adapters they have created. But we also have to pay the
price of the popularity, and with the extra interest and demand,
prices for old hardware have gotten silly.

How Do I Find a Machine to Run FreeBSD?
If this was a question from a normal person (not someone

deranged trying to relive 1993) I think most of us that have used
FreeBSD for a while would offer similar advice:

• research your hardware and figure out what is supported,
• if you are getting a new machine, make sure it has support.

I wanted to buy a machine that
managed to meet three crite-
ria—era accurate—supported by
FreeBSD 1.0—(ideally) supported by
386BSD.

Why era accurate? Whatever
machine I got hold of, I wanted to
be able to give a long life. Its first
role is to run FreeBSD 1.0, but I also
wanted to be able to photograph
it, take it to conferences, and use it
as a platform for learning more about computing in the founda-
tional times of free BSD UNIX. “What is the newest hardware that
FreeBSD 1.0 will run on” is a different article, and not the article
I wanted to cover. Era accurate seemed to be the path of least
resistance.

Supported by FreeBSD 1.0 should be self-evident, but why
386BSD? I want more from the machine than just 1 article. I want
to be able to show people where things came from—386BSD as a
project holds a lot of mystique.

From 30 years in the future, it is very difficult to understand
what sort of machines were actually around in 1993. This is a form
of the set dressing problem that period TV shows and movies hit
all the time. You can’t really look at a magazine from the 1990s
and see the typical home from the 1990s. Instead, people build
up their possessions over a long period. A home from the 1990s
might have a piece or two that is fashionable, but it won’t look like
that years’ Ikea catalog.

We are saved a little bit from this by computing in the early
1990s moving so quickly—machines had shorter life times. I would
set out to get hardware that would fit into the era well.

To find hardware that will actually run our OS we need to find
the release notes and installation instructions. Today, figuring
out if FreeBSD will run on a machine without the machine can
be quite hard, but, hopefully, the original team did a better job at
spelling out the supported hardware.

There is a collected CD of
FreeBSD 1.0 available from the
project and the Internet archive. It
contains the release floppy disks,
source code, and ports and pack-
ages for FreeBSD. In the CD are
also the release announcement and
installation instructions for various
methods.

The FreeBSD 1.0 release announcement gives us some infor-
mation about the minimum requirements to run. It gives us an
idea about which supported processors, memory requirements
and additional hardware which may work.

52 FreeBSD Journal • May/June 2023

Finding a Machine
With a rough outline of the supported hardware, the next step

is to track down a machine. First, I thought I might be able to bor-
row a 386 from ‘someone’. After a couple of weeks of trying IRC
channels and striking out, it seemed that anyone with a working
386 was quite precious of the machine and not willing to lend it to
a stranger to write an article about installing FreeBSD.

My next bet was to buy a machine.
Here I encounter a problem unique to the island I am currently

stuck on. We do not have old computers. Okay, that isn’t true,
I can get all the Amigas I want
and probably a container load of
Research Machines PCs from the
early 2000s, but an actual 386 is a
different matter.

Building from components didn’t
seem to be a good call. Maybe if I
had some history with machines of
this vintage, but finding compatible
components to build a computer
today can be difficult to figure out.
How was I supposed to get compat-
ibility information about 30-year-
old components which were made
by hundreds of different vendors.

Complete systems seemed to be a bust too. The few I saw on
eBay in the UK were going for 1000GBP+, a little bit outside of my
normal 386 budget.

Eventually, after complaining about my uniquely me situation
on a phone call with some friends, one of them started digging
around on eBay and found a Czech seller. My friend, more familiar
with this period of computing was able to confirm that these
smelled good and were the right vintage to fit into this article.

Some hemming and hawing and then I settled on the one with
a large CPU frequency display on the front--ever one to ignore
practicalities and land on aesthetics. (They were to me, function-
ally the same).

The seller’s specifications for the machine are:

CPU AMD 368DX 40MHz
4MB RAM + 128kb Cache
MB Shuttle Hot-327
VGA ISA Trident TVGA 9000c 512kb
HDD ST 3243A - 214 MB
HDD Controller UMC PIO-001 RP 20070R 12
Soundcard ESS 688F Pine Technology
CD-ROM Wearnes 622 - K.O.
FDD TEAC FD-235HF

It was clear to me that I wanted to get this machine onto the
Internet in the course of this article and so I picked up the only
Ethernet interface I could find that was compatible—an Etherlink
II 3c509 with BNC and AUI connections.

