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To develop optimal estimators of virgin biomass and MSY stocks where data 
are very limited, by inclusion of au~ili3!Y information such as catch at age data. 

8. Executive Summary 

A simulation study was done to examine the performance of four alternative 
Minimum Integrated Average Expected Loss (MlAEL) estimators of virgin biomass 
for stock assessment scenarios where data are very limited. Two alternative data sets 
were considered: a reasonable CPUE time series with a one-off catch-at-age estimate; 
and a short trawl time series where numbers-at-age or biomass were available. In all, 
32 stock assessment scenarios were considered, with the data sets being used with or 
without the age data, for two alternative theoretical stocks (with different biological 
parameters), each with two alternative bounds on virgin biomass, and a constant or 
increasing catch history. 

The four estimators considered (for each of the 32 scenarios) were MIAEL estimators 
based on either a maximum likelihood or least squares estimator, each of which used 
the age data in two different ways. The first variation had the age data fitted directly 
within the model as catch-at-age or numbers-at-age. The second variation used a 
penalty function to fit estimates of the total mortality obtained (externally) from the 
age data For selected stock assessment scenarios, the estimators which used the age 
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data internally were tested for robustness to ~rrors in the assumed value of natural 
mortality and the assumption of average year class strengths. 

The performance of the estimators varied enormously over the scenarios considered. 
ID general, when age-data were used, either internally or externally to the model, the 
estimators performed far better than if the age data were not used. When catch-at-age 
data were used internally the maximum likelihood estimator was always better than 
the least squares estimator. However, when the (traWl) numbers-at-age data were used 
the maximum likelihood estimator generally performed worse than the least squares 
estimator. IDternal use of the age data was normally better than external use, but not 
always. 

ID some circumstances, both estimators were very sensitive to an error in natural 
mortality; they were less sensitive to variation in year class strength, but still very 
sensitive for one particular scenario. 

There are two conclusions from the study. 

For any given stock, prior to the stock assessment, a variety of potential estimators 
should be tested, both in terms of their performance when the assumptions of the 
estimation model hold, and for their robustness to errors in those assumptions. The 
"best" estimator to use in the stock assessment will depend on the particular stock 
assessment scenario (biological parameters, catch history, scale of the bounds used, 
available data). 

Also, when age data are used, the assumptions of known natural mortality and average 
year class strengths can lead to a totally unrealistic assessment of estimator 
performance (i.e., too optimistic). The current estimators need to be modified in some 
way to cope with the presence of unknown year class strengths and/or natural 
mortality. 
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9. Introduction 

There are many New Zealand species for which stock assessment is problematic 
because of the sparseness of the available data. The difficulty of stock assessment for 
these species is made worse in that many stock assessment methods cannot use data of 
multiple types. For example, analysis of catch curves uses only age frequency data, 
and surplus production modelling uses abundance indices but ignores any age 
frequency data that may be available. In general, it is advantageous to use as much 
data as possible in a stock assessment; the difficulty is in using the data appropriately, 
especially if data of multiple types are combined. 

The work described in this report (objective 3 of SAM9701) looks at several 
variations of an existing estimation technique which uses multiple data types. The 
variations of the technique are applied to stock assessment situations where data are 
very limited (e.g., several points in a relative abundance time series with a single 
catch-at-age estimate). Four Minimum Integrated Average Expected Loss (MlAEL) 
estimators of virgin biomass are compared for a variety of stock assessment scenarios. 
The MIAEL estimation technique was developed for use in hoki stock assessments 
(Cordue 1993) but has subsequently been applied to stock assessments for a variety of 
middle depths species (see Annala et al. 1998). Prior to this study, only one of the four 
estimators had been extensively used. . 

10. Methods 

Objective 3 is "to develop optimal estimators of virgin biomass and MSY for stocks 
where data are very limited, by inclusion of auxiliary information such as catch-at-age 
data". To achieve this objective the estimation performance of several stock reduction 
MIAEL estimators of virgin biomass and MCY for a variety of generic stock models and 
data sets were examined. Three key activities were involved plus the production of this 
report. 

1. Create generic stock models and data sets 

A variety of theoretical stock assessment scenarios was created by combining a number 
of generic stock models and data sets. In each case the stock model was a deterministic 
single-stock two-sex age-structured model with a Beverton-Holt stock-recruit 
relationship (Cordue 1998a, and Appendix 1). Stock assessment scenarios were created 
as follows. 

Biological parameters and available abundance data (Appendices 2 and 3) for a range of 
middle depths and inshore species were examined, and the final choices of parameters, 
catch histories, etc, were made after considering the actual stock assessment scenarios. 
The aim was to choose parameters, catch histories, etc, which are fairly typical of these 
stocks. 

Two "generic stocks" with differences in various parameters, driven by different 
maximum ages of 15 years, or 30 years, were chosen (Table 1). Two alternative catch 
histories for 1975-1997 were chosen, with one case a constant catch for each year, and 
the other an increase in catches in recent years (Table 2), both common for a number of 
middle depths and inshore species. 
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Two alternative bounds on virgin biomass were generated for each particular stock 
model and catch history from assumptions about minimum and maximum exploitation 
levels (Cordue 1996) (Table 3). This was to give contrasting scales of uncertainty in the 
a priori knowledge about virgin biomass. 

Two alternative data sets were chosen as follows: data set 1 had five recent relative 
abundance indices (log nonnal, with known c. v. of 40%), with a single recent catch-at
age estimate (multinomial, with known sample size). This mimicked a reasonable CPUE 
time series with a one-off catch-at-age estimate (Table 4). For data set 2, three recent 
relative abundance indices (log nonnal, with known c.v. of 30%), and corresponding 
estimates of number-at-age (multinomial, with known sample size) were used, which 
mimicked a reasonable trawl survey where numbers-at-age have been estimated. 

2. From four alternative MIAEL estimators of virgin biomass determine which 
is best for each stock assessment setting 

. 
For each stock assessment setting (Table 5), four forms of stock reduction MIAEL 
estimation (Cordue 1993, 1995, 1998b, and Appendix 4) were used to determine 
MIAEL estimators of virgin biomass and their infonnation indices. The infonnation 
index of each estimator is a measure of its perfonnance, and the indices are strictly 
comparable between estimators for a given stock assessment setting. The best estimator 
for each setting is that with the highest infonnation index. Note, the infonnation indices 
for the MIAEL estimators of MCY are equal to those of the MIAEL estimators of virgin 
biomass (as MCY is a given proportion of virgin biomass). 

Each MIAEL estimator was a best p estimator with a proportional squared error loss 
function (Cordue 1995). The four estimators resulted from two alternative fitting 
procedures (maximum likelihood and least squares) and two alternative methods of 
using the age data (as estimates of Z, obtained outside the model, or as numbers or 
proportions at-age fitted with the abundance indices) (Appendix 5). Baseline 
infonnation indices were calculated for each setting and each fitting procedure when the 
age data were not used in the estimation procedure. The increase in the infonnation 
indices when the age data are used gives an indication of the worth of the age data In 
data set 1, both CPUE, and catch-at-age data were used for the ageing run, and just 
CPUE data used in the non-ageing run. For data set 2, trawl survey numbers-at-age were 
used for the ageing run, and trawl survey biomass indices used in the non-ageing run 
(see Table 5). In all, 128 information indices were calculated (4 MIAEL estimators, and 
32 stock assessment scenarios). 

