

Federal Emergency Management Agency

Merrimack River HUC 8 LiDAR FY2011

Belknap County, New Hampshire CID 33001C Hillsborough County, New Hampshire CID 33011C Merrimack County, New Hampshire CID 33013C
Rockingham County, New Hampshire CID 33015C
Strafford County, New Hampshire CID 33017C Essex County, Massachusetts CID 25009C
Middlesex County, Massachusetts CID 25017C
Worcester County, Massachusetts CID 25027C

Technical Support Data Notebook
Terrain Project Narrative
Elevation Data Acquisition
CASE NO. 12-01-1080S
CONTRACT NO. HSFEHQ-09-D-0370
TASK ORDER NO. HSFE01-11-J-0010
Date: August 31, 2012
Prepared By:

Table of Contents

FEMA Case Number 12-01-1080S
Merrimack Watershed: Massachusetts and New Hampshire
Terrain Project Narrative

1. INTRODUCTION 3
2. SCOPE OF WORK 8
3. ISSUES 14
A. Special Problem Reports 14
B. Project Modifications 14
4. INFORMATION FOR THE NEXT MAPPING PARTNER 14
A. GROUND CONTROL SURVEY 16
B. DATA ACQUISITION 19
C. POST PROCESSING 20
D. QUALITY CONTROL 23
E. QUALITY ASSURANCE 25
F. TOPOGRAPHIC PRODUCT DEVELOPMENT 28
5. REFERENCES 30
ATTACHMENTS:
APPENDIX A. CONTACT INFORMATION
APPENDIX B. FEMA COMPLIANCE FORMS AND METADATA
APPENDIX C. PRE-FLIGHT PLANNING REPORT
APPENDIX D. GROUND CONTROL SURVEY AND VERTICAL TESTING QUALITY CONTROL
APPENDIX E. POST FLIGHT REPORT
APPENDIX F. QUALITY ASSURANCE
APPENDIX H. GUIDANCE
APPENDIX I. TOPOGRAPHIC DATA PRODUCTS
List of Tables
Table 1. Vertical Accuracy Requirements 3
Table 2. MERrimack Watershed Collection Requirments 8
TABLE 3. SURVEY SUMMARY 10
TABLE 4. LIDAR SYSTEM PARAMETERS 11
TABLE 5. ASPRS LIDAR CLASSIFICATION 15
TABLE 6. LiDAR ACQUISITION DETAILS 19
List of Figures
Figure 1. Merrimack Watershed NH and MA LiDAR Collection Area 4
Figure 2. Merrimack Watershed Communities. 7
Figure 3. Merrimack Watershed Ground Control Survey 18
Figure 4. Merrimack Watershed Point Cloud Acquisition 21
Figure 5. Merrimack Watershed Post Processing 22
Figure 6. Merrimack Consolidated Vertical Accuracy Survey 24
Figure 7. Quality Assurance Workflow. 25
Figure 8. Terrain Deliverable Directory Structure. 26

FEMA Case Number 12-01-1080S
Merrimack Watershed: Massachusetts and New Hampshire
Terrain Project Narrative

1. Introduction

Beginning in Fiscal Year 2010, FEMA initiated a five-year program for Risk Mapping, Assessment, and Planning (Risk MAP). The vision for Risk MAP is to deliver quality data that increases public awareness and leads to action that reduces risk to life and property. In order to realize the Risk MAP vision FEMA is acquiring high resolution terrain elevation and land cover elevation data to increase production efficiencies for NFIP regulatory products and support risk assessment data development. FEMA has made a commitment through Risk MAP to work closely with NDEP (National Digital Elevation Program) partners to obtain and support the collection of terrain data throughout the United States.

Terrain data, collected under the Risk MAP program, will be required to meet minimum specifications outlined in Procedure Memorandum No. 61-Standards for LiDAR and Other High Quality Digital Topography dated September 27, 2010. FEMA also requires all deliverables for topographic data collection be submitted in accordance with Appendix M: Data Capture Standards March 20112. All relevant project materials have been reviewed to insure that these requirements are met.

The objectives for elevation data acquisition and processing for the Merrimack River watershed are as follows:

1. LAS point cloud files collected for 1302 square miles
2. LAS point cloud files captured using the "Highest" vertical accuracy requirements
3. LAS point cloud files collected at equivalent of a 2 -foot contour accuracy
4. LAS point cloud files collected using a nominal pulse spacing of 1-meter
5. Hydro enforced break lines
6. LAS classified as Bare Earth processed for 1302 square miles
7. 1 meter Digital Elevation Models
8. Analysis and cartographic 2 foot contours

Table 1. Project Parameters

Collection Area	Processed Area	FEMA Specification Level	Contour Accuracy	NPS	RMSE $_{\mathbf{z}}$	FVA	CVA
$1302 \mathrm{mi}^{2}$	$1302 \mathrm{mi}^{2}$	Highest	2 ft	1 m	18.5 cm	24.5 cm	36.3 cm

FEMA Case Number 12-01-1080S
Merrimack Watershed: Massachusetts and New Hampshire
Terrain Project Narrative
Figure 1. Merrimack Watershed NH and MA LiDAR Collection Area

The LiDAR Acquisition area for this project covers portions of Belknap, Hillsborough, Merrimack, Richmond, and Stratford counties in New Hampshire. The project also covers portions of Essex, Middlesex and Worcester Counties in Massachusetts. The following communities are either partially or completely included within this Area of Interest:

Communities in Belknap County New Hampshire:

Town of Alton	Town of Barnstead
Town of Belmont	Town of Gilford

Communities in Hillsborough County New Hampshire:
Town of Amherst Town of Bedford
Town of Bennington Town of Brookline
Town Deering Town of Francestown
Town of Goffstown Town of Greenfield
Town of Hillsborough Town of Hollis
Town of Hudson Town of Litchfield
Town of Lyndeborough City of Manchester
Town of Mason Town of Merrimack
Town of Milford Town of Mont Vernon
City of Nashua Town of New Boston
Town of New Ipswich Town of Pelham
Town of Peterborough Town of Sharon
Town of Temple Town of Weare
Town of Wilton
Communities in Merrimack County New Hampshire:

Town of Allenstown	Town of Andover
Town of Boscawen	Town of Bow
Town Canterbury	Town of Chichester
City of Concord	Town of Dunbarton
Town of Epsom	City of Franklin
Town of Henniker	Town of Hooksett
Town of Hopkinton	Town of Loudon
Town of Northfield	Town of Pembroke
Town of Pittsfield	Town of Salisbury

Communities in Rockingham County New Hampshire:

Town of Auburn	Town of Candia
Town of Deerfield	Town of Londonderry
Town of Salem	Town Windham

Communities in Strafford County New Hampshire:
Town of Farmington Town of New Durham
Town of Strafford
Communities in Essex County Massachusetts:
Town of Methuen
Communities in Middlesex County Massachusetts:

Town of Ashby
Town of Ayer
Town of Bedford
Town of Boxborough
Town of Chelmsford
Town of Dracut
Town of Groton
Town of Lincoln
City of Lowell
Town of Westford

Town of Billerica
Town of Burlington
Town of Concord
Town of Dunstable
Town of Lexington
Town of Littleton
Town of Tyngsborough
City of Woburn

Communities in Worcester County Massachusetts:
Town of Ashburnham Town of Harvard

FEMA Case Number 12-01-1080S Merrimack Watershed: Massachusetts and New Hampshire

Terrain Project Narrative
Figure 2. Merrimack Watershed Communities

FEMA Case Number 12-01-1080S Merrimack Watershed: Massachusetts and New Hampshire Terrain Project Narrative

2. Scope of Work

Statement of Priorities
PTS Elevation Data Acquisition
STARR - Contract \# HSFEHQ-09-D-0370 Task Order \# HSFE01-11-J-0010
STARR understands that the Region requires one (1) area, the Merrimack Watershed, NHMA, to be collected and processed to bare earth under this task order. This area is to be collected to the "Highest" FEMA specification level. This means that the vertical accuracy must meet Fundamental Vertical Accuracy (FVA) and Consolidated Vertical Accuracy (CVA) requirements of 24.5 cm and 36.3 cm , respectively. The nominal pulse spacing requirement is less than or equal to 1 -meter. These requirements are equivalent to that required for a 2 -foot contour accuracy standard. Table 2 provides a summary of the collection requirements.
STARR is providing the collection of breaklines and hydro-flattening of the data, as specified in USGS NGP Base LiDAR Specifications, Version 13 (USGS v.13).
Likewise, STARR is providing the construction of derivative products (Contours and DEMs) required for engineering modeling for hydrology and hydraulic analysis.

Table 2 - Merrimack Watershed Collection Requirements

Project Name	State	Collection and Processing Area in Sq. Miles	Specification Level
Merrimack	NH-MA	1,302	Highest
Watershed		1,302	
Total Area			

Technical Discussion

Survey
STARR will obtain the ground control needed to support the LiDAR collection efforts as well as obtaining the independent QC points needed to support the FVA and CVA Assessment requirements.

STARR proposes the following methodology to meet the requirements of FEMA PM61 and the associated Appendix A. We note that Appendix A was written in 2003, and the associated NOAA TM NOS NGS -58 Guidelines for Establishing GPS-Derived Ellipsoid Heights V4.3 were written in 1997 with no revision. This approach is not entirely compliant with the procedures, technologies and methodologies detailed in PM61 and Appendix A, but provides for a very effective method of collecting high accuracy points that allows FVA testing and modified CVA testing for bare-earth evaluation at reduced costs.

Given the recent advances in GPS technology and associated updates to survey methodologies, we propose the use of PM61 and associated documents as guidelines exercised through careful GPS survey practice in conjunction with reasoned professional judgment to arrive at statistically and numerically relevant Control and Testing results for the project area as currently described. This methodology will allow FVA and CVA testing to

FEMA Case Number 12-01-1080S

Merrimack Watershed: Massachusetts and New Hampshire

Terrain Project Narrative
specification, as FVA and Supplemental Vertical Accuracy (SVA) points will be collected for the project area.

STARR will collect all points with a combination of RTK and Static Post Processing with Base lines no longer than 80 km to meet the specifications for the project. All points will be collected with Survey Grade GPS equipment, which typically achieves a high precision in the range of sub 3 cm on a point-by-point basis. As a quality control practice STARR will also be collecting an NGS monument on a daily basis, when available, to check the collection methodology and accuracy. This allows for minimal duplication of point occupation, greatly reducing time in the field.

NMAS/NSSDA Vertical Accuracy Table 1 contained in the ASPRS Guidelines (as referenced by PM61) requires accuracy test data to be 3 times more accurate than the NSSDA accuracy requirement of the finished product. Section 2.3.3 of the ASPRS Guidelines states "QC surveys should be such that the checkpoint accuracy is at least three times more accurate than the dataset being evaluated." Based on the 95th percentile confidence level of 24.5 cm , all survey points will be at $\leq 8 \mathrm{~cm}$ precision.

Ground control points will be located only in open terrain, where there is a high probability that the sensor will have detected the ground surface without influence from surrounding vegetation or buildings. Points will be located on flat or uniformly sloping terrain and will be at least five (5) meters away from any break line where there is a change in slope. All control points will be surveyed at $\leq 8 \mathrm{~cm}$ precision. This criterion applies for all FVA QC points as well. Control and FVA check points will be distributed to support all individual polygons. Distribution of the Control points will also be evaluated and approved by the LiDAR acquisition team. FVA points will remain confidential and only revealed to the LiDAR team at the time of the FVA assessment.

The blind vertical SVA QC points will be collected randomly across all polygons and different land use types using the ASPRS NSSDA land cover types. The points will be located in flat areas with no substantial elevation breaks within a 3-5 meter radius. All SVA points in the Urban and Brush land use categories, and the Forest land use category if practical, will be collected at $\leq 8 \mathrm{~cm}$ precision to ensure a valid statistical test capability.
The CVA Assessment utilizes the SVA points and a representative sample of the FVA points (open terrain) such that all land classes comprising more than 10% of the total project area will be represented.

All points will be documented with an overhead image chip showing site and situation, at least 2 ground-based photos in the cardinal directions where practical. In addition, a sketch will be provided of all Control and FVA points. An Accuracy Report for the collection will be provided based on daily observation of an NGS-Point (when available) to demonstrate system collection precision against an independent known point. Shape files as well as KML files will be provided for the block.

All coordinate data will be provided in Decimal Degrees, and in UTM Meters NAD83/NAVD88 (Geoid09). Specifically, 73 control points will be surveyed to support calibration of the collected LiDAR data to ground following initial post-flight processing.
Although the area consists of one large polygon and one smaller polygon, the topography and land cover of the area are homogenous, and the smaller area will be collected on the same
mission as the nearby section of the larger polygon. Thus, it is recommended that both polygons be tested together as one unit, and there will not be a requirement to have a minimum number of points within the small polygon to provide for testing validity.
Testing at the 95th Percentile Confidence Level requires a minimum of 20 points for each category of testing. Thus STARR proposes to collect 20 FVA points, and 20 points in each of the predominant land cover categories for the SVA/CVA testing. A summary of this point requirement is found in Table 3.

Table 3 - Survey Summary

Project Name	Ground Control Points	FVA Points	Open				
	Orban	High Grass	Brush	Forest			
Merrimack Watershed	73	20	NA	20	NA	20	20

The following will be delivered from the Survey activity:
For Ground Control Survey -

- Accuracy reports based on known monuments;
- Image chips - aerial image of the position of each point;
- Pictures - four pictures in the cardinal directions showing the point from the ground perspective;
- Shape file of the points;
- Station diagrams for each point;
- Final report - includes methodologies and general project information;
- Spreadsheet of all points; and
- Any obsolete records.

For FVA and CVA Point Survey -

- Accuracy reports based on known monuments;
- Image chips - aerial image of the position of each point;
- Pictures - four pictures in the cardinal directions showing the point from the ground perspective;
- Shape file of the points;
- Station diagrams for each point;
- Final report - includes methodologies and general project information;
- Spreadsheet of all points; and
- Any obsolete records.

For QC Testing -

- Final report;
- Excel spreadsheet with calculations;
- Metadata process steps; and
- Compliance certificate.

FEMA Case Number 12-01-1080S
Merrimack Watershed: Massachusetts and New Hampshire
Terrain Project Narrative

LiDAR Acquisition

LiDAR for the Merrimack area will be acquired to the "highest" specification level. This means that the vertical accuracy requirement must meet FVA/CVA requirements of 24.5 $\mathrm{cm} / 36.3 \mathrm{~cm}$. The nominal pulse spacing requirement is less than or equal to 1 -meter. This vertical accuracy requirement mirrors a 2 -foot equivalent contour accuracy. The LiDAR system parameters are spelled out in Table 4.

Table 4 -LiDAR System Parameters

Merrimack Watershed	
Flight altitude (AGL)	5000 feet
Rep Rate	70 KHZ
Scan frequency	33.6 Hz
Scan half angle	17 degrees
Scan full angle	34 degrees
Swath width	930.7 meters
Overlap	30% side lap (60\% overlap)
Point density	$1.12 \mathrm{ppm}^{2}$
Required point density	1 ppm
Air Speed	130 knots
No. of missions	9
Line spacing	300 meters

The following will be delivered from the LiDAR acquisition activity:

- Pre-flight Operations Plan (PreFlight Report);
- Metadata process steps

LiDAR Processing

STARR will process the data to the point cloud deliverable and to bare earth deliverables. All areas collected will be processed to bare earth. The following is a brief explanation of the LiDAR processing:

Raw airborne GPS and IMU data will be extracted from the Applanix CARD and differentially processed in PosGPS, then integrated with the IMU data in PosPAC. The GPS/IMU data will be processed in Applanix to derive a smoothed best estimate of trajectory (SBET).The SBET is used to reduce the LiDAR slant range measurements to derive the Return measurement for each LiDAR pulse within each flight line. The coverage will be imported into TerraScan and tiled into $1500 \mathrm{~m} \times 1500 \mathrm{~m}$ tiles. An initial accuracy assessment using the ground point survey data will be calculated to ensure the data is accurately 'tied' to the ground. The data will then be classified using automated processes to extract a bare earth digital elevation model (DEM). Once all project data is imported and classified, the survey ground control data will be calculated against the LAS Class 2 (Ground) data for an accuracy assessment. As a QC measure, a routine will be used to generate accuracy statistical reports by comparison among LiDAR points, ground control, and triangulated irregular networks (TIN). Any systematic bias in the data is removed to meet or exceed the vertical accuracy requirements. At this point the FVA test will be conducted.

FEMA Case Number 12-01-1080S
Merrimack Watershed: Massachusetts and New Hampshire
Terrain Project Narrative
The collection of breaklines will take place just prior to the manual edit of the point cloud data. The breaklines will be collected on streams that are greater than 100 feet wide and any open water bodies greater than 2 acres in size. These breaklines will enhance the ability to classify open water points, edge of water for modeling purposes, and allow for more accurate construction of TINs required for the H\&H modeling. STARR is proposing to collect the breaklines using the standard USGS specifications which will ensure this dataset will mesh seamlessly with the USGS LiDAR data that abuts within the Merrimack Watershed. Because these datasets both exist within the watershed boundary, having the datasets conform to the same specifications as nearly as possible will allow the analysis of the watershed to be more efficient.

The calibrated and filtered LiDAR point cloud will be manually checked for accuracy. Hydro-enforcement will also take place during the manual edit. Care will be taken to remove bridges, the water surfaces are flat and that all water edges are lower than adjacent ground. All points will be placed in one of the following categories: 1 Unclassified, 2 Bare-earth Ground, 7 Noise, 9 Water, 10 Ignored Ground, 11 Withheld, and 12 Overlap Points. Category 8 Model Key points will be generated from the Ground points. CVA testing will then be conducted and final reports generated.

A full suite of topographic products is included in the tasking for this watershed. The data development will be completed by the STARR staff responsible for, and immediately following, the QA of the Fully Classified (Bare Earth) LAS dataset.

The following will be delivered as a result of the processing activity:

- Post-flight Aerial Acquisition and Calibration Report (PostFlight Report);
- Point cloud LAS points (partially classified);
- Fully classified LAS points (includes 1. Unclassified, 2. Bare-earth ground, 7. Noise, 8. Model Key Points, 9. Water - if breaklines are collected, 10. Ignored ground, 11. Withheld, 12. Overlap);
- Breaklines;
- Metadata process steps; and
- Compliance certificate.

Quality Control
SURVEY. To ensure valid in-field collections, an NGS monument with suitable vertical reporting will be measured using the same equipment and procedures used for control, FVA and CVA points on a daily basis. The measurement will be compared to the NGS published values to ensure that the GPS collection schema is producing valid data and as a physical proof point of quality of collections. Those monument measurements will be summarized in the accuracy report included in the Survey data deliverables.

LiDAR Acquisition

Calibration. All of the sensors are calibrated by flying lines at multiple altitudes and at varying directions over features on land, typically at the airport where the acquisition is staged. These lines are used to remove angular errors between the IMU and scanning mirror and to determine the precise positioning of the sensor in relationship with the phase center of the GPS antenna mounted on the fuselage of the aircraft.

FEMA Case Number 12-01-1080S
Merrimack Watershed: Massachusetts and New Hampshire
Terrain Project Narrative
Cross Lines. Cross flight lines are run perpendicular to the overall flight lines for the survey area. Careful analysis takes place from the crossing flight lines to ensure that accurate modeling of the ground surface is attained from the use of the LiDAR sensor.

Sidelap Analysis. The side overlap is planned for each project based on the terrain to be acquired. Typically for flat terrain the overlap is 20%. For more rugged terrain an overlap of up to 50% (100% duplicated coverage) will be required. The proposed 30% sidelap (see Table 1.4) will ensure that no data gaps exist within the coverage.

Forward and Reverse GPS Solutions. During the initial processing of the inertial navigation system (INS) data, the raw GPS observations are processed against the ground base station data in both a forward and reverse sense. The two solutions are then compared against one another for all GPS epochs and the individual differences for the northing, easting, (x, y coordinates) and elevation components are plotted for easy comparison. Any anomalies in the data are quickly analyzed, and if required, re-flights take place for the portions of the flight missions that require remediation.

Calibration of the Elevation Surface. The raw LiDAR surface is compared against ground points that are established for the calibration of the elevation surface. System biases are identified and removed during this calibration. An early statistical analysis will take place that provides an indication of the precision of the acquired data.

Blind RMSE Testing. The LAS data will be tested at the conclusion of the automated processing step. At this point the LAS points have been calibrated and open area points should accurately reflect the bare earth surface. The x , y coordinates of the FVA points will be used to determine the elevation at each location. Calculation of the RMSE and the 95% Confidence Level will be done via a spreadsheet, comparing the LiDAR derived elevation values and the survey elevation values. If the calculated value is within the acceptable range, manual processing can continue. If the value is not within range, STARR will analyze the data further to get within the acceptable range. If the test points are compromised during that analysis, STARR will be responsible for obtaining further blind check points such that the data can be confidently checked and approved. All remedial activity must be included in the PostFlight Report. Likewise, at the conclusion of the manual bare earth processing the CVA test points will be checked against the produced bare earth surface following the same methodology.

Derived Products

A full suite of derived products will be developed immediately following final approval of the LAS datasets.

Deliverables include the following:

- 1 meter DEM;
- 3 meter DEM; and
- 2 foot contours.

FEMA Case Number 12-01-1080S
Merrimack Watershed: Massachusetts and New Hampshire
Terrain Project Narrative
Quality Assurance
STARR will perform an impartial review of the technical, scientific, and other information submitted under Develop Topographic Data to ensure that the data and modeling are consistent with FEMA standards.

These activities are guided by the STARR Quality Assurance checklist which was developed to include all of the suggested information found in PM61. In addition a statistical sampling of LAS data tiles are reviewed, checking for spikes in the data, incomplete coverage, and cleanliness of the data. This review is done using the LP360 software (commercially available software). The software allows for review of the data via a rolling cross section approach whereby a tile of data can easily be reviewed ensuring there are no artifacts remaining in the bare earth data.

All deliverable reports are read for consistency, accuracy and completeness. As deliverables are approved, they are stored in a delivery structure ready for upload to the MIP, and loading to a hard drive for delivery to the FEMA Engineering Library.

Any data issues with the LiDAR deliverables will be reevaluated and corrected accordingly. Revised data will be back checked to ensure all issues have been rectified. The final step in the quality assurance process is the construct of the Narrative documentation and the final assembly of the metadata for the terrain products.

Deliverables as a result of the QA activity are:

- A Summary Report that describes the findings of the independent QA/QC review; and
- Quality Assurance Checklist;
- Project Narrative; and
- Final compiled metadata record.

3. Issues

A. Special Problem Reports

None

B. Project Modifications

None

4. Information for the Next Mapping Partner

The Merrimack Watershed LiDAR collection AOI consists of one large functional area and one smaller area that cover 1302 square miles. This project included both LiDAR point cloud development and Bare Earth post processing. The Point Cloud LiDAR data for this project are 1,749 partially classified LAS 1.2 binary files. All 1,749 Point Cloud files were processed into Bare Earth LiDAR LAS 1.2 binary files. Bare Earth LiDAR for this project has been classified using ASPRS LiDAR classifications.

FEMA Case Number 12-01-1080S
Merrimack Watershed: Massachusetts and New Hampshire
Terrain Project Narrative
Table 5 ASPRS LiDAR Classifications

Merrimack Watershed Classified LiDAR ASPRS Classifications	
1	Unclassified
2	Ground
7	Low Point (Noise)
8	Model Key-point (Mass Point)
9	Water
10	Ignored Ground
11	Withheld
17	USGS Overlap Default
18	USGS Overlap Ground

All data for this project has been collected using the following spatial reference information:

Projection: Universal Transverse Mercator
UTM Zone: 19
Linear units: Meter
Horizontal Datum: North American Datum 1983
Vertical Datum: North American Vertical Datum of 1988
Vertical units: US Survey Foot

Vertical Accuracy Test Results

Final Test Results

The vertical accuracy requirements based on flood risk and terrain slope are met with 14.0 cm and 24.3 cm for both FVA and CVA testing. The mandatory requirements for the highest specification for vertical accuracy, 95% confidence levels are for FVA $<24.5 \mathrm{~cm}$ and CVA $<36.3 \mathrm{~cm}$.

FVA Test

Tested 14.0 cm fundamental vertical accuracy at 95% confidence level in open terrain using RMSE(z) x 1.9600. The Root Mean Square Error for the elevation differences between GPS control points and LiDAR points is $\mathbf{7 . 1} \mathbf{~ c m}$ calculated with 20 FVA points.

CVA Test
Tested 24.3 cm consolidated vertical accuracy at 95th percentile in: open terrain, forest terrain, and urban terrain. The Root Mean Square Error for the elevation differences between GPS control points and LiDAR points is $\mathbf{1 1 . 4} \mathbf{~ c m}$ calculated with 76 supplemental vertical accuracy points (SVA).

LAS point files are named according to the UTM Coordinates at the southwest corner of the tile, following the zz _ $0 x x x y y y$ convention, where z is the UTM zone number, x and y are the UTM coordinates. Details about the storage of this dataset can be found within Appendix G of this document.

Ground control and quality control checkpoints were collected by CompassData, Inc. Photo Science, Inc. performed LiDAR acquisition flights, automated processing and Bare

FEMA Case Number 12-01-1080S
Merrimack Watershed: Massachusetts and New Hampshire
Terrain Project Narrative
Earth manual edits. Independent QC of the point cloud and bare earth surface was performed by CompassData, Inc. Quality Assurance testing was conducted by Greenhorne \& O'Mara, Inc. All firms were under contract to STARR, A Joint Venture which held the FEMA Professional Technical Services contract and task order for this work. All contact information for the project team can be found in Appendix A of this document.

A. Ground Control Survey

Ground Control is collected throughout the AOI for use in the processing of LiDAR data to ensure data accurately represents the ground surface. QA/QC checkpoints, also collected throughout the AOI, are used for independent quality checks of the processed LiDAR data.

GPS based surveys were utilized to support both processing and testing of LiDAR data within FEMA designated Areas of Interest (AOIs). Geographically distinct ground points were surveyed using GPS technology throughout the AOIs to provide support for three distinct tasks.

Task 1 was to provide Vertical Ground Control to support the aerial acquisition and subsequent bare earth model processing. To accomplish this, survey-grade Trimble R-8 GPS receivers were used to collect a series of control points located on open areas, free of excessive or significant slope, and at least 5 meters away from any significant terrain break. Most if not all control points were collected at street/road intersections on bare level pavement.

Task 2 was to collect Fundamental Vertical Accuracy (FVA) checkpoints to evaluate the initial quality of the collected point cloud and to ensure that the collected data was satisfactory for further processing to meet FEMA specifications. The FVA points were collected in identical fashion to the Vertical Ground Control Points, but segregated from the point pool to ensure independent quality testing without prior knowledge of FVA locations by the aerial vendor.

Task 3 was to collect Consolidated Vertical Accuracy CVA) checkpoints to allow vertical testing of the bare-earth processed LiDAR data in different classes of land cover, including: Open (pavement, open dirt, short grass), High Grass and Crops, Brush and Low Trees, Forest, Urban. CVA points were collected in similar fashion as Control and FVA points with emphasis on establishing point locations within the predominant land cover classes within each AOI or Functional AOI Group. In order to successfully collect the Forest land cover class, it was necessary to establish a Backsight and Initial Point with the R8 receiver, and then employ a Nikon Total Station to observe a retroreflective prism stationed under tree canopy. This was necessary due to the reduced GPS performance and degradation of signal under tree canopy.

The R-8 receivers were equipped with cellular modems to receive real-time correction signals from the Keystone Precision Virtual Reference Station (VRS) network encompassing the Region 1 AOIs. Use of the VRS network allowed rapid collection times (~ 3 minutes/point) at $2.54 \mathrm{~cm}(1 \mathrm{inch})$ initial accuracy.

FEMA Case Number 12-01-1080S
Merrimack Watershed: Massachusetts and New Hampshire
Terrain Project Narrative

All points collected were below the 8 cm specification for testing 24 cm , highest category LiDAR data. To ensure valid in-field collections, an NGS monument with suitable vertical reporting was measured using the same equipment and procedures used for Control, FVA and CVA points on a daily basis. The measurement was compared to the NGS published values to ensure that the GPS collection schema was producing valid data and as a physical proof point of quality of collection. Those monument measurements are summarized in the Accuracy report included in the data delivered to FEMA.

In order to meet FEMA budgetary requirements, 20 FVA points are necessary to allow testing to CE95 - 1 point out of 20 may fail vertical testing and still allow the entire dataset to meet 95% accuracy requirements.

In similar fashion, 76 CVA points are necessary to test to CE95 as discussed above. 72 CVA points were collected with the intention at the outset that 4 of the collected FVAs would perform double -duty as Open-class CVA points, to total 76 CVAs.

The following software packages and utilities were used to control the GPS receiver in the field during data collection, and then ingest and export the collected GPS data for all points:

- Trimble Survey Controller
- Trimble Pathfinder Office

The following software utilities were used to translate the collected Latitude/Longitude Decimal Degree HAE GPS data for all points into Latitude/Longitude Degrees/Minutes/Seconds for checking the collected monument data against the published NGS Datasheet Lat/Long DMS values and into UTM NAD83 Northings/Eastings:

- U.S. Army Corps of Engineers CorpsCon
- National Geodetic Survey Geoid09NAVD88

MSL values were determined using the most recent NGS-approved geoid model to generate geoid separation values for each Lat/Long coordinate pair. In this fashion, Orthometric heights were determined for each Control, FVA and CVA point by subtracting the generated Geoid Separation value from the Ellipsoidal Height (HAE) for publication and use as MSL NAVD88(09).

FEMA Case Number 12-01-1080S Merrimack Watershed: Massachusetts and New Hampshire

Terrain Project Narrative

Figure 3. Merrimack Watershed Ground Control Survey

B. Data Acquisition

LiDAR acquisition products include Pre- and Post- flight reports which contain information on the flight lines, equipment parameters, and other pertinent acquisition details. The LiDAR product is considered to be point cloud data and consists of 1500 mx 1500 m tiles of LAS points which are partially classified such that the bare earth points can be calibrated to the ground surface and tested via the independent QC to ensure the ground surface is accurately represented.

All flights for the project were accomplished with both a customized twin-engine Piper PA-31 Navajo Fixed Wing Aircraft utilizing a Leica ALS60 LiDAR sensor and a Cessna 206 single Aircraft outfitted with an Optech Gemini LiDAR Sensor. These aircraft provide an ideal, stable aerial base for LiDAR acquisition. Both platforms have relatively fast cruise speeds that are beneficial for project mobilization / demobilization while maintaining relatively slow stall speeds which can prove ideal for collection of a high-density, consistent data posting.

Using a Leica ALS60 LiDAR system, 268 flight lines of highest density (Nominal Pulse Spacing of 1.0 m) were collected over the Merrimack area which encompasses 1302 square miles. Five (5) blocks (block or area is determined by the Base Station control locations, typically airports with ground control monuments available providing coverage within 18 miles of the base as possible) to cover in its entirety.

Table 6 LiDAR Acquisition Details

Area	Flight Lines	Lifts	Dates	System
CON	79	7	$12 / 19-12 / 292011$	ALS60
ASH	64	5	$1 / 7-1 / 112012$	ALS60
BED	31	1	$1 / 11 / 2012$	ALS60
LCl	34	2	$11 / 12-11 / 132011$	ALS60
AFN	48	4	$11 / 12-11 / 132011$	Optech Gemini
Cross Flights	12	Lifts were combined with the acquisition of each area with both sensors		

Leica proprietary software was used in the post-processing of the airborne GPS and inertial data that is critical to the positioning and orientation of the sensor during all flights. Pairing the aircraft's raw trajectory data with the stationary GPS base station data, this software yields Leica's IPAS TC ("Inertial Positioning \& Attitude Sensor - Tightly Coupled") smoothed best estimate of trajectory (an "SBET", in Leica's sol file format) that is necessary for Leica's

ALSPP post processing software to develop the resulting geo-referenced point cloud from the LiDAR missions. The point cloud is the mathematical three dimensional composite of all returns from all laser pulses as determined from the aerial mission. At this point this data is ready for analysis, classification, and filtering to generate a bare earth surface model in which the above-ground features are removed from the data set.

The point cloud was created using Leica's Post Processor software. GeoCue was used in the creation of some of the files needed in downstream processing, as well as in the tiling of the dataset into more manageable file sizes. The TerraScan and TerraModeler software packages are then used for the automated data classification, manual cleanup, and bare earth generation from this data. Project specific macros were used to classify the ground and to remove the side overlap between parallel flight lines.

C. Post Processing

Point Cloud data is manually reviewed and any remaining artifacts are removed using functionality provided within the TerraScan and TerraModeler software packages. Additional project specific macros are created and run within GeoCue/TerraScan to ensure correct LAS classification prior to project delivery.

QT Modeler was used as a final check of the bare earth dataset. GeoCue was then used to create the deliverable industry-standard LAS files for both the All Point Cloud Data and the Bare Earth. In-house software was then used to perform final statistical analysis of the classes in the LAS files. LAS Class 2 is used to check the independent QC points against the Triangulated LiDAR surface.

FEMA Case Number 12-01-1080S Merrimack Watershed: Massachusetts and New Hampshire

Terrain Project Narrative
Figure 4. Merrimack Watershed Point Cloud Acquisition

FEMA Case Number 12-01-1080S
Merrimack Watershed: Massachusetts and New Hampshire
Terrain Project Narrative

Figure 5. Merrimack Watershed Post Processing

FEMA Case Number 12-01-1080S
Merrimack Watershed: Massachusetts and New Hampshire
Terrain Project Narrative

D. Quality Control

Fundamental Vertical Accuracy (FVA) checkpoints are located only in open terrain, where there is a high probability that the sensor will have detected the ground surface without influence from surrounding vegetation and/or buildings. Checkpoints are located on flat or uniformly sloping terrain and at least five (5) meters away from any break line where there is a change in slope. Checkpoints are located randomly across the acquisition area. At least 20 FVA points were collected for each test.

Consolidated Vertical Accuracy (CVA) checkpoints are collected randomly across different land use types using the ASPRS NSSDA land cover types. The points are located in flat areas with no substantial elevation breaks within a five meter radius. The CVA assessment incorporates a representative sample of the FVA assessment points into the dataset to save on the total number of points collected. CVA points were not collected for any land class comprising less that 10% of the total project area; this may have resulted in less than 4 land classes being collected in a particular area. At least 72 CVA points were collected and 4 FVA points used, for a total of at least 76 points for the CVA testing.

All checkpoints were collected by CompassData to ensure the 'independence' of the quality control check. All points were collected at three times the accuracy of the surface being checked. Thus to check a 24.5 cm surface the points were collected accurate to 8 cm .

Tests were conducted when processing by the LiDAR vendor was complete and points were called for. CompassData provided the point coordinates in an excel spreadsheet to the LiDAR vendor. The LiDAR vendor found the corresponding elevation from a surface created from the LiDAR points, filled in the spreadsheet and returned it to CompassData. CompassData compared the elevation of the LiDAR data with that of the accuracy check point, calculated the difference and reported their findings both in terms of RMSE_{z} and at the 95% confidence level (computed as $\mathrm{RMSE}_{\mathrm{z}} \times 1.9600$). LiDAR datasets passing the quality control checks were delivered to STARR for quality assurance approval.

FEMA Case Number 12-01-1080S Merrimack Watershed: Massachusetts and New Hampshire

Terrain Project Narrative
Figure 6. Merrimack Consolidated Vertical Accuracy Survey

FEMA Case Number 12-01-1080S

E. Quality Assurance

Quality assurance for all elevation data collected for this project has been completed using FEMA PM61 , FEMA Appendix M_{2}, USGS LiDAR Guidelines and Base Specifications v13 , and FEMA Appendix A_{4} as guidance. Products generated during this project are checked for conformance to the aforementioned guidance and specifications before submittal to FEMA.

Figure 7. Quality Assurance Workflow

QA1: Preflight Planning and Reporting
Project preflight operations planning were delivered as a report. This report was reviewed for completeness based on: Table 4.1 and checklists provided in section 4.2.1in $P M 61_{1}$. The report was reviewed and is compliant with FEMA guidance and specifications. This report is included within Appendix C of this document. Appendix G contains information about the location of report data on the MIP.

QA2: Post flight Report
Post flight reporting for this project has been reviewed for both content and completeness based upon: Table 4.2 and checklists provided in section 4.2.1in PM61. The report is included with Appendix E of this document. The report is complete and all content meets the guidance and specifications.

FEMA Case Number 12-01-1080S
Merrimack Watershed: Massachusetts and New Hampshire
Terrain Project Narrative

QA3: Raw Point Cloud Review
Fully calibrated raw point cloud data has been reviewed at both a macro and micro level using Table 4.3 and checklists provided in section 4.2.1in PM61 1_{1}, and USGS LiDAR Guidelines and Base Specifications $v 13_{3} .5 \%$ of the total number of project tiles was reviewed for compliance with USGS and FEMA specifications. All tiles reviewed for this project passed both the macro and micro reviews. Quality assurance results for the point cloud are contained within Appendix F of this document.

QA4: Bare Earth Review
Post-processed data has been reviewed at both a macro and micro level using Table 4.4 and checklists provided in section 4.2.1 in PM61 1_{1}, and USGS LiDAR Guidelines and Base Specifications $v 13_{3}$. 10% of the total number of project tiles was reviewed for compliance with USGS and FEMA specifications. All tiles reviewed for this project passed both the macro and micro reviews. Quality assurance results for the bare earth are contained within Appendix F of this document.

QA5: Create Delivery Package
All deliverables have been organized in accordance with Appendix M: Data Capture Standards March 2011 Section M.4.2.82.

Figure 8. Terrain Deliverable Directory Structure

```
    l) Correspondance
4 ll Final
    1L Bare Earth DEM
    1). Breaklines
    lu Classified Point Cloud Data
    l) Contours
    1) HDEM
    | TIN
    G. General
4 L Source
    1. Bare Earth DEM
    LL Breaklines
    1. Classified Point Cloud Data
    L Contours
    1. HDEM
    1. Raw Point Cloud Data
    l TIN
    Supplemental Data
```

QA6: Finalization of Deliverables and TSDN
All data to be submitted for delivery has been reviewed for completeness based on the map activity statement, scope of work, and FEMA deliverable requirements. Quality assurance checklists are included in Appendix F of this document.

QA7: FEMA submission
All data for the elevation data acquisition task was delivered to FEMA on September 14, 2012. A transmittal of this submission is included in Appendix G of this document.

FEMA Case Number 12-01-1080S
Merrimack Watershed: Massachusetts and New Hampshire
Terrain Project Narrative

F. Topographic Product Development

Following collection of the data, LiDAR was processed into several topographic products for the entire area collected in the Merrimack Watershed. The data collected under this activity will be used support Hydrologic and Hydraulic analyses for riverine and coastal flood sources identified within the watershed.

Deliverables: Upon completion of topographic data processing for the Concord watershed, STARR will make the following products available to FEMA:

- *LAS all return unclassified point cloud files
- *LAS all return classified point cloud files
- LiDAR Tile Index and Collection Area Shapefiles
- *Compressed 9.3.1 ESRI File Geodatabase containing 3D multipoint, ESRI Terrains, and LAS Information files created from Merrimack classified LAS files. LAS class code 2 (Bare Earth) and code 8 (Model-key) was used to develop products.
- *Compressed 9.3.1 ESRI File Geodatabase containing 2ft contours for HUC 8 Merrimack Watershed divided and organized by HUC 12 boundaries within watershed.
- *Floating Point Digital Elevation Model with 2 meter cell resolution in Geotif format that covers entire watershed for use in Hydrologic and Hydraulic modeling.
- Floating Point Digital Elevation Models with 1 meter cell resolution in ERDAS imagine (*.img) format that cover entire watershed for use in Hydrologic and Hydraulic modeling.
- Report summarizing methodology and results
- FEMA Terrain Metadata compliant with Federal Geographic Data Committee standards.
*: Due to file sizes datasets will be delivered to the FEMA Engineering Library for storage.

STARR will provide these deliverables to FEMA via external hard drive. To the extent possible datasets other than the LAS files will be loaded to the MIP at these locations:

J:\FEMA\R01INEW_HAMPSHIRE_33\MERRIMACK_33013\MERRIMACK_ 013C112-01-1080S\SubmissionUpload\Terrain\2152674

All details pertaining to the development of these products can be found within Appendix I of this document.

FEMA Case Number 12-01-1080S
Merrimack Watershed: Massachusetts and New Hampshire
Terrain Project Narrative

5. References

1. Federal Emergency Management Agency, Procedure Memorandum No. 61 Standards for Lidar and Other High Quality Digital Topography, http://www.fema.gov/library/viewRecord.do?id=4345 included in Appendix H
2. Federal Emergency Management Agency, Guidelines and Specifications for Flood Hazard Mapping Partners, Appendix M: data Capture Standards http://www.fema.gov/library/file;jsessionid=1E39C93AF9CD18EE125B3DFCA5 A874B8.Worker2Library?type=publishedFile\&file=frm gsam.pdf\&fileid=cf85c 9b0-df0f-11e0-9bf5-001cc4568fb6 included in Appendix H
3. U.S. Geological Survey National Geospatial Program, LiDAR Guidelines and Base Specification, Version 13-ILMF 2010, http://lidar.cr.usgs.gov/USGSNGP\ Lidar\ Guidelines\ and\ Base\ Specification\ v13\(IL MF\%29.pdf included in Appendix H
4. Federal Emergency Management Agency, Guidelines and Specifications for Flood Hazard Mapping Partners, Appendix A: Guidance for Aerial Mapping and Surveying [includes guidance on Light Detection and Ranging Systems (LIDAR)] http://www.fema.gov/library/file;jsessionid=1E39C93AF9CD18EE125B3DFCA5 A874B8.Worker2Library?type=publishedFile\&file=frm _gsaa.pdf\&fileid=2daefc d0-df08-11e0-9bf5-001cc4568fb6

Appendix A: Contact Information

STARR Contacts:
Project Management and Quality Assurance

Company	Greenhorne \& O'Mara, Inc.
Name	Diane Rogers
Email	drogers @ g-and-o.com
Phone	$301-982-2800$
Mailing Address	5565 Centerview Drive, Suite 107 Raleigh, NC 27606

LiDAR Ground Control and QC survey

Company	Compass Data, Inc.
Name	Hayden Howard
Email	haydenh @ compassdatainc.com
Phone	303-627-4058
Mailing Address	12353 East Easter Avenue, Suite 200 Centennial, CO 80112

LiDAR data acquisition and Post Processing

Company	Photo Science, Inc
Name	Paul Bishop
Email	bishop@ photoscience.com
Phone	$859-277-8700$
Mailing Address	2670 Wilhite Drive Lexington, KY 40503

Appendix B: FEMA Compliance Forms and Metadata

Project Name:		Merrimack Watershed, LiDAR Acquisition
Statement of Work No.:		HSFE01-11-J-0010
Interagency Agreement No.:		N/A
CTP Agreement No.:		N/A
Statement/Agreement Date:		N/A
Certification Date:		June 21, 2012
	Base Map	
X	Topographic Data Development	
X	Survey	
\square	Hydrologic Analysis	
\square	Hydraulic Analysis	
\square	Alluvial Fan Analysis	
\square	Coastal Analysis	
\square	Floodplain Mapping	
	This is to certify that the work summarized above was completed in accordance with the statement/agreement cited above and all amendments thereto, together with all such modifications, either written or oral, as the Regional Project Officer and/or Assistance Officer or their representative have directed, as such modifications affect the statement/agreement, and that all such work has been accomplished in accordance with the provisions contained in Guidelines and Specifications for Flood Hazard Mapping Partners cited in the contract document, and in accordance with sound and accepted engineering practices within the contract provisions for respective phases of the work. This is also to certify that data files submitted for the work summarized above are complete and final. Any revisions made to the already submitted data are included in the final submittal.	
Name:		Jack L. Mitchell
Title:		Project Manager
Firm/Agency Represented:		Photo Science
Registration No.:		CP \#849
Signature:		Nampe
	This form must be signed by a representative of the firm or agency contracted to ferform the work, who mus bea registered or certified professional in the area of work performed, in compliance witatederal and State pegulaigms.	

```
Identification_Information:
    Citation:
        Citation_Information:
            Originātor: Federal Emergency Management Agency
            Publication Date: 20120914
            Title: TERRA}IN, Merrimack HUC 8 Watershed, Massachusetts and New
Hampshire
            Geospatial_Data_Presentation_Form: FEMA-DCS-Terrain
            Publication_Information:
                Publication_Place: Washington, DC
                    Publisher: Federal Emergency Management Agency
            Online_Linkage: http://hazards.fema.gov
            Larger_Work_Citation:
                    Citation_Information:
                    Origin}\mathrm{ Otor: Federal Emergency Management Agency
                    Publication_Date: 20120914
            Title: FEMA CASE 12-01-1080S
Description:
Abstract: The Merrimac AOI consists of portions of the Merrimack Watershed amounting to 1302 square miles not previously collected under a USGS LiDAR tasking. Ground Control is collected throughout the AOI for use in the processing of LiDAR data to ensure data accurately represents the ground surface. QA/QC checkpoints, (FVA and CVA - see Ground Control process step for further information) also collected throughout the AOI, are used for independent quality checks of the processed LiDAR data. LiDAR acquisition products include Pre- and Post- flight reports which contain information on the flight lines, equipment parameters, and other pertinent acquisition details. The LiDAR product is considered to be point cloud data consists of 1,7491500 x 1500 meter tiles of LAS points which are partially classified such that the bare earth points can be calibrated to the ground surface and tested via the independent QC to ensure the ground surface is accurately represented. The Bare Earth deliverables consists of \(1,7491500 \mathrm{~m} x 1500 \mathrm{~m}\) tiles of classified LAS points. ASPRS classifications: 1, 2, 7, 8, 9, 10, 11, 17 and 18 have been used for this dataset. Terrain products derived from the Bare Earth consists of 1,7491 meter DEM files and two foot contours. A full TSDN accompanies this deliverable that describes the project in more detail.
Purpose: Provide high resolution terrain elevation and land cover elevation data. Terrain data is used to represent the topography of a watershed and/or floodplain environment and to extract useful information for hydraulic and hydrologic floodplain models specifically for FEMA Flood Insurance projects. (Source: FEMA Guidelines and Specs, Appendix M) .
```

```
Time Period of Content:
```

Time Period of Content:
Time_Period_Information:
Time_Period_Information:
Single_Date/Time:
Single_Date/Time:
Calendar Date: 20120914
Calendar Date: 20120914
Currentness_Reference: ground condition
Currentness_Reference: ground condition
Status:
Status:
Progress: Complete
Progress: Complete
Maintenance_and_Update_Frequency: Unknown
Maintenance_and_Update_Frequency: Unknown
Spatial_Domain:

```
Spatial_Domain:
```

Bounding_Coordinates:
West_Bōunding_Coordinate: -71.973079
East_Bounding_Coordinate: -71.083734
North_Bounding_Coordinate: 43.53304
South_Bounding_Coordinate: 42.448337
Keywords:
Theme:
Theme_Keyword_Thesaurus: ISO 19115 Topic Category
Theme_Keyword: elevation
Theme:
Theme_Keyword_Thesaurus: FEMA NFIP Topic Category
Theme_Keyword: Land Surface
Theme_Keyword: Topography
Theme_Keyword: Digital Terrain Model
Theme_Keyword: Elevation Data
Theme_Keyword: LIDAR
Theme:
Theme_Keyword_Thesaurus: None
Theme_Keyword: Ground Control
Theme_Keyword: Point Cloud
Theme_Keyword: LAS Point Files
Theme_Keyword: Bare Earth
Place:
Place_Keyword_Thesaurus: None
Place-Keyword: REGION I
Place_Keyword: STATE NH
Place_Keyword: COUNTY MERRIMACK
Place_Keyword: COUNTY-FIPS 013
Place_Keyword: COMMUNITY MERRIMACK COUNTY
Place_Keyword: FEMA-CID 33013C
Place_Keyword: HYDROLOGIC CODE 01070002
Place_Keyword: Merrimack Watershed
Place:
Place_Keyword_Thesaurus: None
Place_Keyword: REGION I
Place_Keyword: STATE MA
Place_Keyword: COUNTY ESSEX
Place_Keyword: COUNTY-FIPS 009
Place_Keyword: COMMUNITY ESSEX COUNTY
Place_Keyword: FEMA-CID 25009C
Place_Keyword: HYDROLOGIC CODE 01070002
Place_Keyword: Merrimack Watershed
Place:
Place_Keyword_Thesaurus: None
Place_Keyword: REGION I
Place-Keyword: STATE MA
Place_Keyword: COUNTY ESSEX
Place_Keyword: COUNTY-FIPS 009
Place_Keyword: COMMUNITY METHUEN, CITY OF
Place_Keyword: FEMA-CID 090085
Place:
Place_Keyword_Thesaurus: None
Place_Keyword: REGION I
Place_Keyword: STATE MA

```
    Place_Keyword: COUNTY MIDDLESEX
    Place Keyword: COUNTY-FIPS 017
    Place-Keyword: COMMUNITY MIDDLESEX COUNTY
    Place-Keyword: FEMA-CID 25017C
    Place_Keyword: HYDROLOGIC CODE 01070002
    Place_Keyword: Merrimack Watershed
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE MA
    Place_Keyword: COUNTY MIDDLESEX
    Place_Keyword: COUNTY-FIPS 017
    Place_Keyword: COMMUNITY ASHBY, TOWN OF
    Place_Keyword: FEMA-CID 250178
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE MA
    Place_Keyword: COUNTY MIDDLESEX
    Place_Keyword: COUNTY-FIPS 017
    Place_Keyword: COMMUNITY AYER, TOWN OF
    Place_Keyword: FEMA-CID 250180
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE MA
    Place_Keyword: COUNTY MIDDLESEX
    Place_Keyword: COUNTY-FIPS 017
    Place_Keyword: COMMUNITY BOXBOROUGH, TOWN OF
    Place_Keyword: FEMA-CID 250184
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE MA
    Place-Keyword: COUNTY MIDDLESEX
    Place_Keyword: COUNTY-FIPS 017
    Place_Keyword: COMMUNITY CHELMSFORD, TOWN OF
    Place_Keyword: FEMA-CID 250188
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE MA
    Place_Keyword: COUNTY MIDDLESEX
    Place_Keyword: COUNTY-FIPS 017
    Place-Keyword: COMMUNITY DRACUT, TOWN OF
    Place_Keyword: FEMA-CID 250190
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE MA
    Place_Keyword: COUNTY MIDDLESEX
    Place_Keyword: COUNTY-FIPS 017
    Place_Keyword: COMMUNITY DUNSTABLE, TOWN OF
    Place_Keyword: FEMA-CID 250191
```

```
Place:
    Place Keyword Thesaurus: None
    Place Keyword: REGION I
    Place Keyword: STATE MA
    Place_Keyword: COUNTY MIDDLESEX
    Place_Keyword: COUNTY-FIPS 017
    Place_Keyword: COMMUNITY GROTON, TOWN OF
    Place_Keyword: FEMA-CID 250194
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE MA
    Place Keyword: COUNTY MIDDLESEX
    Place Keyword: COUNTY-FIPS 017
    Place-Keyword: COMMUNITY LITTLETON, TOWN OF
    Place Keyword: FEMA-CID 250200
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE MA
    Place_Keyword: COUNTY MIDDLESEX
    Place_Keyword: COUNTY-FIPS 017
    Place_Keyword: COMMUNITY LOWELL, CITY OF
    Place Keyword: FEMA-CID 250201
Place:
    Place Keyword Thesaurus: None
    Place_Keyword: REGION I
    Place Keyword: STATE MA
    Place_Keyword: COUNTY MIDDLESEX
    Place_Keyword: COUNTY-FIPS 017
    Place_Keyword: COMMUNITY PEPPERELL, TOWN OF
    Place_Keyword: FEMA-CID 250210
Place:
    Place_Keyword_Thesaurus: None
    Place-Keyword: REGION I
    Place_Keyword: STATE MA
    Place_Keyword: COUNTY MIDDLESEX
    Place_Keyword: COUNTY-FIPS 017
    Place Keyword: COMMUNITY STOW, TOWN OF
    Place_Keyword: FEMA-CID 250216
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE MA
    Place-Keyword: COUNTY MIDDLESEX
    Place-Keyword: COUNTY-FIPS 017
    Place_Keyword: COMMUNITY TYNGSBOROUGH, TOWN OF
    Place_Keyword: FEMA-CID 250220
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE MA
    Place_Keyword: COUNTY MIDDLESEX
    Place_Keyword: COUNTY-FIPS 017
```

```
    Place_Keyword: COMMUNITY WESTFORD, TOWN OF
    Place_Keyword: FEMA-CID 250225
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE MA
    Place_Keyword: COUNTY WORCESTER
    Place_Keyword: COUNTY-FIPS 027
    Place_Keyword: COMMUNITY WORCESTER COUNTY
    Place_Keyword: FEMA-CID 25027C
    Place_Keyword: HYDROLOGIC CODE 01070002
    Place_Keyword: Merrimack Watershed
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE MA
    Place_Keyword: COUNTY WORCESTER
    Place_Keyword: COUNTY-FIPS 027
    Place_Keyword: COMMUNITY ASHBURNHAM, TOWN OF
    Place_Keyword: FEMA-CID 250290
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE MA
    Place_Keyword: COUNTY WORCESTER
    Place_Keyword: COUNTY-FIPS 027
    Place_Keyword: COMMUNITY HARVARD, TOWN OF
    Place_Keyword: FEMA-CID 250308
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY BELKNAP
    Place_Keyword: COUNTY-FIPS 001
    Place-Keyword: COMMUNITY BELKNAP COUNTY
    Place_Keyword: FEMA-CID 33001C
    Place_Keyword: HYDROLOGIC CODE 01070002
    Place_Keyword: Merrimack Watershed
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY BELKNAP
    Place_Keyword: COUNTY-FIPS 001
    Place_Keyword: COMMUNITY ALTON, TOWN OF
    Place_Keyword: FEMA-CID 330001
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY BELKNAP
    Place_Keyword: COUNTY-FIPS 001
    Place_Keyword: COMMUNITY BARNSTEAD, TOWN OF
    Place_Keyword: FEMA-CID 330177
```

```
Place:
    Place Keyword Thesaurus: None
    Place Keyword: REGION I
    Place Keyword: STATE NH
    Place Keyword: COUNTY BELKNAP
    Place_Keyword: COUNTY-FIPS 001
    Place_Keyword: COMMUNITY BELMONT, TOWN OF
    Place_Keyword: FEMA-CID 330002
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place Keyword: COUNTY BELKNAP
    Place Keyword: COUNTY-FIPS 001
    Place Keyword: COMMUNITY GILFORD, TOWN OF
    Place_Keyword: FEMA-CID 330004
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY BELKNAP
    Place_Keyword: COUNTY-FIPS 001
    Place_Keyword: COMMUNITY GILMANTON, TOWN OF
    Place Keyword: FEMA-CID 330208
Place:
    Place Keyword Thesaurus: None
    Place_Keyword: REGION I
    Place Keyword: STATE NH
    Place_Keyword: COUNTY CHESHIRE
    Place_Keyword: COUNTY-FIPS 005
    Place_Keyword: COMMUNITY CHESHIRE COUNTY
    Place_Keyword: FEMA-CID 33005C
    Place_Keyword: HYDROLOGIC CODE 01070002
    Place_Keyword: Merrimack Watershed
Place:
    Place Keyword Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place Keyword: COUNTY CHESHIRE
    Place_Keyword: COUNTY-FIPS 005
    Place_Keyword: COMMUNITY RINDGE, TOWN OF
    Place_Keyword: FEMA-CID 330189
Place:
    Place_Keyword_Thesaurus: None
    Place Keyword: REGION I
    Place-Keyword: STATE NH
    Place Keyword: COUNTY HILLSBOROUGH
    Place_Keyword: COUNTY-FIPS 011
    Place_Keyword: COMMUNITY HILLSBOROUGH COUNTY
    Place Keyword: FEMA-CID 33011C
    Place_Keyword: HYDROLOGIC CODE 01070002
    Place_Keyword: Merrimack Watershed
Place:
    Place_Keyword_Thesaurus: None
```

```
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place-Keyword: COUNTY HILLSBOROUGH
    Place-Keyword: COUNTY-FIPS 011
    Place_Keyword: COMMUNITY AMHERST, TOWN OF
    Place_Keyword: FEMA-CID 330081
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY HILLSBOROUGH
    Place_Keyword: COUNTY-FIPS 011
    Place_Keyword: COMMUNITY BEDFORD, TOWN OF
    Place_Keyword: FEMA-CID 330083
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY HILLSBOROUGH
    Place_Keyword: COUNTY-FIPS 011
    Place_Keyword: COMMUNITY BENNINGTON, TOWN OF
    Place_Keyword: FEMA-CID 330084
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY HILLSBOROUGH
    Place_Keyword: COUNTY-FIPS 011
    Place_Keyword: COMMUNITY BROOKLINE, TOWN OF
    Place_Keyword: FEMA-CID 330180
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY HILLSBOROUGH
    Place_Keyword: COUNTY-FIPS 011
    Place_Keyword: COMMUNITY DEERING, TOWN OF
    Place_Keyword: FEMA-CID 330085
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY HILLSBOROUGH
    Place_Keyword: COUNTY-FIPS 011
    Place_Keyword: COMMUNITY FRANCESTOWN, TOWN OF
    Place_Keyword: FEMA-CID 330086
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY HILLSBOROUGH
    Place_Keyword: COUNTY-FIPS 011
    Place_Keyword: COMMUNITY GOFFSTSOWN, TOWN OF
    Place_Keyword: FEMA-CID 330087
```

```
Place:
    Place Keyword Thesaurus: None
    Place Keyword: REGION I
    Place Keyword: STATE NH
    Place_Keyword: COUNTY HILLSBOROUGH
    Place_Keyword: COUNTY-FIPS 011
    Place_Keyword: COMMUNITY GREENFIELD, TOWN OF
    Place_Keyword: FEMA-CID 330209
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place Keyword: COUNTY HILLSBOROUGH
    Place Keyword: COUNTY-FIPS 011
    Place-Keyword: COMMUNITY GREENVILLE, TOWN OF
    Place_Keyword: FEMA-CID 330088
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY HILLSBOROUGH
    Place_Keyword: COUNTY-FIPS 011
    Place_Keyword: COMMUNITY HILLSBOROUGH, TOWN OF
    Place_Keyword: FEMA-CID 330090
Place:
    Place Keyword Thesaurus: None
    Place_Keyword: REGION I
    Place Keyword: STATE NH
    Place_Keyword: COUNTY HILLSBOROUGH
    Place_Keyword: COUNTY-FIPS 011
    Place_Keyword: COMMUNITY HOLLIS, TOWN OF
    Place_Keyword: FEMA-CID 330091
Place:
    Place Keyword Thesaurus: None
    Place - keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY HILLSBOROUGH
    Place_Keyword: COUNTY-FIPS 011
    Place_Keyword: COMMUNITY HUDSON, TOWN OF
    Place_Keyword: FEMA-CID 330092
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place Keyword: STATE NH
    Place_Keyword: COUNTY HILLSBOROUGH
    Place-Keyword: COUNTY-FIPS 011
    Place_Keyword: COMMUNITY LITCHFIELD, TOWN OF
    Place_Keyword: FEMA-CID 330093
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY HILLSBOROUGH
    Place_Keyword: COUNTY-FIPS 011
```

```
    Place_Keyword: COMMUNITY LYNDEBOROUGH, TOWN OF
    Place_Keyword: FEMA-CID 330218
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY HILLSBOROUGH
    Place_Keyword: COUNTY-FIPS 011
    Place_Keyword: COMMUNITY MANCHESTER, CITY OF
    Place_Keyword: FEMA-CID 330169
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY HILLSBOROUGH
    Place_Keyword: COUNTY-FIPS 01
    Place_Keyword: COMMUNITY MASON, TOWN OF
    Place_Keyword: FEMA-CID 330221
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY HILLSBOROUGH
    Place_Keyword: COUNTY-FIPS 011
    Place_Keyword: COMMUNITY MERRIMACK, TOWN OF
    Place_Keyword: FEMA-CID 330095
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY HILLSBOROUGH
    Place_Keyword: COUNTY-FIPS 011
    Place_Keyword: COMMUNITY MILFORD, TOWN OF
    Place_Keyword: FEMA-CID 330096
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY HILLSBOROUGH
    Place_Keyword: COUNTY-FIPS 011
    Place_Keyword: COMMUNITY MONT VERNON, TOWN OF
    Place_Keyword: FEMA-CID 330224
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY HILLSBOROUGH
    Place_Keyword: COUNTY-FIPS 011
    Place_Keyword: COMMUNITY NASHUA, CITY OF
    Place_Keyword: FEMA-CID 330097
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
```

```
    Place_Keyword: COUNTY HILLSBOROUGH
    Place_Keyword: COUNTY-FIPS 011
    Place-Keyword: COMMUNITY NEW BOSTON, TOWN OF
    Place-Keyword: FEMA-CID 330098
Place:
    Place_Keyword_Thesaurus: None
    Place Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY HILLSBOROUGH
    Place_Keyword: COUNTY-FIPS 011
    Place_Keyword: COMMUNITY NEW IPSWICH, TOWN OF
    Place_Keyword: FEMA-CID 330099
Place:
    Place_Keyword_Thesaurus: None
    Place-Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY HILLSBOROUGH
    Place_Keyword: COUNTY-FIPS 011
    Place_Keyword: COMMUNITY PELHAM, TOWN OF
    Place_Keyword: FEMA-CID 330100
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY HILLSBOROUGH
    Place_Keyword: COUNTY-FIPS 011
    Place_Keyword: COMMUNITY PETERBOROUGH, TOWN OF
    Place_Keyword: FEMA-CID 330101
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY HILLSBOROUGH
    Place_Keyword: COUNTY-FIPS 011
    Place_Keyword: COMMUNITY WEARE, TOWN OF
    Place_Keyword: FEMA-CID 330235
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY HILLSBOROUGH
    Place_Keyword: COUNTY-FIPS 011
    Place_Keyword: COMMUNITY WILTON, TOWN OF
    Place_Keyword: FEMA-CID 330102
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY MERRIMACK
    Place Keyword: COUNTY-FIPS 013
    Place_Keyword: COMMUNITY ALLENSTOWN, TOWN OF
    Place_Keyword: FEMA-CID 330103
Place:
    Place_Keyword_Thesaurus: None
```

```
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place-Keyword: COUNTY MERRIMACK
    Place-Keyword: COUNTY-FIPS 013
    Place_Keyword: COMMUNITY ANDOVER, TOWN OF
    Place_Keyword: FEMA-CID 330104
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY MERRIMACK
    Place_Keyword: COUNTY-FIPS 013
    Place_Keyword: COMMUNITY BOSCAWEN, TOWN OF
    Place_Keyword: FEMA-CID 330105
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY MERRIMACK
    Place_Keyword: COUNTY-FIPS 013
    Place_Keyword: COMMUNITY BOW, TOWN OF
    Place_Keyword: FEMA-CID 330107
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY MERRIMACK
    Place_Keyword: COUNTY-FIPS 013
    Place_Keyword: COMMUNITY CANTERBURY, TOWN OF
    Place_Keyword: FEMA-CID 330108
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY MERRIMACK
    Place_Keyword: COUNTY-FIPS 013
    Place_Keyword: COMMUNITY CHICHESTER, TOWN OF
    Place_Keyword: FEMA-CID 330109
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY MERRIMACK
    Place_Keyword: COUNTY-FIPS 013
    Place_Keyword: COMMUNITY CONCORD, TOWN OF
    Place_Keyword: FEMA-CID 330110
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY MERRIMACK
    Place_Keyword: COUNTY-FIPS 013
    Place_Keyword: COMMUNITY DUNBARTON, TOWN OF
    Place_Keyword: FEMA-CID 330202
```

```
Place:
    Place Keyword Thesaurus: None
    Place_Keyword: REGION I
    Place Keyword: STATE NH
    Place Keyword: COUNTY MERRIMACK
    Place_Keyword: COUNTY-FIPS 013
    Place_Keyword: COMMUNITY EPSOM, TOWN OF
    Place_Keyword: FEMA-CID 330112
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place Keyword: COUNTY MERRIMACK
    Place-Keyword: COUNTY-FIPS 013
    Place-Keyword: COMMUNITY FRANKLIN, CITY OF
    Place_Keyword: FEMA-CID 330113
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY MERRIMACK
    Place Keyword: COUNTY-FIPS 013
    Place_Keyword: COMMUNITY HENNIKER, TOWN OF
    Place Keyword: FEMA-CID 330114
Place:
    Place Keyword Thesaurus: None
    Place_Keyword: REGION I
    Place Keyword: STATE NH
    Place_Keyword: COUNTY MERRIMACK
    Place_Keyword: COUNTY-FIPS 013
    Place_Keyword: COMMUNITY HOOKSETT, TOWN OF
    Place_Keyword: FEMA-CID 330115
Place:
    Place_Keyword_Thesaurus: None
    Place - keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY MERRIMACK
    Place_Keyword: COUNTY-FIPS 013
    Place Keyword: COMMUNITY HOPKINTON, TOWN OF
    Place_Keyword: FEMA-CID 330116
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place Keyword: COUNTY MERRIMACK
    Place-Keyword: COUNTY-FIPS 013
    Place-Keyword: COMMUNITY LOUDON, TOWN OF
    Place_Keyword: FEMA-CID 330117
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY MERRIMACK
    Place_Keyword: COUNTY-FIPS 013
```

```
    Place Keyword: COMMUNITY NORTHFIELD, TOWN OF
    Place_Keyword: FEMA-CID 330118
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY MERRIMACK
    Place_Keyword: COUNTY-FIPS 013
    Place_Keyword: COMMUNITY PEMBROKE, TOWN OF
    Place_Keyword: FEMA-CID 330119
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place-Keyword: STATE NH
    Place-Keyword: COUNTY MERRIMACK
    Place_Keyword: COUNTY-FIPS 013
    Place_Keyword: COMMUNITY PITTSFIELD, TOWN OF
    Place_Keyword: FEMA-CID 330120
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY MERRIMACK
    Place_Keyword: COUNTY-FIPS 013
    Place_Keyword: COMMUNITY SALISBURY, TOWN OF
    Place_Keyword: FEMA-CID 330121
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY MERRIMACK
    Place_Keyword: COUNTY-FIPS 013
    Place_Keyword: COMMUNITY WEBSTER, TOWN OF
    Place_Keyword: FEMA-CID 330121
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY ROCKINGHAM
    Place_Keyword: COUNTY-FIPS 015
    Place_Keyword: COMMUNITY ROCKINGHAM COUNTY
    Place_Keyword: FEMA-CID 33015C
    Place_Keyword: HYDROLOGIC CODE 01070002
    Place_Keyword: Merrimack Watershed
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY ROCKINGHAM
    Place_Keyword: COUNTY-FIPS 015
    Place_Keyword: COMMUNITY AUBURN, TOWN OF
    Place_Keyword: FEMA-CID 330176
Place:
    Place_Keyword_Thesaurus: None
```

```
    Place_Keyword: REGION I
    Place Keyword: STATE NH
    Place-Keyword: COUNTY ROCKINGHAM
    Place_Keyword: COUNTY-FIPS 015
    Place_Keyword: COMMUNITY CANDIA, TOWN OF
    Place_Keyword: FEMA-CID 330126
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY ROCKINGHAM
    Place_Keyword: COUNTY-FIPS 015
    Place_Keyword: COMMUNITY DEERFIELD, TOWN OF
    Place_Keyword: FEMA-CID 330127
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY ROCKINGHAM
    Place_Keyword: COUNTY-FIPS 015
    Place_Keyword: COMMUNITY LONDONDERRY, TOWN OF
    Place_Keyword: FEMA-CID 330134
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY ROCKINGHAM
    Place_Keyword: COUNTY-FIPS 015
    Place_Keyword: COMMUNITY NORTHWOOD, TOWN OF
    Place_Keyword: FEMA-CID 330855
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place-Keyword: COUNTY ROCKINGHAM
    Place_Keyword: COUNTY-FIPS 015
    Place_Keyword: COMMUNITY SALEM, TOWN OF
    Place_Keyword: FEMA-CID 330142
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY ROCKINGHAM
    Place_Keyword: COUNTY-FIPS 011
    Place_Keyword: COMMUNITY WINDHAM, TOWN OF
    Place_Keyword: FEMA-CID 330144
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY STRAFFORD
    Place_Keyword: COUNTY-FIPS 017
    Place_Keyword: COMMUNITY STRAFFORD COUNTY
    Place_Keyword: FEMA-CID 33017C
```

```
    Place_Keyword: HYDROLOGIC CODE 01070002
    Place_Keyword: Merrimack Watershed
Place:
    Place Keyword Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY STRAFFORD
    Place_Keyword: COUNTY-FIPS 017
    Place_Keyword: COMMUNITY FARMINGTON, TOWN OF
    Place_Keyword: FEMA-CID 330147
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY STRAFFORD
    Place_Keyword: COUNTY-FIPS 017
    Place_Keyword: COMMUNITY NEW DURHAM, TOWN OF
    Place_Keyword: FEMA-CID 330227
Place:
    Place_Keyword_Thesaurus: None
    Place_Keyword: REGION I
    Place_Keyword: STATE NH
    Place_Keyword: COUNTY STRAFFORD
    Place_Keyword: COUNTY-FIPS 017
    Place_Keyword: COMMUNITY STRAFFORD, TOWN OF
    Place_Keyword: FEMA-CID 330196
```

Access_Constraints: None
Use_Constraints: Acknowledgement of FEMA would be appreciated in products derived from these data. This digital data is produced for the purposes of updating/creating a DFIRM database.

