RioTinto

Attachment 3 - Flora, Vegetation and Fauna Habitat Assessment at Hope Downs 1

Native Vegetation Clearing Permit – Supporting Report

Flora, Vegetation and Fauna Habitat Assessment at Hope Downs 1

24 October 2023

Rio Tinto, on behalf of Hamersley HMS

152-158 St Georges Terrace

Perth WA 6000

RioTinto

Restrictions on use

This report has been prepared by Rio Tinto, on behalf of Hamersley HMS. Neither the report nor its contents may be referred to without the express approval of Rio Tinto, unless the report has been released for referral and assessment of proposals.

Approve	ed for issue
Distributed to	Date
N/A	-
	24/10/2023
-	External

Executive Summary

Rio Tinto, on behalf of Hamersley HMS, is proposing to undertake a hydrogeology drilling program as part of the Hope Downs 1 Partial Closure program. The works also comprise drilling exploratory monitoring and abstraction/injection bores with the intent of conducting a Mine Aquifer Recharge trial program. All discharge will be completed under a discharge management plan.

The proposed program consists of approximately 28 monitoring bores, four Vibrating Wire Piezometers and five production bores up to 200 m in depth and up to 5 km of new track using blade down grading. Access will be along existing tracks where possible to minimise new disturbance, however these tracks may require maintenance.

To support these works, a Native Vegetation Clearing Permit is required. Therefore, the area where the hydrogeology drilling program is planned to occur (hereafter known as the study area) was subject to a reconnaissance flora, vegetation and fauna habitat assessment. The study area comprises 143.6 ha.

The study area was surveyed by Rio Tinto botanists Julijanna Hantzis, Bridget Duncan, Daenia Dundon and Candice Le Roux on the 1st to 5th May, 2023.

Three vegetation types were identified across two major landforms within the study area. Two vegetation types were described from undulating plains or low hills, and one vegetation type from drainage lines. The majority of vegetation within the study area was rated as being in Excellent condition. Only 0.1 ha of the study area was ranked as being Completely Degraded, in the form of previously cleared tracks.

None of the vegetation types occurring within the study area are listed as Threatened Ecological Communities under either the Commonwealth *Environment Protection and Biodiversity Conservation Act 1999* or under Western Australian listings. None of the vegetation types occurring within the study area are listed as Priority Ecological Communities.

A total of 94 taxa from 50 genera representing 25 families were recorded during the current survey. The dominant plant groups are consistent with other surveys of the broader locality.

No species of Threatened Flora were recorded during the survey or were expected to occur within the study area. Two Priority flora taxa were recorded within the study area, *Acacia subtiliformis* (P3) and *Goodenia* sp. East Pilbara (A.A. Mitchell PRP 727) (P3). The Proposal is unlikely to affect the conservation significance of the two Priority flora species recorded during the survey, due to their broad distributions across the Pilbara, their population extending outside the Proposal boundaries, and the small scale of the Proposal.

A further two Priority flora species were considered likely to occur within the study area, and two have the potential to occur based on desktop and field observations. The survey occurred outside the flowering period for these species, and therefore it is possible that they were missed during the survey. It is unlikely the Proposal will negatively impact on the conservation status of any of these species on either a local or bioregional scale.

Two broad fauna habitat types were described from the study area: 'Low Hills and Slopes'; 'Minor Drainage'. Both fauna habitats are not considered to be restricted at a local or regional level.

Secondary evidence of *Pseudomys chapmani* (Western pebble-mound mouse) (P4) was recorded during the survey. A total of 22 mounds were recorded.

A further three species were considered to have the 'potential' to occur within the study area based on desktop and field observations. These species are: *Dasyurus hallucatus* (Northern Quoll); *Macroderma gigas* (Ghost Bat); *Rhinonicteris aurantia* (Pilbara Leaf-nosed Bat). The Proposal is unlikely to impact the conservation status of any of these species on either a local or bioregional scale due to the lack of core habitat within the study area, such as denning or roosting habitat, or permanent water pools.

The Proposal was assessed against the 10 clearing principles as defined in Schedule 5 (Principles for Clearing Native Vegetation) of the *Environmental Protection Act 1986*. A specialist assessment against the 10 Clearing Principles determined that:

- Principles (c), (d), (e) and (h) are not at variance; and
- Principles (a), (b), (f), (g), (i) and (j) are not likely to be at variance.

Contents page

1.	Introduction	11
1.1	Project background and study area location	11
1.2	Scope of survey	11
1.3	Limitations	13
1.4	Climate	14
1.5	Geology and soils	16
1.6	Surface hydrology and groundwater	16
1.7	Land systems	16
1.8	Vegetation	18
1.8.1	IBRA bioregions and subregions	18
1.8.2	Beard's regional vegetation mapping	18
1.8.3	Pre-European vegetation extent	18
1.9	Conservation areas and environmentally sensitive areas	19
1.10	Priority ecological communities	19
2.	Methodology	21
2.1	Literature review	21
2.1.1	Flora and vegetation	21
2.1.2	Fauna and fauna habitat	21
2.2	Database searches	30
2.3	Likelihood of occurrence assessment	30
2.3.1	Flora	30
2.3.2	Fauna	30
2.4	Flora and vegetation field survey	30
2.5	Vegetation, descriptions, condition assessment and mapping	33
2.6	Flora identification	33
2.7	Fauna habitat assessment	33
2.8	Opportunistic fauna records	33
2.9	Other vegetation of significance	33
2.10	Environmentally significant areas	34
3.	Results	35
3.1	Desktop assessment	35
3.1.1	Flora diversity	35
3.1.2	Conservation significant flora likelihood	35
3.1.3	Fauna diversity	39
3.1.4	Conservation significant fauna likelihood	39
3.2	Vegetation of the study area	44
3.2.1	Detailed vegetation descriptions	45

3.3	Vegetation condition	49
3.4	Vegetation of conservation significance	51
3.5	Vegetation of other significance	51
3.6	Native flora recorded during the survey	51
3.7	Conservation listed flora recorded during the survey	51
3.8	Flora of other significance	53
3.9	Potential conservation listed flora occurring in the study area	55
3.10	Introduced flora occurring within the study area	57
3.11	Fauna habitats of the study area	57
3.12	Fauna habitats of significance	62
3.13	Other habitats of significance	62
3.14	Conservation listed fauna recorded during survey	62
3.15	Potential conservation listed fauna occurring in the study area	64
4.	Statement addressing the step with Strated as	65
4.1	Principle (a) Comprises high level of biological diversity	65
4.2	Principle (b) Potential impact to any significant habitat for fauna indigenous to Western Australia	67
4.3	Principle (c) Potential impact to any rare flora	67
4.4	Principle (d) Presence of any threatened ecological communities	67
4.5	Principle (e) Significance as a remnant of native vegetation in the area that has been extensively cleared	67
4.6	Principle (f) Impact on any watercourse and / or wetlands	68
4.7	Principle (g) Potential to cause appreciable land degradation	68
4.8	Principle (h) Potential to impact on the environmental values of adjacent or nearby conservation areas	68
4.9	Principle (i) Potential deterioration in the quality of surface or underground water	69
4.10	Principle (j) Potential of clearing to cause, or exacerbate, the incidence or intensity of flooding	69
5.	Conclusions	70
6.	References	71
7.	Appendices	74

Tables

Table 1-1:	Constraints and limitations of the current study13
Table 1-2:	Representation of the Oakover Land System in the Pilbara bioregion
Table 1-3: within the Pi	Beard's mapping unit occurring within the study area, its current and pre-European extent ilbara bioregion and its extent across the study area18
Table 2-1:	Summary of previous flora and vegetation reports utilised for the desktop assessment.25
Table 2-2:	Summary of previous fauna habitat reports utilised for the desktop assessment
Table 3-1:	Summary of vascular flora taxa returned by NatureMap search
preference a	Pre-field likelihood of occurrence assessment and potential presence via habitat and proximity of previous records for conservation significant flora considered to have the occur or higher
Table 3-3:	Summary of terrestrial vertebrate fauna species returned by NatureMap search
preference a	Pre-field likelihood of occurrence assessment and potential presence via habitat and proximity of previous records for conservation significant fauna considered to have the occur or higher40
Table 3-5:	Vegetation types of the study area44
Table 3-6:	Vegetation condition of the study area49
Table 3-7: 'potential' to	Revised likelihood of occurrence of conservation listed flora taxa considered to have occur or higher
Table 3-8:	List of habitat types within the study area including microhabitats and extent

Figures

Figure 1-1:	Study area location	12
Figure 1-2: months prior	Climate and rainfall statistics for Newman Aero (Station 7176) and Hope Downs 1, to the survey	
Figure 1-3:	Geology within the study area	17
Figure 1-4:	Conservation areas in proximity to the study area	20
Figure 2-1:	Previous flora and vegetation surveys in the vicinity of the study area	23
Figure 2-2:	Previous fauna surveys in the vicinity of the study area	24
Figure 2-3:	Survey effort	32
Figure 3-1:	Rio Tinto records for conservation listed flora within 20 km of the study area	38
Figure 3-2:	Rio Tinto records for conservation listed fauna within 20 km of the study area	43
Figure 3-3:	Vegetation types	48
Figure 3-4:	Vegetation condition	50
Figure 3-5:	Conservation significant flora recorded	54
Figure 3-6:	Fauna habitats	61
Figure 3-7:	Conservation significant fauna recorded	63

Plates

Plate 1:	Representative photo of vegetation type V1 (R03)	45
Plate 2:	Representative photo of vegetation type V3 (R07)	46
Plate 3:	Representative photo of vegetation type V2 (R08)	47
Plate 4: branch wi	Acacia subtiliformis (P3) recorded within the study area. From left to right: close-up of th phyllodes and scars where phyllodes have fallen; habitat; branching habit.	52
Plate 5: From left t	<i>Goodenia</i> sp. East Pilbara (A.A. Mitchell PRP 727) (P3) recorded within the study area. to right: spathulate leaves; yellow flowers with brown centre; remnant raceme	53
Plate 6:	Representative photo of fauna habitat 'Low Hills and Slopes' (R02)	60
Plate 7:	Representative photo of fauna habitat 'Minor Drainage' (R04)	60

Appendices

Appendix 1:	Results of NatureMap and EPBC Protected Matters database searches	75
Appendix 2:	GPS coordinates of relevé locations established within the study area	102
Appendix 3:	Flora site sheets	103
Appendix 4:	Vegetation structural classification and condition rating scale	114
Appendix 5:	Likelihood of occurrence criteria for flora and fauna species	115
Appendix 6:	Likelihood of occurrence assessment of conservation significant flora species	117
Appendix 7:	Likelihood of occurrence assessment of conservation significant fauna species	119
Appendix 8:	Flora species recorded within the study area	122
Appendix 9:	Conservation listed flora recorded during the survey	124
Appendix 10:	Introduced (weed) species recorded during the survey	125
Appendix 11:	Conservation listed fauna recorded during the survey	126
Appendix 12:	Rio Tinto internal operational controls for environmental management	127

1. Introduction

1.1 Project background and study area location

Rio Tinto, on behalf of Hamersley HMS (the Proponent), is proposing to undertake a hydrological drilling program at Hope Downs 1, which incorporates 10.2 ha of clearing (the Proposal). The Proposal consists of 28 monitoring bores, four VWPs (Vibrating Wire Piezometers), five production bores up to 200 m in depth, and up to 5 km of new track using blade down grading. Access will be mainly along existing tracks where possible to minimise new disturbance, however these tracks may require maintenance.

Approval for clearing of native vegetation associated with the Proposal is required via a Native Vegetation Clearing Permit (NVCP) under Section 51A of *the Environmental Protection Act 1986* (EP Act). Vegetation, flora and fauna assessments at Hope Downs 1 (the study area) were required to address the 10 Clearing Principles as part of the NVCP application process.

The study area covers 143.6 ha, which consists of 140.7 ha of native vegetation and 2.9 ha of previously disturbed areas, and is located approximately 70 km northwest of Newman, within the Pilbara region of Western Australia (WA) (Figure 1-1).


1.2 Scope of survey

This report describes the methodology employed for the flora, vegetation and fauna habitat assessment of the study area, and documents the results of the survey. In particular, this report identifies vegetation, flora and fauna habitats of conservation significance relevant to the study area.

This report is intended as a supporting document for an NVCP application by Rio Tinto and has been prepared on the basis of a review of existing information for the study area, combined with a site field survey.

This report includes a description of the:

- Local environment of the study area including flora, vegetation, fauna habitats, geology, landforms, and hydrology;
- Methods employed during the field survey;
- Locations and populations of conservation listed flora, including photographs and mapping;
- Vegetation types occurring in the study area, an assessment on their condition and conservation significance for the locality and subregion, including mapping;
- Fauna habitats present, assessment of their significance for the locality and subregion, including mapping; and
- Potential impacts of the Proposal on the local environment through application of the 10 clearing principles, as outlined in Schedule 5 of the EP Act.

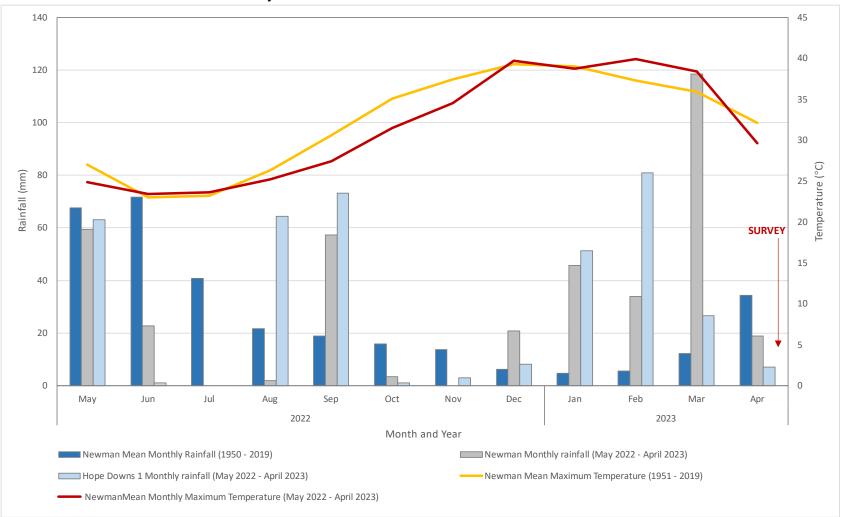
kilometres Scale: 1:2,250,000 @A4

1.3 Limitations

Limitations of the current survey of the study area are summarised in Table 1-1.

Constraint	Limitation
Sources of information	The Pilbara bioregion has been relatively well surveyed, with increasing biological survey work occurring due to the resource expansion in the region. Numerous flora and fauna surveys have been conducted in the wider region and many in the Greater Hope Downs locality. Therefore, a suitable number of survey reports were available for contextual information.
	Two of the reports cited in the desktop assessment (Biota Environmental Sciences, 2011; Mattiske Consulting Pty Ltd, 2009) were completed prior to the EPA flora and fauna technical guidance documents were released (Environmental Protection Authority, 2016; Environmental Protection Authority, 2020), therefore there may be limitations with the survey methodology used during these surveys. However, due to more recent surveys being incorporated in the desktop assessment, this was not considered a limitation to this report. Sources of information were not considered a limitation in this assessment.
Scope of works	The survey requirements of a targeted terrestrial flora, vegetation and fauna survey for a NVCP application were met. No quadrat sampling or fauna trapping was undertaken, however, relevés were undertaken to record the vegetation types in addition to foot traverses of the study area.
Completeness of survey	The study area was fully surveyed to the satisfaction of an equivalent Level 1.5 survey, which is appropriate to support a NVCP application. No additional surveys were deemed necessary for the purpose of this assessment. Fungi and non-vascular flora (algae, mosses and liverworts) were not sampled.
Intensity of survey	The study area was surveyed by relevés, and targeted traverses on foot. Habitats with potential to support conservation listed species were searched. All vegetation and fauna habitat types were inspected.
Timing, weather, season, cycle	The survey was conducted in May 2023, which is within the primary survey period as per EPA Guidance (Environmental Protection Authority, 2016). Conditions encountered during the survey were regarded as average conditions, with rainfall in the preceding three months being lower than the long-term average. Despite some specimens being sterile or dead, numerous annual species were recorded, therefore the survey timing was not considered a limitation.
Disturbances The study area has been recently disturbed by fires, with the fill between 5 and 10 years old. Relevés were placed in pockets vegetation, and numerous annual species were recorded, therefore was not considered a limitation to the results of this assessment.	

 Table 1-1:
 Constraints and limitations of the current study


Constraint Limitation		
Resources	The biologists undertaking the surveys and subsequent reports as part of the studies were suitably qualified to identify flora and fauna. Julijanna Hantzis (field survey and report review) has five years of experience as a botanist in Western Australia, with significant experience working in the Pilbara. Bridget Duncan (field survey and report writing) has three years of experience as a botanist in Western Australia, with significant experience working in the Pilbara. Daenia Dundon (field survey) has two years of experience as a botanist in Western Australia, with significant experience working in the Pilbara. Daenia Dundon (field survey) has two years of experience as a botanist in Western Australia, with significant experience working in the Pilbara. Fauna habitat mapping was reviewed by Zoologist Madi Roberts, who has six years' experience working as a zoologist in the Pilbara region. Steven Dillon, from the Western Australian Herbarium, completed the plant specimen identifications. There were no resource limitations noted in reports cited in the desktop assessment.	
Accessibility / remoteness	The study area was accessed by vehicle and on foot. The study area was adequately traversed on foot. No parts of the study area were inaccessible. Accessibility/remoteness was not considered a limitation to this survey.	

1.4 Climate

The closest Bureau of Meteorology (BoM) weather station to the study area is Newman Aero (Station 7176), located approximately 70 km southeast of the study area. The Newman Aero weather station recorded 382.8 mm of rainfall in the 12 months prior to the survey (May 2022 to April 2023), which is 59.0 mm above the long-term average of 323.8 mm (Figure 1-2) (BoM, 2023). In the three months prior to the survey (February 2023 to April 2023), 171.4 mm of rainfall was recorded, which is 119.2 mm above the long-term average of 52.2 mm for the same time period.

The Hope Downs 1 weather station recorded a total of 380.4 mm of rainfall in the 12 months prior to the survey (May 2022 to April 2023), which is comparable to the 382.8 mm of rainfall recorded at Newman in the same time period. In the three months prior to the survey (February 2023 to April 2023), 114.8 mm of rainfall was recorded, which is 56.6 mm below the rainfall recorded at Newman for the same time period.

Seasonal conditions prior to the survey were considered average, however many plant species were sterile at the time of the survey. Most of the sterile specimens were herbaceous annual species.

Hamersley HMS PTmited

Figure 1-2: Climate and rainfall statistics for Newman Aero (Station 7176) and Hope Downs 1, 12 months prior to the survey

1.5 Geology and soils

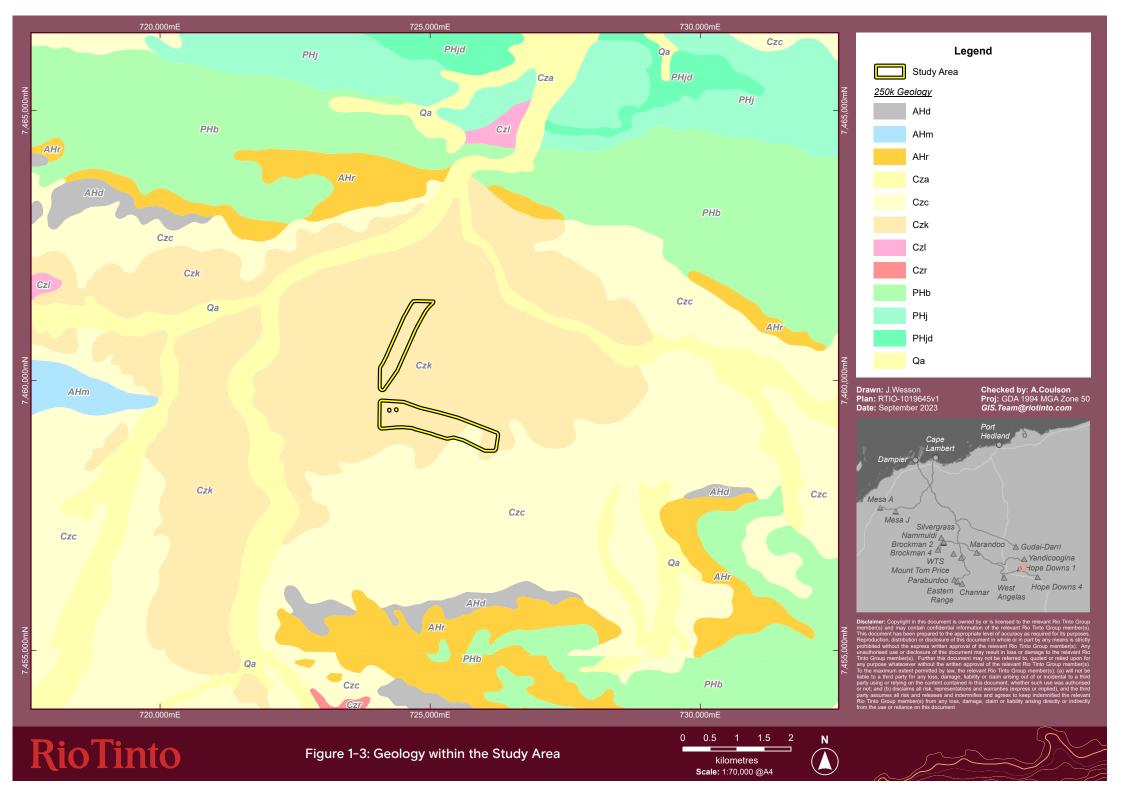
The study area was comprised of two major geological units based on 1:250,000 scale map sheet series (Figure 1-3) (Geoscience Australia, 2006). These geological units were:

- Czk: Calcrete-sheet carbonate; found along major drainage lines.
- Czc: Colluvium-partly consolidated quartz and rock fragments in silt and sand matrix; old valley-fill deposits.

1.6 Surface hydrology and groundwater

The study area lies within the Port Hedland / East Pilbara groundwater subarea of the Pilbara (Department of Water and Environmental Regulation, 2022).

The study area does not overlap any major stream. The closest major stream is Weeli Wolli Creek, located less than 1.0 km north of the study area. Three minor ephemeral drainage lines, likely to flow after significant rainfall, are located within the study area.


1.7 Land systems

Land system (rangeland) mapping is based on regional patterns in topography, soils and vegetation (Christian & Stewart, 1953). The most recent land system mapping of the Pilbara bioregion, in which the study area lies, was completed by van Vreeswyk *et al.* (2004). The mapping classifies the Pilbara region into 102 land systems.

The study area is located within the Oakover Land System, which is described as breakaways, mesas, plateaux and stony plains of calcrete supporting hard spinifex shrubby grasslands. The Oakover Land System is not generally prone to degradation or susceptible to soil erosion (Van Vreeswyk, Payne, Leighton, & Hennig, 2004). The land system and its extent within the study area are presented below (Table 1-2).

Land System	Total area (ha) in	Area (ha) in	Proportion (%) of study area	Study area proportion (%) of
(Map code)	Pilbara bioregion	study area		land system extent
Oakover (285Ok)	4949.3	143.6	100.00	2.9

 Table 1-2:
 Representation of the Oakover Land System in the Pilbara bioregion

1.8 Vegetation

1.8.1 IBRA bioregions and subregions

The Interim Biogeographic Regionalisation of Australia (IBRA7) recognises 89 bioregions (Department of Agriculture, Water and the Environment, 2022). The study area is located in the Pilbara (PIL) bioregion as defined by IBRA. The Pilbara bioregion has been further subdivided into four subregions: Chichester (PIL1); Fortescue Plains (PIL2); Hamersley (PIL3); and Roebourne (PIL4).

The study area falls within the Hamersley subregion and is described by Kendrick (2001) as:

'Mountainous area of Proterozoic sedimentary ranges and plateaux, dissected by gorges (basalt, shale and dolerite). Mulga low woodland over bunch grasses on fine textured soils in valley floors, and Eucalyptus leucophloia over Triodia brizoides on skeletal soils of the ranges. The climate is Semi-desert tropical, average 300 mm rainfall, usually in summer cyclonic or thunderstorm events. Winter rain is not uncommon. Drainage into either the Fortescue (to the north), the Ashburton to the south, or the Robe to the west'.

1.8.2 Beard's regional vegetation mapping

Vegetation type and extent has been mapped at a regional scale by Beard (1975) who categorised vegetation into broad vegetation associations. Based on this mapping at a scale of 1:1,000,000, the Department of Agriculture and Food WA (DAFWA) has compiled a list of vegetation extent and types across WA (Shepherd, Beeston, & Hopkins, 2002). The study area falls within one vegetation association: Hamersley 18 (80100053) - Low woodland; mulga (*Acacia aneura*).

Given the broad nature of Beard's mapping; this vegetation association is only broadly applicable to the vegetation types occurring in the study area.

1.8.3 Pre-European vegetation extent

The pre-European and current extent of native vegetation associations in Western Australia has been interpreted by Shepherd *et al.* (2002) using data from Beard's (1975) regional vegetation mapping and other vegetation mapping, as well as satellite imagery and orthophoto interpretation.

Shepherd *et al.* (2002) identified the Pilbara bioregion as having largely intact native vegetation owing to the lack of intensive agricultural land use practices. Although the native vegetation remains widespread and largely intact, the floristic composition and structural characteristics have almost certainly changed since European settlement by grazing and altered fire regimes (Shepherd, Beeston, & Hopkins, 2002).

Table 1-3 presents the pre-European and current extent of the one Beard mapping unit across its range, as well as the extent in the study area.

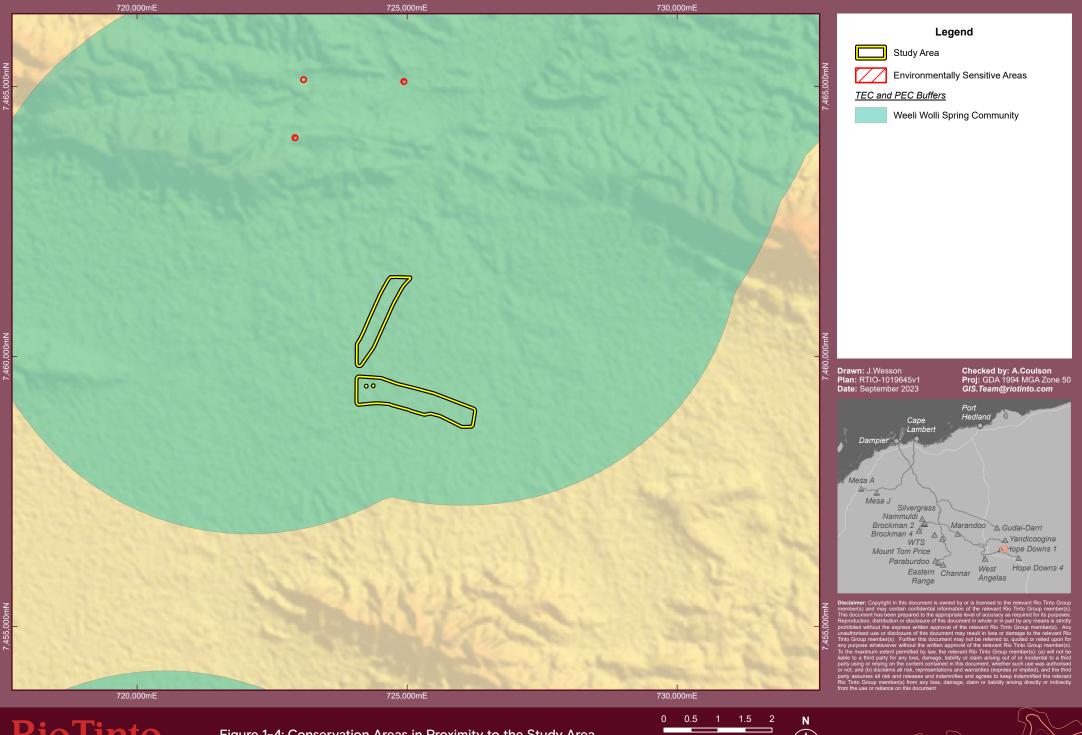
Table 1-3:Beard's mapping unit occurring within the study area, its current and pre-Europeanextent within the Pilbara bioregion and its extent across the study area

Beard's mapping unit (Shepherd vegetation association)	Pre-European extent (ha)^	Current extent (ha)^	Extent (ha) within study area / (Proportion of current extent)	
80100053	580.512.26		143.6	
(Hammersley 18)	560,512.20	575,807.88	(0.02%)	

^Government of Western Australia (2016)

1.9 Conservation areas and environmentally sensitive areas

The study area does not intersect any conservation areas.


Environmentally Sensitive Areas (ESAs) are defined in the *Environmental Protection (Environmentally Sensitive Areas) Notice 2005* under section 51B of the WA State EP Act. ESAs include areas declared as: World Heritage; included on the Register of the National Estate; defined wetlands; vegetation containing rare (Threatened) flora; Threatened Ecological Communities (TEC); and Bush Forever sites.

No TECs have been recorded within 20 km of the study area. The Proposal is not expected to impact the environmental values of any TECs. The study area does not intersect any mapped ESAs.

1.10 **Priority ecological communities**

Priority Ecological Communities (PECs) are possible TECs that do not meet survey criteria or are not adequately defined for the TEC list by the Department of Parks and Wildlife (Parks and Wildlife), and are ranked as Priorities 1, 2 and 3 (1 being the highest).

The study area is located within the buffer of the Weeli Wolli Spring Community (Priority 1) PEC (Figure 1-4). The Proposal is not expected to impact the environmental values of this PEC as it does not intersect the Weeli Wolli creekline.

RioTinto

Figure 1-4: Conservation Areas in Proximity to the Study Area

kilometres Scale: 1:70,000 @A4

2. Methodology

2.1 Literature review

Early systematic flora survey work in the Pilbara bioregion was undertaken by Burbidge (1959) and Beard (1975). These surveys involved the mapping of broad floristic formations and vegetation associations across the bioregion. More recently, DAFWA conducted a regional inventory of flora, vegetation, vegetation condition, and land resources of the bioregion (van Vreeswyk *et al.* 2004). In addition, Parks and Wildlife undertook a comprehensive regional survey of the Pilbara (DEC 2011) which included counting, sampling, documenting, and mapping the way plant communities are distributed in relation to soil, climate, landforms and geology within the Pilbara.

Over recent decades there has been an expansion of resource development projects occurring within the Pilbara. As a result, there has been an increase in site-specific ecological surveys to fulfil the statutory requirements of the EP Act, the State *Biodiversity Conservation Act 2016* (**BC Act**), and the Commonwealth *Environment Protection and Biodiversity Conservation Act 1999* (**EPBC Act**).

Numerous flora, vegetation and fauna surveys have previously been conducted within and surrounding the study area (Figure 2-1 and Figure 2-2). The findings of these surveys, in addition to the database searches, form the desktop study to determine conservation significant species that are known to, or may occur within the study area, as well as the flora, vegetation types, ecosystems and fauna habitats.

2.1.1 Flora and vegetation

Three previous flora and vegetation survey reports have been utilised as part of this flora and vegetation desktop assessment:

- Flora and Vegetation of the Hope Downs 1 Area (Mattiske Consulting Pty Ltd, 2009).
- Hope Downs 2 Proposal Flora and Vegetation Survey (Astron Environmental Services, 2019).
- Hope Downs Development Envelope Vegetation Mapping (Astron Environmental Services, 2020).

These reports have been consulted as part of the literature review to determine conservation significant species that may occur within the study area, as well as flora, vegetation types and ecosystems. A summary of the findings of each report primarily used in the desktop review is presented in Table 2-1.

A review of additional published and unpublished reports of relevance to the area was also conducted prior to completing the survey and report. These reports comprised mostly regional scale reports such as the Department of Agriculture Land Systems mapping (Van Vreeswyk, Payne, Leighton, & Hennig, 2004).

2.1.2 Fauna and fauna habitat

Four previous fauna survey reports were utilised as part of the fauna desktop assessment:

- Hope Downs 1 Development Envelope Fauna Habitat Mapping (Astron Environmental Services, 2020).
- Hope Downs 2 Proposal Fauna Survey March 2019 (Astron Environmental Services, 2019).
- Hope Downs 2 Proposal Matters of National Environmental Significance Fauna Assessment (Astron Environmental Services, 2019).
- Hope Downs Project Life of Mine Targeted Fauna Survey (Biota Environmental Sciences, 2011).

The reports were reviewed as part of the literature review to determine conservation significant species that may occur within the study area and fauna habitats. A summary of the findings is presented in Table 2-2.

