REPORT

ON

FOREST RESOURCES SURVEY

OF
SAMBALPUR DISTRICT
of

ORISSA STATE

FOREST SURVEY OF INDIA
 CENTRAL ZONE
 NAGPUR

1996

REPORT

ON

FOREST RESOURCES SURVEY
 of

SAMBALPUR DISTRICT
of
ORISSA STATE

FOREST SURVEY OF INDIA CENTRAL ZONE NAGPUR

1996

CHAPTER I

I NTRODUCTION

1.Ø GENERAL

Sambalpur District is located in the North-West of Orissa State and infact, its North-Western boundary forms the State boundary with Madhya Pradesh. The District lies betreen $20^{\circ} 34^{\circ}$ and $22^{\circ} 11^{\circ}$ North latitudes and $82^{\circ} 39^{\circ}$ and $85^{\circ} 15^{\circ}$ East longitudes. Sambalpur District is bounded in the North by Sundargarh District of Orissa and Ratgarh District of Madhya Pradesh. On its east and south are Dhenkanal and Bolangir Districts of Orissa respectively and Raipur District of Madhya Pradesh, forms West and North West District and State boundary. The stretch of the district along the latitudes is more than double its breadth along the longitudes and has irregular shape. The District forms a part of catchment of two major rivers t.e. Mahanadi and Brahmi. The famous Hirakud dan is one of the longest in the country and was built in 1956 to harness the waters of the mighty Mahanadi river for irrigation, and is located in the District and has revolutionised the traditional agriculture. It has a huge gross dapacity of $8,14,110$ ha.metre (6600 Ø00 acre - feet). The District is rich in mineral wealth, producing in bulk quantities valuable minerals like coal and limestone. Fire clay, graphite, ohina clay etc. are also mined.

A Five Year Plan for taking up inventory work from 1991-92 onwards in the Central Zone was prepared by the Joint Director, Forest Survey of India in consultation with PCCPs of Orissa, Madhya Pradesh and Maharashtra. After discussions with the PCGE, Orissa and his officers, in March, 1991, it was decided to take up forest inventory work in Sambalpur District on priority. Accordingly, on conclusion of Forest Resources Survey of Lohit District of Aruanchal Pradesh in April, 1991, field crews were deployed in Sambapur District from May, 1991 for carrying out forest lnventory work. The field work in the District was carried out in two working seasons: May, 1991 to June, 1991 and Nov; 1991 to March, 1992.

2 Geographical area of sambalpur District is 17516 km^{2}, out of the total area of $155707 \mathrm{~km}^{2}$ of the State of Orissa, reckoning to 11.25%. The population of the District is 2688395 , as against the total population of $31512 \varnothing 7 \emptyset$ of the State, accounting to 8.5% of the total population (1991 census). Thus it can be seen that as against the average density of 202.38 persons per km^{2} of the State, Sambalpur District has a lesser density of population of 153.48 persons per km^{2}.

1.2 ADMINISTRATIVE UNITS.

The District administration located at Sambalpur administers and implements government policies through seven sub-divisions, with headquarters at Sadar, Jharsuguda, Baragarh, Padmapur, Kuchinada, Devgarh and Rairakhol. These subdivisions are further subdivided in to 29 C.D. blocks. There are 15 Tahsils in the District. For maintenance of law and order, the District Superintendent of Police at Sambalpur has 44 Police stations in the District. There are 368 Gram Panchayats for a total number of 3436 inhabited villages and six municipalities for a total number of ten towns.

1.3 FOREST AREA.

The total forest area of Sambalpur District is 6201 km^{2}, reckoning to 35.40% of the geographical area of the District $1 . \theta .17516 \mathrm{~km}^{2}$. Total forest area of the State is $57183.57 \mathrm{~km}^{2}$ and hence the District shares 10.84% of the forest area of the State.

The area figure of $6201 \mathrm{~km}^{2}$ which has been adopted for this survey report is based on the area figures communicated by the office of the PCCE, Orissa. However, as per the legal classification, after deducting forest areas diverted for other uses, the latest area figures for 91-92 as provided by the C.F. Sambalpur are as below:

PREFACE

Forest. Inventory of Sambalpur District of Orissa covering a geographical area of $17516 \mathrm{~km}^{2}$ (11.25\% of the State area) was undertaken by the Forest Survey of India, Central Zone, Nagpur between May, 1991 to March, 1992.

The District is endoned with a forest area of 6201 km^{2} reckoning to 35.40% of the geographical area. According to classification of legal status of the forest area, Reserved Forests occupy $3362.221 \mathrm{~km}^{2}$ while Declared Protected Eorests extend over $717.830 \mathrm{~km}^{2}$, Undeclared Protected Forests over $1498.680 \mathrm{~km}^{2}$, Onclassed Forests being $1.761 \mathrm{~km}^{2}$ and Village Forests sharing an area of $450 . \varnothing \emptyset \emptyset \mathrm{km}^{2}$. The District represents two main forest types viz; (i) 3C - North Indian Tropical Moist Deciduous Forests and (ii) 5B - Northern Tropical Dry Deciduous Forests. The Inventory results reveal 54.45% area under dense and moderately dense forests, 14.97% under open forests, 0.25% scrub forests, 1.42% Bamboo brakes, Ø.25\% shifting cultivation, 11.23% under Young Plantations, 2.33% under young crop, while non-forestry plantations, grass lands, cultivation, water bodies, habitation and inaccessible area occupy the balance.

The findings of the survey exhibit two definite forest strata i.e. Sal forests extending over $2680.43 \mathrm{~km}^{2}$ constituting 51.22% and Miscellaneous forests occupying an area of $2552.41 \mathrm{~km}^{2}$ constituting in all 48.78% of the forest crop. The total vegetated area of the District is $5232.84 \mathrm{~km}^{2}$.

The inventory results reveal a total growing stock of 31.91 million m^{3} out of which Sal alone contributes 19.28 million m^{3} phile Miscellaneous forests contribute 12.63 million m^{3}. Bamboo is found in overlapping form alongrith tree vegetation which is estimated at $2 \emptyset \varnothing \emptyset .32 \mathrm{~km}^{2}$. The estimated green stock of bamboo in the survey area accounts for 0.543 million MT corresponding to 0.326 million MT of dry bamboo stock.

Apart from Forest Inventory; a study on the trend of wood consumption in the District was also undertaken. The results of the Hood consumption study indicate an average consumption of $1.219 \mathrm{~m}^{3}$ per capita for construction of house. For house construction miscellaneous timber is generally preferred. Per capita annual consumption of wood for furniture and agricultural implements was estimated 'at $0.035 \mathrm{~m}^{3}$ and $0.041 \mathrm{~m}^{3}$ respectively., while the annual per capita consumption of fuel wood was estimated to be 2731.45 kg .

The draft of the report was prepared by Shri S.B. Elkunchaar, IFS, Deputy Director under the guidance of Shri P.V. Savant, IfS, Joint Director, Forest Survey of India, Central Zone, Nagpur and with the help of Shri B.R. Pandey, S.T.A. and Shri J.N. Mishra, J.T.A. The data processing was done at the Headquarter under the Euidance of Shri S.K. Chakravarty, Deputy Director.

The text part of the report has been typed by Smt. Gressamma Varghese, Jr.Steno and tables have been typed by Shri D.N.Kadu, Jr.Steno. The co-operation and services rendered by all those associated in the work is appreciated.
'Sincere thanks are expressed to the officers and staff of Orissa Forest Department for their valuable co-operation extended to our field parties during the survey work.

I trust that the report gives a thorough insight to acquaint with the status of forests in the District covering important aspects and also throws light for improvement in the critical areas.

Dehradun
Date: 21.08.1996

Dr. S.N.Rai
Director

FOREST SURVEY DF INDIA
CENTRAL ZONE, NAGPUR

ACKNOWLEDGEMENT

This organisation expresses its gratitude and sincere
thanks to conservator of Forests, Deputy conservator of
Forests and their field staff who provided their valuable
cooperation to the field parties of our organisation during
the survey work without which it was not possible for them
to complete the survey work in stipulated time.

[^0]CONTENTS

PREFACE

Map of India showing Sambalpur District of Orissa State

Detailed map of Sambalpur District

CHAPTER I

INTRODUCTION

1.0 General 1
1.1 Area and population 2
1.2 Administrative units 2
1.3 Forest area 2
1.4 Climate and rainfall 3
1.5 Topography 4
1.6 Drainage 7
1.7 Geology and rocks 7
1.8 Soll 9
1.9 Minerals 10
1.10 Landuse pattern. 11
1.11 Socto economic conditions 12

1. 12 Infrastructure 13
1.13 Forest produce and forest based industries 14
0
CHAPTER II
THE EOREST
2.0 General description 16
2.1 Forest types 16
2.2 Damage to forests 19
2.3 Rights and concessions 28
2.4 Wildlife 21
2.5 Eorest management 21
CHAPTER III
RESOURCES SURVEY METHODOLOGY
$3 . \varnothing$ Objectives of the survey 23
3.1 Area considered for survey 24
3.2 Inventory design 24
Drawing showing lay-out of plot 25
3.3 Location of plot on the ground 26
3.4 Format for data collection 27
3.5 Field work 30
3.6 Eield checking 30
3.7 Maps and plots 30
3.8 Consistency checking 32
CHAPTER IV
DATA PROCESSING
$4 . \varnothing$ Sampling design 33
4.1 Eield data 33
4.2 Plot details in Sambalpur district 34
4.3 Data processing 34
4.4 Area 35
4.5 Volume estimation 36
4.6 Enumerated tree volume 38
4.7 Plòt volume 38
4.8 Stand tables 39
4.9 Stock tables 39
4.10 Sampling error 39
4.11 Bamboo 41
4.12 Cluraps per ha 41
4.13 Culms per clump 41
4.14 Culms per ha 41
4.15 Total number of culms 42
4.16 Bamboo stock 42
CHAPTER V
INVENTORY RESULTS : AREA
$5 . \varnothing$ General 43
5.1 Forest area by land use classes 43
Pie graph showing distribution of 45 area by land use classes
Grid map showing distribution of 46area by land use classes
5.2 Area by crop composition 47
5.3 Area by crop composition and topography 48classes
Grid map showing area by crop composition 49
Graph showing break up of forest area by forest types and topography classes 51
Grid map showing area by topography classes 52
5.4 Area by crop composition and slope classes 53
Graph showing area by crop composition 54 and slope classes
Grid map showing forest area by slope 55 classes

5.5	Area by crop composition and soil depth classes	56
	Graph showing area by crop composition and soil depth classes	57
5.6	Area by crop composition and top height classes	58
,		
	Graph showing area by crop composition and top height classes	60
	Grid map showing area by top height classes	61
5.7	Area by crop composition and size classes	62
	Graph showing area by crop composition and size classes	64
	Grid map showing area by size classes	65
5.8	Area by crop composition and canopy layers	
5.9	Area estimated for plantation	67
5.10	Regeneration status	68
5.11	Soil erosion	69
5.12	Grazing incidence	70
5.13	Fire incidence	71
5.14	Occurrence of Bamboo	72
	Grid map showing bamboo density	75
	- CHAPTER VI	
	INVENTORY RESULTS- GROWING STOCK	
6.0	General	76
	Graph showing stratawise no. of stems and vol. per ha	77-78
6.1	Sal stratum : Stems/ha and total no. of stems	79

6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
7.1
7.2
. 10
7.3
7.4
7.5
7.6

Misc. stratum: Stems/ha and total no. of $8 \varnothing$ stems

Sal stratum: Vol/ha and total volume 82

Misc. stratum: Vol/ha and total volume 83

Combined growing stock: Stems 85

Graph showing specieswise no. of stems in combined strata 87

Combined growing stock: Volume 88

Graph showing specieswise volure per ha in combined strata89

Mean volume per ha by topography classes $9 \varnothing$
Grid map showing vol/ha by diameter classes 91
Mean volume per ha by slope classes 92

Mean volume per ha by soil depth classes 92

Mean volume per ha by top height classes 93

Mean volume per ha by size classes 93

Combined growing stock with estimates of 94 standard error

CHAPTER VII

INVENTORY RESULTS: BAMBOO AND CANE GROWING STOCK
General
Bamboo area 96

Clumps/ha by quality and clup size classes. 98
Mean no. of bamboo culms/clump by age 99
Mean no. of bamboo culms per ha 102
Total number of culms 104
Growing stock of bamboo 1 (ø6

CHAPTER VIII

WOOD CONSUMPTION STUDIES
Trend of wood consumption in rural areas of Sambalpur District

8.1	General	109
8.2	Generaln information about the district	109
8.3	Methodology of survey	110
8.4	Findings of the study	111
8.5	Suggestions	112

GROWING STOCK TABLES
6.1 T(A) Stratum Sal : Stems per ha 113
6.1 T(B) Stratum Sal : Stems in øøØ 114
6.2 T(A) Stratum Misc. : Stems per ha 115
6.2 T(B) Stratum Misc. : Stems in ØøØ 116
6.3 T(A) Stratum Sal : Volume per ha ${ }_{3} 117$
6.3 T(B) Stratum Sal : Volume in $\varnothing \varnothing \varnothing^{3} 11$
6.4 T(A) Stratum Misc. : Volume per ha ${ }_{3} 119$
6.4 T(B) Stratum Misc. : Volume in øøø ${ }^{3}$ 119 120
6.5 T Combined stand table by dia. classes . 121
by numbers per ha and number in $\emptyset \varnothing \varnothing$
6.6 T Combined stock table by dia. classes

122
volume per ha and total vol. in øøø3

Annexure - I
Bibliography 123
Annexure - II

Glossary of scientific names of common trees, 124 bamboos and canes occurring in the forests of Sambalpur district of Orissa State
ANNEXURE - III
Officers and staff associated with 128 inventory work

TABLE NO 1.1
division wise and legal statuswise forest areas in km ${ }^{2}$

Sambalpur	1012.950	51.060	392.070	0.280	-	$\begin{aligned} & 1456.360 \\ & (24.15 \%) \end{aligned}$
Rairakhol	1013.391	100.960	510.000	0.511	450.2000	$\begin{aligned} & 2074.862 \\ & (34.41 \%) \end{aligned}$
Deogarh	612.970	185.260	169.640	0.020	-	$\begin{array}{r} 967.890 \\ (16.05 \%) \end{array}$
Bamra	722.910	380.550	426.970	0.950	-	$\begin{aligned} & 1531.380 \\ & (25.39 \%) \end{aligned}$
Total	$3362.221 \quad 717.8301498 .680$			1.761450 .0006030 .492		
$\begin{aligned} & \mathrm{RE}=\text { Rese } \\ & \mathrm{UPF}=\text { Unde } \\ & \mathrm{VF}=\mathrm{V}_{1} 11 \end{aligned}$	ed Forests ared Prot e Forests	$\begin{aligned} & \text { DPF = } \\ & \text { cted Eol } \end{aligned}$	Declared ests, UC	$\begin{aligned} & \text { Proteo } \\ & =\text { Unc } \end{aligned}$	ed For assed	sts, orests

Thus it is seen that out of the four territorial Forest Divisions, Rairakhol has the maximum area of $2074.862 \mathrm{kr}^{2}$, followed by Bamxa - $1531.380 \mathrm{~km}^{2}$ and Sambalpur $1456.360 \mathrm{~km}^{2}$, while Devgarh Forest Division has the least area of 967.890 km^{2}.

There are three Wildilfe Sanctuaries (WLS) in the District. Debrigarh WLS in Sambalpur Division occupies 346.90 km^{2} area, Ushakothi WLS in Bamra Division is spread over $308.03 \mathrm{~km}^{2}$ area and Khalasuni WLS encompasses $116.0 \emptyset \mathrm{~km}^{2}$ area.

1.4 CLIMATE AND RAINEALL.

Not considering local variations, the climate of Sambalpur Distriot is hot in the summer followed by rainy season, mainly from middle of June to middle of October and a distinct winter season from November to January. The average rainfall of Sambalpur District is 1545 m having 70 rainy
days. The mean maximum temperature is $35.5^{\circ} \mathrm{C}$ and the mean minimum temperature is $22.5^{\circ} \mathrm{C}$. However, during high summer in May the mercury crosses $42^{\circ} \mathrm{C}$ for some days. Winters are not very cold with the minimum being $14^{\circ} \mathrm{C}$ in December. Frost is usually absent.

A bar diagram appended at page 5 \& 6 depicts mean monthly variation of temperature and rainfall in Sambalpur, based on $10-25$ years.
(Source: Revised working plan for Sambalpur 1970-90 by SG Panda)

1.5 TOPOGRAPHY.

The topography of Sambalpur is predominantly extension of plains of Chhattisgarh. The river Mahanadi bifurcates the district into two major physical divisions viz; west of Mahanadi and east of Mahanadi. The eastern part of the district, in particular the area confined to the Deogarh Forest Division, forms the catchment of Brahmani River and its tributories. The famous Hirakud dam on the Mahanadi exists in the north of Sambalpur. The dam has played a major role in economic upliftment of the agrarian society of Sambalpur Dtstrict. Mahanadi crosses the district from north to south by entering the border from west. The Mahanadi has its catchment over Bamra, Sambalpur and Rairakhol forest divisions.

In the western part of Mahanadi, important tahsils of Bargarh Padmapur and Attabira fall. The important tahsils on the eastern side of Mahanadi are Sambalpur, Jharsuguda, Kuchinada, Ratrakhol and Deogarh. The plains of the District are gently sloping, thickly populated and extensively. cultivated and almost devoid of forests. The plains extend upto Barora in the north. The western and north western parts of the District are hilly. Entire areas of Bamra and Deogarh Forest Divisions are hilly and are interspersed with valleys. Khalasuni and Kansar blocks have a compact hill range in Rairakhol division; its physiography divided into three distinct zones by the river Tikira and National Highway going to Cuttuck.

sKop Kulos jo on/urn U! ilotioy

The height variation in the entire traot ranges from 368 m to 822 m above mean sea level.
1.6 DRAINAGE.

The catchments of Mahanadi and Brahmini rivers encompass the entire district. Mahanadi is the principal river flowing North to South for about 110 km , and carries immense volume during the monsoons, average width being 1 kro. After rains the flow is regulated by the Hirkud dam. The river Bhrahmini also flows mightily during monsoons. The main tributory of Mahanadi is the Ib river which enters from Sundargarh District. The river Ong coming from Madhya Pradesh drains in Mahanadi near sonepur. North and north eastern parts drain into the river Bhrahmini through rivers Tikra and Aunhjor.
1.7 GEOLOGY AND ROCKS.

The geology and rock system prevailing in the District may be divided into Archaean, Cuddapah and lower Gondwana (Talcher series). The petrological sub-groups in their decreasing antiquity and with their extent are given below:

```
Petrological groups Places of accurrence
```

A. Archaean

1. Granite group
(a) Grey augengneiss with magnetite veins (rare)
(b) Granitoid gneiss, granular granite, granite with biotite.
A. 1 (a) and (b)

Dumerduca - Mundher Jaduloisingh- Gunjghara Kendrapat, Bandher, Budharaja, Tabla,

Lachhmidongri and Bireingh Blocks.