Data_Set_Credit: Ground control and quality control checkpoints were collec̄̄ed $\bar{b} y$ CompassData, Inc. LiDAR was acquired and processed by Photo Science, Inc. Quality Control testing was performed by CompassData, Inc. Quality Assurance testing was conducted by Greenhorne \& O'Mara, Inc. All firms were under contract to STARR, A Joint Venture which held the FEMA contract and task order for this work. Data_Quality_Information:

Attribute_Accuracy:
Attribute_Accuracy_Report: Elevations are recorded in floatingpoint feet and the vertical datum is NAVD88. There are no other attribute tables.

Logical_Consistency_Report: Survey data have been confirmed to be in proper unīts, coordināte systems and format. The terrain data have been confirmed as complete LAS format data files. Header files are in proper LAS format with content as specified by FEMA Procedural Memo No. 61.

Completeness_Report: Survey data have been checked for completeness, points have been collected in correct vegetation units, and distributed throughout the AOI. The terrain data have been checked for completeness against AOI polygons. No gaps as defined by FEMA Procedural Memo No. 61 are known to exist within the dataset.

Positional_Accuracy:
Horizontāl_Positional_Accuracy:

Horizontal_Positional_Accuracy_Report: Not applicable for pure elevation data: $\bar{e} v e r y ~ X Y ~ e r r o r ~ h a s ~ a n ~ a s s o c i a t e d ~ Z ~ e r r o r . ~$

Vertical_Positional_Accuracy:
Verticāl Positionāl Accuracy Report: Deliverables were tested by for vertical açcuracy. The verticāl unit of the data file is in FEET with 2-decimal point precision.

Quantitative_Vertical_Positional_Accuracy_Assessment:
Vertical_Positional_Accuracy_Value: 0.243
Vertical_Positional_Accuracy_Explanation: Consolidated Vertical Accuracy (CVA) equal to the 95th percentile confidence level (RMSE[z] x 1.9600) calculated against the bare earth surface in all ground cover classes. Reported in meters. The point cloud surface was also tested in open terrain. The Fundamental Vertical Accuracy (FVA) equal to the 95th Percentile confidence level (RMSE[z] x 1.9600) calculated in open terrain is 0.140 meters. Accuracy statement is based on the area of moderate to flat terrain. Diminished accuracies are to be expected in areas of rugged terrain and/or dense vegetation. The accuracy of derived products may be less accurate in areas of dense vegetation due to a lesser number of points defining the bare-earth in these areas.

Lineage:
Source_Information:
Source Citation:
Citation_Information:
Originātor: STARR
Publication_Date: 2012
Title: Merrimack_GroundControl
Type_of_Source_Media: DIGITAL
Source_-Time_Period_of_Content:
Time_Period_Information:
Single_Dāte/Time:
Calendar_Date: 20120914
Source_Currentness_Reference: MIP Submission Date
Source_Cítation_Abbrēviation: Other1
Source-Contribution: Control points for tying LiDAR data to the
ground surfā̄e.
Source_Information:
Source_Citation:
Citation Information:
Originator: STARR
Publication_Date: 2012
Title: Merrimack_FVA_CVA
Type_of_Source_Media: DIGITAL
Source_Time_Period_of_Content:
Time_Period_Information:
Sin̄gle_Dā̄e/Time:
Calendar_Date: 20120914
Source_Currentness_Reference: MIP Submission Date
Source_Citation_Abbreviation: Other2
Source_Contribution: Quality Assurance points to confirm LiDAR data meets vertical accuracy requirements.

Source_Information:
Source_Citation:
Citation_Information:

```
            Originator: STARR
            Publication_Date: 2012
            Title: Merrímack Collection Area
    Type of Source Media: DIGITAL
    Sourcee_Time_Perriod_of_Content:
    Time_Period_Information:
        Single_Date/Time:
            Calendar_Date: 20120914
            Source_Currentness_Reference: MIP Submission Date
    Source_Cītation_Abbrēviation: Other3
    Source_Contribution: Shapefile of Merrimack LiDAR acquisition area.
        Source_Information:
            Source_Citation:
            Citation_Information:
                    Originātor: STARR
            Publication_Date: 2012
            Title: Merrimack_Tile_Index
    Type_of_Source_Media: DIGITAL
    Sourc̄e_Time_Pe\overline{riod_of_Content:}
    Time_Period_Information:
    Single_Date/Time:
        Caleñdar_Date: 20120914
        Source_Cūrrentness_Reference: MIP Submission Date
        Source_Cītation_Abbrēviation: Other4
        Source_Contribution: Shapefile tile index used for naming of the
Point Cloud (All Returns) LAS data.
    Source_Information:
        Source_Citation:
            Citation_Information:
                    Originator: STARR
                    Publication_Date: 2012
                    Title: Merrimack_PreFlightReport
        Type_of_Source_Media: DIGITAL
```



```
        Time_Peri}od_Information=
            Sin
            Calendar_Date: 20120914
            Source_Currentness_Reference: MIP Submission Date
            Source_Citation_Abbreviation: Other5
            Source_Contribution: Document contains the operations plans for the
LiDAR acquisition.
    Source_Information:
            Source_Citation:
                Citation_Information:
                    Originātor: STARR
                    Publication_Date: 2012
                    Title: Merrimack_PostFlightReport
    Type_of_Source_Media: DIGITAL
    Source_Time_Period_of_Content:
    Time_Period_Information:
            Single_Date/Time:
                Calendar_Date: 20120914
                Source_Currentness_Reference: MIP Submission Date
            Source_Cítation_Abbrēviation: Other6
```

Source_Contribution: Document contains the acquisition and calibration $\bar{r} e p o r t$ for the LiDAR acquisition Source_Information:

Source_Citation:
Citation_Information:
Originator: STARR
Publication_Date: 2012
Title: Region 1 Merrimack Testing Results FVA CVA
Type_of_Source_Media: DIGITAL
Source_Time_Period_of_Content: Time_Period_Information:

Single_Date/Time:
Caleñdar_Date: 20120914
Source_Cūrrentness_Reference: MIP Submission Date
Source_Cítation_Abbrēviation: Other7
Source_Contribution: Document contains QC test results for both FVA and CVA blind check point tests against open area and bare earth surfaces generated from All Returns and Bare Earth (respectively) LAS points. Source_Information:

Source_Citation:
Citation_Information:
Originator: STARR
Publication_Date: 2012
Title: All_Returns
Type_of_Source_Media: DIGITAL
Source_Time_Pē̄iod_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 20120914
Source_Currentness_Reference: MIP Submission Date
Source_Citation_Abbrēviation: VARIABLE-SPACING1
Source_Contribution: Point Cloud (All Returns) LAS 1.2 point files
named according to Merrimack_Tile_Index.
Source_Information:
Source_Citation:
Citation_Information:
Originātor: STARR
Publication_Date: 2012
Title: Bare_Earth
Type_of_Source_Media: DIGITAL
Source_Time_Period_of_Content: Time_Period_Information:

Single_Date/Time:
Caleñdar_Date: 20120914
Source_Cūrrentness_Reference: MIP Submission Date
Source_Cītation_Abbrēviation: VARIABLE-SPACING2
Source_Contribūtion: Bare Earth LAS point files named according to the Merrimack_Tile_Index.

Source_Information:
Source_Citation:
Citation_Information:
Originātor: STARR
Publication_Date: 2012
Title: Merrímack Hydro Break Lines

```
    Type_of_Source_Media: DIGITAL
    Source_Time_Period_of_Content:
    Time_Peri}od_Information'
    Siñgle Dāte/Time:
        Caleñdar_Date: 20120914
        Source_Currentness_Reference: MIP Submission Date
    Source_Citation_Abbreviation: BREAKLINES1
    Source_Contribution: Merrimack Watershed 3D polyline breaklines.
    Source_Information:
    Source_Citation:
        Citation_Information:
            Originator: STARR
            Publication_Date: 2012
            Title: Merrīmack HUC8 ESRI Terrain.gdb
    Type of Source Media: DIGĪTAL
    Source_Time_Period_of_Content:
    Time_Period_Information:
    Single_Date/Time:
            Calendar_Date: 20120914
            Source_Currentness_Reference: publication date
    Source_Cītation_Abbrēviation: Other8
    Source_Contribution: File geodatabase (v9.3.1) containing Merrimack
HUC 8 ESRI Terrains. Includes bare earth multipoint (mass points), hydro
enforced breaklines (hard breakline), and project area (softclip) feature
classes.
    Source_Information:
        Source_Citation:
            Citation Information:
                Originator: STARR
                Publication_Date: 2012
                Title: Merrimack HUC 8 1 meter DEM
        Type_of_Source_Media: DIGITAL
        Source_Time_Period_of_Content:
        Time_Period_Information:
            Sin̄gle Dā̄e/Time:
            Caleñdar_Date: 20120914
            Source_Currentness_Reference: publication date
            Source_Citation_Abbreviation: REGULAR-GRID1
            Source_Contribution: 1 meter geotif file for Merrimack HUC 8
watershed project area.
    Source_Information:
        Source_Citation:
            Citation_Information:
                Originator: STARR
                Publication_Date: 2012
                Title: Merrimack HUC 8 2 meter DEM
            Type_of_Source_Media: DIGITAL
            Source_Time_Period_of_Content:
        Time_Period_Information:
            Single_Date/Time:
                Calendar_Date: 20120914
                Source_Currentness_Reference: publication date
            Source_Citation_Abbreviation: REGULAR-GRID2
```

Source_Contribution: 2 meter geotif file for Merrimack HUC 8 watershed project area. Source_Information:

Source Citation:
Citation_Information:
Originator: STARR
Publication_Date: 2012
Title: Merrimack HUC 8 tiled 1 meter DEMs
Type_of_Source_Media: DIGITAL
Source_Time_Period_of_Content: Time_Period_Information:

Single_Date/Time:
Calendar_Date: 20120914
Source_Cūrrentness_Reference: publication date
Source_Cītation_Abbrēviation: REGULAR-GRID3
Source_Contribution: 17491 meter erdas imagine files for Merrimack
HUC 8 watershed project area.
Source_Information:
Source_Citation:
Citation_Information:
Originator: STARR
Publication_Date: 2012
Title: Merrimack_HUC8_2ft_Contours.gdb
Type_of_Source_Media: DIGITAL
Sourc̄e_Time_Pēriod_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 20120914
Source_Currentness_Reference: publication date
Source_Citation_Abbreviation: CONTOURS1
Source_Contribution: File geodatabase (v9.3) containing 2ft contour polyline feature classes for Merrimack HUC 8 based on HUC 12 boundaries. Source_Information:

Source Citation:
Citation_Information:
Originātor: STARR
Publication_Date: 2012
Title: Merrimack TSDN
Type_of_Source_Media: DIGITAL
Source_-Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 20120914
Source_Cūrrentness_Reference: MIP Submission Date
Source_Cítation_Abbrēviation: Other9
Source-Contribution: TSDN for the acquisition, processing and product development of the LiDAR dataset. Process_Step:

Process_Description:
GP \bar{S} based surveys were utilized to support both processing and testing of LiDAR data within FEMA designated Areas of Interest (AOIs). Geographically distinct ground points were surveyed using GPS technology throughout the AOI to provide support for three distinct tasks.

Task 1 was to provide Vertical Ground Control to support the aerial acquisition and subsequent bare earth model processing. To accomplish this, survey-grade Trimble $\mathrm{R}-8$ GPS receivers were used to collect a series of control points located on open areas, free of excessive or significant slope, and at least 5 meters away from any significant terrain break. Most if not all control points were collected at street/road intersections on bare level pavement.

Task 2 was to collect Fundamental Vertical Accuracy (FVA) checkpoints to evaluate the initial quality of the collected point cloud and to ensure that the collected data was satisfactory for further processing to meet FEMA specifications. The FVA points were collected in identical fashion to the Vertical Ground Control Points, but segregated from the point pool to ensure independent quality testing without prior knowledge of FVA locations by the aerial vendor.

Task 3 was to collect Consolidated Vertical Accuracy CVA)
checkpoints to allow vertical testing of the bare-earth processed LiDAR data in different classes of land cover, including: Open (pavement, open dirt, short grass), High Grass and Crops, Forest, Urban. CVA points were collected in similar fashion as Control and FVA points with emphasis on establishing point locations within the predominant land cover classes within each AOI or Functional AOI Group. In order to successfully collect the Forest land cover class, it was necessary to establish a Backsight and Initial Point with the R 8 receiver, and then employ a Nikon Total Station to observe a retroreflective prism stationed under tree canopy. This was necessary due to the reduced GPS performance and degradation of signal under tree canopy.

The R-8 receivers were equipped with cellular modems to receive real-time correction signals from the Keystone Precision Virtual Reference Station (VRS) network encompassing the Region 1 AOIs. Use of the VRS network allowed rapid collection times (~3 minutes/point) at 2.54 cm (1 inch) initial accuracy.

All points collected were below the 8 cm specification for testing 24 cm , Highest category LiDAR data. To ensure valid in-field collections, an NGS monument with suitable vertical reporting was measured using the same equipment and procedures used for Control, FVA and CVA points on a daily basis. The measurement was compared to the NGS published values to ensure that the GPS collection schema was producing valid data and as a physical proof point of quality of collection. Those monument
measurements are summarized in the Accuracy report included in the data deliverables.

20 FVA points are necessary to allow testing to CE95 - 1 point out of 20 may fail vertical testing and still allow the entire dataset to meet 95% accuracy requirements. In similar fashion, 76 CVA points are necessary to test to CE95 as discussed above. 72 CVA points were collected with the intention at the outset that 4 of the collected FVAs would perform double -duty as Open-class CVA points, to total 76 CVAs.

The following software packages and utilities were used to control the GPS receiver in the field during data collection, and then ingest and export the collected GPS data for all points: Trimble Survey Controller, Trimble Pathfinder Office.

The following software utilities were used to translate the collected Latitude/Longitude Decimal Degree HAE GPS data for all points into Latitude/Longitude Degrees/Minutes/Seconds for checking the collected monument data against the published NGS Datasheet Lat/Long DMS
values and into UTM NAD83 Northings/Eastings: U.S. Army Corps of Engineers CorpsCon, National Geodetic Survey Geoid09NAVD88.

MSL values were determined using the most recent NGS-approved geoid model to generate geoid separation values for each Lat/Long coordinate pair. In this fashion, Orthometric heights were determined for each Control, FVA and CVA point by subtracting the generated Geoid Separation value from the Ellipsoidal Height (HAE) for publication and use as MSL NAVD88(09).

Process_Date: 2012
Process_Step:
Process_Description:
Using a Leica ALS60 LiDAR system, 268 flight lines of highest density (Nominal Pulse Spacing of 1.0 m) were collected over the Merrimack area which encompasses 1302 square miles. Five (5) blocks (block or area is determined by the Base Station control locations, typically airports with ground control monuments available providing coverage within 18 miles of the base as possible) to cover in its entirety.

Area |Flight Lines |Lifts |Dates
|System
CON |79 |7
|12/19-12/29 2011 |ALS60
ASH |64 |5
|1/7-1/11 $2012 \quad \mid \operatorname{ALS} 60$
BED |31 |1
|1/11/2012 |ALS60
LCI |34 |2
|11/12-11/13 2011 |ALS60
AFN |48 |4
|11/12-11/13 2011 |ALS60
Cross Flights 12 Flight Lines...Lifts were combined with the acquisition of each area with both sensors

Process_Date: 2012
Process_Step:
Process_Description:
Leica proprietary software was used in the post-processing of the airborne GPS and inertial data that is critical to the positioning and orientation of the sensor during all flights. Pairing the aircraft's raw trajectory data with the stationary GPS base station data, this software yields Leica's IPAS TC ("Inertial Positioning \& Attitude Sensor - Tightly Coupled") smoothed best estimate of trajectory (an "SBET", in Leica's .sol file format) that is necessary for Leica's ALSPP post processing software to develop the resulting geo-referenced point cloud from the LiDAR missions. The point cloud is the mathematical three dimensional composite of all returns from all laser pulses as determined from the aerial mission. At this point this data is ready for analysis, classification, and filtering to generate a bare earth surface model in which the above-ground features are removed from the data set.

The point cloud was created using Leica's Post Processor
software. GeoCue was used in the creation of some of the files needed in downstream processing, as well as in the tiling of the dataset into more manageable file sizes. The TerraScan and TerraModeler software packages are then used for the automated data classification, manual cleanup, and bare earth generation from this data. Project specific macros were used to classify the ground and to remove the side overlap between parallel
flight lines. All data was manually reviewed and any remaining artifacts removed using functionality provided by TerraScan and TerraModeler. QT Modeler was used as a final check of the bare earth dataset. GeoCue was then used to create the deliverable industry-standard LAS files for both the All Point Cloud Data and the Bare Earth. In-house software was then used to perform final statistical analysis of the classes in the LAS files.

Process_Date: 2012
Process_Step:
Process_Description:
Point Cloud data is manually reviewed and any remaining artifacts are removed using functionality provided within the TerraScan and TerraModeler software packages.

Additional project specific macros are created and run within GeoCue/TerraScan to ensure correct LAS classification prior to project delivery.

Final Classified LAS tiles are created within GeoCue to confirm correct LAS versioning and header information. In-house software is then used to check LAS header information and final LAS classification prior to delivery. LAS Class 2 is used to check the independent QC points against the Triangulated LiDAR surface.

Merrimack Watershed Classified LiDAR ASPRS Classifications
1 Unclassified
2 Ground
7 Low Point (Noise)
8 Model Key-point (Mass Point)
9 Water
10 Ignored Ground
11 Withheld
17 USGS Overlap Default
18 USGS Overlap Ground
Process_Date: 2012
Process_Step:
Process_Description:
Process Steps:
1-Convert LAS to Multipoint
2-Create Terrain
3-Convert Terrain to 1m Raster
4-Split 1m Raster into 1749 imagine files
5-Contour
Convert LAS to multipoint:

1. Create file geodatabase and create a feature dataset to
store terrain information with appropriate projection and spatial domain.
2. Run LAS to multipoint tool in 3D analyst for the classified LAS files and select class 2 and 8.
3. Store results in file geodatabase feature dataset for terrain data.

Create Terrain

1. Create Terrain using multipoint as masspoints, hydro break lines as hard breakline and LiDAR coverage area as soft clip
2. Build Terrain and store in file geodatabase feature dataset for terrain data

Convert Terrain to 1 m Raster

1. Run the Terrain to raster tool in 3D analyst
2. Float output data type, Linear as the method, CELLSIZE 1
as sampling distance, and Pyramid Level Resolution 0
3. Save results as a Geotiff dataset.

Split 1m Raster into tiles

1. Load 1m raster into ERDAS Imagine Mosaic pro tool
2. Split raster using LiDAR index
3. Save results as 1 m imagine files

Create contours

1. Extract by mask from the $1 m$ DEM using a HUC12 area. Save this raster as HUC12 Name 1 m .
2. Focal Statistics using Extracted 1m DEM as input, Intermediate Focal Raster as Output, Neighborhood should be set to weighted kernel, and the statistic should be sum.
3. Create contours using focal stats raster as input, output polyline should be based on HUC12 name, Contour Interval of $2 f t$, Set base contour to DEM minimum z value
4. Check results and store in file geodatabase under the Analysis Contours feature dataset.
5. Focal Statistics using Extracted 1m DEM as input, Intermediate Focal Raster as Output, Neighborhood should be set to circle, and the statistic should be mean.
6. Create contours using focal stats raster as input, output polyline should be based on HUC12 name, Contour Interval of $2 f t$, Set base contour to DEM minimum z value
7. Check results and store in file geodatabase under the Cartographic Contours feature dataset.

Process_Date: 2012
Spatial_Reference_Information:
Horizontal_Coordiñate_System_Definition:
Planar:
Grid_Coordinate_System:
Grid_Coordinate_System_Name: Universal Transverse Mercator Universal_Transverse_Mercator:
UTM_Zone_Number: 19
Transverse_Mercator:
Scale_Fāctor_at_Central_Meridian: 0.999600
Longitude_of_Cē̄tral_Mē̄idian: -69.000000
Latitude_ō_̄Projectiōn_Origin: 0.000000
False_Easting: $500000 . \overline{0} 00000$
False_Northing: 0.000000
Planar_Coordinate_Information:
Planar_Coordinate_Encoding_Method: coordinate pair
Coordiñate_Represēntation:
Abscissa_Resolution: 0.000010
Ordinate_Resolution: 0.000010
Planar_Distance_Units: meters

```
Geodetic_Model:
    Horizontal Datum Name: North American Datum 1983
    Ellipsoid Name: -Geodetic Reference System 80
    Semi-major Axis: 6378137.00
    Denominator_of_Flattening_Ratio: 298.257222
            Vertical_Coordinate_System_Definition:
                Altitu\overline{de_System_Définitiōn:}
            Altitude_Datum_\overline{Name: North American Vertical Datum of 1988}
            Altitude_Resolution: 0.01
            Altitude_Distance_Units: feet
            Altitude_Encoding_Method: Attribute Values
    Entity_and_Attribute_Information:
        De\overline{tailēd_Description:}
            Entity_Type:
            Entity_Type_Label:
Terrain\2152674\SupplementalData\Merrimack_Ground_Control
            Entity_Type_Definition: Digital Document
            Entity_Type_Definition_Source: FEMA Guidelines and Specifications
for Flood Hazard Mapping Partners, Appendix M: Data Capture Standards and
Data Capture Guidelines (available at
http://www.fema.gov/fhm/dl_cgs.shtm)
    Detailed_Description:
        Entity_Type:
            Entīty Type Label:
Terrain\215267\overline{4}\Supp}lementalData\Merrimack_FVA_CVA
            Entity_Type_Definition: Digital Document
            Entity_Type_Definition_Source: FEMA Guidelines and Specifications
for Flood Hazard Mapping Partners, Appendix M: Data Capture Standards and
Data Capture Guidelines (available at
http://www.fema.gov/fhm/dl_cgs.shtm)
    Detailed_Description:
        Entity_Type:
            Entity_Type_Label:
Terrain\215267\overline{4}\Supp
            Entity_Type_Definition: Area Spatiāl File
            Entity_Type_Definition_Source: FEMA Guidelines and Specifications
for Flood Hazařd Mapping Partners, Appendix M: Data Capture Standards and
Data Capture Guidelines (available at
http://www.fema.gov/fhm/dl_cgs.shtm)
    Detailed_Description:
        Entity_Type:
            Entity_Type_Label:
Terrain\215267\overline{4}\SupplementalData\Merrimack_Tile_Index.shp
            Entity_Type_Definition: Area Spatiāl File
            Entity_Type_Definition_Source: FEMA Guidelines and Specifications
for Flood Hazar`d Mapping Partnērs, Appendix M: Data Capture Standards and
Data Capture Guidelines (available at
http://www.fema.gov/fhm/dl_cgs.shtm)
        Detailed_Description:
        Entity_Type:
            Entity_Type_Label: Terrain\2152674\SupplementalData\Merrimack
Pre-Flight Operations Plan.pdf
            Entity_Type_Definition: Digital Document
```

Entity_Type_Definition_Source: FEMA Guidelines and Specifications for Flood Hazard Mapping Partners, Appendix M: Data Capture Standards and Data Capture Guidelines (available at http://www.fema.gov/fhm/dl_cgs.shtm)

Detailed_Description:
Entity_Type:
Entity_Type_Label: Terrain\2152674\SupplementalData\Merrimack Post-Flight Report

Entity_Type_Definition: Digitial Document
Entity_Type_Definition_Source: FEMA Guidelines and Specifications for Flood Hazard Mapping Partners, Appendix M: Data Capture Standards and Data Capture Guidelines (available at http://www.fema.gov/fhm/dl_cgs.shtm)

Detailed_Description:
Entity_Type:
Entity_Type_Label:
Terrain\2152674\SupplementalData\Merrimack_TestingResults
Entity_Type_Definition: Digital Document
Entity_Type_Definition_Source: FEMA Guidelines and Specifications for Flood Hazard Mapping Partners, Appendix M: Data Capture Standards and Data Capture Guidelines (available at
http://www.fema.gov/fhm/dl_cgs.shtm)
Detailed_Description:
Entity_Type:
Entity Type_Label: Terrain\2152674\Source\Raw Point Cloud Data
Entity_Type_Definition: LAS 1.2 files
Entity_Type_Definition_Source: FEMA Guidelines and Specifications for Flood Hazard Mapping Partners, Appendix M: Data Capture Standards and Data Capture Guidelines (available at
http://www.fema.gov/fhm/dl_cgs.shtm)
Detailed_Description: Entity_Type:

Entity_Type_Label: Terrain\2152674\Source\Classified Point Cloud
Data
Entity_Type_Definition: LAS 1.2 files
Entity_Type_Definition_Source: FEMA Guidelines and Specifications for Flood Hazar̄d Mapping Partnēr, Appendix M: Data Capture Standards and Data Capture Guidelines (available at
http://www.fema.gov/fhm/dl_cgs.shtm)
Detailed_Description: Entity_Type:

Entity_Type_Label: Terrain\2152674\Source\Breaklines
Entity_Type_Definition: 3D polyline breakline shapefile
Entity_Type_Definition_Source: FEMA Guidelines and Specifications for Flood Hazard Mapping Partners, Appendix M: Data Capture Standards and Data Capture Guidelines (available at http://www.fema.gov/fhm/dl_cgs.shtm)

Detailed_Description: Entity_Type:

Entity_Type_Label: Terrain\2152674\Final\TIN
Entity_Type_Definition: ESRI Terrain Data
Entity_Type_Definition_Source: FEMA Guidelines and Specifications for Flood Hazar̄d Mapping Partnērs, Appendix M: Data Capture Standards and

```
Data Capture Guidelines (available at
http://www.fema.gov/fhm/dl_cgs.shtm)
    Detailed_Description:
        Entity_Type:
            Entity_Type_Label: Terrain\2152674\Final\Bare Earth DEM
            Entity_Type_Definition: Digital Elevation Models
            Entity_Type_Definition_Source: FEMA Guidelines and Specifications
for Flood Hazard Mapping Partners, Appendix M: Data Capture Standards and
Data Capture Guidelines (available at
http://www.fema.gov/fhm/dl_cgs.shtm)
    Detailed_Description:
        Entity_Type:
            Entity_Type_Label: Terrain\2152674\Final\Contours
            Entity_Type_Definition: ESRI File Geodatabase Feature Classes
            Entity_Type_Definition_Source: FEMA Guidelines and Specifications
for Flood Hazařd Mapping Partners, Appendix M: Data Capture Standards and
Data Capture Guidelines (available at
http://www.fema.gov/fhm/dl_cgs.shtm)
    Detailed_Description:
        Entity_Type:
            Entity_Type_Label:
Terrain\215267\overline{4}\\mathrm{ Supp}lementalData\Merrimack_HUC8_TSDN
            Entity_Type_Definition: Digital Document
            Entity_Type_Definition_Source: FEMA Guidelines and Specifications
for Flood Hazařd Ma\overline{pping Partnērs, Appendix M: Data Capture Standards and}
Data Capture Guidelines (available at
http://www.fema.gov/fhm/dl_cgs.shtm)
    Overview_Description:
        Entity_and_Attribute_Overview: The Terrain data package is made up
of several data themes containing primarily spatial information. These
data supplement the Elevation datasets by providing additional
information to aid flood risk evaluation and flood hazard area
delineations.
                Entity_and_Attribute_Detail_Citation: Appendix M of FEMA Guidelines
and Specificàtions for FEM\overline{A} Flood Hazard Mapping Partners contains a
detailed description of the data themes and references to other relevant
information.
Distribution_Information:
    Distributor:
        Contact_Information:
            Contact_Organization_Primary:
            Contact_Organization: Federal Emergency Management Agency
Engineering Library
        Contact_Address:
            Address_Type: mailing address
            Address: Bill Davis
            Address: 847 South Pickett Street
            City: Alexandria
            State_or_Province: Virginia
            Postal_Code: 22304
            Country: USA
        Contact_Voice_Telephone: 1-877-336-2627
        Contact_Electronic_Mail_Address: miphelp@riskmapcds.com
```

```
Distribution_Liability: No warranty expressed or implied is made by FEMA
regarding the utility of the data on any other system nor shall the act
of distribution constitute any such warranty.
    Standard Order Process:
        Digita\overline{l_Form:}
            Digital_Transfer_Information:
                Format Name: FEMA-DCS-Terrain
            Digital_Transfer_Option:
                Online_Option:
                        Computer_Contact_Information:
                    Network_Address:
                            Network_Resource_Name: http://hazards.fema.gov
        Fees: Contact Dis
Metadata Reference Information:
    Metadata_Date: 2\overline{0120914}
    Metadata_Contact:
        Contact_Information:
            Contact_Person_Primary:
                Contact_Person: FEMA Representative
                Contact_Organization: Federal Emergency Management Agency
            Contact_Address:
                    Address_Type: mailing address
                    Address: 500 C Street, S.W.
                    City: Washington
                    State_or_Province: District of Columbia
                    Postal_Code: 20472
                    Country: USA
            Contact_Voice_Telephone: 1-877-336-2627
            Contact_Electronic_Mail_Address: miphelp@mapmodteam.com
    Metadata_Standard_Name: FGDC Content Standards for Digital Geospatial
Metadata
    Metadata_Standard_Version: FGDC-STD-001-1998
Metadata_Extensions:
    Online_Linkage: http://hazards.fema.gov
    Online_Linkage: http://www.epsg.org
    Profil\overline{e_Name: FEMA NFIP Metadata Content and Format Standard}
```


Appendix C: Pre Flight Planning Report

Merrimack

Pre-Flight Operations Plan

November 2011

MERRIMACK PRE-FLIGHT Operations Plan

Planned Flight Lines

Photo Science has completed preliminary flight planning for the Merrimack project area. Merrimack is scheduled to be acquired this fall after the leaves are off in late fall and winter of 2011. The Merrimack area is approximately 1,243 square miles and initial planning details are depicted in Figure 1. This Figure details that 291 flight lines covering 4,077 flight line miles will be collected. This area warranted a "Highest" vertical accuracy requirement and will be collected with a nominal pulse spacing of 1-meter. Key components of this flight planning include:
\checkmark Generating a plan that takes all specifications into account, and the required Laser settings to meet those specs, review of terrain and water issues, along with potential base station locations at airports with sufficient services available to support the crews.
\checkmark Orientation of flight lines parallel to major terrain features and variation in flight line spacing due to terrain variation (steeper slopes generally require tighter line spacing between adjacent parallel lines to ensure point density and side overlap are maintained)
\checkmark Check Airspace issues and access issues for Base Stations.
\checkmark Safety considerations, both for flights, and Laser collection.
Acquisition of 1,243 sq. miles @ 1-meter nominal post spacing to meet 24.5 cm FVA, with the following deliverables: LAS point cloud delivery with metadata, pre-operations flight plan, and post flight aerial acquisition report.

Planned GPS Stations

Normally existing high accuracy monuments at airports are utilized if possible. Typically a Primary Airport Control Monument (or Secondary) is available; otherwise any other high accuracy monument can be used. We typically prefer these on the airport grounds as they can be monitored for security by airport staff. If no monument is available or an existing monument is damaged, we will set a monument with re-bar and use OPUS to control the monument. These are then used for initial field processing of the data.

Planned Control

Seventy three (73) ground control points will be surveyed to control the LiDAR data and to support a vertical test. Each of these two functions shall remain independent of each other and also be collected by an independent subcontractor (CompassData). Independent check or calibration points will be three times as accurate as the surface being checked. Therefore, in order to validate a 18.5 cm LiDAR surface (consistent with 2 foot contours), STARR will collect elevation control data accurate to 6 cm . This "three times" model for collecting ground control and QA points will be used throughout the task order.

Vertical accuracy checkpoints will be located by another independent STARR contractor (CompassData) to check Photo Science's work in open terrain, where there is a high probability that the sensor will have detected the ground surface without influence from surrounding vegetation. Checkpoints will be located on flat or uniformly sloping terrain and will be at least five (5) meters away from any break line where there is a change in slope. This criterion applies for all QA .

Blind vertical QA points for the Consolidated Accuracy Check (CVA) will also be collected by CompassData to check Photo Science's work randomly across different land use types using the ASPRS NSSDA land cover types. The points will be located in flat areas with no substantial elevation breaks within a 3-5 meter radius.

MERRIMACK PRE-FLIGHT OpERATIONS PLAN

The CVA assessment will incorporate a representative sample of the FVA assessment into the dataset to save on the total number of points collected. Figure 1 also includes the general location of the ground control points.

Planned Airport Locations

Photo Science will be utilizing five (5) airports for Merrimack for mobilization and demobilization and base station set-ups. As indicated in Figure 1 the airports will be: KAFN - Jaffrey; KBED - Bedford Lawrence; KASH - Nashua; KCON - Concord; KLCI - Laconia. All base stations used during flights will be at these Airports

Calibration Plans

Periodic detailed boresighting of the LiDAR sensor is performed at a boresight facility established in Lexington, Kentucky for both our LiDAR and imagery platforms. Over 95 high-accuracy control points are located within this facility. The area also has numerous pitched roofs that are necessary in boresighting LiDAR instruments. Local boresights are also carried out at individual project sites. Typically these are established at local airports and consist of opposing and cross flights conducted at multiple flight elevations. The boresight data is processed by our Lead LiDAR Specialist with the results for all boresight parameters applied to the project acquisition. Figure 2 outlines some of the basic principles that Photo Sciences conducts for LiDAR boresighting.

Calibration - all of our sensors are calibrated by flying lines at multiple altitudes and at varying directions over features on land, typically at the airport where the acquisition is staged. These lines are used to remove angular errors between the IMU and scanning mirror and to determine the precise positioning of the sensor in relationship with the phase center of the GPS antenna

Figure2

Sensor Calibration Boresighting

> + Photo Science routinely performs a Comprehensive Calibration process from our permanent boresighting location at the Capital City Airport in Frankfort, KY, as well as daily, local project specific boresighting locations.
> + Photo Science established GPS survey points for LiDAR ground truthing and reflective survey analysis.
> + Our calibration methodology adheres to the basic survey principle of "working for the whole of the parts" ensuring that residual values of the calibration are reduced, not multiplied.
> + Photo Science calibration process validates roll, pitch, heading, pitch at swath edge, and torsion. mounted on the fuselage of the aircraft.

Calibration of the Elevation Surface - the raw LiDAR surface is compared against ground points that are established for the calibration of the elevation surface. System biases are identified and removed during this calibration. An early statistical analysis takes place that provides an indication of the precision of the acquired data.

Additionally, each lift requires a cross flight over the lines collected during that flight. This also acts as a daily calibration and is used if any anomalies are discovered with processed data.

We have established a calibration site for the project near LCI Airport and BED and embedded within the area plans.

MERRIMACK PRE-FLIGHT Operations Plan

Figure 1-Merrimack Flight Lines, Ground Control, and Airport Locations

MERRIMACK PRE-FLIGHT Operations Plan

Quality Control Procedures for Flight Crew

Acquisition Crews

An experienced and knowledgeable acquisition crew is also critical to a successful LiDAR project. We will bring two capable crews to the project site with three more in reserve should any unexpected health issues or similar complications arise.

General Flight Mission Procedures

On a lift by lift basis the flight crew will check cloud conditions, atmospheric conditions (fog or probability of fog) and winds and turbulence. If any of those factors would make acquisition difficult they will wait a few hours and review again.

LiDAR crews can fly at night or during the day. Night flights can be smoother in some cases, but extra care must be used as it is easy to lose orientation with the ground if in very rural areas or over large expanses of water. Additionally, if there are fog probabilities then flights will not take place as fog will block the laser. It must be clear below the aircraft at all times.

The initial item is to set the base station properly over the monument, verify it is secure and running. Prior to setting the crew will have ascertained that it has storage space on the hard drives and full battery life. They will also verify that it is running with proper collection parameters. PDOP is also reviewed as collection will not take place during times of high PDOP.

The LiDAR system (controller hard drives and Laser) is connected to the flight management system and once the project plan is loaded the parameters for collection will load as well. The sensor operator will verify that everything loaded correctly before flight.

Once the LiDAR has been started the crew will taxi to the run up area and wait for the IMU, GPS and the rest of the system level out. They will collect data in a stationary position for about 5-10 minutes until the POS (position and orientation system) provides good level characteristics (Green Lights!).

After this they crew will take off and start collection data, avoiding hard steep turns (banks typically <20 degrees). Collection requires that speeds be maintained, sometimes quite slow depending on the accuracy requirements. Additionally altitudes must be watched closely.

During flights the sensor operator must monitor the laser to sure that temperatures are consistent and within guidelines, that pulsing is taking place correctly and returns are consistent and within guidelines while watching atmospheric conditions, speeds and monitoring the pilot.

MERRIMACK PRE-FLIGHT Operations Plan

Planned ScanSet (Laser Collection Parameters)

Parameters	15cm RMSE, 1m
Flying Height	$5,000-6,000$
Aircraft Ground Speed (knots)	$117-160$
Pulse Rate (KHz)	$70-120$
Scan Rate (Hz)	$31-63.3$
Full Field of View (degrees)	$34 / 35$
Multi-Pulse	Yes
Full Swath Width (meters)	$930-1153$
Swath Overlap (percentage)	30%
Max. Point Spacing Across Track (meters)	1.0
Max. Point Spacing Along Track (meters)	1.0
Across Track/Along Track Ratio	1.0
Average Point Density (M2)	1.25
Nadir Point Density (pts/m2)	1.25
Illuminated Foot Print Diameter (meters)	.42

Acquisition (1,243 sq. miles @ 1-meter nominal post spacing to meet 24.5 cm FVA, LAS point cloud delivery with metadata, pre-operations flight plan, and post flight aerial acquisition report)

Type of Aircraft

Five of our LiDAR sensors are currently flown in specially modified single-engine Cessna 206 platforms. This platform provides a very stable platform for LiDAR data acquisition, with the ability to easily achieve altitudes and speeds that are most common for LiDAR collection. Achieving an accurate, dense posting of LiDAR returns on the ground is most often associated with altitudes of 2,000 to 7,000 feet above the average terrain height at speeds ranging from 90 to 140 knots. These ranges are ideal for this single-engine platform. Additionally we utilize a Piper Navajo for specific projects.

Our platforms also have significant fuel capacity, which allows us considerable time over target for performing data collection. It is also a safe platform, which is important when flying over rugged terrain. The added bonus is this is a very economical platform to fly in terms of operational and maintenance costs. Moreover, that translates to competitive rates for LiDAR data acquisition.

Aircraft Name	Engine Configuration	ABGPS	Flight Management System	Ceiling Feet
Cessna U-206G (3)	Single	Yes	Yes	16,700
Cessna U-206H (2)	Single	Yes	Yes	15,700
Piper Navajo	Twin	Yes	Yes	20,000

MERRIMACK PRE-FLIGHT Operations Plan

Procedure for Tracking, Executing, and Checking Re-flights

All daily flights are tracked with specific logs for each area. These include general logs indicating the lines, date flown etc. as well as very specific mission logs concerning the lift, weather conditions, times, speeds and other criteria critical to the performance of the laser. The daily flight logs are faxed to the office on a daily basis and entered into an access database for tracking purposes. This helps determine where next to move crews and overall project status.

After flight each day, the GPS ground base station data is processed and verified and is then is run against the LiDAR POS data in both a forward and reverse sense. The two solutions are then compared against one another for all GPS epochs and the individual differences for the northing, easting, and elevation components are plotted for easy comparison. This data is then run against the LiDAR returns and a point cloud generated. Any anomalies in the data are quickly analyzed, and if required, re-flights take place for the portions of the flight missions that require remediation.

Once the data is checked it is archived, backed up and a set sent to the office via overnight delivery, while the backup copy remains with the crew.

The flight crews do not leave the area of collection until all data has been verified and shipped.

Considerations for Terrain, Cover, and Weather

Terrain is not an issue for flight planning on this project. The area is relatively flat. Cover has been considered and collection is scheduled for the Fall and Winter of 2011 during leaf-off conditions. Traditional LiDAR weather conditions will be observed for this area.

Appendix D: Ground Control Survey and Vertical Testing Quality Control

FEMA Region 1 Merrimack, NH Ground Control Project Report for Photo Science.

May 17, 2012

Project Information

CDI Project Number: Geographic Location:
Number of FVAs/CVAs Requested:
FSG1619
Merrimack, NH
Number of FVAs/CVAs Collected:
80

Project Specifications

Precision (Horizontal/Vertical):
Coordinate System:
Datum:
Zone:
Altitude Reference:
Units:

CDI Precision-1 $\leq 8 \mathrm{~cm} \mathrm{H/V}$ UTM
NAD83
18
NAVD88 (Geoid09)
Meters

RTK GPS

All Ground Control Points for this project were collected with survey-grade GPS equipment and a survey-grade total station. Collected Survey-Control Points were processed in real-time with a Trimble VRS network.

All Control Points were observed for 180 epochs to determine a coordinate location $\leq 8 \mathrm{~cm}$ in both Horizontal and Vertical to support subsequent LiDAR post-processing and bare earth deliverables generation.

CompassData

Summary

The purpose of this project was to locate and survey ground control points (GCPs) in multiple areas of interest as defined by FEMA-supplied shape and kml files. The GCP coordinates are to be used to control the vertical aspect of all newlyflown LiDAR data during post-processing and subsequent deliverables creation. CompassData visited the project area, found suitable GCPs, and determined accurate coordinates for each GCP according to the customer's specifications.

Equipment

CompassData used a Trimble R6 to perform the Control survey. This device is accurate to within 1 cm on a position-by-position basis per Trimble specifications. Operating within the VRS network provided accurate coordinate values at or around $8 \mathrm{~cm} \mathrm{H} / \mathrm{V}$. CompassData has consistently demonstrated this level of accuracy on many GCP collection jobs across North and South America and Africa. Specifications for the Trimble R6 are available upon request.

Survey Methodology

CompassData has met the required precision for this project by using a highquality GPS receiver with differential corrections provided by a VRS network surrounding the project area. The GPS antenna sat atop a bubble-leveled, fixedheight range pole that was placed over the center of the desired GCP. At least 180 positions (captured at a rate of one per second) were geometrically averaged to calculate a single coordinate for each GCP. All required field documentation was filled out and the points were identified on web-based imagery. Digital pictures of each GCP location were collected in the field.

Quality Control Procedures

CompassData collects GCPs with an unobstructed view of the sky to ensure proper GPS operation. CompassData works to avoid potential sources of multipath error such as trees, buildings, and fences that may adversely affect the GPS accuracy. Additional quality control comes from the fact that at least 180 GPS positions are collected for each GCP. While operating within a VRS, valid solutions are reached

CompassData

within seconds; however, we continue to collect additional data to ensure meeting collection specifications. To ensure project integrity, a GCP will be reobserved or moved to a more suitable location if it does not meet project specifications.

In addition to the aforementioned procedures, CompassData "surveys" existing geodetic control monuments to see if our coordinates match the published coordinates to the required accuracy. These monuments are usually established by the National Geodetic Survey (NGS) in the United States. If it is found that our coordinates are outside the acceptable accuracy, the reason for the difference will be found or the GCPs will be reobserved under different GPS constellation constraints. There are certain geodetic considerations that must be taken into account that affect whether a GPS-derived coordinate will line up with a survey monument, especially when these monuments reference local coordinate systems or the systems of another country. Sometimes the published coordinates for a monument are not accurate, although this is very infrequent.

CompassData visited multiple survey monuments during the course of this project. The results of those monument measurements are summarized in the Accuracy Report.

Deliverables

Deliverables for this project include:

- Coordinates (in spreadsheet format)
- Image Chips
- Sketch Sheets
- Digital Pictures
- QA/QC Data

Project Notes

All collected points were retrieved from the Trimble Survey Controller in Decimal Degrees, NAD83, HAE Meters.

CorpsCon was used to generate files in the following format:
Degrees Minutes Decimal Seconds, NAD83 HAE (QC purposes)
UTM Meters, NAD83 HAE
Geoid09 was then used to generate the geoid separation at every Lat/Long location. NAVD88(09) orthometric heights were then generated in spreadsheet form using the formula HAE - Geoid = Orthometric Height. Those values were then included into the final delivery coordinate CSV files and have been tested against NGS monuments collected during the course of this survey and are showing millimeterlevel agreement.

The Horizontal and Vertical accuracies reported in the Final Coordinates file were obtained from the Survey Report generated by Trimble Survey Controller. The report contains all points collected during each daily survey deployment, including CVAs, FVAs and Ground Control. Copies of these reports can be provided upon request once the CVA and FVA data has been redacted.

Contact Information

Hayden Howard Phone: (303) 627-4058 E-mail: haydenh@compassdatainc.com

CompassData

Region 1: Test results for Merrimack, NH

Summary

In FEMA-Region 1 the Merrimack area is split up in multiple parts. This test encompasses total about 1800 square miles. A LiDAR data acquisition was ordered for a 2' equivalent contour accuracy, which equals the highest specification level. The area was flown and post-processed by Photo Science. CompassData performed the quality control of the collected and processed LiDAR data with a fundamental vertical accuracy (FVA) and a consolidated vertical accuracy (CVA) assessment, respectively. The planning, data collection, data processing, and data testing were successfully accomplished by the STARR members.

Index

- Final Test Results
- FVA Test
- CVA Test
- Distribution of Testing Points
- FVA Test Details
- CVA Test Details

Final Test Results

The vertical accuracy requirements based on flood risk and terrain slope are met with 14.0 cm and 24.3 cm for both FVA and CVA testing. The mandatory requirements for the highest specification for vertical accuracy, 95% confidence levels are for FVA < 24.5 cm and CVA < $\mathbf{3 6 . 3} \mathbf{~ c m}$.

FVA Test

Tested 14.0 cm fundamental vertical accuracy at 95\% confidence level in open terrain using $\operatorname{RMSE}_{(z)} \times 1.9600$. The Root Mean Square Error for the elevation differences between GPS control points and LiDAR points is 7.1 cm calculated with 20 FVA points.

CVA Test

Tested 24.3 cm consolidated vertical accuracy at 95th percentile in: open terrain, forest terrain, and urban terrain. The Root Mean Square Error for the elevation differences between GPS control points and LiDAR points is 11.4 cm calculated with 76 supplemental vertical accuracy points (SVA).

CompassData

Distribution of Testing Points

Region 10, Merrimack, NH

Legend:

- FVA points in open terrain on hard surface
- SVA points in grass terrain
(O) SVA points in urban terrain
- SVA points in forest terrain

According to the area to be tested the 20 FVA points are evenly distributed. Additional 76 SVA points are distributed in respect to the available major land classes.

CompassData

FVA Test Details

FVA	Northing	Easting	MSL (GPS)	MSL (LiDAR)	$\boldsymbol{\Delta} \mathbf{Z}$	$\boldsymbol{\Delta} \mathbf{Z}^{\mathbf{2}}$
MER301	4709363.03	804854.11	48.68	48.67	$\mathbf{0 . 0 1}$	0.00
MER302	4715954.19	786017.51	67.48	67.43	$\mathbf{0 . 0 5}$	0.00
MER303	4728027.19	789194.39	103.66	103.64	$\mathbf{0 . 0 2}$	0.00
MER304	4738101.26	804913.66	99.78	99.68	$\mathbf{0 . 1 0}$	0.01
MER305	4743750.09	792649.25	97.08	97.05	$\mathbf{0 . 0 3}$	0.00
MER306	4746713.87	775836.97	76.02	75.97	$\mathbf{0 . 0 5}$	0.00
MER307	4731315.64	757697.14	319.91	319.93	$\mathbf{- 0 . 0 2}$	0.00
MER308	4750305.98	758400.83	290.05	290.06	$\mathbf{- 0 . 0 1}$	0.00
MER309	4759303.49	776331.42	232.86	232.85	$\mathbf{0 . 0 1}$	0.00
MER310	4763513.97	791030.81	99.14	99.11	$\mathbf{0 . 0 3}$	0.00
MER311	4766900.62	768279.74	144.31	144.24	$\mathbf{0 . 0 7}$	0.01
MER312	4776754.78	759600.69	270.04	270.19	$\mathbf{- 0 . 1 5}$	0.02
MER313	4778539.62	778294.85	230.53	230.61	$\mathbf{- 0 . 0 8}$	0.01
MER314	4786630.45	795214.15	152.86	152.81	$\mathbf{0 . 0 5}$	0.00
MER315	4792471.94	785625.52	115.49	115.52	$\mathbf{- 0 . 0 3}$	0.00
MER316	4799588.65	795219.49	137.17	137.30	$\mathbf{- 0 . 1 3}$	0.02
MER317	4803685.26	772198.04	114.12	114.29	$\mathbf{- 0 . 1 8}$	0.03
MER318	4806835.00	784332.58	231.80	231.80	$\mathbf{- 0 . 0 1}$	0.00
MER319	4806890.72	810329.60	278.97	278.98	$\mathbf{- 0 . 0 2}$	0.00
MER320	4816440.44	795088.72	259.28	259.27	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 0}$

Metadata

UTM 18 North, NAD83, NAVD88

ΔZ Mean	0.05		
ΔZ Min	-0.18	RMSE:	0.07
ΔZ Max	0.10	$* 1.96$	0.14

All units in meters where applicable.
HAE - GEOID09 = NAVD88

Note:
All 20 of the FVA points (open terrain) passed. 100\% of the points are within the 24.5 cm confidence level. The FVA test is passed.

CompassData

CVA Test Details

CVA	Ground Cover	Latitude(GPS)	Longitude(GPS)	Northing(GPS)	Easting(GPS)	$\begin{gathered} \text { MSL } \\ \text { (GPS) } \\ \hline \end{gathered}$	MSL (LiDAR)	$\Delta \mathrm{Z}$	$\Delta \mathrm{Z}^{2}$
MER401	Grass	42.5009187	-71.2575761	4712185.30	807515.35	40.88	40.87	0.01	0.00
MER402	Grass	42.5451516	-71.4823467	4716305.96	788839.72	66.54	66.57	-0.03	0.00
MER404	Grass	42.7314685	-71.3254064	4737546.06	800827.65	45.70	45.61	0.09	0.01
MER405	Grass	42.9131464	-71.3938522	4757481.59	794359.23	83.39	83.50	-0.11	0.01
MER406	Grass	42.8590379	-71.8151776	4750082.87	760192.46	262.32	262.47	-0.15	0.02
MER407	Grass	42.9135747	-71.7703816	4756279.19	763619.88	239.30	239.39	-0.09	0.01
MER408	Grass	42.9635076	-71.5463015	4762552.07	781684.16	123.34	123.37	-0.03	0.00
MER409	Grass	43.0212053	-71.4707368	4769216.47	787578.28	74.06	74.27	-0.21	0.05
MER410	Grass	43.0838659	-71.5560008	4775886.91	780344.13	182.00	182.27	-0.27	0.08
MER411	Grass	43.0591880	-71.6514587	4772831.10	772682.69	95.19	95.42	-0.23	0.05
MER412	Grass	43.1623687	-71.5986960	4784463.73	776514.20	109.49	109.57	-0.08	0.01
MER413	Grass	43.0742793	-71.8444991	4773897.28	756898.56	336.68	336.75	-0.07	0.00
MER414	Grass	43.1493296	-71.3589959	4783835.86	796065.67	126.09	126.15	-0.06	0.00
MER415	Grass	43.2129379	-71.3767813	4790837.80	794313.21	105.66	105.80	-0.14	0.02
MER416	Grass	43.2598996	-71.5905160	4795323.06	776737.39	111.02	111.18	-0.16	0.03
MER417	Grass	43.2947334	-71.2047443	4800543.07	807876.03	258.35	258.43	-0.08	0.01
MER418	Grass	43.3846904	-71.2416452	4810398.98	804431.86	202.65	202.75	-0.10	0.01
MER419	Grass	43.4007585	-71.4359930	4811491.66	788611.87	259.44	259.44	0.00	0.00
MER420	Grass	43.3808707	-71.7103303	4808368.68	766481.92	236.74	236.83	-0.09	0.01
MER421	Open	42.8419700	-71.7073511	4748526.42	769076.51	85.35	85.34	0.01	0.00
MER421A	Grass	42.6913114	-71.8526355	4731340.49	757827.60	319.95	319.95	0.00	0.00
MER701	Forest	42.4738968	-71.2044003	4709378.74	812019.84	48.03	48.07	-0.04	0.00
MER702	Forest	42.5436292	-71.4830508	4716134.49	788788.93	65.66	65.75	-0.09	0.01
MER702B	Forest	42.5434722	-71.4833558	4716116.01	788764.60	65.77	65.85	-0.08	0.01
MER703	Forest	42.6643038	-71.4182206	4729759.78	793545.07	72.61	72.66	-0.05	0.00
MER703B	Forest	42.6641537	-71.4184512	4729742.31	793526.88	72.87	72.98	-0.11	0.01
MER704	Forest	42.8967729	-71.5919642	4754988.25	778260.22	73.97	74.03	-0.06	0.00
MER704A	Forest	42.8971136	-71.5920771	4755025.71	778249.47	75.12	75.22	-0.10	0.01
MER705	Forest	42.6913573	-71.8549871	4731338.41	757634.76	319.76	319.80	-0.04	0.00
MER706	Forest	42.9828373	-71.8111437	4763844.44	760000.39	246.94	246.98	-0.04	0.00
MER706A	Forest	42.9827733	-71.8115768	4763835.99	759965.35	246.71	246.86	-0.15	0.02
MER707	Forest	43.0250367	-71.6101534	4769173.38	776199.93	96.38	96.39	-0.01	0.00
MER707A	Forest	43.0256583	-71.6102819	4769241.99	776186.67	98.29	98.39	-0.10	0.01
MER708	Forest	43.0701843	-71.3815800	4774965.89	794608.99	139.39	139.58	-0.19	0.03
MER708A	Forest	43.0699884	-71.3813728	4774944.86	794626.80	138.87	139.10	-0.23	0.05
MER709	Forest	43.0607772	-71.7596171	4772661.43	763867.52	201.96	202.25	-0.29	0.08
MER709A	Forest	43.0612822	-71.7597434	4772717.11	763855.07	203.23	203.50	-0.28	0.08
MER710	Forest	43.1751872	-71.4858631	4786266.59	785628.04	101.26	101.27	-0.01	0.00
MER711	Forest	43.2242581	-71.3102046	4792331.76	799666.16	132.99	133.03	-0.04	0.00
MER711A	Forest	43.2244650	-71.3100698	4792355.22	799676.10	134.18	134.28	-0.10	0.01
MER712	Forest	43.2968043	-71.5833413	4799445.71	777152.02	96.45	96.73	-0.28	0.08

CompassData

MER712A	Forest	43.2967189	-71.5826486	4799438.52	777208.60	98.99	99.18	-0.20	0.04
MER713	Forest	43.3452379	-71.5998571	4804770.33	775592.92	170.16	170.30	-0.14	0.02
MER713A	Forest	43.3451176	-71.5990326	4804759.69	775660.30	164.16	164.29	-0.13	0.02
MER714	Forest	43.3093666	-71.1898322	4802223.50	809011.59	221.11	221.11	0.00	0.00
MER715	Forest	43.3192055	-71.3754481	4802645.34	793909.09	167.65	167.68	-0.03	0.00
MER714A	Forest	43.3098886	-71.1898890	4802281.27	809004.33	220.12	220.17	-0.05	0.00
MER716A	Forest	43.4230028	-71.3312173	4814330.80	796988.34	235.95	236.03	-0.08	0.01
MER717	Forest	43.4319642	-71.2845305	4815493.79	800723.50	302.08	302.18	-0.10	0.01
MER718	Forest	43.2910495	-71.3605751	4799570.63	795251.64	134.11	134.34	-0.23	0.05
MER719	Forest	43.4208677	-71.6633590	4812962.32	770109.16	125.04	125.00	0.04	0.00
MER719A	Forest	43.4208794	-71.6628789	4812965.17	770147.97	124.01	123.96	0.05	0.00
MER720	Forest	43.2010657	-71.6116810	4788718.75	775284.36	127.18	127.20	-0.03	0.00
MER720A	Forest	43.2017458	-71.6117768	4788793.97	775273.51	134.39	134.43	-0.05	0.00
MER721	Forest	43.4192990	-71.3137957	4813981.73	798416.95	233.99	234.07	-0.08	0.01
MER801	Urban	42.4463049	-71.2278332	4706228.36	810229.67	65.77	65.67	0.10	0.01
MER802	Urban	42.7404381	-71.4933904	4737956.59	787032.48	56.00	56.00	0.00	0.00
MER802A	Urban	42.7404381	-71.4933906	4737956.59	787032.47	56.00	56.00	0.00	0.00
MER803	Urban	42.7112348	-71.4409064	4734893.29	791465.86	47.48	47.45	0.02	0.00
MER804	Urban	42.9626519	-71.4450154	4762801.85	789949.85	74.90	74.86	0.03	0.00
MER805	Urban	42.9964867	-71.4548439	4766525.75	788989.43	78.48	78.42	0.06	0.00
MER806	Urban	43.1315607	-71.4525341	4781535.59	788542.70	90.82	90.80	0.02	0.00
MER807	Urban	43.0972436	-71.4656394	4777679.07	787637.54	67.22	67.29	-0.07	0.01
MER808	Urban	43.2013206	-71.5360638	4788998.86	781427.18	87.22	87.23	-0.01	0.00
MER809	Urban	43.2181192	-71.5029436	4790976.65	784040.18	106.86	106.88	-0.02	0.00
MER810	Urban	43.3396343	-71.2591111	4805330.94	803241.64	157.03	157.10	-0.07	0.00
MER811	Urban	43.3064586	-71.3256409	4801406.31	798010.56	150.93	151.00	-0.07	0.01
MER812	Urban	43.2849323	-71.4666445	4798521.37	786674.76	117.55	117.66	-0.11	0.01
MER813	Urban	43.3217844	-71.6296416	4802067.41	773283.90	101.28	101.40	-0.12	0.01
MER814	Urban	43.4222284	-71.6607434	4813121.94	770314.84	124.82	124.88	-0.06	0.00
MER815	Urban	43.0953633	-71.7299193	4776596.55	766136.12	195.33	195.46	-0.13	0.02
MER816	Open	42.9761127	-71.6916166	4763474.76	769776.12	126.89	126.83	0.06	0.00
MER817	Open	42.8195464	-71.8514537	4745585.48	757392.60	315.22	315.25	-0.03	0.00
MER818	Urban	42.7673358	-71.8119721	4739908.54	760839.88	250.33	250.41	-0.08	0.01
MER819	Open	42.8622513	-71.6244756	4751047.16	775759.36	79.72	79.67	0.05	0.00
MER820	Urban	42.8116651	-71.5832443	4745565.04	779356.07	69.02	68.99	0.03	0.00

ΔZ Mean	0.09	RMSE:	0.114
ΔZ Min	-0.29	$* 1.96$	0.223
ΔZ Max	0.10	Percentile	0.243

Note:
76 out of 76 of the SVA points (open, forest, and grass terrain) passed below the 36.3 cm criteria. The CVA test is passed.

Appendix E: Post Flight Reports

Merrimack

Post-Flight Aerial Acquisition

Report

June 2012

Contents

1. Overview 3
1.1 Consultant contact information 3
1.2 Project information 3
2. Project Planning 4
2.1 Flight and sensor parameters 4
2.2 Base Station Information 5
3. Acquisition. 11
3.1 Flight information 11
3.2 Time Period 17
4. Processing Summary 23
4.1 Processing Summary 23
4.2 Flight Line Data Overview 23
5. Accuracy Assessment 25
Tables
2.1 LiDAR System Specifications 5
3.1 Flight Summary 12
3.2 Flight Mission Summary Error! Bookmark not defined.
5.1 Accuracy Assessment Summary Error! Bookmark not defined.
5.2 Vertical Accuracy Statistics Error! Bookmark not defined.
Figures
6.
7. Overview 4
1.1 Consultant contact information. 4
1.2 Project information 4
8. Project Planning 5
2.1 Flight and sensor parameters 5
2.2 Base Station Information 6
Figure 2.1: KAFN Base Station 7
LCI NGS Data Sheet 8
CON NGS Data Sheet 9
ASH NGS Data Sheet 10
BED NGS Data Sheet 11
9. Acquisition 12
3.1 Flight information 12
3.2 Time Period 18
10. Processing Summary 24
4.1 Processing Summary 24
4.2 Flight Line Data Overview 24
11. Accuracy Assessment 26
2.5
12. Overview 4
1.1 Consultant contact information 4
1.2 Project information 4
13. Project Planning 5
2.1 Flight and sensor parameters 5
2.2 Base Station Information 6
Figure 2.1: KAFN Base Station 7
LCI NGS Data Sheet 8
CON NGS Data Sheet 9
ASH NGS Data Sheet 10
BED NGS Data Sheet 11
14. Acquisition 12
3.1 Flight information 12
3.2 Time Period 18
15. Processing Summary 24
4.1 Processing Summary 24
4.2 Flight Line Data Overview 24
16. Accuracy Assessment 26
3.5
17. Overview 5
1.1 Consultant contact information 5
1.2 Project information 5
18. Project Planning 6
2.1 Flight and sensor parameters 6
2.2 Base Station Information 7
Figure 2.1: KAFN Base Station 8
LCI NGS Data Sheet 9
CON NGS Data Sheet 10
ASH NGS Data Sheet 11
BED NGS Data Sheet 12
19. Acquisition 13
3.1 Flight information 13
3.2 Time Period 19
20. Processing Summary 25
4.1 Processing Summary 25
4.2 Flight Line Data Overview 25
21. Accuracy Assessment 27

1. Overview

1.1 Consultant contact information

GMR Aerial Surveys, Inc. DBA Photo Science
2670 Wilhite Drive
Lexington, KY 40503
(859) 277-8700

Contact: Clay Smith, CP
Email: csmith@photoscience.com
Project Number: 7556-008

1.2 Project information

The purpose of this project is to provide professional surveying and mapping services for the creation of a high-resolution digital elevation model developed from LIDAR data for the Merrimack MA and NH area of interest (AOI). The project area is shown in Figure 1.1.

Figure 1.1: Merrimack Project Area

2. Project Planning

2.1 Flight and sensor parameters

Detailed project planning was performed for this project. This planning was based on project specific requirements and the characteristics of the project site. The basis of this planning included the required accuracies, type of development, amount and type of vegetation within the project area, the required data posting, and potential altitude restrictions for flights in the general area. A brief summary of the aerial acquisition parameters for this project are shown in the LiDAR System Specification (Table 2.1) below:

Terrain and Aircraft	
Flying Height AGL	$1859+/-\mathrm{m}, 6,100+/-$ feet
Recommended Ground Speed (GS)	160 kts
Scanner	
Field of View (FOV)	$35.0 ;$ degrees
Maximum Scan Rate	52.7 Hz
Scan Rate Setting used (SR)	52.7 Hz
Laser	
Maximum Laser Pulse Rate	$125,000 \mathrm{~Hz}$
Laser Pulse Rate used	$120,000 \mathrm{~Hz}$
Multi Pulse in Air Mode	Enabled
Gain Values (Up/Down)	$12 ; 3$
Range Intensity mode)	5
Nominal Maximum Slant Range	$2,288.69 \mathrm{~m}$
Recommended Range Gate MIN Setting	1441 m
Recommended Range Gate MAX Setting	1968 m
Equivalent Attenuator Used	0.08 OD
Recommended Laser Current	63%
Coverage	
Full Swath Width	$0.24-0.27 \mathrm{~m}$
Maximum Line Spacing (No DTM)	$0.24-0.26 \mathrm{~m}$
Point Spacing and Density	$0.11-0.14 \mathrm{~m}$
Maximum Point Spacing Across Track	$1153.36 \mathrm{~m}, 4,820.59$ feet
Maximum Point Spacing Along Track	1.57 m
Across Track/Along Track Ratio	1.57 m
Average Point Density	1.00
Average Point Area	$1.26 \mathrm{pts} / \mathrm{m}^{2}$
Average Point Spacing	0.79 m
Estimated Along Track Accuracy	0.89 m
Nadir Point Density	$0.82 \mathrm{pts} / \mathrm{m}^{2}$
Reflectivity and SNR	0.42 m
Illuminated Footprint Diameter	18.00
Average SNR	
Reflectivity and SNR	18.00
Illuminated Footprint Diameter	m
Average SNR	

Table 2.1: LiDAR System Specifications

2.2 Base Station Information

A GPS base station was utilized at predetermined locations during all phases of flight for each block. Typically existing monuments are utilized when available, but on occasion a monument consisting of a steel pin will be set. OPUS solutions are utilized to determine the exact location of the monument if set, or verify the location if existing.

For this project five base stations were utilized. The data sheet and image of the location for each base station is included in this report on pages 7-11.

Merrimack Watershed LiDAR Post-Flight Aerial Acquisition and Calibration Report

KAFN Primary Base Station

DATABASE $=$ NGSIDB , PROGRAM = datasheet95, VERSION $=7.87 .4 .2$
1 National Geodetic Survey, Retrieval Date = OCTOBER 30, 2011
AH8857
AH8857 PACS - This is a Primary Airport Control Station.
AH8857 DESIGNATION - AFN A
AH8857 PID - AH8857
AH8857 STATE/COUNTY- NH/CHESHIRE
AH8857 USGS QUAD -
AH8857
AH8857 *CURRENT SURVEY CONTROL
AH8857
AH8857* NAD 83(2007)-42 $4824.05940(\mathrm{~N}) 0720005.05892(W)$ ADJUSTED
AH8857* NAVD 88 - 308.04 (meters) 1010.6 (feet) GPS OBS
AH8857
AH8857 EPOCH DATE - 2002.00
AH8857 X - 1,448,185.034 (meters) COMP
AH8857 Y - $-4,457,427.222$ (meters) COMP
AH8857 Z - 4,311,961.336 (meters) COMP
AH8857 LAPLACE CORR- 0.29 (seconds) DEFLEC09
AH8857 ELLIP HEIGHT- 280.506 (meters) (02/10/07) ADJUSTED
AH8857 GEOID HEIGHT- -27.54 (meters) GEOID09
AH8857
AH8857 ------- Accuracy Estimates (at 95\% Confidence Level in cm) --------
AH8857 Type PID Designation North East Ellip
AH8857 \qquad
AH8857 NETWORK AH8857 AFN A 0.650 .57 3.08
AH8857
AH8857
AH8857.This mark is at Jaffery Mun-Silver Ranch Airport (AFN)
AH8857
AH8857.The horizontal coordinates were established by GPS observations AH8857. and adjusted by the National Geodetic Survey in February 2007. AH8857
AH8857.The datum tag of NAD $83(2007)$ is equivalent to NAD 83 (NSRS2007).

Figure 2.1: KAFN Base Station

Merrimack Watershed LiDAR Post-Flight Aerial Acquisition and Calibration Report

Figure 2.2: LCS Base Station

CON NGS Data Sheet

```
1 National Geodetic Survey, Retrieval Date = JUNE 21, 2012
AH8877
```



```
AH8877
AH8877 FGDC Geospatial Positioning Accuracy Standards (95% confidence, cm)
AH8877 Type Horiz Ellip Dist(km)
AH8877 -------------------------------------------------------------------------
AH8877
AH8877
AH8877 MEDIAN LOCAL ACCURACY AND DIST (007 points) 0.65 2.82 41.69
AH8877 ------------------------------------------------------------------------
AH8877 NOTE: Click here for information on individual local accuracy
AH8877 values and other accuracy information.
AH8877
AH8877.This mark is at Concord Airport (CON)
AH8877
```


Figure 2.3: CON Base Station

Merrimack Watershed LiDAR Post-Flight Aerial Acquisition and Calibration Report

ASH NGS Data Sheet

AB5425
AB5425 FGDC Geospatial Positioning Accuracy Standards (95\% confidence, cm) AB5425 Type Horiz Ellip Dist(km)

AB5425 NETWORK 1.09 2.67

AB5425
AB5 425
AB5425 NOTE: Click here for information on individual local accuracy AB5425 values and other accuracy information.
AB5425
AB5425.This mark is at Boire Field Airport (ASH)
AB5425

Figure 2.4: ASH Base Station

Merrimack Watershed LiDAR Post-Flight Aerial Acquisition and Calibration Report

BED NGS Data Sheet

AI5560
AI5560 FGDC Geospatial Positioning Accuracy Standards (95\% confidence, cm) AI5560 Type Horiz Ellip Dist(km)
AI5560 AI5560
AI5560 AI5560 MEDIAN LOCAL ACCURACY AND DIST (002 points) $0.50 \quad 0.22 \quad 0.97$ AI5560 AI5560 NOTE: Click here for information on individual local accuracy AI5560 values and other accuracy information. AI5560
AI5560.This mark is at Laurence G Hanscom Fld Airport (BED) AI5560

Figure 2.5: BED Base Station
Page 12 of 30

3. Acquisition

3.1 Flight information

All flights for the project were accomplished with a customized twin-engine Piper PA-31 Navajo fixed wing arcraft utilizing a Leica ALS60 LiDAR sensor, and a Cessna 206 single engine aircraft outfitted with an Optech Gemini LiDAR sensor. These aircraft provide an ideal, stable aerial base for LiDAR acquisition. Both platforms have relatively fast cruise speeds that are beneficial for project mobilization/demobilization while maintaining relatively slow stall speeds which can prove ideal for collection of a high-density, consistent data posting.