3. Investigate the robustness of the best MIAEL estimator(s) to departures from 
the model assumptions 

Some of the MIAEL estimators considered in Activity 2 were tested for robustness to 
the assumptions of average year class strength and known natural mortality. The MIAEL 
estimators were tested by using a number of operating models (of reality) which had 
non-average year class strengths (Table 6), and different values of natural mortality 
(M±0.05) to that assumed in the estimation model. The testing was done for 8 different 
operating models and 4 different stock assessment scenarios, and using both maximum 
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likelihood or least squares estimators using age data internally. In each case the true 
information index of the estimator of virgin biomass was calculated. 

Stratified random sampling was used to obtain an approximate information index for 
each MIAEL estimator. of Bo (see Appendix 4 for the basic formulation of an 
information index). The bounds on Bo in the operating model were split into eight 
equally sized intervals. Random values of Bo were generated within the bounds using a 
uniform distribution, until there were exactly three values within each of the intervals 
(the same seed was used for all models in the generation of BaS, so that models with the 
same bounds used the same Bos). At each of the twenty four values of Bo five hundred 
simulated point estimates were generated (using the given estimation model and the 
point estimator associated with the given MIAEL estimator. The simulated data were 
created using different seeds for each Bo, but the same seeds were used across all 
models.) In the cases where the operating and estimation models were the same, the 
approximate information index of the best p estimator was calculated directly from the 
simulated estimates. The best p estimator was determined by searching for the value of p 
which minimised, within the best p class of candidate estimators, the average 
proportional mean squared error (Le., averaged over the twenty four points; this 
approximates the Integrated Average Expected Loss for a proportional squared error loss 
function-see Cordue 1995). 

When the estimation model differed from the operating model, calculation of the 
information index required two steps. First, a value of p was noted: that corresponding 
to the best p estimator obtained when an operating model identical to the estimation 
model was assumed. The information index was then calculated (for the given value of 
p) from simulated data constructed using the correct operating model. 

11. Results 

The 128 information indices are presented in Table 7, and graphed in Figures 1, and 2. 
Note, when the data sets contain only a single biomass time series, then all four 
estimators are identical (maximum likelihood and least squares are the same because 
lognormal errors were used). 

Stock 1 (maximum age 15 years): 

Data set la (CPUE and catch at age - scenarios 1,5,9, and 13) showed similar trends 
for all 4 scenarios. The maximum likelihood fitting procedure using age data 
internally had the highest information index for all 4 scenarios, and the least squares 
fitting procedure using age internally had the lowest information index. Both the 
maximum likelihood and least squares fitting procedures using age data externally fell 
somewhere between the other two, and were at a similar level. Information indices 
ranged from about 20 to 90% for all 4 scenarios. Constant catch histories had higher 
information indices than increasing catch histories for all 4 scenarios. Information 
indices were higher for the smaller range in Bmin and Bmax, for each of constant catch, 
or increasing catch history scenarios. 

For data set Ib (CPUE indices only - scenarios 2 , 6, 10, and 14), information indices 
ranged from about 7 to 20% for different scenarios, and were much lower than 
information indices in data set la Increasing catch history scenarios had higher 
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information indices than constant catch history scenarios. Information indices were 
higher for the smaller range in Bmin and Bmax for each of constant catch, or increasing 
catch history scenarios. 

For data set 2a (Trawl survey numbers at age - scenarios 3, 7, 11, 15) the maximum 
likelihood fitting procedure using age data internally had the lowest information index 
for 3 of the 4 scenarios. The least squares fitting procedure using age data internally 
the highest information index, for the constant catch history scenarios, but fell in the 
increasing catch history scenarios. Both the maximum likelihood and least squares 
fitting procedures using age data externally were similar, and were close to the least 
squares procedure using age data internally for constant catch histories, but the same 
or higher for the increasing catch histories. Information indices ranged from about 18 
to 90%. Constant catch histories had higher information indices than increasing catch 
histories for all 4 scenarios, and a wider range in information indices. Information 
indices were higher for the smaller range in Bmin and Bmax for each of constant catch, 
or increasing catch history scenarios. 

For data set 2b (trawl survey abundance indices - scenarios 4, 8, 12, 16) the 
information indices were close to 0%, and were much lower than information indices 
in data set 2a. Information indices were higher for the smaller range in Bmin and Bmax 
for each of constant catch, or increasing catch history scenarios. 

Stock 2 maximum age 30 years: 

In general, the trend in all 4 data sets was similar for both stocks, except for data set 
2a (see Figure 1, and 2), and all corresponding scenarios for both stocks were at 
slightly different information index percentages. 

Data set la (CPUE and catch at age - scenarios 17, 21, 25, and 29) showed a similar 
trend to stockl, except that for the constant catch scenarios, the least squares fitting 
procedure using age data internally was lower for the wider range in Bmin and Bmax. 

Data set 2a (trawl survey numbers-at-age - scenarios 19,23,27, and 31): Scenarios 19, 
and 23 (constant catch scenarios) had similar information indices for all estimators, 
with information indices higher than in stockl. Scenarios 27 and 31 (increasing catch 
scenarios) had much lower information indices, with the least squares fitting 
procedure using age data internally performing better than the other estimators. For 
run 31, the trend in estimators fitted that of stock 1, for age data fitted internally, had 
the lower information index for the maximum likelihood fitting procedure, and higher 
information index for the least squares fitting procedure. 

Data set 1b (CPUE indices only), and data set 2b (Trawl survey abundance indices 
only) had similar trends to stock 1, and had much lower information indices than stock 
2 data sets la and 2a respectively. 

Robustness study 

The MIAEL estimators for scenarios 17, 19,29, and 31 were tested by using a number 
of operating models which had different values of natural mortality (M±0.05), or 
different (lower and higher) year class strengths, to that assumed in the estimation 
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model. The results of the robustness study are presented in Table 8, and Figures 3 
and 4. 

Estimator performance was not robust to errors in natural mortality. In general, the 
true information index .of the estimator of virgin biomass was smaller than the 
information index calculated assuming average years class strengths and known natural 
mortality. The true i~formation index for a higher mortality was always worse than the 
assumed mortality (Figure 3), and for a lower mortality was usually worse, except in run 
17 (both maximum likelihood and least squares fitting procedures), and run 29 for the 
least squares fitting procedure. In some cases the assumed information index was very 
different to the true information index (scenarios 29, and 31). Errors in year class 
strength also created problems, as the true information index for below and above 
average year class strengths were generally worse (Figure 4), except for run 31 (with the 
below average year class strength scenarios). Note; a negative information index 
indicates that the. estimation performance is worse than that achieved by ignoring the 
data and just choosing the point in the range which minimises the integrated average 
expected loss (Le., using the best k estimator, see Appendix 4). 

12. Conclusions 

There are two conclusions from the study. 

For any given stock, prior to the stock assessment, a variety of potential estimators 
should be tested, both in terms of their perfonnance when the assumptions of the 
estimation model hold, and for their robustness to errors in those assumptions. The 
"best" estimator to use in the stock assessment will depend on the particular stock 
assessment scenario (biological parameters, catch history, scale of the bounds used, 
and available data). 

Also, when age data are used, the assumptions of known natural mortality and average 
year class strengths can lead to a totally unrealistic assessment of estimator 
perfonnance (Le., too optimistic). The current estimators need to be modified in some 
way to cope with the presence of unknown year class strengths and/or natural 
mortality. 

13. Publications 

Nil. 