2. Qua (a) (b)	rtzite group :- Quartzite and its variations quartz felspar schist and at places and traversed by quartz veins. Micaceous and hornblende schist and phylitic schists, pink schistose gneiss, sandy schists, granular quartzite, dolerite and Koalinised gneiss.	A. ' 2 (a) Hills in Kulcher, Moghpal, Kusamura, Charbahali and Parsalikhaman and Basiapara blocks, Baighara, Moulabhan and West Jharghatti - Garpatti, Desar and Motijharan blocks. A. 2 (b) Plains of Kulcher, Kugamura Charbahali, Parsalikhaman, Basiapara and Sangramal Blocks. Chhamunda, Beheramal parts of Hatibari, Chichamura, Phulghar, GJarmal, Lamaljunan, Landungri, Adhapara and Ramenda blocks.
(c)	Khondalite, amphibolite schistose and granulitic gneiss.	A. 2 (c) Tablo1, Deogaon Larasara, Goinpura, East Jharghatti, Sunaridungri, Rampaluga and hills of Sangramal blocks.
(d)	Rocks as in (b) but altered by contact metamorphism.	A 2 (d): as in A 2 (b).
3. Gra	te - Quartzite	A 3 (a) : Brahrainidungri
(a)	Quartzite, arphibolite and granitoid gneiss, quartz, granite and hypersthene gneiss.	and part of Hatibari blocks
(b)	Banded porphyritic gneiss.	A 3 (b): Labdera block.
	Lower Gondwana (Talcher series) 1. Sandstone	1: Bhowarkhol block, Nimgir border of Belpahar.
	. Cuddapah formation	B1 : Throughout the pla

2. Calcarious shales (with intercalation of lime stones)lime stones. B2 : Dungri, Dalipali and
3. Gritty quartzite and slightly metamorphosed ferrogeneous sand stone.

Loharabehara.
Ambabhona and Kanagaon.

B3 : Dechua hills and Hulsari dungri.

Most of the district in east and north are covered by Archaean rocks. Hoнever, Cuddapah formation is also seen in Barapahar and south of Mahanadi river. Lower Gondwana is found in isolated patches in Thowari khol block in the north of the District bordering Sundergarh.

1.8 SOILS.

Soils form the basic support system to the forest resources. Variety, health, luxuriance and productivity of the forest resources largely depend upon the type of soils available in the tract. Sambalpur is characterised by the three main rock systems viz; Archaean, Cuddapah and Lower Gondwana. Accordingly, soil formations also vary at places and are characterised by their parent rock systems and metamorphic changes. The chief type of soil is derived out of Archaean group followed by Cuddapah formation and lower Gondwana in descending order of their occurrence.

The Archaean rocks with sub-group of granite, quartzite and combination of the two have given rise to coarse sandy soils. They change frequently to calcarious loams. On the hill slopes generally the soils are shallow with little sub-soil but in the valleys these are deep and fertile. In small valleys they are neither deep nor fertile and on the lower hill slopes the soils are deep but with light texture and are unfertile. Mixed deciduous forests generally with high percentage of bamboos in the vegetation cover are found standing on such soils. The quartzite metamorphosed rocks
turn into reddish sandy loam to clayey loam, usually rich in iron and alumina. These types of solls occur in the east and north of Mahanadi river. Forest reserves on such soils are composed of mainly Sal crop with scattered teak. Bamboo also occurs sporadically on such soils. The granite and quartzite together have given rise to sedimentary coarse textured soils. These solls are more sandy and less clayey and tend to lower the average fertility of the soils. The forest supported on such soils consists of sal (Shorea robusta) quality III and IV. Often on drier slopes the crop turns into mixed foreste. The areas covered under such soils are spread over hills in Kulcher, Moghpal to West Jharghatti - Garpatti and Motijharan blocks.

The petrological cuddapah formation has given rise to sand stone formation. Limestones are also found on such formations. The soils yielded on such rocks are loamy to clayey with much calcium contents and less amount of sand grains. The occurrence of such soils is limited to valleys and plains and they are less fertile. The Bamboos and mixed deciduous forest are the characteritic features of vegetation of such soils. The tracts of Brahmini dungri and part of Hatibari blocks support this system of soil and vegetation. The lower Gondwana (Talcher serles) has fertile soil. The occurrence is confined to convex slopes distingulshed with characteristic of pisolitic laterite which is easy to hande when wet but hard when dry. The extent of such soils are seen In Bhowar khol reserved forest block supporting a vegetation of Shorea robusta with Dendrocalamus strictus bamboo and mixed forest.

1.9 MINERALS

The District produces variety of minerals of which coal is the most important. Following table gives the relevant information about the mineral position in the District. The information is for the year 1990.

S.No. Mineral	No. of mines	Area in ha	No. of workers employed.	Output in MT	$\begin{gathered} \text { Value } \\ \text { (Ry lakhs) } \end{gathered}$
1. Fine clay	5	416	81	6,515	4.00
2. Lime stone	3	1047	622	5,04,207	445.00
3. Graphite	16	820	869	9,729	41.00
4. Quartz and quartizite	4	382	28	1,152	3.80
5. Coal	12	5979	10641	5,700,773	11701.00
6. China clay	4	146	57	2381	2.010
7. Soap stone	2	9	17	25	-
Total	46	8799	12315	62,24782	12,196.0

Thus, it is seen that valuewise, coal contributes to 95.94% of the revenue obtained through minerals. Substantial population is employed in mining activity. (Source District Statistical handbook 1990-91).

1.10 LANDUSE PATTERN

Pattern of land utilisation in the district

	(Area in '000' Hect)				
S. No. Items	1985-86	1986-87	1987-88	1988-89	1989-9б
12	3	4	5	6	7
1. Geographical	17.49	17.49	17.49	17.49	17.49
2. Forest area	632	639	639	639	620
3. Barren and Uncultivable land	54	54	54	54	54

Out of the gross cropped area of $91 \emptyset \mathrm{~km}^{2}, 3532 \mathrm{~km}^{2}$ agriculture land is irrigated through mainly Hirakud and other irrigation projects, i.e. 38.81\% cultivable land is irrigated. This has improved the agriculture sector to a great extent. Consumption of fertilizers of 54.1 kg per ha is highest in the state, the average for which is 21.7 kg per ha. This is reflected in per capita production of food graing which is 316 kg per ha as against 256 per ha for the gtate. Rice is the main crop that is grown and forms bulk of the food grain production, 1.e. 166.36 lakh MT out of total of 203.19 lakh MT of food grains. However, number of marginal farmers below 1 ha holding is quite large i.e. 1,42,600 out of 3,30,900 (43.09\%), small farmers with holdings from 1.00 to $2 . \varnothing \varnothing$ ha are $9,10, \varnothing 0(27.50 \%)$, semi medium holdings of 2 to 4 ha are 67,600 (20.43%), medium holdings of 4 to 10 ha are 25,900 (7.83\%) and large holdings of 10 ha and above are 3800 (1.15\%). The tribal and scheduled caste population as well as landless people fare the same miserable fate as that of their brotheren elsewhere in the country. Total population of live stock is 18.35 lakh out of which cattle are 11.77 lakhs, buffaloes are 1.23 lakh, sheep and goats are 5.23 lakhs and rest are mostly pigs (1982 census).

1.12 INFRASTRUCTURE.

Sambalpur District is laced with a network of roads of different kinds. National Highway no. 6 - Mumbai to Howrah passes through Sambalpur and has a length of 329.50 km in the District. Total road length in the District is 26,614 km and its distribution is as belor:

	Category of Road		Length
1.	National Highway	-	329.50
2.	State Highway	-	241.20
3.	Major District roads	-	1038.00
4	Other Dstrict roads	-	334.69
5.	Classified village roads	-	476.00

6.	Municipal roads		1146.00
7.	Forest roads	-	1043.00
8	Irrigation roada	-	570.62
9.	O.S.E.B. roads	-	22.18
10.	Panchayat samiti roads	-	2668.2ø
11.	Grampanchayat roads	-	18745.00
	Total		26614.39

Apart from National and State highways and District and municipal roads other roads are either metalled or unsurfaced roads.
Two broad guage railway lines pass through the
district i.e. Mumbai-Howrah (via Nagpur) app. 100 km and
Jharsuguda-Titlagarh about 115 km.
1.13 FOREST PRODUCE AND FOREST BASED INDUSTRIES.

Sal is the most important timber tree species of the District. Poles, Bamboos and fire mood are the main forest produce. The important minor forest produce are Kendu leaves, Charcoal, Sal seed, Tassar, Sabairope, Mahua flower and seed, gums, Myrobalans and fibres obtained from the forest area. Thatch grass as well as other varieties of grasses for fodder and brooms are also obtained from the forest area. Medicinal plants, soap nuts and honey etc. are also produced in the forest.

Forest. based industries in the District comprise Saw mills, Furniture marts, Katha product mills and paper mill. Orient paper mill in Brajrajnagar is the major forest based industry in the District.
A list of Names and number of registered forest based indus-tries supplied by the District Industries office, Sambalpur isbelow:-
Type of Industry No. of units
Saw mills 24
Furniture mart (wooden) 27
Kath. Wood product industry 1
Paper mill 1
Poly leaf press 2
Shutter, door works, Bullock cart 5
Wooden Reels, Packing box 2
Wooden cable drums 1
Khus products \& Bamboo products 1
Wooden frame looms 1
Source : Sambalpur Industries office.

CHAPTER II

THE ERORESIS

2.0 GENERAL DESCRIPTION.

The forests of Sambalpur District lie in the northern tropical zone and far away from the sea with a rainfall averaging about 150 m mer year. Climatically the tract comes within northern tropical moist deciduous zone, but due to prolonged dry season with a short monsoon period, poor moisture retention capacity of soils, low relative humidity and regualr fires, large areas support dry forests. In general, on the eastern side of Mahanadi, forest areas have preponderence of Sal and on the western side the crop is Miscellaneous in nature. The quality of Sal varies according to locality factors and biotic Interference. Moist sal occurs in moist pockets in valleys and nalla banks and lower slopes of hills showing site quality $I I$ and rarely even I. Dry Sal occurs in the rest of the area. Bamboos (Dendrocalamus strictus) occur in both Sal and Miscellaneous forests. Where Sal forests have not been able to withstand biotic pressures, bamboo brakes have taken over, as is typically found in Kansar and Gogua blocks of Bamra Forest Division. Natural teak occurs only in Lachmidugri block in association with Miscellaneous species and also in a small area of Khesra forests of Tabdakud.

2.1 FOREST TYPES.

Two broad forest types occurring according to the revised classification of Champion and Seth are: (i) 3C North Indian Tropical Moist Deciduous Forests and (ii) 5 B Northern Tropical Dry Deciduous Forests.

The Forests are further subdivided on the lines of the said classification:-

Forest type/sub type
I. (1) $3 C / \mathrm{c} 2$ e(i)-

Moist Peninsular High level Sal
(2) $3 \mathrm{C} / \mathrm{c} 2$ e(ii)

Moist Peninsular low level Sal
(3) $3 \mathrm{C} / \mathrm{c} 2$ (iii)

Moist Peninsular valley Sal
II.(4) 5B/C/E

Dry Peninsular Sal
(5) 5B/C2

Dry Mixed Deciduous Forests
III. 5 E9 Dry Bamboo brakes
I. MOIST PENINSULAR SAL.

Moist peninsular Sal is confined to sheltered valleys with deep sandy loam soils, where pater table does not Eo too deep during summer. The quality varies from II to III in valley Sal (27-33m and 21-27m) to III, IV and $V(21$ to 27m, 15-21m, below 15 m) in lower level sal and IV to V in high level sal. Important species found in High level Sal forests are: Gmelina arborea, Adina cordifolia, Bombax ceiba, Pterocarpus marsupium in the top storey. Middle storey consists of Bursera serrata, Careya arborea, Ougeinia oojeinensis, Bauhinia retusa, Cassia fistula, Screbera switenioides, Dillenia pentagyna, Bridelia retusa etc.

In low level Sal, in the top canopy Mitragyna parviflora, Hymenodictyon excelsum are also found in addition to species in high level sal whereas in the middle storey Syzigium cuminii, Diospyros melanoxylon, Dalbergia latifolia, Cleistanthus collinus, Mallotus philipinensis are found.

In valley Sal, the ground floor is covered with dense growth of Semi-evergreen shrubs. In addition to species mentioned in the top canopy, Terminalia arjuna, Alstonia scholaris and Mangifera indica are also found.

Bamboos occur in moist Sal areas as a second storey and is fairly distributed.
II. TROPICAL DRY DECIDUOUS FORESTS.

The forests of the District falling under this categary have light upper canopy which is generally irregular and broken. Description of the sub types is given belou:-
(A) Dry Peninsular Sal forests.

Dry peninsular sal forests occupy extensive areas in the District. They are found on shallow soils overlying crystalline or metamorphic rocks. It is found to be absent or very few on soils formed in situ on permanent basic granite rocks and Cuddapah. It is also found on calcarious soils. The quality of Sal is poor, generally IV and V. Unsoundness in Sal in this subtype is owing to poor soils, annual fires and uncontrolled selective fellings. Main species found in the upper storey are: Shorea robusta, Terminalia tomentosa, Anogeissus latifolia, Diospyros melanoxylon, Madhuca indica,, Lagerstroemia parviflora, Adina cordifolia, Sterculia urens, Cochlospermum religosium, Hymenodictyon excelsum etc. In the understorey, Dendrocalamus strictus occurs widely. Other species of note are Buchnania latifolia, Chloroxylon suietenia, Emblica officinalis, Terminalia bellirica, Lannea grandis, Cleistanthus collinus, Ougeinia oojeinensis etc.

This sub-type also occurs over large areas in the District and is found on soils formed in situ on Gneiss, Schists and Cuddapah. Sal is either absent or scattered or occurs in small patches along nalla banks or on northern lower slopes. The crop is, more or less open and presents a desolate look in summers when trees become leafless. Main species found are: Terminlia tomentosa, Pterocarpus marsupium, Anogeissus latifolia, Diospyros melanoxylon, Cleistanthus collinus, Lagerstroemia parviflora, Buchnania latifolia, Sterculia urens, Bospellia serrata, Lannea grandis, Cochlospermum religiosum, Chloroxylon sueitenia, Cassia fistula, Gardenia latifolia, Emblica officinalis, Semicarpus anacardium etc. Chochlospermur is found on dry rocky grounds. Bamboo is scattered over the entire area.
(C) Dry Bamboo Brakes.

Bamboo brakes occur where, due to blotic pressure and annual fires and dryness, other species cannot survive. Bamboos develop rapidly after coppice fellings or clearfellings are followed by fires. Miscellaneous species occur scattered all over, especially on nalla banks.

2.2 DAMAGE TO FORESTS.

Annual fires from the beginning of March to the month of May are the main cause for serious damage being caused to the forests of Sambalpur District. Almost entire forests are affected by annual fires wreaking havoc on young regeneration and pole crop. The main reason for forest fires is probably tendu leaf trade, as it is a fact that after cut ting back tendu bushes if the area is swept by fire, the bushes sprout luxuriant flush of leaves. It is no secret that wherever tendu trade is being carried out, forest fires are a regular feature. Forest fires are also caused by people setting patches of forests on fire so that Mahua flower fall can easily be picked up on black and charred background. Graziers also set fire to vast tracts so as to get good flush of palatable grasses in the monsoons. In tribal areas the tribals set fire to forests so as to drive the game in a particular direction to trap them. General apathy on the part of public toward nature is evident here, as elsewhere in the
country, in that, they throw burning bidi, cigarette butts non-chalantly in the forest area. Annual fires are one of the main reasons for moist Sal degenerating into dry sal and dry sal getting edged out by dry deciduous forests. As has been explained above, occurrence of bamboo brakes in many parts of the district is the direct result of annual fires taking toll of tree species whereas the bamboo rhizomes remain unaffected underground.

The live stock population of the District is very large i.e. 18.35 lakhs. The forests, especially near about habitation are prone to very heavy grazing. The carrying capacity of the land is exceeded manifolds due to this large cattle population. Unrestricted grazing has resulted in compacting of the soil, thereby making natural rengeneration a difficult proposition. Whatever regeneration comes up is either grazed by the cattle or trampled.

Though the District boasts of a fairly good rainfall, normally indicative of moist vegetation, the number of rainy days are quite less in number and the spread of the rainfall is also not even. Consequently, dry period starte from the month of October and continues through to Mid-June. Given that the maximum temperature crosses $40^{\circ} \mathrm{c}$ mark in high sumber, and also the fact that large tracts have low moisture retention capacity, the drought has played its role in degrading probably the moist Sal forests of the District.

Moist valleys and packets are heavily infested with climbers like Bauhinia vahilii, Milletia auriculata, Smilax species, Butea superba etc. The Loranthus also attacks Sal poles and trees here and there.

Injury to crop by illicit felling and encroachments is not very serious in the District but its occurrence is seen on and off especially in the plain areas.

2.3 RIGHTS AND CONCESSIONS

In A class reserved forests no rights and concessions have been allowed but forest materials can be reserved from the annual coupes of B class Reserved forest on payment of shedule rates, fixed by the administration, for bonafide domestic needs by villagers.

Grazing is alloued even in reserved forest though, at very nominal rates to tho villagers. Peoplo living in villages adfoining reserved forests have been granted permission to collect free of charge minor forest produce like edible roots, fruits, flowers, leaves and grass for their bonafide domestic use. All the tribal villagers are permitted to remove timber and fire mood on concessional rates for their requirements only and not for sale or barter. Villagers are allowed to cultivate lac on Kusum trees and bamboos can also be allowed to be removed from the annual coupes leased out to paper mill. As a result of all these concessions forests of the district are very much depleted almost in all accessible area.

2.4 WILDLIFE

As has been detailed in para 1.3, the district boasts of three Wildife sanctuaries with a total area of $770.93 \mathrm{~m}^{2}$ in Sambalpur, Bamra and Rairakhol Divisions to preserve the precious habitat for Wildife. Among carnivores Tigers are rare and found in Bamra and Rairakhol divisions, but leopards are quite common especially in Rairakhol division. Other common carnivores found are Hyaena, Jackal, Honey badger, Wild dogs etc. Ushakoti sanctuary in Bamra Division and Khalasuni block of Rairakhol division are famous for elephants having a sizeable population. In the same area gaurs are also occassionally seen. Among herbivores, Sambar spotted deer. Barking deer, Charsinga are commonly seen. Sloth bears are also quite common. The wild boar population in the forests of Sambalpur. is sizeable. The forests have rich avifauna, common being Peacocks, Jungle foul, Myna, Cuckoo, Partridge, Wood peckers, Hornbills, Parakeets, Racquet tailed drongo, Orioles, Bulbuls, Robin, etc. Among reptiles, Cobras, Vipers and Pythons are important.