The project covered $1,244.91$ square miles and required five (5) blocks (block or area is determined by the Base Station control locations, typically airports with ground control monuments available providing coverage within 18 miles of the base as possible) to cover in its entirety. This resulted in 268 flight lines totaling 2844.6 flight line miles which were captured over 19 separate lifts. Each of the five blocks are shown on Figures 3.1-3.5. A summary of the flight operations is provided in Table 3.1. Flight logs are found in Appendix A.

Area	Flight Lines	Number of Lifts	Dates flown	System	
CON	79	7	$12 / 29$ through $12 / 19 / 2011$	ALS60	
ASH	64	5	$1 / 7 / 2012$ through $1 / 11 / 2012$	ALS60	
BED	31	1	$1 / 11 / 2012$	ALS60	
LCI	34	2	$11 / 12 / 2011$ and $11 / 13 / 2011$	ALS60	
AFN	48	4	$11 / 12 / 2011$ and $11 / 13 / 2011$	Optech	
Cross flights	12	Lifts were combined with the acquisition of each area with both sensors			

Table 3.1: Flight Summary

Figure 3.1: BED Block Area

Figure 3.2 ASH Block Area

Figure 3.3 AFN Sub Area

Figure 3.4: CON Block Area

Figure 3.5: LSI Block Area

Merrimack Watershed LiDAR Post-Flight Aerial Acquisition and Calibration Report

3.2 Time Period

Missions were flown from November $11^{\text {th }} 2011$ through January $12^{\text {th }} 2012$ and totaled nineteen (19) sorties by two aircraft as outlined in Table 3.2.

Table 3.2: Flight Mission Summary

Area_ID	FL_NUM	Date_Flown	System_used	SN	AC	Lift_File_Name
ASH	1	09-Jan-12	Leica	6156	N262AS	120109A-6156
ASH	2	09-Jan-12	Leica	6156	N262AS	120109A-6156
ASH	3	09-Jan-12	Leica	6156	N262AS	120109A-6156
ASH	4	09-Jan-12	Leica	6156	N262AS	120109A-6156
ASH	5	09-Jan-12	Leica	6156	N262AS	120109A-6156
ASH	6	09-Jan-12	Leica	6156	N262AS	120109A-6156
ASH	7	09-Jan-12	Leica	6156	N262AS	120109B-6156
ASH	8	09-Jan-12	Leica	6156	N262AS	120109B-6156
ASH	9	09-Jan-12	Leica	6156	N262AS	120109B-6156
ASH	10	09-Jan-12	Leica	6156	N262AS	120109B-6156
ASH	11	09-Jan-12	Leica	6156	N262AS	120109B-6156
ASH	12	09-Jan-12	Leica	6156	N262AS	120109B-6156
ASH	13	09-Jan-12	Leica	6156	N262AS	120109B-6156
ASH	14	09-Jan-12	Leica	6156	N262AS	120109B-6156
ASH	15	09-Jan-12	Leica	6156	N262AS	120109B-6156
ASH	16	07-Jan-12	Leica	6156	N262AS	120107A-6156
ASH	17	07-Jan-12	Leica	6156	N262AS	120107A-6156
ASH	18	07-Jan-12	Leica	6156	N262AS	120107A-6156
ASH	19	07-Jan-12	Leica	6156	N262AS	120107A-6156
ASH	20	07-Jan-12	Leica	6156	N262AS	120107A-6156
ASH	21	07-Jan-12	Leica	6156	N262AS	120107A-6156
ASH	22	07-Jan-12	Leica	6156	N262AS	120107A-6156
ASH	23	07-Jan-12	Leica	6156	N262AS	120107A-6156
ASH	24	07-Jan-12	Leica	6156	N262AS	120107A-6156
ASH	25	07-Jan-12	Leica	6156	N262AS	120107A-6156
ASH	26	07-Jan-12	Leica	6156	N262AS	120107A-6156
ASH	27	07-Jan-12	Leica	6156	N262AS	120107A-6156
ASH	28	07-Jan-12	Leica	6156	N262AS	120107A-6156
ASH	29	07-Jan-12	Leica	6156	N262AS	120107A-6156
ASH	30	07-Jan-12	Leica	6156	N262AS	120107A-6156
ASH	31	11-Jan-12	Leica	6156	N262AS	120111A-6156
ASH	32	11-Jan-12	Leica	6156	N262AS	120111A-6156
ASH	33	11-Jan-12	Leica	6156	N262AS	120111A-6156
ASH	34	11-Jan-12	Leica	6156	N262AS	120111A-6156
ASH	35	11-Jan-12	Leica	6156	N262AS	120111A-6156
ASH	36	09-Jan-12	Leica	6156	N262AS	120109B-6156
ASH	37	09-Jan-12	Leica	6156	N262AS	120109B-6156
ASH	38	09-Jan-12	Leica	6156	N262AS	120109B-6156
ASH	39	09-Jan-12	Leica	6156	N262AS	120109B-6156
ASH	40	09-Jan-12	Leica	6156	N262AS	120109B-6156

Table 3.2: Flight Mission Summary (Con't)

Area_ID	FL_NUM	Date_Flown	System_used	SN	AC	Lift_File_Name
ASH	41	09-Jan-12	Leica	6156	N262AS	120109A-6156
ASH	42	09-Jan-12	Leica	6156	N262AS	120109A-6156
ASH	43	09-Jan-12	Leica	6156	N262AS	120109A-6156
ASH	44	09-Jan-12	Leica	6156	N262AS	120109A-6156
ASH	45	09-Jan-12	Leica	6156	N262AS	120109A-6156
ASH	46	09-Jan-12	Leica	6156	N262AS	120109A-6156
ASH	47	09-Jan-12	Leica	6156	N262AS	120109A-6156
ASH	48	09-Jan-12	Leica	6156	N262AS	120109A-6156
ASH	49	09-Jan-12	Leica	6156	N262AS	120109A-6156
ASH	50	09-Jan-12	Leica	6156	N262AS	120109A-6156
ASH	51	09-Jan-12	Leica	6156	N262AS	120109A-6156
ASH	52	09-Jan-12	Leica	6156	N262AS	120109A-6156
ASH	53	09-Jan-12	Leica	6156	N262AS	120109A-6156
ASH	54	09-Jan-12	Leica	6156	N262AS	120109A-6156
ASH	55	09-Jan-12	Leica	6156	N262AS	120109A-6156
ASH	56	09-Jan-12	Leica	6156	N262AS	120109A-6156
ASH	57	09-Jan-12	Leica	6156	N262AS	120109A-6156
ASH	58	09-Jan-12	Leica	6156	N262AS	120109A-6156
ASH	59	09-Jan-12	Leica	6156	N262AS	120109A-6156
ASH	60	09-Jan-12	Leica	6156	N262AS	120109A-6156
ASH	61	09-Jan-12	Leica	6156	N262AS	120109A-6156
ASH	105	09-Jan-12	Leica	6156	N262AS	120109B-6156
ASH	124	09-Jan-12	Leica	6156	N262AS	120109B-6156
ASH	142	07-Jan-12	Leica	6156	N262AS	120107A-6156
BED	1	11-Jan-12	Leica	6156	N262AS	120111B-6156
BED	2	11-Jan-12	Leica	6156	N262AS	120111B-6156
BED	3	11-Jan-12	Leica	6156	N262AS	120111B-6156
BED	4	11-Jan-12	Leica	6156	N262AS	120111B-6156
BED	5	11-Jan-12	Leica	6156	N262AS	120111B-6156
BED	6	11-Jan-12	Leica	6156	N262AS	120111B-6156
BED	7	11-Jan-12	Leica	6156	N262AS	120111B-6156
BED	8	11-Jan-12	Leica	6156	N262AS	120111B-6156
BED	9	11-Jan-12	Leica	6156	N262AS	120111B-6156
BED	10	11-Jan-12	Leica	6156	N262AS	120111B-6156
BED	11	11-Jan-12	Leica	6156	N262AS	120111B-6156
BED	12	11-Jan-12	Leica	6156	N262AS	120111B-6156
BED	13	11-Jan-12	Leica	6156	N262AS	120111B-6156
BED	14	11-Jan-12	Leica	6156	N262AS	120111B-6156
BED	15	11-Jan-12	Leica	6156	N262AS	120111B-6156
BED	16	11-Jan-12	Leica	6156	N262AS	120111B-6156
BED	17	11-Jan-12	Leica	6156	N262AS	120111B-6156
BED	18	11-Jan-12	Leica	6156	N262AS	120111B-6156
BED	19	11-Jan-12	Leica	6156	N262AS	120111B-6156
BED	20	11-Jan-12	Leica	6156	N262AS	120111B-6156
BED	21	11-Jan-12	Leica	6156	N262AS	120111B-6156
BED	22	11-Jan-12	Leica	6156	N262AS	120111B-6156
BED	23	11-Jan-12	Leica	6156	N262AS	120111B-6156

Merrimack Watershed LiDAR Post-Flight Aerial Acquisition and Calibration Report

Table 3.2: Flight Mission Summary (Con't)

Area_ID	FL_NUM	Date_Flown	System_used	SN	AC	Lift_File_Name
BED	24	11-Jan-12	Leica	6156	N262AS	120111B-6156
BED	25	11-Jan-12	Leica	6156	N262AS	120111B-6156
BED	26	11-Jan-12	Leica	6156	N262AS	120111B-6156
BED	27	11-Jan-12	Leica	6156	N262AS	120111B-6156
BED	28	11-Jan-12	Leica	6156	N262AS	120111B-6156
BED	29	11-Jan-12	Leica	6156	N262AS	120111B-6156
BED	30	11-Jan-12	Leica	6156	N262AS	120111B-6156
BED	31	11-Jan-12	Leica	6156	N262AS	120111B-6156
CON	1	21-Nov-11	Leica	6156	N262AS	111121A-6156
CON	2	21-Nov-11	Leica	6156	N262AS	111121A-6156
CON	3	21-Nov-11	Leica	6156	N262AS	111121A-6156
CON	4	21-Nov-11	Leica	6156	N262AS	111121A-6156
CON	5	21-Nov-11	Leica	6156	N262AS	111121A-6156
CON	6	21-Nov-11	Leica	6156	N262AS	111121A-6156
CON	7	21-Nov-11	Leica	6156	N262AS	111121A-6156
CON	8	21-Nov-11	Leica	6156	N262AS	111121A-6156
CON	9	21-Nov-11	Leica	6156	N262AS	111121A-6156
CON	10	21-Nov-11	Leica	6156	N262AS	111121A-6156
CON	11	21-Nov-11	Leica	6156	N262AS	111121A-6156
CON	12	21-Nov-11	Leica	6156	N262AS	111121A-6156
CON	13	21-Nov-11	Leica	6156	N262AS	111121A-6156
CON	14	21-Nov-11	Leica	6156	N262AS	111121A-6156
CON	15	21-Nov-11	Leica	6156	N262AS	111121A-6156
CON	16	19-Dec-11	Leica	6156	N262AS	111219A-6156
CON	17	19-Dec-11	Leica	6156	N262AS	111219A-6156
CON	18	19-Dec-11	Leica	6156	N262AS	111219A-6156
CON	19	19-Dec-11	Leica	6156	N262AS	111219A-6156
CON	20	19-Dec-11	Leica	6156	N262AS	111219A-6156
CON	21	19-Dec-11	Leica	6156	N262AS	111219A-6156
CON	22	19-Dec-11	Leica	6156	N262AS	111219A-6156
CON	23	19-Dec-11	Leica	6156	N262AS	111219A-6156
CON	24	19-Dec-11	Leica	6156	N262AS	111219A-6156
CON	25	19-Dec-11	Leica	6156	N262AS	111219A-6156
CON	26	19-Dec-11	Leica	6156	N262AS	111219A-6156
CON	27	19-Dec-11	Leica	6156	N262AS	111219A-6156
CON	28	19-Dec-11	Leica	6156	N262AS	111219A-6156
CON	29	18-Dec-11	Leica	6156	N262AS	111218A-6156
CON	30	18-Dec-11	Leica	6156	N262AS	111218A-6156
CON	31	18-Dec-11	Leica	6156	N262AS	111218A-6156
CON	32	18-Dec-11	Leica	6156	N262AS	111218A-6156
CON	33	19-Dec-11	Leica	6156	N262AS	111219A-6156
CON	34	19-Dec-11	Leica	6156	N262AS	111219A-6156
CON	35	19-Dec-11	Leica	6156	N262AS	111219A-6156
CON	36	19-Dec-11	Leica	6156	N262AS	111219B-6156
CON	37	19-Dec-11	Leica	6156	N262AS	111219B-6156
CON	38	19-Dec-11	Leica	6156	N262AS	111219B-6156
CON	39	19-Dec-11	Leica	6156	N262AS	111219B-6156

Page 21 of 30

Merrimack Watershed LiDAR Post-Flight Aerial Acquisition and Calibration Report

Table 3.2: Flight Mission Summary (Con't)

Area_ID	FL_NUM	Date_Flown	System_used	SN	AC	Lift_File_Name
CON	40	19-Dec-11	Leica	6156	N262AS	111219B-6156
CON	41	19-Dec-11	Leica	6156	N262AS	111219B-6156
CON	42	18-Dec-11	Leica	6156	N262AS	111218B-6156
CON	43	18-Dec-11	Leica	6156	N262AS	111218B-6156
CON	44	18-Dec-11	Leica	6156	N262AS	111218B-6156
CON	45	18-Dec-11	Leica	6156	N262AS	111218B-6156
CON	46	18-Dec-11	Leica	6156	N262AS	111218B-6156
CON	47	18-Dec-11	Leica	6156	N262AS	111218B-6156
CON	48	18-Dec-11	Leica	6156	N262AS	111218B-6156
CON	49	18-Dec-11	Leica	6156	N262AS	111218B-6156
CON	50	18-Dec-11	Leica	6156	N262AS	111218B-6156
CON	51	18-Dec-11	Leica	6156	N262AS	111218B-6156
CON	52	18-Dec-11	Leica	6156	N262AS	111218B-6156
CON	53	18-Dec-11	Leica	6156	N262AS	111218B-6156
CON	54	18-Dec-11	Leica	6156	N262AS	111218B-6156
CON	55	18-Dec-11	Leica	6156	N262AS	111218B-6156
CON	56	18-Dec-11	Leica	6156	N262AS	111218B-6156
CON	57	18-Dec-11	Leica	6156	N262AS	111218B-6156
CON	58	18-Dec-11	Leica	6156	N262AS	111218A-6156
CON	59	18-Dec-11	Leica	6156	N262AS	111218A-6156
CON	60	18-Dec-11	Leica	6156	N262AS	111218A-6156
CON	61	18-Dec-11	Leica	6156	N262AS	111218A-6156
CON	62	18-Dec-11	Leica	6156	N262AS	111218A-6156
CON	63	18-Dec-11	Leica	6156	N262AS	111218A-6156
CON	64	18-Dec-11	Leica	6156	N262AS	111218A-6156
CON	65	18-Dec-11	Leica	6156	N262AS	111218A-6156
CON	66	18-Dec-11	Leica	6156	N262AS	111218A-6156
CON	67	18-Dec-11	Leica	6156	N262AS	111218A-6156
CON	68	18-Dec-11	Leica	6156	N262AS	111218A-6156
CON	69	18-Dec-11	Leica	6156	N262AS	111218A-6156
CON	70	18-Dec-11	Leica	6156	N262AS	111218A-6156
CON	116	18-Dec-11	Leica	6156	N262AS	111218B-6156
CON	118	18-Dec-11	Leica	6156	N262AS	111218A-6156
CON	119	19-Dec-11	Leica	6156	N262AS	111219A-6156
CON	125	18-Dec-11	Leica	6156	N262AS	111218A-6156
CON	133	21-Nov-11	Leica	6156	N262AS	111121A-6156
CON	134	21-Nov-11	Leica	6156	N262AS	111121A-6156
CON	201	20-Nov-11	Leica	6156	N262AS	111120A-6156
CON	202	20-Nov-11	Leica	6156	N262AS	111120A-6156
CON	203	20-Nov-11	Leica	6156	N262AS	111120A-6156
Cross Flights	1	12-Jan-12	Leica	6156	N262AS	120111A-6156
Cross Flights	2	09-Jan-12	Leica	6156	N262AS	120109B-6156
Cross Flights	3	09-Jan-12	Leica	6156	N262AS	120109A-6156
Cross Flights	6	11-Jan-12	Leica	6156	N262AS	120111B-6156
Cross Flights	7	19-Dec-11	Leica	6156	N262AS	111219B-6156
Cross Flights	8	19-Dec-11	Leica	6156	N262AS	111219B-6156
Cross Flights	9	19-Dec-11	Leica	6156	N262AS	111219B-6156

Page 22 of 30

Merrimack Watershed LiDAR Post-Flight Aerial Acquisition and Calibration Report

Table 3.2: Flight Mission Summary (Con't)

Area_ID	FL_NUM	Date_Flown	System_used	SN	AC	Lift_File_Name
Cross Flights	10	19-Dec-11	Leica	6156	N262AS	111219B-6156
Cross Flights	11	19-Dec-11	Leica	6156	N262AS	111219B-6156
Cross Flights	12	19-Dec-11	Leica	6156	N262AS	111219B-6156
Cross Flights	13	19-Dec-11	Leica	6156	N262AS	111219B-6156
Cross Flights	15	11-Jan-12	Leica	6156	N262AS	120111B-6156
KAFN	1	13-Nov-11	Optech	240	N9471R	111113A-240
KAFN	2	13-Nov-11	Optech	240	N9471R	111113A-240
KAFN	3	13-Nov-11	Optech	240	N9471R	111113A-240
KAFN	4	13-Nov-11	Optech	240	N9471R	111113A-240
KAFN	5	13-Nov-11	Optech	240	N9471R	111113A-240
KAFN	6	13-Nov-11	Optech	240	N9471R	111113A-240
KAFN	7	13-Nov-11	Optech	240	N9471R	111113A-240
KAFN	8	12-Nov-11	Optech	240	N9471R	111112B-240
KAFN	9	12-Nov-11	Optech	240	N9471R	111112B-240
KAFN	10	12-Nov-11	Optech	240	N9471R	111112B-240
KAFN	11	12-Nov-11	Optech	240	N9471R	111112B-240
KAFN	12	12-Nov-11	Optech	240	N9471R	111112B-240
KAFN	13	12-Nov-11	Optech	240	N9471R	111112A-240
KAFN	14	12-Nov-11	Optech	240	N9471R	111112A-240
KAFN	15	12-Nov-11	Optech	240	N9471R	111112A-240
KAFN	16	12-Nov-11	Optech	240	N9471R	111112A-240
KAFN	17	12-Nov-11	Optech	240	N9471R	111112A-240
KAFN	18	12-Nov-11	Optech	240	N9471R	111112A-240
KAFN	19	12-Nov-11	Optech	240	N9471R	111112A-240
KAFN	20	12-Nov-11	Optech	240	N9471R	111112A-240
KAFN	21	12-Nov-11	Optech	240	N9471R	111112A-240
KAFN	22	12-Nov-11	Optech	240	N9471R	111112A-240
KAFN	23	12-Nov-11	Optech	240	N9471R	111112A-240
KAFN	24	13-Nov-11	Optech	240	N9471R	111113B-240
KAFN	25	13-Nov-11	Optech	240	N9471R	111113B-240
KAFN	26	12-Nov-11	Optech	240	N9471R	111112A-240
KAFN	27	12-Nov-11	Optech	240	N9471R	111112B-240
KAFN	28	13-Nov-11	Optech	240	N9471R	111113A-240
KAFN	29	13-Nov-11	Optech	240	N9471R	111113A-240
KAFN	30	13-Nov-11	Optech	240	N9471R	111113A-240
KAFN	31	13-Nov-11	Optech	240	N9471R	111113A-240
KAFN	32	13-Nov-11	Optech	240	N9471R	111113A-240
KAFN	33	13-Nov-11	Optech	240	N9471R	111113A-240
KAFN	34	13-Nov-11	Optech	240	N9471R	111113A-240
KAFN	35	13-Nov-11	Optech	240	N9471R	111113A-240
KAFN	36	13-Nov-11	Optech	240	N9471R	111113A-240
KAFN	37	13-Nov-11	Optech	240	N9471R	111113A-240
KAFN	38	12-Nov-11	Optech	240	N9471R	111112A-240
KAFN	39	12-Nov-11	Optech	240	N9471R	111112B-240
KAFN	40	12-Nov-11	Optech	240	N9471R	111112B-240
KAFN	41	12-Nov-11	Optech	240	N9471R	111112B-240
KAFN	42	12-Nov-11	Optech	240	N9471R	111112B-240

Page 23 of 30

Merrimack Watershed LiDAR Post-Flight Aerial Acquisition and Calibration Report

Table 3.2: Flight Mission Summary (Con't)

Area_ID	FL_NUM	Date_Flown	System_used	SN	AC	Lift_File_Name
KAFN	43	12-Nov-11	Optech	240	N9471R	111112A-240
KAFN	44	12-Nov-11	Optech	240	N9471R	111112B-240
KAFN	45	12-Nov-11	Optech	240	N9471R	111112A-240
KAFN	46	12-Nov-11	Optech	240	N9471R	111112A-240
KAFN	47	12-Nov-11	Optech	240	N9471R	111112A-240
KAFN	48	12-Nov-11	Optech	240	N9471R	111112A-240
LCI	1	19-Nov-11	Leica	6156	N262AS	111119A-6156
LCI	2	19-Nov-11	Leica	6156	N262AS	111119A-6156
LCI	3	19-Nov-11	Leica	6156	N262AS	111119A-6156
LCI	4	19-Nov-11	Leica	6156	N262AS	111119A-6156
LCI	5	19-Nov-11	Leica	6156	N262AS	111119A-6156
LCI	6	19-Nov-11	Leica	6156	N262AS	111119A-6156
LCI	7	19-Nov-11	Leica	6156	N262AS	111119A-6156
LCI	8	19-Nov-11	Leica	6156	N262AS	111119A-6156
LCI	9	19-Nov-11	Leica	6156	N262AS	111119A-6156
LCI	10	19-Nov-11	Leica	6156	N262AS	111119A-6156
LCI	11	19-Nov-11	Leica	6156	N262AS	111119A-6156
LCI	12	19-Nov-11	Leica	6156	N262AS	111119A-6156
LCI	13	19-Nov-11	Leica	6156	N262AS	111119A-6156
LCI	14	19-Nov-11	Leica	6156	N262AS	111119A-6156
LCI	15	19-Nov-11	Leica	6156	N262AS	111119A-6156
LCI	16	19-Nov-11	Leica	6156	N262AS	111119A-6156
LCI	17	19-Nov-11	Leica	6156	N262AS	111119A-6156
LCI	18	19-Nov-11	Leica	6156	N262AS	111119A-6156
LCI	19	19-Nov-11	Leica	6156	N262AS	111119A-6156
LCI	20	19-Nov-11	Leica	6156	N262AS	111119A-6156
LCI	21	19-Nov-11	Leica	6156	N262AS	111119A-6156
LCI	22	19-Nov-11	Leica	6156	N262AS	111119A-6156
LCI	23	19-Nov-11	Leica	6156	N262AS	111119A-6156
LCI	24	19-Nov-11	Leica	6156	N262AS	111119A-6156
LCI	25	19-Nov-11	Leica	6156	N262AS	111119B-6156
LCI	26	19-Nov-11	Leica	6156	N262AS	111119B-6156
LCI	27	19-Nov-11	Leica	6156	N262AS	111119B-6156
LCI	28	19-Nov-11	Leica	6156	N262AS	111119B-6156
LCI	29	19-Nov-11	Leica	6156	N262AS	111119B-6156
LCI	30	19-Nov-11	Leica	6156	N262AS	111119B-6156
LCI	122	19-Nov-11	Leica	6156	N262AS	111119A-6156
LCI	129	19-Nov-11	Leica	6156	N262AS	111119A-6156
LCI	131	19-Nov-11	Leica	6156	N262AS	111119A-6156
LCI	136	19-Nov-11	Leica	6156	N262AS	111119B-6156

Merrimack Watershed LiDAR Post-Flight Aerial Acquisition and Calibration Report

4. Processing Summary

4.1 Processing Summary

Leica proprietary software was used in the post-processing of the airborne GPS and inertial data that is critical to the positioning and orientation of the sensor during all flights. Pairing the aircraft's raw trajectory data with the stationary GPS base station data, this software yields Leica’s IPAS TC ("Inertial Positioning \& Attitude Sensor - Tightly Coupled") smoothed best estimate of trajectory (an "SBET", in Leica's .sol file format) that is necessary for Leica's ALSPP post processing software to develop the resulting geo-referenced point cloud from the LiDAR missions. The point cloud is the mathematical three dimensional composite of all returns from all laser pulses as determined from the aerial mission. At this point this data is ready for analysis, classification, and filtering to generate a bare earth surface model in which the aboveground features are removed from the data set.

The point cloud was created using Leica's Post Processor software. GeoCue was used in the creation of some of the files needed in downstream processing, as well as in the tiling of the dataset into more manageable file sizes. The TerraScan and TerraModeler software packages are then used for the automated data classification, manual cleanup, and bare earth generation from this data. Project specific macros were used to classify the ground and to remove the side overlap between parallel flight lines. All data was manually reviewed and any remaining artifacts removed using functionality provided by TerraScan and TerraModeler. QT Modeler was used as a final check of the bare earth dataset. GeoCue was then used to create the deliverable industry-standard LAS files for both the All Point Cloud Data and the Bare Earth. In-house software was then used to perform final statistical analysis of the classes in the LAS files.

4.2 Flight Line Data Overview

The following information is an overview of the data parameters based on a per flight line analysis:

-Post Spacing (Minimum): 1.57 m
-Flying Height AGL; 1859 +/-m, 6,100+/- feet
-Recommended Ground Speed (GS); 160 kts
-Field of View (full): 35°
-Pulse Rate: 120,000 Hz
-Scan Rate: 52.7 Hz
-Side Lap (Average): 30\%

During the sensor's (aircraft's) trajectory processing (combining GPS \& IMU datasets) certain statistics and tables are generated within Leica's IPAS-TC software. The following information is included Appendix C of this document.

- Processing software's estimation of sensor position accuracy with satellite PDOP superimposed (Estimated_Position_Accuracy)
- Graphical Latitude/Longitude depiction of the aircraft's position (Flight_Trajectory and or Flight Map)
- Processing software's estimation of how well the trajectory compared to itself when processed forward vs. backward (Combined_Seperation)
- Chart with an indication of each individual satellite's lock from the aircraft's antenna during collection activities (L2_Satellite_Lock_Elevation)
- Observed PDOP during flight (PDOP_HDOP_VDOP)
- Number of Satellites observed (Number_of_Satellites)
- IPAS Sensor Error Estimate - Z Position (Residual Error Z)
- IPAS Sensor Error Estimate - Y Position (Residual Error Y)
- IPAS Sensor Error Estimate - X Position (Residual Error X)
- Float - Fixed Ambiguity - (Float_Fixed Ambiguity)
- Base Station Information (Base Station)
- Overall Processing Quality Factor (Quality Factor)

5. Accuracy Assessment

A number of points are provided (121 total) were surveyed as part of the project in order to provide a ground calibration and to help assure the accuracy of the data model. Initially any bias identified between the LiDAR surface and the provided control points are analyzed to average out the difference. The bias is then removed from LiDAR surface to provide a final ground surface. The two sets of data are compared again. The results provided in Table 4.1 indicate the data was well within the contract specification. Table 4.2 provides the complete comparison analysis.

Table 5.1: Accuracy Assessment Summary

Statistical Analysis	
Average Dz	0.007
Minimum Dz	-0.220
Maximum Dz	0.264
RMSE	0.099
Standard Deviation	0.099

Coordinate System
Horizontal Projection
NAD83 - UTM Zone 19N, Meters
Vertical Datum
NAVD88 - Geoid09, Meters

Merrimack Watershed LiDAR Post-Flight Aerial Acquisition and Calibration Report

Table 5.2: Vertical Accuracy Statistics

Point	Easting	Northing	Known Z	LIDAR Z	Dz
MER101	311097.261	4703192.509	57.428	57.437	0.01
MER102	314456.372	4702697.961	54.242	54.163	-0.08
MER103	316250.804	4701665.972	64.319	64.252	-0.07
MER104	318692.409	4708638.069	52.023	51.902	-0.12
MER105	318735.668	4704777.247	56.563	56.476	-0.09
MER106	314695.790	4705012.174	40.318	40.215	-0.10
MER107	314904.994	4709309.470	38.966	38.869	-0.10
MER108	311434.321	4706495.409	39.163	39.163	0.00
MER109	291510.287	4708637.537	75.615	75.637	0.02
MER110	290398.500	4711406.853	96.102	96.139	0.04
MER111	293627.504	4711247.606	72.508	72.447	-0.06
MER112	292653.429	4717413.631	77.768	77.731	-0.04
MER113	298025.414	4717419.120	63.870	63.843	-0.03
MER114	301806.788	4719610.326	49.557	49.502	-0.06
MER115	306397.104	4721250.935	39.600	39.577	-0.02
MER116	303238.961	4724849.443	33.075	33.078	0.003
MER117	303642.328	4728825.047	57.263	57.193	-0.07
MER118	294915.641	4727042.760	55.072	55.071	-0.001
MER119	298197.181	4724432.232	71.692	71.697	0.005
MER120	293918.442	4721005.447	63.213	63.179	-0.034
MER121	294799.844	4730326.315	76.638	76.597	-0.041
MER122	309429.509	4732250.261	41.341	41.261	-0.08
MER123	303770.353	4736164.084	85.960	85.912	-0.05
MER124	303571.735	4742777.384	87.551	87.507	-0.04
MER125	299193.277	4740564.981	37.548	37.501	-0.05
MER126	290902.643	4740036.530	62.333	62.324	-0.01
MER127	284738.370	4743679.356	101.919	101.895	-0.02
MER128	283712.517	4754329.505	223.495	223.504	0.01
MER129	284804.106	4760899.607	169.158	169.120	-0.038
MER130	293414.739	4763422.512	125.267	125.225	-0.042
MER131	302147.643	4763650.327	102.180	102.172	-0.008
MER132	303576.657	4754745.040	89.482	89.450	-0.032
MER133	302802.269	4750478.946	78.268	78.257	-0.011
MER134	295595.857	4751836.253	61.901	61.841	-0.06
MER135	289177.065	4755494.679	84.936	84.889	-0.047
MER136	290044.182	4749754.648	80.594	80.569	-0.025
MER137	303823.197	4769990.661	170.344	170.518	0.174
MER138	296092.972	4768894.750	144.311	144.388	0.077
MER139	287439.419	4766904.887	97.105	97.202	0.097
MER140	281141.854	4765749.271	155.278	155.200	-0.078
MER141	275261.440	4771278.542	204.508	204.718	0.21
MER142	269480.463	4777160.320	262.573	262.655	0.082
MER143	281625.473	4779577.167	161.123	161.128	0.005
MER144	290645.142	4776444.960	216.846	216.842	-0.004
MER145	287761.914	4786502.014	130.571	130.598	0.027
MER146	304108.907	4780136.723	95.056	94.971	-0.085
MER147	312254.118	4788374.690	135.511	135.770	0.259
MER148	302952.143	4789201.488	245.354	245.618	0.264
MER149	309496.295	4796701.549	165.239	165.382	0.143
MER150	319181.656	4801759.161	216.952	216.982	0.03
MER151	311195.858	4802840.761	241.995	242.027	0.032
MER152	309305.715	4804459.639	260.544	260.592	0.048
MER153	303123.778	4799005.016	191.325	191.373	0.048
MER154	301294.223	4799754.947	219.463	219.543	0.08

Page 28 of 30

Merrimack Watershed LiDAR Post-Flight Aerial Acquisition and Calibration Report

Table 5.2: Vertical Accuracy Statistics (Con't)

Point	Easting	Northing	Known Z	LIDAR Z	Dz
MER155	296026.644	4804088.413	247.113	247.151	0.038
MER156	295872.690	4806305.262	263.284	263.370	0.086
MER157	286448.886	4809730.850	149.495	149.431	-0.064
MER158	280653.786	4811169.919	234.363	234.351	-0.012
MER159	289320.140	4802358.650	166.049	166.085	0.036
MER160	296039.055	4796071.592	159.715	159.962	0.247
MER161	269979.293	4771621.709	267.821	268.034	0.213
MER162	268251.419	4769448.193	342.882	343.007	0.125
MER163	275218.171	4764423.291	188.174	188.159	-0.015
MER164	277895.851	4756098.193	202.330	202.330	0
MER165	279232.274	4746690.389	82.683	82.639	-0.044
MER166	269995.332	4753623.757	248.099	248.327	0.228
MER167	270263.095	4739640.875	229.285	229.429	0.144
MER168	264803.561	4731806.529	325.004	325.047	0.043
MER169	264642.540	4738396.789	384.737	384.826	0.089
MER170	266958.802	4746470.299	353.113	353.192	0.079
MER171	269960.197	4758099.464	270.718	270.918	0.2
MER172	302113.647	4808988.842	232.517	232.538	0.021
MER173	308115.183	4807452.430	343.692	343.671	-0.021
MER174	308115.192	4807452.427	343.723	343.671	-0.052
MER175	320798.199	4807127.112	220.912	220.940	0.028
MER176	312607.027	4809900.079	225.450	225.465	0.015
MER177	312607.026	4809900.125	225.445	225.463	0.018
MER178	312026.044	4816409.776	221.154	221.125	-0.029
MER179	307399.099	4815267.090	328.118	328.113	-0.005
MER180	322408.514	4797531.388	221.298	221.286	-0.012
MER181	276075.414	4750799.792	221.252	221.232	-0.02
MER182	296123.664	4760474.600	77.995	77.806	-0.189
MER183	296123.640	4760474.611	77.985	77.811	-0.174
MER184	280092.975	4745878.662	87.126	87.145	0.019
MER185	280092.975	4745878.629	87.148	87.144	-0.004
MER186	315439.633	4704518.407	45.343	45.443	0.1
MER187	294596.377	4783139.878	69.198	69.158	-0.04
Concord150M	296426.663	4786296.328	101.620	101.692	0.072
NGS_MY0447	296123.664	4760474.600	77.995	77.806	-0.189
NGS_MY0447	296123.640	4760474.611	77.985	77.811	-0.174
NGS_MY5423	280092.975	4745878.662	87.126	87.145	0.019
NGS_MY5423	280092.975	4745878.629	87.148	87.144	-0.004
NGS_MY6363	315439.633	4704518.407	45.343	45.443	0.1
NGS_OC0822	294596.377	4783139.878	69.198	69.158	-0.04
500	296014.946	4791460.118	112.203	112.32	0.117
501	288566.442	4789640.405	163.757	163.85	0.093
502	293126.437	4789705.636	73.12	73.16	0.04
503	289914.296	4795624.537	79.843	79.76	-0.083
504	289457.710	4796159.791	105.206	105.27	0.064
505	289263.305	4780498.964	147.148	146.96	-0.188
506	300852.501	4790430.935	127.558	127.68	0.122
507	298406.325	4785931.098	81.255	81.17	-0.085
508	298131.518	4781924.235	89.195	89.05	-0.145
509	291716.112	4785816.109	104.857	104.74	-0.117
510	288104.505	4791979.934	111.718	111.8	0.082
511	295917.887	4787637.827	104.221	104.06	-0.161
512	292354.590	4794558.719	94.891	94.9	0.009
514	288731.957	4781400.404	106.02	105.8	-0.22

Page 29 of 30

Merrimack Watershed LiDAR Post-Flight Aerial Acquisition and Calibration Report

Table 5.2: Vertical Accuracy Statistics (Con't)

Point	Easting	Northing	Known Z	LIDAR Z	Dz
515	287824.793	4785301.753	131.418	131.31	-0.108
516	285783.906	4789656.955	124.558	124.64	0.082
518	288702.582	4795629.696	105.136	104.98	-0.156
519	290574.780	4793034.885	105.364	105.44	0.076
520	292043.993	4789681.866	101.561	101.63	0.069
521	293844.000	4786729.906	85.717	85.66	-0.057
522	294904.860	4784224.69	71.299	71.18	-0.119
523	297983.779	4786201.197	101.829	101.81	-0.019
524	299209.220	4789937.88	106.734	106.9	0.166
525	297728.631	4794033.272	159.58	159.61	0.03
526	295537.293	4796259.855	149.565	149.68	0.115
527	293584.822	4796384.002	117.742	117.91	0.168
528	295139.024	4792224.315	103.561	103.7	0.139

LIDAR MISSION RECORD SHEET - Leica

	- \because	\%	sp					
	-	\%	SP\%					
	-	\%	S\%					
	-	\%	S $1 \times$					
	-	\%	SM					
	-	\%	s ${ }^{\text {¢ }}$					
	-	\%	SP4					
	-	\%	SM					
	-	\%	SM					
Γ	-	\%	SH1					
$73 n d y a y 80 \times 4$	-	\%	${ }^{\text {SPM }}$					
	-	\%	SP1					
	-	\%	SP					
	- EIm	\% bb~	sth Stin	N	. 8919		225s.07	blshar b 11111
	- H1~	\% bb \%	six OSIn	5	. 98 t9		$62 s 50 y$	c09 $\square_{1}-61111$
	- $-\mathrm{SI}_{\sim}$	\% bb	sty S91~	N	. 2859		1 Esson	セ2bt ${ }^{-611111}$
	- 9	\% bb ~	sid Stir	3	.8919		620 177	ChEib1 61111
	- t~	\% b6~	Sty SE1~	M	. 8919	${ }^{2} \frac{b_{0}}{} b^{2} / \overline{90}$ bl	270177	h190b1-611111
	- 9~	\% bb	sı $081 \sim$	M	.8919	${ }^{2} \frac{140}{10} /{ }^{\text {ES }} 81$	820177	E1t581-611111
	- 5~	\% bb ~	sy $081 \sim$	\exists	.1t19	${ }^{2} \frac{1581 / 71781}{}$	120127	929h81-611111
	qEJ ${ }^{\text {a }}$	sumpay	peads	бииреан	(7swv) 7\%	awil doisfuers	$\xrightarrow{\#}$	amen aut $746!14$

$\left.\begin{array}{|c|c|c|}\hline \text { GPS Base Location(s) } & \text { LCI D (PACS) } \\ \hline \text { PDOP Avoidance } & \text { nowe 'til late } \\ \hline \text { Static or Flyover? } & \text { STATLL } & \rightarrow \text { if flyovers, times: }\end{array}\right]\left[\begin{array}{cc}111119 \text { A-6156 } \\ \text { SHEET 2.0.2 }\end{array}\right]$

$\begin{array}{r}\text { paeds punong } \\ \text { :apey osind } \\ \hline\end{array}$

 LIDAR MISSION RECORD SHEET -- Leica

	．	\％	sp					
	－	\％	SM					
	－	\％	SH					
	－	\％	S14					
	\bigcirc	\％	SH					
	－	\％	SP1					
	－	\％	SP1					
	－	\％	s，					
	－．	\％	sp1					
	－	\％	Sp					
	－	\％	SH1					
	－	\％	SH					
	－	\％	S＋1					
	－εl_{N}	\％bb～	st Ot｜	N	.09179	$z_{27}+22 / \frac{92}{92}$	98 5s\％	Hを9ててで611111
	－t_{\sim}	\％bb～		3	．2519		0 O 177	820122－61111
	9～	\％bb～	sin OEI～	M	.8519	${ }^{7} \frac{50}{50} 72 / \overline{x_{5}}$	620177	SECS12－61111
	－t～	\％bb～	sph Qt \sim_{\sim}	3	.2519		820177	OEtE12－b1111
	9～	\％bb～	S4 SE1～	M	8519	${ }^{z} \bar{\tau} \frac{12}{} / \overline{\text { az }} 12$	t20 177	220212－b11111
	－t_{m}	\％bb～	suctin	3	st19	z s－17／डब12	920127	th－5012－61111
	t_{\sim}	\％bb～	spm Siln	M	． 1819	${ }^{2} \frac{10}{12} / 65^{2} 2$	S20177	85bhor－611111
	qedo	summey	prads	бирреән	（7swv）7\％＇	owil doasfues		amen oul7

を29てパ－611109 \＃벱 SWOs
ards punous

| 0 |
| :--- | :--- |
| |
| |
| |

LIDAR MISSION RECORD SHEET－Leica

Photo Science
 Geospatial Solutions

Station Occupation Report For Airborne GPS

Project:
Merrimack River lidar

Comments - measured e 3 prs. ervonod antemme to bottom of u th

- use for $1111194-6156$ \& $11111913-6156$
$T^{30} T^{\text {reas }}$

	－	\％	SH_{1}					
	－	\％	SM					
	－	\％	SM					
	－	\％	SH					
	－	\％	SH					
	－	\％	SP4					
	－	\％	${ }^{514}$					
	－	\％	SP1					
	－	\％	S14					
	－	\％	Spr					
	－	\％	sp\％					
	－	\％	${ }^{\text {SP1 }}$					
	－	\％	SM					
	P．	\％	SPI					
	－tlo	\％blo	sha Oh／n	MH	2419	${ }^{2}{ }_{22} S^{2} / \overbrace{22} S_{1}$	2706＋03	ho2zs1－c2111
	－81～	\％bb～	sy $0+1 \sim$	35	． 2 h 19	${ }^{2} \frac{91}{} 51 / 3151$	2×8000	b\＆S1S1－c21111
	． 91 m	\％b6～	$\sin \operatorname{Sh} 1 \sim$	MN	.8519	z $\pi 1 /$－$\frac{1}{} 51$	$12 \times x+\infty$	£ EO1s ${ }^{-}$c21111
	－ $91 \sim$	\％bb～	spo912	35	.8519	$2 \overline{90} 5 / / \frac{50}{50} 5$	1707×0	hesosi ${ }^{-021111}$
	－ 6^{\prime}	\％bb～	SPM Stin	$\exists \mathrm{N}$	． 2219	$2 \frac{1051}{10} 51$	Σ \％${ }^{\text {com }}$	Q50051－021111
	－ 5_{\sim}	\％bb～	StM Ohin	MS	． 2219		$\sum \times 7+\infty$	$2 \operatorname{sinhmi}-021111$
	qex	sumay	prods	бииреөн	（7swv）7\％	amil dorsfues	$\underset{\text { \＃}}{\text { \＃}}$	amen aut 146 y ¢

eэ！əๆ－1ヨヨHS ayODヨy NOISSIW y甘al7

PHOTO SCIENCE

Photo Science
 Geospatial Solutions

Station Occupation Report For Airborne GPS

Project:
Merrimete River LidAR

Comments mersured e 3 pts around zuterumz to bottom of natch

- use for- 111120 A- 6156 (CAuBreATION)
T10 Treus

 eads punodo

 +
y
y
y
d
d
d
0
0 2TMr mpan Dixn

Photo Science
 Geospatial Solutions

Station Occupation Report
 For Airborne GPS

Project: Merruncek River lidia

Project Number: $7556-008$
Date: Nov. 21, 2011

Comments

- use for $111121 A-6156$
\qquad
\qquad
\qquad
\qquad

Рното Science
 Geospatial Solutions

Station Occupation Report For Airborne GPS

Project:
MERRIMACN RIVER 2011 LIDAR

Location:	Nashua NH ARPORT (KASH)
Completed by:	PNH
Receiver:	5°
Receiver Type:	Trumbue ra Gnss
Antenna Type:	zephyr Geoderuc 2
Station ID:	NASHW CBL 800 (PACS)
Start -- H.I. (m):	1.693 m
End -- H.I. (m):	1.694 m
H.I. (ft):	5.555 ft
Start Time:	85
End Time:	$\sim 2{ }^{33}$
Time Zone:	EST
Operator:	PNH

Project Number: 7556-008 Date: JAN 7, 2012

mersurede C 3 pts vorund entennz to bottom of notch
use for 120107 A-6156 $\leqslant 1201073$-6156 (VolD)

LIDAR MISSION RECORD SHEET - Leica													
	Project Name		MERRIMAOL RIVER 2011				Pliot I. Scom			Date flown: JAN 7, 2012			
	Project Number FCMS .tpd File		7556-008				Operator P. ItrasBAL			Takeoff Time (z): 18.46	Locat 1		Aipant kesit
			Merevinuk zil peo III218, fod				Aircrat	$\frac{\text { P. HrabBAK }}{\text { N262AS }}$		Landing Time (z): $19 \xrightarrow{06}$	Local 206		Alimon KASH
	Profect's Scanning Requirements						Data Information			Ground	Alirport	Temp Alon	
	Field of View:	35°	Altude AGL (t):	6000^{\prime}			LIDAR Unit	Leica A	ALS-60 sn6156	Bogin Temp - \quad -			
	Scan Rate:	52.7 Hz	(IMulti Puise)	(Single Pulse)			HD		"	Begin Dowpoint - i°	ASH		
	Pulse Rate:	120 kHz	Laser Output Cur	ent. 63%			IPASFile ${ }^{\text {a }}$	2012010	.7-183650	Begin Pressure .		c	
	Ground Speed.	160 kts					trom, to	¢めめ) \rightarrow ¢ $\dagger 3$	End Temp - ${ }^{\text {a }}$			
							FCMS File:	2arzolo	27-183434	End Dewpoint -			
										End Preassure			
	GPS Base Location(s)	NAStuA	Cal 900 (PACS)				20		$156]$				
	PDOP Avoidance		are iti late										
	Static or Flyover?	STA	me	\rightarrow if flyovers, time									
	Flight Line Name	$\left\lvert\, \begin{gathered}\text { Flight Line } \\ \#\end{gathered}\right.$	Star/Stop Time	Alt. (AMSL)	Heading	Speed	Returns	Crab		NOTES (weather, visibility, w	winds, ride,	etc.)	
	120107.	ASH061	-1-3	$6047{ }^{\circ}$	N	\sim kts	\%		se2t/6km	2re, twath, W winds	a las .		
	120107.	ASH 060	-1-8		5	\sim	\%						
	120107.	ASIH 59	-1-2		N	kss							
	$120107-$	ASHOS8	-1-2		5	\sim kts	~ \%						
	120107.	ASHDS 7	$-1-2$		N	kts	\%						
	120107.	ASH0S6	$-1-2$		5	kts	*						
	120107.	Asho5s	-1-2		N	kts	*			LOUDS BELOW T	THRO	GHant	
	120107.	ASHOS 4	$-1-2$		5	kts	\%			PROJECT A	A25A!	ARGH!	
	120107	Asito 3	- -2		N	kts	\%						
	120107.	52			5	kts	\%						
	120107.	51			N	kts	*						
	1	50			5	kts	*						
		49			N	kss	$*$						
		48			5	kts	*						
		47			H	ks	*						
		46			N	${ }_{4} 5_{5}$	*						
		45			5	ks	*						
						kts	*						
						kss	\%						
						Sheel I	of -						

PHOTO SCospatial Solutions PIENC $_{\text {Peon }}$

Station Occupation Report For Airborne GPS

Project:

Comments
mersured $e 3$ pts. vound zutemn do bottom of notch

- use for 120109A-6186 $120109 B-6150$
\qquad
\qquad
\qquad
\qquad

PHOTO SCIENCE
 Geospatial Solutions

Station Occupation Report For Airborne GPS

Project:

Location:		
Completed by: BEDFORD, MA ARPORT (KBED)	PNH	Project Number: 7556008

Receiver:
Receiver Type:
Antenna Type:
Station ID:
Start - H.I. (m):
End - H.I. (m):
H.I. (ft):

Start Time:
End Time:
Time Zone:
Operator:

\qquad

LIDAR MISSION RECORD SHEET - Leica

Appendix F: Quality Assurance

Elevation Data Quality Assurance Report Merrimack HUC-8 Watershed Fully Classified Dataset September 14, 2012

Submitted to:
Federal Emergency Management Agency, Region 1
Department of Homeland Security
99 High Street, Sixth Floor
Boston, MA 02110
Prepared by:

Strategic Alliance for Risk Reduction Raleigh, NC

Contents

1. Executive Summary 2
2. Overview 2
3. LiDAR Data Review 2
3.1 Vendor Submittal 3
3.2 Macro Data Review 3
3.2.1 LiDAR Coverage and Completeness 3
3.2.2 LAS Header Review 3
3.3 Micro Data Review 3
4. Vertical Accuracy Verification 4
5. Conclusions 4
6. References 5

1. Executive Summary

Under FEMA task order HSFE01-11-J-0010 STARR has completed elevation data post processing for the Merrimack HUC-8 watershed. The goal of this project is to create a classified bare-earth digital terrain dataset with a vertical accuracy Root Mean Square Error of $<18.5 \mathrm{~cm}$ capable of supporting 2 foot contours.

2. Overview

STARR partner Greenhorne and O'Mara performed an independent quality assurance review on the raw Point Cloud and Classified Point Cloud data. This validates the quality of LiDAR data for use in Risk MAP projects that support the National Flood Insurance Program. This document summarizes the review process and results for the Merrimack HUC-8 watershed.

Table 1 LiDAR Project Requirements

FEMA Region 1 Merrimack HUC-8 LiDAR Post Processing Requirements	
Collection/Processing Area	1302 square miles
Breaklines Required	Yes
Specification Level	Highest
Nominal Pulse Spacing	1 m
DEM Post Spacing	1 m DEM with 2 ft. contour accuracy
Vertical Accuracy, 95\% Confidence Level FVA/CVA	$24.5 \mathrm{~cm} / 36.3 \mathrm{~cm}$
Coordinate System	UTM Zone 19N
Horizontal Datum and Linear Units	NAD 83 Meters
Vertical Datum and Linear Units	NAVD 88 US Survey Foot

Table 2 QA Activity and Guideline and Specifications Matrix

QA Activity	PM 61	USGS LiDAR Base Spec v13	ASPRS LAS v1.2	Appendix A	Appendix M
Vendor Submittal	X	X	X		X
Macro Review	X	X		X	
Micro Review	X	X	X	X	
Vertical Accuracy	X	X		X	X

3. LiDAR Data Review

Greenhorne \& O'Mara, Inc. utilizes commercial software and proprietary scripts/applications to review LiDAR data. These tools, combined with guidelines and specifications, are incorporated into a standardized quality assurance workflow. Table 3 summarizes software and proprietary scripts/applications used in the review.

Software/Tools	QA Process
ESRI ArcGIS 10.1 ArcInfo	LiDAR Visualization and Data Processing
ESRI 3D Analyst Extension	Visual Analysis of LiDAR Data
ESRI Spatial Analyst Extension	Grid Analysis for LiDAR Data
LP360 ArcMap Extension	Visual Analysis of LiDAR Data
SIS Topo Analyst	Vertical Accuracy Quality Assurance
Proprietary Scripts/Applications	Working with LAS files

3.1 Vendor Submittal

All project data has been delivered and is accounted for. The completed Vendor Submittal Quality Assurance checklist is included with the QA Forms delivered with this document.

3.2 Macro Data Review

The macro review is conducted on the fully classified point cloud dataset. The purpose of this review is to determine whether the dataset was produced in a manner consistent with requirements set forth in the FEMA procedural memorandum. The individual review components are discussed in the following sections.

3.2.1 LiDAR Coverage and Completeness

All LiDAR data processed for the Merrimack HUC-8 watershed Project covers the area of interest with a 100 m buffer and has an area of approximately 1302 square miles (See Figure 1). All LiDAR tiles are accounted for and the project datasets have the correct projection and datum information.

3.2.2 LAS Header Review

All LAS files submitted for review have header information that is compliant with ASPRS LAS specifications version 1.2 and 1.3.

The completed LAS Header Quality Assurance checklist is included with the QA Forms delivered with this document.

3.3 Micro Data Review

The following micro reviews were completed on 5% of the fully classified point cloud datasets. Tiles selected for review were chosen throughout the project area with a focus on areas of urban development and hydrographic significance (See Figure 2).

- Scan lines removed from bare earth
- Excessive Noise in bare earth
- Elevation Steps
- Gaps/Voids
- Edge matching between tiles
- Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)
- Proper definition of roads and drainage patterns
- "Over-smoothed" areas during filtering
- Corn Row Effects
- Mounds and Divots

All tiles reviewed meet project requirements for classified LiDAR data and can be used for floodplain mapping activities. The completed Micro Data Review Quality Assurance checklist is included with the QA Forms delivered with this document.

4. Vertical Accuracy Verification

An independent review and verification of submitted CVA survey data with vendor provided LAS files was completed to insure reported vertical accuracy is correct. Survey data points containing field collected GPS elevation values were buffered by 10 meters. LiDAR points contained within the buffered areas are selected and used to create a TIN. The TIN facet z value closest to the x and y control point location is compared to the height of the survey point. The height difference is evaluated statistically and compared to the submitted CVA testing results to insure the vertical accuracy meets project expectations. All CVA survey data submitted for this project has been confirmed to meet project requirements. The report delivered with this document summarizes the results of this assessment.

5. Conclusions

Based upon the submittal verification, acquisition reports, macro/micro reviews and vertical accuracy confirmation, the Merrimack HUC-8 watershed dataset meets all applicable project specifications defined in FEMA task order HSFE01-11-J-0010 dated September 27, 2011. This data meets all project requirements for FEMA Risk MAP elevation acquisition and can be used for flood risk analysis.

Approvals

Date: 9/14/2012
James L. Huffines, QA Team Lead

6. References

Links to guidelines and specifications used in production of the LiDAR datasets:

1. Federal Emergency Management Agency, Procedure Memorandum No. 61-Standards for Lidar and Other High Quality Digital Topography, http://www.fema.gov/library/viewRecord.do?id=4345
2. U.S. Geological Survey National Geospatial Program, LiDAR Guidelines and Base Specification, Version 13-ILMF 2010, http://lidar.cr.usgs.gov/USGS-
NGP\%20Lidar\%20Guidelines\%20and\%20Base\%20Specification\%20v13\%28ILMF\%29.pdf
3. American Society for Photogrammetry and Remote Sensing, LAS v1.2,
http://www.asprs.org/a/society/committees/standards/asprs_las_format_v12.pdf
4. Federal Emergency Management Agency, Guidelines and Specifications for Flood Hazard Mapping Partners, Appendix A: Guidance for Aerial Mapping and Surveying [includes guidance on Light Detection and Ranging Systems (LIDAR)]
http://www.fema.gov/library/file;jsessionid=1E39C93AF9CD18EE125B3DFCA5A874B8.Worke r2Library?type=publishedFile\&file=frm gsaa.pdf\&fileid=2daefcd0-df08-11e0-9bf5001cc4568fb6
5. Federal Emergency Management Agency, Guidelines and Specifications for Flood Hazard Mapping Partners, Appendix M: data Capture Standards
http://www.fema.gov/library/file:jsessionid=1E39C93AF9CD18EE125B3DFCA5A874B8.Worke r2Library?type=publishedFile\&file=frm_ gsam.pdf\&fileid=cf85c9b0-df0f-11e0-9bf5001cc4568fb6

Vendor Submittal Checklist		Project: Merrimack Watershed	
Vendor: Photo Science, Inc		Reviewed By: Diane Rogers/James L. Huffines	
Section: Descriptive Project Information			Date: 16Jul12
Item	Included (Y/N)	Comments	
Metadata - Process Steps	Y		
Flight Reports - Pre-flight	Y		
Flight Reports - Post-flight	Y		
Base Station Point Shapefile	Y	NGS Base Stations	
Flight Lines As Flown Trajectories Polyline Shapefile	Y		
Flight Lines Calibration Polyline Shapefile	Y	Included with flight lines	
Flight Lines Planned Flight Lines Polyline Shapefile	Y		
Section: Survey Data			
Item	Included (Y/N)	Comments	
Ground Control - Accuracy Report	Y	From CompassData	
Ground Control - Shapefile and Final Coordinates	Y	From CompassData	
Ground Control - Final Report	Y	From CompassData	
Vertical Accuracy - Shapefile and Final Coordinates	Y	From CompassData	
Vertical Accuracy - FVA Accuracy Final Report	Y	From CompassData	
Vertical Accuracy - FVA Accuracy Testing Results	Y	From CompassData	
Section: Raw Point Cloud LiDAR			
Item	Included (Y/N)	Comments	
Project Area Coverage (100m Buffer) Polygon Shapefile	Y		
LiDAR Swath - LAS v1.2 or v1.3 < 2GB	NA	LAS data was delivered in tiled format	
LiDAR Swath - Project Swath Index Polygon Shapefile	NA	LAS data was delivered in tiled format	
Section: Classified Point Cloud LiDAR			
Item	Included (Y/N)	Comments	
Project Area Coverage (100m Buffer) Polygon Shapefile	Y		
LiDAR Tiles - LAS v1.2 or v1.3	Y		
LiDAR Tiles - Project Tile Index Polygon Shapefile	Y		

| Pre-flight Aerial Calibration Report Checklist | | Project: Merrimack Watershed |
| :--- | :---: | :--- | :--- |
| Vendor: Photo Science, Inc | Reviewed By: Diane Rogers | |
| | | |
| Section: Main | Included
 (Y/N) | Comments |
| Item | Y | |
| Planned flight lines (sufficient coverage, spacing,
 length) Jul 12 | | |
| Planned flight line Shapefile | Y | |
| Planned GPS stations | Y | In report |
| Planned Ground Control | Y | In report and Control Report |
| Calibration Plans | Y | Provided and in planned shapefiles |
| Vendor Quality Procedures | Y | In report |
| LiDAR sensor scan set - scan angle, sidelap, design
 pulse | Y | In report |
| Aircraft utilizes ABGPS | Y | In report |
| Sensor supports project design pulse density | Y | In report |
| Type of aircraft - supports project design parameters | Y | Cessna 206 and Piper Navajo 206 with Optech Gemini and
 Navajo with Leica ALS60 |
| Re-flight procedure - tracking, documenting, processing | Y | On Logs |
| Project design supports accuracy requirements of project | Y | In report |
| Project design accounts for land cover and terrain types | Y | In report |

Post-flight Aerial Acquisition and Calibration Report Checklist		Project: Merrimack Watershed	
Vendor: Photo Science, Inc.		Reviewed By: Diane Rogers	
Section: Flight Logs			Date: 16 Jul 12
Item	Included	Comments	
Flight logs - Job \#/name	Y	Included with flight logs	
Flight logs - Lift \#	Y	Included with flight logs	
Flight logs - Block or AOI	Y	Included with flight logs	
Flight logs - Date	Y	Included with flight logs	
Flight logs - Aircraft type	Y	Included with flight logs	
Flight logs - Aircraft tail \#	Y	Included with flight logs and report pg. 2	
Flight logs - Lines - \#	Y	Included with flight logs	
Flight logs - Lines - direction	Y	Included with flight logs	
Flight logs - Lines - start/stop	Y	Included with flight logs	
Flight logs - Lines - altitude	Y	Included with flight logs	
Flight logs - Lines - scan angle	Y	Included with flight logs	
Flight logs - Lines - speed	Y	Included with flight logs	
Flight logs - Conditions	Y	Included with flight logs	
Flight logs - Comments	Y	Included with flight logs	
Flight logs - Pilot name	Y	Included with flight logs	
Flight logs - Operator name	Y	Included with flight logs	
Flight logs - Automatic Gain Control switch setting	NA		
Flight logs - Laser pulse rate	Y	Included with flight logs and report	
Flight logs - Mirror rate	Y	Included with flight logs and report	
Flight logs - Field of view	Y	Included with flight logs and report	
Flight logs - Airport of operations	Y	Included with flight logs and report	
Flight logs - GPS base stations names or numbers	Y	Included with flight logs and report	

Section: GPS Base station			
Item	Included	Comments	
GPS base station - names	Y	Included in report and shapefile	
GPS base station - lat/longs	Y	Included in report and shapefile	
GPS base station - heights	Y	Included in report and shapefile	
GPS base station - map	Y	Included in report	
GPS base station - Base height (Ellipsoidal meters)	Y	Included in report and shapefile	
GPS base station - Max PDOP	Y	Included in report	
GPS base station - Map of locations	Y	Included in report and shapefile	
Section: GPS/IMU Quality	Y	Appendix C	
GPS quality - Max Horizontal GPS Variance (cm)	Y	Appendix C	
GPS quality - Max Vertical GPS Variance (cm)	Y	Appendix C	
GPS quality - separation plot	Y	Appendix C	
GPS quality - altitude plot	Y	Appendix C	
GPS quality - PDOP plot	Y	In report	
Plot of GPS distance from base station/s	Y	Appendix C	
Notes on GPS quality (High, Good, etc.)			
Section: Data Verification and Quality Control	Y	Included in report	
Description of data verification and QC process	Y	Included in report	
Results of verification and QC process steps			
Section: Spatial Data	Y	By Others	
Base Station Point Shapefile	Y	Provided	
Ground Control Point Shapefile	Y	Appendix C	
Project Area Coverage (100m Buffer) Polygon Shapefile	Y	Provided as part of the overall project shapefiles	
Flight Lines As Flown Trajectories Polyline Shapefile	Y	Provided	
Flight Lines Calibration Polyline Shapefile	Y	Provided	
Flight Lines Planned Flight Lines Polyline Shapefile	NA	Provided	
Project Swath Index Polygon Shapefile	Y		
Project Tile Index Polygon Shapefile			

Required Public Block Item Definitions:
File Signature - The file signature must contain the four characters "LASF", and it is required by the LAS specification.
File Source ID (Flight Line Number if this file was derived from an original flight line) - This field should be set to a value between 1 and 65,535 , inclusive. A value of zero (0) is interpreted to mean that an ID has not been assigned. In this case, processing software is free to assign any valid number. Note that this scheme allows a LIDAR project to contain up to 65,535 unique sources. A source can be considered an original flight line or it can be the result of merge and/or extract operations. All of the sources are the results of processing and are not based on the flight line number.
Global Encoding - This is a bit field used to indicate certain global properties about the file. The meaning of GPS Time in the Point Records 0 (not set) -> GPS time in the point record fields is GPS Week Time (the same as previous versions of LAS) 1 (set) $->$ GPS Time is standard GPS Time (satellite GPS Time) minus 1×109. The offset moves the time back to near zero to improve floating point resolution.

Version MajorlMinor - The version number consists of a major and minor field. The major and minor fields combine to form the number that indicates the format number of the current specification itself.
System Identifier - files often result from extraction, merging or modifying existing data files. Values should include: String identifying hardware ("ALS50"), "MERGE", "MODIFICATION", "EXTRACTION", "TRANSFORMATION", "OTHER" or a string up to 32 characters identifying the operation.
Generating Software - provides a mechanism for specifying which generating software package and version was used during LAS file creation (e.g. "TerraScan V-10.8", "REALM V-4.2" and etc.).
Header Size - The size, in bytes, of the Public Header Block itself
Offset to point data - The actual number of bytes from the beginning of the file to the first field of the first point record data field. This data offset must be updated if any software adds data from the Public Header Block or adds/removes data to/from the Variable Length Records.
Number of Variable Length Records - This field contains the current number of Variable Length Records. This number must be updated if the number of Variable Length Records changes at any time.
Point Data Format ID - The point data format ID corresponds to the point data record format type. LAS 1.2 define types 0, 1, 2 and 3 .
Point Data Record Length - The size, in bytes, of the Point Data Record
Number of point records - The total number of point records within the file
Number of points by return - This field contains an array of the total point records per return. The first unsigned long value will be the total number of records from the first return, and the second contains the total number for return two, and so forth up to five returns.
\mathbf{X}, \mathbf{Y}, and \mathbf{Z} scale factor - The scale factor fields contain a double floating point value that is used to scale the corresponding X , Y , and Z long values within the point records. The corresponding X, Y, and Z scale factor must be multiplied by the X, Y, or Z point record value to get the actual X , Y , or Z coordinate. For example, if the X, Y, and Z coordinates are intended to have two decimal point values, then each scale factor will contain the number 0.01 .
\mathbf{X}, \mathbf{Y}, and \mathbf{Z} offset - The offset fields should be used to set the overall offset for the point records. In general these numbers will be zero, but for certain cases the resolution of the point data may not be large enough for a given projection system. However, it should always be assumed that these numbers are used. So to scale a given X from the point record, take the point record X multiplied by the X scale factor, and then add the X offset. (Xcoordinate $=(\mathrm{Xrecord} * \mathrm{Xscale})+$ Xoffset, Ycoordinate $=($ Yrecord $*$ Yscale $)+$ Yoffset, Zcoordinate $=($ Zrecord $*$ Zscale $)+$ Zoffset $)$
Max and Min X, Y, and Z - The max and min data fields are the actual unscaled extents of the LAS point file data, specified in the coordinate system of the LAS data.

LAS Header Checklist			
Section: Variable Length Records	Included (Y/N)	Comments	Date: 20AUG2012
Item	Y	VLR present in LAS header	
GeoKeyDirectoryTag	Y	VLR present in LAS header	
User ID 'LASF_Projection'	Y	VLR present in LAS header	
Record ID: 34735	Y	VLR present in LAS header	
Length after Header	Y	VLR present in LAS header	
'GeoTiff Projection Keys'			

Required Variable Length Record Definitions:
Georeferencing Information - Georeferencing for the LAS format will use the same robust mechanism that was developed for the GeoTIFF standard. The variable length header records section will contain the same data that would be contained in the GeoTIFF key tags of a TIFF file. Since LAS is not a raster format and each point contains its own absolute location information, only 3 of the 6 GeoTIFF tags are necessary. The GeoKeyDirectoryTag (34735), GeoDoubleParamsTag (34736), and GeoASCIIParamsTag (34737) records are used. Only the GeoKeyDirectoryTag record is required. The GeoDoubleParamsTag and GeoASCIIParamsTag records may or may not be present, depending on the content of the GeoKeyDirectoryTag record.
GeoKeyDirectoryTag Record (mandatory) - User ID: LASF_Projection, Record ID: 34735. This record contains the key values that define the coordinate system.
GeoDoubleParamsTag Record (Optional) - User ID: LASF_Projection, Record ID: 34736. This record is simply an array of doubles that contain values referenced by tag sets in the GeoKeyDirectoryTag record.
GeoAsciiParamsTag Record (Optional) - User ID: LASF_Projection, Record ID: 34737. This record is simply an array of ASCII data. It contains many strings separated by null terminator characters which are referenced by position from data in the GeoKeyDirectoryTag record.

LAS Header Checklist			
Section: Point Data Record	Included (Y/N)	Comments	Date: 20AUG2012
Item	Y		
Point record format 1,3,4, or 5	Y		
X, Y, Z	Y		
Intensity	Y		
Edge of Flight Line	Y		
Scan Direction Flag	Y		
Return Number	Y		
Number of Returns (given pulse)	Y	$1,2,7,8,9,10,11,17$ and 18	
Classification	Y		
Scan Angle Rank (-90 to +90$)$	Y		
Point Source ID	Y		
GPS Time			

Required Point Data Record Definitions:
\mathbf{X}, \mathbf{Y}, and \mathbf{Z} - The X, Y, and Z values are stored as long integers. The X, Y, and Z values are used in conjunction with the scale values and the offset values to determine the coordinate for each point as described in the Public Header Block section.
Intensity - The integer representation of the pulse return magnitude
Edge of Flight Line - The Edge of Flight Line data bit has a value of 1 only when the point is at the end of a scan. It is the last point on a given scan line before it changes direction.
Scan Direction Flag - denotes the direction at which the scanner mirror was traveling at the time of the output pulse. A bit value of 1 is a positive scan direction, and a bit value of 0 is a negative scan direction (where positive scan direction is a scan moving from the left side of the in-track direction to the right side and negative the opposite).
Return Number - The Return Number is the pulse return number for a given output pulse. A given output laser pulse can have many returns, and they must be marked in sequence of return. The first return will have a Return Number of one, the second a Return Number of two, and so on up to five returns.
Number of Returns (for this emitted pulse) - The Number of Returns is the total number of returns for a given pulse. For example, a laser data point may be return two (Return Number) within a total number of five returns.
Scan Angle Rank - The Scan Angle Rank is a signed one-byte number with a valid range from -90 to +90 . The Scan Angle Rank is the angle (rounded to the nearest integer in the absolute value sense) at which the laser point was output from the laser system including the roll of the aircraft. The scan angle is within 1 degree of accuracy from +90 to -90 degrees. The scan angle is an angle based on 0 degrees being nadir, and -90 degrees to the left side of the aircraft in the direction of flight.

Point Source ID - This value indicates the file from which this point originated. Valid values for this field are 1 to 65,535 inclusive with zero being used for a special case discussed below. The numerical value corresponds to the File Source ID from which this point originated. Zero is reserved as a convenience to system implementers. A Point Source ID of zero implies that this point originated in this file. This implies that processing software should set the Point Source ID equal to the File Source ID of the file containing this point at some time during processing.
GPS Time - The GPS Time is the double floating point time tag value at which the point was acquired. It is GPS Week Time if the Global Encoding low bit is clear and POSIX Time if the Global Encoding low bit is set (see Global Encoding in the Public Header Block description).