14. Data Storage 

Not applicable. 
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Table 1: Parameters used in each "stock" 

(a) Biological parameters 

Stock 1 Stock2 
Male Female Male Female 

Maximum age (years) 15 15 30 30 

von Bertalanffy 
growth parameters 

L.., 81.1 86.1 119.0 160.1 
K 0.308 0.308 0.108 0.076 
to -0.627 -0.384 -1.24 -1.05 

Length weight 
a .00963 .00963 .00126 3.296 
b 3.173 3.173 .00126 3.296 

Natural mortality 0.3 0.3 0.18 0.18 

Nb: For stock 1 , a "BNS2" stock was used, and for stock2, a "LIN3&4" stock 

(b) Maturity ogives: 

Stock 1 Stock2 
Age male female male female 
4 0.01 0.01 0.01 0.01 
5 0.05 0.05 0.10 0.10 
6 0.25 0.25 0.30 0.30 
7 0.50 0.60 0.70 0.80 
8 0.75 0.80 1.00 1.00 
9 1.00 1.00 

Nb: for stock 1, maturity ogive data "made up", and for stock 2 maturity ogive taken from LIN 3&4 



(c) Selectivities 

Ground Age Stockl Stock2 

Spawning 3 1.0 
4 1.0 
5 1.0 1.0 
6 1.0 1.0 
7 1.0 1.0 
8 1.0 1.0 
9 1.0 1.0 

10 1.0 1.0 

Home 1 0.01 0.01 
2 0.05 0.05 
3 0.1 O.l 
4 0.2 0.2 
5 0.4 0.4 
6 0.7 0.6 
7 0.9 0.8 
8 1.0 1.0 
9 1.0 1.0 

10 1.0 1.0 

Nb: For each stock, the same for males and females 

(d) Other parameters 

Corridor ogive 
Proportion of male larvae 
Steepness 
Length of spawning season 
Proportion spawning 
Proportion available to fleet 

(spawning season) 

1.00 at age 1 
0.50 
0.75 
0.3333 years_._ 
1.00 

1.00 

10 
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Table 2: Catches histories used in both "stocks" 

Constant catch Increasing catch 
Year prespawning spawnoing prespawning spawning total 
1975 1995 3000 20 40 60 
1976 1995 3000 20 50 70 
1977 1995 3000 80 125 205 
1978 1995 3000 200 600 800 
1979 1995 3000 150 430 580 
1980 1995 3000 300 450 750 
1981 1995 3000 120 180 200 
1982 1995 3000 137 210 247 
1983 1995 3000 150 220 370 
1984 1995 3000 150 490 640 
1985 1995 3000 230 340 570 
1986 1995 3000 310 470 780 
1987 1995 3000 370 560 930 
1988 1995 '3000 540 806 1346 . 
1989 1995 3000 1030 1554 2584 
1990 1995 3000 1180 1770 2950 
1991 1995 3000 1400 2119 3519 
1992 1995 3000 1610 2413 4023 
1993 1995 3000 1770 2655 4425 
1994 1995 3000 1705 2550 4255 
1995 1995 3000 2100 3160 5260 
1996 1995 3000 2040 3055 5095 
1997 1995 3000 2240 3355 5595 

Table 3: Alternative bounds on virgin biomass for each stock and catch history 
constructed from different maximum and minimax exploitation rates 

Bound Catch Maximum rate Minimax rate 
Set Stock history home spawning home spawning Bmin Bmax 

1 1 constant 0.5 0.7 0.01 0.05 24499 67767 
2 1 constant 0.5 0.7 0.005 0.01 24499 127259 
3 1 increasing 0.5 0.7 0.01 0.05 17810 72650 
4 1 increasing 0.5 0.7 0.005 0.01 17810 139777 

5 2 constant 0.6 0.8 0.01 0.05 58273 105924 
6 2 constant 0.6 0.8 0.01 0.01 58273 189751 
7 2 increasing 0.6 0.8 0.01 0.05 31791 92320 
8 2 increasing 0.6 0.8 0.01 0.01 31791 191611 
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Table 4: Data sets used 

Data set Data Description 

la, 1b * CPUE 5 observations (1992-1996), 
c. v. of 40% each year 
spawning ground, mid-spawning season 
relative indices, mature biomass 
lognormal errors 

la * Catch-at-age 1 observation (1995), 
multinomial, sample size of 100 
spawning ground, end of spawning season 
ageing from 2 to 10 years (stock1), 

and 2 to 18 (stock2), no plus group 
ageing error of 15% (1 year either side) 
c. v. 40% (for least squares estimator) 

2a trawl survey 3 observations (1993-1995), 
numbers-at -age c.v. of30% each year (and each age) 

home ground, mid pre-spawning season 
ageing from 2 to 10 years (stock 1 ), 

and 2 to 18 (stock2), plus group 
ageing error of 15% (1 year either side) 
lognormal errors 

2b trawl survey 3 observations (1993-1995) 
abundance c. v. of 30% each year 

home ground, mid pre-spawning season 
relative indices, biomass 
lognormal errors 

* Data set la includes both CPUE and catch-at-age data (with equal "source" weights; see Appendix 5), and data 
set Ib is CPUE data only. 
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Table 5: Stock assessment scenarios (Note: odd numbered scenarios use age data, and 
even numbered scenarios do not; add 16 to the run number for stock 1 to get the 
analogous run for stoc~ 2; add 4 to the run number to get the analogous run for a 
different bound set) 

Run Catch Bound 
no. Stock1 histor/ see Data set4 

1 1 constant 1 la CPUE and catch-at-age 
2 1 constant 1 Ib CPUE 
3 1 constant 1 2a trawl survey numbers-at-age 
4 1 constant 1 2b trawl survey abundance indices 
5 1 constant 2 la CPUE and catch-at-age 
6 1 constant 2 Ib CPUE 
7 1 constant 2 2a trawl survey numbers-at-age 
8 1 constant 2 2b trawl survey abundance indices 
9 1 increasing 3 la CPUE and catch-at-age 

10 1 increasing 3 lb CPUE 
11 1 increasing 3 2a trawl survey numbers-at-age 
12 1 increasing 3 2b trawl survey abundance indices 
13 1 increasing 4 la CPUE and catch-at-age 
14 1 increasing 4 lbCPUE 
15 1 increasing 4 2a trawl survey numbers-at-age 
16 1 increasing 4 2b trawl survey abundance indices 
17 2 constant 5 la CPUE and catch-at-age 
18 2 constant 5 lb CPUE 
19 2 constant 5 2a trawl survey numbers-at-age 
20 2 constant 5 2b trawl survey abundance indices 
21 2 constant 6 la CPUE and catch-at-age 
22 2 constant 6 lb CPUE 
23 2 constant 6 2a trawl survey numbers-at-age 
24 2 constant 6 2b trawl survey abundance indices 
25 2 increasing 7 la CPUE and catch-at-age 
26 2 increasing 7 lb CPUE 
27 2 increasing 7 2a trawl survey numbers-at-age 
28 2 increasing 7 2b trawl survey abundance indices 
29 2 increasing 8 la CPUE and catch-at-age 
30 2 increasing 8 Ib CPUE 
31 2 increasing 8 2a trawl survey numbers-at-age 
32 2 increasing 8 2b trawl survey abundance indices 

1,2,3,4: for details see Tables 1,2,3,4 respectively 
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Table 6: Year class strengths used in the robustness study: (a) below average, (b) above 
average 

Year YCS (a) YCS (b) 
1975 1 1 
1976 1 1 
1977 1 1 
1978 0.5 1.2 
1979 0.5 1.2 
1980 1.2 0.8 
1981 1.2 0.8 
1982 0.8 1.8 
1983 0.8 1.8 
1984 0.5 1.2 
1985 0.5 1.2 
1986 1.2 0.8 
1987 1.2 0.8 
1988 0.8 1.8 
1989 0.8 1.8 
1990 0.5 1.2 
1991 0.5 1.2 
1992 1.2 0.8 
1993 1.2 0.8 
1994 0.8 1.8 
1995 0.8 1.8 
1996 1 1 
1997 1 1 
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Table 7: Information indices (%) from MIAEL estimation of Bo for different stock 
assessment scenarios using least squares and maximum likelihood fitting procedures 