2.5 FOREST MANAGEMENT

Systematic forest management was not in vogue till about 1927. Most of the forests were under the control of local rulers. Big trees mere felled for rallway sleepers and podu (shifting) cultivation was practised without hinderance. At the beginning of the third decade of the 20 th century the forests were brought under established systems of Forest
management. Working plans prepared by such stalwarts as Shri Mathur (for Bamra), Dr. H.E.Mooney (Rairakhol division) gave the forests the required treatment through Selection working circle, Conversion working circle, Coppice working circle, Bamboo working circle etc. After implementation of the Act, abolishing Zamindari, the forests of the district, as a whole, were brought under systematic management.

At present, the management is concerned with the following main objectives.
(a) Maintenance of well stocked forests, especially on hills so as to arrest soil erosion and conserve water.
(b) To improve the existing forests qualitatively and quantitatively by sound silvicultural and management practices.
(c) To cater to the needs of local populace in terms of wood products on a sustained basis.
(d) To rehabilitate depleted forests through tending and enrichment plantations, preferably with the active participation of public.
(e) To Conserve and develop wildife in the area.

There are two Social Forestry Divisions in Sambalpur District; one is at Sambalpur and the other is at Bargarh. Main activities of SE Wing are: (a) Creation of village wood lots on Govt. waste lands, other available govt. lands, (b) Reforestation of degraded B class reserved and protected forests, (c) Rehabilitation of degraded forests, (d) Raising plantation on barren hills, (e) Forest farming for rural poor and, (f) farm forestry.

Due to population growth and a perceptible change in socio-economic concepts of the society, the forest administration is beset with problems of illicit removal of timber and firewood, smuggling of Kendu leaves and Mahuwa floнers, unauthorised removal of bamboos, grazing in forest area and forest fires - mostly manmade..
\qquad

RESOURCES SURVEY METHODOLOGY.
3. \varnothing OBJECTIVES OF THE SURVEY:

The objectives of this resources survey were :-

1. To collect information on distribution of forest with regard to various parameters such as topography,latitude, aspect, slope, soil-depth etc.

2 To collect various information on crop data including origin of crop (whether the crop is of seed origin, coppice origin or a plantation), its composiltion,height,size,quantum of regeneration, injury to crop,fire incidence, grazing incidence, presence of weeds and grasses etc.
3. To collect information under bamboo occurrence such as species found, their density,quality, quantity and regeneration etc.
4. To estimate the forest areas under different crop composition and also to assess the extent of forest area under non forest use.
5. To estimate the growing stock of trees and bamboos in areas having forest cover.
6. To determine the plantation potential of the land which is poorly stocked or unstocked.
7. To focus attention of the planners and forest officials on the critical aspects and condition of the forests for timely remedial measures and for future planning.

For the purpose of this inventory, the forest area falling in Sambalpur District of Orissa State was considered. In order to decide forest areas, the recent Survey of India toposheets, preferably of $1: 50,000$ scale and in case of their non-availability, $1^{\prime \prime}=1$ mile toposheets were used. All those areas which were demarcated by double dotted forest boundaries on these toposheets and were having green wash within or outside such boundaries, were taken as forest areas for undertaking this inventory.

3.2 INVENTORY DESIGN:

A common inventory design for the whole organisation was evolved in consultation with the Central Statistical Organisation (Govt. of India) for undertaking inventory work in various parts of the country. The design envisaged the survey of two randomly selected plots each of 0.1 ha area in each grid of $21 / 2^{\circ} \times 2$ 1/2* (latitudes and longitudes) on the toposheet of $1: 5 \varnothing, \varnothing \varnothing \varnothing$ or $1: 63,36 \emptyset$ scale. A grid bounded by 2 $1 / 2^{\prime} \times 21 / 2^{\circ}$ latitudes and longitudes covers about $20 \mathrm{~km}^{2}$ area In which 0.2 ha area is actually sampled. Thus the sampling intensity of the survey comes to 0.01%. The method of maring the plot centre on the map within grid is as follows :-

Two sides (X - axis and Y - axis) of a grid were measured in millimeters." The length of these sides was divided by 0.6324 mm (side of 0.1 ha . square plot) in case the map was on $1: 50,000$ scale, or by 0.4990 m in case the map was on $1: 63,360$ scale. The quotient so obtained was rounded up. Let the numbers (quotient) for X axis be x and that of Y axis be y. Actually the number x gives the no. of plots that may fall along X axis and number y gives the no. of plots that may fall along Y axis. The product $x \quad X \quad y$ gives the total number of sample plots that may exist in a grid of $21 / 2^{\circ} x 21 / 2^{\prime}$. Out of these plots ($x X y$), one plot has to be selected on the basis of random number and the second one with the help of the first plot which will be explained in the next para. For the selection of ist plot, one set of three random numbers were selected from random number table. If the random number selected for X axis was

DIAGRAM-2
DIAGRAM SHOWING LAY-OUT OF PLOT IN $21 / 2 \times 21 / 2$ GRID
' x ' $a^{\prime} y$ ' are the distances along ' X ' a ' Y ' AXES WITH SW CORNER AS ThE ORIGIN

DIAGRAM-3
DIAGRAM SHOWING LAY-OUT OF PLOT
less than x (quotient for X axis), then it was retained and if the random number was more than x, then it was divided by x and the remainder was retained. Similnr exareise harl to bo done for Y axis also by taking next 3 -digit set of rańdom numbers. The figure (remainder) so obtained was multiplied by the side of the plot i.e. 0.6324 mm in case of $1: 50,000$ scale map and by 0.4990 mm in case of $1: 69,960$ Ecale map 5 a get the actual coordinates of the 1 st plot ${ }^{(1)}$ The plot no. 1 of all the grids was marked on the map taking south pest corner of respective grids as origin. The distance along X axis was measured towards east and along Y axis towards north. Thus the centre of plot 1 was marked on the map at the crossing of the two coordinates.

For marking the centre of second plot of each grid, the plot centre of 1 st plot and centre of $21 / 2^{\circ} \times 21 / 2^{\circ}$ grid were joined and the line extended to the same distance in opposite direction beyond grid centre. The point so reached was the plot centre of the second plot. The location of second plot is thus linked with the first plot. The layout of $21 / 2^{\circ} \times 21 / 2^{\circ}$ grid and the plots are shown in diagrams 1,2 , and 3 on the preceeding page. All such plots were marked on the toposheets. The plots so marked Here to be visited only when they fall in forest areas i.e. the area covered by green wash or by double dotted forest boundaries on 1:50,000 scale or 1:63,360 scale mapsheets.

3.3 LOCATION OF PLOT ON THE GROUND

As stated earlier, the survey was confined to the forest areas only as decided on the basis of forest boundaries and green wash shown on the toposheets. The plot has to be visited when it falls in sometrorest area. All the forested plots of the survey area i.e Sambalpur district of Orissa State, duly marked on toposheets, Here allotted to various crews. The crews had drawn, up their programme of halts at some convenient places in order to tackle maximum plots from those camps. The plots marked of the toposheet had to be exactly located on the ground with the help of some conspicuous features which could be identified on the map as well as on the ground. Usually the following features were selected for this purpose:

1. Bench Mark.
2. Triangulation point.
3. Village or road trijunction.
4. Old bridges and culverts.
5. Old temples, mosques and churches.
6. Crossing of rail tracks with roads, streams, rivers etc.
7. Confluence of rivers or streams and junction of roads.
8. Prominent bends in roads, rivers or streams.
9. Old ponds and wells.
10. Springs.
11. Prominent topographical features in hilly region such as spurs, knolls etc.
12. Mile stones or kilometer stones on the road side.

13 Pillars of international,inter state or inter-district boundaries and those forest areas etc.
14. Prominent bends of boundary etc.

After locating any of the above reference points on the ground as well as on the map, the bearing and distance from reference point to the plot centre were marked. This distance has to be traversed at the bearing calculated for the plot using Silva Compass and distance by measuring nylon rope/tape etc. While using compass the magnetic declination as indicated on the concerned toposheet was also taken into account. Similarly, for distance measurement the slope correction was applied to cover.the actual horizontal distance of the plot measured from the map.

On reaching the plot centre, a square plot was laid out by taking distance of 22.36 m . in all the four directions (north, south, east and west) from the plot centre. Thus an exact plot of D. 1 ha. area (having each side of 31.62 m . and diagonal of 44.72 m.$)$ was laid out horizontally after making corrections for the slopes measured with the help of Blumleiss hypsometer along 4 semidiagonals (north, south, east, west).

3.4 GORMAT FOR DATA COLLECTION

After laying out the plots in the field, various data нere collected in the following field forms in codified manner (except in Plot Approach Form wherein information was collected in descriptive manner) as described in the field manual issued to the crews for the purpose of data
collection. This facilitated the transfer of data on punch cards, consistency checking of collected data and finally in procesing the data on olectronic computer at a later etage. Various field forms used in this survey were:-

1. Plot Approach form.
2. Plot Description form,
3. Plot Enumeration form.
4. Sample Tree form.
5. Bamboo Enumeration-Cum-Clump Analysis form.
6. Bamboo Weight form.
7. Plot Approach form.

As the title indicates, the form was a record of approach to the plot centre from the field camp of a crew. It was filled in by the Cren Leader as he proceeded from his camp to some conspicuous feature called reference point existing near by the plot. The distance and bearing from this well defined reference point to the plot centre were also recorded on it. The exact location of plot centre i.e. bearing and distance from two trees to the plot centre was also mentioned together uith the time of departure from camp, time taken in various studies and time of arrival in the camp.

This form helps the check crer or any other person to relocate the plot easily when required. The data on this form is recorded in descriptive manner with a neatly dram sketch showing the location of reference point and the plot centre.
2. Plot Description form.

This form is designed for recording qualitative description of 2 ha area around the plot centre. The information regarding administrative units, legal status, land use, topography, soil, vegetation, bamboo regeneration, biotic influence, accessibility and plantation potential etc. nere recorded. The data were recorded in codified manner and was transferred to punch cards for further computer analysis. The stratification of area and classification of growing stock was done on the basis of these descriptions only.
3. Plot Enumeration form.

In this form, all the trees with dia 10 cm . and
 plots Here recorded by species. This was meant for computing total growing stock existing in all such sample plots and finally in whole of the survey area which was estimated on the basis of these plots.

This form helps in distributing the growing stock in terms of stems and volume by various parameters like species, diameter class, forest types etc.
4. Sample Tree form.

Detailed information regarding the species, diameter at breast height (over bark), height of tree, clear bole, bark thickness, dominance and defects etc. of all the trees occurring in north west quadrant of all the plots, were recorded in this farm.

On the basis of these parameters (i.e. height, diameter and clear bole), we get volume of the plots which further enables us to estimate the total growing stock of the area falling under various strata.
5. Bamboo Enumeration-Cum-Clump Analysis form.

In this form, the data of individual culms occurring in the selected clumps bearing S.No. $1,9,17,25,33$ etc. (i.e. the first and every eighth clump appearing in Plot enumeration form were recorded. Thus, the information about age, soundness, size and condition etc. of the culms of the above clumps was obtained and analysed in various columns of this form.

This information gives the position of total bamboo stock by clump sizes occurring under various conditions.

6. Bamboo Weight form.

This form was designed for collecting data to determine the ereen weight of bamboos of different species and sizes and further for establishing relationship between
green weight and dry weight of bamboo culms. The data were recorded in respect of two selected culms from each dia.class 1.e. 2 to $5 \mathrm{~cm}, 5$ to 8 cm and 8 cm and above and the green weight of three 50 cm long sub-samples, each taken from the bottom, the middle and the top portions of the culms were recorded. Further, these three samples were dried in air and finally in the oven in order to remove their entire moisture contents and to get their air dry neight. This facilitated to establish relation betueen the green weight and the dry weight of culms by species and sizes to know the total growing stock of bamboos in terms of weight.

3.5 FIELD WORK

The field work of Sambalpur district of Orissa State was completed during the period from March 1985 to June 1985 keeping the Base camp at Pathalgaon. The entire field uork of this district was completed from this Base camp only. There were elght erews deployed on this work, each consisting of one Jr. Technical Assistant as Crea Leader, one Dy.Ranger and two Fieldmen. One vehicle was provided between two parties to undertake the field work.

3.6 FIEJD CHECKING

During the course of field work, the checking of the surveyed plots was done by the Sr. Technical Assistant who was incharge of the survey work. About 10% of the total number of plots tackled by various crews were checked and mistakes found during the checking were rectified in the field forms.

3.7 MAPS AND PLOTS:

The Survey of India toposheets, which were used during the inventory work and the number of plots falling in each of them have been mentioned below for the entire survey area of Sambalpur district, indicating the scale of map and year of survey of the sheet.
S.No. Toposheet No. Scale of map.

No. of plots inventoried by F.S.I.

1. $64 \quad 0 / 4$
$1: 50,000$
14

$2.640 / 6$

" 7
3. $64 \quad 0 / 7$
4. $64 \quad 0 / 8$
5. $640 / 9$1
6
6. $640 / 10$ 39
7. $64 \quad 0 / 11$ 3
8 . $64 \quad 0 / 12$ 1
8. $640 / 12$
8. $640 / 12$
9. $64 \quad 0 / 13$ 20
10. $64 \quad 0 / 14$ 9
11. $640 / 15$ 4
12. $840 / 16$ 8
13. $64 \mathrm{~K} / 12$ 5
14. $64 \mathrm{~K} / 16$ 17
15. $64 \mathrm{~L} / 9$ 2
16. $64 \mathrm{~L} / 13$ 18
17. $64 \mathrm{P} / 1$ "
18. $64 \mathrm{P} / 5$ 4
19. $73 \mathrm{~B} / 8$ " 22
20. $73 \mathrm{~B} / 12$ 1:50,000 2
21. $73 \mathrm{C} / 1$ 15
22. $73 \mathrm{C} / 2$ 26
23. $73 \mathrm{C} / 3$ 38
24. 73 C/4 54
25. $73 \mathrm{C} / 5$ 37
26. $73 \mathrm{C} / 6$ 40
27. $73 \mathrm{C} / 7$ 61
28. $73 \mathrm{C} / 8$ 57
29. $73 \mathrm{C} / 9$ 2
30. $73 \mathrm{C} / 10$ 57
31. $73 \mathrm{C} / 11$ 47
32. $73 \mathrm{C} / 12$ 37
33. 73 C/14 25
34. $73 \mathrm{C} / 15$ 34
35. $73 \mathrm{C} / 16$ 15
36. $73 \mathrm{D} / 1$ 04
37. $73 \mathrm{D} / 5$ 06
38. 73 G/2 16
39. 73 G/3 10
Total 775
PlotsFORMS TO DATA PROCESSING UNIT:
After completion of field work, the field forms pertaining to inventory of 775 plots of Sambalpur district of Orissa State were manually checked in the zonal office as per field manual and coding instructions meant for the purpose. Inconsistencies noticed in these forms were removed after discussing the specific point with the concerned Crev Leader. All these field forms were finally forwarded to the Data Processing Unit of the Headquarter office at Dehradun on 30th June, 1992 for computer analysis and processing the data for deriving various kinds of information to meet the objectives of the survey.

In case of Sambalpur District of Orissa, existing design for carrying out forest inventory surveys developed by Forest Survey of India was used. During this survey, in order to adopt the design, the grids were marked on Survey of India toposheet of $1: 5 \varnothing, \varnothing \varnothing \square$ at the interval of $21 / 2^{\circ}$ latitude by $21 / 2^{\prime}$ longitude and two sample plots were selected by random method in each of these 36 grids thus obtained in a toposheet. The plots were square in shape having an area of $\varnothing .1$ ha each.
4.1 FIELD DATA

The basic data of the inventory survey were collected in the Plot Description Form, Plot Enumeration Form, Sample Tree Form and Bamboo Enumeration Form etc.
The field forms were precoded so that the field data could be easily transferred on to the floppy/tape/disk directly. There were 2683 field forms which required punching of the following number of cards under each card design.

Card design

1. Plot description 775
2. Plot enumeration

$$
2484
$$ 2484

3.
4. 5.

$$
775
$$

Sample tree 4467
Bamboo enumeration(CDO5) 423
Bamboo weight Form 228

No. of records

Total
8377

In Sambalpur District there were 775 total plots in all giving weightage to each plot by $8 . \varnothing \mathrm{sq} . \mathrm{km}$ considering an area of $6201 \mathrm{~km}^{2}$. Mainly two types of forests, Sal and Miscellaneous forest were recognised.
4.3

DATA PROCESSING
The data processing involved the following operations:-
i) Manual processing

Field forms received in the Machine Data Management Unit of Forest Survey of India, Dehradun were checked with the list supplied by the zonal office. Entries of the field forms were made in the register, regarding the number of field forms relating to each map-sheet, grid and plot. The total number of records required to be entered under each card design was also estimated and indicated in the register for future references.

Job numbers, Card design and left hand zeros, wherever missing, were filled up in the field forms to avoid mistake during entering the data on to the floppy or disk.

Each entry in the field forms was checked for consistency in the data. The main checks applied were the range check for the maximum and minimum value of the codes and logical check for inter-relation between the entries for two and or more fields. Card designwise all the data was loaded on to the floppy/disk and verified. Then listings were taken and checked manually to ensure complete loading and proper sequence of data. Mistakes if any were incorporated.

Sample statistics were calculated and checked with the computer output results to see if the calculations on computer were correct. These involved local volume equations, volume of enumerated tree, plot, volumes and standard error etc. Prior to this, the programes were developed according to the requirement of the data processing.

Intermediate and final computer output were checked for consistency and relevance of results. Area tables were also prepared manually.

1i) Processing on electronic computer.

The data were loaded on floppy/disk through direct data entry operation. Then they vere verifled and sorted. The listings of loaded data were taken to check if the data have been loaded completely in the desired sequence. Volume of each tree was estimated with the help of the local volume equations.

Contribution of the volume of each enumerated tree per hectare was derived and stored in a tree/plot volume file created for future processing. Using the tree/plot volume file, growing stock tables by species and diameter class under each crop composition were prepared and standard error of the estimated growing stock was calculated.

The data of this survey was processed on Vax $11 / 780$ of our own system. The computer has the following configura-tion:-

1. Memory 4 MB
2. Tape drives 2
3. Disk drives 3
4. Line printer 1
5. Image processing Terainals 3
(Peri color - 2001 with VT-220)
6. Alphanumeric terminals 5

7 Digitizer 1
8 . Dunn camera 1
9. 80 Coloumn printer 3
10. Console with hard copy 1
4.4 AREA

Area figures were supplied by the zonal office. The geographical area and forest area were given as under.
(a) Geographical area - $17516 \mathrm{~km}^{2}$
(b) Forest area

- $6201 \mathrm{~km}^{2}$

Average welghtage to each plot- $8 \mathrm{~km}^{2}$

In Sambalpur District weightage of each plot was estimated by dividing the total forest area by the number of total sample plots and the areas under different parameters were estimated by multiplying the number of sample plots. The total forested area was calculated on the above basis and classified by land use class and given in Table no. 5.1T.