Classification - Standard set of ASPRS classifications

Classification Value	Definition
0	Created, Never Classified
1	Unclassified
2	Ground
3	Low Vegetation
4	Medium Vegetation
5	High Vegetation
6	Building
7	Low Point (noise)
8	Model Key-point (mass point)
9	Water
10	Ignored Ground (breakline proximity)
11	Withheld if Withheld bit is not implemented in processing software
12	Overlap (Should not be included)
$13-31$	Reserved for ASPRS Definition

ONSISTENCY CHECKS		
FileName	1749	of 1749
CreationDate	1749	of 1749
Version	1749	of 1749
FileSourceIDHeader	0 of	1749
GeneratingSoftware	1749	of 1749
SystemID	1749	of 1749
ProjectID	1749	of 1749
MaxHeaderX	1749	of 1749
MaxHeaderY	1749	of 1749
MaxHeaderZ	1749	of 1749
MinHeaderX	1749	of 1749
MinHeaderY	1749	of 1749
MinHeaderZ	1749	of 1749
DataFormat	1749	of 1749
NumVLR	1749	of 1749
PointDataRecordLength	1749	of 1749
FileSize	1749	of 1749
MinStatsX	1749	of 1749
MinStatsY	1749	of 1749
MinStatsZ	1749	of 1749
MaxStatsX	1749	of 1749
MaxStatsY	1749	of 1749
MaxStatsZ	1749	of 1749
OffsetX	1749	of 1749
OffsetY	1749	of 1749
OffsetZ	1749	of 1749
ScaleX	1749	of 1749
ScaleY	1749	of 1749
ScaleZ	1749	of 1749
HeaderTotal	1749	of 1749
Header1stRet	1749	of 1749
Header2ndRet	1749	of 1749
Header3rdRet	1749	of 1749
Header4thRet	1749	of 1749
Header5thRet	1749	of 1749
StatsTotal	1749	of 1749
Stats1stRet	1749	of 1749
Stats2ndRet	1749	of 1749
Stats3rdRet	1749	of 1749
Stats4thRet	1749	of 1749
Stats5thRet	1749	of 1749
MinIntensityRange	1749	of 1749
MaxIntensityRange	1749	of 1749
MinEdgeOfFlightLine	1749	of 1749
MaxEdgeOfFlightLine	1749	of 1749
MinScanDirection	1749	of 1749
MaxScanDirection	1749	of 1749
MinScanAngle	1749	of 1749
MaxScanAngle	1749	of 1749
MinReturn	1749	of 1749
MaxReturn	1749	of 1749
MinPointSourceID	1749	of 1749
MaxPointSourceID	1749	of 1749

| GpsStartTime | 1749 of 1749 |
| :--- | :--- | :--- |
| GpsEndTime | 1749 of 1749 |
| Projection | 1749 of 1749 |
| VertDatum | 1749 of 1749 |
| HorzDatum | 1749 of 1749 |
| EPSGCode | 1749 of 1749 |
| VertUnits | 1749 of 1749 |

III

Project Information

Prepared By: James L. Huffines
Project Name: Memimack watershed
Sensor Info: NA
Required Nominal Pulse Spacing: 1
Vendor Name: PSI
Units: US Survey Feet
Percent of Extent Tolerance: Extents Not Checked
Date of Aquisition: Start: 8/20/2012 Finish: 8/20/2012

Metadata Information

Tile Index:
Path: C:\ FEMA\Region_1\MA\Memimack_Watershed\TopoAnalyst\Memimack_LDAR_Index.shp
Number of Polys: 0
Intensity:
Tile Index Attribute: Not Specified
Path to Data: Not Specified
Number of Data Files Matc hing Attribute: Not Specified
DEM:
Tile Index Attribute: DEM
Path to Data: B:\} \backslash FEMA_REGION_1 \backslash \text { Memimack_Watershed_MA\} 2 m D E M Number of Data Files Matching Attribute: 1749 out of 1749

LAS:

Tile Index Attribute: FileNa me
Path to Data: Z
MA\Memimack_Watershed \Memimack_Classified_LAS Number of Data Files Matching Attribute: 1749 out of 1749
spatial information solutions
one research boulevard, suite 105
starkville, mississippi 39759
http://www.spatialis.com

Tiled-Data Area

SIIspatial information solutions one research boulevard, suite 105
starkville, mississippi 39759
http://www.spatialis.com

LiDAR Accuracy Assessment Summary

LC Type	\# of Points	FVA	SVA	CVA
LAS				
ALL	76			0.899
Grass	20		0.893	
Open	4	0.263	0.206	
Forest	34		1.044	
Urban	18		0.433	
Total	76			
DEM				
ALL	76			
Grass	20			
Open	4			
Forest	34			
Urban	18			
Total	76			

Units: US Survey Feet

Coord inates and Offsets of Analyzed Locations

spatial information solutions one research boulevard, suite 105
starkville, mississippi 39759
http://www.spatialis.com
Coordinates and Offsets of Analyzed Locations (Continued)

spatial information solutions one research boulevard, suite 105
starkville, mississippi 39759
http://www.spatialis.com
Coordinates and Offsets of Analyzed Locations (Continued)

spatial information solutions one research boulevard, suite 105
starkville, mississippi 39759
http://www.spatialis.com
Coordinates and Offsets of Analyzed Locations (Continued)

spatial information solutions one research boulevard, suite 105
starkville, mississippi 39759
http://www.spatialis.com
Coordinates and Offsets of Analyzed Locations (Continued)

spatial information solutions one research boulevard, suite 105
starkville, mississippi 39759
http://www.spatialis.com
Coordinates and Offsets of Analyzed Locations (Continued)

spatial information solutions one research boulevard, suite 105
starkville, mississippi 39759
http://www.spatialis.com
Coordinates and Offsets of Analyzed Locations (Continued)

spatial information solutions one research boulevard, suite 105
starkville, mississippi 39759
http://www.spatialis.com
Coordinates and Offsets of Analyzed Locations (Continued)

spatial information solutions one research boulevard, suite 105
starkville, mississippi 39759
http://www.spatialis.com
Coordinates and Offsets of Analyzed Locations (Continued)

Coordinates and Offsets of Analyzed Locations (Continued)

Coordinates and Offsets of Analyzed Locations (Continued)

LAS

LandCoverType: Open
Fundamental Vertical Accuracy
Minimum DZ: -0.206
Maximum DZ: 0.085
Mean DZ: -0.077
Mean Magnitude DZ: 0.345
Number Observations: 4
Standard Deviation DZ; 0.127
RMSE Z 0.134
95\% Confidence LevelZZ 0.263
Units: US Survey Feet

Histogram

Min: -0.206
Max: 0.085
Number Of Bins: 20
Bin Interval: 0.015

LAS (Continued)

Supplemental Vertical Accuracy
La ndCover Type: Grass
Minimum DZ -0.279
Maximum DZ: 0.901
Mean DZ: 0.307
Mean Magnitude DZ: 0.58
Number Observations: 20
Sta ndard Deviation DZ: 0.284
RMSE Z: 0.41495th Percentile: 0.893Units: US Survey Feet

Histogram

Min: -0.279
Max: 0.901
Number Of Bins: 20
Bin Interval: 0.059

LAS (Continued)

Supplemental Vertical Accuracy

LandCoverType: Open
Minimum DZ: -0.206
Maximum DZ 0.085
Mean DZ -0.077
Mean Magnitude DZ: 0.345
Number Observations: 4
Standard Deviation DZ: 0.127
RMSE Z 0.134
95th Percentile: 0.206
Units: US Survey Feet

Histogram

Min: -0.206
Max: 0.085
Number Of Bins: 20
Bin Interval: 0.015

LAS (Continued)

Supplemental Vertical Accuracy
La ndCover Type: Forest
Minimum DZ -0.188
Maximum DZ: 1.319
Mean DZ: 0.365
Mean Magnitude DZ: 0.622
Number Observations: 34
Sta ndard Deviation DZ: 0.326
RMSE Z: 0.486

Histogram

Min: -0.188
Max: 1.319
Number Of Bins: 20
Bin Interval: 0.075

LAS (Continued)

Supplemental Vertical Accuracy
LandCoverType: Urban
Minimum DZ: -0.399
Maximum DZ 0.433
Mean DZ: 0.083
Mean Magnitude DZ; 0.436
Number Observations: 18
Standard Deviation DZ 0.222RMSE Z 0.23195th Percentile: 0.433Units: US Survey Feet

Histogram

Min: -0.399
Max: 0.433
Number Of Bins: 20
Bin Interval: 0.042

LAS (Continued)
La ndCover Type: ALL Consolidated Vertical Accuracy
Minimum DZ: -0.399
Ma ximum DZ: 1.319
Mean DZ: 0.26
Mean Magnitude DZ: 0.56
Number Observa tions: 76
Sta nda rd Devia tion DZ: 0.314
RMSE Z: 0.405
95th Percentile: 0.899
Units: US Survey Feet

Histogram

Min: -0.399
Max: 1.319
Number Of Bins: 20
Bin Interval: 0.086

FEMA Region I

 Merrimack Watershed LiDAR DatasetUnclassified LiDAR Micro Review

Quality Assurance Forms
7/20/2012

Fig. 1

Fig. 2 - Asphalt taxiway shown as gap in Point Cloud

| Unclassified Point Cloud Data Checklist | Project: Merrimack | |
| :--- | :--- | :--- | :--- |
| Vendor: | Reviewed By: MCC | |
| LAS Tiles: 19_03154707.las; 19_03154708.las; 19_03164707.las; 19_03164708.las; 19_03184707.las; 19_03184708.las | | |
| Item | P/F/NA | Comments |
| Scan and profile | P | |
| Excessive Noise | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | |
| Returns | P | |
| Edge matching | P | |

| Unclassified Point Cloud Data Checklist | Project: Merrimack | |
| :--- | :--- | :--- | :--- |
| Vendor: | Reviewed By: MCC | |
| LAS Tiles: 19_03034722.las; 19_03034724.las; 19_03034725.las; 19_03044722.las; 19_03044724.las; 19_03064722.las | | |
| Item | P/F/NA | Comments |
| Scan and profile | P | |
| Excessive Noise | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | |
| Returns | P | |
| Edge matching | P | |

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

| Unclassified Point Cloud Data Checklist | Project: Merrimack | |
| :--- | :--- | :--- | :--- |
| Vendor: | Reviewed By: MCC | |
| LAS Tiles: 19_02964731.las; 19_02964732.las; 19_02974732.las; 19_02974734.las | | |
| Item | P/F/NA | Comments |
| Scan and profile | P | |
| Excessive Noise | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | |
| Returns | P | |
| Edge matching | P | |

Fig. 9

Fig. 10

Fig. 11

Fig. 13

| Unclassified Point Cloud Data Checklist | Project: Merrimack | |
| :--- | :--- | :--- | :--- |
| Vendor: | Reviewed By: MCC | |
| LAS Tiles: 19_02724743.las; 19_02724744.las; 19_02734743.las; 19_0273474.las | | |
| Item | P/F/NA | Comments |
| Scan and profile | | See Fig. 15 below - scanline does not affect bare earth |
| Excessive Noise | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | |
| Returns | P | |
| Edge matching | P | |

Fig. 15 - Scanline - 19_02734744.las \& 19_02734743.las

Unclassified Point Cloud Data Checklist			Project: Merrimack Watershed	
Vendor:	Reviewed By: Myra Hupfeld-Cousineau			
LAS Tiles: 19_03214798.las	P/F/NA	Comments		
Item	P			
Scan and profile	P			
Excessive Noise	Pate: 7/20/12			
Elevation Steps	P			
Gaps/Voids	P			
Returns	NA			
Edge matching				

Unclassified Point Cloud Data Checklist Vendor:	Project: Merrimack Watershed		
	Reviewed By: Myra Hupfeld-Cousineau		
LAS Tiles: 19_02854803.las,			Date: 7/20/12
Item	P/F/NA	Comments	
Scan and profile	F	Few points below ground over river	
Excessive Noise	P		
Elevation Steps	P		
Gaps/Voids	P		
Returns	P		
Edge matching	NA		

Unclassified Point Cloud Data Checklist	Project: Merrimack Watershed		
Vendor:	Reviewed By: Myra Hupfeld-Cousineau		
LAS Tiles: 19_03154806.las			Date: 7/20/12
Item	P/F/NA	Comments	
Scan and profile	P	Nice slope down to lake	
Excessive Noise	P		
Elevation Steps	P		
Gaps/Voids	P		
Returns	P		
Edge matching	P		

| Unclassified Point Cloud Data Checklist | | |
| :--- | :--- | :--- | :--- |
| Vendor: | Project: Merrimack Watershed | |
| LAS Tiles: 19_03104816.las | Reviewed By: Myra Hupfeld-Cousineau | |
| Item | P/NA | Comments |
| Scan and profile | Pate: 7/20/12 | |
| Excessive Noise | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | |
| Returns | P | |
| Edge matching | NA | |

		Project: Merrimack Watershed	
Vendor:		Reviewed By: Myra Hupfeld-Cousineau	
LAS Tiles: 19_03024790.las			Date: 7/20/12
Item	P/F/NA	Comments	
Scan and profile	P		
Excessive Noise	P		
Elevation Steps	P		
Gaps/Voids	P	See bog area below	
Returns	P		
Edge matching	NA		

Unclassified Point Cloud Data Checklist	Project: Merrimack Watershed Vendor:		Reviewed By: Myra Hupfeld-Cousineau
LAS Tiles: 19_02914794.las	P/F/NA	Comments	
Item	P		
Scan and profile	P		
Excessive Noise	P		
Elevation Steps	P		
Gaps/Voids	P		
Returns	P		
Edge matching			

| Unclassified Point Cloud Data Checklist | | |
| :--- | :--- | :--- | :--- |
| Vendor: | | |
| LAS Tiles: 19_02904796.las | Reviewed By: Myra Hupfeld-Cousineau | |
| Item | P/F/NA | Comments |
| Scan and profile | P | |
| Excessive Noise | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | |
| Returns | P | |
| Edge matching | P | |

Unclassified Point Cloud Data Checklist		Project: Merrimack Watershed	
Vendor:		Reviewed By: Myra Hupfeld-Cousineau	
LAS Tiles: 19_02884797.las			Date: 7/20/12
Item	P/F/NA	Comments	
Scan and profile	P		
Excessive Noise	P		
Elevation Steps	P		
Gaps/Voids	P		
Returns	P		
Edge matching	P		

| Unclassified Point Cloud Data Checklist | Project: Merrimack Watershed | |
| :--- | :--- | :--- | :--- |
| Vendor: | Reviewed By: Myra Hupfeld-Cousineau | |
| LAS Tiles: 19_02904797.las | P/F/NA | Comments |
| Item | P | |
| Scan and profile | P | |
| Excessive Noise | P | |
| Elevation Steps | P | Good collection over swamp area. See images below. |
| Gaps/Voids | P | |
| Returns | P | |
| Edge matching | | |

Unclassified Point Cloud Data Checklist	Project: Merrimack Watershed		
Vendor:	Reviewed By: Myra Hupfeld-Cousineau		
LAS Tiles: 19_03144806.las			Date: 7/20/12
Item	P/F/NA	Comments	
Scan and profile	P		
Excessive Noise	P		
Elevation Steps	P		
Gaps/Voids	P		
Returns	P		
Edge matching	P		

Unclassified Point Cloud Data Checklist Vendor:	Project: Merrimack Watershed		
	Reviewed By: Myra Hupfeld-Cousineau		
LAS Tiles: 19_03064785.las			Date: 7/20/12
Item	P/F/NA	Comments	
Scan and profile	P		
Excessive Noise	P		
Elevation Steps	P		
Gaps/Voids	P		
Returns	P		
Edge matching	P		

| Unclassified Point Cloud Data Checklist | | |
| :--- | :--- | :--- | :--- |
| Vendor: | | |
| LAS Tiles: 19_03064786.las | Reviewed By: Myra Hupfeld-Cousineau | |
| Item | P/F/NA | Comments |
| Scan and profile | P | |
| Excessive Noise | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | |
| Returns | P | |
| Edge matching | P | |

| Unclassified Point Cloud Data Checklist | | |
| :--- | :--- | :--- | :--- |
| Vendor: | | |
| LAS Tiles: 19_03084788.las | Reviewed By: Myra Hupfeld-Cousineau | |
| Item | P/F/NA | Comments |
| Scan and profile | P | |
| Excessive Noise | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | |
| Returns | P | |
| Edge matching | P | |

Unclassified Point Cloud Data Checklist Vendor:		Project: Merrimack Watershed	
		Reviewed By: Myra Hupfeld-Cousineau	
LAS Tiles: 19_03084786.las			Date: 7/20/12
Item	P/F/NA	Comments	
Scan and profile	P		
Excessive Noise	P		
Elevation Steps	P		
Gaps/Voids	P		
Returns	P		
Edge matching	P		

Unclassified Point Cloud Data Checklist	Project: Merrimack Watershed Vendor:		Reviewed By: Myra Hupfeld-Cousineau
LAS Tiles: 19_03004803.las	P/F/NA	Comments	
Item	P		
Scan and profile	P		
Excessive Noise	P		
Elevation Steps	P		
Gaps/Voids	P		
Returns	NA		
Edge matching			

Kasey Kahne \#1

| Unclassified Point Cloud Data Checklist | | |
| :--- | :--- | :--- | :--- |
| Vendor: | | |
| LAS Tiles: 19_02924788.las | Reviewed By: Myra Hupfeld-Cousineau | |
| Item | P/F/NA | Comments |
| Scan and profile | P | |
| Excessive Noise | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | |
| Returns | P | |
| Edge matching | NA | |

| Unclassified Point Cloud Data Checklist | Project: Merrimack Watershed | |
| :--- | :--- | :--- | :--- |
| Vendor: | | |
| LAS Tiles: 19_02944788.las | P/F/NA | Comments |
| Item | P | |
| Scan and profile | P | |
| Excessive Noise | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | |
| Returns | NA | |
| Edge matching | | |

| Unclassified Point Cloud Data Checklist | Project: Merrimack Watershed | |
| :--- | :--- | :--- | :--- |
| Vendor: | Reviewed By: Myra Hupfeld-Cousineau | |
| LAS Tiles: 19_02974785.las | P/F/NA | Comments |
| Item | P | |
| Scan and profile | P | |
| Excessive Noise | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | |
| Returns | P | |
| Edge matching | | |

| Unclassified Point Cloud Data Checklist | | |
| :--- | :--- | :--- | :--- |
| Vendor: | Project: Merrimack Watershed | |
| LAS Tiles: 19_02864756.las | P/F/NA | Comments |
| Item | P | |
| Scan and profile | P | |
| Excessive Noise | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | |
| Returns | N/A | |
| Edge matching | | |

| Unclassified Point Cloud Data Checklist | | |
| :--- | :--- | :--- | :--- |
| Vendor: | | |
| LAS Tiles: 19_02704764.las | Reviewed By: Myra Hupfeld-Cousineau | |
| Item | P/F/NA | Comments |
| Scan and profile | P | |
| Excessive Noise | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | |
| Returns | P | |
| Edge matching | NA | |

| Unclassified Point Cloud Data Checklist | | |
| :--- | :--- | :--- | :--- |
| Vendor: | | |
| LAS Tiles: 19_02804774.las | Reviewed By: Myra Hupfeld-Cousineau | |
| Item | P/F/NA | Comments |
| Scan and profile | P | |
| Excessive Noise | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | |
| Returns | P | |
| Edge matching | NA | |

Unclassified Point Cloud Data Checklist			Project: Merrimack Watershed	
Vendor:			Reviewed By: Myra Hupfeld-Cousineau	
LAS Tiles: 19_02984778.las	P/F/NA	Comments		
Item	P			
Scan and profile	P			
Excessive Noise	P			
Elevation Steps	P			
Gaps/Voids	P			
Returns	NA			
Edge matching				

| Unclassified Point Cloud Data Checklist | Project: Merrimack Watershed | |
| :--- | :--- | :--- | :--- |
| Vendor: | Reviewed By: Myra Hupfeld-Cousineau | |
| LAS Tiles: 19_02974761.las and 19_02984761.las | P/F/NA | Comments |
| Item | P | |
| Scan and profile | P | |
| Excessive Noise | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | |
| Returns | P | |
| Edge matching | | |

Unclassified Point Cloud Data Checklist			
Vendor:	Project: Merrimack Watershed LAS Tiles: 19_02974780.las Item		P/F/NA
Scan	Comments		
Scand profile	P		
Excessive Noise	P		
Elevation Steps	P		
Gaps/Voids	P		
Returns	P		
Edge matching	P		

| Unclassified Point Cloud Data Checklist | | |
| :--- | :--- | :--- | :--- |
| Vendor: | | Rejeject: Merrimack Watershed |
| LAS Tiles: 19_02974782.las and 19_02964782.las | Myra Hupfeld-Cousineau | |
| Item | P/F/NA | Comments |
| Scan and profile | P | |
| Excessive Noise | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | |
| Returns | P | |
| Edge matching | P | |

Unclassified Point Cloud Data Checklist	Project: Merrimack Watershed		
Vendor:		Reviewed By: Myra Hupfeld-Cousineau	
LAS Tiles: 19_03044760.las, 19_03044761.las and 19_03044762.las			Date: 7/20/12
Item	P/F/NA	Comments	
Scan and profile	P		
Excessive Noise	P		
Elevation Steps	P		
Gaps/Voids	P		
Returns	P		
Edge matching	P		

Edgematching good

| Unclassified Point Cloud Data Checklist | Project: Merrimack Watershed | |
| :--- | :--- | :--- | :--- |
| Vendor: | Reviewed By: Myra Hupfeld-Cousineau | |
| LAS Tiles: 19_02864766.las, 19_02884766.las and 19_02854766.las | P/F/NA | Comments |
| Item | P | |
| Scan and profile | P | |
| Excessive Noise | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | |
| Returns | P | |
| Edge matching | | |

Unclassified Point Cloud Data Checklist	Project: Merrimack Watershed		
Vendor:	Reviewed By: Myra Hupfeld-Cousineau		
LAS Tiles: 19_02974784.las			Date: 7/20/12
Item	P/F/NA	Comments	
Scan and profile	P		
Excessive Noise	P		
Elevation Steps	P		
Gaps/Voids	P		
Returns	P		
Edge matching	P	See image below.	

Unclassified Point Cloud Data Checklist	Project: Merrimack Watershed		
Vendor:	Reviewed By: Myra Hupfeld-Cousineau		
LAS Tiles: 19_02964784.las			Date: 7/20/12
Item	P/F/NA	Comments	
Scan and profile			
Excessive Noise			
Elevation Steps			
Gaps/Voids			
Returns			
Edge matching			

Unclassified Point Cloud Data Checklist	Project: Merrimack Watershed		
Vendor:	Reviewed By: Myra Hupfeld-Cousineau		
LAS Tiles: 19_02924718.las			Date: 7/20/12
Item	P/F/NA	Comments	
Scan and profile	P		
Excessive Noise	P		
Elevation Steps	P		
Gaps/Voids	P		
Returns	P		
Edge matching	P		

| Unclassified Point Cloud Data Checklist | | |
| :--- | :--- | :--- | :--- |
| Vendor: | Project: Merrimack Watershed | |
| LAS Tiles: 19_02664734.las | Reviewed By: Myra Hupfeld-Cousineau | |
| Item | P/F/NA | Comments |
| Scan and profile | P | |
| Excessive Noise | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | |
| Returns | P | |
| Edge matching | P | |

Unclassified Point Cloud Data Checklist	Project: Merrimack Watershed		
Vendor:		Reviewed By: Myra Hupfeld-Cousineau	
LAS Tiles: 19_02964748.las			Date: 7/20/12
Item	P/F/NA	Comments	
Scan and profile	P		
Excessive Noise	P		
Elevation Steps	P		
Gaps/Voids	P		
Returns	P		
Edge matching	P		

FEMA Region I Merrimack Watershed LiDAR Dataset

Classified LiDAR Micro Review

Quality Assurance Forms
7/20/2012

FEMA Risk MAP Quality Assurance Comment Form

Contract: HSFEHQ-09-D-0370	Task Order: HSFE01-11-J-0010		Case Number: 12-01-1080S	FEMA Region: I
Project Name: Merrimack Watershed \quad Task: LAS Classified Point Cloud QA Review Submittal Contents: 1749 Classified LAS files				
Submitted By: PSI Submittal Date:	6/12/2012	Reviewed	Review Date: 8/10/12	Verification Date: 9/5/2012
Applicable FEMA Guidelines and Specifications:Volume1: FEMA PM 61, USGS-NGP LiDAR Guidelines and Base Specification v13(ILMF), and ASPRS LAS format v12				

$\#$	Item	Reviewer Comment	Agree	Submitter Response	Verification
1	19_02964713.las	Artifacts in the bare earth		Surface Model looks correct. Project Horizontal Datum is in Meters, while the Vertical Datum is in US Feet. When cutting profiles, or looking at the surface, there is a scale in the Vertical plane. This causes the surface to look incorrect in small mounds or divots that are exaggerated. The surface has been reviewed for anomalies and been found to meet the criteria for bare earth cleanup.	JLH

| Classified Point Cloud Data Visual Checklist | Project: Merrimack | |
| :--- | :--- | :--- | :--- |
| Vendor: | Reviewed By: Myra Hupfeld-Cousineau | |
| LAS File: 19_03104702.las | P/F/NA | Comments |
| Item | P | |
| Scanlines removed from bare earth | P | |
| Excessive Noise in bare earth | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | Matches other Merrimack tiles |
| Edge matching between tiles | P | |
| Artifacts have been removed from bare earth (vegetation, buildings,
 bridges, etc.) | | |
| Proper definition of roads and drainage patterns | P | |
| "Over-smoothed" areas during filtering | P | |
| Corn Row Effects | P | |
| Mounds and Divots | P | |
| Other anomalies | | |

| Classified Point Cloud Data Visual Checklist | Project: Merrimack | |
| :--- | :--- | :--- | :--- |
| Vendor: | Reviewed By: Myra Hupfeld-Cousineau | |
| LAS File: 19_03124702.las | P/F/NA | Comments |
| Item | P | |
| Scanlines removed from bare earth | P | |
| Excessive Noise in bare earth | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | Matches other Merrimack tiles |
| Edge matching between tiles | P | Dirt piles |
| Artifacts have been removed from bare earth (vegetation, buildings,
 bridges, etc.) | P | |
| Proper definition of roads and drainage patterns | P | |
| "Over-smoothed" areas during filtering | P | |
| Corn Row Effects | P | |
| Mounds and Divots | P | |
| Other anomalies | | |

Classified Point Cloud Data Visual Checklist	Project: Merrimack		
Vendor:	Reviewed By: Myra Hupfeld-Cousineau		
LAS File: 19_03124704.las			Date: 07/20/2012
Item	P/F/NA	Comments	
Scanlines removed from bare earth	P		
Excessive Noise in bare earth	P		
Elevation Steps	P		
Gaps/Voids	P		
Edge matching between tiles	P	Matches other Merrimack tiles	
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)	P	Piles of dirt	
Proper definition of roads and drainage patterns	P		
"Over-smoothed" areas during filtering	P		
Corn Row Effects	P		
Mounds and Divots	P		
Other anomalies	P		

Classified Point Cloud Data Visual Checklist	Project: Merrimack		
Vendor:	Reviewed By: Myra Hupfeld-Cousineau		
LAS File: 19_03104704.las			Date: 07/20/2012
Item	P/F/NA	Comments	
Scanlines removed from bare earth	P		
Excessive Noise in bare earth	P		
Elevation Steps	P		
Gaps/Voids	P		
Edge matching between tiles	P	Matches other Merrimack tiles	
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)	P	Dirt piles	
Proper definition of roads and drainage patterns	P		
"Over-smoothed" areas during filtering	P		
Corn Row Effects	P		
Mounds and Divots	P		
Other anomalies	P		

Classified Point Cloud Data Visual Checklist	Project: Merrimack Vendor:		Reviewed By: Myra Hupfeld-Cousineau	
LAS File: 19_03154704.las, 19_03164704.las, 19_03184704.las	P/F/NA	Comments		
Item	P			
Scanlines removed from bare earth	P			
Excessive Noise in bare earth	P			
Elevation Steps	P			
Gaps/Voids	P	Matches other Merrimack tiles		
Edge matching between tiles	P			
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)	P			
Proper definition of roads and drainage patterns	P			
"Over-smoothed" areas during filtering	P			
Corn Row Effects	P			
Mounds and Divots	P			
Other anomalies				

Classified Point Cloud Data Visual Checklist	Project: Merrimack		
Vendor:	Reviewed By: Myra Hupfeld-Cousineau		
LAS File: 19_03204704.las			Date: 07/27/2012
Item	P/F/NA	Comments	
Scanlines removed from bare earth	P		
Excessive Noise in bare earth	P		
Elevation Steps	P		
Gaps/Voids	P		
Edge matching between tiles	P	Matches other Merrimack tiles	
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)	P		
Proper definition of roads and drainage patterns	P		
"Over-smoothed" areas during filtering	P		
Corn Row Effects	P		
Mounds and Divots	P		
Other anomalies	P		

Classified Point Cloud Data Visual Checklist			Project: Merrimack	
Vendor:	Reviewed By: Myra Hupfeld-Cousineau			
LAS File: 19_03204706.las	P/F/NA	Comments		
Item	P			
Scanlines removed from bare earth	P			
Excessive Noise in bare earth	P			
Elevation Steps	P			
Gaps/Voids	P			
Edge matching between tiles	P			
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)				
Proper definition of roads and drainage patterns	P			
"Over-smoothed" areas during filtering	P			
Corn Row Effects	P			
Mounds and Divots	P			
Other anomalies	P			

Classified Point Cloud Data Visual Checklist			Project: Merrimack	
Vendor:	Reviewed By: Myra Hupfeld-Cousineau			
LAS File: 19_03204707.las	P/F/NA	Comments		
Item	P			
Scanlines removed from bare earth	P			
Excessive Noise in bare earth	P			
Elevation Steps	P			
Gaps/Voids	P	Matches other Merrimack tiles		
Edge matching between tiles	P			
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)	P			
Proper definition of roads and drainage patterns	P			
"Over-smoothed" areas during filtering	P			
Corn Row Effects	P			
Mounds and Divots	P	End of extent		
Other anomalies				

Classified Point Cloud Data Visual Checklist	Project: Merrimack		
Vendor:	Reviewed By: Myra Hupfeld-Cousineau		
LAS File: 19_03164706.las and 19_03154706.las	P		
Item	P	Comments	
Scanlines removed from bare earth	P		
Excessive Noise in bare earth	P		
Elevation Steps	P	USGS tiles	
Gaps/Voids	P	Culvert No visible bridge deck on ortho	
Edge matching between tiles	P		
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)	P		
Proper definition of roads and drainage patterns	P		
"Over-smoothed" areas during filtering	P		
Corn Row Effects	P		
Mounds and Divots			
Other anomalies			

Classified Point Cloud Data Visual Checklist	Project: Merrimack		
Vendor:	Reviewed By: Myra Hupfeld-Cousineau		
LAS File: 19_03184708.las, 19_03164707.las, 19_03164708.las, a	3184710.		Date: 07/31/2012
Item	P/F/NA	Comments	
Scanlines removed from bare earth	P		
Excessive Noise in bare earth	P		
Elevation Steps	P		
Gaps/Voids	P		
Edge matching between tiles	P		
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)	P		
Proper definition of roads and drainage patterns	P		
"Over-smoothed" areas during filtering	P		
Corn Row Effects	P		
Mounds and Divots	P		
Other anomalies	P		

Classified Point Cloud Data Visual Checklist	Project: Merrimack		
Vendor:	Reviewed By: Myra Hupfeld-Cousineau		
LAS File: 19_03154707.las			Date: 07/31/2012
Item	P/F/NA	Comments	
Scanlines removed from bare earth	P		
Excessive Noise in bare earth	P		
Elevation Steps	P		
Gaps/Voids	P		
Edge matching between tiles	P		
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)	P	Construction area, mounds of dirt	
Proper definition of roads and drainage patterns	P		
"Over-smoothed" areas during filtering	P		
Corn Row Effects	P		
Mounds and Divots	P		
Other anomalies	P		

Classified Point Cloud Data Visual Checklist	Project: Merrimack		
Vendor:	Reviewed By: Myra Hupfeld-Cousineau		
LAS File: 19_03154708.las 19_03154710.las, 19_03144710.las, and 19_03124710.las			Date: 07/31/2012
Item	P/F/NA	Comments	
Scanlines removed from bare earth	P		
Excessive Noise in bare earth	P		
Elevation Steps	P		
Gaps/Voids	P		
Edge matching between tiles	P		
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)	P		
Proper definition of roads and drainage patterns	P		
"Over-smoothed" areas during filtering	P		
Corn Row Effects	P		
Mounds and Divots	P		
Other anomalies	P		

Classified Point Cloud Data Visual Checklist	Project: Merrimack		
Vendor:	Reviewed By: Myra Hupfeld-Cousineau		
LAS File: 19_02964713.las			Date: 07/31/2012
Item	P/F/NA	Comments	
Scanlines removed from bare earth	P		
Excessive Noise in bare earth	P		
Elevation Steps	P		
Gaps/Voids	P		
Edge matching between tiles	NA		
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)	F		
Proper definition of roads and drainage patterns	P		
"Over-smoothed" areas during filtering	P		
Corn Row Effects	P		
Mounds and Divots	F		
Other anomalies	P		

| Classified Point Cloud Data Visual Checklist | Project: Merrimack | |
| :--- | :--- | :--- | :--- |
| Vendor: | Reviewed By: Myra Hupfeld-Cousineau | |
| LAS File: 19_03064720.las and 19_03084720.las | P/F/NA | Comments |
| Item | P | |
| Scanlines removed from bare earth | P | |
| Excessive Noise in bare earth | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | |
| Edge matching between tiles | P | |
| Artifacts have been removed from bare earth (vegetation, buildings,
 bridges, etc.) | P | |
| Proper definition of roads and drainage patterns | P | |
| "Over-smoothed" areas during filtering | P | |
| Corn Row Effects | P | |
| Mounds and Divots | P | |
| Other anomalies | | |

| Classified Point Cloud Data Visual Checklist | Project: Merrimack | |
| :--- | :--- | :--- | :--- |
| Vendor: | Reviewed By: Myra Hupfeld-Cousineau | |
| LAS File: 19_03064722.las, 19_03044722.las, and 19_03034722.las | P/F/NA | Comments |
| Item | P | |
| Scanlines removed from bare earth | P | |
| Excessive Noise in bare earth | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | |
| Edge matching between tiles | P | |
| Artifacts have been removed from bare earth (vegetation, buildings,
 bridges, etc.) | P | |
| Proper definition of roads and drainage patterns | P | |
| "Over-smoothed" areas during filtering | P | |
| Corn Row Effects | P | |
| Mounds and Divots | P | |
| Other anomalies | | |

Classified Point Cloud Data Visual Checklist	Project: Merrimack		
Vendor:	Reviewed By: Myra Hupfeld-Cousineau		
LAS File: 19_03044724.las			Date: 08/01/2012
Item	P/F/NA	Comments	
Scanlines removed from bare earth	P		
Excessive Noise in bare earth	P		
Elevation Steps	P		
Gaps/Voids	P		
Edge matching between tiles	P		
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)	P		
Proper definition of roads and drainage patterns	P		
"Over-smoothed" areas during filtering	P		
Corn Row Effects	P		
Mounds and Divots	P		
Other anomalies	P		

Classified Point Cloud Data Visual Checklist	Project: Merrimack	
Vendor:	Reviewed By: Myra Hupfeld-Cousineau	
LAS File: 19_03064725.las, 19_03064726.las, 19_03044726.las, 19_02624726.las, and 19_03044725.las		
Item	P/F/NA	
Scanlines removed from bare earth	Comments	
Excessive Noise in bare earth	P	
Elevation Steps	P	
Gaps/Voids	P	
Edge matching between tiles	P	
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)	P	
Proper definition of roads and drainage patterns	P	
"Over-smoothed" areas during filtering	P	
Corn Row Effects	P	
Mounds and Divots	P	$\mathbf{1 9 _ 0 3 0 4 4 7 2 5 . l a s ~ c o n s t r u c t i o n ~ s i t e ~}$
Other anomalies	P	

| Classified Point Cloud Data Visual Checklist | Project: Merrimack | |
| :--- | :--- | :--- | :--- |
| Vendor: | Reviewed By: Myra Hupfeld-Cousineau | |
| LAS File: 19_03044728.las | P/F/NA | Comments |
| Item | P | |
| Scanlines removed from bare earth | P | |
| Excessive Noise in bare earth | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | |
| Edge matching between tiles | P | |
| Artifacts have been removed from bare earth (vegetation, buildings,
 bridges, etc.) | | |
| Proper definition of roads and drainage patterns | P | |
| "Over-smoothed" areas during filtering | P | |
| Corn Row Effects | P | |
| Mounds and Divots | F | |
| Other anomalies | P | |

| Classified Point Cloud Data Visual Checklist | | Project: Merrimack |
| :--- | :--- | :--- | :--- |
| Vendor: | Reviewed By: Myra Hupfeld-Cousineau | |
| LAS File: 19_03044730.las, 19_03064730.las, and 19_03084730.las | P/F/NA | Comments |
| Item | P | |
| Scanlines removed from bare earth | P | |
| Excessive Noise in bare earth | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | |
| Edge matching between tiles | P | |
| Artifacts have been removed from bare earth (vegetation, buildings,
 bridges, etc.) | P | |
| Proper definition of roads and drainage patterns | P | |
| "Over-smoothed" areas during filtering | P | |
| Corn Row Effects | P | |
| Mounds and Divots | P | |
| Other anomalies | | |

| Classified Point Cloud Data Visual Checklist | Project: Merrimack | |
| :--- | :--- | :--- | :--- |
| Vendor: | Reviewed By: Myra Hupfeld-Cousineau | |
| LAS File: 19_03094730.las, 19_03124730.las, and 19_03104730.las | P/F/NA | Comments |
| Item | P | |
| Scanlines removed from bare earth | P | |
| Excessive Noise in bare earth | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | |
| Edge matching between tiles | P | |
| Artifacts have been removed from bare earth (vegetation, buildings,
 bridges, etc.) | P | |
| Proper definition of roads and drainage patterns | P | |
| "Over-smoothed" areas during filtering | P | |
| Corn Row Effects | P | |
| Mounds and Divots | P | Quarry |
| Other anomalies | | |

Classified Point Cloud Data Visual Checklist			Project: Merrimack	
Vendor:	Reviewed By: Myra Hupfeld-Cousineau			
LAS File: 19_03124731.las and 19_03144731.las	P/F/NA	Comments		
Item	P			
Scanlines removed from bare earth	P			
Excessive Noise in bare earth	P			
Elevation Steps	P			
Gaps/Voids	P			
Edge matching between tiles 08/01/2012				
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)	P			
Proper definition of roads and drainage patterns	P			
"Over-smoothed" areas during filtering	P			
Corn Row Effects	P			
Mounds and Divots	F	Divots		
Other anomalies	P			

Classified Point Cloud Data Visual Checklist			Project: Merrimack
Vendor:	Reviewed By: Myra Hupfeld-Cousineau		
LAS File: 19_03144732.las, 19_03154732.las, and 19_03154734.las	P/F/NA	Comments	
Item	P		
Scanlines removed from bare earth	P		
Excessive Noise in bare earth	P		
Elevation Steps	P		
Gaps/Voids	P		
Edge matching between tiles	P		
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)	P		
Proper definition of roads and drainage patterns	P		
"Over-smoothed" areas during filtering	P		
Corn Row Effects	P		
Mounds and Divots	P		
Other anomalies			

Classified Point Cloud Data Visual Checklist	Project: Merrimack		
Vendor:	Reviewed By: Myra Hupfeld-Cousineau		
LAS File: 19_03004731.las, 19_03004732.las and 19_03004734.las			Date: 08/01/2012
Item	P/F/NA	Comments	
Scanlines removed from bare earth	P		
Excessive Noise in bare earth	P		
Elevation Steps	P		
Gaps/Voids	P		
Edge matching between tiles	P	Matches other Merrimack tiles	
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)	P		
Proper definition of roads and drainage patterns	P		
"Over-smoothed" areas during filtering	P		
Corn Row Effects	P		
Mounds and Divots	P		
Other anomalies	P		

Classified Point Cloud Data Visual Checklist	Project: Merrimack		
Vendor:	Reviewed By: Myra Hupfeld-Cousineau		
LAS File: 19_03004734.las and 19_03004736.las			Date: 08/01/2012
Item	P/F/NA	Comments	
Scanlines removed from bare earth	P		
Excessive Noise in bare earth	P		
Elevation Steps	P		
Gaps/Voids	P		
Edge matching between tiles	P	Matches other Merrimack tiles	
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)	F	Check buildings 19_03004736	
Proper definition of roads and drainage patterns	P		
"Over-smoothed" areas during filtering	P		
Corn Row Effects	P		
Mounds and Divots	P	Dirt piles	
Other anomalies	P		

| Classified Point Cloud Data Visual Checklist | Project: Merrimack | |
| :--- | :--- | :--- | :--- |
| Vendor: | Reviewed By: Myra Hupfeld-Cousineau | |
| LAS File: 19_02984736.las, 19_02974736.las | P/F/NA | Comments |
| Item | P | |
| Scanlines removed from bare earth | P | |
| Excessive Noise in bare earth | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | Matches other Merrimack tiles |
| Edge matching between tiles | P | |
| Artifacts have been removed from bare earth (vegetation, buildings,
 bridges, etc.) | P | |
| Proper definition of roads and drainage patterns | P | |
| "Over-smoothed" areas during filtering | P | |
| Corn Row Effects | P | |
| Mounds and Divots | P | |
| Other anomalies | | |

Classified Point Cloud Data Visual Checklist	Project: Merrimack		
Vendor:	Reviewed By: Myra Hupfeld-Cousineau LAS File: 19_02974734.las Item		P/F/NA
Scanlines removed from bare earth	Comments		
Excessive Noise in bare earth	P		
Elevation Steps	P		
Gaps/Voids	P		
Edge matching between tiles	P	Matches other Merrimack tiles	
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)	P		
Proper definition of roads and drainage patterns	P		
"Over-smoothed" areas during filtering	P		
Corn Row Effects	P		
Mounds and Divots	P		
Other anomalies	P		

| Classified Point Cloud Data Visual Checklist | Project: Merrimack | |
| :--- | :--- | :--- | :--- |
| Vendor: | Reviewed By: Myra Hupfeld-Cousineau | |
| LAS File: 19_02974732.las and 19_02964732.las | P/F/NA | Comments |
| Item | P | |
| Scanlines removed from bare earth | P | |
| Excessive Noise in bare earth | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | Matches other Merrimack tiles |
| Edge matching between tiles | F | |
| Artifacts have been removed from bare earth (vegetation, buildings,
 bridges, etc.) | P | |
| Proper definition of roads and drainage patterns | P | |
| "Over-smoothed" areas during filtering | P | |
| Corn Row Effects | P | |
| Mounds and Divots | P | |
| Other anomalies | | |

Classified Point Cloud Data Visual Checklist			Project: Merrimack	
Vendor:				
LAS File: 19_02964731.las	P/F/NA	Comments		
Item	P			
Scanlines removed from bare earth	P			
Excessive Noise in bare earth	P			
Elevation Steps	P			
Gaps/Voids	P	Mate: 08/01/2012		
Edge matching between tiles	P	Construction debris and dirt piles		
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)	P			
Proper definition of roads and drainage patterns	P			
"Over-smoothed" areas during filtering	P			
Corn Row Effects	P			
Mounds and Divots	P			
Other anomalies				

| Classified Point Cloud Data Visual Checklist | Project: Merrimack | |
| :--- | :--- | :--- | :--- |
| Vendor: | Reviewed By: Myra Hupfeld-Cousineau | |
| LAS File: 19_02974737.las, 19_02984737.las,and 19_03004737.las | P/F/NA | Comments |
| Item | P | |
| Scanlines removed from bare earth | P | |
| Excessive Noise in bare earth | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | Matches other Merrimack tiles |
| Edge matching between tiles | P | Dirt piles |
| Artifacts have been removed from bare earth (vegetation, buildings,
 bridges, etc.) | P | |
| Proper definition of roads and drainage patterns | P | |
| "Over-smoothed" areas during filtering | P | |
| Corn Row Effects | P | |
| Mounds and Divots | P | |
| Other anomalies | | |

Classified Point Cloud Data Visual Checklist			Project: Merrimack
Vendor:	Reviewed By: Myra Hupfeld-Cousineau		
LAS File: 19_02984738.las	P/F/NA	Comments	
Item	P		
Scanlines removed from bare earth	P		
Excessive Noise in bare earth	P		
Elevation Steps	P		
Gaps/Voids	P	Matches other Merrimack tiles	
Edge matching between tiles	F	bridges	
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)	P		
Proper definition of roads and drainage patterns	P		
"Over-smoothed" areas during filtering	P		
Corn Row Effects	P		
Mounds and Divots	P		
Other anomalies			

Classified Point Cloud Data Visual Checklist	Project: Merrimack		
Vendor:	Reviewed By: Myra Hupfeld-Cousineau		
LAS File: 19_03124736.las and 19_03144736.las			Date: 08/02/2012
Item	P/F/NA	Comments	
Scanlines removed from bare earth	P		
Excessive Noise in bare earth	P		
Elevation Steps	P		
Gaps/Voids	P		
Edge matching between tiles	P		
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)	P		
Proper definition of roads and drainage patterns	P		
"Over-smoothed" areas during filtering	P		
Corn Row Effects	P		
Mounds and Divots	P		
Other anomalies	P		

Classified Point Cloud Data Visual Checklist	Project: Merrimack	
Vendor:	Reviewed By: Myra Hupfeld-Cousineau	
LAS File: 19_03124737.las, 19_03104737.las, 19_03094737.las, 19_03084737.las and 19_03084738.las		
Item	P/F/NA	Comments
Scanlines removed from bare earth	P	
Excessive Noise in bare earth	P	
Elevation Steps	P	
Gaps/Voids	P	
Edge matching between tiles	P	
Artifacts have been removed from bare earth (vegetation, buildings, 08/02/2012 bridges, etc.)	P	
Proper definition of roads and drainage patterns	P	
"Over-smoothed" areas during filtering	P	
Corn Row Effects	P	
Mounds and Divots	P	
Other anomalies	P	

Classified Point Cloud Data Visual Checklist	Project: Merrimack		
Vendor:	Reviewed By: Myra Hupfeld-Cousineau LAS File: 19_03064738.las Item		P/F/NA
Scanlines removed from bare earth	Comments		
Excessive Noise in bare earth	P		
Elevation Steps	P		
Gaps/Voids	P		
Edge matching between tiles	P		
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)	F		
Proper definition of roads and drainage patterns	P		
"Over-smoothed" areas during filtering	P		
Corn Row Effects	P		
Mounds and Divots	P		
Other anomalies	P		

| Classified Point Cloud Data Visual Checklist | Project: Merrimack | |
| :--- | :--- | :--- | :--- |
| Vendor: | Reviewed By: Myra Hupfeld-Cousineau | |
| LAS File: 19_03064740.las, 19_03064742.las, 19_03044742.las, 19_03044743.las, 19_03044744.las, 19_03044746.las | | |
| Item | P/F/NA | Comments |
| Scanlines removed from bare earth | P | |
| Excessive Noise in bare earth | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | |
| Edge matching between tiles | P | |
| Artifacts have been removed from bare earth (vegetation, buildings, 08/02/2012
 bridges, etc.) | P | |
| Proper definition of roads and drainage patterns | P | |
| "Over-smoothed" areas during filtering | P | |
| Corn Row Effects | P | |
| Mounds and Divots | P | |
| Other anomalies | P | |

| Classified Point Cloud Data Visual Checklist | | Project: Merrimack |
| :--- | :--- | :--- | :--- |
| Vendor: | Reviewed By: Myra Hupfeld-Cousineau | |
| LAS File: 19_03044749.las, 19_03044750.las | P/F/NA | Comments |
| Item | P | |
| Scanlines removed from bare earth | P | |
| Excessive Noise in bare earth | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | |
| Edge matching between tiles | P | |
| Artifacts have been removed from bare earth (vegetation, buildings,
 bridges, etc.) | | |
| Proper definition of roads and drainage patterns | P | |
| "Over-smoothed" areas during filtering | P | |
| Corn Row Effects | P | |
| Mounds and Divots | P | |
| Other anomalies | P | |

| Classified Point Cloud Data Visual Checklist | Project: Merrimack | |
| :--- | :--- | :--- | :--- |
| Vendor: | Reviewed By: Myra Hupfeld-Cousineau | |
| LAS File: 19_03044752.las | P/F/NA | Comments |
| Item | P | |
| Scanlines removed from bare earth | P | |
| Excessive Noise in bare earth | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | |
| Edge matching between tiles | P | |
| Artifacts have been removed from bare earth (vegetation, buildings,
 bridges, etc.) | | |
| Proper definition of roads and drainage patterns | P | |
| "Over-smoothed" areas during filtering | P | |
| Corn Row Effects | P | |
| Mounds and Divots | P | |
| Other anomalies | P | |

| Classified Point Cloud Data Visual Checklist | Project: Merrimack | |
| :--- | :--- | :--- | :--- |
| Vendor: | Reviewed By: Myra Hupfeld-Cousineau | |
| LAS File: 19_03044754.las | P/F/NA | Comments |
| Item | P | |
| Scanlines removed from bare earth | P | |
| Excessive Noise in bare earth | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | |
| Edge matching between tiles | F | |
| Artifacts have been removed from bare earth (vegetation, buildings,
 bridges, etc.) | | |
| Proper definition of roads and drainage patterns | P | |
| "Over-smoothed" areas during filtering | P | |
| Corn Row Effects | P | |
| Mounds and Divots | P | |
| Other anomalies | P | |

Classified Point Cloud Data Visual Checklist	Project: Merrimack		
Vendor:	Reviewed By: Myra Hupfeld-Cousineau		
LAS File: 19_03064754.las 19_03064755.las, 19_03064756.las, 19 19_03044761.las	58.las, 1	03044758.las, 19_03044760.las, and	Date: 08/02/2012
Item	P/F/NA	Comments	
Scanlines removed from bare earth	P		
Excessive Noise in bare earth	P		
Elevation Steps	P		
Gaps/Voids	P		
Edge matching between tiles	P		
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)	P		
Proper definition of roads and drainage patterns	P		
"Over-smoothed" areas during filtering	P		
Corn Row Effects	P		
Mounds and Divots	P		
Other anomalies	P		

| Classified Point Cloud Data Visual Checklist | Project: Merrimack | |
| :--- | :--- | :--- | :--- |
| Vendor: | Reviewed By: Myra Hupfeld-Cousineau | |
| LAS File: 19_03034764.las | P/F/NA | Comments |
| Item | P | |
| Scanlines removed from bare earth | P | |
| Excessive Noise in bare earth | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | |
| Edge matching between tiles | P | |
| Artifacts have been removed from bare earth (vegetation, buildings,
 bridges, etc.) | | |
| Proper definition of roads and drainage patterns | P | |
| "Over-smoothed" areas during filtering | P | |
| Corn Row Effects | P | |
| Mounds and Divots | P | |
| Other anomalies | P | |

| Classified Point Cloud Data Visual Checklist | Project: Merrimack | |
| :--- | :--- | :--- | :--- |
| Vendor: | Reviewed By: Myra Hupfeld-Cousineau | |
| LAS File: 19_03044766.las, 19_03044768.las, 19_03064770.las and 19_03064772.las | | |
| Item | P/F/NA | Comments |
| Scanlines removed from bare earth | P | |
| Excessive Noise in bare earth | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | |
| Edge matching between tiles | P | |
| Artifacts have been removed from bare earth (vegetation, buildings,
 bridges, etc.) | P | |
| Proper definition of roads and drainage patterns | P | |
| "Over-smoothed" areas during filtering | P | |
| Corn Row Effects | P | |
| Mounds and Divots | P | |
| Other anomalies | P | |

Classified Point Cloud Data Visual Checklist	Project: Merrimack	
Vendor:	Reviewed By: Myra Hupfeld-Cousineau	
LAS File: 19_03084773.las, 19_03084774.las, 19_03084776.las, 19_03094776.las, and 19_03094778.las		
Item	P/F/NA	Comments
Scanlines removed from bare earth	P	
Excessive Noise in bare earth	P	
Elevation Steps	P	
Gaps/Voids	P	
Edge matching between tiles	P	
Artifacts have been removed from bare earth (vegetation, buildings, 08/03/2012 bridges, etc.)	P	
Proper definition of roads and drainage patterns	P	
"Over-smoothed" areas during filtering	P	
Corn Row Effects	P	
Mounds and Divots	P	
Other anomalies	P	

| Classified Point Cloud Data Visual Checklist | Project: Merrimack | |
| :--- | :--- | :--- | :--- |
| Vendor: | Reviewed By: Myra Hupfeld-Cousineau | |
| LAS File: 19_02844744.las, 19_02854744.las, 19_02844746.las, 19_02824746.las | | |
| Item | P/F/NA | Comments |
| Scanlines removed from bare earth | P | |
| Excessive Noise in bare earth | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | |
| Edge matching between tiles | P | Matches other Merrimack tiles |
| Artifacts have been removed from bare earth (vegetation, buildings,
 bridges, etc.) | P | Dirt piles |
| Proper definition of roads and drainage patterns | P | |
| "Over-smoothed" areas during filtering | P | |
| Corn Row Effects | P | |
| Mounds and Divots | P | |
| Other anomalies | P | |

| Classified Point Cloud Data Visual Checklist | Project: Merrimack | |
| :--- | :--- | :--- | :--- |
| Vendor: | Reviewed By: Myra Hupfeld-Cousineau | |
| LAS File: 19_02764746.las, 19_02744746.las, and 19_02784746.las | P/F/NA | Comments |
| Item | P | |
| Scanlines removed from bare earth | P | |
| Excessive Noise in bare earth | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | |
| Edge matching between tiles | P | |
| Artifacts have been removed from bare earth (vegetation, buildings,
 bridges, etc.) | P | |
| Proper definition of roads and drainage patterns | P | |
| "Over-smoothed" areas during filtering | P | |
| Corn Row Effects | P | |
| Mounds and Divots | P | |
| Other anomalies | | |

| Classified Point Cloud Data Visual Checklist | Project: Merrimack | |
| :--- | :--- | :--- | :--- |
| Vendor: | Reviewed By: Myra Hupfeld-Cousineau | |
| LAS File: 19_02844756.las, 19_02984756.las, 19_02974758.las, 19_02974758.and 19_02984760.las | | |
| Item | P/F/NA | Comments |
| Scanlines removed from bare earth | P | |
| Excessive Noise in bare earth | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | |
| Edge matching between tiles | NA | |
| Artifacts have been removed from bare earth (vegetation, buildings,
 bridges, etc.) | P | |
| Proper definition of roads and drainage patterns | P | |
| "Over-smoothed" areas during filtering | P | |
| Corn Row Effects | P | |
| Mounds and Divots | P | |
| Other anomalies | P | |

Classified Point Cloud Data Visual Checklist	Project: Merrimack Vendor:		Reviewed By: Myra Hupfeld-Cousineau	
LAS File: 19_02974760.las	P/F/NA	Comments		
Item	P			
Scanlines removed from bare earth	P			
Excessive Noise in bare earth	P			
Elevation Steps	P			
Gaps/Voids	P			
Edge matching between tiles	F			
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)				
Proper definition of roads and drainage patterns	P			
"Over-smoothed" areas during filtering	P			
Corn Row Effects	P			
Mounds and Divots	P			
Other anomalies	P			

Classified Point Cloud Data Visual Checklist	Project: Merrimack		
Vendor:	Reviewed By: Myra Hupfeld-Cousineau		
LAS File: 19_02984761.las			Date: 08/06/2012
Item	P/F/NA	Comments	
Scanlines removed from bare earth	P		
Excessive Noise in bare earth	P		
Elevation Steps	P		
Gaps/Voids	P		
Edge matching between tiles			
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)	P		
Proper definition of roads and drainage patterns	P		
"Over-smoothed" areas during filtering	P		
Corn Row Effects	P		
Mounds and Divots	P		
Other anomalies	P		

| Classified Point Cloud Data Visual Checklist | | Project: Merrimack |
| :--- | :--- | :--- | :--- |
| Vendor: | Reviewed By: Myra Hupfeld-Cousineau | |
| LAS File: 19_02984762.las, 19_02974762.las, and 19_02964762.las | P/F/NA | Comments |
| Item | P | |
| Scanlines removed from bare earth | P | |
| Excessive Noise in bare earth | P | |
| Elevation Steps | P | |
| Gaps/Voids | | |
| Edge matching between tiles | P | |
| Artifacts have been removed from bare earth (vegetation, buildings,
 bridges, etc.) | P | |
| Proper definition of roads and drainage patterns | P | |
| "Over-smoothed" areas during filtering | P | |
| Corn Row Effects | P | |
| Mounds and Divots | P | |
| Other anomalies | | |

Classified Point Cloud Data Visual Checklist	Project: Merrimack		
Vendor:	Reviewed By: Myra Hupfeld-Cousineau		
LAS File: 19_02964762.las			Date: 08/06/2012
Item	P/F/NA	Comments	
Scanlines removed from bare earth	P		
Excessive Noise in bare earth	P		
Elevation Steps	P		
Gaps/Voids	P		
Edge matching between tiles	P		
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)	P		
Proper definition of roads and drainage patterns	P		
"Over-smoothed" areas during filtering	P		
Corn Row Effects	P		
Mounds and Divots	P		
Other anomalies	P		

Classified Point Cloud Data Visual Checklist	Project: Merrimack		
Vendor:	Reviewed By: Myra Hupfeld-Cousineau		
LAS File: 19_02974766.las			Date: 08/07/2012
Item	P/F/NA	Comments	
Scanlines removed from bare earth	P		
Excessive Noise in bare earth	P		
Elevation Steps	P		
Gaps/Voids	P		
Edge matching between tiles	P		
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)	F		
Proper definition of roads and drainage patterns	P		
"Over-smoothed" areas during filtering	P		
Corn Row Effects	P		
Mounds and Divots	P		
Other anomalies	P		

Classified Point Cloud Data Visual Checklist			Project: Merrimack
Vendor:	Reviewed By: Myra Hupfeld-Cousineau		
LAS File: 19_02974767.las and 19_02984767.las	P/F/NA	Comments	
Item	P		
Scanlines removed from bare earth	P		
Excessive Noise in bare earth	P		
Elevation Steps	P		
Gaps/Voids	P		
Edge matching between tiles	P		
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)			
Proper definition of roads and drainage patterns	P		
"Over-smoothed" areas during filtering	P		
Corn Row Effects	P		
Mounds and Divots	P		
Other anomalies	P		

| Classified Point Cloud Data Visual Checklist | Project: Merrimack | |
| :--- | :--- | :--- | :--- |
| Vendor: | Reviewed By: Myra Hupfeld-Cousineau | |
| LAS File: 19_02784772.las | P/F/NA | Comments |
| Item | P | |
| Scanlines removed from bare earth | P | |
| Excessive Noise in bare earth | P | |
| Elevation Steps | P | |
| Gaps/Voids | NA | |
| Edge matching between tiles | P | |
| Artifacts have been removed from bare earth (vegetation, buildings,
 bridges, etc.) | | |
| Proper definition of roads and drainage patterns | P | |
| "Over-smoothed" areas during filtering | P | |
| Corn Row Effects | P | |
| Mounds and Divots | P | |
| Other anomalies | P | |

Classified Point Cloud Data Visual Checklist			Project: Merrimack
Vendor:	Reviewed By: Myra Hupfeld-Cousineau		
LAS File: 19_02704774.las	P/F/NA	Comments	
Item	P		
Scanlines removed from bare earth	P		
Excessive Noise in bare earth	P		
Elevation Steps	P		
Gaps/Voids	NA		
Edge matching between tiles	P		
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)	P		
Proper definition of roads and drainage patterns	P		
"Over-smoothed" areas during filtering	P		
Corn Row Effects	P		
Mounds and Divots	P		
Other anomalies			

Classified Point Cloud Data Visual Checklist			Project: Merrimack	
Vendor:	Reviewed By: Myra Hupfeld-Cousineau			
LAS File: 19_02864774.las	P/F/NA	Comments		
Item	P			
Scanlines removed from bare earth	P			
Excessive Noise in bare earth	P			
Elevation Steps	P			
Gaps/Voids	NA			
Edge matching between tiles	P			
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)				
Proper definition of roads and drainage patterns	P			
"Over-smoothed" areas during filtering	P			
Corn Row Effects	P			
Mounds and Divots	P			
Other anomalies	P			

| Classified Point Cloud Data Visual Checklist | Project: Merrimack | |
| :--- | :--- | :--- | :--- |
| Vendor: | Reviewed By: Myra Hupfeld-Cousineau | |
| LAS File: 19_03124782.las | P/F/NA | Comments |
| Item | P | |
| Scanlines removed from bare earth | P | |
| Excessive Noise in bare earth | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | See images matching USGS below |
| Edge matching between tiles | P | |
| Artifacts have been removed from bare earth (vegetation, buildings,
 bridges, etc.) | | |
| Proper definition of roads and drainage patterns | P | |
| "Over-smoothed" areas during filtering | P | |
| Corn Row Effects | P | |
| Mounds and Divots | P | |
| Other anomalies | P | |

Merrimack

USGS tile
combined

| Classified Point Cloud Data Visual Checklist | Project: Merrimack | |
| :--- | :--- | :--- | :--- |
| Vendor: | Reviewed By: Myra Hupfeld-Cousineau | |
| LAS File: 19_02984778.las, 19_03004778.las, and 19_02984779.las | P/F/NA | Comments |
| Item | P | |
| Scanlines removed from bare earth | P | |
| Excessive Noise in bare earth | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | |
| Edge matching between tiles | P | Piles of dirt/coal |
| Artifacts have been removed from bare earth (vegetation, buildings,
 bridges, etc.) | P | |
| Proper definition of roads and drainage patterns | P | |
| "Over-smoothed" areas during filtering | P | |
| Corn Row Effects | P | |
| Mounds and Divots | P | |
| Other anomalies | | |

piles of coal for power plant

Classified Point Cloud Data Visual Checklist	Project: Merrimack Vendor:		Reviewed By: Myra Hupfeld-Cousineau	
LAS File: 19_02884784.las	P/F/NA	Comments		
Item	P			
Scanlines removed from bare earth	P			
Excessive Noise in bare earth	P			
Elevation Steps	P			
Gaps/Voids	NA			
Edge matching between tiles	P			
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)				
Proper definition of roads and drainage patterns	P			
"Over-smoothed" areas during filtering	P			
Corn Row Effects	P			
Mounds and Divots	P			
Other anomalies	P			

Classified Point Cloud Data Visual Checklist			Project: Merrimack
Vendor:	Reviewed By: Myra Hupfeld-Cousineau		
LAS File: 19_02984790.las and 19_03004790.las	P/F/NA	Comments	
Item	P		
Scanlines removed from bare earth	P		
Excessive Noise in bare earth	P		
Elevation Steps	P		
Gaps/Voids	P		
Edge matching between tiles	P		
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)	P		
Proper definition of roads and drainage patterns	P		
"Over-smoothed" areas during filtering	P		
Corn Row Effects	P		
Mounds and Divots	P		
Other anomalies			

Classified Point Cloud Data Visual Checklist	Project: Merrimack		
Vendor:	Reviewed By: Myra Hupfeld-Cousineau		
LAS File: 19_03064791.las			Date: 08/07/2012
Item	P/F/NA	Comments	
Scanlines removed from bare earth	P		
Excessive Noise in bare earth	P		
Elevation Steps	P		
Gaps/Voids	P		
Edge matching between tiles	P		
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)	P		
Proper definition of roads and drainage patterns	P		
"Over-smoothed" areas during filtering	P		
Corn Row Effects	P		
Mounds and Divots	P		
Other anomalies	P		

| Classified Point Cloud Data Visual Checklist | Project: Merrimack | |
| :--- | :--- | :--- | :--- |
| Vendor: | Reviewed By: Myra Hupfeld-Cousineau | |
| LAS File: 19_03124784.las, 19_03144785.las, 19_03154788.las | P/F/NA | Comments |
| Item | P | |
| Scanlines removed from bare earth | P | |
| Excessive Noise in bare earth | P | |
| Elevation Steps | P | |
| Gaps/Voids | NA | |
| Edge matching between tiles | P | |
| Artifacts have been removed from bare earth (vegetation, buildings,
 bridges, etc.) | P | |
| Proper definition of roads and drainage patterns | P | |
| "Over-smoothed" areas during filtering | P | |
| Corn Row Effects | P | |
| Mounds and Divots | P | |
| Other anomalies | | |

Classified Point Cloud Data Visual Checklist			Project: Merrimack	
Vendor:	Reviewed By: Myra Hupfeld-Cousineau			
LAS File: 19_03154790.las	P/F/NA	Comments		
Item	P			
Scanlines removed from bare earth	P			
Excessive Noise in bare earth	P			
Elevation Steps	P			
Gaps/Voids	NA			
Edge matching between tiles	P			
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)				
Proper definition of roads and drainage patterns	P			
"Over-smoothed" areas during filtering	P			
Corn Row Effects	P			
Mounds and Divots	P			
Other anomalies	P			

| Classified Point Cloud Data Visual Checklist | Project: Merrimack | |
| :--- | :--- | :--- | :--- |
| Vendor: | Reviewed By: Myra Hupfeld-Cousineau | |
| LAS File: 19_03154791.las and 19_03164791.las | P/F/NA | Comments |
| Item | P | |
| Scanlines removed from bare earth | P | |
| Excessive Noise in bare earth | P | |
| Elevation Steps | P | |
| Gaps/Voids | NA | |
| Edge matching between tiles | P | |
| Artifacts have been removed from bare earth (vegetation, buildings,
 bridges, etc.) | | |
| Proper definition of roads and drainage patterns | P | |
| "Over-smoothed" areas during filtering | P | |
| Corn Row Effects | P | |
| Mounds and Divots | P | |
| Other anomalies | P | |

Classified Point Cloud Data Visual Checklist			Project: Merrimack
Vendor:	Reviewed By: Myra Hupfeld-Cousineau		
LAS File: 19_03184794.las	P/F/NA	Comments	
Item	P		
Scanlines removed from bare earth	P		
Excessive Noise in bare earth	P		
Elevation Steps	P		
Gaps/Voids	NA		
Edge matching between tiles	P		
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)	P		
Proper definition of roads and drainage patterns	P		
"Over-smoothed" areas during filtering	P		
Corn Row Effects	P		
Mounds and Divots	P		
Other anomalies			

Classified Point Cloud Data Visual Checklist			Project: Merrimack	
Vendor:				
LAS File: 19_03084820.las	P/F/NA	Comments		
Item	P			
Scanlines removed from bare earth	P			
Excessive Noise in bare earth	P			
Elevation Steps	P			
Gaps/Voids	NA			
Edge matching between tiles 07/30/2012				
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)	P			
Proper definition of roads and drainage patterns	P			
"Over-smoothed" areas during filtering	P			
Corn Row Effects	P			
Mounds and Divots	P			
Other anomalies	NA			

Classified Point Cloud Data Visual Checklist			Project: Merrimack
Vendor:	Reviewed By: MCC		
LAS File: 19_03124812.las	P/F/NA	Comments	
Item	P		
Scanlines removed from bare earth	P		
Excessive Noise in bare earth	P		
Elevation Steps	P		
Gaps/Voids	NA		
Edge matching between tiles	P		
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)			
Proper definition of roads and drainage patterns	P		
"Over-smoothed" areas during filtering	P		
Corn Row Effects	P		
Mounds and Divots	P		
Other anomalies	NA		

| Classified Point Cloud Data Visual Checklist | Project: Merrimack | |
| :--- | :--- | :--- | :--- |
| Vendor: | Reviewed By: MCC | |
| LAS File: 19_02844812.las; 19_02854809.las; 19_02854810.las; 19_02854812.las | | |
| Item | P/F/NA | Comments |
| Scanlines removed from bare earth | P | |
| Excessive Noise in bare earth | P | |
| Elevation Steps | P | |
| Gaps/Voids | P | |
| Edge matching between tiles | P | |
| Artifacts have been removed from bare earth (vegetation, buildings,
 bridges, etc.) | P | |
| Proper definition of roads and drainage patterns | P | |
| "Over-smoothed" areas during filtering | P | |
| Corn Row Effects | P | |
| Mounds and Divots | P | |
| Other anomalies | NA | |

Profile view, bare earth

bare earth TIN 3D

Classified Point Cloud Data Visual Checklist			Project: Merrimack
Vendor:	Reviewed By: MCC		
LAS File: 19_03154800.las; 19_03164800.las	P/F/NA	Comments	
Item	P		
Scanlines removed from bare earth	P		
Excessive Noise in bare earth	P		
Elevation Steps	P		
Gaps/Voids	P		
Edge matching between tiles	P		
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)			
Proper definition of roads and drainage patterns	P		
"Over-smoothed" areas during filtering	P		
Corn Row Effects	P		
Mounds and Divots	P		
Other anomalies	NA		

Excessive Noise in bare earth	P	
Elevation Steps	P	
Gaps/Voids	P	
Edge matching between tiles	P	
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)	P	
Proper definition of roads and drainage patterns	P	
"Over-smoothed" areas during filtering	P	
Corn Row Effects	P	
Mounds and Divots	P	
Other anomalies	NA	

Classified Point Cloud Data Visual Checklist	Project: Merrimack		
Vendor:	Reviewed By: MCC		
LAS File: 19_02984796.las			Date: 07/30/2012
Item	P/F/NA	Comments	
Scanlines removed from bare earth	P		
Excessive Noise in bare earth	P		
Elevation Steps	P		
Gaps/Voids	P		
Edge matching between tiles	NA		
Artifacts have been removed from bare earth (vegetation, buildings, bridges, etc.)	P		
Proper definition of roads and drainage patterns	P		
"Over-smoothed" areas during filtering	P		
Corn Row Effects	P		
Mounds and Divots	P		
Other anomalies	NA		