Run no 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

Maximum likelihood 
external" 

64 
8 

88 
2 

49 
7 

80 
0.3 
44 
19 
52 

1 
35 
11 
49 
0.3 
58 
10 
91 

1 
53 
5 

89 
0.5 
24 
17 
55 

2 
19 
11 
53 

1 

internal-
88 

8 
61 

2 
82 
7 

18 
0.3 
76 
19 
52 

1 
67 
11 
25 
0.3 
80 
10 
93 

1 
76 

5 
88 

0.5 
60 
17 
55 

2 
54 
11 
38 

1 

Least Squares 
external" internal" 

64 48 
8 8 

88 90 
2 2 

49 39 
7 7 

80 85 
0.3 0.3 
44 31 
19 19 
52 46 

1 1 
37 19 
11 11 
49 32 
0.3 0.3 
70 23 
10 10 
91 92 

1 1 
64 32 
5 5 

89 89 
0.5 0.5 
36 29 
17 17 
55 68 
2 2 

32 25 
11 11 
53 62 

1 1 

* external = estimates of total mortality fitted externally using the age data; internal = age data fitted internally 
within the model as catch-at-age or numbers-at-age . 
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Table 8: Results of robustness study using maximum likelihoodl
, and least squares2 fitting 

procedures using scenarios where age data were fitted internally within the model 

(a) error in mortality 

Run no 

17 
19 
29 
31 

(b) error in yeS 

Run no 

17 
19 
29 
31 

ML I infonnation indices C%) 
M M-0.05 M+0.05 
80 74 29 
93 38 5 
54 -98 -2 
38 -36 6 

MLI infonnation indices C%) 

average 
80 
93 
54 
38 

below above 
average 

53 
90 
44 
66 

average 
68 
61 
48 

7 

LS2 infonnation indices C%) 
M M-0.05 M+0.05 
23 45 4 
92 41 5 
25 32 17 
62 -151 -17 

LS2 infonnation indices C%) 

average 
23 
92 
25 
62 

below above 
average 

11 
90 
31 
74 

average 
14 
59 
17 
24 
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Figure la: Results of MIAEL estimation for stock 1 stock assessment settings. (external = 
estimates of total mortality fitted externally from the age data, internal = age data fitted 
directly within the model; see Table 5 for a description of each run). 
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Figure lb: Results of MIAEL estimation for stock 2 stock assessment settings. (external = 
estimates of total mortality fitted externally from the age data, internal = age data fitted 
directly within the model; see Table 5 for a description of each run). 
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settings. (external = estimates of total mortality fitted externally from the age data, 
internal = age data fitted directly within the model; see Table 5 for a description of each 
run). 
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Figure 3: Robustness to the assumptions of known mortality for selected stock assessment 
settings. (The solid line indicates the maximum likelihood fitting proceedure, and the 
dotted line indicates the least squares fitting proceedure). 
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Figure 4: Robustness to the assumptions of average year class strength for selected stock 
assessment settings. (The solid line indicates the maximum likelihood fitting proceedure, 
and the dotted line indicates the least squares fitting proceedure). 
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Appendix 1: The single stock population model 

In the population dynamics model, fish are categorised by ground, sex, age, and 
maturity. Given the level of complexity of the categorisation it is best to present the 
mathematical equations in a very descriptive form using categorical variables. 
Categorical variables are given in italics and specific members of a category (except 
ages) are given in bold italics. 

The following abbreviations are used in the category member names: 

"spawning" = sp, "home" = hm, "corridor" = cor, "female" = /em, 
"immature" = imm, "mature" = mat, "maximum age" = amax. 

The categorical variables and their associated categories are: 

ground 
sex 
age 
maturity 

{sp, hm, cor} 
{male,/em} 
{ 0, 1, ... ,amax } 
{imm, mat}. 

The fishing year is divided into eight stages with associated "cycle points". The 
numbers of fish in each category in year i and cycle point j are denoted by 
Nij (ground, sex, age, maturity). Unless otherwise stated, an equation involving one 
or more categorical variables is valid for each member of the associated category or 
categories (where the particular combination of values is valid; an example of an 
invalid combination is "mature fish aged 0 years"). Equations are applied 
consecutively. Note, equations of the form "A += B" are shorthand for "A = A + B". 
Similarly for "A -= B" and "A *= B". 

The notation for various population parameters used in the equations is as follows: 

nurs(age) 

m_og(sex, age) 

seZ_hm(sex, age) 

spawny 

seZ_sp(sex, age) 

Ri 

Corridor migration ogive: proportion that migrate from the 
corridor to the nursery. 

Maturity ogive: proportion of immature fish that mature. 

Fishing selectivities in the home ground. 

Length of the spawning season as a proportion of the year. 

Proportion of mature fish that migrate to the spawning ground. 

Fishing selectivities in the spawning ground. 

The year class strengths: multipliers of the recruitment obtained 
from the Beverton-Holt stock-recruit relationship. 

The proportion of male larvae. 
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Stage 1: Beginning of fIshing year 

Ni,l (ground, sex, age, maturity) = Ni-I,8( ground, sex, age, maturity) 

Stage 2: Corridor migrations and maturity 

Ni,2 (ground, sex, age, maturity) = Nu (ground, sex, age, maturity) 

(a) Larvae move from the spawning ground to the corridor. 

Ni,2(cor, sex, 0, imm) = Ni,2 (sp, sex, 0, imm) 

N i,2(sp, sex, 0, imm) = ° 
(b) Some juveniles move from the corridor to the nursery (home). 

N i,2(hm, sex, age, imm) += nurs(age) * N i,2(cor, sex, age, imm) 

Ni,2(cor, sex, age, imm) -= nurs(age) * N i,2(cor, sex, age, imm) 

(c) Some juveniles mature (and become adults). 

For age ~ 1 

Ni,2 (hm, sex, age, mat) += m_og( sex, age) * Ni,2(hm, sex, age, imm) 

Ni,2 (hm, sex, age, imm) -= m_og( sex, age) * Ni,l hm, sex, age, imm) 

Stage 3: Pre-spawning season: first half. 

Ni,3 (ground, sex, age, maturity) = Ni,2 (ground, sex, age, maturity) 

(a) Natural and fishing mortality are applied to fish in the home ground. 

For age ~ 1 

NI,3 (hm, sex, age, maturity) *= exp[ -t * (F(sex, age) + M(sex))] 

where the fishing mortalities F(sex, age) are calculated from the Baranov catch 
equation using the selectivities sel_hm(sex, age) and the pre-spawning season catch. 
The time period t for stage 3 is 0.5 * ( 1 - sp _length ). 



(b) Natural mortality is applied to fish in the' corridor. 

For age ~ 1 

N i,3 (cor, sex, age, maturity) *= exp[ -t * M(sex) ] 

Stage 4: Pre-spawning season: second half 

Ni,4 (ground, sex, age, maturity) = Ni,3 (ground, sex, age, maturity) 

(a) Natural and fishing mortality are applied to fish in the home ground. 

For age ~ 1 

Ni,4 (hm, sex, age, maturity) *= exp[ -t * (F(sex, age) + M(sex»] 

where the F(sex, age) and t are as in Stage 3. 

(b) Natural mortality is applied to fish in the corridor. 