The area falling in land use classes such as dense tree forests, moderately dense forests, open tree forests, Bamboo forests, young plantations and young crop regeneration was, considered as tree vegetated area and was classified mainly by two crop compositions viz; (1) Sal and (2) Miscellaneous forests and corresponding areas are given in table no. 5.2T. The area under each crop composition was classified by topography in table no. 5.3T, by slope class in table no. 5.4 T , by soil depth class in table no. 5.5 T , by top height in table no. 5.6T, by size class in table no. 5.7T, by canopy layer in table no. 5.8T. Similarly break up of forest area is done by grazing incidence in table no. 5.12 T , by regeneration in table no. 5.10T, by soil erosion in table no.5.11T, by fire incidence in table no.5.13T and by plantation potential in table no.5.9T.

4.5 VOLUME ESTIMATION

Felled tree data for developing general volume equations wexe not collected during the inventory, because of restrictions on felling of trees. Local volume equations already derived and used in case of Koraput District forest inventory survey by Central Zone, Nagpur were used to estimate the volume.

The local volume equations used for different species were as under:-

1. Adina cordifolia(024)

$$
\mathrm{V}=\varnothing .08507+0.19669 \mathrm{D}+7.16812 \mathrm{D}^{2}
$$

2. Ancgeissus latifolia (D63)

$$
V=\varnothing .13928 \pm 2.87067 \mathrm{D}+20.22404 \mathrm{D}^{2}-13.80572 \mathrm{D}^{3}
$$

3. Bombax ceiba (109)

$$
V=0.02834+4.68381 \mathrm{D}^{2}
$$

4. Boswellia serrata(111)

$$
V=\varnothing .36432-1.32768 \sqrt{D}+9.48471 D^{2}
$$

5.

$$
\begin{aligned}
& \text { Bridelia retusa (114) } \\
& \sqrt{ } V=\varnothing .1162 \emptyset+4.12711 \text { D-1.08508 } \sqrt{D}
\end{aligned}
$$

6.

$$
\begin{aligned}
& \text { Dalbergia latifolia (220) } \\
& \mathrm{V}=-\varnothing . \varnothing 0965+\emptyset .58546 \mathrm{D}-2.56050 \mathrm{D}^{2}+24.342125 \mathrm{D}^{3}
\end{aligned}
$$

7. Diospyros melanoxylon (234)
$\sqrt{ } V=0.06728+4.06351 \mathrm{D}-0.99816 \sqrt{ } \mathrm{D}$
8. Garuga pinnata (319)
$V=-0.09144+1.48588 \quad D-5.53172 D^{2}+24.04851 \mathrm{D}^{3}$
9. Lagerstraemia parviflora(397)
$\mathrm{V}=0.07199-1.25923 \mathrm{D}+9.28416 \mathrm{D}^{2}$
10. Lannea coromandelica(400)
$V=-0.01071-\varnothing .66528 \mathrm{D}+9.54478 \mathrm{D}^{2}-4.58876 \mathrm{D}^{3}$
11. Madhuca latifolia (437)
$V=0.10423-1.38429 D+8.39379 D^{2}$
12. Mitragyna parviflora (476)

$$
V=0.08444-1.26801 \mathrm{D}+8.75274 \mathrm{D}^{2}
$$

13. Pterocarpus marsupium(567)

$$
\sqrt{V}=-0.16276+2.82002 D+\emptyset .04034 \sqrt{D}
$$

$V V=0.19994+4.57179 D-1.56823 \sqrt{D}$
15. Syzigium cumini (B65)
$\sqrt{ } V=0.307 \emptyset 6+5.12731 \mathrm{D}-2.09870 \sqrt{D}$
16. Terminlia bellirica (676)

$$
V=-0.14823+2.44138 D-6.86434 D^{2}+18.05444 D^{3}
$$

17.

Terminalia crenulata(681)
$\mathrm{V}=\emptyset .05061-1.11994 \mathrm{D}+8.77839 \mathrm{D}^{2}$
18. Miscellaneous species (944) $\sqrt{ } \mathrm{V}=\varnothing .06063+3.43666 \mathrm{D}-0.75571 \sqrt{ } \mathrm{~d}$
enumerated tree volume
The volume of each enumerated tree of a species was estimated by substituting its breast height overbark diameter in a local volume equation of that species. The enumerated tree volumes were converted to per hectare volumes and stored in a tree/plot volume file together with species code, diameter of a tree, parameters of plot description form, per hectare volume and stems and the volume of that plot. The elements of information stored in the above files were utilised to classify the trees by species and diameter class, estimates of number of the stems and volume per hectare and total by species and diameter classes were obtained for different strata viz. crop composition etc.

4.7 PLOT VOLUME

The estimated volume of each enumerated tree in a plot when added up over the whole plot provided the plot volume. It was converted to per hectare and stored in the tree/plot volume file. The per hectare plot volumes were used to estimate volume under different classes of desired parameters. The plot volumes nere also used to estimate the sampling error of the growing stock for each crop composition.

The elements of tree/plot volume file were utilised to classify the trees by species, diameter and crop composition etc. Estimates of the number of stems per hectare and total stems by species and diameter classes were obtained for each crop composition.
4.9 STOCK TABLES

Estimates of volume per hectare and total volume by species and diameter classes were obtained for each crop composition from the tree/plot volume file.
4.10 SAMPLING ERROR

The estimates obtained from the inventory will, of course, have some error association with them and the user of the results wants to have some control over its magnitude or at the very best have an error estimate computed after inventory is completed.

The sample was considered as a systematic cluster sample having two sample plots in each cluster. In order to estimate the sampling error the sample was considered to be of unequal sizes and ratio method of estimate was used since in many grids only one plot was enumerated.

Let $n=$ total no. of clusters (grids) in the sample Yi $=$ sum of per hectare volumes in i th grid $x i=$ number of plots in the i th grid
$\bar{X}=-\frac{1 n}{} \mathrm{xi}=$ Average number of plots per grid
n

$$
\begin{aligned}
& \mathrm{R}=\frac{\mathrm{n}}{\mathrm{E}_{\mathrm{i}}-\mathrm{y}} \mathrm{y} \quad=\begin{array}{c}
\text { estimate of average volume per hectare } \\
\text { over all grids. }
\end{array} \\
& \text { n } \\
& \text {--- xi } \\
& \Sigma \\
& \text {--- } \\
& i=1 \\
& \text { Estimate of variance of } R \text { is } \\
& \text { n } \\
& \Sigma \\
& \text { i }=1 \\
& (y i-R x i)^{2} \\
& V(R)=\begin{array}{ll}
\mathrm{N}-\mathrm{n} \\
\mathrm{Nn} & \\
\mathrm{x}-2
\end{array} \\
& =-\cdots \frac{\mathbf{u}}{\mathbf{1}} \begin{array}{c}
\mathrm{\Sigma}
\end{array} \\
& -2 \\
& n(n-1) x \quad i=1 \\
& \mathrm{~N} \text { - } \mathrm{n} \\
& \text { (Ignoring ----- the finite population correction factor) } \\
& \text { N }
\end{aligned}
$$

$$
\begin{aligned}
& n(n-1) x^{-2} \\
& \text { n } \\
& 2 \quad \begin{array}{ll}
n & 2]
\end{array} \\
& i=1 \quad] \\
& \text { Estimate of the standard error (S.E.) of } R \\
& \text { StE } x=-\cdots \cdots
\end{aligned}
$$

Standard errors have been estimated for the growing stock in each forest type and ovor the entire aron irrespective of the strata.

4.11 BAMBOO

The presence of Bamboo was examined in an area of about 2 ha around the plot centre and its quality and density recorded in the plot description form. The area under Bamboo was estimated from this information by applying the area weight of each plot. Area under each quality of Bamboo was also estimated from the number of plots falling in each quality. This information is classified in Table No. 5.14T.

4.12 CLUMPS PER HECTARE

The Bamboo clumps occuring in each sample plot were enumerated by species and diameter classes of the clump for estimating the number of clumps per hectare by species and clump size class. To estimate the number of clumps per hectare in each quality and clump size class, the data of plot description form and the plot enumeration form were merged together. This information is given in table no. 7.2T.

4.13 CULMS PER CLUMP

Every eighth clump starting with first clump in a sample plot was selected and the number of culms by age (current year, one to two years and over two years) and, soundness (green sound, green damaged, dry sound, dry damaged and decayed) were enumerated and recorded. The culms were further classified by culm diameter class - 2 cm to under $5 \mathrm{~cm} ; 5 \mathrm{~cm}$ to under 8 crn and 8 cm and above for estimating the number of culms per clump in different classes. This is given in table no. 7.3T.

4.14 CULMS PER HECTARE

The estimates of the number of clumps per hectare and the number of culms per clump gives an estimate of the number of culms per hectare under different clastes. This is given in table no. 7.4T.

4.15 TOTAL NO. OF CULMS

The estimates of the number of culms per hectare and the Bamboo area under the specific quality classes were used to estimate the total number of Bamboo culms in the inventoried area. This is given in table no. 7.5T.

4.16 BAMBOO STOCK

Weight of the utilisable length of green culms of diameter 2 cm to 5 cm to $8 \mathrm{~cm}, 8 \mathrm{~cm}$ and above nere recorded by felling Bamboo culms from the first clump in each plot. Thus average green $\mu e i g h t$ of a culm was obtained in separate diameter classes of culms.

The following factors were used to ob゙tain the correlation between the green weight and the dry weight of different categories of culms to obtain green equivalent weight for that category.

Dry sound culms	$=2.0$
Dry damaged culms	$=1.0$
Green sound culms	$=1.0$
Green damaged culms	$=0.5$
Decayed culms	$=0.0$

Applying the above factors to the green weight of Bamboo culms and the total number of culms, the total green Bamboo stock was estimated and then green Bamboo stock nas converted into dry Bamboo stock by applying driage factors. These are given in table no. 7.6T.

CHAPTER V

INVENTORY RESULTS: AREA
5.0 GENERAL

Status of forest resources in Sambalpur District was assessed by reckoning greenwash area, on Survey of India toposheets of $1: 5 \emptyset, \varnothing \varnothing \varnothing$ scale, denoting vegetated area, and carrying out inventory in sample plots located in it. A total of 775 sample plots of $\varnothing .1$ ha each were inventoried over 6201 km^{2} forested area of the District. The method of selection of sample plots and their layout has already been explained in Chapter III. Weighted area represented by each sample plot reckons to approximately $8 \mathrm{~km}^{2}(6201 / 775)$. Break up of area by various parameters like landuse classes, crop composition, topography classes, slope classes, soil depth classes, height classes, size classes, canopy layers etc was worked out by considering the weightage obtained by the total number of sample plots occurring in each as noted during the course of field work. Detailed observations are given below:

5.1 FOREST AREA BY LAND USE CLASSES

Table no. 5.1T given overleaf elaborates the various parameters of land use classes and their contribution to the total forest coverage of the District. The area bearing dense and moderately dense forest having density above 30% is 3,376.54 km^{2} constituting 54.45 percent of the wooded axea. Open forest with density 5 to 30% is confined to $928.15 \mathrm{~km}^{2}$ reckoning to 14.97% of the wooded area. If both these areas are taken into account then 69.42 percent of the vegetated area is covered with forest of density above 5 percent.

TABLE 5.1T
DISTRIBUTION OE AREA BY LAND USE CLASSES

$$
\begin{aligned}
& \text { 4 } \mathrm{H} \mathrm{CHE} \mathrm{CO}
\end{aligned}
$$

Scrub forest contributes to a negligible extent of 0.25%. Bamboo brakes are found over an area of $88.01 \mathrm{~km}^{2}$ constituting 1.42 per cent. Shifting cultivation is also observed over an area of $16.00 \mathrm{~km}^{2}$ forming 0.25% to total. Young plantations are found over an area of $696.12 \mathrm{~km}^{2}$ constituting 11.23\%. Government grass lands exist to a negligible extent constituting only 0.13 percent. Barren lands are not noticed. Cultivable land is found over $664.11 \mathrm{~km}^{2}$, constituting 1ø.71\%. Non forestry plantations are observed over $32.01 \mathrm{~km}^{2}$, young crop is found over $144.02 \mathrm{~km}^{2} \mathrm{i} . \theta$. over 2.33\% area, and inaccessible area, which is generally found with substantial forest growth but could not be approached on account of various physical constraints such as steep terrain, etc. have an extent of over $56.01 \mathrm{~km}^{2}$.

Map no. 5.1 M shows the pattern of land use in Sambalpur district. It is seen that forest area in general is much more in the eastern half of the district, North-eastern and Western corners sharing forests in blocks.

5.2 AREA BY CROP COMPOSITIONS

For classification of vegetated area under differnt parameters, two major forest types have been recognized after post stratification of sample plots was done according to the forest crop found in two ha area around the plot centre. The two types are : (i) Sal (including teak) forests and (2) Miscellaneous forests iñclúsive of bamboos and Salai. Similarly for parameters i.e. topography classes, $\overline{\text { slope }}$ classes, soil depth classes, top height classes, size classes, and canopy layers, vegetated area only has been taken in to account as it is the target area for future planning and prescriptions. Therefore no. of sample plots reckoned for the above parameters was 654 , representing an area of $5232.84 \mathrm{~km}^{2}$. The vegetated area considered thus is 84.39% of the total area of $6201 \mathrm{~km}^{2}$ taken into account for this survey. Table no. 5.2 T below shows area under the two major forest types:

$$
\text { TABLE NO. } 5.2 T
$$

BREAK UP OF FOREST AREA BY FOREST TYPES

It is seen that Sal forest type and Miscellaneous forest type are more or less in equal proportion, the former being 51.22% and the latter being 48.78\%. Teak, Salai and bamboo types were not identified separately as their extent is meagre.

Map no. 5.2M illustrates the pattern of forest types found in Sambalpur District. It is seen that the western half of the District has mostly Miscellaneous forests whereas the eastern half has preponderance of Sal forests intersperced with Miscellaneous forest type. Thus Sambalpur Division has Miscellaneous forests while Deogarh, Bamra and Rairakhol Divisions have Sal forests in general, the last named having better representation. Concentration of forest cover is clearly brought out in this map.

5.3 AREA BY CROP COMPOSITION AND TOPOGRAPHY CLASSES

Table no. 5.3T produced below gives distribution of forest crop according to the general topography of the District. The hilly region contains maximum forest crop spread over $3208.52 \mathrm{~km}^{2}$ (61.32% of the total area). This is followed by flat topography region sustaining tree cover over 1112.18 km^{2}, (21.25\%). Gently rolling area supports forest crop over

$896.14 \mathrm{~km}^{2}(17.13 \%)$ and very hilly region is confined to only 8 km^{2} (0.15\%). In the hilly region Sal stratum is apread over $1472.24 \mathrm{~km}^{2}$ and Miscellaneous is over $1736.28 \mathrm{~km}^{2}$ constituting 45.89\% and 54.12% respectively. Gently rolling topography has $440.07 \mathrm{~km}^{2}$ area under Sal type and $456.07 \mathrm{~km}^{2}$ under Miscellaneous type, having 49.11% and 50.89% respectively. Flat terrain has $760.12 \mathrm{~km}^{2} \mathrm{Sal}$ forest and $352.06 \mathrm{~km}^{2}$ Miscellaneous forest corresponding to 68.35% and 31.65% respectively. Thus it is seen that percentage of Sal type vis-a-vis Miscellaneous type is more in flat lands and decreases as the terrain becomes rugged and hilly. Converse is true for Miscellaneous crop.

TABLE NO. 5.3T
Break up of forest area by forest types and topography classes (Area in km^{2})

Sl. Crop Topographyhy classes
No. Composition

1. Sal forest 760.12440 .071472 .24 -- 8.02680 .43
(95) (55) (184) (1) (335)
2. Misc. forest $352.06456 .071736 .288 .0-2552.41$ (44) (57) (217) (1) (319)

Total: $\begin{array}{lllllll}1112.18 & 896.14 & 3208.52 & 8.0 & 8.0 & 5232.84 \\ (139) & (112) & (401) & (1) & (1) & (654)\end{array}$
$\begin{array}{lllllll}\% & 21.25 & 17.13 & 61.32 & 0.15 & 0.15 & 100\end{array}$
Note: The figures in bracket denote number of plots.
Map no. 5.3M shows the location of various plots and their distribution according to topography classes. As may be seen from the map, hilly topography prevails over entire District followed by flat land.

BREAK UP OH FOREST AREA BY FOREST TYPES
AND TOPOGRAPHY GLASSES

Contents

5.4 AREA BY CROP COMPOSITION AND SLOPE CLASSES

Table 5.4T produced below gives distribution of forest crop according, to the slope classes. The slope class varying from 10% to 60% possesses maximum forest crop spread over an area of $2768.45 \mathrm{~km}^{2} 1 . \theta .52 .90 \%$ of the total area of $5232.84 \mathrm{~km}^{2}$. Out of this area the Sal stratum (forest type Sal including Teak) is over an area of $1192.19 \mathrm{~km}^{2}$ and Miscellaneous forest exists over $1576.26 \mathrm{~km}^{2}$ correspnding to 43.06 and 56.94\% respectively. This is followed by slope class of below 10\% Eradient found over $2344.37 \mathrm{~km}^{2}$ forming 44.80% of the total area. This slope class sustains maximum Sal crop over an area of $1456.23 \mathrm{~km}^{2}$ (62.12%) followed by Miscellaneous crop over $888.14 \mathrm{~km}^{2}(37.88 \%)$. The forest area having gradient of above 60\% is found over $120.02 \mathrm{~km}^{2}$ only. The Sal crop is thinly distributed over this slope class i.e. over 32.01 km^{2}. However, Miscellaneous crop exists up to a fairly large extent of $88.01 \mathrm{~km}^{2}$. The trend of occurrence of forest types is consistant with that of their topographywise distribution.

TABLE No. 5.4 T
Break up of tree forest area by forest types and slope classes (Area in km^{2})

Forest types	Slope classes						
	0-10\%	10-60\%	60-100\%	100% above.	Not recorded.	Total	Percentage of area
Sal							
(10+11)	$\begin{gathered} 1456.23 \\ (182) \end{gathered}$	$\begin{gathered} 1192.19 \\ (149) \end{gathered}$	$\begin{gathered} 32.01 \\ (4) \end{gathered}$	-	-	$\begin{gathered} 2680.43 \\ (335) \end{gathered}$	51.22
Misc.	$\begin{aligned} & 888.14 \\ & (111) \end{aligned}$	$\begin{aligned} & 1576.26 \\ & (197) \end{aligned}$	$\begin{aligned} & 88.01 \\ & (11) \end{aligned}$	-	-	$\begin{gathered} 2552.41 \\ (319) \end{gathered}$	48.78
Total:	$\begin{gathered} 2344.37 \\ (293) \end{gathered}$	$\begin{gathered} 2768.45 \\ (346) \end{gathered}$	$\begin{array}{r} 120.02 \\ (15) \end{array}$	-	-	$\begin{array}{r} 5232.84 \\ (654) \end{array}$	100
\%	44.80	52.90	2.30	-	-	100	

K조좆N
- 10 orgope
10-60
EA--
Whatiguta
(1)\%
NF

MAP NA 5.4 M

Map no. 5. 4 M shows the distribution of forest area according to the slope classes of terrain. The map indicates that the predominant slope class throughout the District is between 10\% to 60\%. As a whole, forests in the District are confined to the terrain between 10% and 60% slope class, located in the Rairakhol and Deogarh forest Divisions. It is interesting to note that grids having slopes between 60\% to 1ø0\% invariably support Miscellaneous vegetation.