While the INSTALL files says that FreeBSD will run in 4MB of
memory, this seemed like an easy fix, and I picked up quite cheap-
ly an additional 32MB of RAM to give the system a little more
breathing room.

Installing FreeBSD 1.0 (first attempt)
With the machine delivered, I was excited to test the hardware

and get to installing FreeBSD. The system shipped with MS-DOS

6.22, an operating system that is entirely alien to me. I made sure
the hardware was functional by grabbing the shareware of wolf3d
and playing through a couple of levels.

The CD-ROM archive offers a few options for installing FreeBSD
1.0, all of which start with creating a set of boot floppies that build
a minimal system from which the full install can be finalized.

The minimal install requires 3 floppy disks. To avoid having to
rewrite a single disk, I bought a box of ‘new’ floppies from amazon
(10 for 10GBP). I also acquired from the local hackerspace a selec-
tion of USB floppy drives to help me bootstrap into the past.

The three disks for installing are a kernel floppy, the file system
floppy, and the cpio floppy. The kernel floppy comes in several
different flavors depending on your SCSI controller. I don’t have a
SCSI controller at all, and so either would do.

Creating the disks from a modern operating system was in-
credibly painful. The USB floppy drives just don’t want to work, but
when the moon was right, I was able to create the three required
disks from FreeBSD-14 with this dd command:

$ sudo dd if=kcopy-ah-floppy of=/dev/da0 bs=30b

The installation process requires you to boot with the kernel
floppy in the floppy drive:

Error! Filename not specified.
Once the kernel is loaded you are presented with a prompt to

insert the file system disk and continue.
Then finally you get to the installer.
I was excited when I got here, I had acquired a modern piece of

hardware, a SD IDE adapter to allow me to preserve the MS-DOS
6.22 so I could continue verifying the hardware.

This device did not work at all for me.
Crestfallen and impatient, I decided to hell with it and wiped

the MS-DOS disk entirely (who needs dos anyway, I’m getting
UNIX!). Setting up FreeBSD to take the entire 200MB of spinning
rust for itself.

With the disk formatted a minimal system is installed. You
reboot from the kernel floppy again, this time going to a kc>
prompt where you type ‘copy’ for the kernel to copy itself to the
disk.

Next you reboot, and when prompted, install the cpio floppy.
It will walk you through what it needs you to do given a minimal
installed system. Next, you have to grab the install sets, installing
at a minimum the bin.tar.gz.xx file set.

The full install media is made available across a set of dozens of
disks, arranged so they can be loaded one floppy at a time onto
the system to finish the install. If you
were lucky enough to have tape, se-
rial, a MS-DOS partition, or network
access you could pull them all as a
single archive.

By not reading ahead in the
instructions and being inpatient,
I made a mistake that made this
much more difficult for me. My DOS partition was gone, and I
didn’t have a network. Tape wasn’t an option at all, I’ve never even
seen a supported tape.

Maybe I could pull the files from the CD drive? I hit the eject
button on the drive for the first time (weirdly it wasn’t part of my
shooter-based stress test) and while the motor whined, nothing
happened. The CD drive never came to life.

In the list of options is the ability to install via serial. I can do

53FreeBSD Journal • May/June 2023

serial. I hooked up a USB serial
adapter to the serial port on the
PC and began trying to get Kermit
running, which does not ship on
the install floppies at all.

The install instructions talk about
a ‘dos’ floppy, but even with several
checks, I couldn’t find it inside the
CD archive. Eventually, I caught the note early on that the ‘dos’
floppy is an optional disk of utilities which can be pulled from the
CD archive. I put Kermit onto a floppy booted into my primordial
system and copied across. Hours of fighting later, I managed to
figure out the correct modern Kermit commands to speak to 1993
Kermit and started transferring files. At 9600bps, restart higher
rate, I tried pushing it up and eventually managed a reliable 56k.

Three days later (or maybe an hour or two, if I am more realistic)
I had the base images bin copied onto my host and could finish
the install. Each set (binary, src, X) is installed with an extract shell
script that comes from the preinstall environment.

Once you have installed the set you want, you need to run the
‘configure’ script that does the finalization of the preinstall envi-
ronment and gives you a full working FreeBSD system.

Here I got to pick the hostname and IP address for interfaces.
With the install done, I booted into my new FreeBSD system

and immediately posted a victory message both on social media
and to the editorial team—”6 months away and the system works!
That means the article is pretty much done right?”