Forage ~ 1 

Ni,4 (cor, sex, age, maturity) *= exp[ -t * M(sex) ] 

Stage 5: Ageing and spawning migration 

Ni,5 (ground, sex, age, maturity) = Ni,4 (ground, sex, age, maturity) 

(a) Fish and larvae age 1 year. 

N i,5 (ground, sex, amax, maturity) += N i,5 (ground, sex, amax - 1, maturity) 

For age = (amax -1) down to age = 1 

N i,5 (ground, sex, age, maturity) = N i,5 (ground, sex, age - 1, maturity). 

Also, 

NI,5 (ground, sex, 0, imm) = 0 

(b) Some adults move from the home ground to the spawning ground. 

N I,5 (sp, sex, age, mat) = spawn y * Ni,5 (hm, sex, age, mat) 

N i,5 (hm, sex, age, mat) -= spawn y * N i,5 (hm, sex, age, mat) 

25 
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Stage 6: Spawning season: first half 

Ni,6 (ground, sex, age, maturity) = Ni,5 (ground, sex, age, maturity) 

(a) Natural and fishing mortality are applied to fish in the spawning groUnd. 

For age ~ 1 

Ni,6 (sp, sex, age, maturity) *= exp[ -t * (F(sex, age) + M(sex) )] 

where the fishing mortalities F(sex, age) are calculated from the Baranov catch 
equation using the selectivities sel_sp(sex, age) and the spawning season catch. The 
time period t for stage 6 is 0.5 * sp _length. 

(b) Natural mortality is applied to fish in the corridor and the home gro:und. 

For age ~ 1 and ground f: {cor, hm} 

Ni,6 (ground, sex, age, maturity) *= exp[ -t * M(sex) ] 

( c) Larvae are created in the spawning grounds. 

larvaei = Ri * virginR * /bio / [ alpha + beta * jbio ] 

where /bio is the biomass of the females present in the spawning ground, virginR is the 
number of larvae needed to maintain deterministic equilibrium prior to fishing, and 
alpha, beta are the parameters of the Beverton-Holt stock-recruit relationship given by 
steep. 

(d) Larvae are split by sex. 

larvae,{male) = p_male * larvaei 

larvae,ifem) = ( 1 - p_male) * larvaei 

Nt,6 (sp, sex, 0, imm) = larvae,{sex) 

Stage 7: Spawning season: second half 

Ni,7 (ground, sex, age, maturity) = Ni,6 (ground, sex, age, maturity) 

(a) Natural and fishing mortality are applied to fish in the spawning ground. 

For age ~ 1 

Nt,7 (sp, sex, age, maturity) *= exp[ -t * (F(sex, age) + M(sex) )] 

where the F(sex, age) and t are as in Stage 6. 
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(b) Natural mortality is applied to fish in the corridor and the home ground. 

For age ~ 1 and ground € {cor, hm} 

Nu (ground, sex, age, maturity) *= exp[ -t * M(sex)] 

Stage 8: End of fIshing year 

N i,8 (ground, sex, age, maturity) = Ni.7 (ground, sex, age, maturity) 

(a) Adults return from the spawning ground to their home ground. 

Ni,8 (hm, sex, age, mat) += Ni,8 (sp, sex, age, mat) 

N i,8 (sp, sex, age, mat) = 0 



28 

Appendix 2: Biological Parameters 

Stock Natural mortali!y Von Bertalanffr growth l2arameters Length-weight Maximum Ageing 
male female male female male female Age (m,f Data 

K to Loo K to Loo a b a b or both) Validated 

HAKI 0.22 0.20 0.259 -0.60 92.5 0.185 -0.18 115.5 0.0016 3.36 0.0015 3.37 30 Y 
HAK4 0.22 0.20 0.294 -0.01 88.8 0.181 -0.18 116.1 0.0051 3.11 0.0045 3.11 30 Y 
HAK7 0.22 0.20 0.308 0.00 111.1 0.194 0.00 111.1 0.00275 3.23 0.00113 3.41 30 Y 

LIN3,4 0.18 0.18 0.108 -1.24 119.0 0.076 -1.05 160.1 0.00126 3.296 0.00126 3.296 30 Y 
LIN5,6 0.18 0.18 0.194 0.16 95.1 0.113 -0.67 125.7 0.00139 3.278 0.00139 3.278 30 Y 
LIN7 0.18 0.18 0.087 -0.13 146.1 0.090 0.22 165.9 0.00126 . 3.290 0.0126 3.290 30 Y 

SKIl,2 0.25 0.25 0.266 -0.35 87.4 0.194 -0.55 105.0 0.0008 3.55 0.0034 3.22 17? Y 
SKI3,7 0.23 0.23 0.242 -0.66 88.5 0.178 -0.88 104.2 0.0033 3.19 0.0018 3.32 17? Y 

WAR3 0.21 0.21 0.241 -0.46 63.8 0.209 -0.79 66.3 0.0015 3.09 0.0016 3.07 17 Y 

SBW 0.20 0.20 0.350 ':'0.93 47.6 0.320 -1.03 51.5 0.00515 3.092 0.00407 3.152 22 Y 

GURl 0.569 -0.552 28.8 0.641 0.189 36.4 0.00988 2.99 0.00988 2.99 16 Y 
GUR3 0.35 0.29 0.49 -0.26 42.2 0.44 0.1 48.2 16,13 Y 
GUR7 0.31 0.31 0.37 -0.96 40.3 0.40 -0.36 45.7 15 Y 

RC03 0.76 0.76 0.47 0.06 68.5 0.41 -0.03 76.5 0.0145 2.892 0.0074 3.059 6? Y 

STA3 0.23 0.23 0.19 -1.19 59.12 0.18 -0.22 73.92 0.015 3.01 0.015 3.01 20 N 
STA5 0.23 0.23 0.19 -1.19 59.12 0.18 -0.22 73.92 0.024 2.92 0.024 2.92 20 N 

BC05 0.27-0.38 0.27-0.38 0.00001 3.10 0.00002 2.95 12-17 N 
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Biological Parameters continued: 

Stock Natural mortalitx Von Bertalanffy growth Qarameters Leng!h-weight Maximum Ageing 
male female male female male female Age (m,f Data 

K to Loo K to Loo a b a b or both) Validated 

BNS2 0.3 0.3 0.308 -0.627 81.1 0.308 -0.384 86.1 0.00963 3.173 0.00963 3.173 15 Y 

BYX2 0.23 0.23 0.11 -3.56 51.1 0.08 -4.10 57.5 0.0226 3.018 0.0226 3.018 20 Y 

TAR3 0.1 0.1 0.2085 -1.397 42.1 0.2009 -1.103 44.6 0.0433 2.77 0.0400 2.79 40+ Y 
TAR4 0.1 0.1 0.1666 -2.479 44.7 0.2205 -1.026 44.6 0.017 3.02 0.023 2.94 40+ Y 

TREl 0.03 0.03* 0.29 -1.40 44.9 0.30 -1.40 44.45 0.016 3.064 0.016 3.064 45 Y 
TRE1 0.30 0.30+ 0.29 -1.40 44.9 0.30 -1.40 44.45 0.016 3.064 0.016 3.064 45 Y 

* <35 years, conservative, + >35 years 

BAS1 0.1 0.1 0.2734 '2.382 0.2734 2.382 40+ N 
HPB1 0.1 0.1 0.0142 3.003 0.0142 3.003 40+ N 
HPB2 0.1 0.1 0.0242 2.867 0.0242 2.867 40+ N 
HPB7,8 0.1 0.1 0.01423 2.998 0.01423 2.998 40+ N 