5.5 AREA BY CROP COMPOSITION AND SOIL DEPTH CLASSES

Abstract

Table no. 5.5T given below apprises about the distribution of forest area by soil depth. There are five classes that have been recognised i.e. (i) No soil (ii) Very shallow: Soil depths 15 cm (iii) Shallow : Depth: 15 cm to 30 cm (iv) Medium deep soil, 30 cm to $90 \mathrm{~cm}(v)$ Deep $>90 \mathrm{~cm}$.

TABLE NO. 5.5T
Break up of tree forest area by forest types and soil depth classes.
(Area in km^{2})

Forest Type	No soil	Soil. depth classes						
		Very shallow	Shallow	Medium	Deep	Not recorded	Total	Per-centage
Sal	-	-	$\begin{gathered} 112.02 \\ (14) \end{gathered}$	$\begin{gathered} 1264.20 \\ (158) \end{gathered}$	$\begin{gathered} 1304.21 \\ (163) \end{gathered}$		$\begin{gathered} 2680.43 \\ (335) \end{gathered}$	51.22
Misc	-	$16 . ø \emptyset$ (2)	$\begin{gathered} 424.07 \\ (53) \end{gathered}$	$\begin{gathered} 1712.28 \\ (214) \end{gathered}$	400.06 (50)		$\begin{gathered} 2552.41 \\ (319) \end{gathered}$	48.78
Total	-	16.00 (2)	$\begin{aligned} & 536.89 \\ & (67) \end{aligned}$	$\begin{aligned} & 2976.48 \\ & (372) \end{aligned}$	$\begin{gathered} 17 \varnothing 4.27 \\ (213) \end{gathered}$	$7 \quad-$	$\begin{gathered} 5232.84 \\ (654) \end{gathered}$	100

BREAK UE OF FOREST AREA BY FOREST TYPES
AND SOIL DEPTH CLASSES

It 1 s seen from the table that $2976.48 \mathrm{~km}^{2}$ area corresponding to 56.88% of the total forested area has medium deep soils whereas $1704.27 \mathrm{~km}^{2}$ area reckoning to 32.57% has deep soils. Shallow soils occur over $536.09 \mathrm{~km}^{2}$ i.e. 10.24% and very shallow soils occur over only $16 \mathrm{~km}^{2}$ area with a meagre percentage of 0.31.

Most striking feature of this table is that in deep soils, Sal forms 76.53\% of the crop corresponding to 1304:21 km^{2} area whereas Miscellaneous type constitutes 23.47%, being spread over $4 \varnothing \varnothing .06 \mathrm{~km}^{2}$. Reverse trend is seen in shallow soils with Miscellaneous crop forming 79.10% of the forest crop standing over $424.07 \mathrm{~km}^{2}$ and Sal type showing 20.90% with an area of $112.02 \mathrm{~km}^{2}$. In medium deep soils Sal is found over $1264.20 \mathrm{~km}^{2}(42.47 \%$) and Miscellaneous crop occupies 1712.28 km^{2} (57.53\%), Very shallow soils support only Misoellaneous vegetation over $16 \mathrm{~km}^{2}$. It is thus clear that Miscellaneous crop hasnot been able to compete Sal out where deep soils occur in the District and conversely, Sal has lost ground where shallow soils exist. In mediur deep soils also the Miscellaneous crop has an edge over Sal. The relationship between terrain, slopes and consequent erosion with that of forest types becomes amply clear. On slopes, wherever erosion becomes heavy due to various factors, soils must have lost depth with the result that degradation has set in and drier type of vegetation has replaced Sal.

5.6 AREA BY CROP COMPOSITION AND TOP HEIGHT CLASSES

Table no. 5.6T produced overleaf gives the distribution of forest area by top height classes. The classes have been fixed at an interval of 5 metres.

TABLE NO. 5.6T
Break u_{p} of forest area by forest types and top helght classes
(Area in km^{2})

Sal $288.05272 .04568 .09968 .16456 .07120 .028 .002680 .43-51.22$ (36) (34) (71) (121) (57) (15) (1) (335)
$\begin{array}{llllllll}\text { - Per- } 42.86 & 48.57 & 42.01 & 51.93 & 81.43 & 93.75 & 101\end{array}$
cent

Misc. $384.06288 .05784 .13896 .14104 .028 . \emptyset 0-\quad 2552.4188 .0148 .78$
(48)
(36)
(98) (112)
(13) (1)
(314) (11)
per-
$\begin{array}{lllllll}\text { cnet } & 57.14 & 51.43 & 57.99 & 48.00 & 18.57 & 6.25\end{array}$

Total672.11 560.09 1352.22 $1864.30560 .09128 .028 .00 \quad 5232.8488 .01 \quad 10 \varnothing$
(84) (70) (169) (233) (70) (16) (1) (654) (11)

	(84)	$(7 \emptyset)$	(169)	(233)	$(7 \emptyset)$	(16)	(1)	(654)
Per-								
cent 12.84	$10.7 \emptyset$	25.85	35.63	10.70	2.45	0.15	1.68	

It is seen from Table No. 5.6T on the preceding page that the largest contributor is the top height class 16 to $2 \emptyset \mathrm{~m}$, constituting 35.63% to the total forest area and whithin the class, distribution of Sal is 51.22% and of Miscellaneous it is 48.78%. Next top height class is 11 to 15 m , constituting 25.85% of total forest area. In Sal stratum this height class contributes about 42.01% and in Miscellaneous it is 57.99\%. Both these top height classes taken together form 61.48\% forest crop. Thus majority of forest crop is between 11 to 20 m height. Height beyond 31 m is insignificant and found over only $9 \mathrm{~km}{ }^{2}$. Top height class $21-25 \mathrm{~m}$, which forms 10.70% area has high concentration of Sal forest (81.43\%). Similarly top height class $26-30 \mathrm{~m}$, forms 2.45% of the total area, has $93.75 \% \mathrm{Sal}$ forest in it. Young crop of 1 to 5 m height has considerable existance over $672.11 \mathrm{~km}^{2}$ consisting 12.84% of the total forest area.

Map no. 5.6M depicts the distribution of top height classes over entire District. Whereas the top height class 10 m to under 20 is found to be evenly spread over entire forest area of the District, the top height class 20 m to under 30 m is restricted to the eastern part of Rairakhol, Bamra and Deogarh divisions. The top height class 0 to 10 in also has got even distribution over the entire forest area of the District, except Rairakhol division.

5.7 AREA BY CROP COMPOSITION AND SIZE CLASSES

Table no. 5.7T overleaf gives the distribution of forest aréa by size classes.

Break up of tree forest area by forest types \& size classes. (Aron ln km²)

Forest Types	Size classes.							
	Regeneration.	Pole crop	Small timber	Big timber	Mixed size classes	N.R.	Total	Per-centage
$\begin{aligned} & \text { Sal } \\ & 51.22 \end{aligned}$	392.06	544.0	99488.08	8264.0	4992.16	6	2680.43	
	(49)	(68)	(61)	(33)	(124)		(335)	
Percent	44.55	45.33	55.45	91.67	52.32			
Misc.	488.08	656.11	392.06	24.00	904.15	88.01	2552.41	48.78
	(61)	(82)	(49)	(3)	(113)		(319)	
Percent	55.45	54.67	44.55	8.33	47.68			
Total	880.14	1200.20	880.14	288.04	1896.31	88.01	5232.84	$10 \square$
	(110)	(150)	(110)	(36)	(237)	(11)	(654)	
Percent	16.82	22.94	16.82	5.50	36.24	1.68		

Mixed size class is commonly observed in the entire forests of the District and constitutes 36.24% to the total forest area. The distribution in this class shows that Sal is 51.22% and Miscellaneous is 48.78%. Pole class, constituting 22.94% to the total forest area comes next, with its distribution among Sal stratum being 45.33\% and Miscellaneous being 54.67\%. Small timber category contributes to the extent of $88 \varnothing .14 \mathrm{~km}^{2}$ constituting 16.82% with its distribution in Sal being 55.45% and Miscellaneous being 44.55\%. Big timber category contributes to only $288.04 \mathrm{~km}^{2}$ constituting 5.5%. 91.67% area in big timber category belongs to Sal type of forest. Small and big timber taken together form 22.32% and out of the total area of 1168.18 ($880.14+288.04$) km^{2} comprising of these two categories, the distribution in Sal stratum is 64.38%, Miscellaneous being 35.62%. The regeneration crop exists over an area of $88 \varnothing .14 \mathrm{~km}^{2}$ constituting 16.82% of the total sample plots, sharing 44.55% and 55.45% distribution in Sal and Miscellaneous forests respectively. Cropwise areas, it can be seen, are almost similar in regeneration and pole

$$
\begin{gathered}
\text { BREAK UP OF FOREST AREA BY FOREST TYPES } \\
\text { AND SIZE CLASSES }
\end{gathered}
$$

$$
\begin{aligned}
& 64 \quad \therefore
\end{aligned}
$$

crop category, signalling reduction in future pole crop in Sal area from 55\% to 45\%.

Map 5.7 M indicates pictorially the distribution of various size classes over the entire stretch of Forest area of the District. It indicates that the pole crop, and regeneration crop are evenly distributed over entire stretch of the District and on the other hand the big timber, small timber and mixed size classes are mainly confined to the eastern region comprised of Bamra, Rairakhol and Deogarh divisions. Big timber is noticed along the division border of Bamra and Rairakhol. Similarly greatest agglomeration of mixed size class is seen in Rairakhol Division.

5.8 AREA BY GROP COMPOSITION AND CANOPY LAYERS

Table no.5.8T given over leaf shows the distribution of forest area by canopy layers.

TABLE NO. $5.8 T$
Break up of tree forest area by forest type and canopy layer (Area in km^{2})

Forest Types	Canopy layers						
	No storey	One storyed forest	Twó storyed forest	Three or more storyed forest.	$\begin{array}{ll} \text { Not } \\ & \text { reco- } \\ & \text { rded } \end{array}$	Total	$\begin{aligned} & \text { Per- } \\ & \text { cen- } \\ & \text { tage } \end{aligned}$
Sal	$\begin{aligned} & 336 . ø 5 \\ & (42) \end{aligned}$	$\begin{aligned} & 528.09 \\ & (66) \end{aligned}$	$\begin{aligned} & 18 \emptyset 0.29 \\ & (225) \end{aligned}$	-	16.00 (2)	$\begin{gathered} 2680.43 \\ (335) \end{gathered}$, 51.22
Percent 44.68		51.16	53.83				
Misc.	$\begin{aligned} & 416.07 \\ & (52) \end{aligned}$	$\begin{aligned} & 504,08 \\ & (63) \end{aligned}$	$\begin{aligned} & 1544.25 \\ & (193) \end{aligned}$	-	$\begin{array}{r} 88.01 \\ (11) \end{array}$	$\begin{gathered} 2552.41 \\ (31.9) \end{gathered}$	48.78
Percent	55.32	48.84	46.17				
Total	$\begin{aligned} & 752.12 \\ & (94) \end{aligned}$	$\begin{gathered} 1032.17 \\ (129) \end{gathered}$	$\begin{gathered} 3344.54 \\ (418) \end{gathered}$	- 1	104.01	$\begin{gathered} 5232.84 \\ (654) \end{gathered}$	100
Percent 14.37		19.72	63.92		1.99		

The forests of the District are predominantly two storeyed, spread over an area of $3344.54 \mathrm{~km}^{2}$ constituting 63.92%. The distribution of Sal type is over 51.22% and Miscellaneous is 48.78\%. One storeyed forests are 19.7\% with almost equal percentage distribution in each stratum i.e. 51.16% in Sal and 48.84% in Miscellaneous. Forests without forming any storey or young crop constitutes 14.4% having distribution in Sal and Miscellaneous with 44.68% and 55.32% respectively.

5.9 AREA ESTIMATED FOR PLANTATION

Areas suitable for raising artificial forests, have been assessed as those areas which have forest crop either with less than 0.3% crown density or are devoid of any forest growth. Due consideration then has been given to the aspects, soil depth, drainage, crop in surrounding area and other biotic and climatic factors while determining the potentiality of an area for raising a forest plantation. The maximum permissible slope upto which plantation could be raised has been taken as 40 degrees. The plantable area in the District is found to be to the tune of $1128.18 \mathrm{~km}^{2}$ constituting 92.76% of the total open areas of $1216.19 \mathrm{~km}^{2}$. The area not found suitable for plantation is $88.01 \mathrm{~km}^{2}$ constituting 7.24%).

TABLE NO. 5.9T
Estimated Plántable area in(km2)

Land use	No. of plots	Area (km ${ }^{2}$)	Percentage
Plantable area	141	1128.18	92.76
Unplantable area	11	88.01	7.24
Total	152	1216.19	100

Regeneration status of any forest fairly indicates its health. The data to assess the regeneration status of the forest were also collected from the forested grids of Sambalpur. For this purpose data from a square plot of $16 \mathrm{~m}^{2}$ (4m-x 4m) around plot centre were collected for economically important species which had attained diameter between 2 to 10 cm dbhob. The extent of regeneration was noted as profuse, adequate, inadequate , absent and damaged regeneration as below:-

1. More than 16 seedlings Profuse
2. 8 - 16 seedlings Adequate
3. Upto 8 seedlings Inadequate
4. No regeneration

Absent
5. Regeneration damaged by grazing/fire

Damaged regeneration.

The data were collected for the important species found commonly in the region i.e. Accacia catechu, Adina cordifolia, Albizzia species, Anogeissus latifolia, Salmalia malabaricum, Boswellia serrata, Dalbergia latifolia., Dalbergia sissoo, Diospyros melanoxylon, Eucalyptus species, Garuga pinnata, Gmelina arborea, Lagerstroemia parviflora, Lannea coromandelica, Mitragyna parvifolia, Ougeinia oojeinensis, Pterocarpus marsupium, Shorea robusta, Syzigium cuminii, Schleichera oleosa, Terminalia crenulata, Terminalia bellirica, Terminalia chebula, Terminalia arjuna and Tectona grandis. Regeneration status is tabulated below:-

TABLE NO. 5.10T

Break up of area by regeneration

Items	No.	Area in k	Percen
Dense	8	64.01	1.22
Medium	405	3240.52	61.83
Scattered	242	1936.31	36.95
Total	655	5240.84	100

Adequate regeneration, as observed in 655 plots, is over 61.83% area, 1.e. $3240.52 \mathrm{~km}^{2}$ followed by inadequate regeneration in $1936.31 \mathrm{~km}^{2}$ congtituting 36.95%. Profuse regenration 15 seen over $64.01 \mathrm{~km}^{2}$ constituting only 1.22%. It is thus seen that over about 37% of area regeneration status is not satisfactory and can be directly linked rith grazing incidence.

5.11 SOIL EROSION

The term soil erosion indicates wearing away of the earth's. surface by forces of water and wind. This factor is assessed on the basis of predominent type of erosion occurring in 2 ha. area around the plot centre. Accordingly: occular estimation $1 s$ made by classifying the extent of erosion into four categories. Heavy, where more than 75% of top soil is removed, and areas have deep gullies, ravines, landslip etc; moderate, where $25 \pm 75 \%$ top soil appears to be washed away and mild gullies and rills are formed; mild, where slight sheet. erosion and mild rill erosion exist, less than 25% of top soil appears to be washed away, and no erosion where the surface of the land is seen undisturbed.

Break up of area by soil erosion by erosion classes

Erosion class	of sa	Area in kra^{2} Percentage	
Mild erosion	2	16.00	0.45
Moderate erosion	58	464.88	12.92
Heavy erosion	389	3112.50	86.63
Total :	449	3592.58	100\%
Not recorded	326	2608.42	
Grand Total	775	6201.00	

The assessment of soil erosion in the sample plots reveals that most of the forest area is under heavy soil erosion covering $3112.50 \mathrm{~km}^{2}$ constituting 86.63% of the area surveyed for this aspect i.e. 449 plots. Moderately eroded areas are observed over an area of $464.08 \mathrm{~km}^{2}$ reckoning to 12.92\%.

5.12 GRAZING INCIDENCE

An occular estimation of the grazing incidence is made by observing an area of 2 ha around the centre of the plot. The intensity of grazing is estimated by classifying the incidence into four categories. Heavy, where regular grazing causes absence of grass on the ground, regeneration is damaged by trampling of cattle, 50 to 75% of ground cover is lost, severe sheet erosion with occassional gullies is seen. Grazing is categorised as moderate when seasonal grazing causes lesser damage to regeneration, 25 to 50% of ground cover is lost, but severe sheet erosion is present. Light grazing is termed for grazing damage, when occassional grazing indicated by hoof marks/ cattle droppings exist, adequate grass for grazing is available, less than 25% ground cover is lost but no degradation of soil is seen and no signs of grazing are visible.

Table 5.12 T produced below indicates the grazing incidence seen in the surveyed forest area. Grazing in Orrisa forests is allowed on payment of prescribed rates. Heavy grazing is seen affecting $1680.27 \mathrm{~km}^{2}$ constituting 32.01% of the forested area of the District. No grazing is observed over an area of $1552.25 \mathrm{~km}^{2}$ i.e. 29.58%. Medium grazing is seen over $824.13 \mathrm{~km}^{2}$ i.e. 15.70% and light grazing is seen over an area of $1192.19 \mathrm{~km}^{2}$ i.e. 22.71% area.

TABLE NO. 5.12T
Break up of area by grazing incidence

Items	No. of sample plots	Area in km^{2}	Percentage

5.13 FIRE INCIDENCE

Fire incidence is assessed by occular estimation over an area of 2 ha around the sample plot centre. After estimation, the incidence is classified into four categories. Very heavy fire incidence is where fallen material and under growth are totally burnt, soil is charred and hardened and burning of base of trees and undergrowth affecting more than 50\% of ground vegetation etc. are seen. Frequent fire incidence is termed for those areas where fire incidence occurs frequently, occasional fire is not an annual event of fire. and no fire is termed where aforesaid symptoms are found absent.

Table 5.13T given below indicates classwise fire incidence in forests of Sambalpur District.

TABLE NO. 5.13T
Area by Fire Incidence classwise

Items	No. of sample plots	Area in km^{2}	Percentage
Very heavy	-	-	-
Frequent	10	80.01	1.52
Occassional	254	2932.33	38.66
No fire	393	3144.51	59.82
Total	657	5256.85	100
Not recorded	118	944.15	
Grand Total	775	6201.010	

About 60\% of the forest area spread over 3144.51 km^{2} remains unaffected by fires, occassional fire is observed over $2 \emptyset 32.33 \mathrm{~km}^{2} 1 . e$. over 38.66% area and frequent fire is observed over $80.01 \mathrm{~km}^{2} 1 . e .1 .52 \%$ of the forest area.