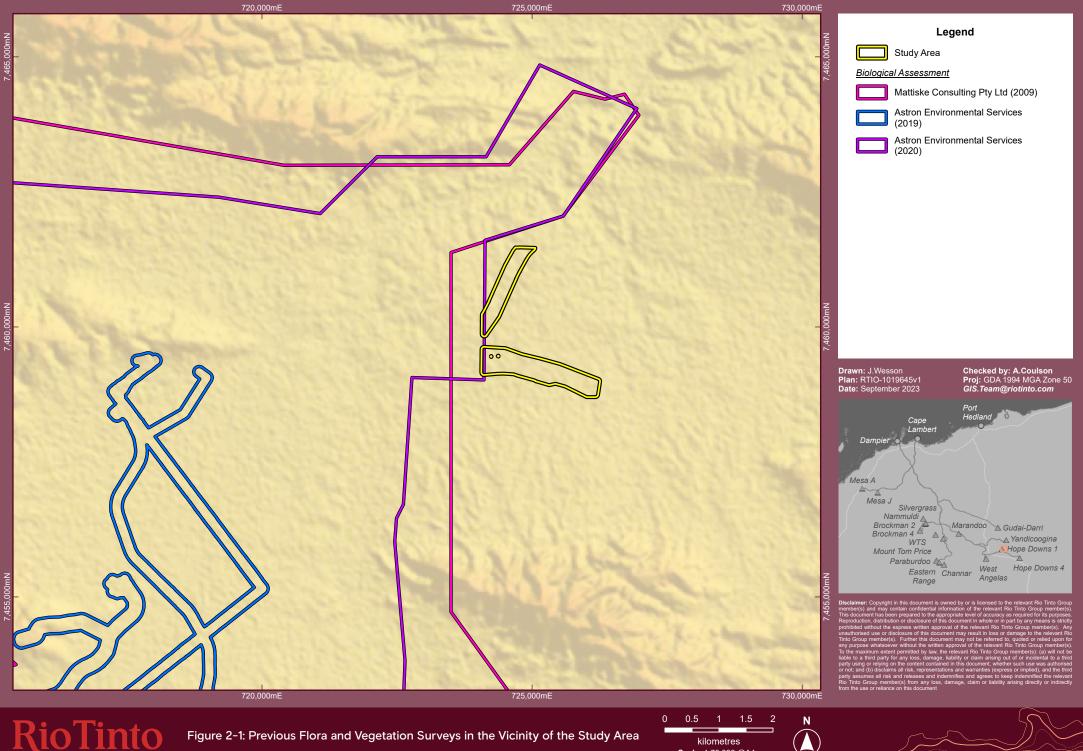
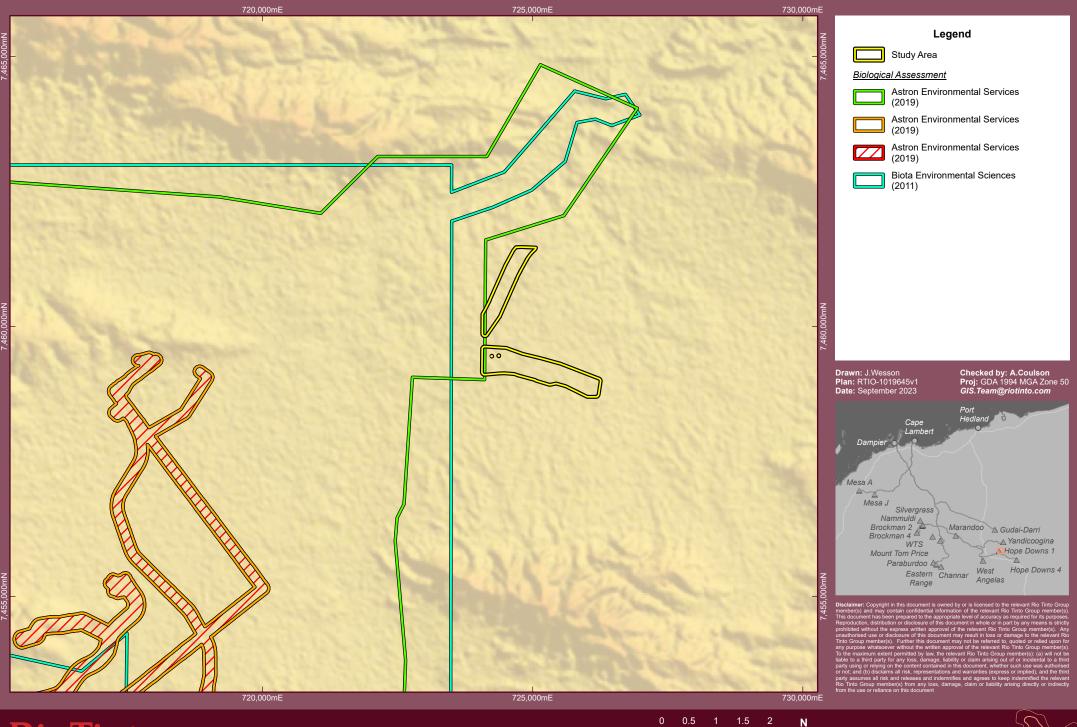



Figure 2-1: Previous Flora and Vegetation Surveys in the Vicinity of the Study Area

kilometres Scale: 1:70,000 @A4

RioTinto

kilometres Scale: 1:70,000 @A4

Table 2-1: Summary of previous flora and vegetation reports utilised for the desktop assessment

Report and level of survey	Size (ha)	Number of taxa	Conservation listed flora	Weeds	Vegetation of significance
Flora and Vegetation of the Hope Downs 1 Area (Mattiske Consulting Pty Ltd, 2009) Single-phase detailed flora and vegetation survey	13,682.9	9 217 taxa 47 families 117 genera	 No Threatened flora taxa were recorded. Seven Priority flora taxa were recorded: Acacia bromilowiana (P4) (previously listed as P3) Acacia subtiliformis (P3) Eremophila magnifica subsp. magnifica (P4) Eremophila magnifica subsp. velutina (P3) Goodenia sp. East Pilbara (A.A. Mitchell PRP 727) (P3) (previously listed as P1) Rostellularia adscendens var. latifolia (P3) (previously listed as P2) Stylidium weeliwolli (P3) (previously listed as P2). 	 *Bidens bipinnata *Cenchrus ciliaris *Datura leichhardtii 	No Threatened Ecological Communities were recorded. One vegetation type (C4) was analogous to the Weeli Wolli Spring Community (Priority 1) PEC. Similarities include the stands of <i>Eucalyptus camaldulensis</i> , <i>Eucalyptus victrix</i> and <i>Melaleuca argentea</i> associated with localised pools. Thirteen vegetation types supported Priority flora taxa.

Flora, Vegetation and Fauna Habitat Assessment at Hope Downs 1, 2023

Report and level of survey	Size (ha)	Number of taxa	Conservation listed flora	Weeds	Vegetation of significance
Hope Downs 2 Proposal Flora and Vegetation Survey (Astron Environmental Services, 2019) Multiple-phase detailed flora and vegetation survey		7 411 taxa 52 families 161 genera	 No Threatened flora taxa were recorded. Eleven Priority flora taxa were recorded: Acacia bromilowiana (P4) Aristida lazaridis (P2) Eremophila magnifica subsp. magnifica (P4) Eremophila naaykensii (P3) (previously known as Eremophila sp. Hamersley Range (K. Walker KW 136)) Eremophila sp. West Angelas (S. van Leeuwen 4068) (P2) (previously listed as P1) Grevillea saxicola (P3) Hibiscus sp. Gurinbiddy Range (M.E. Trudgen MET 15708) (P2) Lepidium catapycnon (P4) Ptilotus mollis (P4) Rhagodia sp. Hamersley (M. Trudgen 17794) (P3) Triodia sp. Mt Ella (M.E. Trudgen 12739) (P3). 	Seventeen introduced flora taxa: *Bidens bipinnata *Brassica tournefortii *Cenchrus ciliaris *Cenchrus setiger *Chloris virgata *Cynodon dactylon *Datura leichhardtii subsp. leichhardtii *Datura leichhardtii *Datura leichhardtii *Datura leichhardtii *Datura leichhardtii *Lactuca serriola *Flaveria trinervia *Lactuca serriola *Malvastrum americanum *Rumex vesicarius *Setaria verticillata *Sigesbeckia orientalis *Solanum nigrum *Sonchus oleraceus *Vachellia farnesiana.	No Threatened Ecological Communities were recorded. One vegetation type (P2) may be locally restricted. Four vegetation types were considered to have local conservation significance due to their likelihood to act as refugia habitat (H2, D3), having restricted occurrence within the study area (H2, P2, D3) and/or association with conservation significant flora taxa (H2, P2, D3, D4).

Report and level of survey	Size (ha)	Number of taxa	Conservation listed flora	Weeds	Vegetation of significance
Hope Downs Development Envelope Vegetation Mapping (Astron Environmental Services, 2020) Desktop assessment and reconnaissance field survey		Not part of the assessment	No Threatened flora taxa were recorded. Seven Priority flora taxa were recorded: • Acacia subtiliformis (P3) • Aristida lazaridis (P2) • Eremophila magnifica subsp. magnifica (P4) • Grevillea saxicola (P3) • Lepidium catapycnon (P4) • Rhagodia sp. Hamersley (M. Trudgen 17794) (P3) • Rostellularia adscendens var. latifolia (P3)	Sixteen introduced flora taxa: *Bidens bipinnata *Cenchrus ciliaris *Cenchrus setiger *Cynodon dactylon *Erigeron bonariensis *Euphorbia hirta *Flaveria trinervia *Lactuca serriola *Malvastrum americanum *Melinis repens *Setaria verticillata *Sigesbeckia orientalis *Solanum nigrum *Sonchus oleraceus *Tridax procumbens *Vachellia farnesiana.	No Threatened Ecological Communities were recorded. One vegetation type (D6) is inferred to be associated with the Weeli Wolli Spring Community (Priority 1) PEC based on the presence of <i>Melaleuca argentea</i> , <i>Eucalyptus camaldulensis</i> subsp. <i>obtusa</i> and <i>Eucalyptus victrix</i> , and the assemblage of sedgeland and herbland understorey taxa.

Table 2-2: Summary of previous fauna habitat reports utilised for the desktop assessment

Report and level of survey	Size (ha)	Number of taxa	Conservation listed fauna	Fauna habitat (value to MNES species)
Hope Downs 1 Development Envelope Fauna Habitat Mapping (Astron Environmental Services, 2020) Desktop assessment	36,943.6	Not part of the assessment.	Not part of the assessment.	Nine broad fauna habitat types were recorded: Major Drainage (high) Minor Drainage (low) Gorge/Gully (high) Breakaway (high) Rocky Hill (moderate) Low Hill and Slopes (low) Alluvial Plain (low) Mulga Woodland (low) Stony Plain (low).
Hope Downs 2 Proposal Fauna Survey March 2019 (Astron Environmental Services, 2019) Multiple-phase detailed fauna survey	10,817.7	 174 fauna species including: Two amphibians 55 reptiles 84 birds 33 mammals (including seven introduced mammal species). 	 hallucatus) (EN, EN) Pilbara Leaf-nosed Bat (<i>Rhinonicteris aurantia</i>) (VU, VU) 	Alluvial Plain (low)Mulga Woodland (low)Stony Plain (low).

Report and level of survey	Size (ha)	Number of taxa	Conservation listed fauna	Fauna habitat (value to MNES species)
Hope Downs 2 Proposal Matters of National Environmental Significance Fauna Assessment (Astron Environmental Services, 2019) Desktop assessment and Targeted MNES survey	10,817.7	Not part of the assessment.	 Four species of conservation significance were recorded: Northern Quoll (<i>Dasyurus hallucatus</i>) (EN, EN) Pilbara Leaf-nosed Bat (<i>Rhinonicteris aurantia</i>) (VU, VU) Ghost Bat (<i>Macroderma gigas</i>) (VU, VU) Oriental Plover (<i>Charadrius veredus</i>) (MI, MI). 	Eight broad fauna habitat types were recorded: Minor Drainage (low) Gorge/Gully (high) Breakaway (high) Rocky Hill (moderate) Low Hill and Slopes Alluvial Plain (low) Mulga Woodland (low) Stony Plain (low).
Hope Downs Project Life of Mine Targeted Fauna Survey (Biota Environmental Sciences, 2011) Targeted Northern Quoll survey	11,422.8	Not part of the assessment.	One male Northern Quoll (<i>Dasyurus hallucatus</i>) (EN, EN) was captured.	Not part of the assessment.

2.2 Database searches

A desktop assessment was undertaken in April 2023, in order to identify known or potential environmental constraints within or pertaining to the study area and surrounds.

The Parks and Wildlife and WA Museum's (WAM) NatureMap database was searched for Threatened and Priority flora and fauna that have the potential to utilise the habitats present within the study area. The Commonwealth Department of Climate Change, Energy, the Environment and Water (DCCEEW) administered EPBC Act Protected Matters Search Tool (PMST) was also searched for Matters of National Environmental Significance (MNES) listed under the EPBC Act including Threatened flora and fauna and TECs (Department of Climate Change, Energy, the Environment and Water, 2022).

Spatial data for conservation significant flora and fauna held and maintained by Rio Tinto was also searched as part of the desktop study. Any ESA, Reserves and/or conservation areas within or surrounding the study area were also identified using relevant GIS layers held by Rio Tinto. A buffer of 20 km was applied to the study area for NatureMap, PMST and Rio Tinto database searches. Results of NatureMap and Protected Matters searches undertaken are presented in Appendix 1.

2.3 Likelihood of occurrence assessment

2.3.1 Flora

The results of the database searches were used to create a list of conservation significant flora (BC Act and Priority flora) previously recorded or with potential to occur within the study area. The likelihood of conservation significant flora occurring within the study area were assessed through consideration of available habitats in the study area and each species' ecology.

The likelihood of conservation significant flora species occurring within study areas were determined prior to the field survey based on the location of database records, availability of potentially suitable habitat and knowledge of the species ecology (Section 3.8). This list was then updated following the field survey to better reflect the habitats observed.

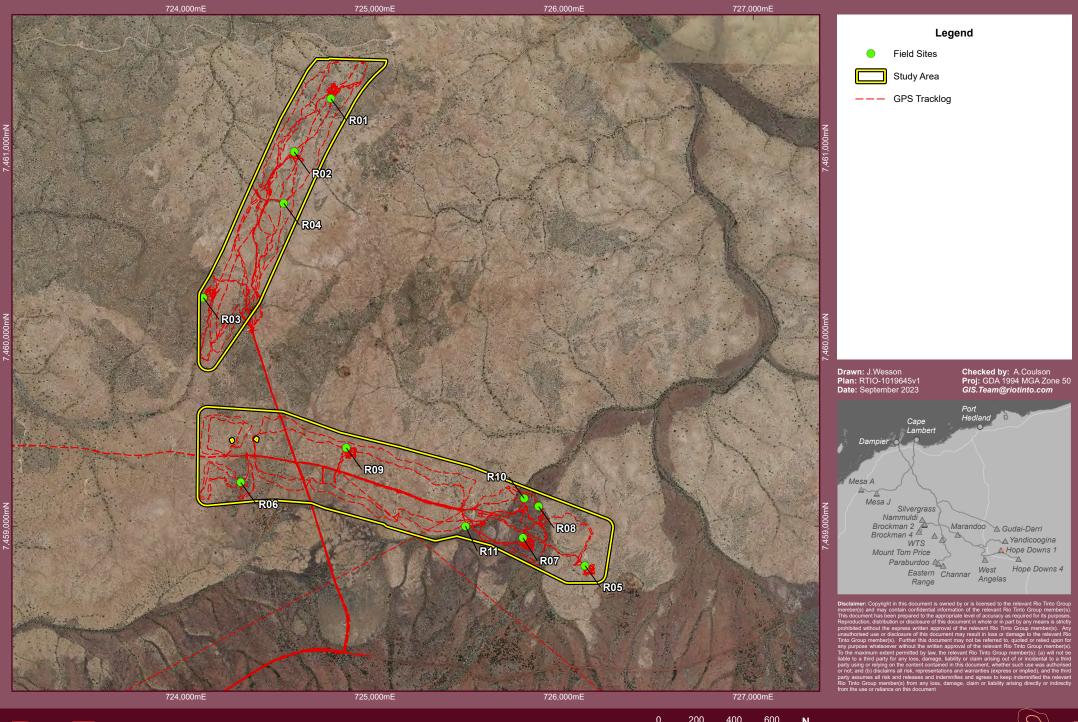
2.3.2 Fauna

A likelihood of occurrence assessment was performed to identify habitats within the study area for which fauna listed under the current BC Act may have specific dependence (DBCA, 2018b). For the purpose of this study, 'specific dependence' is defined as core habitat including roosting, denning, shelter and breeding habitat.

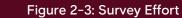
The likelihood of conservation significant fauna species (BC Act) occurring within the study area was determined prior to the field survey based on the location of database records, availability of potentially suitable habitat and knowledge of the species ecology (Section 3.14). This list was then updated following the field survey to better reflect the habitats. Marine fauna taxa were excluded from the likelihood assessment as the study area does not contain marine habitat and is therefore not able to support these species.

2.4 Flora and vegetation field survey

The study area was surveyed by Rio Tinto botanists Julijanna Hantzis, Bridget Duncan, Daenia Dundon and Candice Le Roux on the 1st to 5th May 2023.


The study area was assessed in accordance with the relevant Factor Guidelines (EPA 2016a and 2016b) and Technical Guidance (EPA 2016c and 2016d). Targeted searches were undertaken in habitats with potential to support species of conservation significance, identified by the database search.

Relevé (unpegged) survey sites, typically 50 x 50 m in size (to represent an approximate 2,500 m²) were established in representative areas of all vegetation types within the study area. A botanical relevé is described as a vegetation sample that describes the structure and floristics, and associated physical attributes, flora and opportunistic fauna sightings. A total of 11 relevés were surveyed in representative vegetation types. The locations of each relevé from the study area and tracklogs are presented in Figure 2-3 and Appendix 2. Detailed site sheets for each relevé are presented in Appendix 3.


At each relevé site, a location was recorded with a handheld GPS and photographs were taken. Data was collected on the flora species present, including: percentage cover; average height of each vegetation stratum; site slope; aspect; topography; soil texture and colour; and landform type and habitat features.

Recent orthorectified aerial photography covering the study area was reviewed whilst in the field to determine boundaries of vegetation communities. The location of each site where a vegetation record was taken was determined based on interpretation of aerial photography and a visit to the site for ground truthing. Determination of boundaries between vegetation types was also undertaken using aerial photography and ground truthing whilst in the field. The mapping data gathered in the field was used to prepare a draft map of vegetation, utilising rectified 1:5,000 scale colour digital aerial photography as the background. The vegetation boundaries were digitised on-screen using ArcGIS Pro 3.0.3.

Locations of flora of conservation significance, flora of special interest, unknown flora, weeds and other observations including opportunistic fauna sightings were recorded using a hand-held GPS (WGS 84 datum). Where populations of conservation significant flora were encountered; estimates of density or numbers of individuals, habitats and associated flora were recorded. Density or numbers of individuals of introduced flora species were also recorded.

RioTinto

2.5 Vegetation, descriptions, condition assessment and mapping

Vegetation descriptions for the study area were based on Specht (1970) with modification by Aplin (1979) (Appendix 4). Descriptions were taken at relevés and during traverses where changes in the vegetation structure were observed. A photograph of each vegetation type, and a location using a handheld GPS (WGS84 datum) was taken. Assessment of the overall condition of each vegetation type was made based on Trudgen (1988) (Appendix 4).

The mapping notes gathered in the field were used to prepare a draft map of vegetation, utilising rectified colour digital air photography as the background. The vegetation boundaries were digitised on-screen using ArcGIS Pro 3.0.3.

The resulting polygons were attributed with the relevant information including the vegetation type, description and condition. Point locations of each relevé recorded were also uploaded into ArcGIS Pro, together with photographs which were used to assist with the finalising of vegetation boundaries.

2.6 Flora identification

An interim species list was compiled in the field covering common species identified with confidence by the botanists. Voucher samples of unknown and Priority flora were taken and pressed and dried in the field. Each sample was assigned a unique reference identification sample number.

Flora samples collected in the field were identified using relevant taxonomic publications and compared to collections at the Western Australian Herbarium (WAH). Sample identifications were conducted by Parks and Wildlife taxonomist Steven Dillon (WAH). Voucher quality specimens will be lodged with the Western Australian Herbarium in the future. Nomenclature was cross-checked using the Parks and Wildlife's FloraBase (WAH 2018) website and updated where required.

2.7 Fauna habitat assessment

Broad fauna habitats were identified and mapped based on landforms and vegetation type identified during the current survey. Habitats were then assessed for their potential to support species of conservation significance, taking into account relevant State and Commonwealth Guidelines to support identification of 'potential' habitat. Supporting evidence such as sightings, the presence of microhabitats including caves, water holes, tree hollows and burrows were recorded throughout the study area. Representative traverses were also completed throughout all habitats present within the study area.

Fauna habitats were assessed and mapped as per Factor Guideline (Environmental Protection Authority, 2016) and Technical Guidance (Environmental Protection Authority, 2020) for terrestrial fauna.

2.8 Opportunistic fauna records

Opportunistic fauna sightings were recorded whilst traversing the study area with a focus on conservation significant species and supporting evidence (i.e. scats). A location of each opportunistic fauna record was taken in the field using a hand-held GPS (WGS84 datum).

Potential fauna assemblages were based on the desktop review of previous surveys in the area and database searches.

2.9 Other vegetation of significance

Vegetation not legally protected or classified as part of regulatory ratings may still be regarded as being of significance. Vegetation that may fall under this category includes (but is not limited to) vegetation supporting elevated floristic diversity, habitats supporting numerous conservation listed species, ecosystems at risk (Kendrick, 2001), novel floristic associations, groundwater dependent ecosystems, uncommon vegetation and associations on novel landforms.

Vegetation types or biological features assigned a significance classification are, for the purpose of this document, considered to be of elevated significance when compared to all other identified associations or features that are common or widespread and therefore well represented.

2.10 Environmentally significant areas

Rio Tinto manages all work, including clearing, through the Approvals Coordination System which ensures biological and heritage surveys are completed and all government regulatory approvals are in place prior to the commencement of works.

Environmentally significant features are uploaded into Rio Tinto's database (GIS system) which includes a description highlighting the significance of these areas. Small populations or individuals are protected as buffered point locations, while larger spatial populations and significant habitat are protected as 'significant areas'. The GIS system is used as part of the Approvals Coordination System when reviewing the Proposal, thereby ensuring appropriate management conditions are in place.

3. Results

3.1 Desktop assessment

3.1.1 Flora diversity

Table 3-1 presents a summary of flora taxa returned by the NatureMap database searches.

Table 3-1: Summary of vascular flora taxa returned by NatureMap search

Flora group	Number of potential species
Families	55
Genera	178
Species	456
Conservation listed	22
Weeds	11

3.1.2 Conservation significant flora likelihood

Thirty-one conservation listed flora taxa were returned by the database search (Figure 3-1, Appendix 1):

- No Threatened flora taxa.
- No Priority 1 flora taxa.
- Six Priority 2 flora taxa.
- Nineteen Priority 3 flora taxa.
- Six Priority 4 flora taxa.

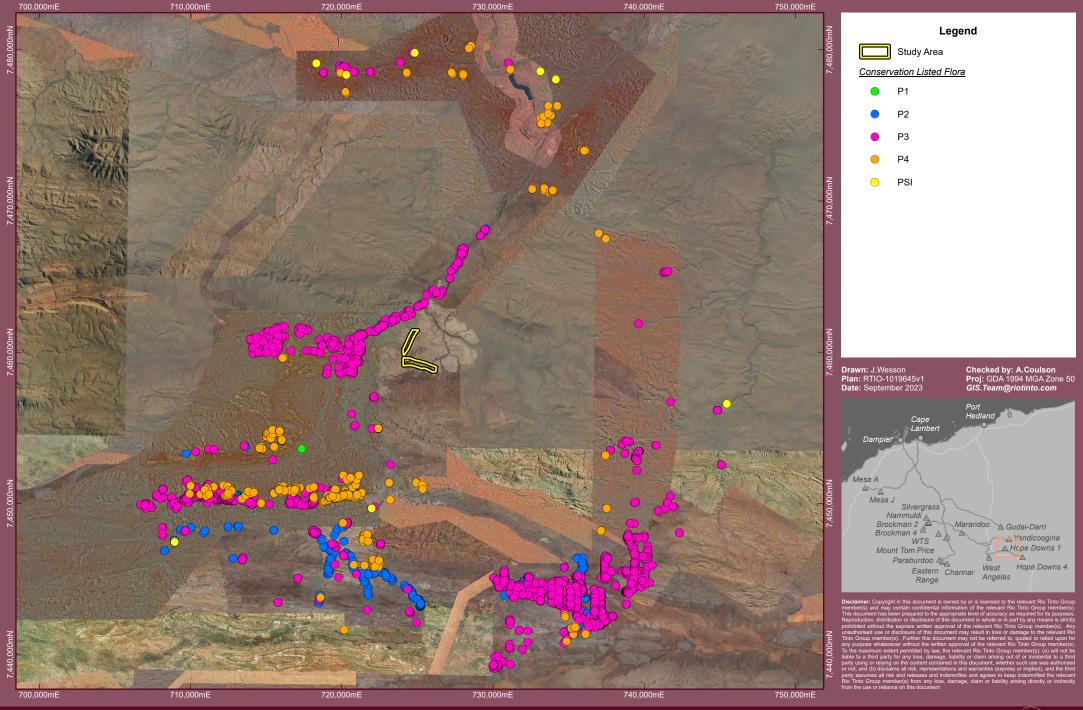

None of the flora taxa identified by the database searches were previously recorded in the study area. Six taxa were considered 'likely' to occur, five had the 'potential' to occur, and 20 species were considered 'unlikely' to occur based on the criteria used to assess the pre-field likelihood of occurrence (Appendix 5). Table 3-2 lists the conservation significant flora taxa with the 'potential' to occur within the study area or higher classification. The flora likelihood in its entirety is presented in Appendix 6.

Table 3-2: Pre-field likelihood of occurrence assessment and potential presence via habitat preference and proximity of previous records for conservation significant flora considered to have the potential to occur or higher

Species	Status	NM		Distance to nearest record (km)	Habitat	Flowering time	Likelihood of occurrence and discussion (pre- field)
							Likely
Acacia subtiliformis	P3	х	Х	2.8	On rocky calcrete plateau.	Jun - Aug	This taxon was recorded within 5 km of the study area and its preferred habitat may occur within the study area.
							Potential
Aristida lazaridis	P2	Х	Х	11.0	Sand or loam.	Apr	This taxon was recorded within 15 km of the study area and its preferred habitat may occur within the study area.
							Potential
Cladium procerum	P2	Х	Х	5.8	Perennial pools.	Nov	This taxon was recorded within 15 km of the study area and its preferred habitat may occur within the study area.
							Potential
Eremophila youngii subsp. Iepidota	P4		х	8.9	Stony red sandy loam. Flats plains, floodplains, sometimes semi-saline, clay flats.	Jan or Mar or Jun or Aug - Sep	This taxon was recorded within 15 km of the study area and its preferred habitat may occur within the study area.
							Likely
Fimbristylis sieberiana	P3	Х	Х	2.7	Mud, skeletal soil pockets. Pool edges, sandstone cliffs.	May - Jun	This taxon was recorded within 5 km of the study area and its preferred habitat may occur within the study area.
							Likely
<i>Goodenia</i> sp. East Pilbara (A.A. Mitchell PRP 727)	P3	Х	Х	1.6	Red-brown clay soil, calcrete pebbles. Low undulating plain, swampy plains.	Aug - Sep	This taxon was recorded within 5 km of the study area and its preferred habitat may occur within the study area.

Species	Status	NM		Distance to nearest record (km)	Habitat	Flowering time	Likelihood of occurrence and discussion (pre- field)
Indigofera gilesii	P3	х	х	12.7	Pebbly loam. Amongst boulders & outcrops, hills.	May or Aug	Potential This taxon was recorded within 15 km of the study area and its preferred habitat may occur within the study area.
Isotropis parviflora	P3	х	х	14.3	Valley slope of ironstone plateau.	Feb - Mar or May	Potential This taxon was recorded within 15 km of the study area and its preferred habitat may occur within the study area.
Lepidium catapycnon	P4	х	х	4.5	Stony hill slopes, open woodland in hilly areas, more frequently on south facing slopes, hill hummock grasslands, and road verges.	Oct - Jan	Likely This taxon was recorded within 5 km of the study area and its preferred habitat may occur within the study area.
Rostellularia adscendens var. Iatifolia	P3	х	х	1.1	Ironstone soils. Near creeks, rocky hills.	Apr - May	Likely This taxon was recorded within 5 km of the study area and its preferred habitat may occur within the study area.
Stylidium weeliwolli	P3	х	х	1.1	Gritty sand soil, sandy clay. Edge of watercourses.	Aug - Sep	Likely This taxon was recorded within 5 km of the study area and its preferred habitat may occur within the study area.

NM – NatureMap; RT – Rio Tinto Priority Flora Database; EPBC – EPBC Act Protected Matters Search Tool.

RioTinto

Figure 3-1: Rio Tinto Records for Conservation Listed Flora within 20km of the Study Area kilometres Scale: 1:250,000 @A4 Ν

0 1 2 3 4

NVCP Supporting Document

3.1.3 Fauna diversity

Table 3-3 presents a summary of terrestrial vertebrate fauna taxa returned by the NatureMap database searches.

		· · · · ·
Table 3-3:	Summary of terrestrial vertebrate fauna species returned by N	VatureMap search

Fauna group	Number of potential species	
Amphibians	8	
Reptiles	132	
Avifauna	180	
Mammals	53	
Conservation listed	11	
Total	373	

3.1.4 Conservation significant fauna likelihood

Twenty conservation listed fauna species were returned by the database search (Figure 3-2, Appendix 1), 11 from NatureMap and an additional nine from the Rio Tinto database or PMST searches:

- Two Critically Endangered fauna taxa.
- Two Endangered fauna taxa.
- Eight Vulnerable fauna taxa.
- Three Migratory fauna taxa.
- One Priority 1 fauna taxon.
- One Priority 2 fauna taxon.
- One Priority 3 fauna taxon.
- One Priority 4 fauna taxon.
- One Other Specially Protected fauna taxon.

None of the fauna taxa identified by the database searches have previously been recorded within the study area.

None of the taxa were considered 'likely' to occur within the study area, six taxa were considered to have 'potential' to occur within the study area and 14 taxa were considered 'unlikely' to occur, based on the criteria used to assess the pre-field likelihood of occurrence (Appendix 5). The species considered to have 'potential' to occur or higher classification within the study area are presented in Table 3-4. The likelihood assessment in its entirety is presented in Appendix 7.

Table 3-4: Pre-field likelihood of occurrence assessment and potential presence via habitat preference and proximity of previous records for conservation significant fauna considered to have the potential to occur or higher

		Conservation Code			Source		Distance to		Likelihood of
Scientific Name Common Name	State	Feder al	ΣN	RTIO	PMST	Nearest Record	Habitat and discussion (pre-field)	Occurrence (pre-field)	
Birds									
Aphelocephala leucopsis	Southern Whiteface	-	VU	-	-	Х	7.1	Southern Whitefaces live in a wide range of sparsely treed woodlands and shrublands where there is an understorey of grasses or shrubs or both, usually in habitats dominated by acacias or eucalypts on ranges, foothills and lowlands and plains (BirdLife International, 2023).	Potential
Mammals									

Dasyurus hallucatus	Northern Quoll	EN	EN	x	х	х	11.6	The Northern Quoll occupies a diverse range of habitats including rocky areas, eucalypt forest, woodlands, rainforests, sandy lowlands and beaches, shrubland, grasslands and desert (Threatened Species Scientific Committee, 2005). Habitat generally encompasses some form of rocky area for denning purposes with surrounding vegetated habitats used for foraging and dispersal. Dens are made in rock crevices, tree holes or occasionally termite mounds (Threatened Species Scientific Committee, 2005). In the Pilbara region, the species appears to prefer the Rocklea, Macroy and Robe land systems (Biota Environmental Sciences, 2008). The Northern Quoll has also been recorded in other land systems which comprise sandstone and dolomite hills and ridges, shrublands, sandy plains, clay plans and tussock grasslands and coastal fringes including dunes islands and beaches (Biota Environmental Sciences, 2008).	Potential
------------------------	----------------	----	----	---	---	---	------	---	-----------

Scientific Name	• N		Conservation Code ୁଥ ବ		Code		Source		Distance to Nearest	Habitat and discussion (pre-field)	Likelihood of Occurrence
		State	Feder al	MN	RTIO	PMST	Record		(pre-field)		
Macroderma gigas	Ghost Bat	VU	VU	x	х	x	12	The Ghost Bat is patchily distributed across the northern half of Australia. This species requires undisturbed roost sites which are often complex and contain multiple entrances; it has been known to utilise old abandoned mine shafts (Menkhorst & Knight, 2021).	Potential		
Pseudomys chapmani	Western Pebble- mound Mouse, Ngadji	P4	0	x	x		10.7	The Western Pebble-mound Mouse is found on stony hillsides with hummock grassland (Menkhorst & Knight, 2021). This species favors scree and stony plains habitat where it constructs conspicuous, extensive mounds of small stones. The pebble-mounds are found on gently sloping hills where the ground is stony with continuous small pebbles.	Potential		
<i>Rhinonicteris aurantia</i> (Pilbara form)	Pilbara Leaf-nosed Bat	VU	VU	x	x	x	14.5	The Pilbara Leaf-nosed Bat (PLNB) inhabits abandoned mine shafts, granite rock pile terrain of the east Pilbara and caves formed in gorges that dissect sedimentary geology in the west Pilbara (Van Dyck & Strahan, 2008). During the dry season, the PLNB roosts in deep, warm, humid caves or mines and forages nearby, while during the wet season, it is more widespread and may not require caves for roosting (Menkhorst & Knight, 2021). The PLNB forages low in open habitats, including grasslands and along roads.	Potential		

		Conservation Code			Source		Distance to		Likelihood of	
Scientific Name	Common Name	State Feder al		MN	RTIO		Nearest Record	Habitat and discussion (pre-field)	Occurrence (pre-field)	
Reptiles	•	-								
Liasis olivaceus barroni	Pilbara Olive Python	VU	VU	x	Х	x	12.8	The Pilbara Olive Python is found in arid to subhumid areas of northern Australia, it is often encountered along watercourses, especially those associated with rocky areas (Wilson & Swan, 2017). The preferred habitat of this taxon includes escarpments, gorges and water holes in the ranges of the Pilbara region (Wilson & Swan, 2017). Individuals are usually recorded in close proximity to water and rock outcrops that attract suitably sized prey species (Pearson, 1993). Males have been recorded travelling up to 4 km to locate mates during the breeding season (Tutt, Mitchell, Brace, & Pearson, 2002).	Potential	

NM – NatureMap; **RT** –Rio Tinto Priority Fauna Database; **PMST** – EPBC Act Protected Matters Search Tool. * Please note that due to NatureMap being taken offline indefinitely as of 17 December 2021, location of closest record has been derived from the Rio Tinto internal database.