BAR4 0.3 0.3 0.0117 2.82 0.0074 2.94 10 N 
BARS 0.3 0.3 0.0075 2.90 0.0075 2.90 10 N 

MOK1,3,4,50.14 0.14 0.208 -0.029 66.95 0.208 -0.029 66.95 0.055 2.713 0.055 2.713 33 N 
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Biological Parameters continued: 

Stock Natural mortali!y Von Bertalanffy growth Qarameters Leng!h-weight Maximum Ageing 
male female male female male female Age (m,f Data 

K to Leo K to Leo a b a b or both) Validated 

ELE3 0.35 0.35 *1 0.231 -0.78 74.7 0.096 -0.87 156.9 0.0091 3.02 0.0091 3.02 13-15 ? 
*20.473 -0.24 66.9 0.195 -0.53 113.9 
*30.089 -0.96 141.5 0.060 -1.06 203.6 
*40.466 -0.38 62.7 0.224 -0.69 94.1 

*1 Pegasus Bay 1966-68, *2 Pegasus Bay 1983-84, *3 Canterbury Bite 1966-68, *4 Canterbury Bite 1988 

GMUl 0.33 0.33 0.47 0.73 35.84 0.45 0.72 40.10 0.036 2.7537 0.036 2.7537 15 N 

JDOl 0.38 0.38 0.480 -0.251 36.40 0.425 -0.223 41.13 0.048 2.70 0.048 2.70 12 N 

SWA4 0.27 0.24 0.41 -0.71 51.8 0.33 -1.04 54.5 0.00848 3.214 0.00848 3.214 *1 23 Y 
SWA4 0.27 0.24 0.41 -0.71 51.8 0.33 -1.04 54.5 0.00473 3.380 0.00473 3.380 *2 23 Y 

L-W: *1 from Ch Rise, *2 from Southland 

WWA 0.23-0.31 0.23-0.31 15-20 N 



Appendix 3: Available data 

Stock Catches Abundance Detail 

HAK1 1975-96/97 

HAK4 1975-96/97 

HAK7 1975-96/97 

LIN3,4 1972-96/97 

LIN5,6 1972-96/97 

index 

Trawl survey 
Trawl survey 

Trawl survey 
CPUE 

Observer data 
CPUE 

Trawl survey 
CPUE 

Trawl survey 
Trawl survey 
CPUE 

NovlDec 1992, 1993, 1994; biomass + numbers-at-age 
AprlMay 1992, 1993, 1996, (1998?); biomass + numbers-at-age 

Dec/Jan 1991-1998; biomass + numbers-at-age 
Trawl; 1991-1996 

1990-1997, prop. catch-at-age 
indexl: 1989-1997; index2:1992-1996 (use only one index, which?) 

Dec/Jan 1991-1998; biomass + numbers-at-age 
index 1: 1992-1995; index2: 1990-1995 (index 1 preferred) 

NovlDec 1992, 1993, 1994; biomass + numbers-at-age 
AprlMay 1992, 1993, 1996, (96/97?); biomass + numbers-at-age 
Puysegur trawl: 1989-1995 (index no good, probably shouldn't use) 

LIN7 1972-96/97 CPUE Longline 1990-1997 
Observer data ageing data 

SKI1, 2 

SKI3,7 

CPUE 
CPUE 
CPUE 

Trawl survey 
Trawl survey 

Index1 SKIlE 1989-1997 
Index2 SKI 1 W 1994-1997 
Index3 SKI2 1990-1997 

Shinkai Feb-Apr 1981-1983; biomass 
Tangaroa FeblMar 1993-1996; biomass + prop catch-at-age 
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Available data continued: 

Stock Catches Abundance Detail 
index 

W AR3 1970-96/97 Trawl survey Shinkai 1981-1983; biomass 
Trawl survey Tangaroa FeblMar 1993-1996; biomass + prop catch-at-age 

SBW 1978-96/97 Campbell catch-at-age 1979-1996 
acoustic data 1993-1995 
CPUE 1986-1996 (not useful) 

SBW 1978-96/97 Bounty catch-at -age 1990-1997 
acoustics 1993-1995, 1996 

SBW 1978-96/97 Pukaki catch-at-age 1989-1997 
acoustics 1993-1995, 1996 

GURl Trawl survey WCNI: 1986, 1987, 1991, 1994; biomass (Survey for GURl & GUR8 ?) 
Hauraki Gulf: 1984-1990, 1992-1994; biomass 
ECNI: 1993-1995: biomass (for GURl & GUR2 ?) 

GUR2 Trawl survey Bay of plenty: 1983, 1985, 1987, 1990, 1992, 1996; biomass 
ECNI: 1993-1995: biomass (for GURl & GUR2 ?) 

GUR3 Trawl survey ECSI: 1991-1994, 1996: biomass 
CPUE Index A: 1989/90-1995/96 

Index B: 1982/83-1995/96 

GUR7 Trawl survey WCSI & TasmanlGolden Bay: 1993-1995 
CPUE 1991/92-1995/96 (may not be useful) 

GUR8 Trawl survey WeNI: 1986, 1987, 1991, 1994; biomass (Survey for GURl & GUR8 



Available data continued: 

Stock Catches 

RC02 

RC03 

RC07 

STA2 

STA3 1983-96/97 

STA4 

STA5 

STA7 1983-96/97 

Abundance Detail 
index 

Trawl survey ECNI: FeblMar 1993-1995; biomass, ageing data 

Trawl survey ECSI: May/Jun 1991-1994, 1996; biomass, ageing data 
South land: FeblMar 1993-1996; biomass, ageing data 
ECSI: Dec/Jan 1996-97; biomass, ageing data 

Trawl survey WCSI: Mar/Apr 1992, 1994, 1995: biomass, ageing data 

Trawl survey ECNI inshore: 1993-1996; biomass estimates; numbers-at-age 
ECNI scampi: 1995-1995; biomass estimates; numbers-at-age 

CPUE 1991/92-1995/96 (Linear & combined indices) (not useful) 

Trawl survey 
Trawl survey 
CPUE 

ECSI: 1991-1994, 1995; biomass estimates; numbers-at-age 
Chatham Rise (western side): 1992-1998; numbers-at-age 
1991/92-1995/96 (Linear & combined indices) (not useful) 

Trawl survey Chatham Rise: 1992-1998; biomass estimates; numbers-at-age 

Trawl survey Stewart-Snares: 1993-1996; biomass estimates; numbers-at-age 
Stewart-Snares: BAZ5: 1993-1996 (Banded stargazer) biomass estimates; numbers-at-age 

CPUE 1991/92-1995/96 (Linear & combined indices) 

Trawl survey 
CPUE 

WCSI: 1992, 1994, 1995, 1997; biomass estimates; numbers-at-age 
1991/92-1995/96 (Linear & combined indices) (not useful) 
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Available data continued: 

Stock Catches Abundance Detail 
index 

BNSl CPUE 1990-1996 

BNS3 1981-96/97 CPUE 1991192-1995196 2 series: target bluenose, target ling (neither useful) 

BNS7,8 1981-1988 

"TAR2 

TAR3 

TAR7 

TRE 

BARl 

BAR5 

BAR7 

CPUE FMA7: 1991192-1996/97 (not useful) 
FMA8: 1991192-1996/97 (not useful) 

Trawl survey Cape Runaway to Cook Strait: 1993-1996; biomass, num-at-age? (not useful) 

Trawl survey Pegasus Bay to Banks Peninsula: 1991-1994, 1996; biomass, num-at-age? (not useful) 

Trawl survey Tasman Bay to Haast: 1992, 1994, 1995; biomass, num-at-age? (not useful) 

:rrawl survey these exist, but are not considered useful due to partial pelagic nature of fish 

Trawl survey ECSI: Mayllun 1991-1994, 1996; biomass, num-at-age? 
ECNI: 1993-1996; biomass, num-at-age? 