Appendix G: Deliverables

Date:
Contract \#
September 14, 2012
HSFEHQ-090D-0370
Task Order \#
HSFEHQ -01-J-0010

Subject:

STARR Elevation Data (LiDAR)

Transmittal:

To: Bill Davis
Michael Baker Corporation
FEMA Engineering Library
847 South Pickett Street
Alexandria, VA 22304

From: James Huffines
Greenhorne \& O'Mara, Inc 5565 Centerview Drive
Ste 107
Raleigh, NC 27606

Transmitted:For Your Use
For Your Approval/Signature
For Your Information

The following:

COPIES	DATE	DESCRIPTION
1	$9 / 14 / 2012$	Portable Hard Drive Containing: Region 1 - Merrimack HUC 8 Watershed LiDAR and Terrain data See readme.txt included on hard drive for directory structure information.
		Includes: QC Checkpoint (CVA) data, Tile Index shapefile, Collection Area shapefile, QC Testing Results, QA Review, Compliance Certificates for Survey, Unclassified Point Cloud, Classified Point Cloud (Bare Earth), Metadata, Narrative, DEMs and Contours

Remarks:

If you have any questions or require additional information please feel free to contact me at 919-532-2332.
Please sign this transmittal upon receipt and mail to address shown above or fax to 919-851-8393.


```
Folder PATH listing for volume Merrimack HUC8 LiDAR
Volume serial number is 00650076 040B:C0C3
E:\REGION1\MERRIMACK_RIVER_HUC8_TERRAIN_DATA
+---Correspondance
+---Final
    +---Bare Earth DEM
        Merrimack_DEM_Index.dbf
        Merrimack_DEM_Index.prj
        Merrimack_DEM_Index.s.bn
        Merrimack_DEM_Index.sbx
        Merrimack_DEM_Index.shp
        Merrimack_DEM_Index.shp.xml
        Merrimack_DEM_Index.shx
        |
        +---Merrimack_DEMs.gdb
        \---Raster_1m_DEM
            merrimack_19_02604734.img
            merrimack_19_02604734.rrd
            merrimack_19_02604736.img
            merrimack_19_02604736.rrd
            merrimack_19_02614728.img
    merrimack_19_02614728.rrd
    merrimack_19_02614730.img
    merrimack 19-02614730.rrd
    merrimack_19_02614731.img
    merrimack_19_02614731.rrd
    merrimack_19_02614732.img
    merrimack_19_02614732.rrd
    merrimack_19_02614734.img
    merrimack_19_02614734.rrd
    merrimack_19_02614736.img
    merrimack_19_02614736.rrd
    merrimack_19_02614737.img
    merrimack_19_02614737.rrd
    merrimack_19_02614738.img
    merrimack_19_02614738.rrd
    merrimack_19_02624725.img
    merrimack_19_02624725.rrd
    merrimack_19_02624726.img
    merrimack_19_02624726.rrd
    merrimack_19_02624728.img
    merrimack_19_02624728.rrd
    merrimack_19_02624730.img
    merrimack_19_02624730.rrd
    merrimack_19_02624731.img
    merrimack_19_02624731.rrd
    merrimack_19_02624732.img
    merrimack_19_02624732.rrd
    merrimack_19_02624734.img
    merrimack_19_02624734.rrd
    merrimack_19_02624736.img
    merrimack_19_02624736.rrd
    merrimack_19_02624737.img
```

merrimack_19_02624737.rrd merrimack_19_02624738.img merrimack_19_02624738.rrd merrimack_19_02624740.img merrimack_19_02624740.rrd merrimack_19_02624742.img merrimack_19_02624742.rrd merrimack_19_02624743.img merrimack_19_02624743.rrd merrimack_19_02624744.img merrimack_19_02624744.rrd merrimack_19_02624746.img merrimack_19_02624746.rrd merrimack_19_02624748.img merrimack_19_02624748.rrd merrimack_19_02644725.img merrimack_19_02644725.rrd merrimack_19_02644726.img merrimack_19_02644726.rrd merrimack_19_02644728.img merrimack_19_02644728.rrd merrimack_19_02644730.img merrimack_19_02644730.rrd merrimack_19_02644731.img merrimack_19_02644731.rrd merrimack_19_02644732.img merrimack_19_02644732.rrd merrimack_19_02644734.img merrimack_19_02644734.rrd merrimack_19_02644736.img merrimack_19_02644736.rrd merrimack_19_02644737.img merrimack_19_02644737.rrd merrimack_19_02644738.img merrimack_19-02644738.rrd merrimack_19_02644740.img merrimack_19_02644740.rrd
merrimack_19_02644742.img
merrimack_19_02644742.rrd
merrimack_19_02644743.img
merrimack_19_02644743.rrd
merrimack_19_02644744.img
merrimack_19_02644744.rrd
merrimack_19_02644746.img
merrimack_19_02644746.rrd
merrimack_19-02644748.img
merrimack_19_02644748.rrd
merrimack_19_02644749.img
merrimack_19_02644749.rrd
merrimack_19_02644750.img
merrimack_19_02644750.rrd
merrimack_19_02644752.img
merrimack_19_02644752.rrd
merrimack_19_02644754.img
merrimack_19_02644754.rrd merrimack_19_02644755.img merrimack_19_02644755.rrd merrimack ${ }^{-19-02644760 . i m g ~}$ merrimack_19_02644760.rrd merrimack_19_02644761.img merrimack_19_02644761.rrd merrimack_19_02644762.img merrimack_19_02644762.rrd merrimack_19_02644764.img merrimack_19_02644764.rrd merrimack_19_02644766.img merrimack_19_02644766.rrd merrimack_19_02644767.img merrimack_19_02644767.rrd merrimack_19_02644772.img merrimack_19_02644772.rrd merrimack_19_02664726.img merrimack_19_02664726.rrd merrimack_19_02664728.img merrimack_19_02664728.rrd merrimack_19_02664730.img merrimack_19_02664730.rrd merrimack_19_02664731.img merrimack_19_02664731.rrd merrimack_19_02664732.img merrimack_19_02664732.rrd merrimack_19_02664734.img merrimack_19_02664734.rrd merrimack_19_02664736.img merrimack_19_02664736.rrd merrimack_19_02664737.img merrimack_19_02664737.rrd merrimack_19_02664738.img merrimack_19-02664738.rrd merrimack_19_02664740.img merrimack_19_02664740.rrd merrimack_19_02664742.img merrimack_19_02664742.rrd merrimack_19_02664743.img merrimack_19_02664743.rrd merrimack_19_02664744.img merrimack_19_02664744.rrd merrimack_19_02664746.img merrimack_19_02664746.rrd merrimack_19-02664748.img merrimack_19_02664748.rrd merrimack_19_02664749.img merrimack_19_02664749.rrd merrimack_19_02664750.img merrimack_19_02664750.rrd merrimack_19_02664752.img merrimack_19_02664752.rrd merrimack_19_02664754.img
merrimack_19_02664754.rrd merrimack_19_02664755.img merrimack_19-02664755.rrd merrimack ${ }^{-19-02664756 . i m g ~}$ merrimack_19_02664756.rrd merrimack_19_02664758.img merrimack_19_02664758.rrd merrimack_19_02664760.img merrimack_19_02664760.rrd merrimack_19_02664761.img merrimack_19_02664761.rrd merrimack_19_02664762.img merrimack_19_02664762.rrd merrimack_19_02664764.img merrimack_19_02664764.rrd merrimack_19_02664766.img merrimack_19_02664766.rrd merrimack_19_02664767.img merrimack_19_02664767.rrd merrimack_19_02664768.img merrimack_19_02664768.rrd merrimack_19_02664770.img merrimack_19_02664770.rrd merrimack_19_02664772.img merrimack-19-02664772.rrd merrimack_19_02664773.img merrimack_19_02664773.rrd merrimack_19_02664774.img merrimack_19_02664774.rrd merrimack_19_02664776.img merrimack_19_02664776.rrd merrimack_19_02674730.img merrimack_19_02674730.rrd merrimack_19_02674731.img merrimack_19_02674731.rrd merrimack_19_02674732.img merrimack_19_02674732.rrd
merrimack_19_02674734.img
merrimack_19_02674734.rrd
merrimack_19_02674736.img
merrimack_19_02674736.rrd
merrimack_19_02674737.img
merrimack_19_02674737.rrd
merrimack_19_02674738.img
merrimack_19_02674738.rrd
merrimack_19-02674740.img
merrimack_19_02674740.rrd
merrimack_19_02674742.img
merrimack_19_02674742.rrd
merrimack_19_02674743.img
merrimack_19_02674743.rrd
merrimack_19_02674744.img
merrimack_19_02674744.rrd
merrimack_19_02674746.img
merrimack_19_02674746.rrd merrimack_19_02674748.img merrimack_19-02674748.rrd merrimack_19_02674749.img merrimack_19_02674749.rrd merrimack_19_02674750.img merrimack_19_02674750.rrd merrimack_19_02674752.img merrimack_19_02674752.rrd merrimack_19_02674754.img merrimack_19_02674754.rrd merrimack_19_02674755.img merrimack_19_02674755.rrd merrimack_19_02674756.img merrimack_19_02674756.rrd merrimack_19_02674758.img merrimack_19_02674758.rrd merrimack_19_02674760.img merrimack_19_02674760.rrd merrimack_19_02674761.img merrimack_19_02674761.rrd merrimack_19_02674762.img merrimack_19_02674762.rrd merrimack_19_02674764.img merrimack_19_02674764.rrd merrimack_19_02674766.img merrimack_19_02674766.rrd merrimack_19_02674767.img merrimack_19_02674767.rrd merrimack_19_02674768.img merrimack_19_02674768.rrd merrimack_19_02674770.img merrimack_19_02674770.rrd merrimack_19_02674772.img merrimack_19_02674772.rrd merrimack_19_02674773.img merrimack_19_02674773.rrd
merrimack_19_02674774.img
merrimack_19_02674774.rrd
merrimack_19_02674776.img
merrimack_19_02674776.rrd
merrimack_19_02674778.img
merrimack_19_02674778.rrd
merrimack_19_02674779.img
merrimack_19_02674779.rrd
merrimack_19-02684732.img
merrimack_19_02684732.rrd
merrimack_19_02684734.img
merrimack_19_02684734.rrd
merrimack_19_02684736.img
merrimack_19_02684736.rrd
merrimack_19_02684737.img
merrimack_19_02684737.rrd
merrimack_19_02684738.img
merrimack_19_02684738.rrd merrimack_19_02684740.img merrimack-19-02684740.rrd merrimack-19-02684742.img merrimack_19-02684742.rrd merrimack_19_02684743.img merrimack_19_02684743.rrd merrimack_19_02684744.img merrimack_19_02684744.rrd merrimack_19_02684746.img merrimack_19_02684746.rrd merrimack_19_02684748.img merrimack_19_02684748.rrd merrimack_19_02684749.img merrimack_19_02684749.rrd merrimack_19_02684750.img merrimack_19_02684750.rrd merrimack_19_02684752.img merrimack_19_02684752.rrd merrimack_19_02684754.img merrimack_19_02684754.rrd merrimack_19_02684755.img merrimack_19_02684755.rrd merrimack_19_02684756.img merrimack_19-02684756.rrd merrimack_19_02684758.img merrimack_19_02684758.rrd merrimack_19_02684760.img merrimack_19_02684760.rrd merrimack_19_02684761.img merrimack_19_02684761.rrd merrimack_19_02684762.img merrimack_19_02684762.rrd merrimack_19_02684764.img merrimack_19-02684764.rrd merrimack_19_02684766.img merrimack_19_02684766.rrd
merrimack_19_02684767.img
merrimack_19_02684767.rrd
merrimack_19_02684768.img
merrimack_19_02684768.rrd
merrimack_19_02684770.img
merrimack_19_02684770.rrd
merrimack_19_02684772.img
merrimack_19_02684772.rrd
merrimack_19-02684773.img
merrimack_19_02684773.rrd
merrimack_19_02684774.img
merrimack_19_02684774.rrd
merrimack_19_02684776.img
merrimack_19_02684776.rrd
merrimack_19_02684778.img
merrimack_19_02684778.rrd
merrimack_19_02684779.img
merrimack_19_02684779.rrd merrimack_19_02684780.img merrimack_19-02684780.rrd merrimack_19_02704737.img merrimack_19_02704737.rrd merrimack_19_02704738.img merrimack_19_02704738.rrd merrimack_19_02704740.img merrimack_19_02704740.rrd merrimack_19_02704742.img merrimack_19_02704742.rrd merrimack_19_02704743.img merrimack_19_02704743.rrd merrimack_19_02704744.img merrimack_19_02704744.rrd merrimack_19_02704746.img merrimack_19_02704746.rrd merrimack_19_02704748.img merrimack_19_02704748.rrd merrimack_19_02704749.img merrimack_19_02704749.rrd merrimack_19_02704750.img merrimack_19_02704750.rrd merrimack_19_02704752.img merrimack_19-02704752.rrd merrimack_19_02704754.img merrimack_19_02704754.rrd merrimack_19_02704755.img merrimack_19_02704755.rrd merrimack_19_02704756.img merrimack_19_02704756.rrd merrimack_19_02704758.img merrimack_19_02704758.rrd merrimack_19_02704760.img merrimack_19_02704760.rrd merrimack_19_02704761.img merrimack_19_02704761.rrd merrimack_19_02704762.img merrimack_19_02704762.rrd merrimack_19_02704764.img merrimack_19_02704764.rrd merrimack_19_02704766.img merrimack_19_02704766.rrd merrimack_19_02704767.img merrimack_19_02704767.rrd merrimack_19-02704768.img merrimack_19_02704768.rrd merrimack_19_02704770.img merrimack_19_02704770.rrd merrimack_19_02704772.img merrimack_19_02704772.rrd merrimack_19_02704773.img merrimack_19_02704773.rrd merrimack_19_02704774.img
merrimack_19_02704774.rrd merrimack_19_02704776.img merrimack_19-02704776.rrd merrimack_19_02704778.img merrimack_19_02704778.rrd merrimack_19_02704779.img merrimack_19_02704779.rrd merrimack_19_02704780.img merrimack_19_02704780.rrd merrimack_19_02724737.img merrimack_19_02724737.rrd merrimack_19_02724738.img merrimack_19_02724738.rrd merrimack_19_02724740.img merrimack_19_02724740.rrd merrimack_19_02724742.img merrimack_19_02724742.rrd merrimack_19_02724743.img merrimack_19_02724743.rrd merrimack_19_02724744.img merrimack_19_02724744.rrd merrimack_19_02724746.img merrimack_19_02724746.rrd merrimack_19_02724748.img merrimack-19-02724748.rrd merrimack_19_02724749.img merrimack_19_02724749.rrd merrimack_19_02724750.img merrimack_19_02724750.rrd merrimack_19_02724752.img merrimack_19_02724752.rrd merrimack_19_02724754.img merrimack_19_02724754.rrd merrimack_19_02724755.img merrimack_19_02724755.rrd merrimack_19_02724756.img merrimack_19_02724756.rrd
merrimack_19_02724758.img
merrimack_19_02724758.rrd
merrimack_19_02724760.img
merrimack_19_02724760.rrd
merrimack_19_02724761.img
merrimack_19_02724761.rrd
merrimack_19_02724762.img
merrimack_19_02724762.rrd
merrimack_19-02724764.img
merrimack_19_02724764.rrd
merrimack_19_02724766.img
merrimack_19_02724766.rrd
merrimack_19_02724767.img
merrimack_19_02724767.rrd
merrimack_19_02724768.img
merrimack_19_02724768.rrd
merrimack_19_02724770.img
merrimack_19_02724770.rrd merrimack_19_02724772.img merrimack_19-02724772.rrd merrimack_19_02724773.img merrimack_19_02724773.rrd merrimack_19_02724774.img merrimack_19_02724774.rrd merrimack_19_02724776.img merrimack_19_02724776.rrd merrimack_19_02724778.img merrimack_19_02724778.rrd merrimack_19_02724779.img merrimack_19_02724779.rrd merrimack_19_02724780.img merrimack_19_02724780.rrd merrimack_19_02734740.img merrimack_19_02734740.rrd merrimack_19_02734742.img merrimack_19_02734742.rrd merrimack_19_02734743.img merrimack_19_02734743.rrd merrimack_19_02734744.img merrimack_19_02734744.rrd merrimack_19_02734746.img merrimack-19-02734746.rrd merrimack_19_02734748.img merrimack_19_02734748.rrd merrimack_19_02734749.img merrimack_19_02734749.rrd merrimack_19_02734750.img merrimack_19_02734750.rrd merrimack_19_02734752.img merrimack_19_02734752.rrd merrimack_19_02734754.img merrimack_19_02734754.rrd merrimack_19_02734755.img merrimack_19_02734755.rrd merrimack_19_02734756.img merrimack_19_02734756.rrd merrimack_19_02734758.img merrimack_19_02734758.rrd merrimack_19_02734760.img merrimack_19_02734760.rrd merrimack_19_02734761.img merrimack_19_02734761.rrd merrimack_19-02734762.img merrimack_19_02734762.rrd merrimack_19_02734764.img merrimack_19_02734764.rrd merrimack_19_02734766.img merrimack_19_02734766.rrd merrimack_19_02734767.img merrimack_19_02734767.rrd merrimack_19_02734768.img
merrimack_19_02734768.rrd merrimack_19_02734770.img merrimack-19-02734770.rrd merrimack_19_02734772.img merrimack_19_02734772.rrd merrimack_19_02734773.img merrimack_19_02734773.rrd merrimack_19_02734774.img merrimack_19_02734774.rrd merrimack_19_02734776.img merrimack_19_02734776.rrd merrimack_19_02734778.img merrimack_19_02734778.rrd merrimack_19_02734779.img merrimack_19_02734779.rrd merrimack_19_02734780.img merrimack_19_02734780.rrd merrimack_19_02744742.img merrimack_19_02744742.rrd merrimack_19_02744743.img merrimack_19_02744743.rrd merrimack_19_02744744.img merrimack_19_02744744.rrd merrimack_19_02744746.img merrimack-19-02744746.rrd merrimack_19_02744748.img merrimack_19_02744748.rrd merrimack_19_02744749.img merrimack_19_02744749.rrd merrimack_19_02744750.img merrimack_19_02744750.rrd merrimack_19_02744752.img merrimack_19_02744752.rrd merrimack_19_02744754.img merrimack_19_02744754.rrd merrimack_19_02744755.img merrimack_19_02744755.rrd
merrimack_19_02744756.img
merrimack_19_02744756.rrd
merrimack_19_02744758.img
merrimack_19_02744758.rrd
merrimack_19_02744760.img
merrimack_19_02744760.rrd
merrimack_19_02744761.img
merrimack_19_02744761.rrd
merrimack_19-02744762.img
merrimack_19_02744762.rrd
merrimack_19_02744764.img
merrimack_19_02744764.rrd
merrimack_19_02744766.img
merrimack_19_02744766.rrd
merrimack_19_02744767.img
merrimack_19_02744767.rrd
merrimack_19_02744768.img
merrimack_19_02744768.rrd merrimack_19_02744770.img merrimack-19-02744770.rrd merrimack ${ }^{-19-02744772 . i m g ~}$ merrimack_19_02744772.rrd merrimack_19_02744773.img merrimack_19_02744773.rrd merrimack_19_02744774.img merrimack_19_02744774.rrd merrimack_19_02744776.img merrimack_19_02744776.rrd merrimack_19_02744778.img merrimack_19_02744778.rrd merrimack_19_02744779.img merrimack_19_02744779.rrd merrimack_19_02764742.img merrimack_19_02764742.rrd merrimack_19_02764743.img merrimack_19_02764743.rrd merrimack_19_02764744.img merrimack_19_02764744.rrd merrimack_19_02764746.img merrimack_19_02764746.rrd merrimack_19_02764748.img merrimack-19-02764748.rrd merrimack_19_02764749.img merrimack_19_02764749.rrd merrimack_19_02764750.img merrimack_19_02764750.rrd merrimack_19_02764752.img merrimack_19_02764752.rrd merrimack_19_02764754.img merrimack_19_02764754.rrd merrimack_19_02764755.img merrimack_19_02764755.rrd merrimack_19_02764756.img merrimack_19_02764756.rrd
merrimack_19_02764758.img
merrimack_19_02764758.rrd
merrimack_19_02764760.img
merrimack_19_02764760.rrd
merrimack_19_02764761.img
merrimack_19_02764761.rrd
merrimack_19_02764762.img
merrimack_19_02764762.rrd
merrimack_19-02764764.img
merrimack_19_02764764.rrd
merrimack_19_02764766.img
merrimack_19_02764766.rrd
merrimack_19_02764767.img
merrimack_19_02764767.rrd
merrimack_19_02764768.img
merrimack_19_02764768.rrd
merrimack_19_02764770.img
merrimack_19_02764770.rrd merrimack_19_02764772.img merrimack-19-02764772.rrd merrimack_19_02764773.img merrimack_19_02764773.rrd merrimack_19_02764774.img merrimack_19_02764774.rrd merrimack_19_02764776.img merrimack_19_02764776.rrd merrimack_19_02764778.img merrimack_19_02764778.rrd merrimack_19_02764779.img merrimack_19_02764779.rrd merrimack_19_02764809.img merrimack_19_02764809.rrd merrimack_19_02764810.img merrimack_19_02764810.rrd merrimack_19_02784740.img merrimack_19_02784740.rrd merrimack_19_02784742.img merrimack_19_02784742.rrd merrimack_19_02784743.img merrimack_19_02784743.rrd merrimack_19_02784744.img merrimack-19-02784744.rrd merrimack_19_02784746.img merrimack_19_02784746.rrd merrimack_19_02784748.img merrimack_19_02784748.rrd merrimack_19_02784749.img merrimack_19_02784749.rrd merrimack_19_02784750.img merrimack_19_02784750.rrd merrimack_19_02784752.img merrimack_19_02784752.rrd merrimack_19_02784754.img merrimack_19_02784754.rrd
merrimack_19_02784755.img
merrimack_19_02784755.rrd
merrimack_19_02784756.img
merrimack_19_02784756.rrd
merrimack_19_02784758.img
merrimack_19_02784758.rrd
merrimack_19_02784760.img
merrimack_19_02784760.rrd
merrimack_19-02784761.img
merrimack_19_02784761.rrd
merrimack_19_02784762.img
merrimack_19_02784762.rrd
merrimack_19_02784764.img
merrimack_19_02784764.rrd
merrimack_19_02784766.img
merrimack_19_02784766.rrd
merrimack_19_02784767.img
merrimack_19_02784767.rrd merrimack_19_02784768.img merrimack_19_02784768.rrd merrimack ${ }^{-19-02784770 . i m g ~}$ merrimack_19_02784770.rrd merrimack_19_02784772.img merrimack_19_02784772.rrd merrimack_19_02784773.img merrimack_19_02784773.rrd merrimack_19_02784774.img merrimack_19_02784774.rrd merrimack_19_02784776.img merrimack_19_02784776.rrd merrimack_19_02784778.img merrimack_19_02784778.rrd merrimack_19_02784779.img merrimack_19_02784779.rrd merrimack_19_02784808.img merrimack_19_02784808.rrd merrimack_19_02784809.img merrimack_19_02784809.rrd merrimack_19_02784810.img merrimack_19_02784810.rrd merrimack_19_02784812.img merrimack-19-02784812.rrd merrimack_19_02784814.img merrimack_19_02784814.rrd merrimack_19_02794740.img merrimack_19_02794740.rrd merrimack_19_02794742.img merrimack_19_02794742.rrd merrimack_19_02794743.img merrimack_19_02794743.rrd merrimack_19_02794744.img merrimack_19_02794744.rrd merrimack_19_02794746.img merrimack_19_02794746.rrd merrimack_19_02794748.img merrimack_19_02794748.rrd merrimack_19_02794749.img merrimack_19_02794749.rrd merrimack_19_02794750.img merrimack_19_02794750.rrd merrimack_19_02794752.img merrimack_19_02794752.rrd merrimack_19-02794754.img merrimack_19_02794754.rrd merrimack_19_02794755.img merrimack_19_02794755.rrd merrimack_19_02794756.img merrimack_19_02794756.rrd merrimack_19_02794758.img merrimack_19_02794758.rrd merrimack_19_02794760.img
merrimack_19_02794760.rrd merrimack_19_02794761.img merrimack_19-02794761.rrd merrimack_19_02794762.img merrimack_19_02794762.rrd merrimack_19_02794764.img merrimack_19_02794764.rrd merrimack_19_02794766.img merrimack_19_02794766.rrd merrimack_19_02794767.img merrimack_19_02794767.rrd merrimack_19_02794768.img merrimack_19_02794768.rrd merrimack_19_02794770.img merrimack_19_02794770.rrd merrimack_19_02794772.img merrimack_19_02794772.rrd merrimack_19_02794773.img merrimack_19_02794773.rrd merrimack_19_02794774.img merrimack_19_02794774.rrd merrimack_19_02794776.img merrimack_19_02794776.rrd merrimack_19_02794778.img merrimack-19-02794778.rrd merrimack_19_02794779.img merrimack_19_02794779.rrd merrimack_19_02794780.img merrimack_19_02794780.rrd merrimack_19_02794804.img merrimack_19_02794804.rrd merrimack_19_02794806.img merrimack_19_02794806.rrd merrimack_19_02794808.img merrimack_19_02794808.rrd merrimack_19_02794809.img merrimack_19_02794809.rrd
merrimack_19_02794810.img
merrimack_19_02794810.rrd
merrimack_19_02794812.img
merrimack_19_02794812.rrd
merrimack_19_02794814.img
merrimack_19_02794814.rrd
merrimack_19_02804740.img
merrimack_19_02804740.rrd
merrimack_19-02804742.img
merrimack_19_02804742.rrd
merrimack_19_02804743.img
merrimack_19_02804743.rrd
merrimack_19_02804744.img
merrimack_19_02804744.rrd
merrimack_19_02804746.img
merrimack_19_02804746.rrd
merrimack_19_02804748.img
merrimack_19_02804748.rrd merrimack_19_02804749.img merrimack_19_02804749.rrd merrimack_19_02804750.img merrimack_19_02804750.rrd merrimack_19_02804752.img merrimack_19_02804752.rrd merrimack_19_02804754.img merrimack_19_02804754.rrd merrimack_19_02804755.img merrimack_19_02804755.rrd merrimack_19_02804756.img merrimack_19_02804756.rrd merrimack_19_02804758.img merrimack_19_02804758.rrd merrimack_19_02804760.img merrimack_19_02804760.rrd merrimack_19_02804761.img merrimack_19_02804761.rrd merrimack_19_02804762.img merrimack_19_02804762.rrd merrimack_19_02804764.img merrimack_19_02804764.rrd merrimack_19_02804766.img merrimack_19_02804766.rrd merrimack_19_02804767.img merrimack_19_02804767.rrd merrimack_19_02804768.img merrimack_19_02804768.rrd merrimack_19_02804770.img merrimack_19_02804770.rrd merrimack_19_02804772.img merrimack_19_02804772.rrd merrimack_19_02804773.img merrimack_19_02804773.rrd merrimack_19_02804774.img merrimack_19_02804774.rrd
merrimack_19_02804776.img
merrimack_19_02804776.rrd
merrimack_19_02804778.img
merrimack_19_02804778.rrd
merrimack_19_02804779.img
merrimack_19_02804779.rrd
merrimack_19_02804780.img
merrimack_19_02804780.rrd
merrimack_19-02804800.img
merrimack_19_02804800.rrd
merrimack_19_02804802.img
merrimack_19_02804802.rrd
merrimack_19_02804803.img
merrimack_19_02804803.rrd
merrimack_19_02804804.img
merrimack_19_02804804.rrd
merrimack_19_02804806.img
merrimack_19_02804806.rrd merrimack_19—02804808.img merrimack_19_02804808.rrd merrimack_19_02804809.img merrimack_19_02804809.rrd merrimack_19_02804810.img merrimack_19_02804810.rrd merrimack_19_02804812.img merrimack_19_02804812.rrd merrimack_19_02804814.img merrimack_19_02804814.rrd merrimack_19_02824740.img merrimack_19_02824740.rrd merrimack_19_02824742.img merrimack_19_02824742.rrd merrimack_19_02824743.img merrimack_19_02824743.rrd merrimack_19_02824744.img merrimack_19_02824744.rrd merrimack_19_02824746.img merrimack_19_02824746.rrd merrimack_19_02824748.img merrimack_19_02824748.rrd merrimack_19_02824749.img merrimack_19-02824749.rrd merrimack_19_02824750.img merrimack_19_02824750.rrd merrimack_19_02824752.img merrimack_19_02824752.rrd merrimack_19_02824754.img merrimack_19_02824754.rrd merrimack_19_02824755.img merrimack_19_02824755.rrd merrimack_19_02824756.img merrimack_19-02824756.rrd merrimack_19_02824758.img merrimack_19_02824758.rrd merrimack_19_02824760.img merrimack_19_02824760.rrd merrimack_19_02824761.img merrimack_19_02824761.rrd merrimack_19_02824762.img merrimack_19_02824762.rrd merrimack_19_02824764.img merrimack_19_02824764.rrd merrimack_19-02824766.img merrimack_19_02824766.rrd merrimack_19_02824767.img merrimack_19_02824767.rrd merrimack_19_02824768.img merrimack_19_02824768.rrd merrimack_19_02824770.img merrimack_19_02824770.rrd merrimack_19_02824772.img
merrimack_19_02824772.rrd merrimack_19—02824773.img merrimack_19_02824773.rrd merrimack_19_02824774.img merrimack_19-02824774.rrd merrimack_19_02824776.img merrimack_19_02824776.rrd merrimack_19_02824778.img merrimack_19_02824778.rrd merrimack_19_02824779.img merrimack_19_02824779.rrd merrimack_19_02824780.img merrimack_19_02824780.rrd merrimack_19_02824782.img merrimack_19_02824782.rrd merrimack_19_02824784.img merrimack_19_02824784.rrd merrimack_19_02824798.img merrimack_19_02824798.rrd merrimack_19_02824800.img merrimack_19_02824800.rrd merrimack_19_02824802.img merrimack_19_02824802.rrd merrimack_19_02824803.img merrimack_19_02824803.rrd merrimack_19_02824804.img merrimack_19_02824804.rrd merrimack_19_02824806.img merrimack_19_02824806.rrd merrimack_19_02824808.img merrimack_19_02824808.rrd merrimack_19_02824809.img merrimack_19_02824809.rrd merrimack_19-02824810.img merrimack_19-02824810.rrd merrimack_19_02824812.img merrimack_19_02824812.rrd merrimack_19_02824814.img merrimack_19_02824814.rrd merrimack_19_02844737.img merrimack_19_02844737.rrd merrimack_19_02844738.img merrimack_19_02844738.rrd merrimack_19_02844740.img merrimack_19_02844740.rrd merrimack_19-02844742.img merrimack_19_02844742.rrd merrimack_19_02844743.img merrimack_19_02844743.rrd merrimack_19_02844744.img merrimack_19_02844744.rrd merrimack_19_02844746.img merrimack_19_02844746.rrd merrimack_19_02844748.img
merrimack_19_02844748.rrd merrimack_19_02844749.img merrimack-19-02844749.rrd merrimack_19_02844750.img merrimack_19_02844750.rrd merrimack_19_02844752.img merrimack_19_02844752.rrd merrimack_19_02844754.img merrimack_19_02844754.rrd merrimack_19_02844755.img merrimack_19_02844755.rrd merrimack_19_02844756.img merrimack_19_02844756.rrd merrimack_19_02844758.img merrimack_19_02844758.rrd merrimack_19_02844760.img merrimack_19_02844760.rrd merrimack_19_02844761.img merrimack_19_02844761.rrd merrimack_19_02844762.img merrimack_19_02844762.rrd merrimack_19_02844764.img merrimack_19_02844764.rrd merrimack_19_02844766.img merrimack_19_02844766.rrd merrimack_19_02844767.img merrimack_19_02844767.rrd merrimack_19_02844768.img merrimack_19_02844768.rrd merrimack_19_02844770.img merrimack_19_02844770.rrd merrimack_19_02844772.img merrimack_19_02844772.rrd merrimack_19_02844773.img merrimack_19_02844773.rrd merrimack_19_02844774.img merrimack_19_02844774.rrd
merrimack_19_02844776.img
merrimack_19_02844776.rrd
merrimack_19_02844778.img
merrimack_19_02844778.rrd
merrimack_19_02844779.img
merrimack_19_02844779.rrd
merrimack_19_02844780.img
merrimack_19_02844780.rrd
merrimack_19-02844782.img
merrimack_19_02844782.rrd
merrimack_19_02844784.img
merrimack_19_02844784.rrd
merrimack_19_02844785.img
merrimack_19_02844785.rrd
merrimack_19_02844786.img
merrimack_19_02844786.rrd
merrimack_19_02844796.img
merrimack_19_02844796.rrd merrimack_19_02844797.img merrimack_19_02844797.rrd merrimack_19_02844798.img merrimack_19_02844798.rrd merrimack_19_02844800.img merrimack_19_02844800.rrd merrimack_19_02844802.img merrimack_19_02844802.rrd merrimack_19_02844803.img merrimack_19_02844803.rrd merrimack_19_02844804.img merrimack_19_02844804.rrd merrimack_19_02844806.img merrimack_19_02844806.rrd merrimack_19_02844808.img merrimack_19_02844808.rrd merrimack_19_02844809.img merrimack_19_02844809.rrd merrimack_19_02844810.img merrimack_19_02844810.rrd merrimack_19_02844812.img merrimack_19_02844812.rrd merrimack_19_02844814.img merrimack_19_02844814.rrd merrimack_19_02854736.img merrimack_19_02854736.rrd merrimack_19_02854737.img merrimack_19_02854737.rrd merrimack_19_02854738.img merrimack_19_02854738.rrd merrimack_19_02854740.img merrimack_19_02854740.rrd merrimack_19_02854742.img merrimack_19_02854742.rrd merrimack_19_02854743.img merrimack_19_02854743.rrd
merrimack_19_02854744.img
merrimack_19_02854744.rrd
merrimack_19_02854746.img
merrimack_19_02854746.rrd
merrimack_19_02854748.img
merrimack_19_02854748.rrd
merrimack_19_02854749.img
merrimack_19_02854749.rrd
merrimack_19-02854750.img
merrimack_19_02854750.rrd
merrimack_19_02854752.img
merrimack_19_02854752.rrd
merrimack_19_02854754.img
merrimack_19_02854754.rrd
merrimack_19_02854755.img
merrimack_19_02854755.rrd
merrimack_19_02854756.img
merrimack_19_02854756.rrd merrimack_19_02854758.img merrimack_19_02854758.rrd merrimack ${ }^{-19-02854760 . i m g ~}$ merrimack_19_02854760.rrd merrimack_19_02854761.img merrimack_19_02854761.rrd merrimack_19_02854762.img merrimack_19_02854762.rrd merrimack_19_02854764.img merrimack_19_02854764.rrd merrimack_19_02854766.img merrimack_19_02854766.rrd merrimack_19_02854767.img merrimack_19_02854767.rrd merrimack_19_02854768.img merrimack_19_02854768.rrd merrimack_19_02854770.img merrimack_19_02854770.rrd merrimack_19_02854772.img merrimack_19_02854772.rrd merrimack_19_02854773.img merrimack_19_02854773.rrd merrimack_19_02854774.img merrimack-19-02854774.rrd merrimack_19_02854776.img merrimack_19_02854776.rrd merrimack_19_02854778.img merrimack_19_02854778.rrd merrimack_19_02854779.img merrimack_19_02854779.rrd merrimack_19_02854780.img merrimack_19_02854780.rrd merrimack_19_02854782.img merrimack_19_02854782.rrd merrimack_19_02854784.img merrimack_19_02854784.rrd
merrimack_19_02854785.img
merrimack_19_02854785.rrd
merrimack_19_02854786.img
merrimack_19_02854786.rrd
merrimack_19_02854788.img
merrimack_19_02854788.rrd
merrimack_19_02854796.img
merrimack_19_02854796.rrd
merrimack_19-02854797.img
merrimack_19_02854797.rrd
merrimack_19_02854798.img
merrimack_19_02854798.rrd
merrimack_19_02854800.img
merrimack_19_02854800.rrd
merrimack_19_02854802.img
merrimack_19_02854802.rrd
merrimack_19_02854803.img
merrimack_19_02854803.rrd merrimack_19_02854804.img merrimack_19_02854804.rrd merrimack-19-02854806.img merrimack_19-02854806.rrd merrimack_19_02854808.img merrimack_19_02854808.rrd merrimack_19_02854809.img merrimack_19_02854809.rrd merrimack_19_02854810.img merrimack_19_02854810.rrd merrimack_19_02854812.img merrimack_19_02854812.rrd merrimack_19_02864736.img merrimack_19-02864736.rrd merrimack_19_02864737.img merrimack_19_02864737.rrd merrimack_19_02864738.img merrimack_19_02864738.rrd merrimack_19_02864740.img merrimack_19_02864740.rrd merrimack_19_02864742.img merrimack_19_02864742.rrd merrimack_19_02864743.img merrimack_19-02864743.rrd merrimack_19_02864744.img merrimack_19_02864744.rrd merrimack_19_02864746.img merrimack_19_02864746.rrd merrimack_19_02864748.img merrimack_19_02864748.rrd merrimack_19_02864749.img merrimack_19_02864749.rrd merrimack_19-02864750.img merrimack_19-02864750.rrd merrimack_19_02864752.img merrimack_19_02864752.rrd merrimack_19_02864754.img merrimack_19_02864754.rrd merrimack_19_02864755.img merrimack_19_02864755.rrd merrimack_19_02864756.img merrimack_19_02864756.rrd merrimack_19_02864758.img merrimack_19_02864758.rrd merrimack_19_02864760.img merrimack_19_02864760.rrd merrimack_19_02864761.img merrimack_19_02864761.rrd merrimack_19_02864762.img merrimack_19_02864762.rrd merrimack_19_02864764.img merrimack_19_02864764.rrd merrimack_19_02864766.img
merrimack_19_02864766.rrd merrimack_19_02864767.img merrimack_19-02864767.rrd merrimack ${ }^{-19-02864768 . i m g ~}$ merrimack_19_02864768.rrd merrimack_19_02864770.img merrimack_19_02864770.rrd merrimack_19_02864772.img merrimack_19_02864772.rrd merrimack_19_02864773.img merrimack_19_02864773.rrd merrimack_19_02864774.img merrimack_19_02864774.rrd merrimack_19_02864776.img merrimack_19_02864776.rrd merrimack_19_02864778.img merrimack_19_02864778.rrd merrimack_19_02864779.img merrimack_19_02864779.rrd merrimack_19_02864780.img merrimack_19_02864780.rrd merrimack_19_02864782.img merrimack_19_02864782.rrd merrimack_19_02864784.img merrimack-19-02864784.rrd merrimack_19_02864785.img merrimack_19_02864785.rrd merrimack_19_02864786.img merrimack_19_02864786.rrd merrimack_19_02864788.img merrimack_19_02864788.rrd merrimack_19_02864790.img merrimack_19_02864790.rrd merrimack_19_02864796.img merrimack_19_02864796.rrd merrimack_19_02864797.img merrimack_19_02864797.rrd
merrimack_19_02864798.img
merrimack_19_02864798.rrd
merrimack_19_02864800.img
merrimack_19_02864800.rrd
merrimack_19_02864802.img
merrimack_19_02864802.rrd
merrimack_19_02864803.img
merrimack_19_02864803.rrd
merrimack_19-02864804.img
merrimack_19_02864804.rrd
merrimack_19_02864806.img
merrimack_19_02864806.rrd
merrimack_19_02864808.img
merrimack_19_02864808.rrd
merrimack_19_02864809.img
merrimack_19_02864809.rrd
merrimack_19_02864810.img
merrimack_19_02864810.rrd merrimack_19—02864812.img merrimack_19_02864812.rrd merrimack-19-02884710.img merrimack_19_02884710.rrd merrimack_19_02884712.img merrimack_19_02884712.rrd merrimack_19_02884713.img merrimack_19_02884713.rrd merrimack_19_02884719.img merrimack_19_02884719.rrd merrimack_19_02884736.img merrimack_19_02884736.rrd merrimack_19_02884737.img merrimack_19_02884737.rrd merrimack_19_02884738.img merrimack_19_02884738.rrd merrimack_19_02884740.img merrimack_19_02884740.rrd merrimack_19_02884742.img merrimack_19_02884742.rrd merrimack_19_02884743.img merrimack_19_02884743.rrd merrimack_19_02884744.img merrimack_19-02884744.rrd merrimack_19_02884746.img merrimack_19_02884746.rrd merrimack_19_02884748.img merrimack_19_02884748.rrd merrimack_19_02884749.img merrimack_19_02884749.rrd merrimack_19_02884750.img merrimack_19_02884750.rrd merrimack_19_02884752.img merrimack_19-02884752.rrd merrimack_19_02884754.img merrimack_19_02884754.rrd
merrimack_19_02884755.img
merrimack_19_02884755.rrd
merrimack_19_02884756.img
merrimack_19_02884756.rrd
merrimack_19_02884758.img
merrimack_19_02884758.rrd
merrimack_19_02884760.img
merrimack_19_02884760.rrd
merrimack_19-02884761.img
merrimack_19_02884761.rrd
merrimack_19_02884762.img
merrimack_19_02884762.rrd
merrimack_19_02884764.img
merrimack_19_02884764.rrd
merrimack_19_02884766.img
merrimack_19_02884766.rrd
merrimack_19_02884767.img
merrimack_19_02884767.rrd merrimack_19_02884768.img merrimack_19_02884768.rrd merrimack_19_02884770.img merrimack_19_02884770.rrd merrimack_19_02884772.img merrimack_19_02884772.rrd merrimack_19_02884773.img merrimack_19_02884773.rrd merrimack_19_02884774.img merrimack_19_02884774.rrd merrimack_19_02884776.img merrimack_19_02884776.rrd merrimack_19_02884778.img merrimack_19_02884778.rrd merrimack_19_02884779.img merrimack_19_02884779.rrd merrimack_19_02884780.img merrimack_19_02884780.rrd merrimack_19_02884782.img merrimack_19_02884782.rrd merrimack_19_02884784.img merrimack_19_02884784.rrd merrimack_19_02884785.img merrimack_19_02884785.rrd merrimack_19_02884786.img merrimack_19_02884786.rrd merrimack_19_02884788.img merrimack_19_02884788.rrd merrimack_19_02884790.img merrimack_19_02884790.rrd merrimack_19_02884791.img merrimack_19_02884791.rrd merrimack_19_02884792.img merrimack_19_02884792.rrd merrimack_19_02884794.img merrimack_19_02884794.rrd
merrimack_19_02884796.img
merrimack_19_02884796.rrd
merrimack_19_02884797.img
merrimack_19_02884797.rrd
merrimack_19_02884798.img
merrimack_19_02884798.rrd
merrimack_19_02884800.img
merrimack_19_02884800.rrd
merrimack_19-02884802.img
merrimack_19_02884802.rrd
merrimack_19_02884803.img
merrimack_19_02884803.rrd
merrimack_19_02884804.img
merrimack_19_02884804.rrd
merrimack_19_02884806.img
merrimack_19_02884806.rrd
merrimack_19_02884808.img
merrimack_19_02884808.rrd merrimack_19_02884809.img merrimack-19-02884809.rrd merrimack-19-02884810.img merrimack_19_02884810.rrd merrimack_19_02904704.img merrimack_19_02904704.rrd merrimack_19_02904706.img merrimack_19_02904706.rrd merrimack_19_02904707.img merrimack_19_02904707.rrd merrimack_19_02904708.img merrimack_19_02904708.rrd merrimack_19_02904710.img merrimack_19_02904710.rrd merrimack_19_02904712.img merrimack_19_02904712.rrd merrimack_19_02904713.img merrimack_19_02904713.rrd merrimack_19_02904714.img merrimack_19_02904714.rrd merrimack_19_02904716.img merrimack_19_02904716.rrd merrimack_19_02904718.img merrimack_19_02904718.rrd merrimack_19_02904719.img merrimack_19_02904719.rrd merrimack_19_02904720.img merrimack_19_02904720.rrd merrimack_19_02904722.img merrimack_19_02904722.rrd merrimack_19_02904736.img merrimack_19_02904736.rrd merrimack_19_02904737.img merrimack_19-02904737.rrd merrimack_19_02904738.img merrimack_19_02904738.rrd
merrimack_19_02904740.img
merrimack_19_02904740.rrd
merrimack_19_02904742.img
merrimack_19_02904742.rrd
merrimack_19_02904743.img
merrimack_19_02904743.rrd
merrimack_19_02904744.img
merrimack_19_02904744.rrd
merrimack_19-02904746.img
merrimack_19_02904746.rrd
merrimack_19_02904748.img
merrimack_19_02904748.rrd
merrimack_19_02904749.img
merrimack_19_02904749.rrd
merrimack_19_02904750.img
merrimack_19_02904750.rrd
merrimack_19_02904752.img
merrimack_19_02904752.rrd merrimack_19—02904754.img merrimack-19-02904754.rrd merrimack-19-02904755.img merrimack_19-02904755.rrd merrimack_19_02904756.img merrimack_19_02904756.rrd merrimack_19_02904758.img merrimack_19_02904758.rrd merrimack_19_02904760.img merrimack_19_02904760.rrd merrimack_19_02904761.img merrimack_19_02904761.rrd merrimack_19_02904762.img merrimack_19_02904762.rrd merrimack_19_02904764.img merrimack_19_02904764.rrd merrimack_19_02904766.img merrimack_19_02904766.rrd merrimack_19_02904767.img merrimack_19_02904767.rrd merrimack_19_02904768.img merrimack_19_02904768.rrd merrimack_19_02904770.img merrimack_19_02904770.rrd merrimack_19_02904772.img merrimack_19_02904772.rrd merrimack_19_02904773.img merrimack_19_02904773.rrd merrimack_19_02904774.img merrimack_19_02904774.rrd merrimack_19_02904776.img merrimack_19_02904776.rrd merrimack_19-02904778.img merrimack_19-02904778.rrd merrimack_19_02904779.img merrimack_19_02904779.rrd merrimack_19_02904780.img merrimack_19_02904780.rrd merrimack_19_02904782.img merrimack_19_02904782.rrd merrimack_19_02904784.img merrimack_19_02904784.rrd merrimack_19_02904785.img merrimack_19_02904785.rrd merrimack_19-02904786.img merrimack_19_02904786.rrd merrimack_19_02904788.img merrimack_19_02904788.rrd merrimack_19_02904790.img merrimack_19_02904790.rrd merrimack_19_02904791.img merrimack_19_02904791.rrd merrimack_19_02904792.img
merrimack_19_02904792.rrd merrimack_19_02904794.img merrimack_19_02904794.rrd merrimack-19-02904796.img merrimack_19_02904796.rrd merrimack_19_02904797.img merrimack_19_02904797.rrd merrimack_19_02904798.img merrimack_19_02904798.rrd merrimack_19_02904800.img merrimack_19_02904800.rrd merrimack_19_02904802.img merrimack_19_02904802.rrd merrimack_19_02904803.img merrimack_19_02904803.rrd merrimack_19_02904804.img merrimack_19_02904804.rrd merrimack_19_02904806.img merrimack_19_02904806.rrd merrimack_19_02904808.img merrimack_19_02904808.rrd merrimack_19_02904809.img merrimack_19_02904809.rrd merrimack_19_02914704.img merrimack-19-02914704.rrd merrimack_19_02914706.img merrimack_19_02914706.rrd merrimack_19_02914707.img merrimack_19_02914707.rrd merrimack_19_02914708.img merrimack_19_02914708.rrd merrimack_19_02914710.img merrimack_19_02914710.rrd merrimack_19_02914712.img merrimack_19_02914712.rrd merrimack_19_02914713.img merrimack_19_02914713.rrd
merrimack_19_02914714.img
merrimack_19_02914714.rrd
merrimack_19_02914716.img
merrimack_19_02914716.rrd
merrimack_19_02914718.img
merrimack_19_02914718.rrd
merrimack_19_02914719.img
merrimack_19_02914719.rrd
merrimack_19-02914720.img
merrimack_19_02914720.rrd
merrimack_19_02914722.img
merrimack_19_02914722.rrd
merrimack_19_02914728.img
merrimack_19_02914728.rrd
merrimack_19_02914730.img
merrimack_19_02914730.rrd
merrimack_19_02914731.img
merrimack_19_02914731.rrd merrimack_19_02914736.img merrimack_19_02914736.rrd merrimack_19_02914737.img merrimack_19_02914737.rrd merrimack_19_02914738.img merrimack_19_02914738.rrd merrimack_19_02914740.img merrimack_19_02914740.rrd merrimack_19_02914742.img merrimack_19_02914742.rrd merrimack_19_02914743.img merrimack_19_02914743.rrd merrimack_19_02914744.img merrimack_19_02914744.rrd merrimack_19_02914746.img merrimack_19_02914746.rrd merrimack_19_02914748.img merrimack_19_02914748.rrd merrimack_19_02914749.img merrimack_19_02914749.rrd merrimack_19_02914750.img merrimack_19_02914750.rrd merrimack_19_02914752.img merrimack-19-02914752.rrd merrimack_19_02914754.img merrimack_19_02914754.rrd merrimack_19_02914755.img merrimack_19_02914755.rrd merrimack_19_02914756.img merrimack_19_02914756.rrd merrimack_19_02914758.img merrimack_19_02914758.rrd merrimack_19_02914760.img merrimack_19_02914760.rrd merrimack_19_02914761.img merrimack_19_02914761.rrd
merrimack_19_02914762.img
merrimack_19_02914762.rrd
merrimack_19_02914764.img
merrimack_19_02914764.rrd
merrimack_19_02914766.img
merrimack_19_02914766.rrd
merrimack_19_02914767.img
merrimack_19_02914767.rrd
merrimack_19-02914768.img
merrimack_19_02914768.rrd
merrimack_19_02914770.img
merrimack_19_02914770.rrd
merrimack_19_02914772.img
merrimack_19_02914772.rrd
merrimack_19_02914773.img
merrimack_19_02914773.rrd
merrimack_19_02914774.img
merrimack_19_02914774.rrd merrimack_19_02914776.img merrimack_19_02914776.rrd merrimack_19_02914778.img merrimack_19_02914778.rrd merrimack_19_02914779.img merrimack_19_02914779.rrd merrimack_19_02914780.img merrimack_19_02914780.rrd merrimack_19_02914782.img merrimack_19_02914782.rrd merrimack_19_02914784.img merrimack_19_02914784.rrd merrimack_19_02914785.img merrimack_19_02914785.rrd merrimack_19_02914786.img merrimack_19_02914786.rrd merrimack_19_02914788.img merrimack_19_02914788.rrd merrimack_19_02914790.img merrimack_19_02914790.rrd merrimack_19_02914791.img merrimack_19_02914791.rrd merrimack_19_02914792.img merrimack-19-02914792.rrd merrimack_19_02914794.img merrimack_19_02914794.rrd merrimack_19_02914796.img merrimack_19_02914796.rrd merrimack_19_02914797.img merrimack_19_02914797.rrd merrimack_19_02914798.img merrimack_19_02914798.rrd merrimack_19_02914800.img merrimack_19_02914800.rrd merrimack_19_02914802.img merrimack_19_02914802.rrd merrimack_19_02914803.img merrimack_19_02914803.rrd merrimack_19_02914804.img merrimack_19_02914804.rrd merrimack_19_02914806.img merrimack_19_02914806.rrd merrimack_19_02914808.img merrimack_19_02914808.rrd merrimack_19-02914809.img merrimack_19_02914809.rrd merrimack_19_02924706.img merrimack_19_02924706.rrd merrimack_19_02924707.img merrimack_19_02924707.rrd merrimack_19_02924708.img merrimack_19_02924708.rrd merrimack_19_02924710.img
merrimack_19_02924710.rrd merrimack_19_02924712.img merrimack-19-02924712.rrd merrimack-19-02924713.img merrimack_19-02924713.rrd merrimack_19_02924714.img merrimack_19_02924714.rrd merrimack_19_02924716.img merrimack_19_02924716.rrd merrimack_19_02924718.img merrimack_19_02924718.rrd merrimack_19_02924719.img merrimack_19_02924719.rrd merrimack_19_02924720.img merrimack_19_02924720.rrd merrimack_19_02924722.img merrimack_19_02924722.rrd merrimack_19_02924724.img merrimack_19_02924724.rrd merrimack_19_02924725.img merrimack_19_02924725.rrd merrimack_19_02924726.img merrimack_19_02924726.rrd merrimack_19_02924728.img merrimack_19-02924728.rrd merrimack_19_02924730.img merrimack_19_02924730.rrd merrimack_19_02924731.img merrimack_19_02924731.rrd merrimack_19_02924732.img merrimack_19_02924732.rrd merrimack_19_02924737.img merrimack_19_02924737.rrd merrimack-19-02924738.img merrimack_19-02924738.rrd merrimack_19_02924740.img merrimack_19_02924740.rrd
merrimack_19_02924742.img merrimack_19_02924742.rrd merrimack_19_02924743.img merrimack_19_02924743.rrd merrimack_19_02924744.img merrimack_19_02924744.rrd merrimack_19_02924746.img merrimack_19_02924746.rrd merrimack_19-02924748.img merrimack_19_02924748.rrd merrimack_19_02924749.img merrimack_19_02924749.rrd merrimack_19_02924750.img merrimack_19_02924750.rrd merrimack_19_02924752.img merrimack_19_02924752.rrd merrimack_19_02924754.img
merrimack_19_02924754.rrd merrimack_19_02924755.img merrimack_19_02924755.rrd merrimack ${ }^{-19-02924756 . i m g ~}$ merrimack_19_02924756.rrd merrimack_19_02924758.img merrimack_19_02924758.rrd merrimack_19_02924760.img merrimack_19_02924760.rrd merrimack_19_02924761.img merrimack_19_02924761.rrd merrimack_19_02924762.img merrimack_19_02924762.rrd merrimack_19_02924764.img merrimack_19_02924764.rrd merrimack_19_02924766.img merrimack_19_02924766.rrd merrimack_19_02924767.img merrimack_19_02924767.rrd merrimack_19_02924768.img merrimack_19_02924768.rrd merrimack_19_02924770.img merrimack_19_02924770.rrd merrimack_19_02924772.img merrimack_19_02924772.rrd merrimack_19_02924773.img merrimack_19_02924773.rrd merrimack_19_02924774.img merrimack_19_02924774.rrd merrimack_19_02924776.img merrimack_19_02924776.rrd merrimack_19_02924778.img merrimack_19_02924778.rrd merrimack_19_02924779.img merrimack_19_02924779.rrd merrimack_19_02924780.img merrimack_19_02924780.rrd
merrimack_19_02924782.img
merrimack_19_02924782.rrd
merrimack_19_02924784.img
merrimack_19_02924784.rrd
merrimack_19_02924785.img
merrimack_19_02924785.rrd
merrimack_19_02924786.img
merrimack_19_02924786.rrd
merrimack_19-02924788.img
merrimack_19_02924788.rrd
merrimack_19_02924790.img
merrimack_19_02924790.rrd
merrimack_19_02924791.img
merrimack_19_02924791.rrd
merrimack_19_02924792.img
merrimack_19_02924792.rrd
merrimack_19_02924794.img
merrimack_19_02924794.rrd merrimack_19—02924796.img merrimack_19_02924796.rrd merrimack-19-02924797.img merrimack_19-02924797.rrd merrimack_19_02924798.img merrimack_19_02924798.rrd merrimack_19_02924800.img merrimack_19_02924800.rrd merrimack_19_02924802.img merrimack_19_02924802.rrd merrimack_19_02924803.img merrimack_19_02924803.rrd merrimack_19_02924804.img merrimack_19_02924804.rrd merrimack_19_02924806.img merrimack_19_02924806.rrd merrimack_19_02924808.img merrimack_19_02924808.rrd merrimack_19_02944708.img merrimack_19_02944708.rrd merrimack_19_02944710.img merrimack_19_02944710.rrd merrimack_19_02944712.img merrimack_19_02944712.rrd merrimack_19_02944713.img merrimack_19_02944713.rrd merrimack_19_02944714.img merrimack_19_02944714.rrd merrimack_19_02944716.img merrimack_19_02944716.rrd merrimack_19_02944718.img merrimack_19_02944718.rrd merrimack_19-02944719.img merrimack_19-02944719.rrd merrimack_19_02944720.img merrimack_19_02944720.rrd merrimack_19_02944722.img merrimack_19_02944722.rrd merrimack_19_02944724.img merrimack_19_02944724.rrd merrimack_19_02944725.img merrimack_19_02944725.rrd merrimack_19_02944726.img merrimack_19_02944726.rrd merrimack_19-02944728.img merrimack_19_02944728.rrd merrimack_19_02944730.img merrimack_19_02944730.rrd merrimack_19_02944731.img merrimack_19_02944731.rrd merrimack_19_02944732.img merrimack_19_02944732.rrd merrimack_19_02944734.img
merrimack_19_02944734.rrd merrimack_19_02944736.img merrimack-19-02944736.rrd merrimack-19-02944738.img merrimack_19_02944738.rrd merrimack_19_02944740.img merrimack_19_02944740.rrd merrimack_19_02944742.img merrimack_19_02944742.rrd merrimack_19_02944743.img merrimack_19_02944743.rrd merrimack_19_02944744.img merrimack_19_02944744.rrd merrimack_19_02944746.img merrimack_19_02944746.rrd merrimack_19_02944748.img merrimack_19_02944748.rrd merrimack_19_02944749.img merrimack_19_02944749.rrd merrimack_19_02944750.img merrimack_19_02944750.rrd merrimack_19_02944752.img merrimack_19_02944752.rrd merrimack_19_02944754.img merrimack_19_02944754.rrd merrimack_19_02944755.img merrimack_19_02944755.rrd merrimack_19_02944756.img merrimack_19_02944756.rrd merrimack_19_02944758.img merrimack_19_02944758.rrd merrimack_19_02944760.img merrimack_19_02944760.rrd merrimack_19_02944761.img merrimack_19-02944761.rrd merrimack_19_02944762.img merrimack_19_02944762.rrd merrimack_19_02944764.img merrimack_19_02944764.rrd merrimack_19_02944766.img merrimack_19_02944766.rrd merrimack_19_02944767.img merrimack_19_02944767.rrd merrimack_19_02944768.img merrimack_19_02944768.rrd merrimack_19-02944770.img merrimack_19_02944770.rrd merrimack_19_02944772.img merrimack_19_02944772.rrd merrimack_19_02944773.img merrimack_19_02944773.rrd merrimack_19_02944774.img merrimack_19_02944774.rrd merrimack_19_02944776.img
merrimack_19_02944776.rrd merrimack_19_02944778.img merrimack_19_02944778.rrd merrimack_19_02944779.img merrimack_19_02944779.rrd merrimack_19_02944780.img merrimack_19_02944780.rrd merrimack_19_02944782.img merrimack_19_02944782.rrd merrimack_19_02944784.img merrimack_19_02944784.rrd merrimack_19_02944785.img merrimack_19_02944785.rrd merrimack_19_02944786.img merrimack_19_02944786.rrd merrimack_19_02944788.img merrimack_19_02944788.rrd merrimack_19_02944790.img merrimack_19_02944790.rrd merrimack_19_02944791.img merrimack_19_02944791.rrd merrimack_19_02944792.img merrimack_19_02944792.rrd merrimack_19_02944794.img merrimack-19-02944794.rrd merrimack_19_02944796.img merrimack_19_02944796.rrd merrimack_19_02944797.img merrimack_19_02944797.rrd merrimack_19_02944798.img merrimack_19_02944798.rrd merrimack_19_02944800.img merrimack_19_02944800.rrd merrimack_19_02944802.img merrimack_19_02944802.rrd merrimack_19_02944803.img merrimack_19_02944803.rrd
merrimack_19_02944804.img
merrimack_19_02944804.rrd
merrimack_19_02944806.img
merrimack_19_02944806.rrd
merrimack_19_02944808.img
merrimack_19_02944808.rrd
merrimack_19_02944809.img
merrimack_19_02944809.rrd
merrimack_19-02964710.img
merrimack_19_02964710.rrd
merrimack_19_02964712.img
merrimack_19_02964712.rrd
merrimack_19_02964713.img
merrimack_19_02964713.rrd
merrimack_19_02964714.img
merrimack_19_02964714.rrd
merrimack_19_02964716.img
merrimack_19_02964716.rrd merrimack_19_02964718.img merrimack_19-02964718.rrd merrimack_19_02964719.img merrimack_19_02964719.rrd merrimack_19_02964720.img merrimack_19_02964720.rrd merrimack_19_02964722.img merrimack_19_02964722.rrd merrimack_19_02964724.img merrimack_19_02964724.rrd merrimack_19_02964725.img merrimack_19_02964725.rrd merrimack_19_02964726.img merrimack_19_02964726.rrd merrimack_19_02964728.img merrimack_19_02964728.rrd merrimack_19_02964730.img merrimack_19_02964730.rrd merrimack_19_02964731.img merrimack_19_02964731.rrd merrimack_19_02964732.img merrimack_19_02964732.rrd merrimack_19_02964734.img merrimack_19_02964734.rrd merrimack_19_02964736.img merrimack_19_02964736.rrd merrimack_19_02964738.img merrimack_19_02964738.rrd merrimack_19_02964740.img merrimack_19_02964740.rrd merrimack_19_02964742.img merrimack_19_02964742.rrd merrimack_19_02964743.img merrimack_19_02964743.rrd merrimack_19_02964744.img merrimack_19_02964744.rrd
merrimack_19_02964746.img
merrimack_19_02964746.rrd
merrimack_19_02964748.img
merrimack_19_02964748.rrd
merrimack_19_02964749.img
merrimack_19_02964749.rrd
merrimack_19_02964750.img
merrimack_19_02964750.rrd
merrimack_19-02964752.img
merrimack_19_02964752.rrd
merrimack_19_02964754.img
merrimack_19_02964754.rrd
merrimack_19_02964755.img
merrimack_19_02964755.rrd
merrimack_19_02964756.img
merrimack_19_02964756.rrd
merrimack_19_02964758.img
merrimack_19_02964758.rrd merrimack_19_02964760.img merrimack-19-02964760.rrd merrimack ${ }^{-19-02964761 . i m g ~}$ merrimack_19_02964761.rrd merrimack_19_02964762.img merrimack_19_02964762.rrd merrimack_19_02964764.img merrimack_19_02964764.rrd merrimack_19_02964766.img merrimack_19_02964766.rrd merrimack_19_02964767.img merrimack_19_02964767.rrd merrimack_19_02964768.img merrimack_19_02964768.rrd merrimack_19_02964770.img merrimack_19_02964770.rrd merrimack_19_02964772.img merrimack_19_02964772.rrd merrimack_19_02964773.img merrimack_19_02964773.rrd merrimack_19_02964774.img merrimack_19_02964774.rrd merrimack_19_02964776.img merrimack_19_02964776.rrd merrimack_19_02964778.img merrimack_19_02964778.rrd merrimack_19_02964779.img merrimack_19_02964779.rrd merrimack_19_02964780.img merrimack_19_02964780.rrd merrimack_19_02964782.img merrimack_19_02964782.rrd merrimack_19_02964784.img merrimack_19_02964784.rrd merrimack_19-02964785.img merrimack_19_02964785.rrd
merrimack_19_02964786.img
merrimack_19_02964786.rrd
merrimack_19_02964788.img
merrimack_19_02964788.rrd
merrimack_19_02964790.img
merrimack_19_02964790.rrd
merrimack_19_02964791.img
merrimack_19_02964791.rrd
merrimack_19-02964792.img
merrimack_19_02964792.rrd
merrimack_19_02964794.img
merrimack_19_02964794.rrd
merrimack_19_02964796.img
merrimack_19_02964796.rrd
merrimack_19_02964797.img
merrimack_19_02964797.rrd
merrimack_19_02964798.img
merrimack_19_02964798.rrd merrimack_19_02964800.img merrimack-19-02964800.rrd merrimack_19_02964802.img merrimack_19_02964802.rrd merrimack_19_02964803.img merrimack_19_02964803.rrd merrimack_19_02964804.img merrimack_19_02964804.rrd merrimack_19_02964806.img merrimack_19_02964806.rrd merrimack_19_02964808.img merrimack_19_02964808.rrd merrimack_19_02964809.img merrimack_19_02964809.rrd merrimack_19_02974712.img merrimack_19_02974712.rrd merrimack_19_02974713.img merrimack_19_02974713.rrd merrimack_19_02974714.img merrimack_19_02974714.rrd merrimack_19_02974716.img merrimack_19_02974716.rrd merrimack_19_02974718.img merrimack_19-02974718.rrd merrimack_19_02974719.img merrimack_19_02974719.rrd merrimack_19_02974720.img merrimack_19_02974720.rrd merrimack_19_02974722.img merrimack_19_02974722.rrd merrimack_19_02974724.img merrimack_19_02974724.rrd merrimack_19_02974725.img merrimack_19_02974725.rrd merrimack_19_02974726.img merrimack_19_02974726.rrd merrimack_19_02974728.img merrimack_19_02974728.rrd merrimack_19_02974730.img merrimack_19_02974730.rrd merrimack_19_02974731.img merrimack_19_02974731.rrd merrimack_19_02974732.img merrimack_19_02974732.rrd merrimack_19-02974734.img merrimack_19_02974734.rrd merrimack_19_02974736.img merrimack_19_02974736.rrd merrimack_19_02974737.img merrimack_19_02974737.rrd merrimack_19_02974738.img merrimack_19_02974738.rrd merrimack_19_02974740.img
merrimack_19_02974740.rrd merrimack_19_02974742.img merrimack-19-02974742.rrd merrimack_19_02974743.img merrimack_19_02974743.rrd merrimack_19_02974744.img merrimack_19_02974744.rrd merrimack_19_02974746.img merrimack_19_02974746.rrd merrimack_19_02974748.img merrimack_19_02974748.rrd merrimack_19_02974749.img merrimack_19_02974749.rrd merrimack_19_02974750.img merrimack_19_02974750.rrd merrimack_19_02974752.img merrimack_19_02974752.rrd merrimack_19_02974754.img merrimack_19_02974754.rrd merrimack_19_02974755.img merrimack_19_02974755.rrd merrimack_19_02974756.img merrimack_19_02974756.rrd merrimack_19_02974758.img merrimack_19_02974758.rrd merrimack_19_02974760.img merrimack_19_02974760.rrd merrimack_19_02974761.img merrimack_19_02974761.rrd merrimack_19_02974762.img merrimack_19_02974762.rrd merrimack_19_02974764.img merrimack_19_02974764.rrd merrimack_19_02974766.img merrimack_19_02974766.rrd merrimack_19_02974767.img merrimack_19_02974767.rrd
merrimack_19_02974768.img
merrimack_19_02974768.rrd
merrimack_19_02974770.img
merrimack_19_02974770.rrd
merrimack_19_02974772.img
merrimack_19_02974772.rrd
merrimack_19_02974773.img
merrimack_19_02974773.rrd
merrimack_19-02974774.img
merrimack_19_02974774.rrd
merrimack_19_02974776.img
merrimack_19_02974776.rrd
merrimack_19_02974778.img
merrimack_19_02974778.rrd
merrimack_19_02974779.img
merrimack_19_02974779.rrd
merrimack_19_02974780.img
merrimack_19_02974780.rrd merrimack_19_02974782.img merrimack_19_02974782.rrd merrimack_19_02974784.img merrimack_19_02974784.rrd merrimack_19_02974785.img merrimack_19_02974785.rrd merrimack_19_02974786.img merrimack_19_02974786.rrd merrimack_19_02974788.img merrimack_19_02974788.rrd merrimack_19_02974790.img merrimack_19_02974790.rrd merrimack_19_02974791.img merrimack_19_02974791.rrd merrimack_19_02974792.img merrimack_19_02974792.rrd merrimack_19_02974794.img merrimack_19_02974794.rrd merrimack_19_02974796.img merrimack_19_02974796.rrd merrimack_19_02974797.img merrimack_19_02974797.rrd merrimack_19_02974798.img merrimack_19_02974798.rrd merrimack_19_02974800.img merrimack_19_02974800.rrd merrimack_19_02974802.img merrimack_19_02974802.rrd merrimack_19_02974803.img merrimack_19_02974803.rrd merrimack_19_02974804.img merrimack_19_02974804.rrd merrimack_19_02974806.img merrimack_19_02974806.rrd merrimack_19_02974808.img merrimack_19_02974808.rrd merrimack_19_02974809.img merrimack_19_02974809.rrd merrimack_19_02984714.img merrimack_19_02984714.rrd merrimack_19_02984716.img merrimack_19_02984716.rrd merrimack_19_02984718.img merrimack_19_02984718.rrd merrimack_19-02984719.img merrimack_19_02984719.rrd merrimack_19_02984720.img merrimack_19_02984720.rrd merrimack_19_02984722.img merrimack_19_02984722.rrd merrimack_19_02984724.img merrimack_19_02984724.rrd merrimack_19_02984725.img
merrimack_19_02984725.rrd merrimack_19—02984726.img merrimack-19-02984726.rrd merrimack-19-02984728.img merrimack_19-02984728.rrd merrimack_19_02984730.img merrimack_19_02984730.rrd merrimack_19_02984731.img merrimack_19_02984731.rrd merrimack_19_02984732.img merrimack_19_02984732.rrd merrimack_19_02984734.img merrimack_19_02984734.rrd merrimack_19_02984736.img merrimack_19_02984736.rrd merrimack_19_02984737.img merrimack_19_02984737.rrd merrimack_19_02984738.img merrimack_19_02984738.rrd merrimack_19_02984740.img merrimack_19_02984740.rrd merrimack_19_02984742.img merrimack_19_02984742.rrd merrimack_19_02984743.img merrimack_19-02984743.rrd merrimack_19_02984744.img merrimack_19_02984744.rrd merrimack_19_02984746.img merrimack_19_02984746.rrd merrimack_19_02984748.img merrimack_19_02984748.rrd merrimack_19_02984749.img merrimack_19_02984749.rrd merrimack_19-02984750.img merrimack_19-02984750.rrd merrimack_19_02984752.img merrimack_19_02984752.rrd merrimack_19_02984754.img merrimack_19_02984754.rrd merrimack_19_02984755.img merrimack_19_02984755.rrd merrimack_19_02984756.img merrimack_19_02984756.rrd merrimack_19_02984758.img merrimack_19_02984758.rrd merrimack_19_02984760.img merrimack_19_02984760.rrd merrimack_19_02984761.img merrimack_19_02984761.rrd merrimack_19_02984762.img merrimack_19_02984762.rrd merrimack_19_02984764.img merrimack_19_02984764.rrd merrimack_19_02984766.img
merrimack_19_02984766.rrd merrimack_19_02984767.img merrimack-19-02984767.rrd merrimack ${ }^{-19-02984768 . i m g ~}$ merrimack_19_02984768.rrd merrimack_19_02984770.img merrimack_19_02984770.rrd merrimack_19_02984772.img merrimack_19_02984772.rrd merrimack_19_02984773.img merrimack_19_02984773.rrd merrimack_19_02984774.img merrimack_19_02984774.rrd merrimack_19_02984776.img merrimack_19_02984776.rrd merrimack_19_02984778.img merrimack_19_02984778.rrd merrimack_19_02984779.img merrimack_19_02984779.rrd merrimack_19_02984780.img merrimack_19_02984780.rrd merrimack_19_02984782.img merrimack_19_02984782.rrd merrimack_19_02984784.img merrimack_19_02984784.rrd merrimack_19_02984785.img merrimack_19_02984785.rrd merrimack_19_02984786.img merrimack_19_02984786.rrd merrimack_19_02984788.img merrimack_19_02984788.rrd merrimack_19_02984790.img merrimack_19_02984790.rrd merrimack_19_02984791.img merrimack_19_02984791.rrd merrimack_19_02984792.img merrimack_19_02984792.rrd
merrimack_19_02984794.img
merrimack_19_02984794.rrd
merrimack_19_02984796.img
merrimack_19_02984796.rrd
merrimack_19_02984797.img
merrimack_19_02984797.rrd
merrimack_19_02984798.img
merrimack_19_02984798.rrd
merrimack_19-02984800.img
merrimack_19_02984800.rrd
merrimack_19_02984802.img
merrimack_19_02984802.rrd
merrimack_19_02984803.img
merrimack_19_02984803.rrd
merrimack_19_02984804.img
merrimack_19_02984804.rrd
merrimack_19_02984806.img
merrimack_19_02984806.rrd merrimack_19_02984808.img merrimack_19_02984808.rrd merrimack_19_02984809.img merrimack_19_02984809.rrd merrimack_19_03004714.img merrimack_19_03004714.rrd merrimack_19_03004716.img merrimack_19_03004716.rrd merrimack_19_03004718.img merrimack_19_03004718.rrd merrimack_19_03004719.img merrimack_19_03004719.rrd merrimack_19_03004720.img merrimack_19_03004720.rrd merrimack_19_03004722.img merrimack_19_03004722.rrd merrimack_19_03004724.img merrimack_19_03004724.rrd merrimack_19_03004725.img merrimack_19_03004725.rrd merrimack_19_03004726.img merrimack_19_03004726.rrd merrimack_19_03004728.img merrimack_19-03004728.rrd merrimack_19_03004730.img merrimack_19_03004730.rrd merrimack_19_03004731.img merrimack_19_03004731.rrd merrimack_19_03004732.img merrimack_19_03004732.rrd merrimack_19_03004734.img merrimack_19_03004734.rrd merrimack_19_03004736.img merrimack_19_03004736.rrd merrimack_19_03004737.img merrimack_19_03004737.rrd
merrimack_19_03004738.img
merrimack_19_03004738.rrd
merrimack_19_03004740.img
merrimack_19_03004740.rrd
merrimack_19_03004742.img
merrimack_19_03004742.rrd
merrimack_19_03004743.img
merrimack_19_03004743.rrd
merrimack_19-03004744.img
merrimack_19_03004744.rrd
merrimack_19_03004746.img
merrimack_19_03004746.rrd
merrimack_19_03004748.img
merrimack_19_03004748.rrd
merrimack_19_03004749.img
merrimack_19_03004749.rrd
merrimack_19_03004750.img
merrimack_19_03004750.rrd merrimack_19_03004752.img merrimack-19-03004752.rrd merrimack-19-03004754.img merrimack_19_03004754.rrd merrimack_19_03004755.img merrimack_19_03004755.rrd merrimack_19_03004756.img merrimack_19_03004756.rrd merrimack_19_03004758.img merrimack_19_03004758.rrd merrimack_19_03004760.img merrimack_19_03004760.rrd merrimack_19_03004761.img merrimack_19_03004761.rrd merrimack_19_03004762.img merrimack_19_03004762.rrd merrimack_19_03004764.img merrimack_19_03004764.rrd merrimack_19_03004766.img merrimack_19_03004766.rrd merrimack_19_03004767.img merrimack_19_03004767.rrd merrimack_19_03004768.img merrimack_19-03004768.rrd merrimack_19_03004770.img merrimack_19_03004770.rrd merrimack_19_03004772.img merrimack_19_03004772.rrd merrimack_19_03004773.img merrimack_19_03004773.rrd merrimack_19_03004774.img merrimack_19_03004774.rrd merrimack_19_03004776.img merrimack_19-03004776.rrd merrimack_19_03004778.img merrimack_19_03004778.rrd merrimack_19_03004779.img merrimack_19_03004779.rrd merrimack_19_03004780.img merrimack_19_03004780.rrd merrimack_19_03004782.img merrimack_19_03004782.rrd merrimack_19_03004784.img merrimack_19_03004784.rrd merrimack_19-03004785.img merrimack_19_03004785.rrd merrimack_19_03004786.img merrimack_19_03004786.rrd merrimack_19_03004788.img merrimack_19_03004788.rrd merrimack_19_03004790.img merrimack_19_03004790.rrd merrimack_19_03004791.img
merrimack_19_03004791.rrd merrimack_19_03004792.img merrimack-19-03004792.rrd merrimack-19-03004794.img merrimack_19_03004794.rrd merrimack_19_03004796.img merrimack_19_03004796.rrd merrimack_19_03004797.img merrimack_19_03004797.rrd merrimack_19_03004798.img merrimack_19_03004798.rrd merrimack_19_03004800.img merrimack_19_03004800.rrd merrimack_19_03004802.img merrimack_19_03004802.rrd merrimack_19_03004803.img merrimack_19_03004803.rrd merrimack_19_03004804.img merrimack_19_03004804.rrd merrimack_19_03004806.img merrimack_19_03004806.rrd merrimack_19_03004808.img merrimack_19_03004808.rrd merrimack_19_03004809.img merrimack_19-03004809.rrd merrimack_19_03004810.img merrimack_19_03004810.rrd merrimack_19_03004812.img merrimack_19_03004812.rrd merrimack_19_03024714.img merrimack_19_03024714.rrd merrimack_19_03024716.img merrimack_19_03024716.rrd merrimack_19_03024718.img merrimack_19-03024718.rrd merrimack_19_03024719.img merrimack_19_03024719.rrd merrimack_19_03024720.img merrimack_19_03024720.rrd merrimack_19_03024722.img merrimack_19_03024722.rrd merrimack_19_03024724.img merrimack_19_03024724.rrd merrimack_19_03024725.img merrimack_19_03024725.rrd merrimack_19-03024726.img merrimack_19_03024726.rrd merrimack_19_03024728.img merrimack_19_03024728.rrd merrimack_19_03024730.img merrimack_19_03024730.rrd merrimack_19_03024731.img merrimack_19_03024731.rrd merrimack_19_03024732.img
merrimack_19_03024732.rrd merrimack_19_03024734.img merrimack_19_03024734.rrd merrimack-19-03024736.img merrimack_19-03024736.rrd merrimack_19_03024737.img merrimack_19_03024737.rrd merrimack_19_03024738.img merrimack_19_03024738.rrd merrimack_19_03024740.img merrimack_19_03024740.rrd merrimack_19_03024742.img merrimack_19_03024742.rrd merrimack_19_03024743.img merrimack_19_03024743.rrd merrimack_19_03024744.img merrimack_19_03024744.rrd merrimack_19_03024746.img merrimack_19_03024746.rrd merrimack_19_03024748.img merrimack_19_03024748.rrd merrimack_19_03024749.img merrimack_19_03024749.rrd merrimack_19_03024750.img merrimack_19-03024750.rrd merrimack_19_03024752.img merrimack_19_03024752.rrd merrimack_19_03024754.img merrimack_19_03024754.rrd merrimack_19_03024755.img merrimack_19_03024755.rrd merrimack_19_03024756.img merrimack_19_03024756.rrd merrimack_19_03024758.img merrimack_19-03024758.rrd merrimack_19_03024760.img merrimack_19_03024760.rrd
merrimack_19_03024761.img
merrimack_19_03024761.rrd
merrimack_19_03024762.img
merrimack_19_03024762.rrd
merrimack_19_03024764.img
merrimack_19_03024764.rrd
merrimack_19_03024766.img
merrimack_19_03024766.rrd
merrimack_19-03024767.img
merrimack_19_03024767.rrd
merrimack_19_03024768.img
merrimack_19_03024768.rrd
merrimack_19_03024770.img
merrimack_19_03024770.rrd
merrimack_19_03024772.img
merrimack_19_03024772.rrd
merrimack_19_03024773.img
merrimack_19_03024773.rrd merrimack_19_03024774.img merrimack_19_03024774.rrd merrimack ${ }^{-19-03024776 . i m g ~}$ merrimack_19_03024776.rrd merrimack_19_03024778.img merrimack_19_03024778.rrd merrimack_19_03024779.img merrimack_19_03024779.rrd merrimack_19_03024780.img merrimack_19_03024780.rrd merrimack_19_03024782.img merrimack_19_03024782.rrd merrimack_19_03024784.img merrimack_19_03024784.rrd merrimack_19_03024785.img merrimack_19_03024785.rrd merrimack_19_03024786.img merrimack_19_03024786.rrd merrimack_19_03024788.img merrimack_19_03024788.rrd merrimack_19_03024790.img merrimack_19_03024790.rrd merrimack_19_03024791.img merrimack_19-03024791.rrd merrimack_19_03024792.img merrimack_19_03024792.rrd merrimack_19_03024794.img merrimack_19_03024794.rrd merrimack_19_03024796.img merrimack_19_03024796.rrd merrimack_19_03024797.img merrimack_19_03024797.rrd merrimack_19_03024798.img merrimack_19_03024798.rrd merrimack_19_03024800.img merrimack_19_03024800.rrd
merrimack_19_03024802.img
merrimack_19_03024802.rrd
merrimack_19_03024803.img
merrimack_19_03024803.rrd
merrimack_19_03024804.img
merrimack_19_03024804.rrd
merrimack_19_03024806.img
merrimack_19_03024806.rrd
merrimack_19-03024808.img
merrimack_19_03024808.rrd
merrimack_19_03024809.img
merrimack_19_03024809.rrd
merrimack_19_03024810.img
merrimack_19_03024810.rrd
merrimack_19_03024812.img
merrimack_19_03024812.rrd
merrimack_19_03034718.img
merrimack_19_03034718.rrd merrimack_19_03034719.img merrimack-19-03034719.rrd merrimack ${ }^{-19-03034720 . i m g ~}$ merrimack_19_03034720.rrd merrimack_19_03034722.img merrimack_19_03034722.rrd merrimack_19_03034724.img merrimack_19_03034724.rrd merrimack_19_03034725.img merrimack_19_03034725.rrd merrimack_19_03034726.img merrimack_19_03034726.rrd merrimack_19_03034728.img merrimack_19_03034728.rrd merrimack_19_03034730.img merrimack_19_03034730.rrd merrimack_19_03034731.img merrimack_19_03034731.rrd merrimack_19_03034732.img merrimack_19_03034732.rrd merrimack_19_03034734.img merrimack_19_03034734.rrd merrimack_19_03034736.img merrimack-19-03034736.rrd merrimack_19_03034737.img merrimack_19_03034737.rrd merrimack_19_03034738.img merrimack_19_03034738.rrd merrimack_19_03034740.img merrimack_19_03034740.rrd merrimack_19_03034742.img merrimack_19_03034742.rrd merrimack_19_03034743.img merrimack_19_03034743.rrd merrimack_19_03034744.img merrimack_19_03034744.rrd merrimack_19_03034746.img merrimack_19_03034746.rrd merrimack_19_03034748.img merrimack_19_03034748.rrd merrimack_19_03034749.img merrimack_19_03034749.rrd merrimack_19_03034750.img merrimack_19_03034750.rrd merrimack_19-03034752.img merrimack_19_03034752.rrd merrimack_19_03034754.img merrimack_19_03034754.rrd merrimack_19_03034755.img merrimack_19_03034755.rrd merrimack_19_03034756.img merrimack_19_03034756.rrd merrimack_19_03034758.img
merrimack_19_03034758.rrd merrimack_19_03034760.img merrimack-19-03034760.rrd merrimack ${ }^{-19-03034761 . i m g ~}$ merrimack_19_03034761.rrd merrimack_19_03034762.img merrimack_19_03034762.rrd merrimack_19_03034764.img merrimack_19_03034764.rrd merrimack_19_03034766.img merrimack_19_03034766.rrd merrimack_19_03034767.img merrimack_19_03034767.rrd merrimack_19_03034768.img merrimack_19_03034768.rrd merrimack_19_03034770.img merrimack_19_03034770.rrd merrimack_19_03034772.img merrimack_19_03034772.rrd merrimack_19_03034773.img merrimack_19_03034773.rrd merrimack_19_03034774.img merrimack_19_03034774.rrd merrimack_19_03034776.img merrimack-19-03034776.rrd merrimack_19_03034778.img merrimack_19_03034778.rrd merrimack_19_03034779.img merrimack_19_03034779.rrd merrimack_19_03034780.img merrimack_19_03034780.rrd merrimack_19_03034782.img merrimack_19_03034782.rrd merrimack_19_03034784.img merrimack_19_03034784.rrd merrimack_19_03034785.img merrimack_19_03034785.rrd
merrimack_19_03034786.img
merrimack_19_03034786.rrd
merrimack_19_03034788.img
merrimack_19_03034788.rrd
merrimack_19_03034790.img
merrimack_19_03034790.rrd
merrimack_19_03034791.img
merrimack_19_03034791.rrd
merrimack_19-03034792.img
merrimack_19_03034792.rrd
merrimack_19_03034794.img
merrimack_19_03034794.rrd
merrimack_19_03034796.img
merrimack_19_03034796.rrd
merrimack_19_03034797.img
merrimack_19_03034797.rrd
merrimack_19_03034798.img
merrimack_19_03034798.rrd merrimack_19_03034800.img merrimack-19-03034800.rrd merrimack ${ }^{-19-03034802 . i m g ~}$ merrimack_19_03034802.rrd merrimack_19_03034803.img merrimack_19_03034803.rrd merrimack_19_03034804.img merrimack_19_03034804.rrd merrimack_19_03034806.img merrimack_19_03034806.rrd merrimack_19_03034808.img merrimack_19_03034808.rrd merrimack_19_03034809.img merrimack_19_03034809.rrd merrimack_19_03034810.img merrimack_19_03034810.rrd merrimack_19_03034812.img merrimack_19_03034812.rrd merrimack_19_03044719.img merrimack_19_03044719.rrd merrimack_19_03044720.img merrimack_19_03044720.rrd merrimack_19_03044722.img merrimack-19-03044722.rrd merrimack_19_03044724.img merrimack_19_03044724.rrd merrimack_19_03044725.img merrimack_19_03044725.rrd merrimack_19_03044726.img merrimack_19_03044726.rrd merrimack_19_03044728.img merrimack_19_03044728.rrd merrimack_19_03044730.img merrimack_19_03044730.rrd merrimack_19-03044731.img merrimack_19_03044731.rrd merrimack_19_03044732.img merrimack_19_03044732.rrd merrimack_19_03044734.img merrimack_19_03044734.rrd merrimack_19_03044736.img merrimack_19_03044736.rrd merrimack_19_03044737.img merrimack_19_03044737.rrd merrimack_19-03044738.img merrimack_19_03044738.rrd merrimack_19_03044740.img merrimack_19_03044740.rrd merrimack_19_03044742.img merrimack_19_03044742.rrd merrimack_19_03044743.img merrimack_19_03044743.rrd merrimack_19_03044744.img
merrimack_19_03044744.rrd merrimack_19_03044746.img merrimack_19-03044746.rrd merrimack_19_03044748.img merrimack_19_03044748.rrd merrimack_19_03044749.img merrimack_19_03044749.rrd merrimack_19_03044750.img merrimack_19_03044750.rrd merrimack_19_03044752.img merrimack_19_03044752.rrd merrimack_19_03044754.img merrimack_19_03044754.rrd merrimack_19_03044755.img merrimack_19_03044755.rrd merrimack_19_03044756.img merrimack_19_03044756.rrd merrimack_19_03044758.img merrimack_19_03044758.rrd merrimack_19_03044760.img merrimack_19_03044760.rrd merrimack_19_03044761.img merrimack_19_03044761.rrd merrimack_19_03044762.img merrimack_19-03044762.rrd merrimack_19_03044764.img merrimack_19_03044764.rrd merrimack_19_03044766.img merrimack_19_03044766.rrd merrimack_19_03044767.img merrimack_19_03044767.rrd merrimack_19_03044768.img merrimack_19_03044768.rrd merrimack_19_03044770.img merrimack_19_03044770.rrd
merrimack_19_03044772.img
merrimack_19_03044772.rrd
merrimack_19_03044773.img
merrimack_19_03044773.rrd
merrimack_19_03044774.img
merrimack_19_03044774.rrd
merrimack_19_03044776.img
merrimack_19_03044776.rrd
merrimack_19_03044778.img
merrimack_19_03044778.rrd
merrimack_19-03044779.img
merrimack_19_03044779.rrd
merrimack_19_03044780.img
merrimack_19_03044780.rrd
merrimack_19_03044782.img
merrimack_19_03044782.rrd
merrimack_19_03044784.img
merrimack_19_03044784.rrd
merrimack_19_03044785.img
merrimack_19_03044785.rrd merrimack_19_03044786.img merrimack-19-03044786.rrd merrimack-19-03044788.img merrimack_19_03044788.rrd merrimack_19_03044790.img merrimack_19_03044790.rrd merrimack_19_03044791.img merrimack_19_03044791.rrd merrimack_19_03044792.img merrimack_19_03044792.rrd merrimack_19_03044794.img merrimack_19_03044794.rrd merrimack_19_03044796.img merrimack_19_03044796.rrd merrimack_19_03044797.img merrimack_19_03044797.rrd merrimack_19_03044798.img merrimack_19_03044798.rrd merrimack_19_03044800.img merrimack_19_03044800.rrd merrimack_19_03044802.img merrimack_19_03044802.rrd merrimack_19_03044803.img merrimack-19-03044803.rrd merrimack_19_03044804.img merrimack_19_03044804.rrd merrimack_19_03044806.img merrimack_19_03044806.rrd merrimack_19_03044808.img merrimack_19_03044808.rrd merrimack_19_03044809.img merrimack_19_03044809.rrd merrimack_19_03044810.img merrimack_19_03044810.rrd
merrimack_19-03044812.img
merrimack_19_03044812.rrd
merrimack_19_03064719.img
merrimack_19_03064719.rrd
merrimack_19_03064720.img
merrimack_19_03064720.rrd
merrimack_19_03064722.img
merrimack_19_03064722.rrd
merrimack_19_03064725.img
merrimack_19_03064725.rrd
merrimack_19-03064726.img
merrimack_19_03064726.rrd
merrimack_19_03064730.img
merrimack_19_03064730.rrd
merrimack_19_03064731.img
merrimack_19_03064731.rrd
merrimack_19_03064732.img
merrimack_19_03064732.rrd
merrimack_19_03064734.img
merrimack_19_03064734.rrd merrimack_19_03064736.img merrimack_19_03064736.rrd merrimack_19_03064737.img merrimack_19_03064737.rrd merrimack_19_03064738.img merrimack_19_03064738.rrd merrimack_19_03064740.img merrimack_19_03064740.rrd merrimack_19_03064742.img merrimack_19_03064742.rrd merrimack_19_03064754.img merrimack_19_03064754.rrd merrimack_19_03064755.img merrimack_19_03064755.rrd merrimack_19_03064756.img merrimack_19_03064756.rrd merrimack_19_03064758.img merrimack_19_03064758.rrd merrimack_19_03064768.img merrimack_19_03064768.rrd merrimack_19_03064770.img merrimack_19_03064770.rrd merrimack_19_03064772.img merrimack-19-03064772.rrd merrimack_19_03064773.img merrimack_19_03064773.rrd merrimack_19_03064774.img merrimack_19_03064774.rrd merrimack_19_03064776.img merrimack_19_03064776.rrd merrimack_19_03064778.img merrimack_19_03064778.rrd merrimack_19_03064779.img merrimack_19_03064779.rrd merrimack_19_03064780.img merrimack_19_03064780.rrd merrimack_19_03064782.img merrimack_19_03064782.rrd merrimack_19_03064784.img merrimack_19_03064784.rrd merrimack_19_03064785.img merrimack_19_03064785.rrd merrimack_19_03064786.img merrimack_19_03064786.rrd merrimack_19-03064788.img merrimack_19_03064788.rrd merrimack_19_03064790.img merrimack_19_03064790.rrd merrimack_19_03064791.img merrimack_19_03064791.rrd merrimack_19_03064792.img merrimack_19_03064792.rrd merrimack_19_03064794.img
merrimack_19_03064794.rrd merrimack_19_03064796.img merrimack_19_03064796.rrd merrimack ${ }^{-19-03064797 . i m g ~}$ merrimack_19_03064797.rrd merrimack_19_03064798.img merrimack_19_03064798.rrd merrimack_19_03064800.img merrimack_19_03064800.rrd merrimack_19_03064802.img merrimack_19_03064802.rrd merrimack_19_03064803.img merrimack_19_03064803.rrd merrimack_19_03064804.img merrimack_19_03064804.rrd merrimack_19_03064806.img merrimack_19_03064806.rrd merrimack_19_03064808.img merrimack_19_03064808.rrd merrimack_19_03064809.img merrimack_19_03064809.rrd merrimack_19_03064810.img merrimack_19_03064810.rrd merrimack_19_03064812.img merrimack-19-03064812.rrd merrimack_19_03064814.img merrimack_19_03064814.rrd merrimack_19_03064815.img merrimack_19_03064815.rrd merrimack_19_03064816.img merrimack_19_03064816.rrd merrimack_19_03064818.img merrimack_19_03064818.rrd merrimack_19_03084702.img merrimack_19_03084702.rrd
merrimack_19_03084704.img
merrimack_19_03084704.rrd
merrimack_19_03084719.img
merrimack_19_03084719.rrd
merrimack_19_03084720.img
merrimack_19_03084720.rrd
merrimack_19_03084730.img
merrimack_19_03084730.rrd
merrimack_19_03084731.img
merrimack_19_03084731.rrd
merrimack_19-03084732.img
merrimack_19_03084732.rrd
merrimack_19_03084734.img
merrimack_19_03084734.rrd
merrimack_19_03084736.img
merrimack_19_03084736.rrd
merrimack_19_03084737.img
merrimack_19_03084737.rrd
merrimack_19_03084738.img
merrimack_19_03084738.rrd merrimack_19_03084772.img merrimack-19-03084772.rrd merrimack_19_03084773.img merrimack_19_03084773.rrd merrimack_19_03084774.img merrimack_19_03084774.rrd merrimack_19_03084776.img merrimack_19_03084776.rrd merrimack_19_03084778.img merrimack_19_03084778.rrd merrimack_19_03084779.img merrimack_19_03084779.rrd merrimack_19_03084780.img merrimack_19_03084780.rrd merrimack_19_03084782.img merrimack_19_03084782.rrd merrimack_19_03084784.img merrimack_19_03084784.rrd merrimack_19_03084785.img merrimack_19_03084785.rrd merrimack_19_03084786.img merrimack_19_03084786.rrd merrimack_19_03084788.img merrimack-19-03084788.rrd merrimack_19_03084790.img merrimack_19_03084790.rrd merrimack_19_03084791.img merrimack_19_03084791.rrd merrimack_19_03084792.img merrimack_19_03084792.rrd merrimack_19_03084794.img merrimack_19_03084794.rrd merrimack_19_03084796.img merrimack_19_03084796.rrd merrimack_19_03084797.img merrimack_19_03084797.rrd
merrimack_19_03084798.img
merrimack_19_03084798.rrd
merrimack_19_03084800.img
merrimack_19_03084800.rrd
merrimack_19_03084802.img
merrimack_19_03084802.rrd
merrimack_19_03084803.img
merrimack_19_03084803.rrd
merrimack_19-03084804.img
merrimack_19_03084804.rrd
merrimack_19_03084806.img
merrimack_19_03084806.rrd
merrimack_19_03084808.img
merrimack_19_03084808.rrd
merrimack_19_03084809.img
merrimack_19_03084809.rrd
merrimack_19_03084810.img
merrimack_19_03084810.rrd merrimack_19_03084812.img merrimack-19-03084812.rrd merrimack ${ }^{-19-03084814 . i m g ~}$ merrimack_19_03084814.rrd merrimack_19_03084815.img merrimack_19_03084815.rrd merrimack_19_03084816.img merrimack_19_03084816.rrd merrimack_19_03084818.img merrimack_19_03084818.rrd merrimack_19_03084820.img merrimack_19_03084820.rrd merrimack_19_03094700.img merrimack_19_03094700.rrd merrimack_19_03094701.img merrimack_19_03094701.rrd merrimack_19_03094702.img merrimack_19_03094702.rrd merrimack_19_03094704.img merrimack_19_03094704.rrd merrimack_19_03094706.img merrimack_19_03094706.rrd merrimack_19_03094730.img merrimack-19-03094730.rrd merrimack_19_03094731.img merrimack_19_03094731.rrd merrimack_19_03094732.img merrimack_19_03094732.rrd merrimack_19_03094734.img merrimack_19_03094734.rrd merrimack_19_03094736.img merrimack_19_03094736.rrd merrimack_19_03094737.img merrimack_19_03094737.rrd merrimack_19_03094776.img merrimack_19_03094776.rrd merrimack_19_03094778.img merrimack_19_03094778.rrd merrimack_19_03094779.img merrimack_19_03094779.rrd merrimack_19_03094780.img merrimack_19_03094780.rrd merrimack_19_03094782.img merrimack_19_03094782.rrd merrimack_19-03094784.img merrimack_19_03094784.rrd merrimack_19_03094785.img merrimack_19_03094785.rrd merrimack_19_03094786.img merrimack_19_03094786.rrd merrimack_19_03094788.img merrimack_19_03094788.rrd merrimack_19_03094790.img
merrimack_19_03094790.rrd merrimack_19_03094791.img merrimack-19-03094791.rrd merrimack ${ }^{-19-03094792 . i m g ~}$ merrimack_19_03094792.rrd merrimack_19_03094794.img merrimack_19_03094794.rrd merrimack_19_03094796.img merrimack_19_03094796.rrd merrimack_19_03094797.img merrimack_19_03094797.rrd merrimack_19_03094798.img merrimack_19_03094798.rrd merrimack_19_03094800.img merrimack_19_03094800.rrd merrimack_19_03094802.img merrimack_19_03094802.rrd merrimack_19_03094803.img merrimack_19_03094803.rrd merrimack_19_03094804.img merrimack_19_03094804.rrd merrimack_19_03094806.img merrimack_19_03094806.rrd merrimack_19_03094808.img merrimack_19-03094808.rrd merrimack_19_03094809.img merrimack_19_03094809.rrd merrimack_19_03094810.img merrimack_19_03094810.rrd merrimack_19_03094812.img merrimack_19_03094812.rrd merrimack_19_03094814.img merrimack_19_03094814.rrd merrimack_19_03094815.img merrimack_19_03094815.rrd merrimack_19_03094816.img merrimack_19_03094816.rrd
merrimack_19_03094818.img
merrimack_19_03094818.rrd
merrimack_19_03094820.img
merrimack_19_03094820.rrd
merrimack_19_03104700.img
merrimack_19_03104700.rrd
merrimack_19_03104701.img
merrimack_19_03104701.rrd
merrimack_19-03104702.img
merrimack_19_03104702.rrd
merrimack_19_03104704.img
merrimack_19_03104704.rrd
merrimack_19_03104706.img
merrimack_19_03104706.rrd
merrimack_19_03104707.img
merrimack_19_03104707.rrd
merrimack_19_03104730.img
merrimack_19_03104730.rrd merrimack_19_03104731.img merrimack-19-03104731.rrd merrimack ${ }^{-19-03104732 . i m g ~}$ merrimack_19_03104732.rrd merrimack_19_03104734.img merrimack_19_03104734.rrd merrimack_19_03104736.img merrimack_19_03104736.rrd merrimack_19_03104737.img merrimack_19_03104737.rrd merrimack_19_03104778.img merrimack_19_03104778.rrd merrimack_19_03104779.img merrimack_19_03104779.rrd merrimack_19_03104780.img merrimack_19_03104780.rrd merrimack_19_03104782.img merrimack_19_03104782.rrd merrimack_19_03104784.img merrimack_19_03104784.rrd merrimack_19_03104785.img merrimack_19_03104785.rrd merrimack_19_03104786.img merrimack-19-03104786.rrd merrimack_19_03104788.img merrimack_19_03104788.rrd merrimack_19_03104790.img merrimack_19_03104790.rrd merrimack_19_03104791.img merrimack_19_03104791.rrd merrimack_19_03104792.img merrimack_19_03104792.rrd merrimack_19_03104794.img merrimack_19_03104794.rrd merrimack_19_03104796.img merrimack_19_03104796.rrd
merrimack_19_03104797.img
merrimack_19_03104797.rrd
merrimack_19_03104798.img
merrimack_19_03104798.rrd
merrimack_19_03104800.img
merrimack_19_03104800.rrd
merrimack_19_03104802.img
merrimack_19_03104802.rrd
merrimack_19-03104803.img
merrimack_19_03104803.rrd
merrimack_19_03104804.img
merrimack_19_03104804.rrd
merrimack_19_03104806.img
merrimack_19_03104806.rrd
merrimack_19_03104808.img
merrimack_19_03104808.rrd
merrimack_19_03104809.img
merrimack_19_03104809.rrd merrimack_19_03104810.img merrimack-19-03104810.rrd merrimack ${ }^{-19-03104812 . i m g ~}$ merrimack_19_03104812.rrd merrimack_19_03104814.img merrimack_19_03104814.rrd merrimack_19_03104815.img merrimack_19_03104815.rrd merrimack_19_03104816.img merrimack_19_03104816.rrd merrimack_19_03104818.img merrimack_19_03104818.rrd merrimack_19_03104820.img merrimack_19_03104820.rrd merrimack_19_03124701.img merrimack_19_03124701.rrd merrimack_19_03124702.img merrimack_19_03124702.rrd merrimack_19_03124704.img merrimack_19_03124704.rrd merrimack_19_03124706.img merrimack_19_03124706.rrd merrimack_19_03124707.img merrimack-19-03124707.rrd merrimack_19_03124708.img merrimack_19_03124708.rrd merrimack_19_03124710.img merrimack_19_03124710.rrd merrimack_19_03124730.img merrimack_19_03124730.rrd merrimack_19_03124731.img merrimack_19_03124731.rrd merrimack_19_03124732.img merrimack_19_03124732.rrd merrimack_19_03124734.img merrimack_19_03124734.rrd
merrimack_19_03124736.img
merrimack_19_03124736.rrd
merrimack_19_03124737.img
merrimack_19_03124737.rrd
merrimack_19_03124780.img
merrimack_19_03124780.rrd
merrimack_19_03124782.img
merrimack_19_03124782.rrd
merrimack_19-03124784.img
merrimack_19_03124784.rrd
merrimack_19_03124785.img
merrimack_19_03124785.rrd
merrimack_19_03124786.img
merrimack_19_03124786.rrd
merrimack_19_03124788.img
merrimack_19_03124788.rrd
merrimack_19_03124790.img
merrimack_19_03124790.rrd merrimack_19_03124791.img merrimack-19-03124791.rrd merrimack ${ }^{-19-03124792 . i m g ~}$ merrimack_19_03124792.rrd merrimack_19_03124794.img merrimack_19_03124794.rrd merrimack_19_03124796.img merrimack_19_03124796.rrd merrimack_19_03124797.img merrimack_19_03124797.rrd merrimack_19_03124798.img merrimack_19_03124798.rrd
merrimack_19_03124800.img
merrimack_19_03124800.rrd
merrimack_19_03124802.img
merrimack_19_03124802.rrd
merrimack_19_03124803.img
merrimack_19_03124803.rrd
merrimack_19_03124804.img
merrimack_19_03124804.rrd
merrimack_19_03124806.img
merrimack_19_03124806.rrd
merrimack_19_03124808.img
merrimack-19-03124808.rrd
merrimack_19_03124809.img
merrimack_19_03124809.rrd
merrimack_19_03124810.img
merrimack_19_03124810.rrd
merrimack_19_03124812.img
merrimack_19_03124812.rrd
merrimack_19_03124814.img
merrimack_19_03124814.rrd
merrimack_19_03124815.img
merrimack ${ }^{-19-03124815 . r r d}$
merrimack_19_03124816.img
merrimack_19_03124816.rrd
merrimack_19_03124818.img
merrimack_19_03124818.rrd
merrimack_19_03124820.img
merrimack_19_03124820.rrd
merrimack_19_03144700.img
merrimack_19_03144700.rrd
merrimack_19_03144701.img
merrimack_19_03144701.rrd
merrimack_19-03144702.img
merrimack_19_03144702.rrd
merrimack_19_03144704.img
merrimack_19_03144704.rrd
merrimack_19_03144706.img
merrimack_19_03144706.rrd
merrimack_19_03144707.img
merrimack_19_03144707.rrd
merrimack_19_03144708.img
merrimack_19_03144708.rrd merrimack_19_03144710.img merrimack-19-03144710.rrd merrimack-19-03144731.img merrimack_19-03144731.rrd merrimack_19_03144732.img merrimack_19_03144732.rrd merrimack_19_03144734.img merrimack_19_03144734.rrd merrimack_19_03144736.img merrimack_19_03144736.rrd merrimack_19_03144784.img merrimack_19_03144784.rrd merrimack_19_03144785.img merrimack_19-03144785.rrd merrimack_19_03144786.img merrimack_19_03144786.rrd merrimack_19_03144788.img merrimack_19_03144788.rrd merrimack_19_03144790.img merrimack_19_03144790.rrd merrimack_19_03144791.img merrimack_19_03144791.rrd merrimack_19_03144792.img merrimack_19-03144792.rrd merrimack_19_03144794.img merrimack_19_03144794.rrd merrimack_19_03144796.img merrimack_19_03144796.rrd merrimack_19_03144797.img merrimack_19_03144797.rrd merrimack_19_03144798.img merrimack_19_03144798.rrd merrimack_19-03144800.img merrimack_19-03144800.rrd merrimack_19_03144802.img merrimack_19_03144802.rrd merrimack_19_03144803.img merrimack_19_03144803.rrd merrimack_19_03144804.img merrimack_19_03144804.rrd merrimack_19_03144806.img merrimack_19_03144806.rrd merrimack_19_03144808.img merrimack_19_03144808.rrd merrimack_19-03144809.img merrimack_19_03144809.rrd merrimack_19_03144810.img merrimack_19_03144810.rrd merrimack_19_03144812.img merrimack_19_03144812.rrd merrimack_19_03144814.img merrimack_19_03144814.rrd merrimack_19_03144815.img
merrimack_19_03144815.rrd merrimack_19_03144816.img merrimack_19_03144816.rrd merrimack ${ }^{-19-03144818 . i m g ~}$ merrimack_19_03144818.rrd merrimack_19_03144820.img merrimack_19_03144820.rrd merrimack_19_03154700.img merrimack_19_03154700.rrd merrimack_19_03154701.img merrimack_19_03154701.rrd merrimack_19_03154702.img merrimack_19_03154702.rrd merrimack_19_03154704.img merrimack_19_03154704.rrd merrimack_19_03154706.img merrimack_19_03154706.rrd merrimack_19_03154707.img merrimack_19_03154707.rrd merrimack_19_03154708.img merrimack_19_03154708.rrd merrimack_19_03154710.img merrimack_19_03154710.rrd merrimack_19_03154732.img merrimack-19-03154732.rrd merrimack_19_03154734.img merrimack_19_03154734.rrd merrimack_19_03154736.img merrimack_19_03154736.rrd merrimack_19_03154786.img merrimack_19_03154786.rrd merrimack_19_03154788.img merrimack_19_03154788.rrd merrimack_19_03154790.img merrimack_19_03154790.rrd merrimack_19_03154791.img merrimack_19_03154791.rrd
merrimack_19_03154792.img
merrimack_19_03154792.rrd
merrimack_19_03154794.img
merrimack_19_03154794.rrd
merrimack_19_03154796.img
merrimack_19_03154796.rrd
merrimack_19_03154797.img
merrimack_19_03154797.rrd
merrimack_19-03154798.img
merrimack_19_03154798.rrd
merrimack_19_03154800.img
merrimack_19_03154800.rrd
merrimack_19_03154802.img
merrimack_19_03154802.rrd
merrimack_19_03154803.img
merrimack_19_03154803.rrd
merrimack_19_03154804.img
merrimack_19_03154804.rrd merrimack_19_03154806.img merrimack_19_03154806.rrd merrimack ${ }^{-19-03154808 . i m g ~}$ merrimack_19_03154808.rrd merrimack_19_03154809.img merrimack_19_03154809.rrd merrimack_19_03154810.img merrimack_19_03154810.rrd merrimack_19_03154812.img merrimack_19_03154812.rrd merrimack_19_03154814.img merrimack_19_03154814.rrd merrimack_19_03154815.img merrimack_19_03154815.rrd merrimack_19_03154816.img merrimack_19_03154816.rrd merrimack_19_03154818.img merrimack_19_03154818.rrd merrimack_19_03164700.img merrimack_19_03164700.rrd merrimack_19_03164701.img merrimack_19_03164701.rrd merrimack_19_03164702.img merrimack-19-03164702.rrd
merrimack_19_03164704.img
merrimack_19_03164704.rrd
merrimack_19_03164706.img
merrimack_19_03164706.rrd
merrimack_19_03164707.img
merrimack_19_03164707.rrd
merrimack_19_03164708.img
merrimack_19_03164708.rrd
merrimack_19_03164791.img
merrimack ${ }^{-19-03164791 . r r d ~}$
merrimack_19_03164792.img
merrimack_19_03164792.rrd
merrimack_19_03164794.img
merrimack_19_03164794.rrd
merrimack_19_03164796.img
merrimack_19_03164796.rrd
merrimack_19_03164797.img
merrimack_19_03164797.rrd
merrimack_19_03164798.img
merrimack_19_03164798.rrd
merrimack_19-03164800.img
merrimack_19_03164800.rrd
merrimack_19_03164802.img
merrimack_19_03164802.rrd
merrimack_19_03164803.img
merrimack_19_03164803.rrd
merrimack_19_03164804.img
merrimack_19_03164804.rrd
merrimack_19_03164806.img
merrimack_19_03164806.rrd merrimack_19_03164808.img merrimack_19-03164808.rrd merrimack ${ }^{-19-03164809 . i m g ~}$ merrimack_19_03164809.rrd merrimack_19_03164810.img merrimack_19_03164810.rrd merrimack_19_03164812.img merrimack_19_03164812.rrd merrimack_19_03164814.img merrimack_19_03164814.rrd merrimack_19_03164815.img merrimack_19_03164815.rrd merrimack_19_03184701.img merrimack_19_03184701.rrd merrimack_19_03184702.img merrimack_19_03184702.rrd merrimack_19_03184704.img merrimack_19_03184704.rrd merrimack_19_03184706.img merrimack_19_03184706.rrd merrimack_19_03184707.img merrimack_19_03184707.rrd merrimack_19_03184708.img merrimack-19-03184708.rrd
merrimack_19_03184710.img
merrimack_19_03184710.rrd
merrimack_19_03184792.img
merrimack_19_03184792.rrd
merrimack_19_03184794.img
merrimack_19_03184794.rrd
merrimack_19_03184796.img
merrimack_19_03184796.rrd
merrimack_19_03184797.img
merrimack ${ }^{-19-03184797 . r r d ~}$
merrimack_19_03184798.img
merrimack_19_03184798.rrd
merrimack_19_03184800.img
merrimack_19_03184800.rrd
merrimack_19_03184802.img
merrimack_19_03184802.rrd
merrimack_19_03184803.img
merrimack_19_03184803.rrd
merrimack_19_03184804.img
merrimack_19_03184804.rrd
merrimack_19-03184806.img
merrimack_19_03184806.rrd
merrimack_19_03184808.img
merrimack_19_03184808.rrd
merrimack_19_03204702.img
merrimack_19_03204702.rrd
merrimack_19_03204704.img
merrimack_19_03204704.rrd
merrimack_19_03204706.img
merrimack_19_03204706.rrd merrimack_19_03204707.img merrimack_19_03204707.rrd merrimack ${ }^{-19-03204708 . i m g ~}$ merrimack_19_03204708.rrd merrimack_19_03204794.img merrimack_19_03204794.rrd merrimack_19_03204796.img merrimack_19_03204796.rrd merrimack_19_03204797.img merrimack_19_03204797.rrd merrimack_19_03204798.img merrimack_19_03204798.rrd merrimack_19_03204800.img merrimack_19_03204800.rrd merrimack_19_03204802.img merrimack_19_03204802.rrd merrimack_19_03204803.img merrimack_19_03204803.rrd merrimack_19_03204804.img merrimack_19_03204804.rrd merrimack_19_03204806.img merrimack_19_03204806.rrd merrimack_19_03204808.img merrimack-19-03204808.rrd merrimack_19_03214792.img merrimack_19_03214792.rrd merrimack_19_03214794.img merrimack_19_03214794.rrd merrimack_19_03214796.img merrimack_19_03214796.rrd merrimack_19_03214797.img merrimack_19_03214797.rrd merrimack_19_03214798.img merrimack_19_03214798.rrd merrimack_19_03214800.img merrimack_19_03214800.rrd
merrimack_19_03214802.img
merrimack_19_03214802.rrd
merrimack_19_03214803.img
merrimack_19_03214803.rrd
merrimack_19_03214804.img
merrimack_19_03214804.rrd
merrimack_19_03214806.img
merrimack_19_03214806.rrd
merrimack_19-03214808.img
merrimack_19_03214808.rrd
merrimack_19_03224792.img
merrimack_19_03224792.rrd
merrimack_19_03224794.img
merrimack_19_03224794.rrd
merrimack_19_03224796.img
merrimack_19_03224796.rrd
merrimack_19_03224797.img
merrimack_19_03224797.rrd merrimack_19_03224798.img merrimack_19_03224798.rrd merrimack ${ }^{-19-03224800 . i m g ~}$ merrimack_19_03224800.rrd merrimack_19_03224802.img merrimack_19_03224802.rrd merrimack_19_03224803.img merrimack_19_03224803.rrd merrimack_19_03224804.img merrimack_19_03224804.rrd merrimack_19_03224806.img merrimack_19_03224806.rrd merrimack_19_03224808.img merrimack_19_03224808.rrd merrimack_19_03244794.img merrimack_19_03244794.rrd merrimack_19_03244796.img merrimack_19_03244796.rrd merrimack_19_03244797.img merrimack_19_03244797.rrd merrimack_19_03244798.img merrimack_19_03244798.rrd merrimack_19_03244800.img merrimack-19-03244800.rrd
merrimack_19_03244802.img
merrimack_19_03244802.rrd
merrimack_19_03244803.img
merrimack_19_03244803.rrd
merrimack_19_03244804.img
merrimack_19_03244804.rrd
merrimack_19_03244806.img
merrimack_19_03244806.rrd
merrimack_19_03264796.img
merrimack ${ }^{-19-03264796 . r r d ~}$
merrimack_19_03264797.img
merrimack_19_03264797.rrd
merrimack_19_03264798.img
merrimack_19_03264798.rrd
merrimack_19_03264800.img
merrimack_19_03264800.rrd
merrimack_19_03264802.img
merrimack_19_03264802.rrd
merrimack_19_03264803.img
merrimack_19_03264803.rrd
merrimack_19-03264804.img
merrimack_19_03264804.rrd
merrimack_19_03274797.img
merrimack_19_03274797.rrd
merrimack_19_03274798.img
merrimack_19_03274798.rrd
merrimack_19_03274800.img
merrimack_19_03274800.rrd
merrimack_19_03274802.img