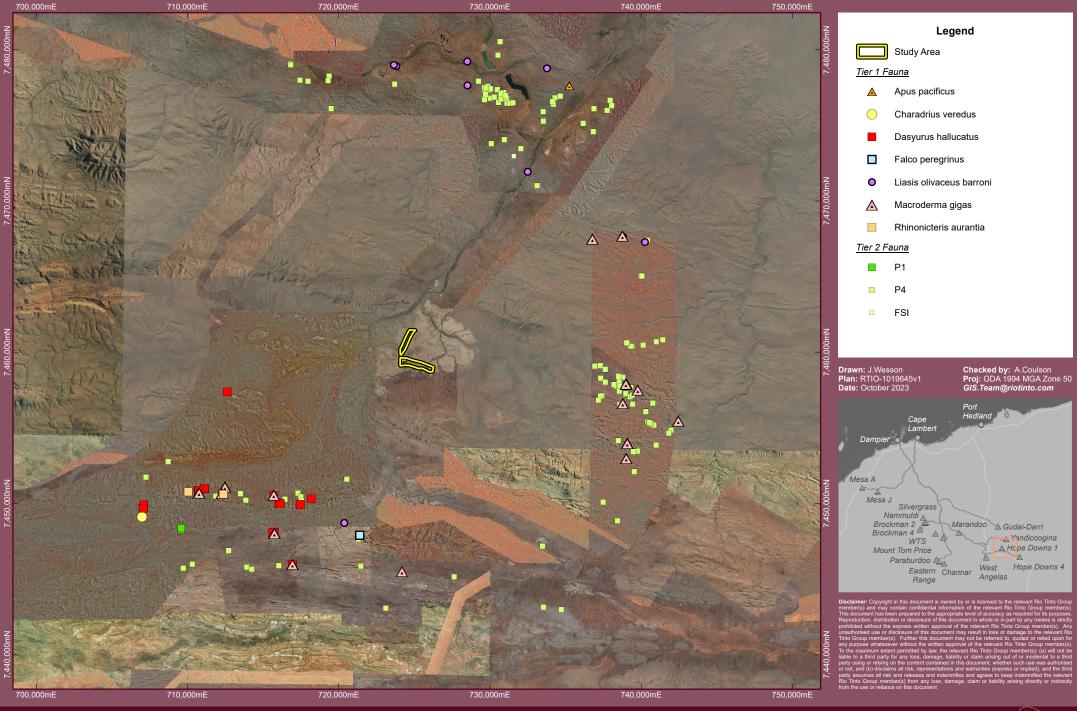


Figure 3-2: Rio Tinto records for conservation listed fauna within 20 km of the study area **Scale:** 1:250,000 @A4

3.2 Vegetation of the study area

Three vegetation types were identified across two major landforms over the study area. The vegetation types are summarised in Table 3-5 and are described in detail on the following pages, accompanied by vegetation mapping (Figure 3-3).

Two vegetation types were described from undulating plains or low hills, and one vegetation type from drainage lines. The most widespread vegetation type was V1 (117.1 ha covering 81.5% of the study area). The least widespread vegetation type was V3 (7.6 ha covering 5.3% of the study area). Cleared areas representing access tracks and exploration tracks were also mapped.

Vegetation Type	Vegetation description	Extent (ha) within study area	Proportion (%) within study area
Vegetation	of undulating plains and low hills		
V1	<i>Eucalyptus socialis</i> subsp. <i>eucentrica</i> and <i>Corymbia hamersleyana</i> low open woodland over <i>Acacia bivenosa</i> and <i>Acacia subtiliformis</i> mid sparse shrubland over <i>Triodia wiseana</i> open hummock grassland.	117.1	81.5
V3	Acacia spp. low open woodland over <i>Triodia vanleeuwenii</i> and <i>Triodia wiseana</i> open hummock grassland	7.6	5.3
	Total	124.7	86.8
Vegetation	of drainage lines		
V2	<i>Eucalyptus xerothermica</i> and <i>Corymbia hamersleyana</i> low open woodland over <i>Petalostylis labicheoides</i> tall sparse shrubland over <i>Acacia</i> spp. mid sparse shrubland over <i>Triodia wiseana</i> and <i>Triodia</i> <i>longiceps</i> open hummock grassland over <i>Themeda triandra</i> isolated tussock grasses.	16.0	11.1
	Tota	l 16.0	11.1
Other			
CL	Previously cleared areas (e.g. tracks)	2.9	2.0
	Tota	l 2.9	2.0
	Grand Tota	I 143.6	100.0

Table 3-5: Vegetation types of the study and	ea
--	----

3.2.1 Detailed vegetation descriptions

Vegetation of undulating plains and low hills

V1 EsAbTw	<i>Eucalyptus socialis</i> subsp. <i>eucentrica</i> and <i>Corymbia hamersleyana</i> low open woodland over <i>Acacia bivenosa</i> and <i>Acacia subtiliformis</i> mid sparse shrubland over <i>Triodia wiseana</i> open hummock grassland.							
Soil	This vegetation type was recorded from orange and brown clay loam with calcrete rock cover.							
Distribution	This vegetation type was recorded throughout the study area. It was recorded from 117.1 ha (81.5%).							
Associated	Trees: None							
species	Tall shrubs: Petalostylis labicheoides							
	Shrubs: Acacia bivenosa							
	<u>Low shrubs</u> : Acacia pyrifolia var. pyrifolia, Androcalva luteiflora, Codonocarpus cotinifolius, Euploca sp. (PSI), Halgania cyanea var. Allambi Stn (B.W. Strong 676), Indigofera ?monophylla, Scaevola ambylanthera var. ambylanthera							
	Grasses: None							
	Herbs: Goodenia sp. East Pilbara (A.A. Mitchell PRP 727) (P3)							
Conservation listed flora	Acacia subtiliformis (Priority 3) was recorded as a scattered to sparse understorey species (0.1 - 5% cover) at all relevés sampled for this vegetation type, except for R06. Similarly, <i>Euploca</i> sp. (PSI) was recorded at all releves, except for R06.							
	<i>Goodenia</i> sp. East Pilbara (A.A. Mitchell PRP 727) (P3) was recorded at R01, R02, R05, and R09.							
Weeds	None recorded.							
Condition	Very Good to Excellent							
Sampling sites	Relevés: R01, R02, R03, R05, R06, R09							
Fire and disturbance	This vegetation type has been affected by recent fires, with fire scars being noticeable on aerial imagery. Minor disturbance from a nearby drill pad was recorded at R06.							
Photo	Plate 1							

V3 AsppTv	<i>Acacia</i> spp. low open woodland over <i>Triodia vanleeuwenii</i> and <i>Triodia wiseana</i> open hummock grassland
Landform and soils	This vegetation type was recorded from red brown clay loam with ironstone, basalt, calcrete and quartz rock cover. This vegetation type was recorded from undulating plains and low hills from the Oakover Land System.
Distribution	This vegetation type was restricted within the study area, however, it does extend south of the study area. This vegetation type comprised 7.6 ha (5.3%).
Associated species	<u>Trees</u> : None <u>Tall shrubs</u> : <i>Hakea</i> ssp. <u>Shrubs</u> : <i>Acacia ancistrocarpa, Acacia tenuissima</i> <u>Low shrubs</u> : <i>Solanum lasiophyllum</i> <u>Grasses</u> : None <u>Herbs</u> : None
Conservation listed flora	None recorded.
Weeds	None recorded.
Condition	Very Good to Excellent
Sampling sites	Relevés: R07, R10
Fire and disturbance	Previous clearing was recorded nearby R10.
Dhoto	Diate 2

Photo

Plate 2: Representative photo of vegetation type V3 (R07)

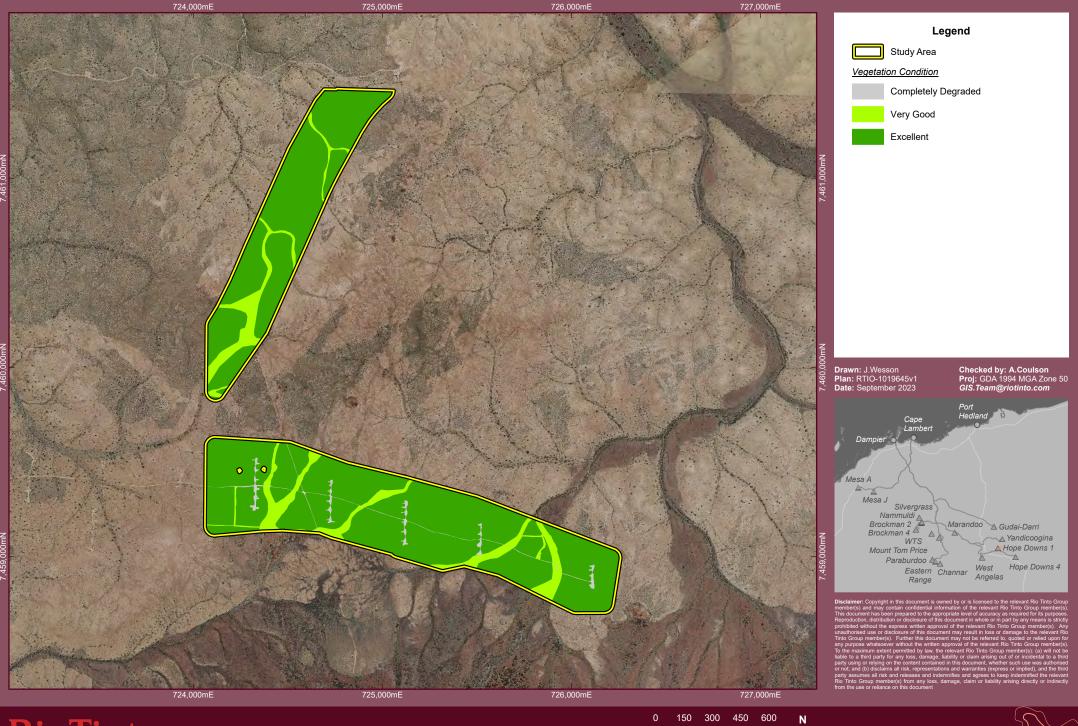
V2 ExPITw	<i>Eucalyptus xerothermica</i> and <i>Corymbia hamersleyana</i> low open woodland over <i>Petalostylis labicheoides</i> tall sparse shrubland over <i>Acacia</i> spp. mid sparse shrubland over <i>Triodia wiseana</i> and <i>Triodia longiceps</i> open hummock grassland over <i>Themeda</i> <i>triandra</i> isolated tussock grasses	
Landform and soils	This vegetation type was recorded from brown sandy clay loam with calcrete, ironstone and basalt rocks. This vegetation type was recorded from drainage lines, from the Oakover Land System.	
Distribution	This vegetation type was recorded throughout the study area. It was recorded from 16.0 ha (11.1%)	
Associated	Trees: None	
species	<u>Tall shrubs</u> : Petalostylis labicheoides	
	<u>Shrubs</u> : Acacia ancistrocarpa, Acacia pyrifolia var. pyrifolia, Acacia tenuissima, Androcalva Iuteiflora, Jasminum didymum subsp. lineare, Stylobasium spathulatum	
	<u>Low shrubs</u> : Acacia bivenosa, Corchorus lasiocarpus, Indigofera ?monophylla, Senna artemisioides subsp. oligophylla	
	Grasses: Eriachne tenuiculmis, Paraneurachne muelleri	
	<u>Herbs</u> : Polymeria ?mollis	
Conservation listed flora	n <i>Acacia subtiliformis</i> (P3), <i>Euploca</i> sp. (PSI) and <i>Goodenia</i> sp. East Pilbara (A.A. Mitchell PRP 727) (P3) were recorded at R04.	
Weeds	None recorded.	
Condition	Very Good	
Sampling sites	Relevés: R04, R08, R11	
Fire and disturbance	Cattle tracks and previous clearing were recorded in this vegetation type.	
Photo	Plate 3	

Vegetation of drainage lines

Plate 3: Representative photo of vegetation type V2 (R08)

RioTinto

Figure 3-3: Vegetation Types


3.3 Vegetation condition

The majority of vegetation within the study area was rated as being in Excellent condition (Trudgen 1988). Only 2.9 ha of the study area was considered Completely Degraded, in the form of previously cleared tracks. A single record of **Cenchrus ciliaris*, comprising 20 individuals, was noted within the study area on the side of a previously cleared access track.

Figure 3-4 presents the condition mapping for the study area, whilst Table 3-6 presents the extent of condition of vegetation mapped within the study area.

Table 3-6: Vegetation condition of the study area

Condition	Area (ha)	Proportion (%) of study area		
Excellent	124.3	86.6		
Very Good	16.4	11.4		
Completely Degraded	2.9	2.0		
Total	143.6	100.0		

RioTinto

Figure 3-4: Vegetation Condition

3.4 Vegetation of conservation significance

None of the vegetation types occurring within the study area correspond to any ecosystems listed as Threatened under the EPBC Act and none are consistent with ecosystems listed as TECs by the Department of Biodiversity, Conservation and Attractions (DBCA) (2018).

None of the vegetation types occurring within the study area are representative of listed PECs by DBCA (2022).

3.5 Vegetation of other significance

Vegetation type V2 may be representative of an Ecosystems at Risk; major ephemeral water courses. The ecosystem is at risk due to trampling by cattle and other feral animals such as donkeys and horses, and due to invasion by buffel grass and ruby dock (Kendrick, 2001). Buffel grass, **Cenchrus ciliaris*, was recorded opportunistically in the vicinity of this vegetation type, and cattle tracks were also recorded.

Vegetation types V1 and V2 are considered of conservation significance as they support populations of Priority flora *Acacia subtiliformis* (P3) and *Goodenia* sp. East Pilbara (A.A. Mitchell PRP 727) (P3). Additionally, these vegetation types support populations of *Euploca* sp. (PSI), which may be an undescribed entity (Section 3.7).

Although all vegetation types extend outside the study area, the calcrete landform may be considered restricted in the landscape. The extent of this landform is easily identifiable on aerial imagery.

3.6 Native flora recorded during the survey

A total of 94 taxa from 50 genera representing 25 families were recorded during the current survey (Appendix 8).

The most speciose families were Fabaceae (21 taxa), Poaceae (17 taxa), and Malvaceae (11 taxa). The most speciose genera were *Acacia* (12 taxa), *Ptilotus* and *Eucalyptus* (5 taxa each). The dominant plant groups are consistent with other surveys of the broader locality.

3.7 Conservation listed flora recorded during the survey

No Threatened flora species were recorded during the survey.

A total of two Priority flora taxa were recorded within the study area, *Acacia subtiliformis* (P3) and *Goodenia* sp. East Pilbara (A.A. Mitchell PRP 727) (P3) (Figure 3-5, Appendix 9). These taxa are discussed in detail below:

• Acacia subtiliformis (P3)

Acacia subtiliformis is a spindly, slender, erect shrub to 3.5 m high that flowers in June with yellow inflorescence (Western Australian Herbarium, 2022) (Plate 4). This taxon has green phyllodes with slightly viscid new growth, is resinous and aromatic. Acacia subtiliformis occurs in low, undulating country on calcareous rises adjacent to drainage lines, and is associated with *Eucalyptus* mallees, *Melaleuca* and *Petalostylis* shrubs over scattered hard spinifex (Rio Tinto and Western Australian Herbarium, 2015).

The WAH has 24 specimens of this taxon, which are restricted to the Fortescue and Hamersley subregions (Western Australian Herbarium, 2022). The Rio Tinto database has records of 191,525 individuals with a range of approximately 118 km within the Pilbara region. *Acacia subtiliformis* was not previously recorded within the study area, with the closest record being 2.8 km west of the study area.

A total of 9722 individuals were recorded from 133 records, representing 5.07% of the records of this species within the Rio Tinto database for the Pilbara region. *Acacia subtiliformis* was recorded throughout the study area, where it represented one of the dominant species of vegetation type V1. As this vegetation type was the most widespread within the study area, and it extends outside the surveyed boundaries, it can be inferred that the *Acacia subtiliformis* population is larger than the number of individuals recorded. Additionally, *Acacia subtiliformis* was recorded within vegetation type V2, and two individuals were recorded on a previously cleared area.

Due to this species' recorded broad occurrence across the Hamersley Ranges, the small scale of the Proposal and the number of records existing, the Proposal is unlikely to impact on the local or regional significance of this species.

Plate 4: *Acacia subtiliformis* (P3) recorded within the study area. From left to right: close-up of branch with phyllodes and scars where phyllodes have fallen; habitat; branching habit.

• Goodenia sp. East Pilbara (A.A. Mitchell PRP 727) (P3)

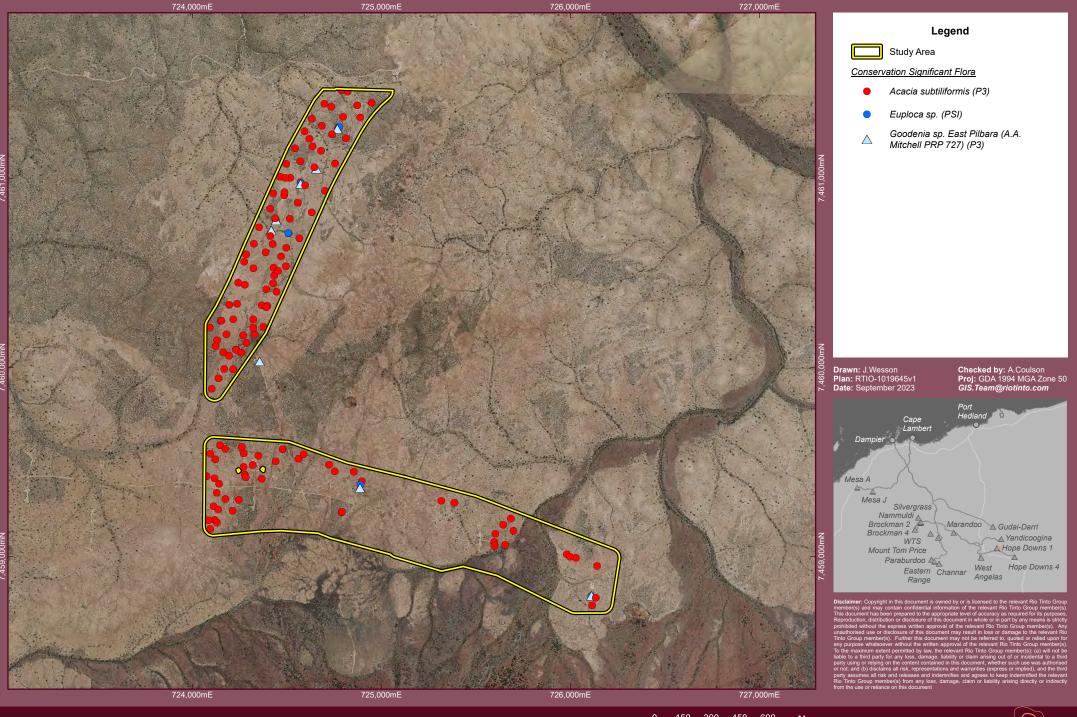
Goodenia sp. East Pilbara (A.A. Mitchell PRP 727) is an erect rosetted herb to 0.2 m high, that flowers either annually or biannually (Western Australian Herbarium, 2022; Rio Tinto and Western Australian Herbarium, 2015) (Plate 5). This taxon has spathulate leaves, and its flowers are yellow with brown centres and occur in racemes. *Goodenia* sp. East Pilbara (A.A. Mitchell PRP 727) grows in low undulating plains or swampy plains on major river systems dominated by *Eucalyptus victrix*.

The WAH has 53 specimens of this taxon, which span across the Augustus, Chichester, Fortescue and Hamersley subregions (Western Australian Herbarium, 2022). The Rio Tinto database has records of 73,174 individuals with a range of approximately 324 km within the Pilbara region. *Goodenia* sp. East Pilbara (A.A. Mitchell PRP 727) was not previously recorded within the study area, with the closest record being 1.0 km north of the study area within Weeli Wolli Creek.

A total of 308 individuals from 71 records of *Goodenia* sp. East Pilbara (A.A. Mitchell PRP 727) were recorded within the study area, representing 0.42% of the records of this species within the Rio Tinto database for the Pilbara region. This taxon was growing mostly in association with vegetation types

V1 and V2, on calcrete low hills or drainage lines. Two records, for a total of 14 individuals, were recorded on previously cleared areas.

Given this species' broad distribution, the small scale of the Proposal and the large number of regional records, the conservation significance of this species is unlikely to be impacted.


Plate 5: *Goodenia* sp. East Pilbara (A.A. Mitchell PRP 727) (P3) recorded within the study area. From left to right: spathulate leaves; yellow flowers with brown centre; remnant raceme.

3.8 Flora of other significance

One taxon recorded in the study area, *Euploca* sp., did not match any currently known entity and thus considered to represent novel, undescribed flora taxa. This taxon has some affinities to *E. argyrea* (P1) due to especially dense, appressed indumentum of hairs of one size class but differs in having broader leaves. It also has affinities to the highly variable *E. glandulifera*, however glandular hairs only seem to be present on the sepals. This taxon needs to be recollected with mature fruits, and it is suspected to be an undescribed entity (S. Dillon, pers. comm. 13/06/2023).

A total of six records of this taxon were noted in the study area, within vegetation types V1 and V2. Three specimens were collected and submitted to the WAH for identification. Population size was not estimated, therefore it is assumed that at least six individuals occur within the study area.

It is possible that this taxon will be given a phrase name and described as new species in the future. Protection of this taxon is assumed at Priority 1 level as a precautionary approach.

RioTinto

Figure 3-5: Conservation Significant Flora Recorded

3.9 Potential conservation listed flora occurring in the study area

Following the survey, the likelihood of occurrence assessment was revised considering the presence of suitable habitat, survey timing and conditions (Appendix 6). Of the 31 conservation significant flora taxa identified by the database searches, two were recorded (Section 3.6), two are considered likely to occur within the study area, and two have the potential to occur. The remaining 27 conservation significant flora taxa are considered unlikely to occur. Table 3-7 lists the conservation significant flora taxa whose revised likelihood of occurrence is 'potential' or higher classification.

Species	Status	Likelihood of occurrence (post-field)
Acacia subtiliformis	P3	Recorded This taxon was recorded throughout the study area.
Aristida lazaridis	P2	Potential Suitable habitat occurs within the study area. The survey occurred the month following the flowering period for this taxon (April), therefore it is possible that it would have been missed during the survey.
<i>Goodenia</i> sp. East Pilbara (A.A. Mitchell PRP 727)	P3	Recorded This taxon was recorded throughout the study area.
Lepidium catapycnon	P4	Likely The study area contains suitable habitat for this taxon (stony hill slopes, open woodlands in hilly areas, hill hummock grasslands, and road verges). Additionally, the survey was undertaken outside of this taxon's flowering time (Oct – Jan), so it is possible that it would have been missed during the survey.
Rostellularia adscendens var. latifolia	P3	Potential The study area contains suitable habitat for this taxon (near creeks, rocky hills). The survey occurred the month following the flowering period for this taxon (April), therefore it is possible that it would have been missed during the survey.
Stylidium weeliwolli	P3	Likely The study area contains suitable habitat for this taxon (sandy soils on the edge of watercourses) Additionally, the survey was undertaken outside of this taxon's flowering time (Aug - Sep), so it is possible that it would have been missed during the survey.

Table 3-7: Revised likelihood of occurrence of conservation listed flora taxa considered to have 'potential' to occur or higher.

3.10 Introduced flora occurring within the study area

One introduced (weed) species was recorded from the study area, **Cenchrus ciliaris*, which is not listed as a Declared Pest (Department of Primary Industries and Regional Development, 2022) and is not a Weed of National Significance (Department of Agriculture, Water and the Environment, 2021) (Appendix 10).

Strict weed hygiene protocols should be implemented during clearing of vegetation and subsequent earthworks to minimise the introduction and spread of weeds to or from the study area.

3.11 Fauna habitats of the study area

Two broad fauna habitat types were described from the study area. The fauna habitat types recorded are described below, accompanied by mapping of the habitat types (Table 3-8, Figure 3-6).

'Low Hills and Slopes' were the most widespread fauna habitat across the study area (124.7 ha, 86.8%), whilst 'Minor Drainage' were the least widespread fauna habitat recorded from the study area (16.0 ha, 11.1%). The remaining 2.0% constituted 'Disturbed' areas, such as access tracks and pads (2.9 ha).

Table 3-8: List of habitat types within the study area including microhabitats and extent

Habitat	Fauna habitat description	Significant microhabitat	Extent (ha) within study area	Proportion (%) within study area
	Low undulating hills and extensive foot slopes with a gradual gradient. Low hills have rounded summits without plateaus. This habitat does not contain cliff faces or outcropping. (Plate 6). Microhabitats generally include high <i>Triodia</i> cover, exposed bedrock, and small rock piles.			
	The undisturbed areas were in very good to excellent condition, however the vegetation is regrowing following a recent fire, and <i>Triodia</i> hummocks are smaller in size.			
Low Hills and Slopes	This habitat was associated with vegetation consisting of <i>Eucalyptus socialis</i> subsp. <i>eucentrica</i> and <i>Corymbia hamersleyana</i> low open woodland over <i>Acacia bivenosa</i> and <i>Acacia subtiliformis</i> mid sparse shrubland over <i>Triodia wiseana</i> and <i>Triodia vanleeuwenii</i> open hummock grassland. Soils consisted of orange and brown clay loam with calcrete, ironstone, basalt, calcrete and quartz rock cover.	here and a strain of the second state of the	124.7	86.8
	This habitat is considered of high value for the Western Pebble-mound Mouse where active mounds are present. Within the habitat type, 22 Western Pebble-mound Mouse mounds were recorded, 18 of which were active. The habitat is considered of moderate value for other species of conservation significance.	3		

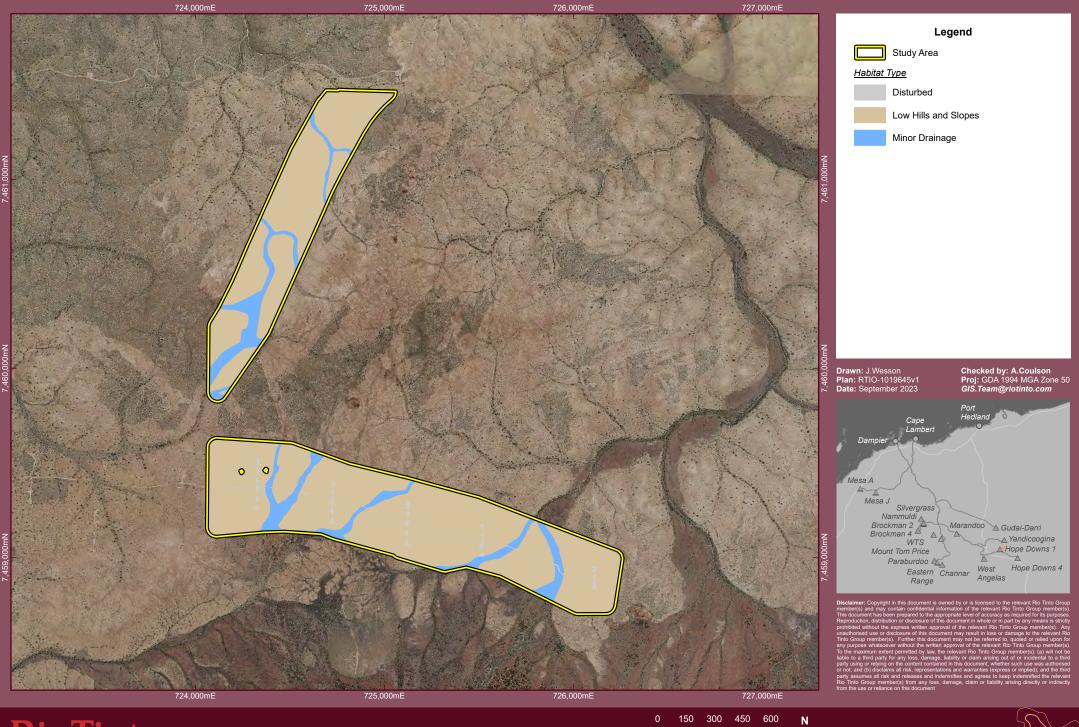

Habitat	Fauna habitat description	Significant microhabitat	Extent (ha) within study area	Proportion (%) within study area
Minor Drainage	 Small drainage channels less that 10m in width. Often with thick <i>Acacia</i> growth along banks. Does not include the minor drainage depressions that flow from high ground features. This habitat is less likely to support surface water for long after rains (Plate 7). Microhabitats within this habitat type include occasional mature Eucalypts/Corymbias, leaf litter, hollow logs/tree hollows. The drainage channels support fauna dispersal, are subject to seasonal inundation, and support richer floristic diversity than surrounds. The undisturbed areas were in very good condition. This habitat was associated with vegetation consisting of <i>Eucalyptus xerothermica</i> and <i>Corymbia hamersleyana</i> low open woodland over <i>Petalostylis labicheoides</i> tall sparse shrubland over <i>Acacia</i> spp. mid sparse shrubland over <i>Triodia wiseana</i> and <i>Triodia longiceps</i> open hummock grassland over <i>Themeda triandra</i> isolated tussock grasses. Soils consisted of brown sandy clay loam with calcrete, ironstone and basalt rocks. Minor Drainage habitat is considered to have a moderate fauna habitat value and may provide suitable foraging habitat for conservation significant fauna species such as the Grey Falcon (VU), Peregrine Falcon (OS), Ghost Bat (VU), Pilbara Leaf-nosed Bat (VU) and Western Pebble-mound Mouse (P4). This habitat may also provide nesting opportunities for the Grey Falcon (VU) and Peregrine Falcon (OS) and dispersal habitat for the Northern Quoll (EN). 	No large Eucalypts/Corymbia, hollow logs or tree hollows were recorded. Seasonally inundated. Supports fauna dispersal.	16.0	11.1
Disturbed	Areas where the natural vegetation and microhabitats have been disturbed (tracks, pads etc.). This habitat contains previously disturbed areas with some natural vegetation regrowth. Where natural regrowth has occurred, the habitat appears to be in degraded or completely degraded condition.	None recorded	2.9	2.0
		Total	143.6	100.0

Plate 6: Representative photo of fauna habitat 'Low Hills and Slopes' (R02)

Plate 7: Representative photo of fauna habitat 'Minor Drainage' (R04)

RioTinto

Figure 3-6: Fauna Habitats

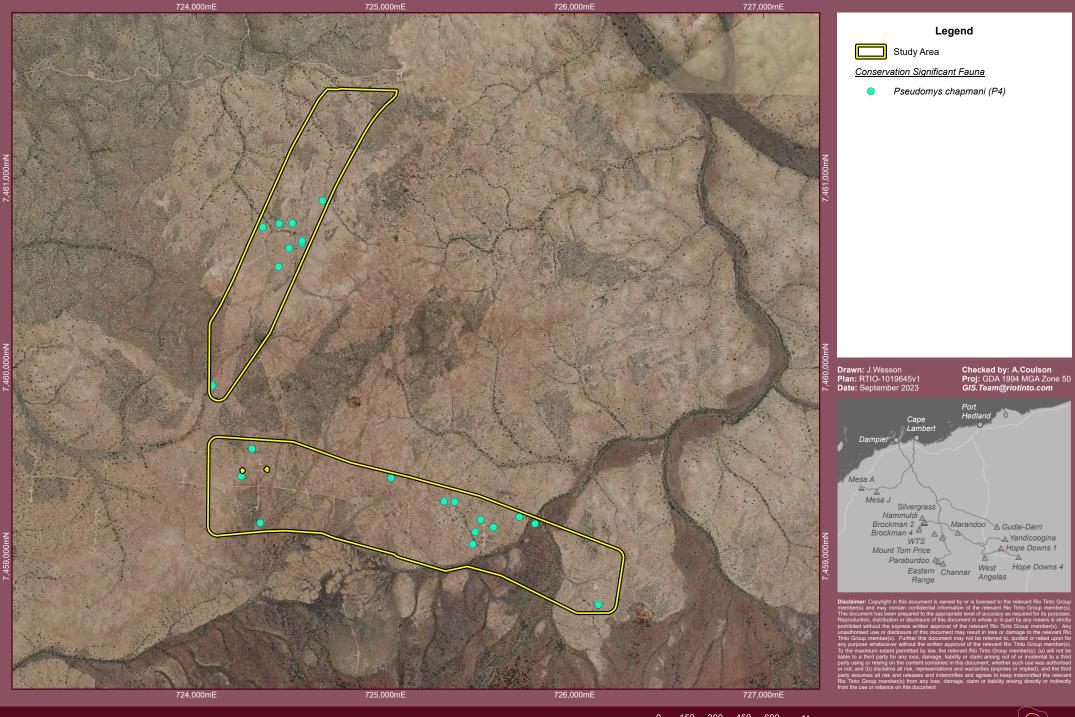
3.12 Fauna habitats of significance

None of the fauna habitats occurring within the study area correspond to any ecosystems listed as Threatened under the EPBC Act and none are consistent with ecosystems listed as TECs (Department of Biodiversity, Conservation and Attractions, 2018).