5.14 OCCURRENCE OF BAMBOO

Occurrence of bamboo is observed occularly for estimation of bamboo over 2 ha area around the sample plot centre and indicated to show density, quality and flowering. The sample plots bearing Bamboo in Sambalpur were found to be 250 representing an area of $2000.32 \mathrm{~km}^{2}$. Quality I bamboo i.e. Dendrocalamus strictus having average culm height more than 6 metres is seen over an area of $1568.25 \mathrm{~km}^{2}$ which is 78.40% of total area covered with bamboos. Quality II with average culm height between 4 and 6 metres is observed over
$216 . \emptyset 3 \mathrm{~km}^{2} 1 . e .10 .80 \%$. Quality III bamboo with height between $2-4 m$ also exists over $56.01 \mathrm{~km}^{2}$ with a meagre percentage of 2.80. Table no. 5.14T produced overleaf gives the details of occurrence of bamboo in Sambalpur. The bamboo crop occurs as an understorey in the forests of Sambalpur and its presence is observed mainly in the eastern part of the District belonging to Rairakhol and Deogarh divisions.

Density classification for bamboos as given in the field mannual for forest inventory is reproduced below:-
(a) Bamboo density (Col.62)

The density of the bamboo clumps of all species will be depicted using following code numbers:-

Code

Description

Pure bamboo- $20 \emptyset$ or more clumps/ha Very dense - 150-200 clumps/ha Dense - $100-150$ clumps/ha. Moderately dense - 50-100 clumps/ha Scattered - 20-5ø clumps/ha Sparse - 1025 clumps/ha Bamboo present but clumps completely hacked by people.
No bamboo - Bamboo totally absent Regeneration crop - clump formation has not yet taken place.

Note:- Bamboo clump means an aggregate of culms issuing from the same rhizome system. (A clump would normally have more than one culm). A clump will be distinguished as an independent clump where its periphery is easily discernible from adjacent clumps irrespective of its distance from others. However, when such distinction is not possible two. clumps within half metre distance will be recorded as one.

Break up of Bamboo Area (km^{2}) by quality and Density wise

Quality/ Density	1	2	3	4	Total	Percentage
1	$\begin{aligned} & 8 \varnothing .01 \\ & (1 \varnothing) \end{aligned}$	-	-	-	$\begin{array}{r} 8 \emptyset . \varnothing 1 \\ (1 \varnothing) \end{array}$	$4 . \square \varnothing$
2	$\begin{gathered} 112.02 \\ (14) \end{gathered}$	-	-	-	$\begin{array}{r} 112.02 \\ (14) \end{array}$	5.60
3	$\begin{gathered} 160.03 \\ (20) \end{gathered}$	$\begin{gathered} 8.010 \\ (1) \end{gathered}$	-	-	$\begin{array}{r} 168.03 \\ (21) \end{array}$	8.40
4	$\begin{gathered} 256.04 \\ (32) \end{gathered}$	$24 . \varnothing 0$ (3)	-	-	$\begin{array}{r} 280.04 \\ (35) \end{array}$	14.00
5	152.02 (19)	24.00	$16 . \varnothing \emptyset$ (2)	-	$\begin{gathered} 192.02 \\ (24) \end{gathered}$	9.60
6	$\begin{aligned} & 808.13 \\ & (1 \varnothing 1) \end{aligned}$	$\begin{array}{r} 160.03 \\ (20) \end{array}$	$\begin{gathered} 32.01 \\ (4) \end{gathered}$	8.00 (1)	$\begin{array}{r} 1008.17 \\ (126) \end{array}$	50.40
7	-	-	$\begin{aligned} & 8.00 \\ & \text { (1) } \end{aligned}$	$\begin{array}{r} 152.03 \\ (19) \end{array}$	$\begin{array}{r} 160.03 \\ (20) \end{array}$	8.00
Total	$\begin{gathered} 1568.25 \\ (196) \end{gathered}$	$\begin{gathered} 216.03 \\ (27) \end{gathered}$	$\begin{gathered} 56.01 \\ (7) \end{gathered}$	$\begin{array}{r} 160.03 \\ (20) \end{array}$	$\begin{array}{r} 2000.32 \\ (250) \end{array}$	
\%	78.40	10.80	2.80	8.00		

Map no. 5.14M gives the distribution of bamboo occurrence by density. Bamboo occurs on the east of Mahanadi river. In Sambalpur division, bamboo occurs in the south east corner, Northern part of this bamboo area has dense to moderate dense bamboo. Southern part having sparse and hacked bamboo. Very dense, dense and moderately dense bamboo is also observed along border of Bamra, Rairakhol and Deogarh divisions. Majority crop is hacked. More details on growing stock, yield etc. may be seen in Chapter VII on Bamboo growing stock.

CHAPTER VI

GROWING STOCK

6.Ø GENERAL

This Chapter deals with the results, in respect of growing stock, obtained after analysis of enumeration data. For this purpose data collected from 654 vegetated plots have been considered, leaving out 121 number of plots having no tree growth and hence of no use for estimation of growing stock. The data are presented for 2 strata i.e. Sal and Miscellaneous. A combined picture of entire forests inclusive of both these strata has also been given. The stratification of the forest area has been done on the basis of occurrence of Sal and other species in 2 ha surround of the centre point of the plot. In a sense, since stratification is done after collection of data, it is post-stratification. The data in the succeeding paragraphs are, accordingly, presented for different strata. After calculating the area under each stratum. by giving weightage to the number of sample plots falling in it, the growing stock has been estimated in terms of no. of stems and volume for important species. The growing stock has been first calculated per ha and then total number of stems or total volume, as the case may be, were computed. Local volume equations derived from forest inventory undertqaken by this zone in Koraput District of Orissa in 1982-83 have been used, as due to ban on felling, trees could not be felled in Sambalpur during the inventory work.

Abstract of growing stock (stratum wise)in Sambalpur Distt.

Forest Type (Stratum)	No. of plots	Area in km^{2}	Stand Stock			
			Stem/ha	Total (ø்ஜெ)	$\begin{aligned} & \text { Vol/ha } \\ & \mathrm{m}^{2} \end{aligned}$	$\begin{aligned} & \text { Total } \\ & \text { Vol }(\varnothing \varnothing \varnothing) \mathrm{m}^{3} \end{aligned}$
SAL	3352	2680.43	286.747	76860.	671.949	19285.438
MISC	3192	2552.41	245.503	62662.	949.464	12625.282
TOTAL/Av	6545	5232.84	266.569	139491.	260.949	31893.508

VOLLME PER HA BY FOREST TYPES

Contents
6.1 SAL STRATUM: STEMS PER HA AND TOTAL NO. OF STEMS

Speoieshise and diamotor clabs wise distribution of stems per ha and total stems is given in table no. 6.1T(A) and 6.1T(B). It is seen from the tables that number of stems per ha decreases as the diameter class ascends. Considering exploitable diameter of Sal at $4 \varnothing \mathrm{~cm}$, according to working plan prescriptions, majority of the crop is young, as 46.47\% crop is in diameter class 10-15 cm and 20.50\% is in $15-20 \mathrm{~cm}$, total of both being 66.97\%. Middle aged crop from 20 cm diamertre to 40 cm diameter is 29.24% and mature and over mature crop, the latter above 60 cm being negligible, account for 3.79\%. It is seen that Sal forests have only 10.99 no.of trees per ha above 40 cm diameter, though Sal forms major share of 6.69 trees per ha. Of course, this is an average picture for the entire Sal area of $2680.43 \mathrm{~km}^{2}$ and in blocks there are very good patches of forests with a fair amount of mature trees. However, while prescribing a silvicultural system utmost care needs to be taken to identify well stocked and poorly stocked areas.

Stems per ha and total no. of stems in the stratum by important species are given below:

8. Lannea coromandelica(Moyen)	4.578	1227	1.60	
9. Tectona grandis (Teak)	4.187	1122	1.46	
10. Lagerstroemia parviflora	2.410	646	0.84	
(Sidha)				
11. Others		84.908	22758	29.61
Total.	\ldots	286.747	76860	100%

Obviously, in Sal stratum $S a l$ would have maximum representation, as in the present case, where no. of Sal stems per ha is 112.018 with 39.06% contribution in the total growing , stock. Other species fall well below this stocking level, the next best to Sal being Terminalia crenulata with 25.181 stems per ha, reckoning to 8.78%. Kendu and Mahuwa follow as the third and the fourth species according to occurrence, having $18.946(6.61 \%)$ and 12.922 (4.51%) stems per ha respectively, showing potential of MFP. Teak has its presence because of teak plantations mostly, showing 4.187 stems per ha (1.46\%) out of which 78.40% stems are in diameter class $10-15 \mathrm{~cm}$.
6.2 MISCELLANEOUS STRATUM: STEMS PER HA AND TOTAL NO. OF STEMS

Species wise and diameter classwise occurrence of stems per ha and total no. of stems in Miscellaneous stratum are shown in table no. 6.2T(A) and 6.2(B). Total wooded plots enumerated in Miscellaneous stratum were 319, reckoning to an area of $2552.41 \mathrm{~km}^{2}$. In this stratum also young crop predominates with diameter class $10-15 \mathrm{~cm}$ showing 129.214 stems per ha reckoning to 52.63% and $15-20 \mathrm{~cm}$ diameter class representing 51.289 stems per ha i.e. 20.89\%. Total of these two classes add upto 73.52\%. Considering exploitable diameter of Miscellaneous species being $3 \varnothing \mathrm{~cm}$, middle aged crop from 20 cm diameter to 30 cm diameter account for 43.774 stems totalling upto 17.83%. This shows that 91.35% crop is young to middle aged. Mature crop is only 8.65% of the total. Thus it is seen that in Miscellaneous stratum, no. of stems above exploitable diameter of 30 cm is 21.225 stems per ha. Total no. of stems in Miscellaneous stratum of important species found in this stratum, along with their percentages is shown overleaf.

S．No．Name of species	No．of stems． per ha	Total no． of stems in Misc． stratura． in（＂の日ロ＂）	Percentage occurrence in total stand．
1．Diospyros melanoxylon （Tendu）	17.642	4503	7.19
2．Terminalia crenulata（Saja）	13.302	3395	5．42
3．Lannea coromandelica （Moyen）	12.673	3235	5.16
4．Anogeissus latifolia （Dhawra）	11.918	3042	4.85
5．Shorea robusta（Sal）	10.723	2737	4.37
6．Lagerstroemia parviflora （Sidha）	10.535	2689	4.29
7．Pterocarpus marsupium （Bija）	6.352	1621	2.59
8．Madhuca latifolia（Mahuwa）	5.912	1509	2.41
9．Boswelia serrata （Salai）	4.528	1156	1.84
1ø．Bridelia retusa （Kasi）	4.119	1051	1.68
11．Dalbergia latifolia （Sisam）	3.302	843	1.34
12．Rest of the species	144.497	36881	58.86
Total	245.503	62662	100\％

It is . observed that Kendu emerges as the single largest species with 17.642 stems per ha, reckoning to 7.19% of the total stand. Terminalia crenulata has 13.302 stems per ha and is 5.42%, Lannea coromandelica has 12.673 stems per ha and is 5.16\%. Anogeissus latifolia has 11.918 stems per ha and a percentage of 4.85. Shorea robusta also makes an appearance with 10.723 stems per ha, forming 4.37\%. Another important timber species are Pterocarpus and Dalbergia latifolia with, 6.352 stems (2.59\%) and 3.302 stems (1.34\%) per ha. There are a total of 626,62, $00 \emptyset$ trees in Miscellaneous stratum over an area $2552.41 \mathrm{kra}^{2}$.

6.3 SAL STRATUM: VOLUME PER HA AND TOTAL VOLUME

Table no.6.3T(a) and 6.3T(b) give specieswise and diameter classwise distribution of volume per ha (m^{3}) and total volume (m^{3}), respectively. It is seen from the table of per ha volume that the volume is maximum in diameter class 2530 cm with, a volume of $10.324 \mathrm{~m}^{3}$ and sharing the highest percentage of 14.35 to the total volume. The next diameter class is $4 \emptyset-50$ having volume of $10.011 \mathrm{~m}^{3}$ reckoning to 13.91% to the total.

A glance at the percentage figure in the tables mentioned above shows that volume has more or less equal distribution from diameter class $15-2 \emptyset$ to $40-50$. Erom dianeter class $15-20$ and above, it is observed that sal shares maximum volume than that of the other species and that the cubical contents of Sal are more because of more number of trees in that particular diameter class. The volume table shows specieswise distribution of volume per ha and total volume as well as their percentage to the total volume. It is seen from the table overleaf seen that out of the total volume of $71.949 \mathrm{~m}^{3}$ Sal has a regal share of 50.88% while number two species is Saja with $6.697 \mathrm{~m}^{3}$ with 9.31%. After Sal and Saja the next best species is Mahua with $4.534 \mathrm{~m}^{3}$ per ha, sharing 6.3% of volume. Other important species are Kendu $3.785 \mathrm{~m}^{3}$ (5.26\%), Jamun $2.7 \emptyset 8 \mathrm{~m}^{3}(3.76 \%)$, Anogeissus $2.414 \mathrm{~m}^{3} 3.36 \%$, Bija $1.576 \mathrm{~m}^{3} 2.10 \%$, whereas rest of the species share 12.316 $\mathrm{m}^{3}(17.12 \%)$.

Sr.No. Name of species	Vol.per ha in m^{3}	$\begin{aligned} & \text { Total vol } \\ & \text { in Øøø m } \\ & \text { (Rounded) } \end{aligned}$	Percentage
1. Shorea robusta (Sal)	36.611	9813	50.88
2. Terminalia crenulata (Saja)	6.697	1795	9.31
3. Madhuca latifolia (Mahuwa)	4.534	1215	6.30
4. Diospyros melanoxylon(Kendu)	3.785	1015	5.26
5. Syzigium cuminit (Jamun)	2.708	726	3.76
6. Anogeissus latifolia (Dhaora)) 2.414	647	3.36
7. Pterocarpus marsupium (Bija)	1.576	422	2.19
8. Lannea coromandelica (moyen)	0.617	165	0.86
9. Lagerstroemia parviflora (Sidha)	0.378	101	0.52
10. Tectona grandis (Teak)	0.313	84	0.44
11. Others	12.316	3302	17.12

Thus, if one compares the stand table with that of the volume table per ha, it would be seen that though Sal shares around 39% stems, it shares about 51% of volume.
6.4 MISCELLANEOUS STRATUM: VOLUME PER HA AND TOTAL VOLUME

Table nos. 6.4T(a) and 6.4T(b) give the details of speciesuise and diameterwise volume per ha and total volume respectively for Miscellaneous stratum. As has been stated before, forest type 'Miscellaneous' was found in 319 sample plots signifying an area of $2552.41 \mathrm{~km}^{2}$.

It can be seen that a total volume of $49.464 \mathrm{~m}^{3}$ per ha is quite less than that of Sal stratum which has a stock of $71.949 \mathrm{~m}^{3}$, showing that this type of forest is quite poor not only with regard to the species but also stocking. It is, however, seen that the volume is more or less uniformily spread from diameter class $10-15$ to $40-50 \mathrm{~cm}$, dropping steeply beyond this point. If one considers that the exploitable diameter in case of Miscellaneous species, according to the working plan in vogue, is 30 cm , then it is seen that within the limited availability of stock per ha, representation of mature trees is not insignificant. Whatever is the worth of the standing stock, one can reasonably say that the forests have been worked well.

Given below is a table showing volume per ha, total volume and percentage of occurrence for a few important spe-cies:-

Sr.No. Name of species	Vol.per ha in m^{3}	```Total vol. in 0\varnothingD m (Rounded)```	Percentage
1. Diospyros melanoxylon (Kendu)) 4.685	1196	9.47
2. Anogeissus latifolia (Dhaora)	4.065	1038	8.22
3. Shorea robusta (Sal)	3.913	999	7.91
4. Terminalia crenulata (Saja)	3.145	803	6.36
5. Boswellia serrata (Salai)	2.666	680	5.39
6. Madhuaca latiflia (Mahuwa)	2.363	603	4.78
7. Lannea coromandelica (moyen)	2.162	552	4.37
8. Lagerstroemia parviflora	1.879	480	3.80

9. Pterocarpus marsupium (Bija)	1.533	391	3.10
10. Adina cordifolia (Haldu)	0.937	239	1.89
11. Bridelia retusa (Kasi)	0.858	219	1.73
12. Other species	21.258	5425	42.98

It is seen that Kendu has maximum volume per ha $1 . e, 4.685 \mathrm{~m}^{3}$ per ha signifying 9.47%. This is followed by Anogeissus at $4.065 \mathrm{~m}^{3}, 8.22 \%$. Sambalpur being basically a Sal area, even in Miscellaneous stratum it is seen that Sal stands at no. III position with $3.913 \mathrm{~m}^{3}$ and 7.91%. It is seen that Sal has a good representation from diameter class 30-60. Ain is the IVth species having $3.145 \mathrm{~m}^{3}$ volume per ha forming 6.36% of the total. Salai, which had a meagre 0.81% representation in Sal stratum has 5.39\% share in Miscellaneous stratum having $2.66 \mathrm{~m}^{3}$ of volume per ha. Presence of Boswellia shows that certain areas have turned drier for this species to dominate. Other species form the major share of $21.258 \mathrm{~m}^{3}$ reckoning to 42.98\%.

A total growing stock position of the Miscellaneous type of forests is 126.25 lakh m^{3}.

6.5 COMBINED GROWING STOCK: STEMS

Table no.6.5T gives details of species and diameter classwise no. of stems per ha and total stems occurring over $5232.84 \mathrm{~km}^{2}$ wooded area corresponding to 654 sample plots, irrespective of forest types, or rather for both the forest types combined together. It is seen that stems per ha in diameter class $10-15 \mathrm{~cm}$ is the highest i.e. 131.280, followed by 55.120 stems in diameter class $15-20 \mathrm{~cm}$, forming 49.24% and 20.67\% respectively. Thus, young crop alone shares 69.91% of the total crop. No. of stems decrease progressively as diameter class increases. If 30 cm is reckoned as exploitable diameter, middle aged crop from 20 to 30 cm has 52.162 stems per ha with 19.56%, while mature crop above 30 cm diameter forms a crop with 28.063 stems per ha having a percentage of 10.53%. Trees above 50 cm diameter are negligible.

Table produced below gives species wise details of stems per ha, total stems and percentage occurrence of the species to total no. of stems.