\|	1902644726.1 as
\|	19_02644728.las
\|	19-02644730.las
\|	19-02644731.las
\|	19_02644732.las
\|	19-02644734.las
।	19-02644736.las
\|	19-02644737.las
\|	19-02644738.las
\|	19_02644740.las
\|	19_02644742.las
\|	19_02644743.las
\|	19_02644744.las
\|	19_02644746.las
1 \|	19_02644748.las
1 \|	19_02644749.las
1 \|	19_02644750.las
1 \|	19_02644752.las
1 \|	19_02644754.las
1 \|	19_02644755.las
\|	19_02644760.las
\|	19_02644761.las
\|	19_02644762.las
\|	19_02644764.las
\|	19_02644766.las
\|	19-02644767.las
\|	19-02644772.las
\|	19_02664726.las
\|	19_02664728.las
\|	19_02664730.las
\|	19_02664731.las
\|	19-02664732.las
\|	19_02664734.las
\|	19-02664736.las
\|	19_02664737.las
\|	19_02664738.las
\|	19_02664740.las
\|	19_02664742.las
1 \|	19_02664743.las
1 \|	19_02664744.las
1 \|	19_02664746.las
1 \|	19_02664748.las
1 \|	19_02664749.las
\|	19-02664750.las
\|	19_02664752.las
\|	19_02664754.las
\|	19_02664755.las
\|	19_02664756.las
\|	19_02664758.las
\|	19_02664760.las
\|	19_02664761.las
\|	19_02664762.las
1 \|	19_02664764.las
\|	19_02664766.las

$$
\begin{aligned}
& \text { 19_02724743.las } \\
& \text { 19-02724744.las } \\
& \text { 19-02724746.las } \\
& \text { 19-02724748.las } \\
& \text { 19-02724749.las } \\
& \text { 19_02724750.las } \\
& \text { 19_02724752.las } \\
& \text { 19_02724754.las } \\
& \text { 19_02724755.las } \\
& \text { 19_02724756.las } \\
& \text { 19_02724758.las } \\
& \text { 19_02724760.las } \\
& \text { 19-02724761.las } \\
& \text { 19-02724762.las } \\
& \text { 19-02724764.las } \\
& \text { 19-02724766.las } \\
& \text { 19_02724767.las } \\
& \text { 19_02724768.las } \\
& \text { 19_02724770.las } \\
& \text { 19-02724772.las } \\
& \text { 19_02724773.las } \\
& \text { 19-02724774.las } \\
& \text { 19-02724776.las } \\
& \text { 19-02724778.las } \\
& \text { 19-02724779.las } \\
& \text { 19-02724780.las } \\
& \text { 19_02734740.las } \\
& \text { 19_02734742.las } \\
& \text { 19_02734743.las } \\
& \text { 19_02734744.las } \\
& \text { 19-02734746.las } \\
& \text { 19-02734748.las } \\
& \text { 19-02734749.las } \\
& \text { 19-02734750.las } \\
& \text { 19-02734752.las } \\
& \text { 19-02734754.las } \\
& \text { 19-02734755.las } \\
& \text { 19_02734756.las } \\
& \text { 19_02734758.las } \\
& \text { 19-02734760.las } \\
& \text { 19_02734761.las } \\
& \text { 19_02734762.las } \\
& \text { 19_02734764.las } \\
& \text { 19-02734766.las } \\
& \text { 19-02734767.las } \\
& \text { 19-02734768.las } \\
& \text { 19-02734770.las } \\
& \text { 19_02734772.las } \\
& \text { 19_02734773.las } \\
& \text { 19_02734774.las } \\
& \text { 19_02734776.las } \\
& \text { 19-02734778.las } \\
& \text { 19_02734779.las } \\
& \text { 19_02734780.las }
\end{aligned}
$$

NNN 伿	

\|	I	19_02794773.las
\|	।	19-02794774.las
\|	\|	19_02794776.las
\|	\|	1902794778.1 as
\|	।	19-02794779.1as
\|	\|	19_02794780.las
\|	\|	1902794804.las
\|	I	19-02794806.las
\|	\|	19-02794808.las
\|	\|	1902794809.las
\|	\|	19_02794810.las
\|	\|	1902794812.1 s
\|	\|	19-02794814.las
\|	\|	19_02804740.las
\|	\|	1902804742.las
\|	\|	19_02804743.las
\|	\|	19-02804744.las
\|	\|	1902804746.las
\|	\|	19-02804748.1as
\|	\|	1902804749.1 as
\|	\|	19-02804750.las
\|	\|	19_02804752.las
\|	\|	1902804754.las
\|	\|	19-02804755.1as
\|	\|	19-02804756.1as
\|	\|	1902804758.las
\|	\|	1902804760.las
\|	\|	1902804761.1 s
\|	\|	19-02804762.las
\|	\|	19_02804764.las
\|	\|	1902804766.las
\|	\|	19-02804767.las
\|	\|	19_02804768.las
\|	\|	1902804770.las
\|	\|	19-02804772.las
\|	\|	19-02804773.1as
\|	\|	1902804774.las
\|	\|	19_02804776.las
\|	\|	1902804778.1 as
\|	\|	19-02804779.1as
\|	\|	19-02804780.1as
\|	\|	1902804800.las
\|	।	19-02804802.las
\|	\|	1902804803.1 s
\|	\|	19-02804804.las
\|	\|	19-02804806.1as
\|	\|	1902804808.1 as
\|	\|	19-02804809.las
\|	\|	19_02804810.las
\|	\|	1902804812.las
\|	\|	19-02804814.las
\|	\|	19_02824740.las
\|	\|	1902824742.las
\|	।	1902824743.1 as

$\infty \infty \infty \infty$ 	

\|	I	19_02844761.las
\|	।	19-02844762.las
\|	\|	19_02844764.las
\|	\|	1902844766.1 as
\|	\|	19-02844767.las
\|	\|	19_02844768.las
\|	\|	1902844770.1 as
\|	I	19-02844772.las
\|	\|	19-02844773.1as
\|	\|	1902844774.las
\|	\|	19_02844776.las
\|	\|	19-02844778.1as
\|	\|	19-02844779.las
\|	\|	19_02844780.las
\|	\|	19-02844782.las
\|	\|	19-02844784.las
\|	\|	19-02844785.1as
\|	\|	1902844786.las
\|	\|	19-02844796.1as
\|	\|	1902844797.1 as
\|	\|	19-02844798.las
\|	\|	19_02844800.las
\|	\|	1902844802.las
\|	\|	19-02844803.1as
\|	\|	19-02844804.las
\|	\|	1902844806.las
\|	\|	19_02844808.las
\|	।	19-02844809.1as
\|	\|	19-02844810.las
\|	\|	19-02844812.las
\|	\|	1902844814.las
\|	\|	19-02854736.las
\|	\|	19_02854737.las
\|	\|	1902854738.las
\|	\|	19-02854740.1as
\|	।	19-02854742.las
\|	\|	1902854743.1as
।	\|	19-02854744.las
\|	\|	19-02854746.1as
\|	\|	19-02854748.1as
\|	\|	19-02854749.1as
\|	\|	1902854750.1as
\|	।	19-02854752.las
\|	\|	19-02854754.las
\|	\|	19-02854755.las
\|	\|	19-02854756.1as
\|	\|	19-02854758.1as
\|	\|	19-02854760.las
\|	\|	19-02854761.las
\|	\|	1902854762.las
\|	\|	19-02854764.las
\|	\|	19_02854766.las
\|	\|	1902854767.las
\|	।	19_02854768.las

I	\|	19_02854770.las
।	।	19-02854772.las
\|	\|	19-02854773.las
\|	\|	1902854774.las
\|	\|	19_02854776.1as
\|	\|	19-02854778.las
\|	\|	19-02854779.las
\|	\|	19_02854780.las
\|	\|	19-02854782.las
\|	\|	19-02854784.las
\|	\|	19-02854785.las
\|	\|	19-02854786.las
\|	I	19_02854788.las
\|	\|	19-02854796.las
\|	\|	19-02854797.las
\|	\|	19-02854798.las
\|	\|	19-02854800.las
\|	\|	19-02854802.las
\|	\|	19-02854803.las
\|	\|	19_02854804.las
\|	\|	19_02854806.las
\|	\|	19-02854808.las
\|	\|	19-02854809.las
\|	\|	19_02854810.las
\|	\|	19-02854812.las
\|	\|	19-02864736.las
\|	\|	19-02864737.las
\|	\|	19-02864738.las
\|	\|	19_02864740.las
\|	\|	19-02864742.las
\|	\|	19-02864743.las
\|	\|	19-02864744.las
\|	\|	1902864746.las
\|	\|	19-02864748.las
\|	\|	19-02864749.las
\|	\|	19-02864750.las
\|	\|	19_02864752.las
\|	\|	19-02864754.las
\|	\|	19-02864755.las
\|	\|	19_02864756.las
\|	\|	19-02864758.las
\|	\|	19-02864760.las
\|	\|	19-02864761.las
\|	\|	19-02864762.las
\|	\|	19-02864764.las
\|	\|	19-02864766.las
\|	\|	19-02864767.las
\|	\|	19-02864768.las
\|	\|	1902864770.las
।	।	19-02864772.las
\|	\|	19_02864773.las
\|	\|	19-02864774.las
\|	\|	19-02864776.las
\|	\|	19_02864778.las

I	\|	19_02864779.las
।	।	19-02864780.las
\|	\|	19-02864782.las
\|	\|	1902864784.las
\|	\|	19_02864785.las
\|	\|	19-02864786.las
\|	\|	19-02864788.las
\|	\|	19_02864790.las
\|	\|	19-02864796.las
\|	\|	19-02864797.las
\|	\|	19-02864798.las
\|	\|	19-02864800.las
\|	I	19_02864802.las
\|	\|	19-02864803.las
\|	\|	19-02864804.las
\|	\|	19-02864806.las
\|	\|	19-02864808.las
\|	\|	19-02864809.las
\|	\|	19-02864810.las
\|	\|	19_02864812.las
\|	\|	19_02884710.las
\|	\|	19-02884712.las
\|	\|	19-02884713.las
\|	\|	19_02884719.las
\|	\|	19-02884736.las
\|	\|	19-02884737.las
\|	\|	19-02884738.las
\|	\|	19-02884740.las
\|	\|	19_02884742.las
\|	\|	19-02884743.las
\|	\|	19-02884744.las
\|	\|	19-02884746.las
\|	\|	1902884748.las
\|	\|	19-02884749.las
\|	\|	19-02884750.las
\|	\|	19-02884752.las
\|	\|	19_02884754.las
\|	\|	19-02884755.las
\|	\|	19-02884756.las
\|	\|	19_02884758.las
\|	\|	19-02884760.las
\|	\|	19-02884761.las
\|	\|	19-02884762.las
\|	\|	19-02884764.las
\|	\|	19-02884766.las
\|	\|	19-02884767.las
\|	\|	19-02884768.las
\|	\|	19-02884770.las
\|	\|	1902884772.las
।	।	19-02884773.las
\|	\|	19_02884774.las
\|	\|	19-02884776.las
\|	\|	19-02884778.las
\|	\|	19_02884779.las

\|	।	1902884780.1 las
\|	\|	19_02884782.las
\|	\|	1902884784.las
\|	\|	19_02884785.1as
\|	\|	19-02884786.las
\|	\|	19_02884788.las
\|	\|	19_02884790.las
\|	\|	19-02884791.las
I	I	19_02884792.las
\|	\|	19-02884794.las
\|	।	1902884796.las
\|	I	19_02884797.las
\|	।	19-02884798.las
I	I	19_02884800.las
\|	\|	19-02884802.las
\|	\|	1902884803.las
I	I	19_02884804.las
\|	।	19_02884806.las
\|	\|	19_02884808.1as
\|	\|	19_02884809.las
\|	\|	19-02884810.las
\|	।	19_02904704.las
\|	\|	19_02904706.las
\|	\|	19_02904707.las
I	I	19_02904708.las
\|	\|	19_02904710.las
\|	।	1902904712.las
I	I	19_02904713.las
\|	\|	19-02904714.las
\|	I	19_02904716.las
\|	\|	19_02904718.las
\|	\|	19-02904719.las
\|	I	19_02904720.las
\|	।	19_02904722.las
\|	\|	19_02904736.1as
\|	I	19_02904737.las
\|	\|	1902904738.1 las
\|	।	19_02904740.las
\|	\|	19_02904742.las
\|	\|	19_02904743.1as
I	I	19_02904744.las
\|	।	19_02904746.las
\|	।	1902904748.las
\|	I	19_02904749.las
\|	\|	19-02904750.las
\|	\|	19-02904752.las
I	I	19_02904754.las
\|	।	19-02904755.las
\|	\|	19-02904756.las
\|	\|	19_02904758.las
\|	\|	19_02904760.las
\|	I	19_02904761.las
\|	\|	19-02904762.las
।	\|	19_02904764.las

\|	\\|	1902904766.1 as
\|	\\|	19_02904767.las
\|	\|	1902904768.las
\|	\|	19-02904770.las
\|	\|	19-02904772.las
\|	\|	19-02904773.1as
\|	\|	19_02904774.las
\|	\|	1902904776.las
\|	I	19_02904778.las
\|	\|	19_02904779.las
\|	\|	1902904780.las
\|	\|	19_02904782.las
\|	\|	19-02904784.las
\|	\|	19-02904785.las
\|	\|	19-02904786.las
\|	\|	1902904788.1 as
\|	\|	19_02904790.las
\|	\|	19_02904791.las
\|	\|	19_02904792.las
\|	\|	19_02904794.las
\|	\|	1902904796.las
\|	\|	19_02904797.las
\|	\|	19_02904798.las
\|	\|	1902904800.las
\|	I	19_02904802.las
\|	\|	19_02904803.las
\|	\|	1902904804.las
\|	\|	19_02904806.las
\|	\|	1902904808.las
\|	\|	19-02904809.1as
\|	\|	19_02914704.las
\|	\|	1902914706.las
\|	I	19_02914707.las
\|	\|	19_02914708.las
\|	\|	19-02914710.1as
\|	I	19_02914712.las
\|	\|	1902914713.1 as
\|	\|	19-02914714.las
\|	\|	19_02914716.las
\|	\|	19-02914718.las
\|	I	19_02914719.las
\|	\|	19_02914720.las
।	\|	19_02914722.las
\|	\|	19_02914728.las
\|	\|	1902914730.las
I	I	19-02914731.las
\|	\|	19_02914736.las
\|	\|	1902914737.las
\|	\|	19-02914738.1as
\|	\|	19_02914740.las
I	I	19-02914742.las
\|	I	19_02914743.las
\|	\|	1902914744.1 as
\|	\|	19_02914746.las

\mid
\mid
\mid
\mid
\mid
\mid
\mid
\mid

I	I	19_02944790.las
।	।	19-02944791.las
\|	\|	19-02944792.las
\|	\|	1902944794.las
\|	\|	19_02944796.las
\|	\|	1902944797.las
\|	\|	19-02944798.las
\|	\|	19-02944800.las
\|	\|	1902944802.las
\|	\|	19-02944803.1as
\|	\|	1902944804.1 as
\|	\|	19-02944806.las
\|	\|	19_02944808.las
\|	\|	19-02944809.1as
\|	\|	19-02964710.1as
\|	\|	19-02964712.las
\|	\|	19-02964713.1as
\|	\|	19-02964714.las
\|	।	19-02964716.las
\|	\|	19-02964718.las
\|	\|	19-02964719.1as
\|	\|	1902964720.las
\|	\|	19-02964722.las
\|	\|	19-02964724.las
\|	\|	1902964725.las
\|	\|	19-02964726.1as
\|	\|	19-02964728.1as
\|	\|	19-02964730.las
\|	\|	19_02964731.las
\|	\|	19-02964732.las
\|	\|	19-02964734.las
\|	\|	19-02964736.1as
\|	\|	1902964738.las
\|	\|	19-02964740.1as
\|	\|	19-02964742.las
\|	\|	1902964743.1as
\|	\|	19_02964744.las
\|	\|	19-02964746.las
\|	\|	19-02964748.las
\|	\|	19-02964749.las
\|	\|	19-02964750.las
\|	\|	19-02964752.las
\|	\|	19-02964754.las
\|	\|	19-02964755.las
\|	\|	19-02964756.las
\|	\|	19-02964758.1as
\|	\|	19-02964760.las
।	\|	19-02964761.las
\|	\|	1902964762.las
।	।	19-02964764.las
\|	\|	19_02964766.las
\|	\|	1902964767.las
\|	\|	19-02964768.las
\|	\|	19-02964770.1as

'0'0 o ' $0^{\prime} 0^{\prime} 00^{\prime} 0^{\prime} 0^{\prime}$ ow $\omega \omega N$ NNNNNNNNNNNNNNN 	

	 心 $\omega \omega \omega \omega$

	 © か

$l^{\prime} 0^{\prime} 0^{0} 0^{\prime} 0^{\prime} 0$ owow owww wow wow , - 	

\|	।	1903094803.1 as
\|	\|	19_03094804.las
\|	\|	1903094806.las
\|	\|	19_03094808.1as
\|	\|	19-03094809.las
\|	\|	19_03094810.las
\|	\|	19_03094812.las
\|	\|	19-03094814.las
I	I	19_03094815.las
\|	\|	19_03094816.las
\|	।	1903094818.las
\|	I	19_03094820.las
\|	।	19-03104700.las
\|	\|	19_03104701.las
\|	\|	19-03104702.las
\|	\|	19-03104704.las
\|	I	19_03104706.las
\|	।	19_03104707.las
\|	\|	19_03104730.las
\|	\|	19_03104731.las
\|	\|	19-03104732.las
\|	।	19_03104734.las
\|	\|	19_03104736.las
\|	\|	19_03104737.las
I	I	19_03104778.las
\|	\|	19-03104779.las
\|	\|	1903104780.las
\|	I	19_03104782.las
\|	\|	19-03104784.las
I	I	19_03104785.las
\|	\|	19_03104786.las
\|	\|	19-03104788.las
\|	I	19_03104790.las
\|	\|	19_03104791.las
I	\|	19_03104792.las
I	I	19_03104794.las
\|	\|	1903104796.1 las
\|	\|	19-03104797.las
\|	\|	19_03104798.las
I	\|	19_03104800.las
I	I	19_03104802.las
\|	\|	19_03104803.1as
\|	।	1903104804.las
\|	।	19-03104806.las
\|	\|	19-03104808.las
\|	\|	19_03104809.las
\|	।	19_03104810.las
\|	।	19-03104812.las
\|	\|	19-03104814.las
\|	\|	19_03104815.las
\|	।	19_03104816.las
\|	\|	19_03104818.las
\|	\|	1903104820.1 las
\|	\|	19_03124701.las

19_03204803.las
19_03204804.1as
19_03204806.las
19_03204808.las
19_03214792.las
19_03214794.las
19_03214796.las
19_03214797.las
19-03214798.las
19_03214800.las

$$
19-03214802.1 \text { as }
$$

19-03214803.las
19_03214804.las
19_03214806.las
19_03214808.1as
19_03224792.las
19_03224794.las
19_03224796.las
19_03224797.las
19_03224798.las

$$
19 \text {-03224800.las }
$$

$$
19-03224802.1 \text { as }
$$

$$
19-03224803.1 \text { as }
$$

19_03224804.las
19_03224806.las
19_03224808.las
19_03244794.las
19_03244796.las
19_03244797.las
19_03244798.las
19_03244800.las
19_03244802.las

$$
19-03244803.1 \text { as }
$$

19_03244804.las
19_03244806.las
19_03264796.las
19_03264797.las
19_03264798.las
19_03264800.las
19_03264802.las

$$
19-03264803.1 \mathrm{as}
$$

$$
19-03264804.1 \mathrm{as}
$$

$$
19-03274797.1 \mathrm{as}
$$

19-03274798.las
19_03274800.las
19_03274802.las
19_03284798.las
19_03284800.las
Merrimack_Classified_LAS_Index.dbf
Merrimack_Classified_LAS_Index.prj
Merrimack_Classified_LAS_Index.sbn
Merrimack_Classified_LAS_Index.sbx
Merrimack_Classified_LAS_Index.shp
Merrimack_Classified_LAS_Index.shp.xml

\|	I	19_02724776.las	
।	।	19-02724778.las	
\|	\|	19-02724779.las	
\|	\|	19_02724780.las	
\|	\|	19_02734740.las	
\|	\|	19-02734742.las	
।	।	19-02734743.las	
\|	।	19_02734744.las	
\|	।	1902734746.las	
\|	।	19_02734748.las	
\|	\|	1902734749.1 las	
\|	।	19-02734750.las	
\|	I	19-02734752.las	
\|	।	19-02734754.las	
\|	।	19-02734755.las	
\|	\|	19-02734756.las	
\|	।	19-02734758.las	
\|	1	19-02734760.las	
\|	1	19-02734761.las	
\|	।	19_02734762.las	
I	।	19_02734764.las	
\|	\|	19-02734766.las	
\|	1	19-02734767.las	
\|	\\|	19_02734768.las	
\|	\|	1902734770.las	
\|	।	19_02734772.las	
\|	।	1902734773.1 las	
\|	।	19-02734774.las	
\|	1	19_02734776.las	
\|	I	19-02734778.las	
\|	।	19-02734779.las	
\|	।	19-02734780.las	
\|	।	1902744742.las	
\|	1	19-02744743.las	
\|	1	19-02744744.las	
\|	।	19_02744746.las	
I	\|	19_02744748.1as	
\|	\|	19-02744749.las	
\|	।	19-02744750.las	
\|	।	19_02744752.las	
\|	।	19-02744754.las	
\|	।	19-02744755.las	
\|	\|	19-02744756.las	
\|	\|	19-02744758.las	
\|	।	19-02744760.las	
\|	\|	19-02744761.las	
\|	।	19-02744762.las	
\|	\|	19-02744764.las	
\|	।	1902744766.las	
\|	।	19-02744767.las	
\|	।	19_02744768.las	
\|	।	1902744770.las	
\|	\|	19-02744772.las	
\|	।	19_02744773.1as	

\|	\|	19_02784773.las
\|	\|	19-02784774.las
\|	\|	19_02784776.las
\|	\|	1902784778.1 las
\|	\|	19-02784779.las
\|	\|	19_02784808.las
\|	\|	19-02784809.las
\|	\|	19-02784810.las
\|	\|	19-02784812.las
\|	\|	1902784814.las
\|	\|	19_02794740.las
\|	\|	19-02794742.las
\|	\|	19-02794743.1as
\|	\|	19_02794744.las
\|	\|	19-02794746.las
\|	।	19-02794748.las
\|	।	19_02794749.las
\|	\|	19_02794750.las
\|	\|	19_02794752.las
\|	\|	1902794754.1 las
\|	।	19-02794755.las
\|	।	19_02794756.las
\|	\|	19-02794758.las
।	\|	19-02794760.las
\|	\|	19-02794761.las
\|	\|	1902794762.las
\|	।	19-02794764.las
\|	\|	19-02794766.las
।	\|	19-02794767.las
I	\|	19_02794768.las
\|	\|	19-02794770.las
\|	\|	19_02794772.las
\|	\|	19_02794773.las
\|	\|	19-02794774.las
।	\|	19-02794776.las
\|	\|	19_02794778.las
\|	\|	1902794779.las
\|	I	19_02794780.las
\|	\|	19-02794804.las
\|	\|	19-02794806.las
।	\|	19-02794808.las
\|	\|	1902794809.las
\|	\|	19-02794810.las
\|	\|	19-02794812.las
\|	\|	19-02794814.las
\|	\|	19-02804740.las
\|	।	19-02804742.las
\|	।	19-02804743.las
\|	\|	19-02804744.las
\|	\|	19-02804746.las
\|	\|	19-02804748.las
\|	\|	19_02804749.las
\|	\|	1902804750.las
।	।	19-02804752.las