None of the fauna habitats occurring within the study area are representative of listed PECs (Department of Biodiversity, Conservation and Attractions, 2023).

3.13 Other habitats of significance

Low Hills and Slopes habitat is considered to be high value habitat if active Western Pebble-mound Mouse mounds are present. Eighteen active Western Pebble-mound Mouse mounds were found during the survey (out of 22 total mounds recorded). However, this habitat is common in the surrounding area and throughout the Pilbara.


3.14 Conservation listed fauna recorded during survey

Evidence of a fauna species of conservation significance was recorded within the study area.

• Pseudomys chapmani (Western Pebble-mound Mouse) – Priority 4

The Western Pebble-mound Mouse is endemic to the Pilbara region of Western Australia and occurs west to the McKay Range and south to the Collier Range (Menkhorst & Knight, 2021). The species is patchily distributed on gentle colluvial slopes of rocky, hummock grasslands with little or no soil and a sparse shrub layer. Where suitable habitat is present, this species can be common.

A total of 22 Western Pebble-mound Mouse mounds were recorded, of which 18 were assessed as active, one recently inactive, and three inactive mounds. Locations of Western Pebble-mound Mouse mounds recorded are shown in Figure 3-7 and listed in Appendix 11.

RioTinto

Figure 3-7: Conservation Significant Fauna Recorded

3.15 Potential conservation listed fauna occurring in the study area

Following the survey, sixteen of the 20 conservation listed species identified by the database searches were deemed unlikely to occur within the study area, due to the study area not supporting likely habitat (Appendix 7). One species was recorded within the study area (Section 3.14), and a further three have the 'potential' to occur within the habitats available in the study area; these are discussed below:

• Dasyurus hallucatus (Northern Quoll) – Endangered

The Northern Quoll typically inhabits and is more abundant in dissected rocky escarpments, however, they will utilise a range of habitats and den sites from rock crevices, tree hollows and goanna burrows, to the roofs of buildings (Van Dyck & Strahan, 2008). It is important to note that much of the ecological information for the Northern Quoll comes from studies in the Top End of the Northern Territory (Oakwood, 2002). Much of their ecology is likely to be similar in the Pilbara; however, differences in genetic structure and some demographic parameters have been observed (Howe, Spencer, & Schmitt, 2009).

The Northern Quoll has a relatively large home-range size of up to 150 ha for males (35 ha for females). Movements between den sites on consecutive nights can be up to 1.85 km for males (Oakwood, 2002). In the Northern Territory, mating occurs in late May to June and all males die after the mating season and females rear the young alone (Oakwood, 2002).

The Northern Quoll has been recorded 11.6 km west of the study area. This species may opportunistically utilise the minor drainage habitat to cross the study area when males disperse. No denning habitat is found in the study area. Therefore, it is unlikely the Proposal will impact the conservation status of this species.

• Macroderma gigas (Ghost Bat) – Vulnerable

The Ghost Bat is Australia's largest microbat and is patchily distributed across the northern half of Australia. This species requires undisturbed roost sites which are often complex and contain multiple entrances; it has been known to utilise old, abandoned mine shafts (Menkhorst & Knight, 2021).

The Ghost Bat has not been recorded within close proximity to the study area, with the closest record being 12 km east of the study area. This species may opportunistically use the study area for foraging, however no roosting habitat is present within the study area. Therefore, it is considered unlikely the Proposal will negatively impact on the conservation status of this species on either a local or bioregional scale.

• Rhinonicteris aurantia (Pilbara Leaf-nosed Bat) – Vulnerable

The Pilbara Leaf-nosed Bat (PLNB) inhabits abandoned mine shafts, granite rock pile terrain of the east Pilbara and caves formed in gorges that dissect sedimentary geology in the west Pilbara (Van Dyck & Strahan, 2008). This species is more influenced by the availability of suitable roost caves than by habitat type, and high humidity is particularly important to this species (Churchill, 1998).

This species has been recorded 14.5 km southwest of the study area. Whilst the PLNB may potentially forage within the study area, the conservation status of the PLNB is unlikely to be negatively impacted by the Proposal, due to the lack of permanent water pools and no roosting habitat in the study area.

4. Statement addressing the 10 clearing principles

Rio Tinto, on behalf of Hamersley HMS (the Proponent), is proposing to undertake a hydrological drilling program at Hope Downs 1 (the Proposal). The study area covers approximately 143.6 ha of previously disturbed ground and intact native vegetation and is located approximately 70 km northwest of Newman, within the Pilbara region of Western Australia.

Based on specialist assessment of the study area and discussion below, it is deemed that:

- Principles (c), (d), (e) and (h) are not at variance; and
- Principles (a), (b), (f), (g), (i) and (j) are not likely to be at variance.

4.1 **Principle (a) Comprises high level of biological diversity**

Native vegetation should not be cleared if it comprises a high level of biological diversity.

The Pilbara is one of Australia's 15 National Biodiversity Hotspots (Government of Western Australia, 2018) and is a secondary centre of endemism and species richness for *Acacia*, *Triodia*, *Corymbia* and *Sida* in Western Australia (Maslin, 2001; Kendrick, 2001; Maslin & van Leeuwen, 2008). The Hamersley subregion of the Pilbara has been identified by the Threatened Species Scientific Committee for the Australian Government Biodiversity Hotspots as it provides habitat for a number of threatened, endemic and fire-sensitive species and communities.

The study area occurs within the Hamersley subregion of the Pilbara bioregion. The Hamersley subregion is described as: 'Mountainous area of Proterozoic sedimentary ranges and plateaux, supporting Mulga (*Acacia aneura*) low woodland over bunch grasses on fine textured soils, and *Eucalyptus leucophloia* woodlands over *Triodia brizoides* hummock grasslands on skeletal sandy soils' (Kendrick, 2001).

Special features of the Hamersley subregion include rare features such as gorges, centres of endemism including calcrete deposits, refugia and the *Themeda* grasslands TEC (Kendrick, 2001). The buffer boundary for the '*Themeda* grasslands on cracking clays (Hamersley Station, Pilbara)' TEC is located approximately 50 km northeast of the study area, and due to the separation, will not be impacted by the Proposal.

Three vegetation types were described from the study area, of which two vegetation types were described from undulating plains or low hills, and one vegetation type from drainage lines. Two vegetation types, V1 and V2, are considered of conservation significance as they support populations of Priority flora *Acacia subtiliformis* (P3) and *Goodenia* sp. East Pilbara (A.A. Mitchell PRP 727) (P3). Additionally, these vegetation types support populations of *Euploca* sp. (PSI), which may be an undescribed entity. One vegetation type, V2, may be representative of an Ecosystems at Risk, major ephemeral water courses (Kendrick, 2001). Although all vegetation types extend outside the study area, the calcrete landform may be considered restricted in the landscape.

None of the vegetation types occurring within the study area are listed as TECs under either the EPBC Act or under the State listing maintained by DBCA. None of the vegetation types represent PECs under the State listing maintained by DBCA.

The buffer boundary for the 'Weeli Wolli Spring Community' PEC (P1) intersects the study area. This community is characterised by riparian woodland and forest associations with sedges and herbfields in the understorey fringing pools and associated water bodies along the main channels of Weeli Wolli Creek (Department of Biodiversity, Conservation and Attractions, 2023). The spring and creekline are also noted for their relatively high diversity of stygofauna and microbat assemblage. Within the study

area, no sedges were recorded; additionally, the creeklines were ephemeral and did not support permanent pools with extensive herbfields. As the Proposal does not intersect the main channels of Weeli Wolli Creek, and the absence of sedges and herbfields, the 'Weeli Wolli Spring Community' PEC will not be impacted by the Proposal.

A total of 94 taxa from 50 genera representing 25 families were recorded during the current survey. The most speciose families were Fabaceae (21 taxa), Poaceae (17 taxa), and Malvaceae (11 taxa). The most speciose genera were *Acacia* (12 taxa), *Ptilotus* and *Eucalyptus* (5 taxa each). The dominant plant groups are consistent with other surveys of the broader locality.

No Threatened flora species were recorded during the survey. Two Priority flora taxa were recorded within the study area, *Acacia subtiliformis* (P3) and *Goodenia* sp. East Pilbara (A.A. Mitchell PRP 727) (P3). Both these species grew in association with vegetation types extending outside the study area boundary, therefore it is unlikely that the Proposal will negatively impact on the conservation status of these species at either a local or regional scale.

Following the survey, two additional conservation significant flora identified by the database searches are considered likely to occur within the study area, and another two have the potential to occur:

- Aristida lazaridis (P2) Potential: the study area contains suitable habitat for this taxon, which could have been missed during the survey due to its flowering period having already occurred.
- Lepidium catapycnon (P4) Likely: the study area contains suitable habitat for this taxon, which could have been missed during the survey due to its flowering period occurring five months following the survey.
- Rostellularia adscendens var. latifolia (P3) Potential: the study area contains suitable habitat for this taxon, which could have been missed during the survey due to its flowering period having already occurred.
- *Stylidium weeliwolli* (P3) Likely: the study area contains suitable habitat for this taxon, which could have been missed during the survey due to its flowering period occurring three months following the survey.

The survey was conducted in May 2023, which is within the primary survey period as per EPA Guidance (Environmental Protection Authority, 2016). Conditions encountered during the survey were regarded as average, with rainfall in the preceding three months being lower than the long-term average. Despite some specimens being sterile or dead, numerous annual species were recorded.

Two broad fauna habitat types were described from the study area: 'Low Hills and Slopes' and 'Minor Drainage'. Low Hills and Slopes habitat is considered high value habitat where active Western Pebblemound Mouse mounds were recorded. However, this habitat is common in the surrounding area and throughout the Pilbara. This habitat is considered of moderate value for other species of conservation significance. Both fauna habitats are not considered to be restricted at a local or regional level.

One fauna species of conservation significance, the Western Pebble-mound Mouse (P4), was recorded within the study area, for which 22 mounds were recorded. The species is patchily distributed on gentle colluvial slopes of rocky, hummock grasslands with little or no soil and a sparse shrub layer. Where suitable habitat is present, this species can be common.

Based on specialist assessment, the proposal is not likely to be at variance to this principle.

4.2 Principle (b) Potential impact to any significant habitat for fauna indigenous to Western Australia

Native vegetation should not be cleared if it comprises the whole, or part of, or is necessary for the maintenance of, a significant habitat for fauna indigenous to Western Australia.

Secondary evidence in the form of 22 mounds of the Priority 4 species *Pseudomys chapmani* (Western Pebble-mound Mouse) was recorded within the study area, of which 18 were considered active, one recently inactive (i.e. a mound that had slightly lost their dome formation), and three inactive mounds. This species can be common where suitable habitat is present.

No conservation significant fauna species were considered 'Likely' to occur within the habitats available in the study area. Three conservation significant fauna species were considered to have the 'potential' to occur within the study area: *Dasyurus hallucatus* (Northern Quoll); *Macroderma gigas* (Ghost Bat); *Rhinonicteris aurantia* (Pilbara Leaf-nosed Bat). The Proposal is unlikely to impact the conservation status of these three species due to the lack of core habitat within the study area, such as denning or roosting habitat, or permanent water pools.

Due to the small size of the study area, it is considered unlikely the Proposal will negatively impact on the conservation status of any of these species, on either a local or regional scale.

Based on specialist assessment, the proposal is not likely to be at variance to this principle.

4.3 Principle (c) Potential impact to any rare flora

Native vegetation should not be cleared if it includes, or is necessary for the continued existence of rare flora.

No Threatened flora species were recorded, and none were identified by the database searches within 20 km of the study area.

Based on specialist assessment, the Proposal is considered not at variance to this principle.

4.4 Principle (d) Presence of any threatened ecological communities

Native vegetation should not be cleared if it comprises the whole or part of, or is necessary for the maintenance of a threatened ecological community (TEC).

No TEC is known to occur within 50 km of the study area, and none were recorded within the study area.

Based on specialist assessment, the Proposal is considered not at variance to this principle.

4.5 Principle (e) Significance as a remnant of native vegetation in the area that has been extensively cleared

Native vegetation should not be cleared if it is significant as remnant vegetation in an area that has been extensively cleared.

The majority of the Pilbara region has not been extensively cleared. However, grazing, inappropriate fire regimes and weed invasion have greatly altered the vegetation in some areas. The study area falls within one vegetation association: Hamersley 18 (80100053) - Low woodland; mulga (*Acacia aneura*).

The current extent of the Hamersley 18 (80100053) vegetation association (Beard, 1975) within the Pilbara bioregion has been estimated to be over 99% of its pre-European extent remaining and is

considered to be of 'least concern'. As such, the vegetation types within the study area would not represent remnant stands of extensively cleared vegetation, and are well represented within the region.

Based on specialist assessment, the Proposal is considered not at variance to this principle.

4.6 Principle (f) Impact on any watercourse and / or wetlands

Native vegetation should not be cleared if it is growing in, or in association with, an environment associated with a watercourse or wetland.

The closest Groundwater Dependent Ecosystem (GDE) is located 1.0 km north of the study area, which is represented by Weeli Wolli Springs.

Minor ephemeral creeklines that flow after significant rainfall events transect the study area, and are not considered to be significant watercourses or wetlands. These flowlines are not holding persistent vegetation that indicate the presence of groundwater dependent vegetation. Additionally, the study area is not considered an inflow dependent ecosystem (claypans, ephemeral wetlands/lakes, floodplains).

One vegetation type, V2, was mapped within the minor creeklines of the study area, which were dry at the time of the survey. Within this vegetation type, a few flora taxa that are associated with, and indicative of, GDE, were identified. These include:

- Low level (soil moisture availability or surface water availability is sub-perennial to ephemeral) species: *Eucalyptus xerothermica, Atalaya hemiglauca, Stylobasium spathulatum* (although not common or abundant).
- Moderate level (soil moisture availability or surface water availability is sub-perennial) species: *Dodonaea lanceolata* (although not abundant).

Based on specialist assessment, the proposal is not likely to be at variance to this principle.

4.7 Principle (g) Potential to cause appreciable land degradation

Native vegetation should not be cleared if the clearing of vegetation is likely to cause appreciable land degradation.

The study area is located within the Oakover Land System, which is described as breakaways, mesas, plateaux and stony plains of calcrete supporting hard spinifex shrubby grasslands. The Oakover Land System is not generally prone to degradation or susceptible to soil erosion (Van Vreeswyk, Payne, Leighton, & Hennig, 2004).

The Proposal is not expected to result in soil erosion, nutrient export, water-logging/flooding, acidification, salinization or deep subsoil compaction.

Based on specialist assessment, the proposal is not likely to be at variance to this principle.

4.8 Principle (h) Potential to impact on the environmental values of adjacent or nearby conservation areas

Native vegetation should not be cleared if the clearing of the vegetation is likely to have an impact on the environmental values of any adjacent or nearby conservation area.

The study area does not intersect any mapped Environmentally Sensitive Areas or conservation areas.

Based on specialist assessment, the proposal is considered not at variance to this principle.

4.9 Principle (i) Potential deterioration in the quality of surface or underground water

Native vegetation should not be cleared if the clearing of the vegetation is likely to cause deterioration in the quality of surface or underground water.

No permanent or semi-permanent water features occur in or adjacent to the study area. Given the small scale of Proposal, there is no reason to expect that the Proposal would affect groundwater quality in the region.

The Proposal does not lie over a Public Drinking Water Source.

Based on specialist assessment, the proposal is not likely to be at variance to this principle.

4.10 Principle (j) Potential of clearing to cause, or exacerbate, the incidence or intensity of flooding

Native vegetation should not be cleared if the clearing of vegetation is likely to cause, or exacerbate, the incidence of flooding.

Local flooding occurs seasonally in the Pilbara region as a result of cyclonic activity and sporadic thunderstorm activity. Several minor ephemeral drainage lines but no major streams are present within the Proposal.

The small scale of cleared proposed is not expected to exacerbate the incidence or intensity of flooding in the area.

Based on specialist assessment, the proposal is not likely to be at variance to this principle.

5. Conclusions

Rio Tinto's Proposal is to clear native vegetation to undertake a hydrological drilling program at Hope Downs 1. The study area covers approximately 143.6 ha of previously disturbed ground (2.9 ha, 2.0%) and intact native vegetation (140.7 ha, 98%).

The landforms, vegetation, and fauna habitats are well represented within the broader Hamersley subregion. Three vegetation types were identified across the study area. Two vegetation types were described from undulating plains or low hills, and one vegetation type from drainage lines.

The study area does not contain any TECs or PECs and is not within any ESAs. The vegetation types identified within the study area are considered to be of low conservation value and are widely distributed both locally and throughout the Hamersley subregion.

A total of 94 taxa from 50 genera representing 25 families were recorded during the current survey. The dominant plant groups are consistent with other surveys of the broader locality.

No species of Threatened flora were recorded by the study, or were expected to occur within the study area.

A total of two Priority flora taxa were recorded within the study area, *Acacia subtiliformis* (P3) and *Goodenia* sp. East Pilbara (A.A. Mitchell PRP 727) (P3).

One introduced (weed) species was recorded from the study area, **Cenchrus ciliaris*, which is not listed as a Declared Pest or Weed of National Significance.

Two broad fauna habitat types were described from the study area: 'Low Hills and Slopes' and 'Minor Drainage'. Both fauna habitats are not considered to be restricted at a local or regional level.

One fauna species of conservation significance, the Western Pebble-mound Mouse (P4), was recorded within the study area, for which 22 mounds were recorded. Where suitable habitat is present, this species can be common.

The manner in which the clearing of native vegetation is regulated, undertaken and rehabilitated is under various internal Rio Tinto operational controls, which are presented in Appendix 12 and will be followed during the course of the Proposal.

A specialist assessment against the 10 Clearing Principles determined that:

- Principles (c), (d), (e) and (h) are not at variance; and
- Principles (a), (b), (f), (g), (i) and (j) are not likely to be at variance.

6. References

- Astron Environmental Services. (2019). *Hope Downs 2 Proposal Fauna Survey March 2019*. Prepared for Rio Tinto.
- Astron Environmental Services. (2019). *Hope Downs 2 Proposal Flora and Vegetation Survey*. Prepared for Rio Tinto.
- Astron Environmental Services. (2019). *Hope Downs 2 Proposal Matters of National Environmental Significance Fauna Assessment.* Prepared for Rio Tinto.
- Astron Environmental Services. (2020). *Hope Downs 1 Development Envelope Fauna Habitat Mapping.* Prepared for Rio Tinto.
- Astron Environmental Services. (2020). *Hope Downs Development Envelope Vegetation Mapping.* Prepared for Rio Tinto.
- Beard, J. S. (1975). Vegetation Survey of Western Australia, Pilbara. 1:1 000 000 Vegetation Series. Explanatory Notes to Sheet 5. Nedlands, Western Australia: University of Western Australia Press.
- Biota Environmental Sciences. (2008). *Hope Downs Northern Quoll Position Paper*. Prepared for Rio Tinto Iron Ore on behalf of Hammersley HMS.
- Biota Environmental Sciences. (2011). *Hope Downs Project Life of Mine Targeted Fauna Survey.* Prepared for Rio Tinto Iron Ore.
- BirdLife International. (2023). Retrieved from BirdLife: http://datazone.birdlife.org
- BoM. (2023). Climate Data Online. Retrieved from http://www.bom.gov.au/climate/data/
- Christian, C. S., & Stewart, G. A. (1953). General report on survey of Katherine-Darwin region, 1946. *Land Research Series No. 1*.
- Churchill, S. (1998). Australian Bats. Pullman, WA: Reed Natural History Australia.
- Department of Agriculture, Water and the Environment. (2021). *Weeds Australia*. Retrieved from Centre for Invasive Species Solutions: https://weeds.org.au/
- Department of Agriculture, Water and the Environment. (2022). *Australia's bioregions (IBRA)*. Retrieved from http://www.environment.gov.au/land/nrs/science/ibra
- Department of Biodiversity, Conservation and Attractions. (2017, May 26). *Night Parrot*. Retrieved from Parks and Wildlife Service: https://www.dpaw.wa.gov.au/plants-and-animals/threatened-species-and-communities/threatened-animals/night-parrot
- Department of Biodiversity, Conservation and Attractions. (2018). List of Threatened Ecological Communities Endorsed by the Western Australian Minister for Environment.
- Department of Biodiversity, Conservation and Attractions. (2022). *Priority Ecological Communities for Western Australia Version 33.* Species and Communities Program.
- Department of Biodiversity, Conservation and Attractions. (2023). *Priority Ecological Communities for Western Australia Version 35.* Species and Communities Program.
- Department of Climate Change, Energy, the Environment and Water. (2022). *Protected Matters Search Tool: Interactive Map.* Retrieved from https://pmst.awe.gov.au/
- Department of Climate Change, Energy, the Environment and Water. (2023). Retrieved from Species Profile and Threats Database: http://www.environment.gov.au/cgi-bin/sprat/public/sprat.pl
- Department of Climate Change, Energy, the Environment and Water. (2023). *Apus pacificus Fork-tailed Swift*. Retrieved from Species Profile and Threats Database: https://www.environment.gov.au/cgi-bin/sprat/public/publicspecies.pl?taxon_id=678

- Department of Primary Industries and Regional Development. (2022). *Western Australian Organism List*. Retrieved from Agriculture and Food: https://www.agric.wa.gov.au/organisms
- Department of Water and Environmental Regulation. (2022). WRIMS Groundwater subareas (DWER-083) dataset.
- Environmental Protection Authority. (2016, December). *Environmental Factor Guideline Terrestrial Fauna*. Perth, Western Australia.
- Environmental Protection Authority. (2016, December). *Technical Guidance Flora and Vegetation Surveys for Environmental Impact Assessment*. Perth, Western Australia: The Government of Western Australia.
- Environmental Protection Authority. (2020, July). *Technical Guidance Terrestrial vertebrate fauna surveys for environmental impact assessment.* Perth, Western Australia.
- Geoscience Australia. (2006). GEODATA TOPO 250K Series 3. Symonston, ACT Australia: Ausgeo News.
- Government of Western Australia. (2018). Pilbara Conservation Strategy.
- Howe, R. A., Spencer, P. B., & Schmitt, L. H. (2009). Island populations have high conservation value for northern Australia's top marsupial predator ahead of a threatening process. *Journal of Zoology*, 1-12.
- Kendrick, P. (2001). *Pilbara 3 (PIL3 Hamersley subregion), A Biodiversity Audit of Western Australia's* 53 *Biogeographical Subregions in 2002.* Department of Conservation and Land Management.
- Marchant, S., Higgins, P. J., & Considine, M. (1993). *Handbook of Australian, New Zealand & Antarctic birds. Volume 2, Raptors to lapwings.* Melbourne, Australia: Oxford University Press.
- Maslin, B. R. (2001). WATTLE: Acacias of Australia. Canberra: CSIRO Publishing.
- Maslin, B. R., & van Leeuwen, S. (2008). New taxa of Acacia (Leguminosae: Mimosoideae) and notes on other species from the Pilbara and adjacent desert regions of Western Australia. *Nuytsia*, *18*, 139-188.
- Mattiske Consulting Pty Ltd. (2009). *Flora and Vegetation of the Hope Downs 1 Area*. Prepared for Pilbara Iron.
- Menkhorst, P., & Knight, F. (2021). *A field guide to the mammals of Australia*. South Melbourne, Australia: Oxford University Press.
- Menkhorst, P., Rogers, D., Clarke, R., Davies, J., & Marsack, P. (2017). *The Australian Bird Guide*. Australia: CSIRO.
- Oakwood, M. (2002). Spatial and social organization of a carnivorous marsupial Dasyurus hallucatus (Marsupialia: Dasyuridae). *Journal of Zoology*, 237-248.
- Pearson, D. J. (1993). Distribution, status and conservation of pythons in Western Australia. In D. Lunney, & D. Ayers, *Herpetology in Australia: a Diverse Discipline* (pp. 383-395). Sydney: Royal Zoological Society of NSW.
- Pizzey, G., & Knight, F. (2012). *The Field Guide to the Birds of Australia*. Australia: HarperCollins Publishers.
- Rio Tinto and Western Australian Herbarium. (2015). *Rare and Priority Plants of the Pilbara*. Perth, Western Australia: LucidMobile.
- Shepherd, D. P., Beeston, G. R., & Hopkins, A. J. (2002). *Native vegetation in Western Australia extent, type and status.* Western Australia: Department of Agriculture.
- Threatened Species Scientific Committee. (2005). Commonwealth Listing Advice on Northern Quoll (Dasyurus hallucatus). Retrieved from Department of Climate Change, Energy, the Environment and Water:

https://www.dcceew.gov.au/environment/biodiversity/threatened/assessments/dasyurus-hallucatus-2005

- Tutt, M., Mitchell, S., Brace, P., & Pearson, D. (2002). *Conserving Pilbara olive pythons on the Burrup. Threatened Species Network community grants annual report, Project WA04/100.* Karratha: Nickol Bay Naturalists' Club.
- Van Dyck, S., & Strahan, R. (2008). *The Mammals of Australia*. Sydney, Australia: New Holland Publishers.
- Van Vreeswyk, A. M., Payne, A. L., Leighton, K. A., & Hennig, P. (2004). *An inventory and condition survey of the Pilbara region, Western Australia.* Department of Agriculture.
- Western Australian Herbarium. (2022). Retrieved from Florabase the Western Australian Flora: https://florabase.dpaw.wa.gov.au/
- Wilson, S., & Swan, G. (2017). A complete guide to reptiles of Australia. Sydney, Australia: New Holland Publishers.

7. Appendices

TAXON	CLASS	CONS	KINGDOM
Acanthagenys rufogularis	BIRD		Animalia
Acanthiza apicalis	BIRD		Animalia
Acanthiza chrysorrhoa	BIRD		Animalia
Acanthiza robustirostris	BIRD		Animalia
Acanthiza uropygialis	BIRD		Animalia
Acanthophis wellsi	REPTILE		Animalia
Accipiter cirrocephalus	BIRD		Animalia
Accipiter fasciatus	BIRD		Animalia
Acrocephalus australis	BIRD		Animalia
Aegotheles cristatus	BIRD		Animalia
Amphibolurus longirostris	REPTILE		Animalia
Amytornis striatus	BIRD		Animalia
Amytornis striatus subsp. whitei	BIRD		Animalia
Anas superciliosa	BIRD		Animalia
Anhinga melanogaster	BIRD		Animalia
Anhinga melanogaster subsp. novaehollandiae	BIRD		Animalia
Anhinga novaehollandiae	BIRD		Animalia
Anilios ganei	REPTILE	P1	Animalia
Antaresia perthensis	REPTILE		Animalia
Antaresia stimsoni	REPTILE		Animalia
Antaresia stimsoni subsp. orientalis	REPTILE		Animalia
Anthus australis	BIRD		Animalia
Aphelocephala leucopsis	BIRD		Animalia
Apus pacificus	BIRD	MI	Animalia
Aquila audax	BIRD		Animalia
Aquila morphnoides	BIRD		Animalia
Ardea novaehollandiae	BIRD		Animalia
Ardea pacifica	BIRD		Animalia
Ardeotis australis	BIRD		Animalia
Artamus cinereus	BIRD		Animalia
Artamus cinereus subsp. melanops	BIRD		Animalia
Artamus cyanopterus	BIRD		Animalia
Artamus minor	BIRD		Animalia
Artamus personatus	BIRD		Animalia
Aspidites melanocephalus	REPTILE		Animalia
Austronomus australis	MAMMAL		Animalia
Barnardius zonarius	BIRD		Animalia
Bos taurus	MAMMAL		Animalia
Brachyurophis approximans	REPTILE		Animalia
Cacatua roseicapilla	BIRD		Animalia
Cacatua roseicapilla subsp. assimilis	BIRD		Animalia
Cacatua roseicapilla subsp. roseicapilla	BIRD		Animalia
Cacatua sanguinea	BIRD		Animalia
Cacatua sanguinea subsp. sanguinea	BIRD		Animalia
Cacomantis pallidus	BIRD		Animalia
Caimanops amphiboluroides	REPTILE		Animalia
Camelus dromedarius	MAMMAL		Animalia
Canis dingo	MAMMAL		Animalia
Canis familiaris dingo	MAMMAL		Animalia

TAXON	CLASS CON	S KINGDOM
Canis lupus subsp. dingo	MAMMAL	Animalia
Carlia munda	REPTILE	Animalia
Carlia triacantha	REPTILE	Animalia
Certhionyx niger	BIRD	Animalia
Certhionyx variegatus	BIRD	Animalia
Chaerephon jobensis	MAMMAL	Animalia
Chalinolobus gouldii	MAMMAL	Animalia
Chalinolobus morio	MAMMAL	Animalia
Charadrius melanops	BIRD	Animalia
Cheramoeca leucosternus	BIRD	Animalia
Chrysococcyx basalis	BIRD	Animalia
Cincloramphus cruralis	BIRD	Animalia
Cincloramphus mathewsi	BIRD	Animalia
Cinclosoma castaneothorax	BIRD	Animalia
Circus assimilis	BIRD	Animalia
Colluricincla harmonica	BIRD	Animalia
Colluricincla harmonica subsp. rufiventris	BIRD	Animalia
Coracina maxima	BIRD	Animalia
Coracina novaehollandiae	BIRD	Animalia
Coracina novaehollandiae subsp. subpallida	BIRD	Animalia
Corvus bennetti	BIRD	Animalia
Corvus coronoides	BIRD	Animalia
Corvus orru	BIRD	Animalia
Corvus orru subsp. cecilae	BIRD	Animalia
Coturnix ypsilophora	BIRD	Animalia
Cracticus nigrogularis	BIRD	Animalia
Cracticus tibicen	BIRD	Animalia
Cracticus tibicen subsp. dorsalis	BIRD	Animalia
Cracticus tibicen subsp. tibicen	BIRD	Animalia
Cracticus torquatus	BIRD	Animalia
Crenadactylus ocellatus	REPTILE	Animalia
Crenadactylus ocellatus subsp. horni	REPTILE	Animalia
Crenadactylus ocellatus subsp. rostralis	REPTILE	Animalia
Cryptoblepharus buchananii	REPTILE	Animalia
Cryptoblepharus plagiocephalus	REPTILE	Animalia
Cryptoblepharus ustulatus	REPTILE	Animalia
Ctenophorus caudicinctus	REPTILE	Animalia
Ctenophorus caudicinctus subsp. caudicinctus	REPTILE	Animalia
Ctenophorus isolepis	REPTILE	Animalia
Ctenophorus isolepis subsp. citrinus	REPTILE	Animalia
Ctenophorus isolepis subsp. isolepis	REPTILE	Animalia
Ctenophorus nuchalis	REPTILE	Animalia
Ctenotus ariadnae	REPTILE	Animalia
Ctenotus duricola	REPTILE	Animalia
Ctenotus grandis	REPTILE	Animalia
Ctenotus grandis subsp. grandis	REPTILE	Animalia
Ctenotus hanloni	REPTILE	Animalia
Ctenotus helenae	REPTILE	Animalia
Ctenotus inornatus	REPTILE	Animalia