Trawl survey Southland: FeblMar 1993-1996; biomass, num-at-age? 

Trawl survey WCSI: Mar/Apr 1992, 1994, 1995; biomass, num-at-age? 
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Available data continued: 

Stock 

ELE3 

ELE5 

ELE7 

JDOl 

SWA 

Catches Abundance 
index 

Trawl survey 

Trawl survey 

Trawl survey 

Trawl survey 
Trawl survey 
Trawl survey 
Trawl survey 

Trawl survey 
CPUE 

Detail 

ECSI: 1991-1994, 1996; biomass, num-at-age? 

Stewart-Snares: 1992-1995; biomass, num-at-age? 

WCSI: 1992, 1994, 1995; biomass, num-at-age? 

Bay of Plenty: 1983, 1985, 1987, 1990, 1992, 1996; biomass, num-at-age? 
WCNI: 1986-1989, 1991, 1994; biomass, num-at-age? 
Hauraki Gulf: 1984-1990, 1992-1994; biomass, num-at-age? 
ECNI: 1993-1995; biomass, num-at-age? 

unusable 
WCSI: 1985/86-1995/96, not very useful 

35 
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Appendix 4: MIAEL estimation, the information index, and hest p estimators 

This appendix gives the reader who is unfamiliar with MIAEL estimation a detailed 
introduction to the motivation and definitions of the method. For further details on 
MIAEL estimation see Cordue (1998b) and for best p estimators see Cordue (1995). 

Decision theory and point estimation 

Point estimation can be considered as a special case of decision theory (Wald 1950; 
Fergusson 1967; Berger 1985). In the general decision problem there is an unknown 
"state of nature" and a decision maker. The decision maker has to choose between a 
number of alternative actions, each of which will result in a "loss" depending on the true 
state of nature. The decision maker may conduct an experiment (i.e., observe some 
random variable whose distribution (hopefully) depends on the state of nature) in order 
to help them decide on the "best" action. 

For example, a classic statistical problem is estimating the probability of getting "heads" 
from the single toss of a given coin (a special case of a Bernoulli experiment). The 
unknown "state of nature" is the probability of getting "heads". The "actions" available 
to the decision maker are their possible choices for the estimate: any real number from 0 
to 1 inclusive. The "loss" in this case is estimation loss; presumably the further away that 
the estimate is from the true value, the greater the loss. The usual experiment conducted 
by the decision maker is to toss the coin n times, and record the total number of times 
that "heads" occurs. On the basis of this observation, they choose their estimate (action). 

In more precise tenus, for the general decision problem, there is an unknown state of 
nature e contained in a parameter space 0. The decision maker can observe a random 
variable X which has observable values in Obs(X) (with a generic observation denoted 
by x), and probability density function p(x I e). An action a E A must be chosen, and this 
will result in a non-negative loss given by the function L : 0 x A ~ R. The solution to 
the decision problem is to find a decision rule d: Obs(X) ~ A, which minimises (in 
some sense) the expected loss Exl e[ L(e,d(X))]. (Exl e denotes the expectation with 
respect to X assuming that e is the true state of nature.) The, expected loss 
Exl e[ L(e,d(X)) ] is called the risk function of d, and will be denoted here by R(e,d). 

In the general point estimation problem, estimating gee) for some given function g, the 
actions consist of the possible choices for the estimate, so that d(X) is simply an 
estimator (and for x E Obs(X), d(x) is an estimate). The loss function will then be a 
function of gee) and d(X) and should in some sense measure the "distance" between 
them, with increasing loss as the "distance" increases. An estimator d(X) which in some 
sense minimises R(e,d), is then'minimising the expected "distance" between gee) and 
d(X). For example, a commonly used loss function is squared error [g(e) - d(X)]2, which 
results in mean squared error as a risk function. An optimal estimator in this case, then, 
minimises (in some sense) mean squared error. 

Continuing with the coin tossing example, rather than estimating e, the probability of 
getting "heads", it may be desired to estimate a function of e, say e2

• Also, the decision 
rule d, might be "divide the total number of heads observed by the number of trials, and 
square the result". That is, d(X) = (X/ni where Xis the total number of heads observed in 
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n trialS. If the loss function L is squared error, then L(8,d(X») = [ 82 - X-In2 ]2. The risk 
function of the estimator (Xlni is Exle[ 82 

- X-In2 f 

The general fonnulation is intuitively appealing, but there is the difficulty of deciding in 
what sense the risk func~on is to be minimised. In general there will not be an estimator 
with minimum risk for all values of8. (Consider for example, estimating 8 E [0,1] with 
a squared error loss function. For any constant k E [0,1], d(X) = k has zero risk when 
8 = k, hence there cannot be an estimator of 8 with unifonnly minimum mean squared 
error.) Three main approaches have been used: imposition of a special property to form a 
"class" of estimators within which unifonnly minimum risk is sought (e.g., considering 
only unbiased' estimators); minimising the maximum risk (minimax estimation); and 
minimising a weighted average risk (e.g., Bayes estimation, where the weighting is 
given by the prior distribution of 0-although, of course, Bayes estimation can be 
developed more simply and independently of the approach described here). MIAEL 
estimation is related to Bayes estimation, but its formulation differs because the 
averaging is done over gee) rather than e (note, gee) = {g(8) I 8 E e} ). 

MIAEL estimation 

The main idea behind MIAEL estimation is that since g(8) is the object of interest, the 
minimisation of estimation risk should be done in the g(8) domain (i.e., within gee) 
rather than e). Also, a unifonn weighting is used in the integration of risk (across gee)) 
because, inasmuch as g(8) is unknown, there is little reason to require preferential 
estimator perfonnance in any particular region of gee). The aim is to minimise the 
"average" risk, given the estimation losses encapsulated in the specified loss function. 

The integrated average expected loss of d(X) when estimating g(8) with risk function R 
is 

J R( rp, d) drp 

I [d(A:)] = J ;eg'/(z) 
dz 

zeg(El) 

where 

VB Eeg" (g(B)) = (rpl rp E eandg(rp) = g(B)} 

and if g'l(Z) is finite, then integration over g'l(z) is interpreted as simple summation. If 
dE D is such that for every d' E D, I [d'(X)] ~ I [d(X)] then d(X) is a MIAEL estimator 
within the class D. 

This definition requires some clarification. In the MIAEL acronym, "EL" denotes 
Expected Loss (expectation over X of the loss function). The "A" is Averaging of 
Expected Loss for each point in gee). For each z E gee), the Average Expected Loss is 
given by the ratio of the integrals in the definition of I[d(X)]. Since z E gee) and 
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~ E g-l(Z), there exists 8 E e : g(~) = g(8). The denominator in the ratio is a "count" of 
the number of points in g-l(z) (explicitly if g-l(Z) is fInite) and the numerator is the "sum" 
of the expected losses. Note, that if g is 1 to 1 then g-l(z) contains only a single point, and 
the "A" is redundant. 

In the coin tossing example, if 8 or 82 were being estimated, then g is 1 to 1 (as 
8 E [0,1]) and no averaging of expected losses occurs. However, if g(8) = 8(1 - 8) was 
being estimated, then gee) = [0,1/4] and for any z E [0,1/4], g-l(z) = { to, 1 - to} where to 
is a solution to z = 8(l - 8). Hence, for every point in gee), the ratio of the integrals is an 
average of exactly two expected losses. Note, that there is no guarantee that R(to,d) = 
R(l - to,d). In general, the risk of a decision rule is a function of 8, not g(8). 