Reinstalling FreeBSD 1.0 (second attempt)
My first install was fun, but I had installed onto very old spinning

rust, and this worried me. I wanted to do some modernizations. The
popularity of vintage computing like this has led to a bunch of de-
vices to replace the finicky and annoying parts of retro computing.

Compact flash (also a rather old technology) is compatible with
IDE but has the benefit of being much easier to purchase and not
as likely to die randomly with a scream of horror.

I managed to get a CF adapter that lives in a PCI bracket
making swapping disks for the OS really easy. Of the CF cards I
bought, only 1, a 250MB one, will boot on my system. I suspect the
bios freaks out seeing a 1GB (let a lone a 16GB) hard drive.

The system I had installed had some oddities and I thought
they might be related to the fractured install process from above
(it took several weeks of occasional effort to get the first install
together).

First, when the system comes up, it always prints a message
saying ‘Automatic reboot in progress’ even when it doesn’t
reboot. While there was an adduser man page there was no
command to add a new user. I have new media now, so I thought I
would try again.

For the second install, the floppy phases were the same, the
disks survived three months without randomly dying.

In the interim, I picked up a Farallon Ether10-T Starlet 9
base10-T Ethernet hub. This device with the correct terminators
and 50 OHM BNC cables allowed the 3c509 network card I
bought to pull my 386 box onto the Internet (and into the future!).

My second install was much, much smoother. I did the base
install to get to the minimal system. Once booted from it, I could
then use the network to grab the images. I considered ftp to
move them to the 386 but spotted the NFS option in the install
document and tried that. FreeBSD 1.0 will happily mount a NFS
share on a FreeBSD 14 box :D.

With the install done, I rechecked adduser, but the command
was still not there. Reading the man page this time, I discovered
that the man page was just the process for adding a new user to
the system! No automation for you, it is 1993.

Installing Software
The CD-ROM archive comes with quite a lot of additional third

party software for FreeBSD. There are both the ports collection,
software that has been modified to work on FreeBSD, and prebuilt
packages of ports, and some additional software.

From ports, I built top so I could have the 386 idle in interesting
ways.

I also grabbed vim and zsh from the prepackaged software to
make living on the machine a little nicer.

The next thing I wanted to do was try and serve web content
from the 386. I grabbed both ncsa-httpd (all releases available as
a git repo) cern-httpd. Source-based distribution of software has
changed a lot in 30 years. We have no idea how good we have
things now.

ncsa-httpd ships with a Makefile to build which was much
friendlier than the cern-httpd script, so I started with ncsa-httpd.
ncsa-httpd doesn’t include FreeBSD in its list of targets, but it
does have NetBSD, so I tried that. Sadly, the era correct NetBSD is
different enough that this didn’t work out of the box. I ended up
modifying the Makefile to pick up the FreeBSD build support that
is in the c files, but not the build script.

With ncsa-httpd built, I went through a process of running
the generated binary and creating the required directories and
moving the right files it complained about being missing until I
could get it to start. An install target for make would have been
too much to ask for.

I whipped up an index.html file and started serving up some
pages.

Not yet being willing to put my 386 on the internet, I, instead,
settled for seeing how much work my 386 could actually do as a

FreeBSD 1.0 at home
Don’t fancy trawling eBay to find old, expensive, noisy and un-
reliable hardware, but want to try out FreeBSD 1.0? I guess I can
see why you might not want to reproduce my steps, be warned
that you are missing out on a certain amount of joy by cheating
and using QEMU.

I have created a backup of the CF card install I did, and I have
placed it here: https://people.freebsd.org/~thj/freebsd-ninety-
three.img.xz

Grab that image, uncompress it. With a standard install of
QEMU (I used QEMU 7.0 on FreeBSD 14-CURRENT) you can
launch the image with the following command:

$ qemu-system-i386 -hda freebsd-ninetythree.img

You will see from the system log that the machine doesn’t
find any interesting hardware. Left as an exercise to the reader
is figuring out networking (if ISA emulation proves too hard, I
would look into slip).

The only CF card that worked in my system was still a little
small at 250MB, but there is enough of a system there for you
to play with. If you want to try on a larger (or smaller disk) then
you can figure out all the QEMU bits required to get it going.

54 FreeBSD Journal • May/June 2023

web server, by running the wrk web server benchmark.
In case you need to know a 40 MHz 386DX with 36MB of RAM

can serve about 22 requests a second without any tuning.

Running X
I have managed to install X from the sets on the CD. I have not

managed to get X to display anything and, instead, each attempt
requires me to reboot to regain access to the system console.
Trying X highlighted that I was missing virtual consoles. Grepping
the documentation didn’t reveal much.