TAXON	CLASS	CONS	KINGDOM
Ctenotus pantherinus	REPTILE		Animalia
Ctenotus pantherinus subsp. acripes	REPTILE		Animalia
Ctenotus pantherinus subsp. ocellifer	REPTILE		Animalia
Ctenotus rubicundus	REPTILE		Animalia
Ctenotus rutilans	REPTILE		Animalia
Ctenotus saxatilis	REPTILE		Animalia
Ctenotus schomburgkii	REPTILE		Animalia
Ctenotus serventyi	REPTILE		Animalia
Cuculus pallidus	BIRD		Animalia
Cyclodomorphus melanops	REPTILE		Animalia
Cyclodomorphus melanops subsp. elongatus	REPTILE		Animalia
Cyclodomorphus melanops subsp. melanops	REPTILE		Animalia
Cyclorana maini	AMPHI		Animalia
Cyclorana platycephala	AMPHI		Animalia
Dacelo leachii	BIRD		Animalia
Dacelo leachii subsp. leachii	BIRD		Animalia
Dasykaluta rosamondae	MAMMAL		Animalia
Dasyurus hallucatus	MAMMAL	EN	Animalia
Delma elegans	REPTILE		Animalia
Delma haroldi	REPTILE		Animalia
Delma nasuta	REPTILE		Animalia
Delma pax	REPTILE		Animalia
Delma tincta	REPTILE		Animalia
Demansia psammophis	REPTILE		Animalia
Demansia psammophis subsp. cupreiceps	REPTILE		Animalia
Demansia rufescens	REPTILE		Animalia
Dicaeum hirundinaceum	BIRD		Animalia
Diplodactylus conspicillatus	REPTILE		Animalia
Diplodactylus pulcher	REPTILE		Animalia
Diplodactylus savagei	REPTILE		Animalia
Dromaius novaehollandiae	BIRD		Animalia
Egernia cygnitos	REPTILE		Animalia
Egernia depressa	REPTILE		Animalia
Egernia formosa	REPTILE		Animalia
Egretta novaehollandiae	BIRD		Animalia
Elanus caeruleus subsp. axillaris	BIRD		Animalia
Elseyornis melanops	BIRD		Animalia
Emblema pictum	BIRD		Animalia
Eolophus roseicapillus	BIRD		Animalia
Epthianura tricolor	BIRD		Animalia
Eremiascincus fasciolatus	REPTILE		Animalia
Eremiascincus isolepis	REPTILE		Animalia
Eremiascincus pallidus	REPTILE		Animalia
Eremiascincus richardsonii	REPTILE		Animalia
Eremiornis carteri	BIRD		Animalia
Erythrogonys cinctus	BIRD		Animalia
Eurostopodus argus	BIRD		Animalia
Falco berigora	BIRD		Animalia
Falco berigora subsp. berigora	BIRD		Animalia

TAXON	CLASS	CONS	KINGDOM
Falco cenchroides	BIRD		Animalia
Falco longipennis	BIRD		Animalia
Falco longipennis subsp. longipennis	BIRD		Animalia
Falco peregrinus	BIRD	OS	Animalia
Felis catus	MAMMAL		Animalia
Furina ornata	REPTILE		Animalia
Gallirallus philippensis	BIRD		Animalia
Gavicalis virescens	BIRD		Animalia
Gehyra 'fenestra'	REPTILE		Animalia
Gehyra montium	REPTILE		Animalia
Gehyra pilbara	REPTILE		Animalia
Gehyra punctata	REPTILE		Animalia
Gehyra purpurascens	REPTILE		Animalia
Gehyra variegata	REPTILE		Animalia
Gehyra variegata/purpurascens	REPTILE		Animalia
Geopelia cuneata	BIRD		Animalia
Geopelia striata	BIRD		Animalia
Geopelia striata subsp. placida	BIRD		Animalia
Geophaps plumifera	BIRD		Animalia
Gerygone (fusca) mungi	BIRD		Animalia
Gerygone fusca	BIRD		Animalia
Gerygone fusca subsp. fusca	BIRD		Animalia
Gerygone fusca subsp. mungi	BIRD		Animalia
Grallina cyanoleuca	BIRD		Animalia
Haliastur sphenurus	BIRD		Animalia
Hamirostra isura	BIRD		Animalia
Hamirostra melanosternon	BIRD		Animalia
Heteronotia binoei	REPTILE		Animalia
Heteronotia sp.	REPTILE		Animalia
Heteronotia sp. B	REPTILE		Animalia
Heteronotia spelea	REPTILE		Animalia
Hieraaetus morphnoides	BIRD		Animalia
Hirundo nigricans	BIRD		Animalia
Hirundo nigricans subsp. nigricans	BIRD		Animalia
Lacustroica whitei	BIRD		Animalia
Lalage tricolor	BIRD		Animalia
Lerista bipes	REPTILE		Animalia
Lerista labialis	REPTILE		Animalia
Lerista macropisthopus subsp. fusciceps	REPTILE		Animalia
Lerista muelleri	REPTILE		Animalia
Lerista neander	REPTILE		Animalia
Lerista zietzi	REPTILE		Animalia
Lialis burtonis	REPTILE		Animalia
Liasis olivaceus subsp. barroni	REPTILE	VU	Animalia
Lichenostomus keartlandi	BIRD		Animalia
Lichenostomus penicillatus	BIRD		Animalia
Lichenostomus virescens	BIRD		Animalia
Lichmera indistincta	BIRD		Animalia
Lichmera indistincta subsp. indistincta	BIRD		Animalia

TAXON	CLASS	CONS	KINGDOM
Litoria rubella	AMPHI		Animalia
Lophognathus longirostris	REPTILE		Animalia
Lucasium stenodactylum	REPTILE		Animalia
Lucasium wombeyi	REPTILE		Animalia
Lucasium 'woodwardi'	REPTILE		Animalia
Macroderma gigas	MAMMAL	VU	Animalia
Macronectes giganteus	BIRD	MI	Animalia
Macropus robustus	MAMMAL		Animalia
Macropus robustus subsp. erubescens	MAMMAL		Animalia
Macropus rufus	MAMMAL		Animalia
Malurus lamberti	BIRD		Animalia
Malurus lamberti assimilis	BIRD		Animalia
Malurus lamberti subsp. assimilis	BIRD		Animalia
Malurus leucopterus	BIRD		Animalia
Malurus leucopterus subsp. leuconotus	BIRD		Animalia
Manorina flavigula	BIRD		Animalia
Melanodryas cucullata	BIRD		Animalia
Melithreptus gularis	BIRD		Animalia
Melopsittacus undulatus	BIRD		Animalia
Menetia greyii	REPTILE		Animalia
Menetia surda	REPTILE		Animalia
Menetia surda subsp. surda	REPTILE		Animalia
Merops ornatus	BIRD		Animalia
Milvus migrans	BIRD		Animalia
Milvus migrans subsp. affinis	BIRD		Animalia
Mirafra javanica	BIRD		Animalia
Morethia ruficauda	REPTILE		Animalia
Morethia ruficauda subsp. exquisita	REPTILE		Animalia
Mormopterus beccarii	MAMMAL		Animalia
Mormopterus Ioriae	MAMMAL		Animalia
Mus musculus	MAMMAL		Animalia
Neobatrachus sutor	AMPHI		Animalia
Neochmia ruficauda	BIRD		Animalia
Neochmia ruficauda subsp. subclarescens	BIRD		Animalia
Neophema bourkii	BIRD		Animalia
Neopsephotus bourkii	BIRD		Animalia
Nephrurus milii	REPTILE		Animalia
Nephrurus wheeleri	REPTILE		Animalia
Nephrurus wheeleri subsp. cinctus	REPTILE		Animalia
Ningaui ridei	MAMMAL		Animalia
Ningaui timealeyi	MAMMAL		Animalia
Ninox boobook boobook	BIRD		Animalia
Ninox connivens	BIRD		Animalia
Ninox connivens subsp. connivens	BIRD	Р3	Animalia
Ninox novaeseelandiae	BIRD		Animalia
Nyctophilus bifax subsp. daedalus	MAMMAL		Animalia
Nyctophilus daedalus	MAMMAL		Animalia
Nyctophilus geoffroyi	MAMMAL		Animalia
Nymphicus hollandicus	BIRD		Animalia

TAXON	CLASS	CONS	KINGDOM
Ocyphaps lophotes	BIRD		Animalia
Oedura fimbria	REPTILE		Animalia
Oedura marmorata	REPTILE		Animalia
Oreoica gutturalis	BIRD		Animalia
Oreoica gutturalis subsp. pallescens	BIRD		Animalia
Oryctolagus cuniculus	MAMMAL		Animalia
Osphranter robustus	MAMMAL		Animalia
Osphranter robustus erubescens	MAMMAL		Animalia
Osphranter rufus	MAMMAL		Animalia
Ozimops lumsdenae	MAMMAL		Animalia
Pachycephala rufiventris	BIRD		Animalia
Pachycephala rufiventris subsp. rufiventris	BIRD		Animalia
Parasuta monachus	REPTILE		Animalia
Pardalotus rubricatus	BIRD		Animalia
Pardalotus striatus	BIRD		Animalia
Pardalotus striatus subsp. murchisoni	BIRD		Animalia
Pardalotus striatus subsp. uropygialis	BIRD		Animalia
Pardalotus striatus subsp. westraliensis	BIRD		Animalia
Petrochelidon ariel	BIRD		Animalia
Petrochelidon nigricans	BIRD		Animalia
Petrogale rothschildi	MAMMAL		Animalia
Petroica cucullata	BIRD		Animalia
Petroica goodenovii	BIRD		Animalia
Phalacrocorax sulcirostris	BIRD		Animalia
Phaps chalcoptera	BIRD		Animalia
Phylidonyris albifrons	BIRD		Animalia
Planigale ingrami	MAMMAL		Animalia
Planigale sp.	MAMMAL		Animalia
Planigale Sp.1 (WAM)	MAMMAL		Animalia
Platycercus varius	BIRD		Animalia
Platycercus zonarius	BIRD		Animalia
Platycercus zonarius subsp. zonarius	BIRD		Animalia
Podargus strigoides	BIRD		Animalia
Pogona minor	REPTILE		Animalia
Pogona minor subsp. minor	REPTILE		Animalia
Pogona minor subsp. mitchelli	REPTILE		Animalia
Pomatostomus superciliosus	BIRD		Animalia
Pomatostomus temporalis	BIRD		Animalia
Pomatostomus temporalis subsp. rubeculus	BIRD		Animalia
Porphyrio porphyrio	BIRD		Animalia
Porzana tabuensis	BIRD		Animalia
Proablepharus reginae	REPTILE		Animalia
Pseudantechinus sp.	MAMMAL		Animalia
Pseudantechinus woolleyae	MAMMAL		Animalia
Pseudechis australis	REPTILE		Animalia
Pseudomys chapmani	MAMMAL	P4	Animalia
Pseudomys desertor	MAMMAL		Animalia
Pseudomys hermannsburgensis	MAMMAL		Animalia
Pseudonaja mengdeni	REPTILE		Animalia

TAXON	CLASS	CONS	KINGDOM
Pseudonaja modesta	REPTILE		Animalia
Pseudonaja nuchalis	REPTILE		Animalia
Pseudophryne douglasi	AMPHI		Animalia
Psophodes occidentalis	BIRD		Animalia
Ptilonorhynchus guttatus	BIRD		Animalia
Ptilonorhynchus maculatus	BIRD		Animalia
Ptilonorhynchus maculatus guttatus	BIRD		Animalia
Ptilonorhynchus maculatus subsp. guttatus	BIRD		Animalia
Ptilotula keartlandi	BIRD		Animalia
Ptilotula penicillatus	BIRD		Animalia
Purnella albifrons	BIRD		Animalia
Pygopus nigriceps	REPTILE		Animalia
Pygopus nigriceps nigriceps	REPTILE		Animalia
Pyrrholaemus brunneus	BIRD		Animalia
Ramphotyphlops ammodytes	REPTILE		Animalia
Ramphotyphlops ganei	REPTILE		Animalia
Ramphotyphlops grypus	REPTILE		Animalia
Ramphotyphlops hamatus	REPTILE		Animalia
Rhinonicteris aurantia	MAMMAL	P4	Animalia
Rhinonicteris aurantia (Pilbara)	MAMMAL	VU	Animalia
Rhipidura (fuliginosa) albicauda	BIRD		Animalia
Rhipidura albicauda	BIRD		Animalia
Rhipidura albiscapa	BIRD		Animalia
Rhipidura fuliginosa	BIRD		Animalia
Rhipidura fuliginosa subsp. alisteri	BIRD		Animalia
Rhipidura leucophrys	BIRD		Animalia
Rhipidura leucophrys subsp. leucophrys	BIRD		Animalia
Rhynchoedura ornata	REPTILE		Animalia
Saccolaimus flaviventris	MAMMAL		Animalia
Scotorepens greyii	MAMMAL		Animalia
Smicrornis brevirostris	BIRD		Animalia
Sminthopsis macroura	MAMMAL		Animalia
Sminthopsis ooldea	MAMMAL		Animalia
Sminthopsis youngsoni	MAMMAL		Animalia
Stipiturus ruficeps	BIRD		Animalia
Strophurus elderi	REPTILE		Animalia
Strophurus jeanae	REPTILE		Animalia
Strophurus wellingtonae	REPTILE		Animalia
Sugomel niger	BIRD		Animalia
Suta fasciata	REPTILE		Animalia
Suta punctata	REPTILE		Animalia
Tachyglossus aculeatus	MAMMAL		Animalia
Tachyglossus aculeatus acanthion	MAMMAL		Animalia
Tadarida australis	MAMMAL		Animalia
Taeniopygia guttata	BIRD		Animalia
Taeniopygia guttata subsp. castanotis	BIRD		Animalia
Taphozous georgianus	MAMMAL		Animalia
Taphozous hilli	MAMMAL		Animalia
Threskiornis spinicollis	BIRD		Animalia

TAXON	CLASS	CONS	KINGDOM
Tiliqua multifasciata	REPTILE		Animalia
Todiramphus pyrrhopygia	BIRD		Animalia
Todiramphus pyrrhopygius	BIRD		Animalia
Todiramphus sanctus	BIRD		Animalia
Todiramphus sanctus vagans	BIRD		Animalia
Turnix velox	BIRD		Animalia
Tympanocryptis cephalus	REPTILE		Animalia
Tyto alba	BIRD		Animalia
Underwoodisaurus milii	REPTILE		Animalia
Underwoodisaurus seorsus	REPTILE	P2	Animalia
Uperoleia russelli	AMPHI		Animalia
Uperoleia saxatalis	AMPHI		Animalia
Uperoleia saxatilis	AMPHI		Animalia
Varanus acanthurus	REPTILE		Animalia
Varanus brevicauda	REPTILE		Animalia
Varanus bushi	REPTILE		Animalia
Varanus caudolineatus	REPTILE		Animalia
Varanus eremius	REPTILE		Animalia
Varanus giganteus	REPTILE		Animalia
Varanus gilleni	REPTILE		Animalia
Varanus gouldii	REPTILE		Animalia
Varanus hamersleyensis	REPTILE		Animalia
Varanus panoptes	REPTILE		Animalia
Varanus panoptes subsp. rubidus	REPTILE		Animalia
Varanus pilbarensis	REPTILE		Animalia
Varanus tristis	REPTILE		Animalia
Varanus tristis subsp. tristis	REPTILE		Animalia
Vespadelus finlaysoni	MAMMAL		Animalia
Zyzomys argurus	MAMMAL		Animalia
Zyzomys sp.	MAMMAL		Animalia
Abutilon lepidum	DICOT		Plantae
Abutilon sp. Dioicum (A.A. Mitchell PRP 1618)	DICOT		Plantae
Abutilon sp. Pilbara (W.R. Barker 2025)	DICOT		Plantae
Acacia adoxa var. adoxa	DICOT		Plantae
Acacia adsurgens	DICOT		Plantae
Acacia ampliceps	DICOT		Plantae
Acacia ancistrocarpa	DICOT		Plantae
Acacia aneura hybrid	DICOT		Plantae
Acacia aptaneura	DICOT		Plantae
Acacia aptaneura x pteraneura	DICOT		Plantae
Acacia arida	DICOT		Plantae
Acacia arida x hilliana	DICOT		Plantae
Acacia atkinsiana	DICOT		Plantae
Acacia ayersiana	DICOT		Plantae
Acacia ayersiana hybrid	DICOT		Plantae
Acacia bivenosa	DICOT		Plantae
Acacia bromilowiana	DICOT	P4	Plantae
Acacia catenulata	DICOT		Plantae
Acacia catenulata subsp. occidentalis	DICOT		Plantae

TAXON	CLASS	CONS	KINGDOM
Acacia citrinoviridis	DICOT		Plantae
Acacia coriacea	DICOT		Plantae
Acacia coriacea subsp. pendens	DICOT		Plantae
Acacia dictyophleba	DICOT		Plantae
Acacia elachantha	DICOT		Plantae
Acacia hamersleyensis	DICOT		Plantae
Acacia inaequilatera	DICOT		Plantae
Acacia incurvaneura	DICOT		Plantae
Acacia maitlandii	DICOT		Plantae
Acacia marramamba	DICOT		Plantae
Acacia monticola	DICOT		Plantae
Acacia pachyacra	DICOT		Plantae
Acacia paraneura	DICOT		Plantae
Acacia pruinocarpa	DICOT		Plantae
Acacia pteraneura	DICOT		Plantae
Acacia pyrifolia	DICOT		Plantae
Acacia pyrifolia var. morrisonii	DICOT		Plantae
Acacia pyrifolia var. pyrifolia	DICOT		Plantae
Acacia rhodophloia	DICOT		Plantae
Acacia sclerosperma subsp. sclerosperma	DICOT		Plantae
Acacia sibirica	DICOT		Plantae
Acacia sp. Juliflorae Pilbara Region	DICOT		Plantae
Acacia spondylophylla	DICOT		Plantae
Acacia stowardii	DICOT		Plantae
Acacia subtiliformis	DICOT	Р3	Plantae
Acacia synchronicia	DICOT		Plantae
Acacia tenuissima	DICOT		Plantae
Acacia tetragonophylla	DICOT		Plantae
Acacia tumida	DICOT		Plantae
Acacia tumida var. pilbarensis	DICOT		Plantae
Acrachne racemosa	MONOCOT		Plantae
Adriana tomentosa var. hookeri	DICOT		Plantae
Adriana tomentosa var. tomentosa	DICOT		Plantae
Aerva javanica	DICOT		Plantae
Alectryon oleifolius	DICOT		Plantae
Alternanthera denticulata	DICOT		Plantae
Alternanthera nana	DICOT		Plantae
Alternanthera nodiflora	DICOT		Plantae
Ammannia baccifera	DICOT		Plantae
Amphipogon sericeus	MONOCOT		Plantae
Amyema gibberula var. gibberula	DICOT		Plantae
Amyema hilliana	DICOT		Plantae
Amyema preissii	DICOT		Plantae
Amyema sanguinea var. pulchra	DICOT		Plantae
Amyema sanguinea var. sanguinea	DICOT		Plantae
Androcalva luteiflora	DICOT		Plantae
Anthobolus leptomerioides	DICOT		Plantae
Argemone ochroleuca	DICOT		Plantae
Aristida contorta	MONOCOT		Plantae

TAXON	CLASS	CONS	KINGDOM
Aristida holathera var. holathera	MONOCOT		Plantae
Aristida lazaridis	MONOCOT	P2	Plantae
Astrotricha hamptonii	DICOT		Plantae
Atalaya hemiglauca	DICOT		Plantae
Bidens bipinnata	DICOT		Plantae
Boerhavia coccinea	DICOT		Plantae
Bonamia erecta	DICOT		Plantae
Bonamia pilbarensis	DICOT		Plantae
Bothriochloa ewartiana	MONOCOT		Plantae
Brachychiton acuminatus	DICOT		Plantae
Brachyscome ciliaris	DICOT		Plantae
Brunonia australis	DICOT		Plantae
Bulbostylis barbata	MONOCOT		Plantae
Calandrinia ptychosperma	DICOT		Plantae
Calandrinia reticulata	DICOT		Plantae
Calocephalus francisii	DICOT		Plantae
Calocephalus multiflorus	DICOT		Plantae
Calotis multicaulis	DICOT		Plantae
Calotis plumulifera	DICOT		Plantae
Calytrix carinata	DICOT		Plantae
Capparis lasiantha	DICOT		Plantae
Capparis spinosa	DICOT		Plantae
Cassytha filiformis	DICOT		Plantae
Cenchrus ciliaris	MONOCOT		Plantae
Cenchrus setiger	MONOCOT		Plantae
Centipeda minima subsp. macrocephala	DICOT		Plantae
Cheilanthes austrotenuifolia	FERN		Plantae
Cheilanthes contigua	FERN		Plantae
Cheilanthes lasiophylla	FERN		Plantae
Cheilanthes sieberi	FERN		Plantae
Cheilanthes sieberi subsp. pseudovellea	FERN		Plantae
Chenopodium melanocarpum	DICOT		Plantae
Chloris pectinata	MONOCOT		Plantae
Chrysocephalum apiculatum subsp. pilbarense	DICOT		Plantae
Chrysopogon fallax	MONOCOT		Plantae
Cleome viscosa	DICOT		Plantae
Clerodendrum floribundum var. angustifolium	DICOT		Plantae
Clerodendrum tomentosum var. lanceolatum	DICOT		Plantae
Codonocarpus cotinifolius	DICOT		Plantae
Commelina ensifolia	MONOCOT		Plantae
Corchorus crozophorifolius	DICOT		Plantae
Corchorus lasiocarpus subsp. parvus	DICOT		Plantae
Corchorus sp.	DICOT		Plantae
Corchorus tridens	DICOT		Plantae
Corymbia candida	DICOT		Plantae
Corymbia ferriticola	DICOT		Plantae
Corymbia hamersleyana	DICOT		Plantae
Crotalaria medicaginea	DICOT		Plantae
Crotalaria medicaginea var. neglecta	DICOT		Plantae

TAXON	CLASS	CONS	KINGDOM
Crotalaria novae-hollandiae	DICOT		Plantae
Crotalaria novae-hollandiae subsp. novae-hollandiae	DICOT		Plantae
Cucumis variabilis	DICOT		Plantae
Cullen leucochaites	DICOT		Plantae
Cullen martinii	DICOT		Plantae
Cullen pogonocarpum	DICOT		Plantae
Cymbopogon ambiguus	MONOCOT		Plantae
Cymbopogon obtectus	MONOCOT		Plantae
Cynanchum floribundum	DICOT		Plantae
Cyperus bulbosus	MONOCOT		Plantae
Cyperus cunninghamii subsp. cunninghamii	MONOCOT		Plantae
Cyperus iria	MONOCOT		Plantae
Cyperus ixiocarpus	MONOCOT		Plantae
Cyperus vaginatus	MONOCOT		Plantae
Dactyloctenium radulans	MONOCOT		Plantae
Dampiera candicans	DICOT		Plantae
Datura leichhardtii subsp. leichhardtii	DICOT		Plantae
Dichanthium sericeum subsp. humilius	MONOCOT		Plantae
Dicladanthera forrestii	DICOT		Plantae
Dicrastylis cordifolia	DICOT		Plantae
Digitaria brownii	MONOCOT		Plantae
Diplatia grandibractea	DICOT		Plantae
Dipteracanthus australasicus subsp. australasicus	DICOT		Plantae
Dodonaea coriacea	DICOT		Plantae
Dodonaea lanceolata	DICOT		Plantae
Dodonaea lanceolata var. lanceolata	DICOT		Plantae
Dodonaea pachyneura	DICOT		Plantae
Dodonaea viscosa	DICOT		Plantae
Duperreya commixta	DICOT		Plantae
Dysphania kalpari	DICOT		Plantae
Dysphania melanocarpa forma leucocarpa	DICOT		Plantae
Dysphania melanocarpa forma melanocarpa	DICOT		Plantae
Dysphania rhadinostachya	DICOT		Plantae
Eleocharis geniculata	MONOCOT		Plantae
Enchylaena tomentosa	DICOT		Plantae
Enneapogon caerulescens	MONOCOT		Plantae
Enneapogon lindleyanus	MONOCOT		Plantae
Enneapogon polyphyllus	MONOCOT		Plantae
Enneapogon robustissimus	MONOCOT		Plantae
Enteropogon ramosus	MONOCOT		Plantae
Eragrostis cumingii	MONOCOT		Plantae
Eragrostis eriopoda	MONOCOT		Plantae
Eragrostis pergracilis	MONOCOT		Plantae
Eragrostis tenellula	MONOCOT		Plantae
Eremophila cuneifolia	DICOT		Plantae
Eremophila exilifolia	DICOT		Plantae
Eremophila forrestii subsp. forrestii	DICOT		Plantae
Eremophila fraseri	DICOT		Plantae
Eremophila fraseri subsp. fraseri	DICOT		Plantae

TAXON	CLASS	CONS	KINGDOM
Eremophila jucunda	DICOT		Plantae
Eremophila jucunda subsp. pulcherrima	DICOT		Plantae
Eremophila lanceolata	DICOT		Plantae
Eremophila latrobei	DICOT		Plantae
Eremophila longifolia	DICOT		Plantae
Eremophila magnifica subsp. magnifica	DICOT	P4	Plantae
Eremophila oppositifolia subsp. angustifolia	DICOT		Plantae
Eremophila platycalyx subsp. Neds Creek (N.H. Speck 1228)	DICOT		Plantae
Eremophila sp. Hamersley Range (K. Walker KW 136)	DICOT	Р3	Plantae
Eriachne aristidea	MONOCOT		Plantae
Eriachne benthamii	MONOCOT		Plantae
Eriachne helmsii	MONOCOT		Plantae
Eriachne Ianata	MONOCOT		Plantae
Eriachne mucronata	MONOCOT		Plantae
Eriachne pulchella	MONOCOT		Plantae
Eriachne pulchella subsp. pulchella	MONOCOT		Plantae
Eriachne tenuiculmis	MONOCOT		Plantae
Eucalyptus camaldulensis	DICOT		Plantae
Eucalyptus camaldulensis subsp. obtusa	DICOT		Plantae
Eucalyptus camaldulensis subsp. refulgens	DICOT		Plantae
Eucalyptus gamophylla	DICOT		Plantae
Eucalyptus hamersleyana	DICOT		Plantae
Eucalyptus kingsmillii	DICOT		Plantae
Eucalyptus leucophloia	DICOT		Plantae
Eucalyptus leucophloia subsp. leucophloia	DICOT		Plantae
Eucalyptus pilbarensis	DICOT		Plantae
Eucalyptus repullulans	DICOT		Plantae
Eucalyptus socialis subsp. eucentrica	DICOT		Plantae
Eucalyptus trivalvis	DICOT		Plantae
Eucalyptus victrix	DICOT		Plantae
Eucalyptus xerothermica	DICOT		Plantae
Eulalia aurea	MONOCOT		Plantae
Eulalia fulva	MONOCOT		Plantae
Euphorbia australis	DICOT		Plantae
Euphorbia biconvexa	DICOT		Plantae
Euphorbia boophthona	DICOT		Plantae
Euphorbia coghlanii	DICOT		Plantae
Euphorbia trigonosperma	DICOT		Plantae
Euphorbia vaccaria	DICOT		Plantae
Euphorbia vaccaria var. erucoides	DICOT		Plantae
Evolvulus alsinoides	DICOT		Plantae
Evolvulus alsinoides var. villosicalyx	DICOT		Plantae
Exocarpos sparteus	DICOT		Plantae
Ficus brachypoda	DICOT		Plantae
Ficus platypoda	DICOT		Plantae
Fimbristylis cardiocarpa	MONOCOT		Plantae
Fimbristylis microcarya	MONOCOT		Plantae
Fimbristylis sieberiana	MONOCOT	Р3	Plantae
Flaveria trinervia	DICOT		Plantae

TAXON	CLASS	CONS	KINGDOM
Gastrolobium grandiflorum	DICOT		Plantae
Glycine canescens	DICOT		Plantae
Gompholobium oreophilum	DICOT		Plantae
Gompholobium polyzygum	DICOT		Plantae
Gomphrena canescens subsp. canescens	DICOT		Plantae
Gomphrena cunninghamii	DICOT		Plantae
Goodenia cusackiana	DICOT		Plantae
Goodenia microptera	DICOT		Plantae
Goodenia muelleriana	DICOT		Plantae
Goodenia nuda	DICOT	P4	Plantae
Goodenia omearana	DICOT		Plantae
Goodenia pascua	DICOT		Plantae
Goodenia sp. East Pilbara (A.A. Mitchell PRP 727)	DICOT	Р3	Plantae
Goodenia stellata	DICOT		Plantae
Goodenia stobbsiana	DICOT		Plantae
Goodenia trichophylla	DICOT		Plantae
Goodenia triodiophila	DICOT		Plantae
Gossypium australe	DICOT		Plantae
Gossypium robinsonii	DICOT		Plantae
Gossypium robinsonii x sturtianum	DICOT		Plantae
Gossypium sturtianum	DICOT		Plantae
Gossypium sturtianum var. sturtianum	DICOT		Plantae
Grevillea pyramidalis	DICOT		Plantae
Grevillea pyramidalis subsp. leucadendron	DICOT		Plantae
Grevillea saxicola	DICOT	Р3	Plantae
Grevillea wickhamii	DICOT		Plantae
Grevillea wickhamii subsp. hispidula	DICOT		Plantae
Gymnanthera cunninghamii	DICOT	Р3	Plantae
Hakea chordophylla	DICOT		Plantae
Hakea lorea	DICOT		Plantae
Halgania cyanea var. Allambi Stn (B.W. Strong 676)	DICOT		Plantae
Haloragis gossei	DICOT		Plantae
Haloragis gossei var. gossei	DICOT		Plantae
Heliotropium chrysocarpum	DICOT		Plantae
Heliotropium cunninghamii	DICOT		Plantae
Heliotropium glabellum	DICOT		Plantae
Heliotropium heteranthum	DICOT		Plantae
Heliotropium inexplicitum	DICOT		Plantae
Heliotropium pachyphyllum	DICOT		Plantae
Heliotropium skeleton	DICOT		Plantae
Hibbertia glaberrima	DICOT		Plantae
Hibiscus burtonii	DICOT		Plantae
Hibiscus coatesii	DICOT		Plantae
Hibiscus leptocladus	DICOT		Plantae
Hibiscus sp. Gurinbiddy Range (M.E. Trudgen MET 15708)	DICOT	P2	Plantae
Hibiscus sp. Mt Robinson (G. Byrne 3537)	DICOT		Plantae
Hibiscus sturtii var. campylochlamys	DICOT		Plantae
Hibiscus sturtii var. platychlamys	DICOT		Plantae
Hybanthus aurantiacus	DICOT		Plantae

TAXON	CLASS	CONS	KINGDOM
Indigofera fractiflexa subsp. fractiflexa	DICOT		Plantae
Indigofera gilesii	DICOT	Р3	Plantae
Indigofera hirsuta	DICOT		Plantae
Indigofera linifolia	DICOT		Plantae
Indigofera monophylla	DICOT		Plantae
Indigofera rugosa	DICOT		Plantae
Indigofera trita	DICOT		Plantae
Ipomoea muelleri	DICOT		Plantae
Ipomoea plebeia	DICOT		Plantae
Isotropis atropurpurea	DICOT		Plantae
Isotropis parviflora	DICOT	P2	Plantae
Isotropis sp. Arid zone (G. Byrne 2775)	DICOT		Plantae
Jasminum didymum	DICOT		Plantae
Jasminum didymum subsp. lineare	DICOT		Plantae
Lamarchea sulcata	DICOT		Plantae
Lepidium catapycnon	DICOT	Ρ4	Plantae
Lepidium muelleri-ferdinandii	DICOT		Plantae
Lobelia arnhemiaca	DICOT		Plantae
Lobelia heterophylla subsp. pilbarensis	DICOT		Plantae
Maireana carnosa	DICOT		Plantae
Maireana georgei	DICOT		Plantae
Maireana melanocoma	DICOT		Plantae
Maireana planifolia	DICOT		Plantae
Malvastrum americanum	DICOT		Plantae
Melaleuca argentea	DICOT		Plantae
Melaleuca glomerata	DICOT		Plantae
Melhania oblongifolia	DICOT		Plantae
Melhania sp.	DICOT		Plantae
Melinis repens	MONOCOT		Plantae
Mirbelia viminalis	DICOT		Plantae
Nicotiana occidentalis subsp. obliqua	DICOT		Plantae
Notoleptopus decaisnei var. Orbicularis (A.B. Craig 428)	DICOT		Plantae
Oldenlandia crouchiana	DICOT		Plantae
Olearia fluvialis	DICOT		Plantae
Pandorea pandorana	DICOT		Plantae
Panicum laevinode	MONOCOT		Plantae
Paraneurachne muelleri	MONOCOT		Plantae
Paspalidium basicladum	MONOCOT		Plantae
Paspalidium clementii	MONOCOT		Plantae
Paspalidium gracile	MONOCOT		Plantae
Paspalidium rarum	MONOCOT		Plantae
Pentalepis trichodesmoides subsp. trichodesmoides	DICOT		Plantae
Peripleura arida	DICOT		Plantae
Perotis rara	MONOCOT		Plantae
Petalostylis labicheoides	DICOT		Plantae
Phyllanthus baccatus	DICOT		Plantae
Phyllanthus maderaspatensis	DICOT		Plantae
Plectranthus scutellarioides	DICOT		Plantae
Pluchea dentex	DICOT		Plantae