S.no.	. Name of species	No. of steras. per ha	Total P stems o ($0 \boxed{0} 0^{\circ}$) i rounded.	ntage rence tal nd.
1.	Shorea robusta (Sal)	62.611	32763	23.48
2. T	Terminalia crenulata(Saja)	19.387	10145	7.27
3. D	Diospyros melanoxylon(Kendu)	18.308	9581	6.87
4.	Anogeissus latifolia(Dhaora)	9.748	5101	3.66
5.	Madhuca latifolia(Mahuwa)	9.582	4973	3.56
6.	Lannea coromandelica (Moyen)	8.527	4462	3.20
7.	Lagerstormia parviflora(Sidha) 6.372	3335	2.39
8.	Pterocarpus marsupium (Bija)	5.736	3002	2.15
9.	Syzigium cuminii(Jamun)	5.119	2678	1.92
10.	Bridelia retusa(Kasi)	2.935	1536	1.10
11.	Boswelifa serrata(Salai)	2.918	1527	1.09
12.	Other species	115.462	60420	43.31
	Total	266.625	139523	100

It is clear that Sal dominates the species composition even in combined stratum with 62.611 stems per ha reckoning to 23.48 percent. The next best i.e. Saja is far below with 19.387 stems per ha with a percentage of 7.27 to the total stems.per ha. Percentage of unimportant other species. is large i.e. 43.31% commensurating with 115.462 stems per ha.

$\because 1 \cdot 9_{87} 171.4141$
Contents

6.6 COMBINED GROWING STOCK: VOLUME

Table no. 6.6T presents species wise and diameter class wise volume $1 n \mathrm{~m}^{3}$ per ha and for the entire wooded area of $5232.84 \mathrm{~km}^{2}$ represienting 654 sample plots. It is aeen from the table that volume is more or less evenly distributed in different diameter classes upto $40-50 \mathrm{~cm}$ dia (with a mean of $7.50 \mathrm{~m}^{3}$, for which standard error works out to 0. 71 for the seven classes 1.e. from $10-15$ to $40-50 \mathrm{~cm}$). If $3 \varnothing \mathrm{~cm}$ and above diameter is considered as mature crop, surprisngly combined stratum shows that volume in mature crop is $30.560 \mathrm{~m}^{3}$ almost exactly half of the total volurae of $60.977 \mathrm{~m}^{3}$ per ha. However, major contribution is of Sal. Similarly stocking of around $61 \mathrm{~m}^{3}$ per ha is relatively poor.

Species wise picture, discounting diameter classes, 1s given below:

Sal emerges as the main species of forests of Sambalpur district. If this species dominates in distribution of stand with a showing of 23.43%, it steals the show as far ag volume per ha is concerned with 33.88% volume coorresponding to

$20.661 \mathrm{~m}^{3}$ per ha, whereas the next best - Saja has to contend with only $4.965 \mathrm{~m}^{3}$ per ha with 8.14% representation. So there is a drop of around 25\% from the first to the second species. Kendu is third with $4.226 \mathrm{~m}^{3}$ sharing 6.93%.

Map no. 6.6M shows volume distribution per ha in various forested grids representative of 2 sample plots. per grid. It is seen that maximum volume of $80 \mathrm{~m}^{3}$ per ha and above is obtained in Rairakhol division (North- North-West part of the division) and Bamra division (South - South west part of the division). Deogarh Division ha also a fair portion having volume of $80 \mathrm{~m}^{3}$ and above. Curiously South-West corner of Sambalpur division which has Miscellaneous type of forest in it has also this volume. It is seen that Rairakhol, Bamra and Deogarh divisions have mostly 50 to $80 \mathrm{~m}^{3}$ and $80 \mathrm{~m}^{3}$ and above per ha stocking. Sambalpur division in the EastNorth east, North west and west presents a picture of poor stocking of mostly below $20 \mathrm{~m}^{3}$ per ha.

6.7 MEAN VOLUME PER HA BY TOPOGRAPHY CLASSES

Table 6.7T produced overleaf gives mean volume per ha distributed by topography classes in each stratum. Hilly terrain contains the highest mean volume per ha in Sal stratum i.e. $91.589 \mathrm{~m}^{3}$. On the other hand highest volume in Miscellaneous forest exists over very hilly terrain with a mean volume of $74.448 \mathrm{~m}^{3}$ per ha. Sal is absent in very hilly terrain. It appears that because in hilly and very hilly terrain biotic pressures are minimum and extraction is difficult, lot of big sized timber has still remained in the forest. Mean volume in Sal stratum for gently rolling topography has only $49.922 \mathrm{~m}^{3}$ which is a noteworthy slide from hilly terrain.

TABLE NO. 6.7T
Mean volume/ha. by Topography classes.

Forest Type	Flat	Gently rolling	Hilly	Very hilly	
SAL	47.105	49.922	91.589		
MISCELLANEOUS	21.759	35.500	58.785	74.448	

6.8 MEAN VOLUME PER HA BY SLOPE CLASSES

Table 6. BT produced below gives mean volume per ha distributed by slope'classes in each stratum. Over the slope of 60 to less than $1 \varnothing 0 \%$ Sal stratum gives the maximum mean volume per ha as $134.573 \mathrm{~m}^{3}$. On the other hand, Miscellaneous stratum gives $88.445 \mathrm{~m}^{3}$ per ha in the same slope class. Here also the reasons for finding high volume on steep slopes is the same as in para 6.7. The difference between the two strata especially in $<10 \%$ slopes is remarkable.

TABLE 6.8T

Mean Volume/Ha by Slope Classes

Forest Type	<10\%	10-<60\%	$60-<100 \%$	$+100$
SAL	52.586	94.360	134.573	-
MISCELLANEOUS	24.492	61.556	88.445	-

6.9 MEAN VOLUME PER HA BY SOIL DEPTH CLASSES

Table 6.9T produced below gives the mean volume per ha by soil depth classes. Predictably, the maximum mean volume per ha in Sal stratum is available in deep soils 1.e. $74.786 \mathrm{~m}^{3}$ closely followed by medium soils i.e. $71 . \varnothing 01 \mathrm{~m}^{3}$, whereas medium soil sustains maximum Miscellaneous forest with $56.939 \mathrm{~m}^{3}$ mean volume per ha and curiously deep soils support only $37.905 \mathrm{~m}^{3}$ of volume

TABLE NO. 6.9T
Mean Volume per ha by Soil Depth Classes

| Forest Type | No soil | Very | shallow | Medium | Deep |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| shallow | | | | | |

6.10 MEAN VOLUME PER HA BY TOP HEIGHT CLASSES

Table 7.øT produced ovorleaf gives the distribution of mean volume per ha by top height classes. In both Sal and Miscellaneous strata maximum mean volume per ha is available at $172.954 \mathrm{~m}^{3}$ and $193.397 \mathrm{~m}^{3}$ respectively in the top height classes of 26-30 metres. It is interesting to note that for top height 31 m and above, Miscellaneous stratum does not have any volume but in the class just below it i.e. $26-30 \mathrm{~m}$ volume per ha in Miscellaneous stratum is more than in Sal i.e. $193.397 \mathrm{~m}^{3}$ against $172.954 \mathrm{~m}^{3}$. This is because of bigger girths obtained in species like Mahuwa and Salai.

TABLE NO.6.10T
Mean Volume per ha by Top Height Classes

Eorest	$1-5 \mathrm{M}$	$6-10 \mathrm{M}$	$11-15 \mathrm{M}$	$16-20 \mathrm{M}$	$21-25 \mathrm{M}$	$26-30 \mathrm{M}$	31 M		
Type									
SAL	9.814	24.588	46.892	88.328	108.981	172.954	77.239		
MISC.	12.146	16.067	48.570	75.015	97.001	193.397	-		

6.11 MEAN VOLUME PER HA BY SIZE CLASSES

Table 6.11T produced below gives mean volume per ha by size classes. In Sal and Miscellaneous strata big timber is available with mean volume per ha as $107.037 \mathrm{~m}^{3}$ and 120.274 m^{3} respectively. Here also Miscellaneous stratum shows lesser volume per ha in all the size classes except in big timber where Miscellaneous stratum has an edge over Sal.

Mean Volume Per ha by Size Classes
Forest Regeneration Pole Small Big Timber Mixed size
Crop Timber classes

SAL	13.357	48.654	82.293	107.037	94.615
MISC.	6.020	43.762	53.241	120.274	75.016

6.12 COMBINED GROWING STOCK WITH ESTIMATES OF STANDARD ERROR

Table no. 6.12T given below gives the accuracy of estimation by Standard Error percentage of area, volume per ha and total volume by the two strata i.e. Sal and Miscellaneous and also for the combined output of the same.

TABLE NO. 6.12T
Combined Growing Stock with Estimate of S.E.

Forest Type	$\begin{aligned} & \text { Area } \\ & \left(\mathrm{km}^{2}\right) \end{aligned}$	SE\%	Vol/ha	$\begin{aligned} & \text { S.E\% } \\ & \text { vol } \end{aligned}$	Total $\left(\varnothing \varnothing \varnothing M^{3}\right)$	S.E.\%
SAL	$\begin{gathered} 2680.43 \\ (335) \end{gathered}$	4.4	$\begin{aligned} & 71.949 \\ & (332) \end{aligned}$	4.5	19285.4	6.3
MISC.	$\begin{gathered} 2552.41 \\ (319) \end{gathered}$	4.5	$\begin{array}{r} 49.464 \\ (318) \end{array}$	5.2	12625.3	6.9
COMBINED	$\begin{gathered} 5232.84 \\ (654) \end{gathered}$	3.1	$\begin{array}{r} 60.982 \\ (650) \end{array}$	1.4	31910.7	3.4

Note: Figures in brackets denote the number of plots.

It will be seen that for combined strata the precision of estimation is very high with SE\% for area being 3.1\%, for volume perr ha, only 1.4% and for total volume 3.4\%. SEa for various parameters in Sal and Miscellaneous strata are also quite low and hence the data are dependablefor use in planning perspectives.

INVENTORY RESULTS: BAMBOO GROWING STOCK

7.Ø GENERAL

As discussed earlier in Chapters II, V, and VI, the forests of Sambalpur consist mainly of the moist peninsular Sal and Dry mixed deciduous forests with or without bamboos. Pure bamboo is not in existence but occurs as an understorey. Bamboo has, therefore, been extracted under overlapping Working Circles of the State Management Plans. Bamboo exploitation in Sambalpur has been carried out by contractors supplying. it to M/s Titagarh paper Mills and cutting has been scattered and irregular and bamboo areas appear to have been overexploited. The results of survey indicate degraded condition of bamboo. The main users of bamboo crop are M / s. Titagarh Paper Mills and local population for manufacture of mats and bamboo baskets and for other domestic uses.

7.1 BAMBOO AREA

As doscribed in para 5.14 bamboo occurs only in 250 sample plots representing an area of $2000.32 \mathrm{~km}^{2}$ with distribution of density classes as given in the table overleaf:

TABLE NO. $7.1 T$
BREAK UP OF BAMBOO AREA (KM²) BY QUALITY AND DENSITY

Density	Quality				Total	Percentage
	1	2	3	4		
1	$\begin{aligned} & 80 . \emptyset 1 \\ & (1 \varnothing) \end{aligned}$	-	-	-	$\begin{array}{r} 8 \varnothing . \emptyset 1 \\ (1 \varnothing) \end{array}$	4.00
2	$\begin{gathered} 112.02 \\ (14) \end{gathered}$	-	-	-	$\begin{array}{r} 112.02 \\ (14) \end{array}$	5.60
3	$\begin{gathered} 160 . \varnothing 3 \\ (20) \end{gathered}$	$\begin{aligned} & 8.00 \\ & \text { (1) } \end{aligned}$	-	-	$\begin{array}{r} 168.03 \\ (21) \end{array}$	8.40
4	$\begin{gathered} 256.04 \\ (32) \end{gathered}$	$\begin{gathered} 24.00 \\ (3) \end{gathered}$	-	-	$\begin{array}{r} 280.04 \\ (35) \end{array}$	14.00
5	$\begin{gathered} 152.02 \\ (19) \end{gathered}$	$\begin{gathered} 24.00 \\ (3) \end{gathered}$	$\begin{gathered} 16.00 \\ (2) \end{gathered}$		$\begin{array}{r} 192.02 \\ (24) \end{array}$	9.60
6	$\begin{aligned} & 808.13 \\ & (101) \end{aligned}$	$\begin{gathered} 160.03 \\ (20) \end{gathered}$	$\begin{gathered} 32.01 \\ (4) \end{gathered}$	$\begin{aligned} & 8.00 \\ & (1) \end{aligned}$	$\begin{array}{r} 10 \boxed{.17} \\ (126) \end{array}$	50.40
7			$\begin{aligned} & 8.00 \\ & \text { (1) } \end{aligned}$	$\begin{gathered} 152.03 \\ (19) \end{gathered}$	$\begin{array}{r} 160.03 \\ (20) \end{array}$	8.00
Total	$\begin{gathered} 1568.25 \\ (196) \end{gathered}$	$\begin{gathered} 216.03 \\ (27) \end{gathered}$	$\begin{gathered} 56 . \oslash 1 \\ (7) \end{gathered}$	$\begin{array}{r} 160.03 \\ (20) \end{array}$	$\begin{array}{r} 2000.32 \\ (250) \end{array}$	
\%	78.40	10.80	2.80	8.00		

Density classification of bamboo adopted in the Inventory of FSI is as below:

Code Description

1. Pure bamboo - 200 or more clumps per ha

2 . Very dense bamboo - 150 to 200 clumps per ha
3 Dense - 100 to 150 clumps per ha
4 Moderately dense - 50 to 100 clumps per ha
5 Scattered - 20 to 50 clumps per ha
6 sparce - 1 to $2 \emptyset$ clumps per ha
7 Bamboo present but completely hacked by people
8 Bamboo absent
9 Regeneration crop Clump formation has not taken place.

Site quality classfication for Dendrocalamous strictus is as below:

I Culm ht more than 6 m
II \quad " $4 \mathrm{~m}-6 \mathrm{~m}$
III \quad - $2 m-4 \mathrm{~m}$
IV Regeneration crop.

It is seen from the table that 50.40% area has sparse (1 to 20 clumps per ha) bamboos. Pure to moderately dense bamboos, (50 to 200 clumps per ha) account for a total of 32%, whereas scattered bamboos account for 9.60% area. A sizeable area of 8% comes under the category of hacked bamboo.

It is also seen that 78.40% area has site quality one and from the table it is apparent that the crop of density 1 and 2 is found entirely under quality class I, whereas density 3 \& 4 also almost entirely occupy 8 quality class I. Naturally enough, maximum area under site qualities III \& IV is found under density class 7 i.e. area which is hacked by people.

It is thus seen that there is scope to improve bamboo stocking by enrichment plantations, though with adequate protection measures.

7.2 CLUMPS/HA BY QUALITY AND CLUMP SIZE CLASSES

Table no. 7.2T produced overleaf gives estimated bamboo clumps per ha in Sambalpur District.

MEAN NUMBER OF BAMBOO CLUMP/HA BY QUALITY AND SIZE CLASSWISE

Quality/Size class		$\begin{gathered} 1 \\ \text { small } \end{gathered}$	$\stackrel{2}{\text { Medium }}$	$\begin{aligned} & 3 \\ & \text { Large } \end{aligned}$	Total
Clump diam <1m			1m-2m	> 2 m	
1	Percentage	89.739	33.791	3.268	126.798
		70.77\%	26.65\%	2.58	
2		38.462	15.000	-	53.462
	Percentage	71.94\%	28.06\%		

It is seen that mean number of bamboo clumps per ha in quality class I are 126.798 i.e. dense. However, the clump diam of 89.739 clumps i.e 70.77% of total clumps is below 1m, i.e. small, showing deteriorated condition of bamboo. 26.65\% clumps numbering 33.791 per ha, have dia, between 1 to $2 \mathrm{mi} . e$. medium and large size clumps of diam above 2 m are only 3.268 per ha i.e. 2.58%.

In quality II bamboos, average no. of clumps per ha are 53.462 and the percentage distribution between small and medium is identical to that of quality I bamboo, with 71.94% under small and 28.06% under medium diam. category, large clurps being absent.

Generally, it is thus seen, that about 70\% clumps in the District have lesser than 1 m . diam.

7.3 MEAN NUMBER OE BAMBOO CULMS/CLUMP BY AGE

Table no. 7.3T given overleaf provides an insight to the status of bamboos in Sambalpur as it provides information about occurrence of culms per clump by quality, soundness and age. The table is given separately for green sound culms, green damaged culms, dry sound culms and dry damaged culms.

MEAN NUMBER OF BAMBOO CULMS/ CLUMP BY QUALITY, SOUNDNESS, AGE AND SIZE CLASS - GREEN SÓUND CULMS

$\begin{aligned} & \text { Qua- } \\ & \text { lity } \end{aligned}$	$\begin{aligned} & \text { Size } \\ & \text { clas } \end{aligned}$	Green			Sound Culms				
		Current year	One to two seasons			Over two seasons			Total
			$2<5 \mathrm{~cm} 5<8 \mathrm{~cm} 8+$			$2<5 \mathrm{~cm} 5<8 \mathrm{~cm} 8+\mathrm{cm}$			
1	1	0.6653	0.8745	0.0042	\emptyset	1.9289	\square	\emptyset	3.4728
	2	1.2976	1.4643	0.0476	\varnothing	4.8452	Ø. 1667	0	7.8214
	3	2.5	2.3333	\emptyset	\emptyset	9	\emptyset	\varnothing	13.833
2	1	1.2	$\emptyset .48$	\emptyset	\emptyset	Ø. 72	0	0	
	2	1.3333	0.8889	0	\emptyset	1.1111	\emptyset	0	3.3333

GREEN DAMAGED CULMS

$\begin{aligned} & \text { Qua- } \\ & \text { lity } \end{aligned}$	$\begin{aligned} & \text { Size } \\ & \text { clas } \end{aligned}$	Green D			Damaged	Culms			
		One to two seasons				Over two seasons			Total
		Current year	$2<5 \mathrm{~cm} 5<8 \mathrm{~cm} 8+$			$2<5 \mathrm{~cm} 5<8 \mathrm{~cm} 8+\mathrm{cm}$			
1	1	Ø. 1255	0.2929	0.0042	\emptyset	0.728	0	0	1.1506
	2	0.2738	0.4048	$0.0 \square \square \square$	\emptyset	2.2381	0.0952	\square	3.0119
	3	0.1667	0.3333	$0.0 \square \square \square$	\varnothing	1.3333	0	\emptyset	1.8333
2	1	0.24	0.64	\emptyset	0	$\emptyset .76$	\emptyset	\emptyset	
	2	0.3333	0.4444	\emptyset	0	1.6667	\emptyset	0	2.4444

small because of hacking, have less no. of green sound culms than the large size clumps though they themselves are not really free from getting hacked.
7.4 MEAN NO. OF BAMBOO CULMS PER HA

Table no. 7.4 T produced below shows mean number of bamboo culms per ha by quality, soundness, age and size class. The table shows figures which are arrived at by merely multiplying figures in table $7.3 T$ by mean no. of clumps per ha shown in table no. 7.2T and hence the ratios or percentages of sound or damaged culms to total worked out in para 7.3 remain unchanged. It is only for per ha estimation of availability of bamboo or stand position that this table is important.