\mid
\mid
\mid
\mid
\mid

\|	I	19_02854809.las	
\|	\|	19-02854810.las	
\|	।	19-02854812.las	
\|	I	19_02864736.las	
\|	\|	19_02864737.las	
\|	\|	1902864738.las	
\|	।	19-02864740.las	
\|	।	19-02864742.las	
\|	।	19_02864743.las	
\|	\|	19_02864744.las	
\|	\|	1902864746.las	
\|	\|	19-02864748.las	
\|	I	19-02864749.las	
\|	।	19_02864750.las	
।	I	19_02864752.las	
\|	\|	1902864754.1 las	
\|	1	19-02864755.las	
\|	1	19-02864756.las	
\|	1	19-02864758.las	
I	।	19_02864760.las	
\|	\|	19_02864761.las	
\|	।	1902864762.las	
\|	1	19_02864764.las	
\|	,	19-02864766.las	
।	।	19-02864767.las	
\|	।	19_02864768.las	
\|	\|	19-02864770.las	
\|	1	19-02864772.las	
\|	I	19-02864773.1as	
\|	।	19_02864774.las	
।	I	19_02864776.las	
\|	\|	19-02864778.las	
\|	।	19-02864779.las	
\|	1	19-02864780.las	
\|	,	19-02864782.las	
।	I	19_02864784.1as	
\|	\|	19_02864785.las	
\|	।	1902864786.las	
\|	\\|	19-02864788.las	
\|	-	19-02864790.las	
\|	।	19_02864796.las	
I	\|	19_02864797.las	
\|	।	1902864798.las	
\|	।	19-02864800.las	
\|	-	19-02864802.las	
\|	\|	1902864803.las	
I	I	19_02864804.las	
\|	\|	1902864806.1 as	
\|	।	19-02864808.las	
\|	।	19_02864809.las	
\|	।	19-02864810.las	
\|	।	19_02864812.las	
\|	\|	19_02884710.las	
\|	\|	1902884712.las	

\|	\\|	1902884713.1 as
\|	\\|	19_02884719.1as
\|	\|	1902884736.las
\|	\|	19_02884737.las
\|	\|	1902884738.1as
\|	\|	19-02884740.1as
\|	\|	19_02884742.las
\|	\|	1902884743.1as
\|	I	19_02884744.las
\|	\|	19_02884746.las
\|	\|	1902884748.las
\|	\|	19_02884749.las
\|	\|	1902884750.las
\|	\|	19-02884752.las
\|	\|	19-02884754.las
\|	\|	1902884755.1 as
\|	\|	19_02884756.las
\|	\|	19_02884758.las
\|	\|	19_02884760.las
\|	\|	19_02884761.las
\|	\|	1902884762.las
\|	\|	19_02884764.las
\|	\|	19_02884766.las
\|	\|	1902884767.las
\|	I	19_02884768.las
\|	\|	19_02884770.las
\|	\|	1902884772.las
\|	\|	19_02884773.las
\|	\|	1902884774.las
\|	\|	19-02884776.1as
\|	\|	19_02884778.las
\|	\|	1902884779.1 as
\|	I	19_02884780.las
\|	\|	19_02884782.las
\|	\|	19-02884784.las
\|	I	19_02884785.las
\|	\|	1902884786.1 as
\|	I	19_02884788.las
\|	\|	19_02884790.las
\|	\|	1902884791.las
\|	I	19_02884792.las
\|	\|	19_02884794.las
\|	\|	19_02884796.las
\|	\|	19_02884797.las
\|	\|	1902884798.las
\|	\|	19-02884800.las
\|	\|	19_02884802.las
\|	\|	1902884803.1 as
\|	\|	19-02884804.las
\|	\|	19_02884806.las
\|	\|	1902884808.las
\|	I	19_02884809.las
\|	\|	1902884810.1 s
\|	\|	19_02904704.las

\|	I	19_02924760.las	
।	।	19-02924761.las	
\|	\|	19-02924762.las	
\|	\|	19_02924764.las	
\|	\|	19_02924766.las	
\|	\|	19-02924767.las	
।	।	19-02924768.las	
\|	।	19_02924770.las	
\|	।	1902924772.las	
\|	।	19_02924773.las	
\|	\|	1902924774.las	
\|	।	19-02924776.las	
\|	I	19-02924778.las	
\|	।	19-02924779.las	
I	।	19_02924780.las	
\|	\|	19-02924782.las	
\|	।	19-02924784.las	
\|	1	19-02924785.las	
\|	1	19-02924786.las	
\|	।	19_02924788.las	
I	।	19_02924790.las	
\|	\|	19-02924791.las	
\|	।	19-02924792.las	
\|	\\|	19_02924794.las	
\|	\|	1902924796.las	
।	।	19_02924797.las	
\|	।	1902924798.1 las	
\|	।	19-02924800.las	
\|	1	19_02924802.las	
\|	I	19-02924803.las	
\|	।	19-02924804.las	
\|	।	19-02924806.las	
\|	।	1902924808.las	
\|	1	19-02944708.las	
\|	1	19-02944710.las	
\|	\|	1902944712.las	
I	\|	19_02944713.1as	
\|	\|	19-02944714.las	
\|	।	19-02944716.las	
\|	।	19_02944718.las	
\|	,	1902944719.las	
\|	।	19-02944720.las	
\|	\|	19-02944722.las	
\|	\|	19-02944724.las	
\|	।	19-02944725.las	
\|	\|	19-02944726.las	
\|	।	19-02944728.las	
\|	\|	19-02944730.las	
\|	।	1902944731.las	
\|	।	19-02944732.las	
\|	।	19_02944734.las	
\|	।	1902944736.las	
\|	\|	19-02944738.las	
\|	।	19_02944740.las	

\|	I	19_02944742.las
\|	।	19-02944743.1as
\|	\|	19_02944744.las
\|	\|	1902944746.1 as
\|	\|	19-02944748.las
\|	\|	19_02944749.las
\|	\|	1902944750.1 as
\|	I	19-02944752.las
\|	\|	19-02944754.las
\|	\|	1902944755.las
\|	\|	19_02944756.las
\|	\|	19-02944758.1as
\|	\|	19-02944760.las
\|	\|	19_02944761.las
\|	\|	19-02944762.las
\|	\|	19-02944764.las
\|	\|	19-02944766.las
\|	\|	1902944767.las
\|	\|	19-02944768.1as
\|	\|	1902944770.1 as
\|	\|	19-02944772.las
\|	\|	19_02944773.las
\|	\|	1902944774.las
\|	\|	19-02944776.las
\|	\|	19-02944778.1as
\|	\|	1902944779.las
\|	\|	19_02944780.las
\|	।	19-02944782.las
\|	\|	19-02944784.las
\|	\|	19-02944785.las
\|	\|	1902944786.las
\|	\|	19-02944788.las
\|	\|	19-02944790.las
\|	\|	1902944791.las
\|	\|	19-02944792.las
\|	\|	19-02944794.las
\|	\|	1902944796.las
।	\|	19-02944797.las
\|	\|	19-02944798.las
\|	\|	19-02944800.las
\|	\|	19-02944802.las
\|	\|	1902944803.1as
\|	।	19-02944804.las
\|	\|	19-02944806.las
\|	\|	19-02944808.las
\|	\|	19-02944809.1as
\|	\|	19-02964710.1as
\|	\|	19-02964712.las
\|	\|	19-02964713.1as
\|	\|	1902964714.las
\|	\|	19-02964716.las
\|	\|	19_02964718.las
\|	\|	1902964719.las
\|	\|	19-02964720.las

I	\|	19_02964722.las
।	।	19-02964724.las
\|	\|	19-02964725.las
\|	\|	1902964726.las
\|	\|	19_02964728.las
\|	\|	1902964730.las
\|	\|	19-02964731.las
\|	\|	19-02964732.las
\|	\|	1902964734.las
\|	\|	19-02964736.1as
\|	\|	1902964738.1 as
\|	\|	19-02964740.las
\|	I	19_02964742.las
\|	\|	19-02964743.1as
\|	\|	19-02964744.las
I	I	19-02964746.1as
\|	\|	19-02964748.las
\|	\|	19-02964749.1as
\|	।	19-02964750.1as
\|	\|	19_02964752.las
\|	\|	19-02964754.las
\|	\|	1902964755.las
\|	\|	19-02964756.1as
\|	\|	19-02964758.1as
\|	\|	1902964760.las
\|	\|	19-02964761.las
\|	\|	19-02964762.las
\|	\|	19-02964764.las
\|	\|	19_02964766.las
\|	\|	19-02964767.las
\|	\|	19-02964768.las
\|	\|	19-02964770.las
\|	\|	1902964772.las
\|	\|	19-02964773.1as
\|	\|	19-02964774.las
\|	\|	1902964776.las
\|	\|	19_02964778.las
\|	\|	19-02964779.1as
\|	\|	19-02964780.las
\|	\|	19-02964782.las
\|	\|	19-02964784.las
\|	\|	19-02964785.las
\|	\|	19-02964786.1as
\|	\|	19-02964788.las
\|	\|	19-02964790.las
\|	\|	19-02964791.las
\|	\|	19-02964792.las
।	\|	19-02964794.las
\|	\|	1902964796.las
।	।	19-02964797.las
\|	\|	19_02964798.las
\|	\|	1902964800.las
\|	\|	19-02964802.las
\|	\|	19-02964803.1as

 出出出 													
 出出出 													

\|	I	19_02974786.las
\|	I	19-02974788.las
\|	\|	19-02974790.las
\|	\|	19_02974791.las
\|	\|	19_02974792.las
\|	\|	1902974794.las
\|	\|	19-02974796.las
\|	\|	19-02974797.las
\|	\|	19_02974798.las
\|	\|	19_02974800.las
\|	\|	1902974802.las
\|	\|	19-02974803.las
\|	।	19-02974804.las
\|	\|	19_02974806.las
।	I	19_02974808.las
\|	\|	1902974809.1 las
\|	।	19-02984714.las
\|	।	19-02984716.las
\|	।	19-02984718.las
I	I	19_02984719.las
\|	\|	19_02984720.las
\|	।	1902984722.las
\|	\|	19_02984724.las
\|	,	19-02984725.las
\|	।	19-02984726.las
\|	\|	19_02984728.las
\|	\|	19-02984730.las
\|	।	19-02984731.las
\|	।	19-02984732.las
\|	\|	19_02984734.las
।	\|	19_02984736.las
\|	\|	19-02984737.las
\|	।	19-02984738.las
\|	I	19-02984740.las
\|	।	19-02984742.las
\|	\|	19-02984743.las
\|	\|	19_02984744.las
\|	।	19-02984746.las
\|	।	19-02984748.las
\|	\|	19-02984749.las
\|	।	19-02984750.las
I	\|	19_02984752.las
\|	।	19-02984754.las
\|	।	19-02984755.las
\|	।	19-02984756.las
\|	\|	1902984758.las
I	I	19_02984760.las
\|	\|	1902984761.1 las
\|	।	19-02984762.las
\|	\|	19_02984764.las
\|	\|	19-02984766.las
\|	\|	19-02984767.las
\|	\|	19_02984768.las
\|	\|	1902984770.las

＇ $0^{\prime} 0^{\prime} 0^{\prime} 0^{\prime} 0^{\prime} 0^{\prime} 0^{\prime} 0^{\prime} 0^{\prime} 0^{\prime} 0^{\prime}$ $\omega_{0}^{\omega} \omega_{0} \omega \omega_{0}^{\omega} \omega_{0}^{\omega} \omega_{0}^{\omega} \omega_{0} \omega_{0} \omega \omega_{0}^{\omega} \omega_{0}^{\omega}$ NNNNNNNNNNNNNN $\mapsto ゅ ゅ ゅ ゅ ゅ ゅ ゅ ゅ ゅ ゅ ゅ ゅ ゅ ゅ ゅ$ $\omega \omega \omega \omega \omega \omega$ NNNNNNけ৮ト 	

'o'ololo'olo'o'o'o o'o'olo'o ow wow wow wow wow w $\omega \omega \omega$ $\infty \times \infty$ 	

19_03084816.1as
19_03084818.1as
19_03084820.las
19_03094700.las
19_03094701.las
19_03094702.las
19_03094704.las
19_03094706.las
19_03094730.las
19_03094731.las

$$
19-03094732.1 \text { as }
$$

19-03094734.las
19_03094736.las
19_03094737.las
19_03094776.las
19_03094778.las
19_03094779.las
19_03094780.las
19_03094782.las
19_03094784.las
19_03094785.las
19_03094786.las

$$
19-03094788.1 \text { as }
$$

19_03094790.las
19_03094791.las
19_03094792.las
19_03094794.las
19_03094796.las
19_03094797.las
19_03094798.las
19_03094800.las
19_03094802.las

$$
19-03094803.1 \text { as }
$$

19_03094804.las
19_03094806.las
19_03094808.las
19_03094809.las
19_03094810.las
19_03094812.las
19-03094814.las
19_03094815.las
19-03094816.1as

$$
19-03094818.1 \mathrm{as}
$$

$$
19-03094820.1 \mathrm{as}
$$

19_03104700.las
19_03104701.las
19_03104702.las
19_03104704.las
19_03104706.las
19_03104707.las
19_03104730.las
19_03104731.las
19-03104732.las

$$
19 _03104734.1 \text { as }
$$


```
19_03224803.las
19-03224804.las
19-03224806.las
19-03224808.las
19-03244794.las
19_03244796.las
19_03244797.las
19_03244798.las
19_03244800.las
19_03244802.las
19_03244803.las
19 03244804.las
19-03244806.las
19-03264796.las
19-03264797.las
19-03264798.las
19-03264800.las
19_03264802.las
19_03264803.las
19_03264804.las
19_03274797.las
19_03274798.las
19 03274800.las
19-03274802.las
19-03284798.las
19_03284800.las
Merrimack_Unclassified_LAS_Index.dbf
Merrimack_Unclassified_LAS_Index.prj
Merrimack_Unclassified_LAS_Index.sbn
Merrimack_Unclassified_LAS_Index.sbx
Merrimack_Unclassified_LAS_Index.shp
Merrimack_Unclassified_LAS_Index.shp.xml
Merrimack_Unclassified_LAS_Index.shx
| \---TIN
\---Supplemental Data
| Merrimack Certification of Compliance LiDAR.pdf
| Merrimack Certification of Compliance Survey.pdf
Merrimack Pre-Flight Operations Plan.pdf
Merrimack_LAS_Index.dbf
    Merrimack_LAS_Index.prj
    Merrimack_LAS_Index.sbn
    Merrimack_LAS_Index.sbx
    Merrimack_LAS_Index.shp
    Merrimack_LAS_Index.shp.xml
    Merrimack_LAS_Index.shx
|
+---Merrimack Post-Flight Report
                Merrimack_PostFlight_Report.doc
    +---Appendix A - Flight Logs
                111119a&b-6156-flight&GPSlogs.PDF
                111120a-6156-flight&GPSlogs.PDF
                111121a-6156-flight&GPSlogs.PDF
```

1 \|		120107a\&b-6156-ABGPSlog.jpg	
1 \|		120107a-6156-inplaneflightlog.jpg	
1 \|		120107b-6156-inplaneflightlog.jpg	
\|			120109a-6156-inplaneflightlog-1of2.jpg
1 \|		120109a-6156-inplaneflightlog-2of2.jpg	
1 \|		120109ab-6156-ABGPSlog.jpg	
1 \|		120109b-6156-inplaneflightlog.jpg	
\|			120111a-6156-inplaneflightlog.jpg
1 \|		120111b-6156-ABGPSIog.jpg	
1 \|		120111b-6156-inplaneflightlog-1of2.jpg	
1 I		120111b-6156-inplaneflightlog-2of2.jpg	
1 \|			
	--Ap	endix B - Ground Control	
1 \|		Merrimack_HUC8_Base_Stations.dbf	
1 \|		Merrimack_HUC8_Base_Stations.prj	
1 I		Merrimack_HUC8_Base_Stations.shp	
1 \|		Merrimack_HUC8_Base_Stations.shx	
1 \|		Merrimack_HUC8_Base_Stations_dbf.txt	
1 I		Merrimack_HUC8_Base_Stations_metadata.htm	
।			
1 +	-Ap	endix C - Trajectory and Associated Plots	
1 \|	।	Merrimack_HUC8_Flight_Lines_7556008FL_MDB. DBF	
1 \|	\|	Merrimack_HUC8_Flight_Lines_7556008FL_MDB. PRJ	
\|		।	Merrimack HUC8 Flight Lines 7556008 FL MDB. SHP
1 I	-	Merrimack_HUC8_Flight_Lines_7556008FL_MDB.shp.xml	
1 \|	,	Merrimack_HUC8_Flight_Lines_ 7556008 FL _- MDB . SHX	
1 I	I	SN240_LiDAR_SOURCE. dbf	
1 \|	\|	SN240_LiDAR_SOURCE.prj	
1 \|	\|	SN240_LidAR_SOURCE.shp	
1 I	1	SN240_LiDAR_SOURCE.shx	
1 \|	,	SN615 $\overline{6}_{\text {_LidAR }}$ _SOURCE. dbf	
1 I	I	SN6156_LidAR_SOURCE.prj	
1 \|	\|	SN6156_LidAR_SOURCE.shp	
1 \|	।	SN6156_LidAR_SOURCE.shx	
1 I	I		
1 \|		111029a	
1 \|	\|	111029a-6156-\#ofsats.jpg	
1 I	I	111029a-6156-basecoordinate.jpg	
\|		\|	111029a-6156-positionaccuracy\&PDOP-noGLONASS-
10deg.jpg			
\|		I	111029a-6156-positionaccuracy\&PDOP-noGLONASS-
15deg.jpg			
I	I	111029a-6156-positionaccuracy\&PDOP-noGLONASS-	
20deg.jpg			
\|		\|	111029a-6156-positionaccuracy\&PDOP-withGLONASS-
10deg.jpg			
\|		।	111029a-6156-positionaccuracy\&PDOP-withGLONASS-
15deg.jpg			
\|		I	111029a-6156-positionaccuracy\&PDOP-withGLONASS-
20deg.jpg			
\|		I	111029a-6156-positionseparation-noGLONASS-10deg.jpg
1 \|	\|	111029a-6156-positionseparation-noGLONASS-15deg.jpg	
1 \|	\|	111029a-6156-positionseparation-noGLONASS-20deg.jpg	
1 \|	I	111029a-6156-positionseparation-withGLONASS-10deg.j	

1 \|	111029a-6156-positionseparation-withGLONASS-15deg.jpg	
1 \|	111029a-6156-positionseparation-withGLONASS-20deg.jpg	
1 \|	\| 111029a-6156-RPH.jpg	
1 \|	111029a-6156-trajectory.jpg	
1 \|	\|	
1 \|	+---111112a	
1 \|	\| 111112a-240_Baseline.bmp	
1 \|	\| 111112a-240_ForwardProcessPerformance_NED.bmp	
1 \|	\| 111112a-240_ProcessMode.bmp	
1 \|	\| 111112a-240_ScreenShot.jpg	
1 I	\| 111112a-240_SmoothPerformance_NED.bmp	
1 \|	\| 111112a-240_SV\&PDOP.bmp	
,	\|	
,	+---111112b	
1 \|	111112b-240_Baseline.bmp	
1 \|	\| 111112b-240_ForwardProcessPerformance_NED.bmp	
1 \|	\| 111112b-240_ProcessMode.bmp	
1 \|	\| 111112b-240_ScreenShot.jpg	
1 \|	\| 111112b-240_SmoothPerformance_NED.bmp	
1 \|	\| 111112b-240_SV\&PDOP.bmp	
,	\|	
1 \|	+---111113a	
1 \|	\| 111113a-240_baseline.bmp	
1 \|	\| 111113a-240_NEDpositionerror-forward.bmp	
1 \|	\| 111113a-240_NEDpositionerror-smoothed.bmp	
1 I	\| 111113a-240_procmode.bmp	
1 \|	\| 111113a-240_SSDfail.jpg	
1 \|	\| 111113a-240_SV\&PDOP.bmp	
1 I	\| 111113a-240_trajectory.bmp	
1 \|	\|	
1 \|	+---111113b	
1 I	\| 111113b-240_baselinelength.bmp	
1 \|	\| 111113b-240_nedpositionerror-forward.bmp	
1 \|	\| 111113b-240_nedpositionerror.bmp	
1 \|	\| 111113b-240_PDOP\&SVs.bmp	
1 \|	\| 111113b-240_procmode.bmp	
1	\|	
1	+---111119a	
-	\| 111119a-6156-\#ofsats.jpg	
\|	\| 111119a-6156-basecoordinate.jpg	
1 \|	\| 111119a-6156-positionaccuracy\&PDOP-noGLONASS-	
10deg.jpg		
\|		111119a-6156-positionaccuracy\&PDOP-noGLONASS-
15deg.jpg		
\|		\| 111119a-6156-positionaccuracy\&PDOP-withGLONASS-
10deg.jpg		
\|		111119a-6156-positionaccuracy\&PDOP-withGLONASS-
15deg.jpg		
\| l	\| 111119a-6156-positionseparation-noGLONASS-10deg.jpg	
1 \|	\| 111119a-6156-positionseparation-noGLONASS-15deg.jpg	
1 \|	\| 111119a-6156-positionseparation-withGLONASS-10deg.jpg	
1 \|	\| 111119a-6156-positionseparation-withGLONASS-15deg.jpg	
1 \|	\| 111119a-6156-RPH.jpg	
1 \|	\| 111119a-6156-trajectory.jpg	

1 \|		111121a-6156-positionseparation-withGLONASS-10deg.jpg	
1 I		111121a-6156-positionseparation-withGLONASS-15deg.jpg	
1 \|		111121a-6156-RPH.jpg	
1 \|		111121a-6156-trajectory.jpg	
1 \|			
1 \|		18a	
1 \|		111218a-6156-\#ofsats.jpg	
1 \|		111218a-6156-basecoordinate.jpg	
1 \|		111218a-6156-positionaccuracy\&PDOP-noGLONASS-	
10deg.jpg			
1 \|		111218a-6156-positionaccuracy\&PDOP-noGLONASS-	
15deg.jpg			
		111218a-6156-positionaccuracy\&PDOP-withGLONASS-	
10deg.jpg			
		111218a-6156-positionaccuracy\&PDOP-withGLONASS-	
15deg.jpg			
\|		111218a-6156-positionseparation-noGLONASS-10deg.jpg	
,		111218a-6156-positionseparation-noGLONASS-15deg.jpg	
1 \|		111218a-6156-positionseparation-withGLONASS-10deg.jpg	
1 \|		111218a-6156-positionseparation-withGLONASS-15deg.jpg	
1 \|		111218a-6156-RPH.jpg	
1 \|		111218a-6156-trajectory.jpg	
,			
1 \|		18b	
1 \|		111218b-6156-\#ofsats.jpg	
1 \|		111218b-6156-basecoordinate.jpg	
\|			111218b-6156-positionaccuracy\&PDOP-noGLONASS-
10deg.jpg			
1 \|		111218b-6156-positionaccuracy\&PDOP-noGLONASS-	
15deg.jpg			
\|		111218b-6156-positionaccuracy\&PDOP-withGLONASS-	
10deg.jpg			
।		111218b-6156-positionaccuracy\&PDOP-withGLONASS-	
15deg.jpg			
1 \|		111218b-6156-positionseparation-noGLONASS-10deg.jpg	
1 \|		111218b-6156-positionseparation-noGLONASS-15deg.jpg	
1 \|		111218b-6156-positionseparation-withGLONASS-10deg.jpg	
1 \|		111218b-6156-positionseparation-withGLONASS-15deg.jpg	
1 \|		111218b-6156-RPH.jpg	
1 \|		111218b-6156-trajectory.jpg	
1 \|			
1 \|		19a	
1 \|		111219a-6156-\#ofsats.jpg	
1 \|		111219a-6156-basecoordinate.jpg	
1		111219a-6156-positionaccuracy\&PDOP-noGLONASS-	
10deg.jpg			
1 \|		111219a-6156-positionaccuracy\&PDOP-noGLONASS-	
15deg.jpg			
1 \|		111219a-6156-positionaccuracy\&PDOP-withGLONASS-	
10deg.jpg			
1	1	111219a-6156-positionaccuracy\&PDOP-withGLONASS-	
15deg.jpg			
\|		111219a-6156-positionseparation-noGLONASS-10deg.jpg	
1 I	\|	111219a-6156-positionseparation-noGLONASS-15deg.jpg	

| \| | | \| | 120109a-6156-positionaccuracy\&PDOP-withGLONASS- |
| :---: | :---: | :---: |
| 10deg.jpg | | |
| \| | | I | 120109a-6156-positionaccuracy\&PDOP-withGLONASS- |
| 15deg.jpg | | |
| I | I | 120109a-6156-positionseparation-noGLONASS-10deg.jpg |
| 1 \| | I | 120109a-6156-positionseparation-noGLONASS-15deg.jpg |
| 1 \| | । | 120109a-6156-positionseparation-withGLONASS-10deg.jpg |
| \| | | । | 120109a-6156-positionseparation-withGLONASS-15deg.jpg |
| \| | | । | 120109a-6156-RPH.jpg |
| 1 \| | \| | 120109a-6156-trajectory.jpg |
| 1 I | I | 120109ab-6156-ABGPSlog.jpg |
| 1 \| | \| | |
| 1 \| | | 09b |
| 1 \| | \| | 120109b-6156-\#ofsats.jpg |
| 1 \| | । | 120109b-6156-basecoordinate.jpg |
| \| | | । | 120109b-6156-positionaccuracy\&PDOP-noGLONASS- |
| 10deg.jpg | | |
| । \| | I | 120109b-6156-positionaccuracy\&PDOP-noGLONASS- |
| 15deg.jpg | | |
| 1 | । | 120109b-6156-positionaccuracy\&PDOP-withGLONASS- |
| 10deg.jpg | | |
| | \| | 120109b-6156-positionaccuracy\&PDOP-withGLONASS- |
| 15deg.jpg | | |
| 1 | \| | 120109b-6156-positionseparation-noGLONASS-10deg.jpg |
| 1 \| | । | 120109b-6156-positionseparation-noGLONASS-15deg.jpg |
| 1 \| | । | 120109b-6156-positionseparation-withGLONASS-10deg.jpg |
| 1 \| | । | 120109b-6156-positionseparation-withGLONASS-15deg.jpg |
| 1 \| | I | 120109b-6156-RPH.jpg |
| 1 \| | । | 120109b-6156-trajectory.jpg |
| 1 \| | \| | |
| 1 \| | | 11 a |
| 1 \| | । | 120111a-6156-\#ofsats.jpg |
| 1 \| | I | 120111a-6156-ABGPSlog.jpg |
| 1 \| | । | 120111a-6156-basecoordinate.jpg |
| \| | | । | 120111a-6156-inplaneflightlog.jpg |
| | \| | 120111a-6156-positionaccuracy\&PDOP-noGLONASS- |
| 10deg.jpg | | |
| \| | I | 120111a-6156-positionaccuracy\&PDOP-noGLONASS- |
| 15deg.jpg | | |
| \| | | 1 | 120111a-6156-positionaccuracy\&PDOP-withGLONASS- |
| 10deg.jpg | | |
| \| | | 1 | 120111a-6156-positionaccuracy\&PDOP-withGLONASS- |
| 15deg.jpg | | |
| \| | | । | 120111a-6156-positionseparation-noGLONASS-10deg.jpg |
| 1 \| | । | 120111a-6156-positionseparation-noGLONASS-15deg.jpg |
| 1 \| | । | 120111a-6156-positionseparation-withGLONASS-10deg.jpg |
| 1 \| | \| | 120111a-6156-positionseparation-withGLONASS-15deg.jpg |
| 1 \| | । | 120111a-6156-RPH.jpg |
| 1 \| | । | 120111a-6156-trajectory.jpg |
| 1 \| | \| | |
| \| | | | 11b |
| \| | | | 120111b-6156-\#ofsats.jpg |
| 1 \| | | 120111b-6156-ABGPSIog.jpg |
| 1 \| | | 120111b-6156-basecoordinate.jpg |

:

1 \|	\|	MER706A W.JPG
1 \|	\|	MER706_E.JPG
1 I	\|	MER706_N.JPG
1 I	\|	MER706_S.JPG
1 I	\|	MER706_W.JPG
1 I	\|	MER707Ā_E.JPG
1 I	\|	MER707A_N.JPG
1 I	\|	MER707A_S.JPG
1 \|	\|	MER707A_W.JPG
I	\|	MER707_E.JPG
\|	\|	MER707_N.JPG
I	\|	MER707_S.JPG
1	\|	MER707_W.JPG
\|	\|	MER708A_E.JPG
\|	\|	MER708A_N.JPG
I	\|	MER708A_S.JPG
I	\|	MER708A_W.JPG
I	\|	MER708_E.JPG
1	\|	MER708_N.JPG
1 \|	\|	MER708 S.JPG
\|	\|	MER708_W.JPG
\|	\|	MER709A_E.JPG
1 \|	\|	MER709A_N.JPG
1 \|	\|	MER709A_S.JPG
1 \|	\|	MER709A_W.JPG
1 \|	\|	MER709_E.JPG
1 \|	\|	MER709_N.JPG
1 I	\|	MER709_S.JPG
1 I	\|	MER709_W.JPG
1 I	\|	MER710_E.JPG
1 \|	\|	MER710_N.JPG
I	\|	MER710_S.JPG
I	,	MER710_W.JPG
I	\|	MER711A_E.JPG
\|	\|	MER711A_N.JPG
\|	\|	MER711A_S.JPG
\|	\|	MER711A_W.JPG
\|	\|	MER711_E.JPG
\|	\|	MER711_N.JPG
\|	\|	MER711_S.JPG
I	\|	MER711_W.JPG
I	\|	MER712A_E.JPG
I	\|	MER712A_N.JPG
\|	\|	MER712A_S.JPG
I	\|	MER712A_W.JPG
\|	\|	MER712_E.JPG
1 \|	\|	MER712_N.JPG
1 \|	\|	MER712_S.JPG
I	\|	MER712_W.JPG
1 \|	\|	MER713Ā_E.JPG
1 I	\|	MER713A_N.JPG
\|	\|	MER713A_S.JPG
1 \|	\|	MER713A_W.JPG
1 \|	\|	MER713_E.JPG

1 \|	\|	MER713 N.JPG
1 \|	\|	MER713_S.JPG
1 I	\|	MER713_W.JPG
1 I	\|	MER714A_E.JPG
1 I	\|	MER714A_N.JPG
1 \|	\|	MER714A_S.JPG
1 I	\|	MER714A_W.JPG
1 \|	\|	MER714_E.JPG
I	I	MER714_N.JPG
1 I	\|	MER714_S.JPG
I	\|	MER714_W.JPG
I	\|	MER715_E.JPG
I	\|	MER715_N.JPG
\|	\|	MER715_S.JPG
I	\|	MER715_W.JPG
\|	\|	MER716A_E.JPG
I	\|	MER716A_N.JPG
I	\|	MER716A_S.JPG
1	\|	MER716A_W.JPG
1 \|	\|	MER717_E.JPG
I	\|	MER717 ${ }^{\text {T.J.JPG }}$
1 \|	\|	MER717_S.JPG
1 \|	\|	MER717_W.JPG
1 \|	\|	MER718_E.JPG
1 \|	\|	MER718_N.JPG
1 \|	\|	MER718_S.JPG
1 \|	\|	MER718_W.JPG
1 I	\|	MER719_E.JPG
1 I	\|	MER719_N.JPG
1 \|	\|	MER719_S.JPG
I	\|	MER719_W.JPG
I	\|	MER720A_E.JPG
I	I	MER720A_N.JPG
I	,	MER720A_S.JPG
\|	\|	MER720A_W.JPG
\|	\|	MER720_E.JPG
\|	\|	MER720_N.JPG
\|	\|	MER720_S.JPG
\|	\|	MER720_W.JPG
I	\|	MER721_E.JPG
I	\|	MER721_N.JPG
I	\|	MER721_S.JPG
\|	\|	MER721 W.JPG
\|	\|	MER801_E.JPG
I	\|	MER801_N.JPG
I	\|	MER801_S.JPG
1 \|	\|	MER801_W.JPG
1 \|	\|	MER802A_E.JPG
1 \|	\|	MER802A_N.JPG
1 \|	\|	MER802A_S.JPG
1 \|	\|	MER802A_W.JPG
1	\|	MER802_E.JPG
1 \|	\|	MER802_N.JPG
1 \|	\|	MER802_S.JPG

1 \|	\|	MER802 W.JPG
1 \|	\|	MER803_E.JPG
1 \|	\|	MER803_N.JPG
1 \|	\|	MER803_S.JPG
1 \|	\|	MER803_W.JPG
1 I	\|	MER804_E.JPG
1 I	\|	MER804_N.JPG
1 I	\|	MER804_S.JPG
1 \|	I	MER804_W.JPG
1 I	\|	MER805_E.JPG
1 I	\|	MER805_N.JPG
1 \|	\|	MER805_S.JPG
1 I	\|	MER805_W.JPG
1 I	\|	MER806_E.JPG
1 I	,	MER806_N.JPG
1 I	\|	MER806_S.JPG
1 I	\|	MER806_W.JPG
1 \|	\|	MER807_E.JPG
1 I	\|	MER807_N.JPG
1 \|	\|	MER807_S.JPG
1 \|	\|	MER807 ${ }^{\text {T.JPG }}$
1 \|	\|	MER808_E.JPG
1 \|	\|	MER808_N.JPG
1 \|	\|	MER808_S.JPG
1 \|	\|	MER808_W.JPG
1 \|	\|	MER809_E.JPG
1 \|	\|	MER809_N.JPG
1 I	\|	MER809_S.JPG
1 I	\|	MER809_W.JPG
1 \|	\|	MER810_E.JPG
1 I	\|	MER810_N.JPG
1 I	\|	MER810_S.JPG
1 \|	I	MER810_W.JPG
1 \|	I	MER811_E.JPG
1 I	\|	MER811_N.JPG
1 \|	I	MER811_S.JPG
1 I	,	MER811_W.JPG
1 I	1	MER812_E.JPG
1 \|	1	MER812_N.JPG
1 I	1	MER812_S.JPG
1 \|	\|	MER812_W.JPG
1 \|	\|	MER813_E.JPG
1 \|	\|	MER813_N.JPG
1 \|	\|	MER813_S.JPG
1 \|	\|	MER813_W.JPG
1 \|	\|	MER814_E.JPG
1 \|	\|	MER814_N.JPG
1 \|	1	MER814_S.JPG
1 \|	1	MER814_W.JPG
1 \|	1	MER815_E.JPG
1 \|	1	MER815_N.JPG
1 I	\|	MER815_S.JPG
1 \|	\|	MER815_W.JPG
1 \|	\|	MER816_E.JPG

\|	MER816_N.JPG	
1 \|	MER816_S.JPG	
1 I	MER816_W.JPG	
1 I	MER817_E.JPG	
1 \|	MER817_N.JPG	
1 I	MER817_S.JPG	
1 I	MER817_W.JPG	
1 \|	MER818_E.JPG	
1 \|	MER818_N.JPG	
1 I	MER818_S.JPG	
1 \|	MER818_W.JPG	
,	MER819_E.JPG	
1 I	MER819_N.JPG	
1 \|	MER819_S.JPG	
1 \|	MER819_W.JPG	
1 \|	MER820_E.JPG	
1 \|	MER820_N.JPG	
1 I	MER820_S.JPG	
1 I	MER820_W.JPG	
1 \|	Thumbs. ${ }^{\text {d }}$ d	
\|	\|	
1 \|	\---FVAs	
1 \|	MER301_E.JPG	
1 I	MER301_N.JPG	
1 \|	MER301_S.JPG	
1 \|	MER301_W.JPG	
1 \|	MER302_E.JPG	
1 \|	MER302_N.JPG	
1 \|	MER302_S.JPG	
1 \|	MER302_W.JPG	
1 \|	MER303_E.JPG	
1 \|	MER303_N.JPG	
1 \|	MER303_S.JPG	
1 \|	MER303_W.JPG	
1 I	MER304_E.JPG	
1 \|	MER304_N.JPG	
\|	MER304_S.JPG	
1 \|	MER304_W.JPG	
1 \|	MER305_E.JPG	
1 \|	MER305_N.JPG	
1 \|	MER305_S.JPG	
1 \|	MER305_W.JPG	
1 \|	MER306_E.JPG	
1 \|	MER306_N.JPG	
1 \|	MER306_S.JPG	
\|		MER306_W.JPG
1 \|	MER307_E.JPG	
\|	MER307 ${ }^{\text {-N. }}$.JPG	
\|	MER307_S.JPG	
\|	MER307_W.JPG	
\|	MER308_E.JPG	
\|	MER308_N.JPG	
\|	MER308_S.JPG	
1 \|	MER308_W.JPG	

```
    MER309 E.JPG
    MER309 N.JPG
    MER309-S.JPG
    MER309 W.JPG
    MER310-E.JPG
    MER310_N.JPG
    MER310_S.JPG
    MER310_W.JPG
    MER311_E.JPG
    MER311_N.JPG
    MER311_S.JPG
    MER311_W.JPG
    MER312 E.JPG
    MER312 N.JPG
    MER312-S.JPG
    MER312_W.JPG
    MER313_E.JPG
    MER313 N.JPG
    MER313_S.JPG
    MER313_W.JPG
    MER314_E.JPG
    MER314_N.JPG
    MER314_S.JPG
    MER314 W.JPG
    MER315 E.JPG
    MER315 N.JPG
    MER315_S.JPG
    MER315_W.JPG
    MER316_E.JPG
    MER316_N.JPG
    MER316_S.JPG
    MER316_W.JPG
    MER317_E.JPG
    MER317 N.JPG
    MER317_S.JPG
    MER317_W.JPG
    MER318_E.JPG
    MER318_N.JPG
    MER318_S.JPG
    MER318_W.JPG
    MER319_E.JPG
    MER319_N.JPG
    MER319_S.JPG
    MER319_W.JPG
    MER320-E.JPG
    MER320-N.JPG
    MER320_S.JPG
    MER320_W.JPG
    Thumbs.db
    4_Final_GeoFiles
    +---CVAs
    Merrimack_CVA_NAD83.dbf
    Merrimack_CVA_NAD83.kmz
```


MER102_c.jpg MER103_c.jpg MER104_c.jpg MER105_c.jpg MER106_c.jpg MER107_c.jpg MER108_c.jpg MER109_c.jpg MER110_c.jpg MER111_c.jpg MER112_c.jpg MER113_c.jpg MER114_c.jpg MER115_c.jpg MER116_c.jpg MER117_c.jpg MER118_c.jpg MER119_c.jpg MER120_c.jpg MER121_c.jpg MER122_c.jpg MER123_c.jpg MER124_c.jpg MER125_c.jpg MER126_c.jpg MER127_c.jpg MER128A__c.jpg MER129A_c.jpg MER130_c.jpg MER131_c.jpg MER132_c.jpg MER133_c.jpg MER134_c.jpg MER135_c.jpg MER136_c.jpg MER137_c.jpg MER138_c.jpg MER139_c.jpg MER140_c.jpg MER141_c.jpg MER142_c.jpg MER143_c.jpg MER144_c.jpg MER145_c.jpg MER146_c.jpg MER147 ${ }^{-}$c.jpg MER148_c.jpg MER149_c.jpg
MER150_c.jpg
MER151A_c.jpg
MER151_c.jpg
MER152A__c.jpg
MER152_c.jpg
MER153A_c.jpg

MER120_W.JPG MER121 E.JPG MER121 ${ }^{-}$N.JPG MER121-S.JPG MER121_W.JPG MER122_E.JPG MER122_N.JPG MER122_S.JPG MER122_W.JPG MER123_E.JPG MER123_N.JPG MER123_S.JPG MER123 $\mathrm{W} . \mathrm{JPG}$ MER124 E.JPG MER124 $\mathrm{N} . \mathrm{JPG}$ MER124_S.JPG
MER124_W.JPG
MER125 E.JPG
MER125_N.JPG
MER125_S.JPG
MER125_W.JPG
MER126_E.JPG
MER126_N.JPG
MER126_S.JPG
MER126-W.JPG
MER127_E.JPG
MER127_N.JPG
MER127_S.JPG
MER127_W.JPG
MER128_E.JPG
MER128_N.JPG
MER128_S.JPG
MER128_W.JPG
MER129_E.JPG
MER129 ${ }^{-}$N.JPG
MER129-S.JPG
MER129_W.JPG
MER130_E.JPG
MER130_N.JPG
MER130_S.JPG
MER130_W.JPG
MER131_E.JPG
MER131_N.JPG
MER131_S.JPG
MER131-W.JPG
MER132_E.JPG
MER132_N.JPG
MER132_S.JPG
MER132_W.JPG
MER133_E.JPG
MER133_N.JPG
MER133_S.JPG
MER133_W.JPG
MER134_E.JPG
MER134_N.JPG MER134_S.JPG MER134 $\mathrm{W} . \mathrm{JPG}$ MER135 E.JPG MER135_N.JPG MER135 S.JPG MER135_W.JPG MER136_E.JPG MER136_N.JPG MER136_S.JPG MER136_W.JPG MER137 E.JPG
MER137 ${ }^{-}$N.JPG
MER137 ${ }^{-}$S.JPG
MER137 ${ }^{-}$W.JPG
MER138_E.JPG
MER138 N.JPG
MER138_S.JPG
MER138_W.JPG
MER139_E.JPG
MER139_N.JPG
MER139_S.JPG
MER139_W.JPG
MER140_E.JPG
MER140 $\mathrm{N} . \mathrm{JPG}$
MER140-S.JPG
MER140_W.JPG
MER141_E.JPG
MER141_N.JPG
MER141_S.JPG
MER141_W.JPG
MER142_E.JPG
MER142_N.JPG
MER142-S.JPG
MER142 ${ }^{-}$W.JPG
MER143_E.JPG
MER143-N.JPG
MER143_S.JPG
MER143-W.JPG
MER144_E.JPG
MER144_N.JPG
MER144_S.JPG
MER144_W.JPG
MER145_E.JPG
MER145 N.JPG
MER145-S.JPG
MER145_W.JPG
MER146_E.JPG
MER146_N.JPG
MER146_S.JPG
MER146_W.JPG
MER147_E.JPG
MER147_N.JPG
MER147_S.JPG
MER147_W.JPG
MER148_E.JPG
MER148 ${ }^{-}$N.JPG
MER148-S.JPG
MER148_W.JPG
MER149_E.JPG
MER149_N.JPG
MER149_S.JPG
MER149_W.JPG
MER150_E.JPG
MER150_N.JPG
MER150_S.JPG
MER150_W.JPG
MER151_E.JPG
MER151-N.JPG
MER151_S.JPG
MER151_W.JPG
MER152_E (2).JPG
MER152_E.JPG
MER152_N (2).JPG
MER152_N.JPG
MER152_S (2).JPG
MER152 S.JPG
MER152_W (2).JPG
MER152 ${ }^{-}$W.JPG
MER153_E (2).JPG
MER153_E.JPG
MER153-N (2).JPG
MER153_N.JPG
MER153_S (2).JPG
MER153_S.JPG
MER153_W (2).JPG
MER153_W.JPG
MER154_E.JPG
MER154 ${ }^{-}$N.JPG
MER154_S.JPG
MER154_W.JPG
MER155_E.JPG
MER155_N.JPG
MER155_S.JPG
MER155_W.JPG
MER156_E.JPG
MER156_N.JPG
MER156_S.JPG
MER156 W.JPG
MER157_E.JPG
MER157_N.JPG
MER157_S.JPG
MER157_W.JPG
MER158_E (2).JPG
MER158_E.JPG
MER158_N (2).JPG
MER158_N.JPG
MER158_S (2).JPG

```
MER158_S.JPG
MER158_W (2).JPG
MER158 W.JPG
MER159 E.JPG
MER159_N.JPG
MER159_S.JPG
MER159_W.JPG
MER160_E.JPG
MER160_N.JPG
MER160_S.JPG
MER160_W.JPG
MER161_E.JPG
MER161_N.JPG
MER161-S.JPG
MER161 W.JPG
MER162_E.JPG
MER162_N.JPG
MER162_S.JPG
MER162_W.JPG
MER163_E.JPG
MER163_N.JPG
MER163_S.JPG
MER163_W.JPG
MER164_E.JPG
MER164 N.JPG
MER164_S.JPG
MER164_W.JPG
MER165_E.JPG
MER165_N.JPG
MER165_S.JPG
MER165_W.JPG
MER166_E.JPG
MER166_N.JPG
MER166_S.JPG
MER166 W.JPG
MER167_E.JPG
MER167_N.JPG
MER167_S.JPG
MER167_W.JPG
MER168_E (2).JPG
MER168_E.JPG
MER168_N (2).JPG
MER168_N.JPG
MER168_S (2).JPG
MER168_S.JPG
MER168_W (2).JPG
MER168_W.JPG
MER169_E.JPG
MER169_N.JPG
MER169_S.JPG
MER169_W.JPG
MER170_E.JPG
MER170_N.JPG
MER170_S.JPG
```

```
--
    MER170_W.JPG
    MER171_E.JPG
    MER171_N.JPG
    MER171_S.JPG
    MER171_W.JPG
    MER172_E.JPG
    MER172_N.JPG
    MER172_S.JPG
    MER172_W.JPG
    MER173_E.JPG
    MER173_N.JPG
    MER173_S.JPG
    MER173_W.JPG
    MER174-E.JPG
    MER174_N.JPG
    MER174_S.JPG
    MER174_W.JPG
    MER175_E.JPG
    MER175_N.JPG
    MER175_S.JPG
    MER175_W.JPG
    Thumbs.db
+---04_Final_GeoFiles
    Merrimack_Control_NAD83.dbf
    Merrimack_Control_NAD83.kmz
    Merrimack_Control_NAD83.prj
    Merrimack_Control_NAD83.sbn
    Merrimack_Control_NAD83.s.bx
    Merrimack_Control_NAD83.shp
    Merrimack_Control_NAD83.shx
+---05_Final_Station_Diagrams
    MER1011_d.gif
    MER102_d.gif
    MER103_d.gif
    MER104_d.gif
    MER105_d.gif
    MER106_d.gif
    MER107_d.gif
    MER108_d.gif
    MER109_d.gif
    MER110_d.gif
    MER111_d.gif
    MER112-d.gif
    MER113_d.gif
    MER114_d.gif
    MER115_d.gif
    MER116_d.gif
    MER117_d.gif
    MER118_d.gif
    MER119_d.gif
    MER120_d.gif
    MER121_d.gif
```

MER122_d.gif MER123 d.gif MER124-d.gif MER125_d.gif MER126_d.gif MER127_d.gif MER128A_d.gif MER129A_d.gif MER130_d.gif MER131_d.gif MER132_d.gif MER133_d.gif MER134_d.gif MER135_d.gif MER136_d.gif MER137_d.gif MER138_d.gif MER139_d.gif MER140_d.gif MER141_d.gif MER142_d.gif MER143_d.gif MER144_d.gif MER145-d.gif MER146-d.gif MER147_d.gif MER148_d.gif MER149_d.gif MER150_d.gif MER151A_d.gif MER151_d.gif MER152 À_d.gif MER152_d.gif MER153Ā_d.gif MER153_d.gif MER154_d.gif MER155_d.gif MER156_d.gif
MER157_d.gif
MER158Ā_d.gif
MER158_d.gif
MER159_d.gif
MER160_d.gif
MER161_d.gif
MER162-d.gif
MER163-d.gif
MER164_d.gif
MER165_d.gif
MER166_d.gif
MER167_d.gif
MER168A__d.gif
MER169A_d.gif
MER169_d.gif
MER170_d.gif

```
M: MER171A_d.gif 
l---TSDN
    Appendix A.pdf
    Appendix B.pdf
    Appendix C.pdf
    Appendix D.pdf
    Appendix E.pdf
    Appendix F.pdf
        Appendix G.pdf
            Appendix H.pdf
            Appendix I.pdf
            Merrimack_River_HUC_8_01080202_Terrain_TSDN.doc
            Merrimack_River_HUC_8_01080202_Terrain_TSDN.pdf
```

```
Merrimack MIP Locations:
```

Belknap County, New Hampshire
$J: \backslash F E M A \backslash R 01 \backslash N E W$ HAMPSHIRE 33\BELKNAP 33001 \BELKNAP 001C\12-01-
1080 S \SubmissionUpload\Terrain $\backslash 21526 \overline{7} 4$

Hillsborough County, New Hampshire
J: \FEMA \R01 \NEW_HAMPSHIRE_33\HILLSBOROUGH_33011\HILLSBOROUGH_011C\12-01-
1080 S \SubmissionUpload\Terrain\2152674

Merrimack County, New Hampshire J : \FEMA \R01 \NEW_HAMPSHIRE_33\MERRIMACK_33013\MERRIMACK_013C\12-011080S\Submissioñpload\Terrrain\2152674

Rockingham County, New Hampshire $J: \backslash F E M A \backslash R 01 \backslash N E W _H A M P S H I R E _33 \backslash R O C K I N G H A M _33015 \backslash R O C K I N G H A M _015 C \backslash 12-01-$ 1080 S \SubmissionUpload\Terrain\2152674

Strafford County, New Hampshire
J: \FEMA\R01\NEW_HAMPSHIRE_33\STRAFFORD_33017\STRAFFORD_017C\12-011080S \SubmissionUpload\Terrain\2152674

Essex County, Massachusetts J: \FEMA \R01 \MASSACHUSETTS_25\ESSEX_25009\ESSEX_009C\12-011080S \SubmissionUpload\Tē̄rain\215 $\overline{2} 674$

Middlesex County, Massachusetts J: \FEMA\R01 \MASSACHUSETTS_25\MIDDLESEX_25017\MIDDLESEX_017C\12-011080S \SubmissionUpload\Terrain\2152674

Worcester County, Massachusetts J: \FEMA \R01 \MASSACHUSETTS_25\WORCESTER_25027\WORCESTER_027C\12-011080S \SubmissionUpload\Terrain\2152674

NOTE:
In the interest of saving storage space on the MIP, the Merrimack County MIP location will include all supporting project data. Every other location contains the metadata and a read me text file that directs users to the Merrimack Terrain submittal directory.

Appendix H: Guidance Documents

September 27, 2010

MEMORANDUM FOR:

FROM:

SUBJECT:

EFFECTIVE DATES:

Regional Risk Analysis Branch Chiefs

Doug A. Bellomo
 Director, Risk Analysis Division Federal Insurance and Mitigation Administration

Procedure Memorandum No. 61—Standards for Lidar and Other High Quality Digital Topography

Immediately for all FY10 procured and collected data

Background: Beginning in Fiscal Year (FY) 2010, Federal Emergency Management Agency (FEMA) initiated a five-year program for Risk Mapping, Assessment, and Planning (Risk MAP). FEMA's vision for the Risk MAP program is to deliver quality data that increases public awareness and leads to mitigation actions that reduce risk to life and property. To achieve this vision, FEMA will transform its traditional flood identification and mapping efforts into a more integrated process of accurately identifying, assessing, communicating, planning for, and mitigating flood risks.

Under Risk MAP, FEMA seeks to:
-Deliver new data and products that expand risk awareness and promote mitigation planning that leads to risk reduction actions.
-Increase production efficiencies for Flood Insurance Rate Maps (FIRMs) and Flood Insurance Studies (FISs).

Issue: To implement FEMA's Risk MAP vision and provide the high quality topographic data necessary to meet Risk MAP's goals, FEMA Regions and Mapping Partners need upgraded guidance concerning the accuracy and processing of high quality topographic data including Light Detection and Ranging (LIDAR) data. This Procedure Memorandum supersedes Appendix A: Guidance for Aerial Mapping and Surveying of the Guidelines and Specifications for Flood Hazard Mapping Partners (Guidelines) in key areas (defined in the Procedure Memorandum Attachments), and must be implemented beginning with all topographic data collected or procured by FEMA in FY 2010.

Actions Taken: When procuring topographic data under the Risk MAP Program, the Mapping Partner assigned to obtain topographic data or perform independent QA of topographic data must meet the specifications detailed in this Procedure Memorandum's attachments. The attachments align FEMA's high quality topographic specifications, found in Appendix A of the Guidelines, with the United States Geological Survey (USGS) Lidar Guidelines and Base Specifications v13 so that data procured and used by the Federal government is consistent across agencies and is updated to industry standards. Further, adherence to these specifications will support the Risk MAP Program by closing gaps in existing flood hazard data; supporting risk assessments; and better communicating risks to community officials and the public.

Existing elevation data, not acquired by FEMA, but planned for use in a new flood hazard analysis for National Flood Insurance Program (NFIP) regulatory products must comply with the accuracy, density and the final product metadata requirements detailed in the attachments, but is not required to comply with the other specifications included and referenced below.

Consistent with FEMA's overall approach to flood hazard identification, this Procedure Memorandum aligns FEMA topographic data specifications to level of risk, and accounts for different slopes in the terrain that can affect the accuracy of base flood elevations and the delineation of mapped floodplains. These specifications represent the minimum requirements. Where involved project is jointly funded by FEMA and external partners or where the engineering requirements dictate, projects may use higher specification levels or include additional processing. Quality assurance requirements for high quality topographic data are also provided.

Attachments:

Attachment 1 - Definitions
Attachment 2 - Alignment of FEMA Appendix A to USGS Lidar Guidelines and Base Specification v13
Attachment 3 - Topographic Breakline and Hydro-Enforcement Specifications
Attachment 4 - Topographic Data Quality Review Process

Distribution List (electronic distribution only):
Office of the Acting Assistant Administrator for Flood Insurance and Mitigation
Risk Analysis Division
Risk Reduction Division
Risk Insurance Division
Regional Mitigation Division Directors
Regional Risk Analysis Branch Chiefs
Legislative Affairs
Office of Chief Counsel
Indefinite Delivery Indefinite Quantity Contractors
Cooperating Technical Partners
Program Management Contractor
Customer and Data Services Contractor
Production and Technical Services Contractors

Attachment 1 - Definitions

1) Digital Elevation Data - Includes all of the following terms: mass points, point clouds, breaklines, contours, TINs, DEMs, DTMs or DSMs.

- Breakline - A linear feature demarking a change in the smoothness or continuity of a surface such as abrupt elevation changes or a stream line. The two most common forms of breaklines are as follows:
o A soft breakline ensures that known elevations, or z -values, along a linear feature are maintained (e.g., elevations along a pipeline, road centerline or drainage ditch), and ensures the boundary of natural and man-made features on the Earth's surface are appropriately represented in the digital terrain data by use of linear features and polygon edges They are generally synonymous with 3-D breaklines because they are depicted with series of $\mathrm{x} / \mathrm{y} / \mathrm{z}$ coordinates.

0 A hard breakline defines interruptions in surface smoothness, e.g., to define streams, shorelines, dams, ridges, building footprints, and other locations with abrupt surface changes. Although some hard breaklines are three dimensional (3-D) breaklines, they are often depicted as two dimensional (2-D) breaklines because features such as shorelines and building footprints are normally depicted with a series of horizontal coordinates only which are often digitized from digital orthophotographs that include no elevation data.

- Contours - Lines of equal elevation on a surface. An imaginary line on the ground, all points of which are at the same elevation above or below a specified vertical datum.
- Digital Elevation Model (DEM) - An elevation model created for use in computer software where bare-earth elevation values have regularly spaced intervals in latitude and longitude (x and y$)$. The $\Delta \mathrm{x}$ and $\Delta \mathrm{y}$ values are normally measured in feet or meters to even units; however, the National Elevation Dataset (NED) defines the spacing interval in terms of arcseconds of latitude and longitude, e.g., $1 / 3^{\text {rd }}$ arc-second.
- Digital Surface Model (DSM) - An elevation model created for use in computer software that is similar to DEMs or DTMs except that DSMs depict the elevations of the top surfaces of buildings, trees, towers, and other features elevated above the bare earth.
- Digital Terrain Model (DTM) - An elevation model created for use in computer software of bare-earth mass points and breaklines. DTMs are technically superior to a gridded DEM for many applications because distinctive terrain features are more clearly defined and precisely located, and contours generated from DTMs more closely approximate the real shape of the terrain.
- Mass Points - Irregularly spaced points, each with latitude and longitude location coordinates and elevation values typically used to form a TIN.
- Metadata - Project descriptive information about the elevation dataset.
- Point Cloud - Often referred to as the "raw point cloud", this is the first data product of a lidar instrument. In its crudest form, a lidar raw point cloud is a collection of range measurements and sensor orientation parameters. After initial processing, the range and orientation of each laser value is converted to a position in a three dimensional frame of reference and this spatially coherent cloud of points is the base for further processing and analysis. The raw point cloud typically includes first, last, and intermediate returns for each laser pulse. In addition to spatial information, lidar intensity returns provide texture or color information. The combination of three dimensional spatial information and spectral information contained in the lidar dataset allows great flexibility for data manipulation and extraction. As used in this procedure memorandum, two additional lidar data processing terms are defined as follows:
o Lidar Preliminary Processing - The initial processing and analysis of laser data to fully "calibrated point clouds" in some specified tile format. All lidar data will be set to American Society for Photogrammetry and Remote Sensing (ASPRS) LAS Class 1 (unclassified) and must include testing for Fundamental Vertical Accuracy (FVA). The tile format can change later, if necessary.
o Lidar Post-Processing - The final processing and classification of lidar data to the required ASPRS LAS classes, per project specifications. This must include testing for Consolidated Vertical Accuracy (CVA). At this point, the datasets are referred to as the "classified point cloud."
- Triangulated Irregular Network (TIN) - A set of adjacent, non-overlapping triangles computed from irregularly-spaced points with lattitude, longitude, and elevation values. The TIN data structure is based on irregularly-spaced point, line, and polygon data interpreted as mass points and breaklines and stores the topological relationship between triangles and their adjacent neighbors. The TIN model may be preferable to a DEM when it is critical to preserve the precise location of narrow or small features, such as levees, ditch or stream centerlines, isolated peaks or pits in the data model.
- Z-Values - The elevations of the 3-D surface above the vertical datum at designated x / y locations.

2) Geospatial Accuracy Standard - A common accuracy testing and reporting methodology that facilitates sharing and interoperability of geospatial data. Published in 1998, the National Standard for Spatial Data Accuracy (NSSDA) is the Federal Geographic Data Committee (FGDC) standard relevant to digital elevation data when assuming that errors follow a normal error distribution. However, after it was learned that lidar datasets do not necessarily follow a normal distribution in vegetated terrain, the National Digital Elevation Program (NDEP) published its "Guidelines for Digital Elevation Data" and the American Society for Photogrammetry and Remote Sensing (ASPRS) published the "ASPRS Guidelines: Vertical Accuracy Reporting for Lidar Data," both of which were published in 2004 and use newer terms defined below as Fundamental Vertical Accuracy (FVA), Supplemental Vertical Accuracy (SVA) and Consolidated Vertical Accuracy (CVA). All of these standards, designed for digital elevation data, replace the National Map Accuracy Standard (NMAS) that is applicable only to graphic maps defined by map scale and contour interval.
3) Accuracy - The closeness of an estimated value (e.g., measured or computed) to a standard or accepted (true) value of a particular quantity. Note: With the exception of GPS Continuously Operating Reference Stations (CORS), assumed to be known with zero errors relative to established datums, the true locations of 3-D spatial coordinates or other points are not known, but only estimated. Therefore, the accuracy of other coordinate information is unknown and can only be estimated. Other accuracy definitions are as follows.

- Absolute Accuracy - A measure that accounts for all systematic and random errors in a data set. Absolute accuracy is stated with respect to a defied datum or reference system.
- Accuracy $\mathbf{y}_{\mathbf{r}}$ - The NSSDA reporting standard in the horizontal component that equals the radius of a circle of uncertainty, such that the true or theoretical horizontal location of the point falls within that circle 95-percent of the time. Accuracy $_{\mathrm{r}}=1.7308 \times$ RMSE $_{\mathrm{r}}$. Horizontal accuracy is defined as the positional accuracy of a dataset with respect to a horizontal datum.
- Accuracy $\mathbf{y}_{\mathbf{z}}$ - The NSSDA reporting standard in the vertical component that equals the linear uncertainty value, such that the true or theoretical vertical location of the point falls within that linear uncertainty value 95 -percent of the time. Accuracy $_{z}=1.9600 \times$ RMSE $_{z}$. Vertical accuracy is defined as the positional accuracy of a dataset with respect to a vertical datum.
- Consolidated Vertical Accuracy (CVA) - The result of a test of the accuracy of vertical checkpoints (z-values) consolidated for two or more of the major land cover categories, representing both open terrain and other land cover categories. Computed by using the $95^{\text {th }}$ percentile, CVA is always accompanied by Fundamental Vertical Accuracy (FVA).
- Fundamental Vertical Accuracy (FVA) - The value by which vertical accuracy can be equitably assessed and compared among datasets. The FVA is determined with vertical checkpoints located only in open terrain, where there is a very high probability that the sensor will have detected the ground surface. FVA is calculated at the 95% confidence level in open terrain only, using $\mathrm{RMSE}_{\mathrm{z}} \times 1.9600$,
- Local Accuracy - A value that represents the uncertainty in the coordinates of a control point relative to the coordinates of other directly-connected, adjacent control points at the 95percent confidence level. The reported local accuracy is an approximate average of the individual local accuracy values between this control point and other observed control points used to establish the coordinates of the control point.
- Network Accuracy - A value that represents the uncertainty in the coordinates of a control point with respect to the geodetic datum at the 95 -percent confidence level. For National Spatial Reference System (NSRS) network accuracy classification in the U.S., the datum is considered to be best expressed by the geodetic values at the CORS supported by the National Geodetic Survey (NGS). By this definition, the local and network accuracy values at CORS sites are considered to be infinitesimal, i.e., to approach zero.
- Percentile - Any of the values in a dataset of errors dividing the distribution of the individual errors in the dataset into one hundred groups of equal frequency. Any of those groups can specify a specific percentile, e.g., the $95^{\text {th }}$ percentile as defined below.
- Precision - A statistical measure of the tendency of a set of random numbers to cluster about a number determined by the dataset. Precision relates to the quality of the method by which the measurements were made and is distinguished from accuracy which relates to the quality of the result. The term "precision" not only applies to the fidelity with which required operations are performed, but, by custom, has been applied to methods and instruments employed in obtaining results of a high order of precision. Precision is exemplified by the number of decimal places to which a computation is carried and a result stated.
- Positional Accuracy - The accuracy of the position of features, including horizontal and/or vertical positions.
- Relative Accuracy - A measure that accounts for random errors in a data set. Relative accuracy may also be referred to as point-to-point accuracy. The general measure of relative accuracy is an evaluation of the random errors (systematic errors and blunders removed) in determining the positional orientation (e.g., distance, azimuth) of one point or feature with respect to another.
- Root Mean Square Error (RMSE) - The square root of the average of the set of squared differences between dataset coordinate values and coordinate values from an independent source of higher accuracy for identical points. The vertical RMSE $\left(\mathrm{RMSE}_{Z}\right)$, for example, is calculated as the square root of $\sum\left(\mathrm{Z}_{\mathrm{n}}-\mathrm{Z}_{\mathrm{n}}^{\prime}\right)^{2} / \mathrm{N}$, where:
o Z_{n} is the set of Nz -values (elevations) being evaluated, normally interpolated (for TINs and DEMs) from dataset elevations of points surrounding the x / y coordinates of checkpoints
o $\quad Z_{n}^{\prime}$ is the corresponding set of checkpoint elevations for the points being evaluated
o N is the number of checkpoints
0 n is the identification number of each of the checkpoints from 1 through N .
- Supplemental Vertical Accuracy (SVA) - The result of a test of the accuracy of z-values over areas with ground cover categories or combination of categories other than open terrain. Computed by using the $95^{\text {th }}$ percentile, SVA is always accompanied by Fundamental Vertical Accuracy (FVA). SVA values are computed individually for different land cover categories. Each land cover type representing 10% of more of the total project area is typically tested and reported as an SVA. SVA specifications are normally target values that may be exceeded so long as overall CVA requirements are satisfied.
- 95\% Confidence Level - Accuracy reported at the 95\% confidence level means that 95\% of the positions in the dataset will have an error with respect to true ground position that is equal to or smaller than the reported accuracy value. The reported accuracy value reflects all uncertainties, including those introduced by geodetic control coordinates, compilation, and
final computation of ground coordinate values in the product. Where errors follow a normal error distribution, Accuracy ${ }_{z}$ defines vertical accuracy at the 95% confidence level (computed as $\mathrm{RMSE}_{\mathrm{z}} \times 1.9600$), and Accuracy y_{r} defines horizontal (radial) accuracy at the 95% confidence level (computed as RMSE $_{r} \times 1.7308$).
- $95^{\text {th }}$ Percentile - Accuracy reported at the $95^{\text {th }}$ percentile indicates that 95% of the errors will be of equal or lesser value and 5% of the errors will be of larger value. This term is used when errors may not follow a normal error distribution, e.g., in forested areas where the classification of bare-earth elevations may have a positive bias. Vertical accuracy at the 95% confidence level and $95^{\text {th }}$ percentile may be compared to evaluate the degree to which actual errors approach a normal error distribution.

4) Resolution - In the context of elevation data, resolution is synonymous with the horizontal density of elevation data points for which two similar terms are used:

- Nominal Pulse Spacing (NPS) - The estimated average spacing of irregularly-spaced lidar points in both the along-track and cross-track directions resulting from: the laser pulse repetition frequency (e.g., 100,000 pulses of laser energy emitted in one second from a 100 kHz sensor); scan rate (sometimes viewed as the number of zigzags per second for this common scanning pattern); field-of-view; and flight airspeed. Lidar system developers currently provide "design NPS" as part of the design pulse density, although the American Society for Photogrammetry and Remote Sensing (ASPRS) is currently developing standard procedures to compute the "empirical NPS" which should be approximately the same as the "design NPS" when accepting statistically insignificant loss of returns and disregarding void areas, from water for example. The NPS assessment is made against single swath first return data located within the geometrically usable center portion (typically $\sim 90 \%$) of each swath. Average along-track and cross-track pulse spacing should be comparable. When point density is increased by relying on overlap or double-coverage it should be documented in metadata and not by changing the project's reported NPS. The NPS should be equal to or less than the Digital Elevation Model (DEM) post spacing when gridded DEMs are required as part of project specifications. This same definition for NPS could similarly apply to irregularly-spaced mass points from photogrammetry or Interferometric Synthetic Aperture Radar (IFSAR) data. NPS pertains to lidar only and is not intended to pertain to photogrammetry or IFSAR.
- DEM Post Spacing - Sometimes confused with Nominal Pulse Spacing, the DEM Post Spacing is defined as the constant sampling interval in x - and y-directions of a DEM lattice or grid. This is also called the horizontal resolution of a gridded DEM or the DEM grid spacing. It is standard industry practice to have:
o 1-meter DEM post spacing for elevation data with 1-foot equivalent contour accuracy;
o 2-meter DEM post spacing for elevation data with 2-foot equivalent contour accuracy;
o 5-meter DEM post spacing for elevation data with 5-foot equivalent contour accuracy.

Attachment 2 - Alignment of FEMA Appendix A to USGS Lidar Specification v13

FEMA is aligning Appendix A of the Guidelines and Specifications for Flood Hazard Mapping Partners (Guidelines) to the USGS Lidar Guidelines and Base Specification v13 to modernize the FEMA specifications to current industry practice, leverage the expertise of the USGS Geography discipline, maintain Federal standards across agencies, and support the use of elevation products acquired as part of Risk MAP by other agencies for other purposes thus maximizing the Government's investment.

Overall, new elevation data purchased by FEMA must comply with the USGS Lidar Guidelines and Base Specification v13, except where specifically noted in this Procedure Memorandum.

Because FEMA's needs for elevation data are specific to NFIP floodplain mapping, FEMA has some unique requirements that differ from the USGS specifications. To supplement the existing USGS specifications, FEMA-specific items such as cross section surveys, bridges, and other features in Appendix A of the Guidelines remain valid except where superseded by more current information provided in this attachment. Table 1 summarizes the sections in Appendix A that are fully superseded, partially superseded or not superseded by this Procedure Memorandum.

Table 2.1 Currency of Major Sections within FEMA's Appendix A: Guidance for Aerial Mapping and Surveying

Section	Name	Status
A.1	Introduction	Is not superseded and remains valid.
A.2	Industry Geospatial Standards	Remains valid but is appended by additional standards which use newer standards from the National Digital Elevation Program (NDEP) and American Society for Photogrammetry and Remote Sensing (ASPRS) to test elevation data for Fundamental Vertical Accuracy (FVA), Supplemental Vertical Accuracy (SVA), and Consolidated Vertical Accuracy (CVA).
A.3	Accuracy Guidelines	Partly superseded, especially Table 2, below, that specifies variable vertical accuracy standards and nominal pulse spacing (NPS), depending on the risk level and terrain slope within the floodplain being mapped.
A.4	Data Requirements	Major portions are superseded. Subsection A.4.2.3 pertaining to breaklines, subsection A.4.3 pertaining to elevation data vertical accuracy, and subsection A.4.5 pertaining to mapping area, are superseded. Subsection A.4.11 pertaining to other digital topographic data requirements, including Table A-3, Digital Topographic Data Requirements Checklist, is now superseded by other FEMA procurement guidelines. Subsection A.4.9 on data formats is partially superseded by the addition of lidar LAS formatted datasets. Subsections pertaining to cross sections (A.4.6) and hydraulic structures (A.4.7) remain valid.
A.5	Ground Control	Is not superseded and remains valid.
A.6	Ground Surveys	Is not superseded and remains valid.

Section	Name	Status
A.	Photogrammetric Surveys	Remains valid but is appended by additional standards which require low confidence areas to be delineated for photogrammetry as well as lidar and interferometric synthetic aperture radar (IFSAR). The vast majority of section A.7 remains valid and unchanged.
A.8	Airborne LiDAR	Superseded with references the USGS Lidar Guidelines and Base Specification v13; and by NDEP and ASPRS guidelines for accuracy testing and reporting of lidar data.