TAXON	CLASS	CONS	KINGDOM
Plumbago zeylanica	DICOT		Plantae
Podolepis eremaea	DICOT		Plantae
Polycarpaea corymbosa	DICOT		Plantae
Polycarpaea holtzei	DICOT		Plantae
Polycarpaea involucrata	DICOT		Plantae
Polycarpaea longiflora	DICOT		Plantae
Polycarpaea sp.	DICOT		Plantae
Polygala glaucifolia	DICOT		Plantae
Polymeria ambigua	DICOT		Plantae
Polymeria lanata	DICOT		Plantae
Portulaca oleracea	DICOT		Plantae
Prostanthera albiflora	DICOT		Plantae
Pseudognaphalium luteoalbum	DICOT		Plantae
Psydrax latifolia	DICOT		Plantae
Pterocaulon sphacelatum	DICOT		Plantae
Pterocaulon sphaeranthoides	DICOT		Plantae
Ptilotus aervoides	DICOT		Plantae
Ptilotus astrolasius	DICOT		Plantae
Ptilotus auriculifolius	DICOT		Plantae
Ptilotus calostachyus	DICOT		Plantae
Ptilotus clementii	DICOT		Plantae
Ptilotus exaltatus	DICOT		Plantae
Ptilotus fusiformis	DICOT		Plantae
Ptilotus gaudichaudii	DICOT		Plantae
Ptilotus helipteroides	DICOT		Plantae
Ptilotus macrocephalus	DICOT		Plantae
Ptilotus mollis	DICOT	P4	Plantae
Ptilotus nobilis	DICOT		Plantae
Ptilotus obovatus	DICOT		Plantae
Ptilotus rotundifolius	DICOT		Plantae
Rhagodia eremaea	DICOT		Plantae
Rhagodia sp.	DICOT		Plantae
Rhagodia sp. Hamersley (M. Trudgen 17794)	DICOT	Р3	Plantae
Rhodanthe floribunda	DICOT		Plantae
Rhodanthe margarethae	DICOT		Plantae
Rhynchosia australis	DICOT		Plantae
Rhynchosia minima	DICOT		Plantae
Roebuckiella similis	DICOT		Plantae
Rostellularia adscendens	DICOT		Plantae
Rostellularia adscendens var. latifolia	DICOT	Р3	Plantae
Salsola australis	DICOT		Plantae
Santalum acuminatum	DICOT		Plantae
Santalum lanceolatum	DICOT		Plantae
Scaevola acacioides	DICOT		Plantae
Scaevola amblyanthera	DICOT		Plantae
Scaevola amblyanthera var. amblyanthera	DICOT		Plantae
Scaevola parvifolia subsp. pilbarae	DICOT		Plantae
Schenkia australis	DICOT		Plantae
Schizachyrium fragile	MONOCOT		Plantae

TAXON	CLASS	CONS	KINGDOM
Schoenoplectus subulatus	MONOCOT		Plantae
Sclerolaena cornishiana	DICOT		Plantae
Senecio magnificus	DICOT		Plantae
Senna artemisioides	DICOT		Plantae
Senna artemisioides subsp. helmsii	DICOT		Plantae
Senna artemisioides subsp. oligophylla	DICOT		Plantae
Senna glutinosa subsp. chatelainiana	DICOT		Plantae
Senna glutinosa subsp. glutinosa	DICOT		Plantae
Senna glutinosa subsp. pruinosa	DICOT		Plantae
Senna glutinosa subsp. x luerssenii	DICOT		Plantae
Senna notabilis	DICOT		Plantae
Senna pleurocarpa var. angustifolia	DICOT		Plantae
Senna sericea	DICOT		Plantae
Senna sp. Meekatharra (E. Bailey 1-26)	DICOT		Plantae
Senna stricta	DICOT		Plantae
Senna venusta	DICOT		Plantae
Seringia elliptica	DICOT		Plantae
Seringia nephrosperma	DICOT		Plantae
Sesbania cannabina	DICOT		Plantae
Setaria dielsii	MONOCOT		Plantae
Setaria surgens	MONOCOT		Plantae
Setaria verticillata	MONOCOT		Plantae
Sida arenicola	DICOT		Plantae
Sida calyxhymenia	DICOT		Plantae
Sida cardiophylla	DICOT		Plantae
Sida echinocarpa	DICOT		Plantae
Sida fibulifera	DICOT		Plantae
Sida rohlenae	DICOT		Plantae
Sida sp.	DICOT		Plantae
Sida sp. Articulation below (A.A. Mitchell PRP 1605)	DICOT		Plantae
Sida sp. dark green fruits (S. van Leeuwen 2260)	DICOT		Plantae
Sida sp. Excedentifolia (J.L. Egan 1925)	DICOT		Plantae
Sida sp. L (A.M. Ashby 4202)	DICOT		Plantae
Sida sp. Pilbara (A.A. Mitchell PRP 1543)	DICOT		Plantae
Sida sp. Shovelanna Hill (S. van Leeuwen 3842)	DICOT		Plantae
Sida sp. spiciform panicles (E. Leyland s.n. 14/8/90)	DICOT		Plantae
Sigesbeckia orientalis	DICOT		Plantae
Solanum centrale	DICOT		Plantae
Solanum chippendalei	DICOT		Plantae
Solanum elatius	DICOT		Plantae
Solanum gabrielae	DICOT		Plantae
Solanum horridum	DICOT		Plantae
Solanum lasiophyllum	DICOT		Plantae
Solanum nigrum	DICOT		Plantae
Solanum phlomoides	DICOT		Plantae
Sonchus oleraceus	DICOT		Plantae
Sporobolus australasicus	MONOCOT		Plantae
Stackhousia muricata subsp. annual (W.R. Barker 2172)	DICOT		Plantae
Stemodia grossa	DICOT		Plantae

TAXON	CLASS	CONS	KINGDOM
Streptoglossa decurrens	DICOT		Plantae
Stylidium weeliwolli	DICOT	Р3	Plantae
Stylobasium spathulatum	DICOT		Plantae
Swainsona decurrens	DICOT		Plantae
Swainsona formosa	DICOT		Plantae
Synostemon rhytidospermus	DICOT		Plantae
Tephrosia oxalidea	DICOT		Plantae
Tephrosia rosea var. Fortescue creeks (M.I.H. Brooker 2186)	DICOT		Plantae
Tephrosia sp. Bungaroo Creek (M.E. Trudgen 11601)	DICOT		Plantae
Tephrosia sp. Newman (A.A. Mitchell PRP 29)	DICOT		Plantae
Tephrosia sp. NW Eremaean (S. van Leeuwen et al. PBS 0356)	DICOT		Plantae
Themeda sp. Hamersley Station (M.E. Trudgen 11431)	MONOCOT	Р3	Plantae
Themeda sp. Mt Barricade (M.E. Trudgen 2471)	MONOCOT		Plantae
Themeda triandra	MONOCOT		Plantae
Trachymene oleracea	DICOT		Plantae
Tragus australianus	MONOCOT		Plantae
Trianthema glossostigmum	DICOT		Plantae
Tribulus hirsutus	DICOT		Plantae
Tribulus macrocarpus	DICOT		Plantae
Tribulus suberosus	DICOT		Plantae
Trichodesma zeylanicum	DICOT		Plantae
Tricoryne sp. Hamersley Range (S. van Leeuwen 915)	MONOCOT		Plantae
Trigastrotheca molluginea	DICOT		Plantae
Triodia biflora	MONOCOT		Plantae
Triodia brizoides	MONOCOT		Plantae
Triodia longiceps	MONOCOT		Plantae
Triodia pungens	MONOCOT		Plantae
Triodia schinzii	MONOCOT		Plantae
Triodia sp.	MONOCOT		Plantae
Triodia sp. Mt Ella (M.E. Trudgen 12739)	MONOCOT	Р3	Plantae
Triodia vanleeuwenii	MONOCOT		Plantae
Triodia wiseana	MONOCOT		Plantae
Triraphis mollis	MONOCOT		Plantae
Triumfetta leptacantha	DICOT		Plantae
Triumfetta maconochieana	DICOT		Plantae
Vachellia farnesiana	DICOT		Plantae
Velleia connata	DICOT		Plantae
Vigna lanceolata	DICOT		Plantae
Vigna lanceolata var. lanceolata	DICOT		Plantae
Vigna sp. Hamersley Clay (A.A. Mitchell PRP 113)	DICOT		Plantae
Vincetoxicum lineare	DICOT		Plantae
Wahlenbergia tumidifructa	DICOT		Plantae
Waltheria indica	DICOT		Plantae
Waltheria virgata	DICOT		Plantae
Yakirra australiensis	MONOCOT		Plantae

Australian Government

Department of Climate Change, Energy, the Environment and Water

EPBC Act Protected Matters Report

This report provides general guidance on matters of national environmental significance and other matters protected by the EPBC Act in the area you have selected. Please see the caveat for interpretation of information provided here.

Report created: 26-Apr-2023

Summary Details Matters of NES Other Matters Protected by the EPBC Act Extra Information Caveat Acknowledgements

Summary

Matters of National Environment Significance

This part of the report summarises the matters of national environmental significance that may occur in, or may relate to, the area you nominated. Further information is available in the detail part of the report, which can be accessed by scrolling or following the links below. If you are proposing to undertake an activity that may have a significant impact on one or more matters of national environmental significance then you should consider the Administrative Guidelines on Significance.

World Heritage Properties:	None
National Heritage Places:	None
Wetlands of International Importance (Ramsar	None
Great Barrier Reef Marine Park:	None
Commonwealth Marine Area:	None
Listed Threatened Ecological Communities:	None
Listed Threatened Species:	12
Listed Migratory Species:	9

Other Matters Protected by the EPBC Act

This part of the report summarises other matters protected under the Act that may relate to the area you nominated. Approval may be required for a proposed activity that significantly affects the environment on Commonwealth land, when the action is outside the Commonwealth land, or the environment anywhere when the action is taken on Commonwealth land. Approval may also be required for the Commonwealth or Commonwealth agencies proposing to take an action that is likely to have a significant impact on the environment anywhere.

The EPBC Act protects the environment on Commonwealth land, the environment from the actions taken on Commonwealth land, and the environment from actions taken by Commonwealth agencies. As heritage values of a place are part of the 'environment', these aspects of the EPBC Act protect the Commonwealth Heritage values of a Commonwealth Heritage place. Information on the new heritage laws can be found at https://www.dcceew.gov.au/parks-heritage/heritage

A <u>permit</u> may be required for activities in or on a Commonwealth area that may affect a member of a listed threatened species or ecological community, a member of a listed migratory species, whales and other cetaceans, or a member of a listed marine species.

Commonwealth Lands:	None
Commonwealth Heritage Places:	None
Listed Marine Species:	13
Whales and Other Cetaceans:	None
Critical Habitats:	None
Commonwealth Reserves Terrestrial:	None
Australian Marine Parks:	None
Habitat Critical to the Survival of Marine Turtles:	None

Extra Information

This part of the report provides information that may also be relevant to the area you have

State and Territory Reserves:	None
Regional Forest Agreements:	None
Nationally Important Wetlands:	None
EPBC Act Referrals:	11
Key Ecological Features (Marine):	None
Biologically Important Areas:	None
Bioregional Assessments:	None
Geological and Bioregional Assessments:	None

Details

Matters of National Environmental Significance

Listed Threatened Species		[<u>Re</u> :	source Information]
Status of Conservation Dependent and I Number is the current name ID.	Extinct are not MNES und	er the EPBC Act.	
Scientific Name	Threatened Category	Presence Text	Buffer Status
BIRD			
Aphelocephala leucopsis			
Southern Whiteface [529]	Vulnerable	Species or species habitat known to occur within area	In feature area
Calidris ferruginea			
Curlew Sandpiper [856]	Critically Endangered	Species or species habitat may occur within area	In feature area
Erythrotriorchis radiatus			
Red Goshawk [942]	Endangered	Species or species habitat may occur within area	In feature area
Falco hypoleucos			
Grey Falcon [929]	Vulnerable	Species or species habitat likely to occur within area	
Pezoporus occidentalis			
Night Parrot [59350]	Endangered	Species or species habitat likely to occur within area	In feature area
Rostratula australis			
Australian Painted Snipe [77037]	Endangered	Species or species habitat may occur within area	In feature area
MAMMAL			
Dasyurus hallucatus			
Northern Quoll, Digul [Gogo-Yimidir], Wijingadda [Dambimangari], Wiminji [Martul [331]	Endangered	Species or species habitat known to	In feature area

[Martu] [331]

occur within area

Macroderma gigas Ghost Bat [174]

Vulnerable

Species or species In feature area habitat known to occur within area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Macrotis lagotis Greater Bilby [282]	Vulnerable	Species or species habitat may occur within area	In feature area
Rhinonicteris aurantia (Pilbara form) Pilbara Leaf-nosed Bat [82790]	Vulnerable	Species or species habitat known to occur within area	In feature area
REPTILE			
<u>Liasis olivaceus barroni</u> Olive Python (Pilbara subspecies) [66699]	Vulnerable	Species or species habitat known to occur within area	In feature area
<u>Liopholis kintorei</u> Great Desert Skink, Tjakura, Warrarna, Mulyamiji [83160]	Vulnerable	Species or species habitat may occur within area	In feature area
Listed Migratory Species		[Res	source Information]
Listed Migratory Species Scientific Name	Threatened Category	[Res Presence Text	source Information] Buffer Status
	Threatened Category		
Scientific Name	Threatened Category		
Scientific Name Migratory Marine Birds Apus pacificus	Threatened Category	Presence Text Species or species habitat likely to occur	Buffer Status
Scientific Name Migratory Marine Birds <u>Apus pacificus</u> Fork-tailed Swift [678]	Threatened Category	Presence Text Species or species habitat likely to occur	Buffer Status
Scientific Name Migratory Marine Birds Apus pacificus Fork-tailed Swift [678] Migratory Terrestrial Species Hirundo rustica	Threatened Category	Presence Text Species or species habitat likely to occur within area Species or species habitat may occur	Buffer Status

within area

Migratory Wetlands Species

Actitis hypoleucos

Common Sandpiper [59309]

Calidris acuminata

Sharp-tailed Sandpiper [874]

Species or species In feature area habitat may occur within area

Species or species In feature area habitat may occur within area

Scientific Name	Threatened Category	Presence Text	Buffer Status
Calidris ferruginea			
Curlew Sandpiper [856]	Critically Endangered	Species or species habitat may occur within area	In feature area
Calidris melanotos			
Pectoral Sandpiper [858]		Species or species habitat may occur within area	In feature area
Charadrius veredus			
Oriental Plover, Oriental Dotterel [882]		Species or species habitat may occur within area	In feature area

Other Matters Protected by the EPBC Act

Listed Marine Species		[<u>Res</u>	source Information]
Scientific Name	Threatened Category	Presence Text	Buffer Status
Bird			
Actitis hypoleucos			
Common Sandpiper [59309]		Species or species habitat may occur within area	In feature area
Apus pacificus			
Fork-tailed Swift [678]		Species or species habitat likely to occur within area overfly marine area	In feature area
Bubulcus ibis as Ardea ibis			
Cattle Egret [66521]		Species or species habitat may occur within area overfly marine area	In feature area
Calidris acuminata			
Sharp-tailed Sandpiper [874]		Species or species habitat may occur within area	In feature area

Calidris ferruginea

Curlew Sandpiper [856]

Critically Endangered Species or species In feature area habitat may occur within area overfly marine area

> Species or species In feature area habitat may occur within area overfly marine area

Calidris melanotos

Pectoral Sandpiper [858]

Scientific Name	Threatened Category	Presence Text	Buffer Status
Chalcites osculans as Chrysococcyx os Black-eared Cuckoo [83425]	<u>culans</u>	Species or species habitat known to occur within area overfly marine area	In feature area
Charadrius veredus Oriental Plover, Oriental Dotterel [882]		Species or species habitat may occur within area overfly marine area	In feature area
<u>Hirundo rustica</u> Barn Swallow [662]		Species or species habitat may occur within area overfly marine area	In feature area
Merops ornatus Rainbow Bee-eater [670]		Species or species habitat may occur within area overfly marine area	In feature area
Motacilla cinerea Grey Wagtail [642]		Species or species habitat may occur within area overfly marine area	In feature area
<u>Motacilla flava</u> Yellow Wagtail [644]		Species or species habitat may occur within area overfly marine area	In feature area
Rostratula australis as Rostratula bengh Australian Painted Snipe [77037]	alensis (sensu lato) Endangered	Species or species habitat may occur within area overfly marine area	In feature area

Extra Information

EPBC Act Referrals			[Resou	rce Information]
Title of referral	Reference	Referral Outcome	Assessment Status	Buffer Status
Controlled action				
Baralaba Train Load Out and Rail Loop	2012/6548	Controlled Action	Post-Approval	In buffer area only
Iron ore mine, Hope Downs 2 Proposal	2021/9035	Controlled Action	Assessment Approach	In buffer area only

Title of referral	Reference	Referral Outcome	Assessment Status	Buffer Status
Controlled action				
<u>Jinidi Iron Ore Mine</u>	2012/6299	Controlled Action	Post-Approval	In feature area
Koodaideri Iron Ore Mine & Infrastructure Project, WA	2012/6422	Controlled Action	Post-Approval	In buffer area only
Phil's Creek Iron Ore Project	2009/5107	Controlled Action	Post-Approval	In buffer area only
Yandicoogina Junction South West and Oxbow Iron Ore Project	2011/5815	Controlled Action	Post-Approval	In buffer area only
Not controlled action				
Development of the Hope Downs 4 Iron Ore Mine and Associated Infrastructure	2008/4636	Not Controlled Action	Completed	In feature area
Improving rabbit biocontrol: releasing another strain of RHDV, sthrn two thirds of Australia	2015/7522	Not Controlled Action	Completed	In feature area
Iron Valley Iron Ore Project	2012/6458	Not Controlled Action	Completed	In buffer area only
Stage B of Pilbara Iron Ore and Infrastructure Project	2004/1897	Not Controlled Action	Completed	In buffer area only
Yandicoogina Pocket and Billiard South, Iron ore mine, WA	2014/7343	Not Controlled Action	Completed	In buffer area only

Caveat

1 PURPOSE

This report is designed to assist in identifying the location of matters of national environmental significance (MNES) and other matters protected by the Environment Protection and Biodiversity Conservation Act 1999 (Cth) (EPBC Act) which may be relevant in determining obligations and requirements under the EPBC Act.

The report contains the mapped locations of:

- World and National Heritage properties;
- Wetlands of International and National Importance;
- Commonwealth and State/Territory reserves;
- distribution of listed threatened, migratory and marine species;
- listed threatened ecological communities; and
- other information that may be useful as an indicator of potential habitat value.

2 DISCLAIMER

This report is not intended to be exhaustive and should only be relied upon as a general guide as mapped data is not available for all species or ecological communities listed under the EPBC Act (see below). Persons seeking to use the information contained in this report to inform the referral of a proposed action under the EPBC Act should consider the limitations noted below and whether additional information is required to determine the existence and location of MNES and other protected matters.

Where data are available to inform the mapping of protected species, the presence type (e.g. known, likely or may occur) that can be determined from the data is indicated in general terms. It is the responsibility of any person using or relying on the information in this report to ensure that it is suitable for the circumstances of any proposed use. The Commonwealth cannot accept responsibility for the consequences of any use of the report or any part thereof. To the maximum extent allowed under governing law, the Commonwealth will not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance

3 DATA SOURCES

Threatened ecological communities

For threatened ecological communities where the distribution is well known, maps are generated based on information contained in recovery plans, State vegetation maps and remote sensing imagery and other sources. Where threatened ecological community distributions are less well known, existing vegetation maps and point location data are used to produce indicative distribution maps.

Threatened, migratory and marine species

Threatened, migratory and marine species distributions have been discerned through a variety of methods. Where distributions are well known and if time permits, distributions are inferred from either thematic spatial data (i.e. vegetation, soils, geology, elevation, aspect, terrain, etc.) together with point locations and described habitat; or modelled (MAXENT or BIOCLIM habitat modelling) using

Where little information is available for a species or large number of maps are required in a short time-frame, maps are derived either from 0.04 or 0.02 decimal degree cells; by an automated process using polygon capture techniques (static two kilometre grid cells, alpha-hull and convex hull); or captured manually or by using topographic features (national park boundaries, islands, etc.).

In the early stages of the distribution mapping process (1999-early 2000s) distributions were defined by degree blocks, 100K or 250K map sheets to rapidly create distribution maps. More detailed distribution mapping methods are used to update these distributions

4 LIMITATIONS

The following species and ecological communities have not been mapped and do not appear in this report:

- threatened species listed as extinct or considered vagrants;
- some recently listed species and ecological communities;
- some listed migratory and listed marine species, which are not listed as threatened species; and
- migratory species that are very widespread, vagrant, or only occur in Australia in small numbers.

The following groups have been mapped, but may not cover the complete distribution of the species:

listed migratory and/or listed marine seabirds, which are not listed as threatened, have only been mapped for recorded
seals which have only been mapped for breeding sites near the Australian continent

The breeding sites may be important for the protection of the Commonwealth Marine environment.

Refer to the metadata for the feature group (using the Resource Information link) for the currency of the information.

Acknowledgements

This database has been compiled from a range of data sources. The department acknowledges the following custodians who have contributed valuable data and advice:

-Office of Environment and Heritage, New South Wales -Department of Environment and Primary Industries, Victoria -Department of Primary Industries, Parks, Water and Environment, Tasmania -Department of Environment, Water and Natural Resources, South Australia -Department of Land and Resource Management, Northern Territory -Department of Environmental and Heritage Protection, Queensland -Department of Parks and Wildlife, Western Australia -Environment and Planning Directorate, ACT -Birdlife Australia -Australian Bird and Bat Banding Scheme -Australian National Wildlife Collection -Natural history museums of Australia -Museum Victoria -Australian Museum -South Australian Museum -Queensland Museum -Online Zoological Collections of Australian Museums -Queensland Herbarium -National Herbarium of NSW -Royal Botanic Gardens and National Herbarium of Victoria -Tasmanian Herbarium -State Herbarium of South Australia -Northern Territory Herbarium -Western Australian Herbarium -Australian National Herbarium, Canberra -University of New England -Ocean Biogeographic Information System -Australian Government, Department of Defence Forestry Corporation, NSW -Geoscience Australia -CSIRO -Australian Tropical Herbarium, Cairns -eBird Australia -Australian Government – Australian Antarctic Data Centre -Museum and Art Gallery of the Northern Territory -Australian Government National Environmental Science Program

-Australian Institute of Marine Science

-Reef Life Survey Australia

-American Museum of Natural History

-Queen Victoria Museum and Art Gallery, Inveresk, Tasmania

-Tasmanian Museum and Art Gallery, Hobart, Tasmania

-Other groups and individuals

The Department is extremely grateful to the many organisations and individuals who provided expert advice and information on numerous draft distributions.

Please feel free to provide feedback via the Contact us page.

© Commonwealth of Australia

Department of Climate Change, Energy, the Environment and Water GPO Box 3090 Canberra ACT 2601 Australia +61 2 6274 1111

Site ID	Easting	Northing	Z	one Dat	te
R01		724767.0302000000	7461261.41900000000	50	2/05/2023
R02		724572.67270000000	7460979.42750000000	50	2/05/2023
R03		724091.97880000000	7460208.17250000000	50	2/05/2023
R04		724517.49440000000	7460707.73080000000	50	2/05/2023
R06		724289.61370000000	7459230.73350000000	50	2/05/2023
R08		725864.98990000000	7459103.78020000000	50	3/05/2023
R10		725789.0290000000	7459146.27820000000	50	3/05/2023
R11		725478.72690000000	7458999.52910000000	50	3/05/2023
R09		724848.19430000000	7459413.49640000000	50	3/05/2023
R07		725782.64640000000	7458937.36650000000	50	3/05/2023
R05		726110.6009000000	7458790.82690000000	50	2/05/2023

Appendix 2:	GPS coordinates of relevé locations established within the study area
-------------	---

		FLORA SIT	E SHEET	
HD1 NVCP AR-22-17	7678			
R01				
MGA 50 72	24767 mE	7461261 mN		
				and the second
				and the strength of the state
2/05/2023				
Releve				A A A A A A A A A A A A A A A A A A A
				The second se
-				
			the standing	
Creamy orange				
1		Disturbance Type:	None	
5-10 Years ago		station type.		
		Height (cm)	Cover (%)	Notes
		1.2	9	
oyrifolia		0.3	0.1	
		1.7	3	P3
		1.2	0.1	
		1.3	0.1	
folius		0.6	0.1	
s subsp. parvus		0.5	0.1	
ana		6	1.5	
		0.2	0.1	PSI
	727)	0.05	0.1	P3
		3	0.5	
ılla		0.2	0.1	
		0.6	0.1	
		0.05	0.1	
subsp. helmsii × oligophy	ılla			
		0.5	32	
	R01 MGA 50 7. 2/05/2023 Releve Low undulating hill Slight Calcrete Calcrete Calcrete Calcrete Calcrete Calcrete Calcrete Calcrete Calcrete Calcrete Calcrete Calcreta Calcrete Calcreta Calcrete Calcreta Subtiliformis mid op 1 1 5-10 Years ago opyrifolia I folius subsp. parvus ana Ibara (A.A. Mitchell PRP 2) Ibara var. ambylanthera Ibara var. ambylanthera	MGA 50 724767 mE 2/05/2023 Releve Low undulating hill Slight Calcrete Calcrete Creamy orange Corymbia hamersleyana and Ha subtiliformis mid open shrublan 1 5-10 Years ago ayrifolia a tofolius subsp. parvus ana bara (A.A. Mitchell PRP 727) orea ylla	HD1 NVCP AR-22-17678 R01 MGA 50 724767 mE 7461261 mN 2/05/2023 Releve Low undulating hill Slight Calcrete Calcrete Calcrete Creamy orange Corymbia hamersleyana and Hakea lorea subsp. lore subtiliformis mid open shrubland over Triodia wiseau 1 Disturbance Type: 5-10 Years ago Height (cm) 1.2 oyrifolia 0.3 1.7 1.2 1.3 folius subsp. parvus 0.5 ana 6 1.2 0.5 ana 6 1.2 0.5 ana 6 0.2 (bara (A.A. Mitchell PRP 727) 0.05 orea 3 ylla 0.2 0.6	R01 MGA 50 724767 mE 7461261 mN 2/05/2023 Releve 2/05/2023 Releve Image: Construction of the second s

Site: RO. Location MC Date: 2/C Type: Rei Landform: Sto Slope: Ge Rock Type: Cal Soil Type: Cla Soil Colour: Bro Vegetation: Euc to	GA 50 724573 /05/2023 eleve ony rise entle alcrete ay loam rown <i>icalyptus ?socialis subsp.</i> <i>tall sparse shrubland ov</i>			cacia subtiliformis and Ac
Site: RO. Location MC Date: 2/C Type: Rei Landform: Sto Slope: Ge Rock Type: Cal Soil Type: Cla Soil Colour: Bro Vegetation: Euc to Condition: 1 Fire Age: 2-5 SPECIES LIST Taxon Acacia bivenosa Acacia pyrifolia var. pyrifolia	22 GA 50 724573 1 205/2023 2leve ony rise entle alcrete ay loam rown <i>icalyptus ?socialis subsp.</i> <i>itall sparse shrubland ov</i>	eucentrica low isolated n		•
Location MC Date: 2/C Type: Rei Landform: Stc Slope: Ge Rock Type: Cai Soil Type: Cla Soil Colour: Brc Vegetation: Euc to Condition: 1 Fire Age: 2-5 SPECIES LIST Taxon Acacia bivenosa Acacia pyrifolia var. pyrifolia	GA 50 724573 /05/2023 eleve ony rise entle alcrete ay loam rown <i>icalyptus ?socialis subsp.</i> <i>tall sparse shrubland ov</i>	eucentrica low isolated n		•
Date: 2/C Type: Rei Landform: Stc Slope: Ge Rock Type: Cal Soil Type: Cla Soil Colour: Brc Vegetation: Euc to Condition: 1 Fire Age: 2-5 SPECIES LIST Taxon Acacia bivenosa Acacia pyrifolia var. pyrifolia	105/2023 eleve ony rise entle alcrete ay loam rown rown ucalyptus ?socialis subsp. tall sparse shrubland ov	eucentrica low isolated n		•
Type: Rei Landform: Sto Slope: Ge Rock Type: Cal Soil Type: Cla Soil Colour: Brock Vegetation: Euc Condition: 1 Fire Age: 2-5 SPECIES LIST Taxon Acacia bivenosa Acacia pyrifolia var. pyrifolia	eleve ony rise entle alcrete ay loam rown rown ucalyptus ?socialis subsp. tall sparse shrubland ov			•
Type: Rei Landform: Sto Slope: Ge Rock Type: Cal Soil Type: Cla Soil Colour: Brock Vegetation: Euc Condition: 1 Fire Age: 2-5 SPECIES LIST Taxon Acacia bivenosa Acacia pyrifolia var. pyrifolia	eleve ony rise entle alcrete ay loam rown rown ucalyptus ?socialis subsp. tall sparse shrubland ov			•
Type: Rei Landform: Sto Slope: Ge Rock Type: Cal Soil Type: Cla Soil Colour: Brock Vegetation: Euc Condition: 1 Fire Age: 2-5 SPECIES LIST Taxon Acacia bivenosa Acacia pyrifolia var. pyrifolia	eleve ony rise entle alcrete ay loam rown rown ucalyptus ?socialis subsp. tall sparse shrubland ov			•
Landform: Sto Slope: Ge Rock Type: Cal Soil Type: Cla Soil Colour: Bro Vegetation: Euc to Condition: 1 Fire Age: 2-5 SPECIES LIST Taxon Acacia bivenosa Acacia pyrifolia var. pyrifolia	entle alcrete ay loam rown won ucalyptus ?socialis subsp. tall sparse shrubland ov			•
Slope: Ge Rock Type: Cal Soil Type: Cla Soil Colour: Bro Vegetation: Euu to Condition: 1 Fire Age: 2-5 SPECIES LIST Taxon Acacia bivenosa Acacia pyrifolia var. pyrifolia	entle alcrete ay loam rown won ucalyptus ?socialis subsp. tall sparse shrubland ov			•
Rock Type: Cal Soil Type: Cla Soil Colour: Bro Vegetation: Eu to Condition: 1 Fire Age: 2-5 SPECIES LIST Taxon Acacia bivenosa Acacia pyrifolia var. pyrifolia	alcrete ay loam own way the socialis subsp. and sparse shrubland ov			•
Soil Type: Cla Soil Colour: Bro Vegetation: Euu to Condition: 1 Fire Age: 2-5 SPECIES LIST Taxon Acacia bivenosa Acacia pyrifolia var. pyrifolia	ay loam own icalyptus ?socialis subsp. tall sparse shrubland ov			•
Soil Colour: Brown Vegetation: Euc to Condition: 1 Fire Age: 2-5 SPECIES LIST Taxon Acacia bivenosa Acacia pyrifolia var. pyrifolia	rown Icalyptus ?socialis subsp. tall sparse shrubland ov			•
Vegetation: Euc to Condition: 1 Fire Age: 2-5 SPECIES LIST Taxon Acacia bivenosa Acacia pyrifolia var. pyrifolia	ıcalyptus ?socialis subsp. tall sparse shrubland ov			•
to Condition: 1 Fire Age: 2-5 SPECIES LIST Taxon Acacia bivenosa Acacia pyrifolia var. pyrifolia	tall sparse shrubland ov			•
to Condition: 1 Fire Age: 2-5 SPECIES LIST Taxon Acacia bivenosa Acacia pyrifolia var. pyrifolia	tall sparse shrubland ov			•
to Condition: 1 Fire Age: 2-5 SPECIES LIST Taxon Acacia bivenosa Acacia pyrifolia var. pyrifolia	tall sparse shrubland ov			•
to Condition: 1 Fire Age: 2-5 SPECIES LIST Taxon Acacia bivenosa Acacia pyrifolia var. pyrifolia	tall sparse shrubland ov			•
to Condition: 1 Fire Age: 2-5 SPECIES LIST Taxon Acacia bivenosa Acacia pyrifolia var. pyrifolia	tall sparse shrubland ov			•
to Condition: 1 Fire Age: 2-5 SPECIES LIST Taxon Acacia bivenosa Acacia pyrifolia var. pyrifolia	tall sparse shrubland ov			•
Condition: 1 Fire Age: 2-5 SPECIES LIST Taxon Acacia bivenosa Acacia pyrifolia var. pyrifolia		er Triodia wiseana open h	ummock grassland	d
Fire Age: 2-5 SPECIES LIST Taxon Acacia bivenosa Acacia pyrifolia var. pyrifolia				
Fire Age: 2-5 SPECIES LIST Taxon Acacia bivenosa Acacia pyrifolia var. pyrifolia		Disturbance Type:	Recent fire	
SPECIES LIST Taxon Acacia bivenosa Acacia pyrifolia var. pyrifolia	5 Years ago	Disturbance Type:	Recent fire	
Taxon Acacia bivenosa Acacia pyrifolia var. pyrifolia	5 fears ago			
Taxon Acacia bivenosa Acacia pyrifolia var. pyrifolia				
Acacia bivenosa Acacia pyrifolia var. pyrifolia			C (0/)	Netes
Acacia pyrifolia var. pyrifolia		Height (cm)	Cover (%)	Notes
		1	2	
Acacia subtilitormis	a	0.5	0.1	52
		2.5	5	P3
Androcalva luteiflora		0.8	0.1	
Codonocarpus cotinifolius		0.5	0.1	
Corymbia ?hamersleyana		3	0.1	
Eucalyptus ?socialis subsp. e	eucentrica	2	0.5	DCI
Euploca sp.	A Aditaball DDD 727	0.15	0.1	PSI
Goodenia sp. East Pilbara (A		0.1	0.1	P3
Halgania cyanea var. Allamb	ם Stn (B.W. Strong 676)	0.25	0.1	
Indigofera ?monophylla		0.2	0.1	
Petalostylis labicheoides		1.1	0.1	
Triodia wiseana		0.5	25	