I stumbled onto the syscons command (not driver as we have
today, command). When trying to use syscons to change the
virtual tty, all I got was a helpful message about needing to rebuild
the kernel with syscons enabled.

Rebuilding the Kernel
There is a Makefile with a familiar world phase in /usr/src, but

the kernel part of building the system isn’t documented there at
all. I stumbled into the config man page, which hinted enough
that I could build a new kernel.

Building a new kernel is roughly:
• cd to the conf sub directory (usually /sys/ARCH/conf), for us /

sys/i386/conf
• run config with a system configuration file (I copied the

SYSCONS config as NINETYTHREE)
• cd to ../../compile/SYSTEM_NAME

(NINETYTHREE in this case)
• run make depend
• run make all
• copy the 386bsd kernel binary to /
• reboot
The kernel build took 33 minutes (5 for make

depend, 28 for make all).

FreeBSD 1.0 now and forever
I keep getting lost trying to get different parts

of the system going. My next steps are figur-
ing out how to get running on my extra virtual
consoles, and once I find a serial mouse, running
X. Rather than a straightforward install story, this
project has ended up being an absolute ton of
fun for me. I really didn’t need a web server for
this article, but I couldn’t resist getting one up
and running once I had the idea.

I picked up enthusiast magazines from the pe-
riod to learn the interesting goings on in comput-
ing in the early 1990s. I got the Dr.Dobbs articles
on 386BSD to help stage some of these pictures.

Sure, I had to fight around on ebay to buy over-priced parts, but
that has its own draw, there is a high when you finally find a listing
for something obscure you were looking for.

FreeBSD 1.0 is like looking at your now adult little brother and
seeing a small child there. All the wonder and magic of the world is
back. The bugs I encountered feel entirely fixable. I am sure it is a
rough system, but the edges are asking to be smoothed. I entirely
understand why the early contributors got involved, it is hard to
resist finding something to hack on.

This all said, I don’t think you, or anyone else, should go lightly
into a project like this. The hardware is difficult to find 30 years on
and it won’t get easier. Prices for hardware are going to go up and
reliability of components will go down.

The options are to experience the joys of the platform with-
out having to go through the suffering of drives and disks dying,
finding termination for the BNC cables, or teaching software that
FreeBSD is an operating system. There are many choices to emu-
late this hardware and much of the release information is available
with source tarballs to build applications.

I think your 386 FreeBSD should be virtual, but you will have to
fight me to get this 386 FreeBSD.

TOM JONES is the FreeBSD Engineering Manager at Klara Inc,
he only gets to play with fun old computers in his spare time.

FreeBSD 1.0 dmesg
FreeBSD 1.0.2 (GENERICAH) #0: Sun Nov 14 18:22:24 PST 1993
 root@gndrsh.cdrom.com:/usr/src/sys/compile/GENERICAH
CPU: i386DX (386-class CPU)
real mem = 38006784
avail mem = 35909632
using 819 buffers containing 6709248 bytes of memory
Probing for devices on the ISA bus:
pc0 at 0x60-0x6f irq 1 on motherboard
pc0: type color
sio0 at 0x3f8-0x3ff irq 4 on isa
sio0: type <16450>
sio1 at 0x2f8-0x2ff irq 3 on isa
sio1: type <16450>
sio2 not found at 0x3e8
sio3 not found at 0x2e8
lpt0 not found at 0x3bc
lpa0 at 0x378-0x37f on isa
lpa1 not found at 0x278
fd0 at 0x3f0-0x3f7 irq 6 drq 2 on isa
fd0: unit 0 type 1.44MB 3.5in
wd0 at 0x1f0-0x1f7 irq 14 on isa
wd0: unit 0 type SMART CF
ahb0 not found
aha0 not found at 0x330
wt0 not found at 0x300
mcd0 not found at 0x300
ed0 at 0x280-0x28f irq 5 maddr 0xd8000 msize 8192 on isa
ed0: address 02:60:8c:7c:22:04, type 3c503 (16 bit)
ed1 not probed due to maddr conflict with ed0 at 0xd8000
ed1 not probed due to irq conflict with ed0 at 5
ie0 not found at 0x360
is0 not probed due to I/O address conflict with ed0 at 0x280
npx0 on motherboard
npx0: 387 Emulator
biomask 4040 ttymask 3a netmask 3a

Congratulations
on 30 years of valuable

contributions to the
open source community!