TABLE NO. 7.4 T
MEAN NUMBER OF BAMBOO CULMS/HA BY QUALITY, SOUNDNESS, AGE AND SIZE CLASSWISE - GREEN SOUND CULMS

$\begin{aligned} & \text { Qua- } \\ & \text { lity } \end{aligned}$	Size		Green d		ge	Culms			
	Curren year		One to two seasons			Over two seasons			Total
				$5<8 \mathrm{~cm}$		$2<5 \mathrm{~cm} 5<8 \mathrm{~cm} 8+\mathrm{cm}$			
			2<5		$+$				
1	1	11.264	26.284	0.3751	0	65.333	0	0	103.26
	2	9.2523	13.677	0	0	75.628	3.2183	0	101.78
	3	Ø. 5447	1.8893	0	0	4.3573	0	0	5.9913
2	1	9.2309	24.616	0	0	29.231	0	0	63.078
	2	5	6.8666	0	0	25	0	0	36.667

DRY SOUND AND DRY DAMAGED CULMS

$\begin{aligned} & \text { Gua- } \\ & \text {-1ty } \end{aligned}$	Size class		Sound			Dry	Damaged			Decayed Grand culms total	
$2<5 \mathrm{~cm} 5<8 \mathrm{~cm} 8+\mathrm{cm}$ Total $2<5 \mathrm{~cm} 5<8$											
1	1	27.785	0	\square	27.785	52.566	\square	a	52.566	5.2569	500.5094
	2	37.009	1.6091	\square	38.618	72.811	0.8046	0	73.616	6.0341	484.33823
	3	3.268	0	\square	3.268	3.8127	\varnothing	\square	3.8127	-	58.279224
2	1	6.1539	\square	0	$\begin{gathered} 6.1539 \\ 0 \end{gathered}$	6.1539	\square	¢ 6.1539		$\begin{aligned} & 1.5385 \\ & 1.6666 \end{aligned}$	$\begin{aligned} & 169.2328 \\ & 91.66605 \end{aligned}$
	2	0	\square	a		3.3333			3.3333		

It is thus seen that for quality I bamboo, 312 culms per ha, 264 culms per ha and 45.207 culms per ha are available under the category of green sound culm under size class $1,2 \& 3$ respectively. As pointed out earlier, about 71\% clumps in both quality class I \& II, are of small size, i.e. having dlam. below 1 m . About $27 \%-28 \%$ clumps have diabetween $1 \mathrm{~m}-2 \mathrm{~m}$ and only 2.50% of clumps occurring in the district have dia. more than 2 m . The significance is clearer in the next para.
7.5 TOTAL NO. OE CULMS

Table no. 7.5T given below glves total no. of culms in 'aøø` numbers by quality, soundness, age and size class. This table is useful to find out the total available number of culms and the proportion of mature and young bamboos.

TABLE NO. 7.5 T
TOTAL NUMBER OF CULMS IN (øøø) BY QUALITY, SOUNDNESS, AGE AND SIZE CLASSWISE - GREEN SOUND CULMS

$\begin{aligned} & \text { Qua- } \\ & \text { lity } \end{aligned}$	$\begin{aligned} & \text { Size } \\ & \text { olas } \end{aligned}$	Green d			ge	Culms			
		Current year	One to two geasons			Over two seasons			Total
			$2<5 \mathrm{~cm} 5<8 \mathrm{~cm} 8+\mathrm{cm} 2<5 \mathrm{~cm} 5<8 \mathrm{~cm} \mathrm{8+} \mathrm{~cm}$						
1	1	1766.5	4121.9	58.826	\square	19246	\square	0	16193
	2	1451	2144.9	0	0	11860	504.7	0	15961
	3	85.419	179.83	0	0	683.34	0	0	940
2	1	251.12	669.64	0	0	795.2	\square	0	1716
	2	136.82	181.36	0	\square	680.1	\square	0	997
Total .. 35807									

DRY SOUND AND DRY DAMAGED CULMS

It is seen from the table that irrespective of size and quality classes, out of a total of 168.827 million culms, 101.283 million are green sound culms i.e. 59.99\%, 35.807 million culms are green damaged, reckoning to 21.21%, 11.092 million culms are dry sound culms i.e. 6.57\% and 20.645 million culms are dry damaged i.e. 12.23\%. Thus it is seen that about 33% culms are damaged and green sound culms are only about 60\%.

When total culms are reckoned it is found that out of 168.827. million culms 77.668 million culms are from clump size 1 quality I i.e. 46.00%, 75.010 million culms come from clump size class 2 and quality I i.e. 44.43\%, whereas 0.914 million culms forming only 5.42\% are produced from clump size 3 quality I. Total quality I bamboo is thus 95.85%. Quality II bamboo is negligible having only $0.7 \emptyset \emptyset$ million culms conforming to 4.15% to total.

It is seen from the table that big size bamboo i.e. having 8 cm and above is absent in Sambalpur District. Similarly even medium size i.e. 5 cm to 8 cm diam bamboo is negligible: only 0.213 million i.e. 1.26\%. Rest of the bamboo i.e. 98.74% of bamboo has a diam of 2 to 5 cm .

In Green Sound category, total mature bamboo (over two seaons) in quality I is 58.83 million out of 97.4 million culms i.e. 59.85\%. This is quite satisfactory. However in quality II only 1.21 million culms are mature out of $3.87 \emptyset$ million culms i.e. 31.26\%.

7.6 GROWING STOCK OE BAMBOO

The total green growing stock of bamboo in Sambalpur District is $5,43,421$ M.T. Taking 60% of green weight as dry weight at 10% moisture level, dry weight comes to $3,26,053 \mathrm{M} . \mathrm{T} . \mathrm{Table}$ no. 7.6T given overleaf gives details of the green bamboo stock in "øøठ" M.T. by quality, soundness, age and size class, excluding current year bamboo.

TOTAL NUMBER OF CULMS IN (ØDØ) METRIC TONS BY QUALITY, SOUNDNESS AND SIZE CLASSWISE - GREEN SOUND CULMS

GREEN DAMAGED CULMS

$\begin{aligned} & \text { Qua- } \\ & \text { lity } \end{aligned}$	$\begin{aligned} & \text { Size } \\ & \text { class } \end{aligned}$	Green So				ulms			
		Current year	One to tho seasons			Over tho season			Total
			$2<5 \mathrm{~cm} 5<8 \mathrm{~cm} \mathrm{8}+\mathrm{cm} 2<5 \mathrm{~cm} 5<8 \mathrm{~cm} 8+\mathrm{cm}$						
1	1		7.708	0.3421	0	19.16	0	\square	27.21
	2		4.011	\emptyset	0	22.179	2.9348	\square	29.125
	3		0.3195	\varnothing	\emptyset	1.2778	\emptyset	®	1.5973
2	1		1.2522	\varnothing	\emptyset	1.487	\varnothing	0	2.7393
	2		D. 3391	\emptyset	0	1.2718	0	\bigcirc	1.6109

Here also 97.37\% stocking is in quality I bamboo and only 2.63% is in quality II. Similarly stocking of about 94.5\% is concentrated in clump sizes 1 and 2. Stocking of green sound bamboos is $3,15,971 \mathrm{M} . \mathrm{T}$. out of the total of $5,43,421$ M.T. 1.e. 58.14%, which more or less conforms to the percentage of number of culms given in para 7.5. Hovever weight of green daraged cultas of $62,283 \mathrm{M} . \mathrm{T}$. is 11.46% as against 21.21% of nuraber of culms as in para 7.5. Dry Sound culms form 86,962 M.T. of the stocking, reckoning to 16%. Remaining i.e. 14.40\% neight is obtained from dry damaged culms.

Thus, for an area of $2000.32 \mathrm{~km}^{2}$ over which bamboos are found, mean stocking of bamboos is 2.717 M . T.
\qquad

TREND OF WOOD CONSUMPTION IN RURAL AREAS OF SAMBALPUR DISTRICT
8.1 GENERAL:

In order to know the trend of hood consumption in rural areas of Sambalpur district, a small scale study of wood consumption was undertaken in the central portion of the district covering 12 villages and 107 households. The study have an idea of the extent of wood consumption in the villages. Since it is of small scale it is only indicative and not a sufficient material for estimating the total consumption in the district. However, the findings of the study are compiled here for the general information of the Forest Managers.
8. 2 GENERAL INFORMATION ABOUT THE DISTRICT:

4) No.of households

Rural			\cdots	\cdots
				406403

Urban

Total
480851
5) Average gize of households (persons)

Rural 4.74
Urban
4.74

Total
4.74

8.3 METHODOLOGY OE SURVEY

For conducting these studies, methodology prescribed in the manual for wood consumption survey prepared by the Forest Survey of India in the year 1985 was adopted. The study was confined only to the rural areas and following 12 villages which were representative of the district were studied.

S. No.	Name of the village	Tahsil	Forest Division
1.	Buriakata	Sambalpur	Sambalpur
2.	Bhimkhoj	Sambalpur	Sambalpur
3.	Hatibari	"	."
4.	Larsara	"	"
5.	Gagarbahal	"	"
6.	Kusumbahal	Raidakhol	Raidakhol
7.	Anilajhran	Sambalpur	Sambalpur
8.	Sanyasipali	Jharsiguda	Barma
9.	Barbbahal	..	"
10.	Dhumkata	Sambalpur	Sambalpur
11.	Dongapathar	Raidakhol	Raidakhol
12.	Banpur	Sambalpur	Sambalpur

In each village 6 - 10 households were selected for recording details of wood consumption. The data on actual wood consumed for various purposes was collected by measurment of wood actually used by house holds. So far as the consumption of firewood and other produce used by the people are concerned, the information was based on the details given by the residents of the house holds. Generally, the people used miscellaneous timbers for their domestic consumption. In areas where agricultural produce and bamboos were available the consumption of the same was also noticed as an alternative to the miscellaneous wood.

8.4 FINDINGS OF THE STUDY

In this study of 107 households of 12 villages were visited. The basic information was obtained is as under:-

Average number of members
in the house hold
6.80

Annual income of household
Rs. 14,255.85
Average plinth area of the
household $113.54 \mathrm{m2}$

As regards the rate of consumption per household, the findings are as under:
a) Consumption of wood for construction of houses: The average consumption of. wood for construction of houses наs 8.287 m 3 . The material used was chiefly miscellaneous timber. The houses in the rural areas were mostly huts made of mud plaster and grass roof but the trend was also seen towards construction of semi-permanent houses with bricks and tiles. This quantity of 8.287 m 3 timber was the actual quantity of timber in use but certain quantity to the extent of . 10% was expected to be needed annually for repairs and construction of new houses.
b) Consumption of wood for furniture: Normally in rural areas furniture comprised of wooden cots, stools, etc., and the quantity consumed per household was found to be 0.238 m^{3}. The timber used was chiefly of superior misc, trees.
c) Consumption of wood for agricultural implements: The annual consumption of wood for agricultural implements was found to be 0.278 m 3 per house hold. Here also miscellaneous timbers were used for this purpose.
d). Consumption of fuel: The annual consumption of fuel per household was 4973.83 kg . The fuel was usually used for cooking, water heating and similar household pruposes.
e) Consumption of grasses: The consumption of grasses has observed to be 521.45 kg per household. This grass was chiefly used for thatching of houses and cattle sheds.
f) Consumption of bamboo: The areas where bamboo availability was adequate, the consumption of bamboo perhousehold was found to be 1181.85 kg . Bamboo was observed to be chiefly used for fencing, huts and agricultural purposes.
g) Consumption of other agricultural waste material and branch wood:

As a substitute for the fuel and fodder, agricultural waste such as root stock, stems, branch wood for local trees was also in use to the extent of 912.55 kg per household.

8.5 SUGGESTIONS

This study is only indicative and based on the population of 1981 census. Day by day the availability of timber is becoming rare in the rural areas and substitutes like agricultural produce bio-gas, kerosene, liquid gas etc., are also coming in use and hence the findings of the survey remain useful for a short period. Moreover since this study was on a small scale its findings be kused with due precautions.

116

Contents
Table No. 6.3T(A)
arooe 260.14 mm
vOL $/ \mathrm{HA}(\mathrm{cum})$
STRATLIM - SAL

「ible Wh-6.5T

$10-15 \quad 15-20 \quad 20-25 \quad$ Di AMETEF CLASSES (In (m)

BIBLIOGRAPHY

1/ Revised Working Plan for the Reserved Eorests of Redhakhol Division for the period 1982-83 to 2001-02: Govt of Orissa, Forest, Fisheries and Animal Husbandary (Forest) Department Bhubaneswar,.

2/ Revised Working plan for the Reserved Forests of Bamra for the periad 1970-90: Govt. of Orissa, Forest, Fisheries and Animal Husbandary (Forest) Department, Bhubaneswar.

3/ Revised Working Plan for Reserved Forests of Sambalpur Division 1970-90 by Shri S.G.Panda, W.P.O.

4/ Information sheet on Smablapur Forest Division, prepared by Divisional Forest Officer, Teritorial Division, Sambalpur.

5/ District Statistical Hand book 1989-90, Sambalpur: District Statistical Office, Sambalpur.

6/ Annual Administrative Report of Forest Department, Orissa for the year 1980-81: Govt. of Orissa, Forest, Fisheries and A.H Department, Bhubaneswar.

7/ Forest Resources of Raipur district, Madhya Pradesh: Forest Survey of India, Central Zone, Nagpur. 1991
$\dot{8} /$ Report of National Commission on Agriculture.

98.	Kirkichi	Mimosa himalayana
99.	Kocali	Sterculia villosa
$10 \emptyset$.	Kansa (Budhimahul)	Hymenodictyon excelsum
101.	Kasi	Bridellia retusa
102.	Kochila	Strychnos nux-vomica
'103.	Koilakha	Asteracontha longifolia
104.	Khair	Acacia catectur
105	Kansarilota	Ipomoca pes-eaprae
105.	Katak	Strychnos potatorum
107.	Kumbhi	Careya arborea
108.	Kekad	Garuga pinnata
109.	Kundo-phul	Jasminum humile
110.	Kusum	Schleichera oleosa
111.	Kalami sag	Ipomoea reptans
112.	Kurum	Adina cordifolia
113.	Kulhia kanda	Dioscorea spp.
114.	Kandei	Urginea indica
115.	Laipalas	Butea superba
116.	Mahalimba	Ailanthus excelsa
117.	Mardha-mal	Spatholobus roxburehii
118	Mahul	Bassia latifolia
119.	Madang	Loranthus Spp.
120.	Moi	Lannea coromandelica
$\therefore 121$.	Muturi	Sinilax macrophylla
- 122.	Makadkendu	Diospyros embryopteris
123.	Mur-muri	Helicteres isora
: 124.	Mundi	Mitragyna parvifolia
- 125.	Mali (bara)	Hiptage madablota
126.	Mohana	Randia dumatorum
127.	Malpi	Patelidium barlerioides
128.	Makha	Schrebera swietenoiders
129.	Murga	Agave species
130.	Halbali	Cipadessa futieosa
: 131.	Nira	Asadirachta indica
132.	Nirmuli	Cuscuta reflexa
133.	Oluo (Bars)	Amorphophallus species
- 134.	Palasa	Butea monosperma. *.
135.	Patruagu(Gandha palas)	Miliusa velutina
$\therefore 136$	Paldhua	Erythrina suberosa
-137	Papuni	Oroxylon indicum
138.	Padhel	Stereospernum suaveolens
+139.	Palua	Curcuma aromatica
- 140.	Phasi	Anogeissus acuminata
1. 141.	Pengu-mal	Celastrus paniculata
, 142.	Pipal	Ficus relisiosa
143	Purhei (Padeikoli)	Ficus cunia
-144.	Poi-gam	Euponia opercilata
E 145	Panas	Artocarpus intedrifolia
145,	Petohurimal	Ventilago madaraspatana
147.	Panasi	Eulaliopsis binata
148.	Phul badhuni	Thysanolarna gerostis
\%149.	Pita alu	Dioscorea spp.
-150.	Rani-kathi	Flemingia chappar
151.	Rai	Dillenia pentagyna
(152.	Rohini	Soymida febrifuga
	82	
	126	--

```
153 Raj simal .
154. Runjo
155. Sagiaan
156. Sahada
157. Sal(Sargi)
158. Salai
159. Sena(Sidha)
160. Siali
161. Siju
162. Simul
1G3. Sinkulia (Sweeper Grass)
164. Siris
165. Sisoo
166. Sunari
167. Suna-ragoda
168. Sugandhi-mal
169. Sigakai (Chilli)
170. Salap
171. Saru (Bono)
172. Tentuli
173. Tal
174. Telkuran
175. Thelka
176. Tilai
177. Tangini
178. Tandi(Kasatandi)
```

Xanthoxylon rhetsa
Abrus precatorius
Tectona grandis
Streblus asper-
Shorea robusta
Bosvellia serrata
Largerstroemia parviflora Bauhinia vahlii
Euphorbia royaleana
Salmalia malabarica
Heteropogon contortus
Albizzia lebbek
Dalbergia latifolia.
Cossia fistula
Grewia hirsuta
Strobilanthes circarensis Strobilanthes jeyporensis Strobilanthes auriculatus Ichnocarpus frutescenes
Acacia concinna,
Caryota urens
Colocasia spp.
Tamarinduss indica
Borassus flabellifer
Ixora parviflora
Rardia uliginosa
Wendlandia tinctoria
Xylia xylocarpa Saccharum spontaneurn

LIST OF OFFICERS AND STAFF ASSOCIATED WITH SURVEY WORK IN SAMBALPUR DISTRICT OF ORISSA STATE

1. S/shri V.B. Joshi, IFS Joint Director
M.D. Singh, STA
2.
3.
4.
5.
6.
7.
8.
9.
10.

12
B.R. Pandey, STA
M.K. Madaria,JTA
P.R. Singh, JTA
R.P. Sao, JTA
R.K. Mahobe,JTA
P.R. Rawani,JTA
S.K. Bajpai, JTA
J.S. Kumbhkar,JTA
C.B. Murty, Jr.D/Man
D.S. Gulkari, Jr.D/Man ${ }^{*}$
13. N.P. Singh, Dy.Ranger
14. M.H. Kanoje, Dy. Ranger
15. G.G. Pathak, Dy.Ranger
16. R.C. Verma, Dy . Ranger
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
$3 \varnothing$.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
A.K. Bose, Dy.Ranger Jagdeo Prasad, Dy.Ranger C.S. Rawat, Eieldman Bhagbali Dawana, Fieldman Eagoo Ram, Fieldman M.K. Singh, Fieldman Sarwan Das, Fieldman B.P. Sharma, Fieldman D.G.K.Pillai, Fieldman L.N. Kuril, Fieldman Bansi Ram, Fieldman R.P. Thapliyal, Fieldman P.A. Swamy, Fieldman Dwarika Prasad, Fieldman Chandan Singh, Fieldman B.K.Maharana, Fieldman Dharam Singh, Fieldman
Chandrika Prasad, Fieldman
R.R. Singh, Fieldman
V.S. Bist, Fieldman

Ramadhin Yadav, Fieldman
Bharat Singh, Fieldman
Dharam Deo, Driver R.S. Pandey, Driver R.A. Dondre, Driver R.S. Ukey, Driver
V.J. Gondane, Driver
N.C. Malakar, Driver

[^0]: (Devendra Kumar)
 Joint Director