			FLORA SIT	TE SHEET		
Project Name	HD1 NVCP AR	-22-17678				
Site:	R03					
ocation	MGA 50	724092 mE	7460208 mN			
					An and	
	2/05/2022					
Date: Type:	2/05/2023 Releve					
ype.	Releve			17.10	And a state of the	26-6-14-
andform:	Undulating slo	ppe		an entered as		A Martin California
lope:	Low			and the state of the second		- Year
lock Type:	Calcrete				the states as	and sud
Soil Type:	Calcrete				- And - And - And	No. Olever
Soil Colour:	Beige orange					Carl Carl
				120		
/egetation:					Acacia subtiliformis, Acacia bivenosa and a open hummock grassland	
Condition: Fire Age:	1 2-5 Years ago	I	Disturbance Type:	None		
SPECIES LIST						
Taxon			Height (cm)	Cover (%)	Notes	
cacia bivenosa			0.8	3		
cacia pyrifolia var.	pyrifolia		0.6	0.3		
cacia sibirica			0.6	0.1	52	
cacia subtiliformis			1.6 0.4	5 0.4	P3	
ndrocalva luteiflor ucalyptus socialis			2	6		
uploca sp.	ubsp. eucentricu		0.2	0.1	PSI	
	r. Allambi Stn (B.W.	Strong 676)	0.2	0.1	F3I	
ndigofera ?monopl		strong or of	0.1	0.1		
	, subsp. oligophylla		0.3	0.1		
Triodia wiseana			0.4	25		

ocalva luteiflora, Acacia	Eucalyptus xerothermica low		
/2023 ye or drainage line e ete clay loam yn mbia hamersleyana and l pocalva luteiflora, Acacia	Eucalyptus xerothermica low		
/2023 ye or drainage line e ete clay loam yn mbia hamersleyana and l pocalva luteiflora, Acacia	Eucalyptus xerothermica low		
ve or drainage line e e clay loam vn mbia hamersleyana and l pocalva luteiflora, Acacia j			
ve or drainage line e e clay loam vn mbia hamersleyana and l pocalva luteiflora, Acacia j			
ve or drainage line e e clay loam vn mbia hamersleyana and l pocalva luteiflora, Acacia j			
or drainage line ete clay loam /n mbia hamersleyana and l pocalva luteiflora, Acacia j			
e rete clay loam rn nbia hamersleyana and l pocalva luteiflora, Acacia			
e rete clay loam rn nbia hamersleyana and l pocalva luteiflora, Acacia		unadiand are Pad	
ete clay loam /n nbia hamersleyana and l pocalva luteiflora, Acacia j		una diard and Pat	
clay loam m nbia hamersleyana and l pocalva luteiflora, Acacia j		unadiand and Pat	
m nbia hamersleyana and l ocalva luteiflora, Acacia			
nbia hamersleyana and l ocalva luteiflora, Acacia ,			
ocalva luteiflora, Acacia			
ocalva luteiflora, Acacia		woodland over Bet	and the second
	meda triandra isolated tusso	cacia subtiliformis n	talostylis labicheoides tall sparse shrubland over nid sparse shrubland over Triodia wiseana open
	Disturbance Type:	Cattle tracks	
Years ago	Distance Typer		
	Height (cm)	Cover (%)	Notes
	0.6	0.1	
	1.2	1	
	1.5	1	P3
	1.8	3	
arvus	0.5	0.1	
	4	8	
eolata	2.5	0.1	
	0.25	0.1	
	0.3	0.1	
	5	5	
	0.2	0.1	PSI
. Mitchell PRP 727)	0.05	0.1	P3
	0.25	0.1	
eare	1.5	0.1	
	3	3	
	0.25	0.1	
	0.1		
	1.2	0.1	
mbvlanthera			
.,	0.7	0.5	
	eolata	0.6 1.2 1.5 1.8 0.5 4 eolata 2.5 0.25 0.3 5 0.2 0.3 5 0.2 0.3 5 0.2 0.3 5 0.2 0.3 5 0.2 0.3 5 0.2 0.3 5 0.2 0.3 5 0.2 0.3 5 0.2 0.3 5 0.2 0.3 5 0.2 0.3 5 0.2 0.3 5 0.2 0.3 0.2 0.3 5 0.2 0.3 0.2 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.2 0.3 0.2 0.3 0.2 0.2 0.3 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.6 0.1 1.2 1 1.5 1 1.8 3 varvus 0.5 0.1 4 8 eolata 2.5 0.1 0.25 0.1 0.25 0.1 0.3 0.1 5 5 0.2 0.1 0.2 0.1 0.25 0.1 0.2 0.1 0.25 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1

			FLORA SIT	E SHEET	
Project Name	HD1 NVCP AR-2	2-17678			
Site:	R05				
Location	MGA 50	726111 mE	7458791 mN		
Date:	2/05/2023				
Туре:	Releve			Want a State	Constant Constant of the
Landform:	Slight slope				A CALLER ALLER AND A CALLER AND
Slope:	Slight				
Rock Type:	Calcrete			and the second second	
Soil Type:	Calcrete			The state of the s	Martin and and an and
Soil Colour:	Beige orange			ar and the second	a service of the service
	beige of ange				
Vegetation:			solated trees over Acad a open hummock gras		Androcalva luteiflora low to mid sparse
Condition					
Condition: Fire Age:	1 2-5 Years ago		Disturbance Type:	None	
SPECIES LIST					
Taxon			Height (cm)	Cover (%)	Notes
Acacia bivenosa			0.5	5	
Acacia pyrifolia var.	pyrifolia		0.3	0.1	
Acacia subtiliformis			0.6	0.1	P3
Androcalva luteiflor			1.1	1	
Atalaya hemiglauca			0.5	0.1	
Codonocarpus cotin			0.5	0.1	
Corchorus lasiocarp			0.4	0.1	
Corymbia hamersley			7.5	0.5	
Euploca sp.			0.4	0.1	PSI
	ilbara (A.A. Mitchell P	RP 7271	0.05	0.1	P3
Indigofera ?monoph		/2/]	0.3	0.1	
lasminum didymum			0.3	0.1	
Petalostylis labiched			1.2	0.1	
Petalostylis labicileo Ptilotus astrolasius	1463		0.4	0.1	
Ptilotus astrolasius Ptilotus clementii			0.4	0.1	
	ora yar amh. I	~			
	era var. ambylanther	a	0.1	0.1	
Senna artemisioides			0.5	0.1	
Solanum chippenda	lei		0.45	0.1	
Triodia wiseana			0.4	14	

		FLORA 31	TE SHEET	
Project Name	HD1 NVCP AR-22-1767	8		
Site:	R06	0		
Location		90 mE 7459231 mN		
Location	110/100 7242			
				Sand and the second second
Date:	2/05/2023		a de la sec	
Туре:	Releve			a share the second
Landform:	Undulating plain		N V	
Slope:	Gentle			
Rock Type:	Calcrete			
Soil Type:	Clay loam			
Soil Colour:	Light brown		Advention of	
			A Sector	
				Careford Manual Careford
			and the	
Vegetation:	Eucaluntus socialis sub	sn eucentrica low open mall	ee woodland over	Acacia bivenosa mid open shrubland over
vegeration:	Eucalyptus socialis sub Triodia wiseana open ł		ee wooalaria over A	Acada bivenosa nna open snrubidha over
Canditian	1	D'	Tracht	
Condition: Fire Age:	1 >10 Years ago	Disturbance Type:	Tracks - water b	DOLES
rne Age.	>TO LEGIZ GRO			
SPECIES LIST				
Taxon		Height (cm)	Cover (%)	Notes
Abutilon sp.		0.1	0.1	NOLES
Abatilon sp. Acacia bivenosa		2	20	
Enneapogon caerule	scens	0.15	0.1	
Eucalyptus socialis si		4	9	
Jasminum didymum		0.4	0.1	
Salsola australis	subspirimeure	0.15	0.1	
	subsp. helmsii × oligophylla	0.35	0.1	
Triodia wiseana	5	0.8	25	

Project Name Site: Location Date: Type: Landform: Slope: Rock Type: Soil Type: Soil Colour:	HD1 NVCP AR-22 R07 MGA 50 3/05/2023 Releve Plain None Basalt Cobble	-17678 725783 mE	7458937 mN		la der
Location Date: Fype: Landform: Slope: Rock Type: Soil Type:	MGA 50 3/05/2023 Releve Plain None Basalt Cobble	725783 mE	7458937 mN	91 in 1	la der
Date: 'ype: andform: olope: tock Type: tool Type:	3/05/2023 Releve Plain None Basalt Cobble	725783 mE	7458937 mN	983- X	lauter
Type: Landform: Slope: Rock Type: Soil Type:	Releve Plain None Basalt Cobble			aris, V	la str
Type: Landform: Slope: Rock Type: Soil Type:	Releve Plain None Basalt Cobble			State 1	
andform: Slope: Rock Type: Soil Type:	Plain None Basalt Cobble				Child your Station
Slope: Rock Type: Soil Type:	None Basalt Cobble				And the second s
Slope: Rock Type: Soil Type:	None Basalt Cobble				
Rock Type: Soil Type:	Basalt Cobble			View and	
oil Type:	Cobble			Allion - V	and the second second second
				N/ Aller	A HARD HARD HARD
ioil Colour:				- A Company of the second	Contraction of the second seco
	Red orange black	C .			
/egetation:	Acacia pruinocar	pa, Acacia apt	aneura and Eucalyptu	ıs leucophloia sub	osp. leucophloia low woodland over Acacia
-8					vanleeuwenii and Triodia wiseana open
	hummock grassle	and			
Condition:	1		Disturbance Type:	None	
Fire Age:	5-10 Years ago				
SPECIES LIST					
Taxon			Height (cm)	Cover (%)	Notes
Acacia ancistrocarpa			1.8	3	Notes
Acacia aptaneura			4	4	
Acacia bivenosa			1.3	1	
Acacia pruinocarpa			3	6	
Acacia sibirica			1.2	0.1	
Acacia tenuissima			2.1	0.1	
Aristida ?pruinosa			0.5	0.1	
Atalaya hemiglauca			1.5	0.1	
Corchorus sp.			0.6	0.1	
Cymbopogon ambiguus			0.5	0.1	
Eremophila forrestii sub			1	0.1	
Eremophila longifolia			1.6	0.1	
Eucalyptus leucophloia s	subsp. leucophloia		2.5	1	
Hakea lorea subsp. lorea	a		2.2	0.1	
Hibiscus coatesii			0.3	0.1	
lasminum didymum sub	sp. lineare		0.4	0.1	
Paraneurachne muelleri			0.4	0.1	
Poaceae sp.			0.8	0.1	
Ptilotus calostachyus			0.5	0.1	
Ptilotus obovatus			0.4	0.1	
Solanum lasiophyllum			0.4	0.1	
Triodia vanleeuwenii			0.5	9	
Triodia wiseana			0.7	8	

Ducient News			FLORA S	ITE SHEET	
Project Name	HD1 NVCP AR-	22-17678			
Site:	R08				
Location	MGA 50	725865 mE	7459104 mN		
					NE.
Date:	3/05/2023				Service States of the service of the
Гуре:	Releve			Sec. 1	Sector Contraction of the
<i>//</i> -				And the second	
Landform:	Drainage line			Carlos State	A CARLES - CARLES AND A
Slope:	None			and all the second	A LOW THE STATE OF A LOW AND A
Rock Type:	Basalt iron sto			A 4 10	All the second sec
Soil Type:	Sand clay loam			A COLORED	
Soil Colour:	Brown slight r	ed			
Vegetation:	Eucalyptus xer	othermica low op	en woodland over	Acacia tumida var. į	pilbarensis, Petalostylis labicheoides and
					riodia wiseana sparse hummock grassland
Condition				parse tussock grassl	
Condition: Fire Age:	1 5-10 Years ago		Disturbance Type:	Previous clearin	IR
	5 10 (Car5 ago				
SPECIES LIST					
Taxon			Height (cm)	Cover (%)	Notes
Acacia ancistrocarpa			1.5	0.1	
Acacia bivenosa			0.5	0.1	
Acacia pyrifolia var. py	rifolia		1.8	0.5	
Acacia tenuissima			1.5	0.1	
Acacia tumida var. pilb	arensis		2.5	11	
Androcalva luteiflora			0.85	0.1	
Boerhavia coccinea			0.1	0.1	
Chrysopogon fallax			0.5 0.6	0.1 0.1	
Corchorus lasiocarpus Crotalaria medicaginec	var nealecta		1.5	0.1	
	i vur. negiectu		1.5	0.1	
Duperreya commixta	mus		0.5	0.1	
Duperreya commixta Enneapogon robustissi	mus		0.5 0.3	0.1 1	
Duperreya commixta Enneapogon robustissii Eriachne tenuiculmis					
Duperreya commixta Enneapogon robustissi			0.3	1	
Duperreya commixta Enneapogon robustissi Eriachne tenuiculmis Eucalyptus xerothermia	ca		0.3 9	1 5	
Duperreya commixta Enneapogon robustissi Eriachne tenuiculmis Eucalyptus xerothermic Euphorbia biconvexa Evolvulus alsinoides va Gossypium australe	ca		0.3 9 0.1 0.05 1.1	1 5 0.1 0.1 0.1	
Duperreya commixta Enneapogon robustissi Eriachne tenuiculmis Eucalyptus xerothermic Euphorbia biconvexa Evolvulus alsinoides va Gossypium australe Gossypium robinsonii	ca r. villosicalyx		0.3 9 0.1 0.05 1.1 2	1 5 0.1 0.1 0.1 0.5	
Duperreya commixta Enneapogon robustissi Eriachne tenuiculmis Eucalyptus xerothermic Euphorbia biconvexa Evolvulus alsinoides va Gossypium australe Gossypium robinsonii Hakea lorea subsp. lore	ca r. villosicalyx		0.3 9 0.1 0.05 1.1 2 2.2	1 5 0.1 0.1 0.1 0.5 0.1	
Duperreya commixta Enneapogon robustissi Eriachne tenuiculmis Eucolyptus xerothermic Euphorbia biconvexa Evolvulus alsinoides va Gossypium australe Gossypium robinsonii Hakea lorea subsp. lore Indigofera ?georgei	ca r. villosicalyx 20		0.3 9 0.1 0.05 1.1 2 2.2 0.2	1 5 0.1 0.1 0.1 0.5 0.1 0.1	
Duperreya commixta Enneapogon robustissi Eriachne tenuiculmis Eucolyptus xerothermic Euphorbia biconvexa Evolvulus alsinoides va Gossypium australe Gossypium australe Gossypium robinsonii Hakea lorea subsp. lore Indigofera ?georgei Indigofera ?monophylki	ca r. villosicalyx ca a		0.3 9 0.1 0.05 1.1 2 2.2 0.2 0.35	1 5 0.1 0.1 0.5 0.1 0.1 0.1	
Duperreya commixta Enneapogon robustissi Eriachne tenuiculmis Eucalyptus xerothermic Euphorbia biconvexa Evolvulus alsinoides va Gossypium australe Gossypium robinsonii Hakea lorea subsp. lore Indigofera ?georgei Indigofera ?monophylli Iasminum didymum su	ca r. villosicalyx ca a bsp. lineare		0.3 9 0.1 0.05 1.1 2 2.2 0.2 0.2 0.35 0.2	1 5 0.1 0.1 0.1 0.5 0.1 0.1 0.1 0.1	
Duperreya commixta Enneapogon robustissi Eriachne tenuiculmis Eucalyptus xerothermic Euphorbia biconvexa Evolvulus alsinoides va Gossypium australe Gossypium robinsonii Hakea lorea subsp. lore Indigofera ?georgei Indigofera ?monophylk Iasminum didymum su Paraneurachne muellei	ca r. villosicalyx ca a bsp. lineare ri		0.3 9 0.1 0.05 1.1 2 2.2 0.2 0.35 0.2 0.25	1 5 0.1 0.1 0.1 0.5 0.1 0.1 0.1 0.1 0.1	
Duperreya commixta Enneapogon robustissi Eriachne tenuiculmis Eucalyptus xerothermic Euphorbia biconvexa Evolvulus alsinoides va Gossypium australe Gossypium robinsonii Hakea lorea subsp. lore Indigofera ?georgei Indigofera ?georgei Indigofera ?monophylk Iasminum didymum su Paraneurachne muelle Petalostylis labicheoide	ca r. villosicalyx ca a bsp. lineare ri		0.3 9 0.1 0.05 1.1 2 2.2 0.2 0.2 0.35 0.2 0.25 2.5	1 5 0.1 0.1 0.1 0.5 0.1 0.1 0.1 0.1 0.1 1	
Duperreya commixta Enneapogon robustissi Eriachne tenuiculmis Eucalyptus xerothermic Euphorbia biconvexa Evolvulus alsinoides va Gossypium australe Gossypium robinsonii Hakea lorea subsp. lore Indigofera ?georgei Indigofera ?monophylk Iasminum didymum su Paraneurachne muellei	ca r. villosicalyx ca a bsp. lineare ri		0.3 9 0.1 0.05 1.1 2 2.2 0.2 0.35 0.2 0.25	1 5 0.1 0.1 0.1 0.5 0.1 0.1 0.1 0.1 0.1	
Duperreya commixta Enneapogon robustissi Eriachne tenuiculmis Eucalyptus xerothermic Euphorbia biconvexa Evolvulus alsinoides va: Gossypium australe Gossypium robinsonii Hakea lorea subsp. lore Indigofera ?georgei Indigofera ?georgei Indigofera ?monophylli lasminum didymum su Paraneurachne muelle Petalostylis labicheoide Polymeria ?mollis	ca r. villosicalyx 2a a bsp. lineare ri 25		0.3 9 0.1 0.05 1.1 2 2.2 0.2 0.35 0.2 0.25 2.5 0.05	1 5 0.1 0.1 0.1 0.5 0.1 0.1 0.1 0.1 0.1 1 0.1	
Duperreya commixta Enneapogon robustissi Eriachne tenuiculmis Eucalyptus xerothermic Euphorbia biconvexa Evolvulus alsinoides va Gossypium australe Gossypium robinsonii Hakea lorea subsp. lore Indigofera ?georgei Indigofera ?georgei Indigofera ?monophyll Iasminum didymum su Paraneurachne mueller Petalostylis labicheoide Polymeria ?mollis Ptilotus obovatus	ca r. villosicalyx 2a a bsp. lineare ri 25 bsp. oligophylla		0.3 9 0.1 0.05 1.1 2 2.2 0.2 0.2 0.2 0.25 2.5 0.05 0.5	1 5 0.1 0.1 0.5 0.1 0.1 0.1 0.1 1 0.1 0.1 0.1	
Duperreya commixta Enneapogon robustissi Eriachne tenuiculmis Eucolyptus xerothermic Euphorbia biconvexa Evolvulus alsinoides va. Gossypium robinsonii Hakea lorea subsp. lore Indigofera ?georgei Indigofera ?georgei Indigofera ?monophyllu lasminum didymum su Paraneurachne muelle Petalostylis labicheoide Polymeria ?mollis Ptilotus obovatus Senna artemisioides su Stylobasium spathulatu Themeda triandra	ca r. villosicalyx 2a a bsp. lineare ri 25 bsp. oligophylla		0.3 9 0.1 0.05 1.1 2 2.2 0.2 0.2 0.25 0.2 0.25 2.5 0.05 0.5 0.4 1.2 1	1 5 0.1 0.1 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	
Duperreya commixta Enneapogon robustissi Eriachne tenuiculmis Eucolyptus xerothermic Euphorbia biconvexa Evolvulus alsinoides va Gossypium australe Gossypium australe Gossypium robinsonii Hakea lorea subsp. lore Indigofera ?georgei Indigofera ?georgei Indigofera ?monophylli lasminum didymum su Paraneurachne muelle Petalostylis labicheoide Polymeria ?mollis Etilotus obovatus Senna artemisioides su Stylobasium spathulatu	ca r. villosicalyx 2a a bsp. lineare ri 25 bsp. oligophylla		0.3 9 0.1 0.05 1.1 2 2.2 0.2 0.2 0.25 0.25 2.5 0.25 0.5 0.5 0.4 1.2	1 5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	

			FLORA SIT	E SHEET	
•	HD1 NVCP AR-22	2-17678			
	R09				
Location	MGA 50	724848 mE	7459413 mN		
	3/05/2023 Releve				
	Calcrete rise Minor			and the second	
•	Calcrete			L' AV ALL MAIL	The second s
	Clay loam				FE GALAGE AND
				attle of	
	Orange creamy				
					r open woodland over Petalostylis a var. pyrifolia and Androcalva luteiflora low
			viseana sparse humm		
Condition:	L		Disturbance Type:	Fire	
Fire Age:	2-5 Years ago				
SPECIES LIST Faxon			Height (cm)	Cover (%)	Notes
Taxon Acacia bivenosa			Height (cm) 0.4	Cover (%) 3	MOLES
	lia		0.4 0.5	3 0.5	
Acacia pyrifolia var. pyrifo Acacia subtiliformic	IId				20
Acacia subtiliformis			1	0.1	P3
Androcalva luteiflora			0.5	0.5	
Atalaya hemiglauca			1.5	0.1	
Codonocarpus cotinifolius			1.5	0.1	
Corchorus lasiocarpus sub	sp. parvus		0.2	0.1	
Corymbia hamersleyana			8	1.5	
Eucalyptus socialis subsp.	eucentrica		1.3	1	
Euploca sp.			0.2	0.1	PSI
Goodenia sp. East Pilbara			0.05	0.1	P3
Halgania cyanea var. Allai	nbi Stn (B.W. St	rong 676)	0.5	0.1	
ndigofera ?monophylla			0.1	0.1	
lasminum didymum subsp	. lineare		0.4	0.1	
Petalostylis labicheoides			2.2	0.5	
Ptilotus sp.			0.4	0.1	
Scaevola ambylanthera vo	ır. ambylantherd	מ	0.15	0.1	
Senna artemisioides subsp	. oligophylla		0.2	0.1	
Solanum chippendalei			0.4	0.1	
Triodia wiseana			0.2	8	

Site: R Location M Date: 3, Type: R Landform: SI Slope: V	D1 NVCP AR-22-17678 10 1GA 50 725789 ml /05/2023 eleve tony rise ery gentle	E 7459146 mN		No photo available
Site: R Location M Date: 3, Type: R Landform: SI Slope: V	10 1GA 50 725789 ml /05/2023 eleve tony rise	E 7459146 mN		No photo available
Date: 3, Type: R Landform: Si Slope: V	/05/2023 eleve tony rise	E 7459146 mN		No photo available
Type: R Landform: Si Slope: V	eleve tony rise			No photo available
Type: R Landform: Si Slope: V	eleve tony rise			
Landform: Si Slope: V	tony rise			
Slope: V	•			
	erv gentle			
	cry Bennie			
	on stone quartz basalt			
	lay loam			
Soil Colour: R	ed brown			
Vegetation: A	cacia inaequilatera low ope	n woodland over Triodia	a vanleeuwenii op	en hummock grassland
Condition: 1		Disturbance Type:	Previous track o	clearing
Fire Age: 2	-5 Years ago			
SPECIES LIST				
Taxon		Height (cm)	Cover (%)	Notes
Acacia ancistrocarpa		0.5	0.1	
Acacia inaequilatera		3	1	
Acacia sibirica		0.7	0.1	
Acacia tenuissima Duperreva commixta		0.65 0.3	0.1 0.1	
Duperreya commixta Enneapogon polyphyllus		0.3	0.1	
Euphorbia tannensis subsp.	eremophila	0.3	0.1	
Hakea chordophylla	· · · /	2	0.1	
Hibiscus sturtii var. campyle	ochlamys	0.3	0.1	
Ptilotus sp.		0.4	0.1	
Senna artemisioides subsp. Solanum lasiophyllum	oligophylla	0.3 0.4	0.1 0.1	
Triodia vanleeuwenii		0.2	11	
Triodia wiseana		0.15	0.1	

FLORA SITE SHEET

			FLORA S	ITE SHEET		
Project Name	HD1 NVCP AF	8-22-17678				_
Site:	R11					
Location	MGA 50	725479 mE	7459000 mN			12
1						dia 1
Date:	3/05/2023				state s Ar All	Part
Туре:	Releve			- And the second		Contraction of the
				1. 1. 1. 2. 2.		No.
Landform:	Drainage line			Salar Carrie	State of the second second	
Slope:	None				William and start and	Sale 1
Rock Type: Soil Type:	Calcrete iron Clay loam	stone		and the second		
Soil Colour:	Brown					
	DIOWII					
Vegetation:	Corymbia har	mersleyana and E	ucalyptus xerothern	nica low open wood	land over Petalostylis labicheoides tall	
-	isolated shrul	os over Acacia an	cistrocarpa and Aca	cia pyrifolia var. pyr	ifolia mid sparse shrubland over Triodia	
		l Triodia wiseana	open hummock gra			
Condition:	1		Disturbance Type	: Previous clearing	ng	
Fire Age:	>10 Years ago)				
SPECIES LIST						
Taxon			Height (cm)	Cover (%)	Notes	
Acacia ancistrocarpa			1.9	5		
Acacia bivenosa			1	0.1		
Acacia pyrifolia var. pyr	ifolia		1.2	1		
Acacia tenuissima			0.5 1.3	0.1 0.1		
Androcalva luteiflora Aristida contorta			0.3	0.1		
Atalaya hemiglauca			1.9	0.1		
Corymbia hamersleyand	7		8	3		
Eriachne mucronata	-		0.4	0.1		
Eriachne tenuiculmis			0.3	0.1		
Eucalyptus xerothermic	а		3	1		
Indigofera ?monophylla	1		0.25	0.1		
Paraneurachne mueller	i		0.4	0.1		
Petalostylis labicheoide	s		3.5	0.5		
Polymeria ?mollis			0.15	0.1		
Ptilotus astrolasius	an alizanhulla		0.2	0.1		
Senna artemisioides sul Solanum lasiophyllum	osp. oligopnylla		0.3 1	0.1 0.1		
Stylobasium spathulatu	m		0.7	0.1		
Themeda triandra			0.6	0.1		
Triodia longiceps			1	8		
Triodia wiseana			0.5	5		

Appendix 4: Vegetation structural classification and condition rating scale

Vegetation structural classification^

Stratum	70 - 100%	30 – 70%	10 – 30%	2 – 10%	< 2%
Trees over 30 m	Tall closed forest	Tall open forest	Tall woodland	Tall open woodland	Scattered tall trees
Trees 10-30 m	Closed forest	Open forest	Woodland	Open woodland	Scattered trees
Trees under 10 m	Low closed forest	Low open forest	Low woodland	Low open woodland	Scattered low trees
Shrubs over 2 m	Tall closed scrub	Tall open scrub	Tall shrubland	Tall open shrubland	Scattered tall shrubs
Shrubs 1-2 m	Closed heath	Open heath	Shrubland	Open shrubland	Scattered shrubs
Shrubs under 1 m	Low closed heath	Low open heath	Low shrubland	Low open shrubland	Scattered low shrubs
Hummock grasses	Closed hummock grassland	Hummock grassland	Open hummock grassland	Very open hummock grassland	Scattered hummock grasses
Grasses, Sedges, Herbs	Closed tussock grassland / sedgeland / herbland	Tussock grassland / sedgeland / herbland	Open tussock grassland / sedgeland / herbland	Very open tussock grassland / sedgeland / herbland	Scattered tussock grasses / sedges / herbs

^Based on Muir (1977) and Alpin's (1979) modification of the vegetation classification system of Specht (1970).

Vegetation condition scale rating for use on Pilbara surveys^

Rating	Description
Excellent	Pristine or nearly so; no obvious signs of damage caused by human activities since European settlement.
Very Good	Some relatively slight signs of damage caused by human activities since European settlement. For example, some signs of damage to tree trunks caused by repeated fire, the presence of some relatively non-aggressive weeds, or occasional vehicle tracks.
Good	More obvious signs of damage caused by human activities since European settlement, including some obvious impact on the vegetation structure such as that caused by low levels of grazing or slightly aggressive weeds.
Poor	Still retains basic vegetation structure or ability to regenerate it after very obvious impacts of activities of human activities since European settlement, such as grazing, partial clearing, frequent fires or aggressive weeds.
Degraded	Severely impacted by grazing, very frequent fires, clearing or a combination of these activities. Scope for some regeneration but not to a state approaching good condition without intensive management. Usually with a number of weed species present including very aggressive species.
Completely Degraded	Areas that are completely or almost completely without native species in the structure of their vegetation; i.e. areas that are cleared or 'parkland cleared' with their flora comprising weed or crop species with isolated native trees or shrubs.

^Based on Trudgen (1998) as presented in EPA Technical Guidance (EPA 2016c).

Appendix 5: Likelihood of occurrence criteria for flora and fauna species

Likelihood of occurrence criteria for flora and fauna species:

• Likelihood: Previously recorded

- The species has previously been recorded within study area from DEC database search results and/or from previous surveys of the study area, and/or the species has been confirmed through a current vouchered specimen at WA Herbarium.
- Likelihood: Likely
 - o The species has not previously been recorded from within the study area. However:
 - The species has been recorded in proximity (<5 km) to the study area, and occurs in similar habitat to that which occurs within the study area.
 - Core habitat and suitable landforms for the species occurs within the study area either year-round or seasonally. In relation to fauna species, this could be that a host plant is seasonally present on site, or habitat features such as caves are present that may be used during particular times during its life cycle e.g. for breeding. In relation to both flora and fauna species, it may be there are seasonal wetlands present.
 - There is a medium to high probability that a species uses the study area.

• Likelihood: Potential

- o The species has not previously been recorded from within the study area. However:
- Targeted surveys may locate the species based on records occurring in proximity to the study area (5-15 km) and suitable habitat occurring in the study area.
- o The study area has been assessed as having potentially suitable habitat through habitat modelling.
- The species is known to be cryptic and may not have been detected despite extensive surveys.
- The species is highly mobile and has an extensive foraging range so may not have been detected during previous surveys.
- The species has been recorded in the study area by a previous consultant survey or there is historic evidence of species occurrence within the study area. However:
- Doubt remains over taxonomic identification, or the majority of habitat does not appear suitable (although presence cannot be ruled out due to factors such as species ecology or distribution).
- Coordinates are doubtful.

• Likelihood: Unlikely

- The species has been recorded locally through DEC database searches. However, it has not been recorded within the study area and:
- It is unlikely to occur due to the site lacking critical habitat, having at best marginally suitable habitat, and/or being severely degraded.
- o It is unlikely to occur due to few historic record/s and no other current collections in the local area.
- The species has been recorded within the bioregion based on literature review but has not been recorded locally or within the study area through DEC database searches.
- The species has not been recorded in the study area despite adequate survey efforts, such as a standardised methodology or targeted searching within potentially suitable habitat.
- Likelihood: Not applicable

- The species is not known to occur within the IBRA bioregion based on current literature and distribution.
- o The study area lacks important habitat for a species that has highly selective habitat requirements.
- The species has been historically recorded within study area or locally; however, it is considered locally extinct due to significant habitat changes such as land clearing and/or introduced predators.

Table: Assessment of the likelihood of occurrence of conservation significant flora Identified by the desktop assessment in the vicinity of the study area

Distance to Nearest Record from the Survey Area is based on a distance analysis undertaken against Rio Tinto Database. CR = Listed as Critically Endangered under the EBPC Act, EN = Listed as Endangered under the EBPC Act, VU = Listed as Vulnerable under the EBPC Act. T = Listed as Triveatened under the BC Act, P = Listed as Sinority by DBCA.