Returning to the general case, note that l{d(.x)] does not necessarily exist (it may be 
infInite) and hence for some classes a MIAEL estimator may not exist. If a MIAEL 
estimator does exist it may not be unique. However, in almost every practical fIsheries 
application there will be sufficient ancillary information available to allow 8 and g(8) to 
be bounded. In that case, MIAEL estimators within many general classes will exist and 
be unique within the class. Also, in some circumstances, a global MIAEL estimator will 
exist (see Theorems 1-3 in Cordue 1998b). 

An information index 

Point estimates by themselves are sometimes not particularly useful to fIshery managers. 
It is generally desirable to include some measure of the uncertainty of an estimate. This 
is traditionally done by providing a confidence interval at some high level of confidence 
(traditionally 95%, more recently 90%). The confidence interval approach is of limited 
value in some fIsheries applications, particularly in "risk" analysis, where confidence 
intervals on "risk" (if they were ever calculated) would often include the interval [0,1]. If 
MIAEL estimation is used then a natural measure of estimator uncertainty can be 
provided by comparing the relative performance of the MIAEL estimator which uses the 
observations and the MIAEL estimator which does not. 

Let D be a class of estimators (based on X, estimating g(8), with loss function L), and let 
the information index of d E D be defIned as 

Info [ d] = 1 _ I [ d(X) ] 
I [K] 

where K· (called the best k estimator) is the MIAEL estimator of g(8) (under loss 
function L) before the experiment is observed (i.e., when no observations are available). 
If D contains a MIAEL estimator M(.x), then for every d E D, Info(M) ~ Info(d). 

If X has a distribution which does not depend on 8 then Info[d] ~ ° (since l{d(.x)] ~ l{KJ). 
Also, as estimation losses cannot be negative, for every d E D l{d(X)] ~ 0. Hence, an 
information index (as defIned) is always less than 1, and equals 1 if and only if l{ d(.x)] = 

0. Note that provided KED, Info[M] is always in the interval [0,1]. The MIAEL 
estimator K can easily be found for a squared error loss function (and other simple loss 
functions). In the case when gee) = [a,b] with a squared error loss function, K = 



39 

(a + b)/2. (For K under proportional squared error, see Cordue 1995.) Under fairly 
general conditions, it is always the case that K = k for some k E g(e) (see Theorem 1 in 
Cordue 1998b). 

The best p estimator 

Finding a MlAEL estimator from the class of all estimators is often difficult or 
impossible. To fmd a MIAEL estim"ator for a particular problem it is often necessary 
to construct a restricted class of estimators and determine the MIAEL estimator within 
the class. One way to construct a class of estimators is to build it around a standard 
estimator, derived from a method such as least squares or maximum likelihood. This 
is how "best p" estimators are constructed; they are MIAEL estimators within 
particular classes of estimators built from a "base" estimator. 

Continuing with the notation above, let 

p = {p d(X) + (1 - p) Kip 8 R } 

for some estimator d(X) where K is the best k estimator. The MlAEL estimator in the 
class P is called a best p estimator; it is derived from the base estimator d(X). Note, 
both d(X) and K are in the class P, and that because K 8 P it follows that the 
information index of the MIAEL estimator is between 0 and 1. 
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Appendix 5: The least squares and maximum likelihood estimators 

Least squares 

In general, a least squares estimate is a function of a vector of parameter values which 
minimises a weighted sum of squared differences between the observations and the 
predicted values (as given by the vector of parameters when input into the model). 
The form of the sum of squares used for the least squares estimator in this paper is: 

LWk [In(Xk) -In(pk)]2 
keK 

where K indexes all observed values (individual biomass indices or individual 
proportions or numbers at age and sex), and for k € K, Xk is the kth observation, Pk is 
the kth predicted value, and Wk is the kth weight. The weights for each observation 
were calculated using the method described below. 

Each observation has a "source code": observations with the same source code are 
theoretically derived from the same "source" (e.g., a series of trawl surveys-the 
source-giving as observations a time series of biomass indices, or a time series of 
biomass indices and a corresponding set of estimated numbers at age and sex). Let S 
be a subset of K which indexes observations with a particular source code, then for s € 

S, 
uy 

w =--
s TIT 2 

rrCs 

where u is a specified source weight, y is the number of years for which there are 
observations from the source, Cs is a specified c. V., and 

1 
W=L-2 

seS Cs 

Each observation also has a "q code": observations with the same q code are assumed 
to belong to a relative time series. Let Q be a subset of K which indexes observations 
with a particular q code, then for eachj € Q, 

where q is a proportionality constant and 'Fj is the predicted value before scaling. The 
value of q which minimises the sum of squares can be found analytically and is equal 
to: 
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Maximum likelihood 

In general, a maximum likelihood estimate is a function of a vector of parameter 
values which gives the highest "probability" (or likelihood) of observing the actual 
observations. Maximum likelihood estimators are usually obtained by minimising the 
negative log likelihood (which is equivalent to maximising the likelihood). To derive 
the log likelihood of the observations it is necessary to specify the statistical 
distribution of the observations. For the estimator in this document observations of 
three types were used: relative biomass, estimated numbers at age, and estimated 
catch at age (as proportions). 

For a time series of relative biomass indices or estimated numbers at age and sex, let 
K index the observations in the time series, then for k E K it is assumed for 
observation Xk that Xk = qT kEk where Ek - N(1, cl), q is a proportionality constant, Tk 
is the true value, and Ck is a given c. v. In the case of estimated numbers at age and sex, 
the Tk are actual numbers at age and sex after application of an age and sex specific 
selectivity, and ageing error (in this study ageing error was assumed from age 3 with 
70% of fish aged correctly and a 15% error one year either side). 

For a time series of estimated proportion at age and sex in the catch, let I index years 
and J index age and sex, and let Yi = <Y;j>j E J . It is assumed that Yi - Mult(ni, Pi) 
where "Mult" denotes the multinomial distribution, ni is the given sample size in year 
i, and Pi = <p;j> j E J is the vector of true proportions (after ageing error transformation, 
if specified). 

All of the time series are considered to be mutually independent, so that the combined 
log likelihood is the sum of the individual log likelihoods. For the time series of 
estimated proportion at age and sex in the catch, the non-constant portion of the 
negative log likelihood is: 

- In; I 0;) log(p,j) 
;&/ j&J 

where Oij = Yij / ni is the observed proportion at age and sex in year i. 

For a time series of relative biomass indices or estimated numbers at age and sex 
(indexed by K as above), the non-constant portion of the negative log likelihood is: 

The value of q which minimises the above equation can be found analytically and it is 
equal to: 
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where 

and n is the cardinality of K. 

Penalty function fitting of Z 

Variations of the maximum likelihood and least squares estimators were formed by 
incorporating a penalty function based on the ratio of an "external" (i.e., outside the 
model) estimate of Z and the predicted estimate of Z. The o.bserved and predicted 
survival rates were estimated using the maximum likelihood estimator (Chapman & 
Robson 1960): 

a 
s=--

l+a 

where a is the average age beyond a user specified minimum age (usually the age of 
full recruitment or vulnerability). 

A squared log ratio was used as a penalty function using a high multiplier so that for 
the estimate the predicted survival rate is approximately equal to the observed 
survival rate. For a single observation of catch at age or estimated numbers at age, let 
So be the observed survival rate and sp be a predicted survival rate, then the penalty P 
added to the total sum of squares or the negative log likelihood is 

If there are multiple observations of catch at age or estimated numbers at age, then a 
penalty is added for each observation. 