	Conserva	tion Status		Source		Distance to	Flowering		Habitat occurs within the	Pre-Survey		Post-Survey								
Таха	DBCA	EPBC	NatureMap	PMST	RTIO	Nearest Record (km)	Period	Preferred Habitat	Survey Area	Likelihood of Occurrence	Habitat and discussion (post-field)	Likelihood of Occurrence								
Acacia bromilowiana	P4		x		x	8	Jul - Aug	Red skeletal stony loam, orange-brown pebbly, gravel loam, laterite, banded ironstone, basalt. Rocky hills, breakaways, scree slopes, gorges, creek beds.	No	Unlikely	No suitable habitat recorded within the study area.	Unlikely								
Acacia subtiliformis	P3	X X		2.8	Jun - Aug	On rocky calcrete plateau.	Potential	Likely	This taxon was recorded throughout the study area.	Recorded										
Aristida jerichoensis var. subspinulifera	P3		x		х	15.5	Mar - May or Ju or Sep	Hardpan plains, cracking clay flats. Dolerite outcropping. Red light clay.	No	Unlikely	No suitable habitat recorded within the study area.	Unlikely								
Aristida lazaridis	P2		x		x	11	Apr	Sand or loam.	Potential	Potential	Suitable habitat occurs within the study area. The survey occurred the month following the flowering period for this taxon (April), therefore it is possible that it would have been missed during the survey.	Potential								
Cladium procerum	P2		х		x	5.8	Nov	Perennial pools.	Potential	Potential	No suitable habitat recorded within the study area.	Unlikely								
Dolichocarpa sp. Hamersley Station (A.A. Mitchell PRP 1479)	P3				x	18.1	Mar - May or Ju	Flat crabhole plains, cracking clay, gilgai self-mulching plains, gentle slopes, flow lines. Red-brown cracking clay/loam. Basalt and ironstone rocks and pebbles, pisolitic gravel.	No	Unlikely	No suitable habitat recorded within the study area.	Unlikely								
Eremophila magnifica subsp. magnifica	P4		x		x	9.3	Jul - Sep	Skeletal soils over ironstone. Rocky screes.	No	Unlikely	No suitable habitat recorded within the study area.	Unlikely								
Eremophila magnifica subsp. velutina	P3				х	9.9	Jul - Sep	Skeletal soils over ironstone. Summits.	No	Unlikely	No suitable habitat recorded within the study area.	Unlikely								
Eremophila naaykensii	P3		x		x	11.4	Aug - Sep	Hillslopes, scree slopes, ironstone outcrops. Brown-red soil, silty loam.	No	Unlikely	No suitable habitat recorded within the study area.	Unlikely								
Eremophila sp. West Angelas (S. van Leeuwen 4068)	P2				x		8.9	Aug - Oct	High in landscape, summit of hills and hillslopes, outcrops, ironstone ranges. Brown silty loam.	No	Unlikely	No suitable habitat recorded within the study area.	Unlikely							
Eremophila youngii subsp. lepidota	P4			x		8.9		Stony red sandy loam. Flats plains, floodplains, sometimes semi-saline, clay flats.	Potential	Potential	No suitable habitat recorded within the study area.	Unlikely								
Fimbristylis sieberiana	P3		x		x	2.7	May - Jun	Mud, skeletal soil pockets. Pool edges, sandstone cliffs.	Potential	Likely	No suitable habitat recorded within the study area.	Unlikely								
Goodenia lyrata	P3				x	10.7	Aug	Red sandy loam. Near claypan.	No	Unlikely No suitable habitat recorded within the study area.		Unlikely								
Goodenia sp. East Pilbara (A.A. Mitchell PRP 727)	P3		х		x	1.6	Aug - Sep	Red-brown clay soil, calcrete pebbles. Low undulating plain, swampy plains.	Potential	Likely	This taxon was recorded throughout the study area.	Recorded								
Grevillea saxicola	P3		х		х	8.4	Feb - Mar	Hillslopes, incised gully systems, steep cliffs. Loamy soils.	No	Unlikely	No suitable habitat recorded within the study area.	Unlikely								
Gymnanthera cunninghamii	P3		х		x	16.3	Apr or Dec	Sandy soils.	Potential	Unlikely	The study area contains suitable habitat for this taxon (sandy soils), however it has not been recorded within 15 km of the study area.	Unlikely								
Hibiscus sp. Gurinbiddy Range (M.E. Trudgen MET 15708)	P2		х		x	11.7	May - Jul	Rocky slopes, gullies, breakaways, scree slopes, creeks. Gravelly, red brown loam.	No	Unlikely	No suitable habitat recorded within the study area.	Unlikely								
Indigofera gilesii	P3	x		x		x		X		x		x		12.7	May or Aug	Pebbly loam. Amongst boulders & outcrops, hills.	Potential	Potential	The study area contains suitable habitat for this taxon (pebbly loam, hills). The survey occurred during this taxon's flowering time (May or Aug), therefore it is unlikely that it would have been missed during the survey.	Unlikely
Ipomoea racemigera	P2				x		х	19.1	Apr	On sandy soils along watercourses.	Potential	Unlikely	The study area contains suitable habitat for this taxon (sandy soils along watercourses), however it has not been recorded within 15 km of the study area.	Unlikely						
Isotropis parviflora	P3		x		x	14.3	Feb - Mar or May	Valley slope of ironstone plateau.	Potential	Potential	The study area contains suitable habitat for this taxon (slopes of ironstone plateaus). The survey occurred during this taxon's flowering time (Feb – Mar or May), therefore it is unlikely that it would have been missed during the survey.	Unlikely								

Таха	Conservat	ion Status		Source		Distance to Nearest	Flowering	Preferred Habitat	Habitat occurs within the	Pre-Survey Likelihood of	Habitat and discussion (post-field)	Post-Survey Likelihood of
	DBCA	EPBC	NatureMap	PMST	RTIO	Record (km)	Period		Survey Area	Occurrence		Occurrence
Lepidium catapycnon	P4		x		x	4.5	Oct - Jan	Stony hill slopes, open woodland in hilly areas, more frequently on south facing slopes, hill hummock grasslands, and road verges.	Potential	Likely	The study area contains suitable habitat for this taxon (stony hill slopes, open woodlands in hilly areas, hill hummock grasslands, and road verges). Additionally, the survey was undertaken outside of this taxon's flowering time (Oct – Jan), so it is possible that it would have been missed during the survey.	Likely
Oxalis sp. Pilbara (M.E. Trudgen 12725)	P2				х	11.4	May	Shaded gullies, below cliffs, drainages, creeklines. Red-brown clayey loam, rocky loam among boulders.	No	Unlikely	No suitable habitat recorded within the study area.	Unlikely
Ptilotus mollis	P4		x		х	9.7	May or Sep	Stony hills and screes.	No	Unlikely	No suitable habitat recorded within the study area.	Unlikely
Rhagodia sp. Hamersley (M. Trudgen 17794)	P3		x		х	15.5	Mar - May or Sep or Nov	Red sandy loam over gravelly ironstone. Plains.	Potential	Unlikely	No suitable habitat recorded within the study area.	Unlikely
Rhynchosia bungarensis	P4				х	11.2	May - Dec	Pebbly, shingly coarse sand amongst boulders. Banks of flow line in the mouth of a gully in a valley wall.	No	Unlikely	No suitable habitat recorded within the study area.	Unlikely
Rostellularia adscendens var. latifolia	P3		x		x	1.1	Apr - May	Ironstone soils. Near creeks, rocky hills.	Potential	Likely	The study area contains suitable habitat for this taxon (near creeks, rocky hills). The survey occurred the month following the flowering period for this taxon (April), therefore it is possible that it would have been missed during	Potential
Sida sp. Barlee Range (S. van Leeuwen 1642)	P3		x		х	12.5	Jul - Aug	Skeletal red soils pockets. Steep slope.	No	Unlikely	No suitable habitat recorded within the study area.	Unlikely
Streptoglossa sp. Cracking clays (S. van Leeuwen et al. PBS 7353)	P3				х	18.1	Jun or Sep	Cracking clays, plains, floodplains. Red-brown sandy clay. Ironstone.	No	Unlikely	No suitable habitat recorded within the study area.	Unlikely
Stylidium weeliwolli	P3		x		x	1.1	Aug - Sep	Gritty sand soil, sandy clay. Edge of watercourses.	Potential	Likely	The study area contains suitable habitat for this taxon (sandy soils on the edge of watercourses) Additionally, the survey was undertaken outside of this taxon's flowering time (Aug - Sep), so it is possible that it would have	Likely
Themeda sp. Hamersley Station (M.E. Trudgen 11431)	P3		x		х	18.7	Aug	Red clay. Clay pan, grass plain.	No	Unlikely	No suitable habitat recorded within the study area.	Unlikely
Triodia sp. Mt Ella (M.E. Trudgen 12739)	P3		x		x	9.4	Feb or May or Jul or Sep	Light orange-brown, pebbly loam. Amongst rocks & outcrops, gully slopes.	No	Unlikely	No suitable habitat recorded within the study area.	Unlikely

Table: Assessment of the likelihood of occurrence of conservation significant fauna Identified by the desktop assessment in the vicinity of the study area

		servation significant fauna Identified by the		ation Code		Sourc		Distance to		Likelihood of	f Likelih	
Family	Scientific Name	Common Name	State	Feder al	MN	RTIO	PMST	Nearest Record	Habitat and discussion (pre-field)	Occurrence (pre-field)	Habitat and discussion (post-field)	Occurrence (pos field)
Pardalotidae	Aphelocephala leucopsis	Southern Whiteface	0	VU			x	7.1	Southern Whitefaces live in a wide range of sparsely treed woodlands and shrublands where there is an understorey of grasses or shrubs or both, usually in habitats dominated by acacias or eucalypts on ranges, foothills and lowlands and plains (BirdLife International, 2023).	Potential	Whilst this species has been recorded within 20km, the study area does not contain suitable habitat for occurrence.	Unlikely
Apodidae	Apus pacificus	Fork-tailed Swift	МІ	МІ	x	x		19.1	The Fork-tailed Swift is almost exclusively aerial, flying from less than 1 m to at least 300 m above ground and probably much higher. In Australia, they mostly occur over a wide range of habitats from inland plains, dry or open habitats, riparian woodland, tea-tree swamps, low scrub, heathland, saltmarsh, over cliffs, beaches, islands and well out to sea, above foothills or in coastal areas. They also occur over settled areas, including towns, urban areas and cities (Department of Climate Change, Energy, the Environment and Water, 2023).	Unlikely	Whilst this species has been recorded within 20km, the study area does not contain suitable habitat for occurrence.	Unlikely
Scolopacidae	Calidris ferruginea	Curlew Sandpiper	CR	CR & MI			x	81.2	The Curlew Sandpiper prefers habitats such as tidal mudflats, saltmarsh, salt fields, fresh, brackish or saline wetlands and sewerage ponds (Pizzey & Knight, 2012). It is also found at lagoons and mangroves, as well as beaches, rocky shores and around lakes, dams and floodwaters. The Curlew Sandpiper does not breed in Australia (BirdLife International, 2023).	Unlikely	The study area does not contain suitable habitat for occurrence.	Unlikely
Charadriidae	Charadrius veredus	Oriental Plover	MI	МІ		x		19.8	Immediately after the Oriental Plover arrives in their non-breeding grounds in northern Australia, they spend a few weeks in coastal habitats such as estuarine mudflats and sandbanks, on sandy or rocky ocean beaches or nearby reefs, or in near-coastal grasslands, before dispersing further inland (Department of Climate Change, Energy, the Environment and Water, 2023). Thereafter they usually inhabit flat, open, semi-arid or arid grasslands, where the grass is short and sparse, and interspersed with hard, bare ground, such as claypans, dry paddocks, playing fields, lawns and cattle camps, or open areas that have been recently burnt (Menkhorst et al., 2017).		Whilst this species has been recorded within 20km, the study area does not contain suitable habitat for occurrence.	Unlikely
Accipitridae	Erythrotriorchis radiatus	Red Goshawk	VU	VU			x	696.8	The Red Goshawk occurs in coastal and sub-coastal areas in wooded and forested lands of tropical and warm-temperate Australia (Marchant & Higgins 1993). Riverine forests are also used frequently. The Red Goshawk nests in large trees, frequently the tallest and most massive in a tall stand, and nest trees are invariably within one km of permanent water (Department of Climate Change, Energy, the Environment and Water, 2023).	Unlikely	The study area does not contain suitable habitat for occurrence.	Unlikely
Falconidae	Falco hypoleucos	Grey Falcon	VU	0			x	25.1	The Grey Falcon is a wide roaming species and prefers habitats such as lightly treed inland plains, gibber deserts, sand ridges, pastoral lands, timbered watercourses. They are seldom in the driest deserts (Pizzey & Knight, 2012).	Unlikely	The study area does not contain suitable habitat for occurrence. This species may overfly study area.	Unlikely
Falconidae	Falco peregrinus	Peregrine Falcon	OS	0	x	x		11.5	The Peregrine Falcon occupies most environments with suitable nest sites: cliff faces are preferred, including man-made ones, and it commonly uses stick nests built by other species (Menkhorst et al., 2017).	Unlikely	The study area does not contain suitable habitat for occurrence. This species may overfly study area.	Unlikely
Procellariidae	Macronectes giganteus	Southern Giant Petrel	МІ	EN & MI	x			550.1	The Southern Giant Petrel is a seabird found in the southern oceans. Its habitat is primarily marine, over open seas and inshore waters favouring the edges of the continental shelf and pack ice (Morcombe 2021). Routinely ashore to feed and rest (Menkhorst et al., 2017). It has been found to gather at carrion, offal and sewage outlets. Breeding does not occur on Australia.	Unlikely	The study area does not contain suitable habitat for occurrence.	Unlikely

	nilu Calantific Nama		Conserv	ation Code		Source	e	Distance to)	Likelihood of		Likelihood of
Family	Scientific Name	Common Name	State	eder al	Σ	RTIO	MST	Nearest Record	Habitat and discussion (pre-field)	Occurrence (pre-field)	Habitat and discussion (post-field)	Occurrence (post- field)
Strigidae	Ninox connivens connivens	Barking owl	Р3	0	x			5	Barking Owls are found in open woodlands and the edges of forests, often adjacent to farmland. They are less likely to use the interior of forested habitat (BirdLife International, 2023). They are usually found in habitats that are dominated by eucalytpus species, particularly red gum, and, in the tropics, paperbark species. They prefer woodlands and forests with a high density of large trees and particularly sites with hollows that are used by the owls as well as their prey. Roost sites are often located near waterways or wetlands.	Unlikely	Whilst the species, <i>Ninox connivens</i> , was recorded within 20km, it is only the southwest subpopulation which is listed as a priority species, and not the species as it occurs outside the south west of Western Australia. The subspecies <i>Ninox connivens</i> <i>connivens</i> southwest population is unlikely to occur within the study area.	
Psittaculidae	Pezoporus occidentalis	Night Parrot	CR	EN			x	343.3	The Night Parrot is a highly cryptic bird which was presumed extinct until its rediscovery in 2013. As such, habitat requirements are still being researched. At the time of this report Night Parrots are thought to roost and nest in clumps of dense vegetation, primarily old and large spinifex (Triodia) clumps, but sometimes other vegetation types are used. Little is known about foroaging sites, but favoured sites are considered likely to vary across the range of the species. Triodia is also likely to provide a good food resource for night parrots, in times of mass flowering and seeding, but they also rely heavily on a range of other food species. Sclerolaena has been shown to be a source of food and moisture (Department of Biodiversity, Conservation and Attractions, 2017).	Unlikely	Although this species is cryptic, the small-sized study area does not contain suitable habitat for occurrence.	Unlikely
Rostratulidae	Rostratula australis	Australian Painted Snipe	EN	EN			x	54.9	The Australian Painted Snipe is usually found in shallow inland wetlands, either freshwater or brackish, that are either permanently or temporarily filled. Suitable wetlands usually support a mosaic of low, patchy vegetation, as well as lignum and canegrass (BirdLife International, 2023). The Australian Painted Snipe can use modified habitats, such as low-lying woodlands converted to grazing pasture, sewage farms, dams, bores and irrigation schemes (Marchant & Higgins, 1993), however they do not necessarily breed in such habitats.	Unlikely	The study area does not contain suitable habitat for occurrence.	Unlikely
Mammals												
Dasyuridae	Dasyurus hallucatus	Northern Quoll	EN	EN	×	x	x	11.6	The Northern Quoll occupies a diverse range of habitats including rocky areas, eucalypt forest, woodlands, rainforests, sandy lowlands and beaches, shrubland, grasslands and desert (Threatened Species Scientific Committee, 2005). Habitat generally encompasses some form of rocky area for denning purposes with surrounding vegetated habitats used for foraging and dispersal. Dens are made in rock crevices, tree holes or occasionally termite mounds (Threatened Species Scientific Committee, 2005). In the Pilbara region, the species appears to prefer the Rocklea, Macroy and Robe land systems (Biota Environmental Services, 2008). The Northern Quoll has also been recorded in other land systems which comprise sandstone and dolomite hills and ridges, shrublands, sandy plains, clay plans and tussock grasslands and coastal fringes including dunes islands and beaches (Biota Environmental Services, 2008).	Potential	This species may opportunistically utilise the minor drainage habitat to cross the study area when males disperse. No denning habitat is found in the study area.	Potential
Megadermatidae	Macroderma gigas	Ghost Bat	VU	VU	x	x	x	12	The Ghost Bat is patchily distributed across the northern half of Australia. This species requires undisturbed roost sites which are often complex and contain multiple entrances; it has been known to utilise old abandoned mine shafts (Menkhorst & Knight, 2021).	Potential	This species may opportunistically use the study area for foraging, however no roosting habitat is present within the study area.	Potential

1			Conservation Code			Source Distance		Distance to		Likelihood of		Likelihood of
Family	Scientific Name	Common Name	State	Feder al	δ	RTIO	PMST	Nearest Record	Habitat and discussion (pre-field)	Occurrence (pre-field)	Habitat and discussion (post-field)	Occurrence (post- field)
Thylacomyidae	Macrotis lagotis	Bilby, Dalgyte, Ninu	VU	VU			x	76.7	The Bilby inhabits a variety of habitats including acacia shrublands and hummock grassland, stony downs country of cracking clays, desert sandplains and dune fields sometimes containing laterite (Menkhorst & Knight, 2021; Van Dyck & Strahan, 2008).	Unlikely	The study area does not contain suitable habitat for occurrence.	Unlikely
Muridae	Pseudomys chapmani	Western Pebble-mound Mouse, Ngadji	P4	0	x	x		10.7	The Western Pebble-mound Mouse is found on stony hillsides with hummock grassland (Menkhorst & Knight, 2021). This species favors scree and stony plains habitat where it constructs conspicuous, extensive mounds of small stones. The pebble-mounds are found on gently sloping hills where the ground is stony with continuous small pebbles.	Potential	Secondary evidence of its presence has been recorded within the study area.	Recorded
	Rhinonicteris aurantia (Pilbara form)	Pilbara Leaf-nosed Bat	VU	VU	x	x	x	14.5	The Pilbara Leaf-nosed Bat (PLNB) inhabits abandoned mine shafts, granite rock pile terrain of the east Pilbara and caves formed in gorges that dissect sedimentary geology in the west Pilbara (Van Dyck & Strahan, 2008). During the dry season, the PLNB roots in deep, warm, humid caves or mines and forages nearby, while during the wet season, it is more widespread and may not require caves for roosting (Menkhorst & Knight, 2021). The PLNB forages low in open habitats, including grasslands and along roads.	Potential	Whilst this species has been recorded within 20 km of the study area, there is no roosting habitat in the study area and the habitat represents limited foraging potential.	Potential
Reptiles Typhlopidae	Anilios ganei	Gane's Blind Snake (Pilbara)	Ρ1	0	x	x		18.1	The Gane's Blind Snake inhabits hill crests and slopes, outcroppings, gullies. This taxon is associated with rocky and stony habitats (Wilson and Swan, 2017).	Unlikely	Whilst this species has been recorded within 20 km of the study area, the study area does not contain suitable habitat for occurrence.	Unlikely
Pythonidae	Liasis olivaceus barroni	Pilbara Olive Python	VU	VU	x	x	x	12.8	The Pilbara Olive Python is found in arid to subhumid areas of northern Australia, it is often encountered along watercourses, especially those associated with rocky areas (Wilson & Swan, 2017). The preferred habitat of this taxon includes escarpments, gorges and water holes in the ranges of the Pilbara region (Wilson & Swan, 2017). Individuals are usually recorded in close proximity to water and rock outcrops that attract suitably sized prey species (Pearson, 1993). Males have been recorded travelling up to 4 km to locate mates during the breeding season (Tutt, Mitchell, Brace, & Pearson, 2002).	Potential	Whilst this species has been recorded within 20 km of the study area, the habitat in the study area has limited sheltering and foraging capacity with no permanent or semi- permanent water.	Unlikely
Scincidae	Liopholis kintorei	Great Desert Skink	VU	VU			x	638.1	The Great Desert Skins is found in arid sandflats and clay-based or loamy soils with spinifex (Wilson and Swan, 2017).	Unlikely	The study area does not contain suitable habitat for occurrence.	Unlikely
Carphodactylidae	Underwoodisaurus seorsus	Pilbara Barking Gecko	P2	0	x			29.6	The Pilbara Barking Gecko is known from an isolated population in West Angelas and Paddlesack Range in the central Hamersley Range (Wilson & Swan, 2017).	Unlikely	The study area does not contain suitable habitat for occurrence.	Unlikely

Appendix 5: Flora species recorded within the study area

FAMILY	GENUS	FULL NAME
Malvaceae	Abutilon	Abutilon cunninghamii
Malvaceae	Abutilon	Abutilon sp.
Fabaceae	Acacia	Acacia ancistrocarpa
Fabaceae	Acacia	Acacia aptaneura
Fabaceae	Acacia	Acacia bivenosa
Fabaceae	Acacia	Acacia citrinoviridis
Fabaceae	Acacia	Acacia dictyophleba
Fabaceae	Acacia	Acacia inaequilatera
Fabaceae	Acacia	Acacia pruinocarpa
Fabaceae	Acacia	Acacia pyrifolia var. pyrifolia
Fabaceae	Acacia	Acacia sibirica
Fabaceae	Acacia	Acacia subtiliformis
Fabaceae	Acacia	Acacia tenuissima
Fabaceae	Acacia	Acacia tumida var. pilbarensis
Violaceae	Afrohybanthus	Afrohybanthus aurantiacus
Malvaceae	Androcalva	Androcalva luteiflora
Poaceae	Aristida	Aristida ?pruinosa
Poaceae	Aristida	Aristida contorta
Sapindaceae	Atalaya	Atalaya hemiglauca
Nyctaginaceae	Boerhavia	Boerhavia coccinea
Capparaceae	Capparis	Capparis lasiantha
Poaceae	Cenchrus	Cenchrus ciliaris
Poaceae	Chrysopogon	Chrysopogon fallax
Gyrostemonaceae	Codonocarpus	Codonocarpus cotinifolius
, Malvaceae	Corchorus	Corchorus lasiocarpus
Malvaceae	Corchorus	Corchorus lasiocarpus subsp. parvus
Malvaceae	Corchorus	Corchorus sp.
Myrtaceae	Corymbia	Corymbia ?hamersleyana
Myrtaceae	Corymbia	Corymbia hamersleyana
Fabaceae	Crotalaria	Crotalaria medicaginea var. neglecta
Poaceae	Cymbopogon	Cymbopogon ambiguus
Sapindaceae	Dodonaea	Dodonaea lanceolata var. lanceolata
Convolvulaceae	Duperreya	Duperreya commixta
Poaceae	Enneapogon	Enneapogon caerulescens
Poaceae	Enneapogon	Enneapogon polyphyllus
Poaceae	Enneapogon	Enneapogon robustissimus
Poaceae	Eragrostis	Eragrostis desertorum
Scrophulariaceae	Eremophila	Eremophila forrestii
Scrophulariaceae	Eremophila	Eremophila forrestii subsp. forrestii
Scrophulariaceae	Eremophila	Eremophila fraseri subsp. fraseri
Scrophulariaceae	Eremophila	Eremophila longifolia
Poaceae	Eriachne	Eriachne mucronata
Poaceae	Eriachne	Eriachne tenuiculmis
Myrtaceae	Eucalyptus	Eucalyptus ?socialis subsp. eucentrica
Myrtaceae	Eucalyptus	Eucalyptus gamophylla
Myrtaceae	Eucalyptus	Eucalyptus leucophloia subsp. leucophloia
Myrtaceae	Eucalyptus	Eucalyptus socialis subsp. eucentrica
Myrtaceae	Eucalyptus	Eucalyptus xerothermica
Euphorbiaceae	Euphorbia	Euphorbia biconvexa

Appendix 5: Flora species recorded within the study area

Euphorbiaceae	Euphorbia	Euphorbia tannensis subsp. eremophila
Boraginaceae	Euploca	Euploca sp.
Convolvulaceae	Evolvulus	Evolvulus alsinoides var. villosicalyx
Goodeniaceae	Goodenia	Goodenia sp. East Pilbara (A.A. Mitchell PRP 727)
Goodeniaceae	Goodenia	Goodenia stobbsiana
Malvaceae	Gossypium	Gossypium australe
Malvaceae	Gossypium	Gossypium robinsonii
Malvaceae	Gossypium	Gossypium sturtianum var. sturtianum
Proteaceae	Hakea	Hakea chordophylla
Proteaceae	Hakea	Hakea lorea subsp. lorea
Boraginaceae	Halgania	Halgania cyanea var. Allambi Stn (B.W. Strong 676)
Malvaceae	Hibiscus	Hibiscus coatesii
Malvaceae	Hibiscus	Hibiscus sturtii var. campylochlamys
Fabaceae	Indigofera	Indigofera ?georgei
Fabaceae	Indigofera	Indigofera ?monophylla
Fabaceae	Isotropis	Isotropis iophyta
Oleaceae	Jasminum	Jasminum didymum subsp. lineare
Fabaceae	Mirbelia	Mirbelia viminalis
Phyllanthaceae	Nellica	Nellica maderaspatensis
Poaceae	Paraneurachne	Paraneurachne muelleri
Fabaceae	Petalostylis	Petalostylis labicheoides
Poaceae		Poaceae sp.
Convolvulaceae	Polymeria	Polymeria ?mollis
Asteraceae	Pterocaulon	Pterocaulon ?sphacelatum
Amaranthaceae	Ptilotus	Ptilotus astrolasius
Amaranthaceae	Ptilotus	Ptilotus calostachyus
Amaranthaceae	Ptilotus	Ptilotus clementii
Amaranthaceae	Ptilotus	Ptilotus obovatus
Amaranthaceae	Ptilotus	Ptilotus sp.
Fabaceae	Rhynchosia	Rhynchosia minima
Chenopodiaceae	Salsola	Salsola australis
Santalaceae	Santalum	Santalum lanceolatum
Goodeniaceae	Scaevola	Scaevola ambylanthera var. ambylanthera
Goodeniaceae	Scaevola	Scaevola parviflora subsp. pilbarae
Fabaceae	Senna	Senna artemisioides subsp. helmsii × oligophylla
Fabaceae	Senna	Senna artemisioides subsp. oligophylla
Solanaceae	Solanum	Solanum chippendalei
Solanaceae	Solanum	Solanum lasiophyllum
Surianaceae	Stylobasium	Stylobasium spathulatum
Poaceae	Themeda	Themeda triandra
Hemerocallidaceae	Tricoryne	Tricoryne sp. Hamersley Range (S. van Leeuwen 915)
Poaceae	Triodia	Triodia angusta
Poaceae	Triodia	Triodia longiceps
Poaceae	Triodia	Triodia vanleeuwenii
Poaceae	Triodia	Triodia wiseana
Apocynaceae	Vincetoxicum	Vincetoxicum lineare

Family	Taxon	WA Listing	Easting	Northing	Zone	Date	Number of Individuals
Fabaceae	Acacia subtiliformis	P3	724442	2 7460778	3 50) 2/05/2023	3 100
	Acacia subtiliformis	P3	724789	7459233	3 50) 3/05/2023	3 1
	Acacia subtiliformis	P3	724769	746126	1 50) 2/05/2023	3 50
	Acacia subtiliformis	P3	724572	2 7460978	3 50) 2/05/2023	3 100
	Acacia subtiliformis	P3	724092	2 7460210) 50) 2/05/2023	8 80
	Acacia subtiliformis	P3	724508	3 7460708	3 50) 2/05/2023	3 20
	Acacia subtiliformis	P3	726114	7458740) 50) 2/05/2023	3 1
	Acacia subtiliformis	P3	724896	7459397	7 50) 3/05/2023	3 1
Boraginaceae	<i>Euploca</i> sp.	PSI	724776	7461272	2 50) 2/05/2023	3 0
	<i>Euploca</i> sp.	PSI	724574	7460973	3 50) 2/05/2023	3 0
	<i>Euploca</i> sp.	PSI	724149	7460245	5 50) 2/05/2023	3 0
	<i>Euploca</i> sp.	PSI	724507	746071 ²	1 50) 2/05/2023	3 0
	<i>Euploca</i> sp.	PSI	726110	7458790) 50) 2/05/2023	3 0
	<i>Euploca</i> sp.	PSI	724889	7459377	7 50) 3/05/2023	3 0
Goodeniaceae	Goodenia sp. East Pilbara (A.A. Mitchell PRP 727)	P3	724443	3 7460777	7 50) 2/05/2023	3 26
	Goodenia sp. East Pilbara (A.A. Mitchell PRP 727)	P3	724656	7461050) 50) 2/05/2023	3 4
	Goodenia sp. East Pilbara (A.A. Mitchell PRP 727)	P3	724355	5 7460032	2 50) 1/05/2023	3 13
	Goodenia sp. East Pilbara (A.A. Mitchell PRP 727)	P3	724767	746126	1 50) 2/05/2023	3 20
	Goodenia sp. East Pilbara (A.A. Mitchell PRP 727)	P3	724573	3 746097 <i>°</i>	1 50) 2/05/2023	3 2
	Goodenia sp. East Pilbara (A.A. Mitchell PRP 727)	P3	724418	7460723	3 50) 2/05/2023	3 1
	Goodenia sp. East Pilbara (A.A. Mitchell PRP 727)	P3	726111	745879 ²	1 50) 2/05/2023	3 30
	Goodenia sp. East Pilbara (A.A. Mitchell PRP 727)	P3	724886	7459362	2 50) 3/05/2023	3 2

Appendix 9: Conservation listed flora recorded during the survey

Appendix 10:	Introduced ((weed)	species	recorded	during	the survey
	maooda		000000	10001000	aaring	line our roy

Species	Easting (mE)	Northing (mN)	Zone	Date	Number of Individuals	
*Cenchrus ciliaris	725908	7458959	50	03/05/2023	20	

Appendix 11: Conservation listed fauna recorded during the survey

Taxon	WA Listing	Abundance	Notes	Easting	Northing	Zone	Date
Pseudomys chapmani	P4	1	Active mound	725462	7459064	50	3/05/2023
Pseudomys chapmani	P4	1	Active mound	724490	7460630	50	4/05/2023
Pseudomys chapmani	P4	1	Active mound	724508	7460761	50	4/05/2023
Pseudomys chapmani	P4	1	Active mound	724237	7459422	50	4/05/2023
Pseudomys chapmani	P4	1	Active mound	724435	7460531	50	4/05/2023
Pseudomys chapmani	P4	1	Recently inactive mound	724338	7459177	50	2/05/2023
Pseudomys chapmani	P4	1	Inactive mound	725791	7459171	50	3/05/2023
Pseudomys chapmani	P4	1	Active mound	724438	7460760	50	2/05/2023
Pseudomys chapmani	P4	1	Active mound	725571	7459152	50	3/05/2023
Pseudomys chapmani	P4	1	Active mound	725709	7459208	50	3/05/2023
Pseudomys chapmani	P4	1	Active mound	725030	7459415	50	3/05/2023
Pseudomys chapmani	P4	1	Inactive mound	725310	7459292	50	3/05/2023
Pseudomys chapmani	P4	1	Active mound	725366	7459288	50	3/05/2023
Pseudomys chapmani	P4	1	Active mound	725504	7459192	50	3/05/2023
Pseudomys chapmani	P4	1	Active mound	725475	7459128	50	3/05/2023
Pseudomys chapmani	P4	1	Inactive mound	724558	7460656	50	4/05/2023
Pseudomys chapmani	P4	1	Active mound	724559	7460667	50	4/05/2023
Pseudomys chapmani	P4	1	Active mound	724668	7460879	50	4/05/2023
Pseudomys chapmani	P4	1	Active mound	724352	7460741	50	4/05/2023
Pseudomys chapmani	P4	1	Active mound	724295	7459568	50	4/05/2023
Pseudomys chapmani	P4	1	Active mound	724085	7459903	50	2/05/2023
Pseudomys chapmani	P4	1	Active mound	726126	7458745	50	3/05/2023

Appendix 12: Rio Tinto internal operational controls for environmental management

Operational Controls for Environmental Management

The manner in which the clearing of native vegetation is regulated, undertaken and rehabilitated is under various internal Rio Tinto operational controls. These operational controls are discussed below.

Rio Tinto Operational Controls

Rio Tinto Iron Ore is part of the Rio Tinto group of companies and is obliged through its integrated Health Safety Environment and Quality Management System (HSEQ), to comply with five global environmental standards. RTIO has developed and implemented numerous management plans and work practices to control environmental issues relating to mining and exploration. A number of these work practices are of direct relevance in managing and controlling land clearing activities, and include:

- Approvals Permit Guidelines and Procedure;
- HSEQ Ground Disturbance, Re-entering a Rehabilitated Area and Track maintenance Standard Work Practice;
- HSEQ Iron Ore (WA) Equipment Hygiene Inspection Work Practice;
- HSEQ Operational Control Procedure 6: Drilling; and
- HSEQ Closure, Rehabilitation and Monitoring Standard Work Practice.