2.1 Elevation Specifications Based on Risk Levels

FEMA maintains a national dataset that estimates flood risk. The data is calculated at the Census Block Group level, and is also aggregated to the subwatershed, watershed and county levels. These data assign a risk value and a risk rank to each area. The areas are grouped into 10 classes with an equal number of members based on risk rank. These 10 classes are called risk deciles.

The table below provides the minimum elevation standards for new engineering analyses produced by FEMA. The highest and high specifications are suitable for all types of engineering analyses. The medium and low specifications are suitable for deciles and terrain as outlined in table below. Careful consideration and balance among cost, need, risk, and vertical accuracy is important. Where more than 20% of the project area covered by the new elevation will have enhanced engineering analyses, the next higher elevation specification level may be appropriate. When the scope of the enhanced engineering analyses is not sufficient to justify increasing the overall project specification level, the bulk elevation data collection may be enhanced by field survey in areas of enhanced engineering analyses if necessary.

Table 2.2. Vertical Accuracy Requirements based on Flood Risk and Terrain Slope within the Floodplain being mapped

Level of Flood Risk	Typical Slopes	Specification Level	Vertical Accuracy, 95\% Confidence Level FVA/CVA	Lidar Nominal Pulse Spacing (NPS)
High (Deciles $1,2,3)$	Flattest	Highest	$24.5 \mathrm{~cm} / 36.3 \mathrm{~cm}$	≤ 1 meter
High (Deciles $1,2,3)$	Rolling or Hilly	High	$49.0 \mathrm{~cm} / 72.6 \mathrm{~cm}$	≤ 2 meters
High (Deciles $2,3,4,5)$	Hilly	Medium	$98.0 \mathrm{~cm} / 145 \mathrm{~cm}$	≤ 3.5 meters
Medium (Deciles $3,4,5,6,7)$	Flattest	High	$49.0 \mathrm{~cm} / 72.6 \mathrm{~cm}$	≤ 2 meters
Medium (Deciles $3,4,5,6,7)$	Rolling	Medium	$98.0 \mathrm{~cm} / 145 \mathrm{~cm}$	≤ 3.5 meters

Medium (Deciles $4,5,6,7)$	Hilly	Low	$147 \mathrm{~cm} / 218 \mathrm{~cm}$	≤ 5 meters
Low (Deciles $7,8,9,10)$	All	Low	$147 \mathrm{~cm} / 218 \mathrm{~cm}$	≤ 5 meters

Whereas contour lines are for visual interpretation and are unnecessary for FEMA's automated hydrologic and hydraulic analyses, the term "equivalent contour accuracy" is used to show the accuracy of contour lines that could be produced from a DEM if needed for manual analysis; this is also for the benefit of those who do not understand NSSDA terminology that defines vertical accuracy at the 95% confidence level. Table 3 explains "equivalent contour accuracy" for various standard contour intervals, referenced also in terms of vertical root mean square error $\left(\mathrm{RMSE}_{z}\right)$, National Standard for Spatial Data Accuracy (NSSDA) Accuracy ${ }_{z}$, SVA and CVA.

Table 2.3. Accuracy Terms that Equal "Equivalent Contour Accuracy"

Equivalent Contour Accuracy	FEMA Specification Level	RMSE $_{2}$	NSSDA Accuracy ${ }_{2} 95 \%$ confidence level	SVA (target)	CVA (mandatory)
1 ft		0.30 ft or 9.25 cm	0.60 ft or 18.2 cm	0.60 ft or 18.2 cm	0.60 ft or 18.2 cm
2 ft	Highest	0.61 ft or 18.5 cm	1.19 ft or 36.3 cm	1.19 ft or 36.3 cm	1.19 ft or 36.3 cm
4 ft	High	1.22 ft or 37.1 cm	2.38 ft or 72.6 cm	2.38 ft or 72.6 cm	2.38 ft or 72.6 cm
5 ft		1.52 ft or 46.3 cm	2.98 ft or 90.8 cm	2.98 ft or 90.8 cm	2.98 ft or 90.8 cm
8 ft	Medium	2.43 ft or 73.9 cm	4.77 ft or 1.45 m	4.77 ft or 1.45 m	4.77 ft or 1.45 m
10 ft		3.04 ft or 92.7 cm	5.96 ft or 1.82 m	5.96 ft or 1.82 m	5.96 ft or 1.82 m
12 ft	Low	3.65 ft or 1.11 m	7.15 ft or 2.18 m	7.15 ft or 2.18 m	7.15 ft or 2.18 m

FEMA's requirements for elevation data are specific to flood risk analysis. As a result, FEMA's requirements diverge from the USGS specification which is intended to serve a different purpose. Two of the key differences with the FEMA specifications are the requirements for vertical accuracy and nominal pulse spacing. The FEMA requirements in these areas are only similar to the USGS requirements in the highest specification level, but otherwise differ for the lower accuracy levels.

All data collected must go through lidar preliminary processing and the unclassified point cloud must be tested as specified in the USGS specification. Where the Mapping Activity Statement (MAS) requires bare earth post-processing of the floodplain area of interest (AOI), the elevation data must be tested and comply with both the FVA and CVA requirements. Where no bare earth post-processing is specified, only the FVA requirements apply for lidar preliminary processing.

Many other organizations require higher-accuracy lidar data for diverse applications and combine their resources to solve multiple needs with lidar. FEMA prefers to acquire elevation data through partnerships so that the resulting data will meet a broader variety of end user needs and be more consistent with the overall USGS specification. These partnership elevation collection activities will frequently utilize specifications that exceed the minimums described above in Table 2. Before committing funds to a new elevation mapping project, FEMA Regional staff should first determine whether funds could be spent more effectively by cooperating with
other agencies to more cost-effectively acquire elevation data. FEMA is a member of the National Digital Elevation Program (NDEP) which was formed, in part, to avoid duplication of effort among state and federal government agencies acquiring digital elevation data. USGS maintains state geospatial liaisons that are a good source of information regarding the status of existing and/or planned mapping activities in their states.

2.2 Light Detection and Ranging (lidar)

Lidar is capable of delivering 1-foot equivalent contour accuracy with sub-meter NPS used to produce DEMs with 1-meter DEM gridded post spacing. Therefore, lidar could satisfy FEMA's requirements for elevation data in high risk, moderate risk, and low risk areas. Lidar is often the best technology for mapping the elevations of the bare earth terrain in dense vegetation.

If this technology is selected for high risk areas, lidar will be collected in accordance with the USGS Lidar Guidelines and Base Specification, v13, for the National Geospatial Program except as noted. FEMA does not require the data to be hydro-flattened, as specified in v13. Also, FEMA does not require all data to be processed to the bare earth terrain, but instead limits the area to be processed to areas in the vicinity of floodplains that will require hydraulic modeling. See FEMA's Procurement Guidelines for specifics on this topic.

The following USGS specifications are most relevant to FEMA and are consistent with FEMA requirements:

- Fundamental Vertical Accuracy (FVA) pertains only to open, non-vegetated terrain. The FVA is specified at a higher level of accuracy than other land cover categories. The FVA is a mandatory specification that must be satisfied in order to be usable by FEMA for flood risk mapping within the specified level of flood risk.
- Supplemental Vertical Accuracy (SVA) pertains to other major land cover categories representative of the floodplain being mapped. SVA values are target values, where one SVA category can test higher and another lower than the target SVA value so long as the overall CVA is satisfied for the consolidated equivalent contour accuracy.
- Consolidated Vertical Accuracy (CVA) pertains to all land cover categories combined. Compliance with the CVA specification is mandatory in order for an elevation dataset to qualify for satisfaction of a specified equivalent contour accuracy.
- For the highest specification level equivalent to 2 foot contour accuracy, the relative accuracy should be $\leq 7 \mathrm{~cm}$ RMSE $_{z}$ within individual swaths; $\leq 10 \mathrm{~cm} \mathrm{RMSE}_{z}$ within swath overlap (between adjacent swaths). These relative accuracy specifications double to 14 and 20 cm , respectively, for risk areas that utilize the high elevation specification with 4 foot equivalent contour accuracy. This specification is not applicable to lower risk areas.
- Consistent with USGS Lidar Guidelines and Base Specification, v13, a regular grid, with cell size equal to the design NPS*2 will be laid over the first return data within the geometrically usable center portion of each swath. At least 90% of the cells in the grid shall contain at least one lidar point.
- All data collected will be delivered consistent with the USGS Raw Point Cloud deliverable requirements.
- Where lidar post-processing is performed, the deliverables must also include the classified point cloud deliverable. The data will be delivered in full compliance with LAS classes 1 (processed, but unclassified), 2 (bare-earth ground), 7 (noise), 9 (water), 10 (ignored), and 11 (withheld). All points not identified as "withheld" are to be classified. "Overlap" classification (Class 12) shall not be used.
- The horizontal datum shall be referenced to the latest adjustment of the North American Datum of 1983 (NAD83 [NSRS2007]).
- The vertical datum shall be referenced to the North American Vertical Datum of 1988 (NAVD88) whenever available. Areas outside of the continental U.S. where NAVD88 is not available should be referenced to a reproducible local datum that can be used to support floodplain management.
- The most recent approved Geoid model from the National Geodetic Survey (NGS) shall be used to perform conversions from ellipsoidal heights to orthometric heights.
- The standard coordinate reference system and units shall be Universal Transverse Mercator (UTM), meters. Considerations for other standard coordinate systems such as State Plane can be made for projects which are contributed to by mapping partners.
- The single non-overlapped tiling scheme shall be established and agreed upon by the data producer and FEMA prior to collection, consistent with the USGS Lidar Guidelines and Base Specifications, v13.
- Specifications for breaklines and hydro-enforcement are addressed in Attachment B.
- Specifications for lidar accuracy testing by land cover categories within the floodplain being mapped are addressed in Attachment C.

Lidar dataset deliverables shall include the following:

1. Metadata should comply with the requirements in the USGS Lidar Guidelines and Base Specification, v13. The QA/QC report provided must include the vertical accuracy calculations as a Microsoft Excel spreadsheet. In addition, the finished elevation product for hydraulic modeling should be documented by a FGDC-compliant metadata file that complies with the FEMA Elevation Metadata Profile. Project documentation must also include a Pre-flight Operations Plan and Post-flight Aerial Survey and Calibration Report as described in Attachment 4.
2. Raw point cloud data shall comply with the requirements in the USGS Lidar Guidelines and Base Specification, v13.
3. Classified point cloud data shall comply with requirements in the USGS Lidar Guidelines and Base Specification, v13.
4. Optional breaklines, when produced, shall be delivered in compliance with guidance in Attachment 3
5. Optional digital bare earth elevation data product(s) (e.g., DEM, DTM, contours) in file formats specified in the Statement of Work.

2.3 Photogrammetry

Photogrammetry is also capable of delivering 1-foot equivalent contour accuracy and a DEM with 1-meter post spacing. Therefore, photogrammetry could also satisfy FEMA's requirements for elevation data in high risk, moderate risk, and low risk areas. Except for the new requirement to delineate areas of low confidence, existing guidance published in section A.7, Photogrammetric Surveys, in Appendix A of FEMA's Guidelines, remain current for new aerial image acquisition with either film or digital cameras.

The USGS annually contracts for leaf-off orthoimagery of selected areas under the National Geospatial Program, typically producing digital orthophotographs with pixel resolution of 30 cm (~ 1 foot) or 15 cm (~ 6 inches), as do many states and local governments; and the USDA contracts for leaf-on orthoimagery of major areas of the U.S. annually under the National Agricultural Imagery Program (NAIP) with pixel resolution of 1 meter. Although intended for production of digital orthophotos, those same images could be reused for production of digital elevation data because the aerotriangulation (AT) solution for production of orthophotos can be reused for establishing stereo models from which DEMs can be produced by photogrammetric auto-correlation and/or manual compilation. Elevation accuracies typically achievable by reuse of digital imagery and AT metrics are as follows:

- Typically acquired at an elevation of approximately 4,800 feet above mean terrain, imagery and AT solutions used to produce digital orthophotos with 6-inch pixel resolution should be acceptable for elevation data with 2.5 -foot equivalent contour accuracy
- Typically acquired at an elevation of approximately 9,600 feet above mean terrain, imagery and AT solutions used to produce digital orthophotos with 1-foot pixel resolution should be acceptable for elevation data with 5 -foot equivalent contour accuracy
- Typically acquired at an elevation of approximately 30,000 feet above mean terrain, imagery and AT solutions used to produce digital orthophotos with 1-meter pixel resolution should be acceptable for elevation data with 15 -foot equivalent contour accuracy.

Photogrammetric dataset deliverables shall include the following:

1. Metadata:
o Collection Report detailing mission planning and flight logs, flying heights, camera parameters, forward overlap and sidelap.
o Survey Report detailing the collection of control and reference points used for calibration and QA/QC.
o Aerial triangulation (AT) report detailing compliance with relevant accuracy statistics.
o Processing Report detailing photogrammetric processed used to manually compile elevation data or to semi-automatically compile elevation data with automated image correlation or other techniques.
o QA/QC reports.
o Geo-referenced extents of each delivered dataset.
2. Digital bare earth elevation data product (DEM, DTM, mass points, breaklines, contours) specified in the Statement of Work.
3. Optional breaklines, when produced, shall be delivered in compliance with guidance in Attachment 3

2.4 Ground Surveys

All ground surveys must be performed in accordance with procedures in Section A.5, Ground Control, and Section A.6, Ground Surveys, in Appendix A of FEMA's Guidelines. Crosssection surveys and hydraulic structure surveys shall also be performed in accordance with sections A.4.6 and A.4.7, respectively, of Appendix A.

2.5 Low Confidence Areas

Regardless of the technology used, FEMA requires that low confidence areas be delineated by the data provider to indicate areas where the vertical data may not meet the data accuracy requirements due to heavy vegetation even though the specified nominal pulse spacing was met or exceeded in those areas. The metadata must include an explanation of steps taken to minimize the areas delineated as low confidence areas. Accuracy test points are normally retained within such areas and are not discarded. The data provider must take reasonable steps to minimize areas delineated as low confidence areas, taking into consideration the density of the vegetation in the floodplain being mapped and other factors.

These low confidence areas must be delivered as polygons in accordance with a database schema. The database schema for polygons defining low confidence areas is as follows.

Feature Dataset: TOPOGRAPHIC Feature Class: CONFIDENCE

Feature Type: Polygon
Contains M Values: No
Annotation Subclass: None
XY Resolution: Accept Default Setting Z Resolution: Accept Default Setting
XY Tolerance: 0.003

Contains Z Values: No

Z Tolerance: N/A

2.5.1 Description

This polygon feature class will depict areas where the ground is obscured by dense vegetation, meaning that the resultant bare-earth digital terrain model (DTM) may not meet the required accuracy specifications in these obscured areas. Low confidence areas can pertain to lidar, photogrammetry or IFSAR.

2.5.2 Table Definition

Field Name	Data Type	Allow Null Values	Default Value	Domain	Precision	Scale	Length	Responsibility
OBJECTID	Object ID						Assigned by Software	
SHAPE	Geometry						Assigned by Software	
DATESTAMP_DT	Date	Yes			0	0	8	Assigned by Contractor
SHAPE_LENGTH	Double	Yes			0	0	Calculated by Contractor	
SHAPE_AREA	Double	Yes			0	0	Calculated by Contractor	
TYPE	Long Integer	No	1	Obscure	0	0	Assigned by Contractor	

2.5.3 Feature Definition

Code	Description	Definition	Capture Rules
	Low Confidence Area	"Low confidence areas" are defined by the data provider to indicate areas where the vertical data may not meet the data accuracy requirements due to heavy vegetation even though the nominal pulse spacing was met or exceeded in those areas.	Capture as closed polygon. Compiler does not need t z- values of vertices; feature class will be 2-D only.

Attachment 3 - Topographic Breakline and Hydro-Enforcement Specifications

FEMA has no minimum breakline requirements; breaklines are optional and depend upon the procedures used to perform hydrologic and hydraulic modeling. The FEMA Project Manager should specify the breaklines requirements if desired based on the planned approach for hydraulic analysis or the mapping partner may propose breakline requirements based on the anticipated hydraulic modeling approach.

When optional breaklines are produced, the following breakline topology rules must be followed for the applicable feature classes. The topology must be validated by each contractor prior to delivery to FEMA.

Name: BREAKLINES_Topology			Cluster Tolerance: 0.003 Maximum Generated Error Count: Undefined State: Analyzed without errors	
Feature Class	Weight	XY Rank	Z Rank	Event Notification
COASTALSHORELINE	5	1	1	No
HYDROGRAPHICFEATURE	5	1	1	No
PONDS_AND_LAKES	5	1	1	No
HYDRAULICSTRUCTURE	5	1	1	No
ISLAND	5	1	1	No

Topology Rules

Name	Rule Type	Trigger Event	Orgin (FeatureClass::Subtype)	Destination (FeatureClass::Subtype)
Must not intersect	The rule is a line-no intersection rule	No	HYDRAULICSTRUCTURE::All	HYDRAULICSTRUCTURE::All
Must not intersect	The rule is a line-no intersection rule	No	HYDROGRAPHICFEATURE::All	HYDROGRAPHICFEATURE::All
Must not intersect	The rule is a line-no intersection rule	No	COASTALSHORELINE::All	COASTALSHORELINE::All
Must not intersect	The rule is a line-no intersection rule	No	PONDS_AND_LAKES::All	PONDS_AND_LAKES::All
Must not intersect	The rule is a line-no intersection rule	No	ISLAND::All	ISLAND::All
Must not overlap	The rule is a line-no overlap line rule	No	HYDROGRAPHICFEATURE::All	COASTALSHORELINE::All
Must not self- intersect	The rule is a line-no self intersect rule	No	HYDRAULICSTRUCTURE::All	HYDRAULICSTRUCTURE::All
Must not self- intersect	The rule is a line-no self intersect rule	No	HYDROGRAPHICFEATURE::All	HYDROGRAPHICFEATURE::All
Must not self- intersect	The rule is a line-no self intersect rule	No	COASTALSHORELINE::All	COASTALSHORELINE::All

Name	Rule Type	Trigger Event	Orgin (FeatureClass::Subtype)	Destination (FeatureClass::Subtype)
Must not self- intersect	The rule is a line-no self intersect rule	No	PONDS_AND_LAKES::All	PONDS_AND_LAKES::All
Must not self- intersect	The rule is a line-no self intersect rule	No	ISLAND::All	ISLAND::All

Attachment 4 - Topographic Data Quality Review and Reporting Process

To complement the topographic data specifications in this procedure memorandum, this attachment describes data quality review processes and reporting obligations to be performed on new topographic data procured by FEMA as part of a flood hazard study or Risk MAP project. The mapping partner responsible for producing the elevation data is responsible for the quality of the product. In addition, FEMA may assign another mapping partner to perform Independent QA/QC of Topographic Data

Existing topographic data leveraged by FEMA should be certified to meet or tested for the vertical accuracy requirements specified in this procedure memo. In addition, the quality reviews described here are best practices that may be applied to existing topographic data. However, some of the documentation needed to perform some of these reviews may not be readily available for existing data.

4.1 Quality Reviews and Reporting Performed by Data Provider

The mapping partner responsible for producing new elevation data must submit copies of QA reports as specified in USGS Lidar Guidelines and Base Specification version 13. Unless the responsibility for checkpoint surveys and vertical accuracy testing is specifically assigned to a different mapping partner performing Independent $\mathrm{QA} / \mathrm{QC}$, the mapping partner responsible for producing the elevation data must test the unclassified point cloud data for Fundamental Vertical Accuracy (FVA) and, when lidar post-processing is performed must also test the bare earth product for Supplemental Vertical Accuracy (SVA) and Consolidated Vertical Accuracy (CVA).

4.1.1 Ground Survey of Quality Review Checkpoints

Quality review checkpoint surveys shall be performed in accordance with procedures in Section A.6.4, Checkpoint Surveys and A.6.5 Survey Records, in Appendix A of FEMA's Guidelines.

Checkpoints surveyed for accuracy reporting shall not be used by the data provider in the calibration or adjustment of the topographic data.

4.1.2 Assessment of Initial Vertical Accuracy

Assessment of the fully calibrated, raw point cloud initial vertical accuracy is required to ensure data has successfully completed preliminary processing. The absolute and relative accuracy of the data, relative to known control, shall be verified prior to classification and subsequent product development, by calculating FVA, measured in open, non-vegetated terrain. The spatial distribution of checkpoints for FVA testing should be based on the entire project collection area, distributed to avoid clustering, and support vertical accuracy reporting that is representative of the whole project.

If the project area exceeds 2,000 square miles it must be divided into smaller blocks of 2,000 square miles or less and tested as individual areas. In addition, the division of large project areas should apply the following rules if applicable:

- Divide areas by vendor used
- Divide areas by sensor type (manufacturer)
- Divide areas by flight dates if significant temporal difference is present
- Other logical project divisions based factors that might have a systematic relationships to data quality.

Reporting of positional accuracy shall be in accordance with ASPRS/NDEP standards as well as the USGS Lidar Guidelines and Base Specification, v13, Section II. 13 and shall use the following statement:

Tested \qquad (meters) fundamental vertical accuracy at 95% confidence level

Reporting on the assessment of the point cloud initial vertical accuracy shall include the following at a minimum:

- A description of the process used to test the points
- A graphic depicting the spatial distribution of the ground survey checkpoints
- Descriptive statistics and RMSEz in FVA calculations

4.1.3 Assessment of Bare Earth Vertical Accuracy

When bare earth post-processing is included in the project, assessment of the vertical accuracy for the delivered bare earth elevation product is required to ensure data has successfully completed post processing. Reporting of positional accuracy shall be in accordance with ASPRS/NDEP standards for FVA and CVA. Testing should be performed on the bare earth deliverable as specified in the mapping activity statement, along with the following guidance:

- If an assessment of initial vertical accuracy (FVA) was conducted prior to the processing of the data (section 4.1.2), the FVA checkpoints can again be used in the CVA computations if located within the area to be processed
- The SVA for up to three significant land cover categories, in terms of percentage of the project area covered, shall be tested in addition to the open/bare ground areas already tested for FVA Land cover categories making up 10% or more of the project area should be included in the SVA testing
- For smaller projects less than 1,000 square miles, fewer check points for SVA testing is acceptable. The number of checkpoints shall be reduced to control the QA cost to about 10% of the acquisition and processing cost. The checkpoints should be distributed evenly across the SVA land cover types.
- Processing areas greater than 2,000 square miles must be divided into smaller blocks of 2,000 square miles or less and tested as individual areas. In addition, the division of large processing areas should apply the following rules if applicable:
o Divide areas by vendor used
o Divide areas by sensor type (manufacturer)
o Divide areas by flight dates if significant temporal difference is present
o Other logical project divisions based on factors that might have a systematic relationships to data quality.
- Each block of 2,000 square miles or less shall be tested for FVA, SVA, and CVA

Checkpoints used for testing SVA of the bare earth elevation product must be located in the areas where bare earth post-processing was performed, distributed to avoid clustering, and support vertical accuracy reporting that is representative of the post processed areas. The SVA results will then be combined with the FVA results to compute CVA for the entire project area.

Reporting on the assessment of the vertical accuracy of the post-processed, delivered elevation data shall include the following at a minimum:

- A description of the process used to test the points

- A graphic depicting the spatial distribution of the ground survey checkpoints
- An analysis of checkpoints that have errors exceeding the $95^{\text {th }}$ percentile in SVA and CVA calculations
- Descriptive statistics and RMSEz in FVA calculations

4.1.4 Aerial Data Acquisition and Calibration

The mapping partner responsible for producing new elevation data must also submit a pre-flight Operations Plan and a post-flight Aerial Acquisition and Calibration Report will be provided to FEMA and/or their representatives by the data acquisition provider and uploaded to the MIP by the data provider. This information will aid future quality review efforts. The required reporting includes the following, outlined in Tables 4.1 and 4.2.

Table 4.1. Pre-flight Operations Plan

Item	Contents	Format	
	\bullet	Planned flight lines	
	\bullet	Planned GPS stations	
Flight Operations	\bullet	Planned control	
Plan	\bullet	Planned airport locations	Calibration plans
	\bullet	Quality procedures for flight crew (project-related for pilot and	
	operator)	MS Word or	
	\bullet	Planned scanset (sensor settings and altitude)	PDF
	\bullet	Type of aircraft	
	\bullet	Procedure for tracking, executing, and checking reflights	
	\bullet	Considerations for terrain, cover, and weather in project	

Table 4.2. Post-flight Aerial Acquisition and Calibration Report

Item	Contents	Format
GPS Base station info	- Base station name - Latitude/Longitude (ddd-mm-ss.sss) - Base height (Ellipsoidal meters) - Maximum Position Dilution of Precision PDOP - Map of locations	Excel, TXT, MS Word, or PDF for data; ESRI shape file for map of locations (data and info may be in attribute table)
GPS/IMU processing summary	- Max Horizontal GPS Variance (cm) - Max Vertical GPS Variance (cm) - Notes on GPS quality (High, Good, etc.) - GPS separation plot - GPS altitude plot - PDOP plot - Plot of GPS distance from base station/s	MS Word or PDF with screenshots
Coverage	- Verification of project coverage	ESRI shape files reflecting the actual coverage area and not the applicable tiles.
Flights	- As-flown trajectories - Calibration lines	ESRI shape files
Flight logs	- Incorporated as appendix Should include: - Job \# / name - Lift \# - Block or AOI designator - Date - Aircraft tail number, type - Flight line, line \#, direction, start/stop, altitude, scan angle/rate, speed, conditions, comments - Pilot name - Operator name - AGC switch setting - Laser pulse rate - Mirror rate - Field of view - Airport of operations - GPS base station names or numbers Comments	
Control	- Ground control and base station layouts	ESRI shape files
Data verification/QC	- Description of data verification/QC process - Results of verification and QC steps	MS Word, Excel or PDF

4.2 Quality Reviews and Reporting Performed by Independent QA/QC

When a mapping partner is assigned to perform Independent QA of Topographic Data macro and micro reviews of the submitted reports and data shall be performed. Macro reviews are automated processes or are checks required to establish overall data quality and shall be
applied to the entire project area. Micro reviews are typically manual in nature and shall be used to check no less than 3 project tiles or 5% of the total number of project tiles, whichever is the greater amount.

Tables 4.3 and 4.4 outline macro and micro reviews to be conducted on the raw point cloud and for data that is post-processed. Some reviews are duplicated between the raw point cloud and post-processing phases due to the potential for errors to be introduced into the data during post-processing.

Table 4.3. Review of fully calibrated raw point cloud

Macro Reviews	
Product	Reviewed for
Pre-flight Operations Plan	- Compliance with section 4.1.4 and checklists in 4.2.1 - Compliance with the specifications outlined in the Mapping Activity Statement
Post-flight Aerial Acquisition and Calibration Report	- Compliance with section 4.1.4 and checklists in 4.2.1 - Compliance with the specifications outlined in the Mapping Activity Statement
LAS Point Cloud Files	- Project area coverage - buffered by a minimum of 100 meters - Data voids - Inclusion of GPS time stamp - Correct projection, datum and units - Multiple Discrete Returns (at least 3 returns per pulse) - Correct header information - Other LAS attributes required by Mapping Activity Statement such as intensity values - Correct nominal pulse spacing as required by specific risk and/or level of study and buy-up options.
Metadata	- Compliance with the FEMA Terrain Metadata Profile
Micro Reviews	
Product	Reviewed for
LAS Point Cloud Files	- Excessive noise - Elevation steps - Other anomalies present in the point cloud

Table 4.4. Review of post-processed data

Macro Reviews	
Product	Reviewed for
LAS Point Cloud Files	- Compliance with checklists in section 4.2.1 - Project area coverage - buffered by a minimum of 100 meters - Data voids - Inclusion of GPS time stamp - Correct projection, datum and units - Multiple Discrete Returns (at least 3 returns per pulse) - Correct header information - Other LAS attributes required by Mapping Activity Statement such as intensity values - Correct nominal pulse spacing as required by specific risk and/or level of study and buy-up options. - Easting, northing and elevation reported to nearest 0.01 m or 0.01 ft - Correct file-naming convention
Metadata	- Compliance with the FEMA Terrain Metadata Profile
Micro Reviews	
Product	Reviewed for
LAS Point Cloud Files	- Excessive noise - Elevation steps - Other anomalies present in the point cloud - Correct classification and cleanliness: no more than 2% of the project area classified to bare ground shall contain artifacts such as buildings, trees, overpasses or other above-ground features in the ground point classification (Class 2). In addition, no more than 2% of the project area shall contain incorrect classifications of points. (USGS Lidar Guidelines and Base Specification, v13, Section IV.14.
Optional - Breaklines	- Correct topology - Horizontal placement - Completeness - Continuity See Attachment 3 for breakline topology rules to be checked against

If the mapping partner responsible Independent QA of Topographic Data is tasked to perform assessment of vertical accuracy of the elevation data as described above in sections 4.1.2 and 4.1.3:

- Assessment of FVA only for pre-processed data to be stored and FVA, SVA, and CVA for post-processed data
- Review of data provider vertical accuracy assessment reports

4.2.1 Recommended Checklists

The following checklists are recommended for use during Independent QA/QC review to facilitate the process.

Pre-flight review checklist

Checklist	Pass / Fail	Comments
Planned lines - sufficient coverage, spacing, and length		
Planned GPS stations		
Planned ground control - sufficient to control and boresight		
Calibration plans		
Vendor quality procedures		
Lidar sensor scan set - planned for proper scan angle, sidelap, design pulse.		
Aircraft utilizes ABGPS		
Sensor supports project design pulse density		
Type of aircraft - supports project design parameters		
Reflight procedure - tracking, documenting, processing		
Project design supports accuracy requirements of project		
Project design accounts for land cover and terrain types		

Post-flight review checklists

Checklist for QA of Flight Logs		
Checklist	Included Yes/No	
Flight logs - job \#/name		
Flight logs - block or AOI		
Flight logs - date		
Flight logs - aircraft tail \#		
Flight logs - lines - \#		
Flight logs - lines - direction		
Flight logs - lines - start/stop		
Flight logs - lines - altitude		
Flight logs - lines - scan angle		
Flight logs - lines - speed		
Flight logs - conditions		
Flight logs - comments		
Flight logs - pilot name		
Flight logs - operator name		
Flight logs - AGC switch		
Flight logs - GPS base stations		

Checklist for Aerial Acquisition Report							
Checklist	Included? Yes/No	Comments	$	$	GPS base station - names		
:---	:---	:---					
GPS base station - lat/longs							
GPS base station - heights							
GPS base station - map							
GPS quality - separation plot							
GPS quality - PDOP plot							
GPS quality - horizontal Acc.							
GPS quality - vertical Acc.							
Sensor calibration process							
Verification of AOI coverage							
As-flown trajectories							
Ground control layout							
Data verification process documented							

Final terrain product review checklists

Checklist for QA of Terrain Products	Pass/Fail	Comments
Checklist		
Vertical datum correct		
Horizontal datum correct		
Projection correct		
Vertical units correct		
Horizontal units correct		
Each return contains - GPS week, GPS second, easting, northing, elevation, intensity, return \# and classification		
No duplicate entries		
GPS second reported to nearest microsecond		
Easting, northing, and elevation reported to nearest 0.01 m or 0.01 ft		
Classifications correct - 1. Unclassified; 2. Bare-earth ground; 7. Noise; 9. Water; 10. lgnored ground; 11. Withheld		
Cloud file structure conforms to project tile layout		
Naming conforms project requirements		
Deliverable tiles checked for significant gaps not covered by aerial acquisition checks and/or caused by data post-processing/filtering		

Appendix M

M. 4 Terrain Submittal Standards

M.4.1 Overview

This section describes the format and type of terrain data required to be submitted to FEMA for the Flood Insurance Study (FIS). All data must be submitted in digital format. The mapping partner performing "Develop Topographic Data" is required to submit the data in this section.

The mapping partner should refer to Appendix A of these Guidelines and the USGS LiDAR Guidelines and Base Specification, v13 for guidance on terrain data production. This section is not intended to detail the specifications and procedures for coastal hydrographic surveys. The reader is referred to the following additional sources for details on coastal surveys:

- National Oceanic and Atmospheric Administration (NOAA) NOS Hydrographic Survey Specifications and Deliverables (April 2007);
- NOAA Office of Coast Survey Hydrographic Surveys Division Field Procedures Manual (March 2007); and
- U.S. Army Corps of Engineers (USACE) National Coastal Mapping Program Joint LiDAR Bathymetry Technical Center for Expertise.
- Appendix D of the Guidelines and Specifications for Flood Hazard Mapping Partners (February 2007).

The terrain data records and validation status within the CNMS database must be updated, as applicable, based on the information and data collected and revised as part of this section. The data model provided in the CNMS Database User's Guide must be used to enter the data and update CNMS.

The submitting mapping partner must retain copies of all project-related data for a period of three years. The submitting mapping partner will need these data for responding to the following:

- Questions from FEMA or the receiving mapping partner during the review of the final draft materials;
- Comments and appeals submitted to FEMA during the 90-day appeal period following the issuance of preliminary maps; and
- Other concerns and issues that may develop during the processing of the new or revised FIS report and FIRM.

M.4.2 Requirements

M.4.2.1 Data Files

The minimum data required for the terrain data submission are the source terrain and the processed terrain data used in the flood risk project. These data can be contained in a single file or in tiled files. When tiled files are submitted, they must be accompanied by a tiling index file. If any processing has been performed, the original and final files must be submitted as well. For instance, if terrain data were blended from three different sources to create the final terrain data, the original of the three sources and the final terrain file that results from the blending process must be submitted. This information is required

Appendix M

to be a georeferenced, digital submittal. The following information must be submitted when it is used to perform a flood risk project:

- Light Detection and Ranging(LiDAR) data;
- For projects that acquire new LiDAR data:
- Metadata (must comply with the requirements in the USGS LiDAR Guidelines and Base Specification, v13). The QA/QC report provided must include the vertical accuracy calculations as a Microsoft Excel spreadsheet. In addition, the finished elevation product for hydraulic modeling should be documented by a FGDCcompliant metadata file that complies with the FEMA Elevation Metadata Profile. Project documentation must also include a Pre-flight Operations Plan and Post-flight Aerial Survey and Calibration Report.
- Raw point cloud data must comply with the requirements in the USGS LiDAR Guidelines and Base Specification, v13
- Classified point cloud data must comply with requirements in the USGS LiDAR Guidelines and Base Specification, v13
- Optional breaklines, when produced, must be delivered in compliance with FEMA requirements
- Optional digital bare earth elevation data product(s) (e.g., DEM, DTM, contours) in file formats specified in the Statement of Work
- For existing LiDAR data not processed as part of the project, the bare earth data must be submitted, and the submittal of the all returns data (if available) is optional.
- Photogrammetric data;
- Metadata
- Collection Report detailing mission planning and flight logs, flying heights, camera parameters, forward overlap and sidelap
- Survey Report detailing the collection of control and reference points used for calibration and QA/QC
- Aerial triangulation (AT) report detailing compliance with relevant accuracy statistics.
- Processing Report detailing photogrammetric processed used to manually compile elevation data or to semi-automatically compile elevation data with automated image correlation or other techniques
- QA/QC reports
- Geo-referenced extents of each delivered dataset
- Digital bare earth elevation data product (DEM, DTM, mass points, breaklines, contours) specified in the Statement of Work
- Optional breaklines, when produced, must be delivered in compliance with FEMA requirements
- Tiling index for data files;
- Contours;
- Bathymetry;

Appendix M

- Digital Elevation Models (DEMs);
- Triangulated Irregular Networks (TINs);
- Hydro-corrected DEMs;
- USGS topographic data;
- All other terrain data; and
- A project narrative describing the SOW, direction from FEMA, issues, information for next mapping partner, etc..

A spatial file is required for use whenever terrain data is submitted in a tiled format. A Tile Index spatial file must accompany each different set of tiled data. While all tiled terrain data may reference the same Tile Index, it is possible that each set of tiled data references a unique Tile Index based on different origins and cell sizes. (For example, natural DEMs, Hydro corrected DEMs, contours and flow vectors could each be based on a different Tile Index.) Tiles must have only one part, and cannot self-intersect (must be simple). Adjacent tiles should not overlap or have gaps between them.

M.4.2.2 General Correspondence

[March 2009]
A file that compiles general correspondence must be submitted by the mapping partner assigned to "Develop Topographic Data." General correspondence is the written correspondence generated or received by the mapping partner to fulfill the requirements of developing topographic data. It includes any documentation generated during this task, such as letters, transmittals, memoranda, general status reports and queries, SPRs, technical issues that need to be documented, and direction given by FEMA. Contractual documents, such as a signed SOW or MAS, are not to be submitted as a part of this appendix.

M.4.2 3 Certification of Work

[March 2009]
FEMA-funded (including CTP-funded projects if they are a part of FEMA's flood mapping program) terrain data development must be certified using the Certification of Compliance Form provided in Figure M.10-1 in Section M.10. Submittal of this certification at the "Develop Topographic Data" workflow step is required if this is the only task performed by the mapping partner. Mapping partners that are contracted to perform multiple mapping tasks can submit one certification form to certify all the work performed. A PDF file of this form with the original signature, date, and seal affixed to the form must be submitted digitally in the general directory identified in Section M.4.2.8. This form must be signed by a registered or certified professional from the firm contracted to perform the work, or by the responsible official of a government agency. A digital version of this form is available at www.fema.gov.

M.4.2.4 Acceptable File Formats

[July 2011]
Terrain data used to perform the flood risk project must be submitted in a georeferenced, digital format as listed below. These data can be contained in a single file or in a tiled set of files. Any tiled data must have an accompanying index spatial file. Note that the FEMA and USGS LiDAR specifications include some specific file format requirements.

- Contours, Masspoints, and breaklines - Personal/file Geodatabase, DXF, or shapefile (2D or 3D)
- DEMs - Esri grid, GeoTIFF, or ASCII grid
- LiDAR - LAS file, ASCII x, y, z file (comma or space delimited)
- Terrain and/or TIN-Esri ArcGIS

Appendix M

- MS Word - project narrative
- PDF - correspondence and certification

PDF files must be created using the source file (e.g., MS Word file), if the source file is created by the mapping partner, rather than raster scans of hard copy text documents. Created PDF files must allow text to be copied and pasted to another document. In addition, Esri shapefiles and Geodatabases must be projected.

M.4.2.5 Metadata

[July 2011]
A metadata file in XML format that complies with the NFIP Terrain Metadata Profiles must be included with the submittal. The profiles follow the FGDC Content Standard for metadata and define additional domains and business rules for some elements that are mandatory for FEMA, based on the specific submittal type. For each spatial data source in the metadata file, the mapping partner must assign a Source Citation Abbreviation. FEMA NFIP Metadata Profiles can be accessed on the MIP, in the "Guides \& Documentation" tab, under "MIP User Care".

If metadata is available from an agency or organization that provided data for use in the flood risk project, it should be included in the metadata submittal in addition to the NFIP Terrain Metadata Profiles. Reference the data providers' original metadata record in the Lineage section of the NFIP metadata profile. If there is a web-accessible metadata record for the original data set, the URL to the metadata may be provided in the optional Source Citation - Online Linkage element. Otherwise, the Source Contribution [free text] element may include information on how to access the metadata record for the data sets obtained.

Metadata should also comply with the requirements in the USGS LiDAR Guidelines and Base Specification, v13. In addition, the finished elevation product for hydraulic modeling should be documented by a FGDC-compliant metadata file that complies with the FEMA Elevation Metadata Profile. Project documentation must also include a pre-flight Operations Plan and a post-flight Aerial Acquisition and Calibration Report per FEMA requirements.

M.4.2.6 Transfer Media

[March 2009]
Mapping partners must submit files via the internet by uploading to the MIP
(http://www.hazards.fema.gov) or by mailing the files to FEMA on one or more of the following electronic media:

- CD-ROM;
- DVD; or
- External Hard Drive (for very large data submissions, with a return label for shipment back to the mapping partner).

In special situations, or as technology changes, other media may be acceptable if coordinated with FEMA.
When data are mailed to FEMA, all submitted digital media must be labeled with at least the following information:

- Mapping partner's name;

Appendix M

- Community name and State for which the FIS was prepared;
- Terrain Data;
- Date of submission (formatted $\mathrm{mm} / \mathrm{dd} / \mathrm{yyyy}$); and
- Disk [sequential number] of [number of disks]. The media must be numbered sequentially, starting at Disk 1. [Number of disks] represents the total number of disks in the submission.

M.4.2.7 Transfer Methodology

[July 2011]
Terrain artifacts can be uploaded to the MIP by following the guidelines for Data Upload located on the MIP (https://hazards.fema.gov).

M.4.2.8 Directory Structure and Folder Naming Conventions

[July 2011]
The files presented in Section M.4.2 - Requirements must be submitted to the MIP or mailed to FEMA within the following directory structure. For FEMA-funded LiDAR acquisition projects, LiDAR data must be submitted in its entirety to the MIP even if the collection footprint extends beyond the current Risk MAP project area. If Lidar data is obtained for a project from a third party (e.g., existing LiDAR data from a County), only LiDAR data used for that project must be submitted to the MIP. Third party LiDAR data outside the project area must not be submitted. The following folders can be created either on a local work space (e.g., a personal computer) or within the work space for the community on the MIP. If the following folders are generated locally, these newly created folders and their contents must be uploaded to the MIP. Terrain files are arranged into appropriate directories based on data type. Only directories appropriate to the project are required.

- \General
- Project narrative
- Certification
- Flight plans and logs
- Mapping partner and Independent QA/QC reports
- Metadata File
- \Correspondence
- Letters; transmittals; memoranda; general status reports and queries; SPRs; technical issues; direction by FEMA; and internal communications, routing slips, and notes.
- \Terrain\SourcelRaw Point Cloud Data
- LiDAR data - Raw Point Cloud Data
- LiDAR Tile Index spatial file (if used)
- \Terrain\SourcelClassified Point Cloud Data
- LiDAR data - Classified Point Cloud Data
- LiDAR Tile Index spatial file (if used)
- \Terrain\Source\Breaklines
- 3D breakline spatial files
- 3D breakline Tile Index spatial file (if used)
- 2D breakline spatial files
- 2D breakline Tile Index spatial file (if used)
- Mass Points
- \Terrain\Source\Bare Earth DEM
- Bare earth DEM files
- Tile Index spatial file (if used)
- \backslash Terrain\SourcelContours
- Contour spatial files
- Contour Tile Index spatial file (if used)
- Bathymetric files
- Bathymetric Tile Index spatial file (if used)
- \Terrain\SourcelTIN
- Uncorrected TIN files
- Terrain (Esri ArcGIS format)
- Tile index spatial file (if used)
- \Terrain\Source\HDEM
- Hydrologically corrected DEM files
- Terrain (Esri ArcGIS format)
- Tile Index spatial file (if used)
- \Terrain\Final\Classified Point Cloud Data
- LiDAR data - Classified Point Cloud Data
- LiDAR Tile Index spatial file (if used)
- \Terrain\Final\Breaklines
- 3D breakline spatial files
- 3D breakline Tile Index spatial file (if used)
- 2D breakline spatial files
- 2D breakline Tile Index spatial file (if used)
- Mass Points
- \Terrain\Final\Bare Earth DEM
- Bare earth DEM files
- Tile Index spatial file (if used)
- \Terrain\Final\Contours
- Contour spatial files
- Contour Tile Index spatial file (if used)
- Bathymetric files
- Bathymetric Tile Index spatial file (if used)
- \Terrain\Final\TIN
- Uncorrected TIN files
- Terrain (Esri ArcGIS format)
- Tile index spatial file (if used)
- \Terrain\Final\HDEM
- Hydrologically corrected DEM files
- Terrain (Esri ArcGIS format)
- Tile Index spatial file (if used)
- \Terrain\Supplemental Data
- As-built drawings
- GIS representation of structures

U.S. Geological Survey National Geospatial Program Lidar Guidelines and Base Specification

Version 13 - ILMF 2010

The U.S. Geological Survey National Geospatial Program (NGP) has cooperated in the collection of numerous lidar datasets across the nation for a wide array of applications. These collections have used a variety of specifications and required a diverse set of products, resulting in many incompatible datasets and making cross-project analysis extremely difficult. The need for a single base specification, defining minimum collection parameters and a consistent set of deliverables, is apparent.

Beginning in late 2009, an increase in the rate of lidar data collection due to American Reinvestment and Recovery Act (ARRA) funding for The National Map makes it imperative that a single data specification be implemented to ensure consistency and improve data utility. Although the development of this specification was prompted by the ARRA stimulus funding, the specification is intended to remain durable beyond ARRA funded NGP projects.

The primary intent of this specification is to create consistency across all NGP funded lidar collections, in particular those undertaken in support of the National Elevation Dataset (NED). Unlike most other "lidar specs" which focus on the derived bare-earth DEM product, this specification places unprecedented emphasis on the handling of the source lidar point cloud data. This is to assure that the complete source dataset collected remains intact and viable to support the wide variety of non-DEM science and mapping applications that benefit from lidar technology. In the absence of other comprehensive specifications or standards, it is hoped that this specification will, to the highest degree practical, be adopted by other USGS programs and disciplines, and by other Federal agencies.

Adherence to these minimum specifications ensures that bare-earth Digital Elevation Models (DEMs) derived from lidar data is suitable for ingestion into the NED (National Elevation Dataset) at the $1 / 9$ arc-second resolution, and can be resampled for use in the $1 / 3$ and 1 arc-second NED resolutions. It also ensures that the point cloud source data are handled in a consistent manner by all data providers and delivered to the USGS in clearly defined formats. This allows straight-forward ingest into CLICK (Center for Lidar Information, Coordination, and Knowledge) and simplifies subsequent use of the source data by the broader scientific community, particularly with regard to cross-collection analysis.

It must be stressed that this is a base specification, defining minimum parameters. It is expected that local conditions in any given project area, specialized applications for the data, or the preferences of cooperators, may mandate more stringent requirements. The

USGS encourages the collection of more detailed, accurate, or value-added data. A list of common upgrades to the minimum requirements defined here is provided in Appendix 1.

In addition, it is recognized that the USGS NGP also employs lidar technology for specialized scientific research and other projects whose requirements are incompatible with the provisions of this Specification. In such cases, and with properly documented justification supporting the need for the variance, waivers of any part or all of this Specification may be granted.

It is conceivable that in some cases, based on specific topography, land cover, intended application, or other factors, the USGS-NGP may require specifications more rigorous than those defined in this document. It is expected that this would be highly uncommon.

Lidar is still a relatively new technology; adolescent but not fully matured.. Advancements and improvements in instrumentation, software, processes, applications, and understanding are constantly being made. It would not be possible to develop a set of guidelines and specifications that address all of these advances. The current document is based on our understanding of and experience with the industry and technology at the present time. Furthermore, we acknowledge that there is a lack of commonly accepted "best practices" for numerous processes and technical assessments (i.e., measurement of NPS, point clustering, classification accuracy, etc.). The USGS encourages the development of such best practices through the appropriate industry and professional governance organizations, and we eagerly await the opportunity to include them in future revisions to this and other similar documents.

It is not the intention of the USGS to stifle the development of the lidar industry, nor to discourage innovation within the technology. Technical alternatives to any part of this document may be submitted with any proposal and will be given due professional consideration.

I. COLLECTION

1. Multiple Discrete Return, capable of at least 3 returns per pulse

Note: Full waveform collection is both acceptable and welcomed; however, waveform data is regarded as supplemental information. The requirement for deriving and delivering multiple discrete returns remains in force in all cases.
2. Intensity values for each return.
3. Nominal Pulse Spacing (NPS) of 1-2 meters, dependent on the local terrain and landcover conditions. Assessment to be made against single swath, first return data located within the geometrically usable center portion (typically ~90\%) of each swath. Average along-track and cross-track point spacings should be comparable.
4. Collections designed to achieve the NPS through swath overlap or multiple passes are generally discouraged. Such collections may be permitted with prior approval.
5. Data Voids [areas $=>\left(4^{*} \mathrm{NPS}\right)^{2}$, measured using $1^{\text {st }}$-returns only] within a single swath are not acceptable, except:

- where caused by water bodies
- where caused by areas of low near infra-red (NIR) reflectivity such as asphalt or composition roofing.
- where appropriately filled-in by another swath

6. The spatial distribution of geometrically usable points is expected to be uniform and free from clustering. In order to ensure uniform densities throughout the data set:

- A regular grid, with cell size equal to the design NPS*2 will be laid over the data.
- At least 90% of the cells in the grid shall contain at least 1 lidar point.
- Assessment to be made against single swath, first return data located within the geometrically usable center portion (typically $\sim 90 \%$) of each swath.
- Acceptable data voids identified previously in this specification are excluded.

Note: This requirement may be relaxed in areas of significant relief where it is impractical to maintain a consistent NPS.
7. Scan Angle: Total FOV should not exceed $40^{\circ}\left(+/-20^{\circ}\right.$ from nadir) USGS quality assurance on collections performed using scan angles wider than 34° will be particularly rigorous in the edge-of-swath areas. Horizontal and vertical accuracy shall remain within the requirements as specified below.
Note: This requirement is primarily applicable to oscillating mirror lidar systems. Other instrument technologies may be exempt from this requirement.
8. Vertical Accuracy of the lidar data will be assessed and reported in accordance with the guidelines developed by the NDEP and subsequently adopted by the ASPRS. The complete guidelines may be found in Section 1.5 of the Guidelines document. See:

```
http://www.ndep.gov/NDEP_Elevation_Guidelines_Ver1_10May2004.pdf
```

Vertical accuracy requirements using the NDEP/ASPRS methodology are:
FVA $<=24.5 \mathrm{~cm}$ ACCz, 95% (12.5 cm RMSEz)
CVA $<=36.3 \mathrm{~cm}$, 95th Percentile
SVA $<=36.3 \mathrm{~cm}$, 95th Percentile

- Accuracy for the lidar point cloud data is to be reported independently from accuracies of derivative products (i.e., DEMs). Point cloud data accuracy is to be tested against a TIN constructed from bare-earth lidar points.
- Each landcover type representing 10% or more of the total project area must be tested and reported as an SVA.
- For SVAs, the value is provided as a target. It is understood that in areas of dense vegetation, swamps, or extremely difficult terrain, this value may be exceeded. Overall CVA requirements must be met in spite of "busts" in individual SVAs.
Note: These requirements may be relaxed in cases:
- where there exists a demonstrable and substantial increase in cost to obtain this accuracy.
- where an alternate specification is needed to conform to previously contracted phases of a single larger overall collection effort, i.e., multi-year statewide collections, etc.
- where the USGS agrees that it is reasonable and in the best interest of all stakeholders to use an alternate specification.

9. Relative accuracy <=7cm RMSE ${ }_{Z}$ within individual swaths; <=10cm RMSEz within swath overlap (between adjacent swaths).
10. Flightline overlap 10% or greater, as required to ensure there are no data gaps between the usable portions of the swaths. Collections in high relief terrain are expected to require greater overlap. Any data with gaps between the geometrically usable portions of the swaths will be rejected.
11. Collection Area: Defined Project Area, buffered by a minimum of 100 meters.
12. Collection Conditions:

- Atmospheric: Cloud and fog-free between the aircraft and ground
- Ground:
o Snow free. Very light, undrifted snow may be acceptable in special cases, with prior approval.
o No unusual flooding or inundation, except in cases where the goal of the collection is to map the inundation.
- Vegetation: Leaf-off is preferred, however:

0 As numerous factors will affect vegetative condition at the time of any collection, the USGS NGP only requires that penetration to the ground must be adequate to produce an accurate and reliable bare-earth surface suitable for incorporation into the 1/9 (3-meter) NED.
o Collections for specific scientific research projects may be exempted from this requirement, with prior approval.

II. DATA PROCESSING and HANDLING

1. All processing should be carried out with the understanding that all point deliverables are required to be in fully compliant LAS format, v1.2 or v1.3. Data producers are encouraged to review the LAS specification in detail.
2. If full waveform data is collected, delivery of the waveform packets is required. LAS v1.3 deliverables with waveform data are to use external "auxiliary" files with the extension ".wdp" for the storage of waveform packet data. See the LAS v1.3 Specification for additional information.
3. GPS times are to be recorded as Adjusted GPS Time, at a precision sufficient to allow unique timestamps for each pulse. Adjusted GPS Time is defined to be Standard (or satellite) GPS time minus $1 * 10^{9}$. See the LAS Specification for more detail.
4. Horizontal datum shall be referenced to the North American Datum of 1983/HARN adjustment. Vertical datum shall be referenced to the North American Vertical Datum of 1988 (NAVD 88). The most recent NGS-approved Geoid model shall be used to perform conversions from ellipsoidal heights to orthometric heights.
5. The USGS preferred Coordinate Reference System for the Conterminous United States (CONUS) is: UTM, NAD83, Meters. Each discrete project is to be processed using the predominant UTM zone for the overall collection area.
State Plane Coordinate Reference Systems that have been accepted by the European Petroleum Survey Group (EPSG) and that are recognized by ESRI GIS software may be used by prior agreement with the USGS.

Alternative projected coordinate systems for collections in Alaska, Hawaii, and other areas Outside the Conterminous United States (OCONUS) must be approved by the USGS prior to collection.
6. All references to the Unit of Measure "Feet" or "Foot" must specify either "International" or "U.S. Survey"
7. Long swaths (those which result in a LAS file larger than 2GB) should be split into segments no greater than 2GB each. Each segment will thenceforth be
regarded as a unique swath and shall be assigned a unique File Source ID. Other swath segmentation approaches may be acceptable, with prior approval. Renaming schemes for split swaths are at the discretion of the data producer. The Processing Report shall include detailed information on swath segmentation sufficient to allow reconstruction of the original swaths if needed.
8. Each swath shall be assigned a unique File Source ID. The Point Source ID field for each point within each LAS swath file shall be set equal to the File Source ID prior to any processing of the data. See the LAS Specification.
9. Point Families (multiple return "children" of a single "parent" pulse) shall be maintained intact through all processing prior to tiling. Multiple returns from a given pulse shall be stored in sequential (collected) order.
10. All collected swaths are to be delivered as part of the "Raw Data Deliverable". This includes calibration swaths and cross-ties. All collected points are to be delivered. No points are to be deleted from the swath LAS files. This in no way requires or implies that calibration swath data are to be included in product generation. Excepted from this are extraneous data outside of the buffered project area (aircraft turns, transit between the collection area and airport, transit between fill-in areas, etc.). These points may be permanently removed.
11. Outliers, blunders, noise points, geometrically unreliable points near the extreme edge of the swath, and other points deemed unusable are to be identified using the "Withheld" flag, as defined in the LAS specification.

- This applies primarily to points which are identified during pre-processing or through automated post-processing routines.
- If processing software is not capable of populating the "Withheld" bit, these points may be identified using Class=11.
- "Noise points" subsequently identified during manual Classification and Quality Assurance/Quality Control (QA/QC) may be assigned the standard LAS classification value for "Noise" (Class=7), regardless of whether the noise is "low" or "high" relative to the ground surface.

12. The ASPRS/LAS "Overlap" classification (Class=12) shall not be used. ALL points not identified as "Withheld" are to be classified.

- If overlap points are required to be differentiated by the data producer or cooperating partner, they must be identified using a method that does not interfere with their classification, such as:
o Overlap points are tagged using Bit:0 of the User Data byte, as defined in the LAS specification. (SET=Overlap).
o Overlap points are classified using the Standard Class values +16 .
o Other techniques as agreed upon in advance
- The technique utilized must be clearly described in the project metadata files.

Note: A standard bit setting for identification of overlap points has been planned for a future version of LAS.
13. Positional Accuracy Validation: The absolute and relative accuracy of the data, both horizontal and vertical, and relative to known control, shall be verified prior to classification and subsequent product development. This validation is obviously limited to the Fundamental Vertical Accuracy, measured in clear, open areas. A detailed report of this validation is a required deliverable.
14. Classification Accuracy: It is expected that due diligence in the classification process will produce data that meets the following test:

Within any $1 \mathrm{~km} \times 1 \mathrm{~km}$ area, no more than 2% of non-withheld points will possess a demonstrably erroneous classification value.

This includes points in Classes 0 and 1 that should correctly be included in a different Class as required by the contract.

Note: This requirement may be relaxed to accommodate collections in areas where the USGS agrees classification to be particularly difficult.
15. Classification Consistency: Point classification is to be consistent across the entire project. Noticeable variations in the character, texture, or quality of the classification between tiles, swaths, lifts, or other non-natural divisions will be cause for rejection of the entire deliverable.
16. Tiles:

Note: This section assumes a projected coordinate reference system.

- A single non-overlapped tiling scheme will be established and agreed upon by the data producer and the USGS prior to collection. This scheme will be used for all tiled deliverables.
- Tile size must be an integer multiple of the cell size of raster deliverables.
- Tiles must be sized using the same units as the coordinate system of the data.
- Tiled deliverables shall conform to the tiling scheme, without added overlap.
- Tiled deliverables shall edge-match seamlessly and without gaps in both the horizontal and vertical.

III. HYDRO-FLATTENING REQUIREMENTS

Note: Please refer to Appendix 2 for reference information on hydro-flattening.
Hydro-flattening pertains only to the creation of derived DEMs. No manipulation of or changes to originally computed lidar point elevations are to be made. Breaklines may be used to help classify the point data.

1. Inland Ponds and Lakes:

- ~ 2-acre or greater surface area (~ 350, diameter for a round pond) at the time of collection.
- Flat and level water bodies (single elevation for every bank vertex defining a given water body).
- The entire water surface edge must be at or below the immediately surrounding terrain.
- Long impoundments such as reservoirs, inlets, and fjords, whose water surface elevations drop when moving downstream, should be treated as rivers.

2. Inland Streams and Rivers:

- 100 nominal width: This should not unnecessarily break a stream or river into multiple segments. At times it may squeeze slightly below 100' for short segments. Data producers should use their best professional judgment.
- Flat and level bank-to-bank (perpendicular to the apparent flow centerline); gradient to follow the immediately surrounding terrain.
- The entire water surface edge must be at or below the immediately surrounding terrain.
- Streams channels should break at road crossings (culvert locations). These road fills should not be removed from DEM. However, streams and rivers should not break at elevated bridges. Bridges should be removed from DEM. When the identification of a feature as a bridge or culvert cannot be made reliably, the feature should be regarded as a culvert.

3. Non-Tidal Boundary Waters:

- Represented only as an edge or edges within the project area; collection does not include the opposing shore.
- The entire water surface edge must be at or below the immediately surrounding terrain.
- The elevation along the edge or edges should behave consistently throughout the project. May be a single elevation (i.e., lake) or gradient (i.e., river), as appropriate.

4. Tidal Waters:

- Water bodies such as oceans, seas, gulfs, bays, inlets, salt marshes, very large lakes, etc. Includes any water body that is affected by tidal variations.
- Tidal variations over the course of a collection or between different collections, will result in discontinuities along shorelines. This is considered normal and these "anomalies" should be retained. The final DEM should represent as much ground as the collected data permits.
- Variations in water surface elevation resulting in tidal variations during a collection should NOT be removed or adjusted, as this would require either the removal of valid, measured ground points or the introduction of unmeasured ground into the DEM. The USGS NGP priority is on the ground surface, and accepts there may be occasional, unavoidable irregularities in water surface.
- Scientific research projects in coastal areas often have very specific requirements with regard to how tidal land-water boundaries are to be handled. For such projects, the requirements of the research will take precedence.

Cooperating partners may require collection and integration of single-line streams within their lidar projects. While the USGS does not require these breaklines be collected or integrated, it does require that if used and incorporated into the DEMs, the following guidelines are met:

1. All vertices along single-line stream breaklines are at or below the immediately surrounding terrain.
2. Single-line stream breaklines are not to be used to introduce cuts into the DEM at road crossings (culverts), dams, or other such features. This is hydroenforcement and as discussed in Section VI, creates a non-traditional DEM that is not suitable for integration into the NED.
3. All breaklines used to modify the surface are to be delivered to the USGS with the DEMs.

The USGS does not require any particular process or methodology be used for breakline collection, extraction, or integration. However, the following general guidelines must be adhered to:

1. Bare-earth lidar points that are in close proximity breaklines should be excluded from the DEM generation process. This is analogous to the removal of masspoints for the same reason in a traditional photogrammetrically compiled DTM.

The proximity threshold for reclassification as "Ignored Ground" is at the discretion of the data producer, but in general should be approximately equal to the NPS.
2. These points are to be retained in the delivered lidar point dataset and shall be reclassified as "Ignored Ground" (class value $=10$) so that they may be subsequently identified.
3. Delivered data must be sufficient for the USGS to effectively recreate the delivered DEMs using the lidar points and breaklines without significant further editing.

IV. DELIVERABLES

The USGS shall have unrestricted rights to all delivered data and reports, which will be placed in the public domain. This specification places no restrictions on the data provider's rights to resell data or derivative products as they see fit.

1. Metadata

Note: "Metadata" refers to all descriptive information about the project. This includes textual reports, graphics, supporting shapefiles, and FGDC-compliant metadata files.

- Collection Report detailing mission planning and flight logs.
- Survey Report detailing the collection of control and reference points used for calibration and QA/QC.
- Processing Report detailing calibration, classification, and product generation procedures including methodology used for breakline collection and hydroflattening (see Sections III and Appendix 1 for more information on hydroflattening).
- QA/QC Reports (detailing the analysis, accuracy assessment and validation of:
o The point data (absolute, within swath, and between swath)
o The bare-earth surface (absolute)
o Other optional deliverables as appropriate
- Control and Calibration points: All control and reference points used to calibrate, control, process, and validate the lidar point data or any derivative products are to be delivered.
- Geo-referenced, digital spatial representation of the precise extents of each delivered dataset. This should reflect the extents of the actual lidar source or derived product data, exclusive of Triangular Irregular Network (TIN) artifacts or raster NODATA areas. A union of tile boundaries or minimum bounding rectangle is not acceptable. ESRI Polygon shapefile or geodatabase is preferred.
- Product metadata (FGDC compliant, XML format metadata). One file for each:
o Project
o Lift
o Tiled deliverable product group (classified point data, bare-earth DEMs, breaklines, etc.). Metadata files for individual tiles are not required.
- FGDC compliant metadata must pass the USGS metadata parser ("mp") with no errors or warnings.

2. Raw Point Cloud

- All returns, all collected points, fully calibrated and adjusted to ground, by swath.
- Fully compliant LAS v1.2 or v1.3, Point Record Format 1, 3, 4, or 5
- LAS v1.3 deliverables with waveform data are to use external "auxiliary" files with the extension ".wdp" for the storage of waveform packet data. See the LAS v1.3 Specification for additional information.
- Georeference information included in all LAS file headers
- GPS times are to be recorded as Adjusted GPS Time, at a precision sufficient to allow unique timestamps for each pulse.
- Intensity values (native radiometric resolution)
- 1 file per swath, 1 swath per file, file size not to exceed 2GB, as described in Section II, Paragraph 7.

3. Classified Point Cloud

Note: Delivery of a classified point cloud is a standard requirement for USGS NGP lidar projects. Specific scientific research projects may be exempted from this requirement.

- Fully compliant LAS v1.2 or v1.3, Point Record Format 1,3, 4, or 5
- LAS v1.3 deliverables with waveform data are to use external "auxiliary" files with the extension ".wdp" for the storage of waveform packet data. See the LAS v1.3 Specification for additional information.
- Georeference information included in LAS header
- GPS times are to be recorded as Adjusted GPS Time, at a precision sufficient to allow unique timestamps for each pulse.
- Intensity values (native radiometric resolution)
- Tiled delivery, without overlap (tiling scheme TBD)
- Classification Scheme (minimum):

Code	Description
1	Processed, but unclassified
2	Bare-earth ground
7	Noise (low or high, manually identified, if needed)
9	Water
10	Ignored Ground (Breakline Proximity)
11	Withheld (if the "Withheld" bit is not implemented in processing software)

Note: Class 7, Noise, is included as an adjunct to the "Withheld" bit. All "noise points" are to be identified using one of these to methods.

Note: Class 10, Ignored Ground, is for points previously classified as bareearth but whose proximity to a subsequently added breakline requires that it be excluded during Digital Elevation Model (DEM) generation.

4. Bare Earth Surface (Raster DEM)

Note: Delivery of a bare-earth DEM is a standard requirement for USGS NGP lidar projects. Specific scientific research projects may be exempted from this requirement.

- Cell Size no greater than 3 meters or 10 feet, and no less than the design Nominal Pulse Spacing (NPS).
- Delivery in an industry-standard, GIS-compatible, 32-bit floating point raster format (ERDAS .IMG preferred)
- Georeference information shall be included in each raster file
- Tiled delivery, without overlap
- DEM tiles will show no edge artifacts or mismatch. A quilted appearance in the overall project DEM surface, whether caused by differences in processing quality or character between tiles, swaths, lifts, or other non-natural divisions, will be cause for rejection of the entire DEM deliverable.
- Void areas (i.e., areas outside the project boundary but within the tiling scheme) shall be coded using a unique "NODATA" value. This value shall be identified in the appropriate location within the file header.
- Vertical Accuracy of the bare earth surface will be assessed and reported in accordance with the guidelines developed by the NDEP and subsequently adopted by the ASPRS. The complete guidelines may be found in Section 1.5 of the Guidelines document. See:

```
http://www.ndep.gov/NDEP_Elevation_Guidelines_Ver1_10May2004.pdf
```

Vertical accuracy requirements using the NDEP/ASPRS methodology are:
FVA $<=24.5 \mathrm{~cm} \mathrm{ACCz}, 95 \% \quad(12.5 \mathrm{~cm}$ RMSEz)
CVA $<=36.3 \mathrm{~cm}$, 95th Percentile
SVA $<=36.3 \mathrm{~cm}$, 95th Percentile
All QA/QC analysis materials and results are to be delivered to the USGS.

- Depressions (sinks), natural or man-made, are not to be filled (as in hydroconditioning and hydro-enforcement).
- Water Bodies (ponds and lakes), wide streams and rivers ("double-line"), and other non-tidal water bodies as defined in Section III are to be hydro-flattened within the DEM. Hydro-flattening shall be applied to all water impoundments, natural or man-made, that are larger than ~ 2 acre in area (equivalent to a round pond ~ 350 ' in diameter), to all streams that are nominally wider than 100', and to all non-tidal boundary waters bordering the project area regardless of size. The methodology used for hydro-flattening is at the discretion of the data producer.
Note: Please refer to the Sections III and VI for detailed discussions of hydroflattening.

5. Breaklines

Note: Delivery of the breaklines used in hydro-flattening is a standard requirement for USGS NGP lidar projects. Specific scientific research projects may be exempted from this requirement. If hydro-flattening is achieved through other means, this section may not apply.

- All breaklines developed for use in hydro-flattening shall be delivered as an ESRI feature class (PolylineZ or PolygonZ format, as appropriate to the type of feature represented and the methodology used by the data producer). Shapefile or geodatabase is preferred.
- Each feature class or shapefile will include properly formatted and accurate georeference information in the standard location. All shapefiles must include the companion .prj file.
- Breaklines must use the same coordinate reference system (horizontal and vertical) and units as the lidar point delivery.
- Breakline delivery may be as a continuous layer or in tiles, at the discretion of the data producer. Tiled deliveries must edge-match seamlessly in both the horizontal and vertical.

APPENDIX 1

COMMON DATA UPGRADES

1. Independent $3{ }^{\text {rd }}$-Party $\mathrm{QA} / \mathrm{QC}$ by another AE Contractor (encouraged)
2. Higher Nominal Pulse Spacing (point density)
3. Increased Vertical Accuracy
4. Full Waveform collection and delivery
5. Additional Environmental Constraints

- Tidal coordination, flood stages, crop/plant growth cycles, etc.
- Shorelines corrected for tidal variations within a collection

6. Top-of Canopy (First-Return) Raster Surface (tiled). Raster representing the highest return within each cell is preferred.
7. Intensity Images (8-bit gray scale, tiled)
8. Detailed Classification (additional classes):

Code	Description
3	Low vegetation
4	Medium vegetation (use for single vegetation class)
5	High vegetation
6	Buildings, bridges, other man-made structures
n	additional Class(es) as agreed upon in advance

9. Hydro-Enforced and/or Hydro-Conditioned DEMs
10. Breaklines (PolylineZ and PolygonZ) for single-line hydrographic features (narrow streams not collected as double-line, culverts, etc.), including appropriate integration into delivered DEMs
11. Breaklines (PolylineZ and PolygonZ) for other features (TBD), including appropriate integration into delivered DEMs
12. Extracted Buildings (PolygonZ): Footprints with maximum elevation and/or height above ground as an attribute.
13. Other products as defined by requirements and agreed upon in advance of funding commitment.

APPENDIX 2

HYDRO-FLATTENING REFERENCE

The subject of modifications to lidar-based DEMs is somewhat new, and although authoritative references are available, there remains significant variation in the understanding of the topic across the industry. The following material was developed to provide a definitive reference on the subject only as it relates to the creation of DEMs intended to be integrated into the USGS NED. The information presented here is not meant to supplant other reference materials and it should not be considered authoritative beyond its intended scope.

The term "hydro-flattening" is also new, coined for this document and to convey our specific needs. It is not, at this time, a known or accepted term across the industry. It is our hope that its use and acceptance will expand beyond the USGS with the assistance of other industry leaders.

Hydro-flattening of DEMs is predominantly accomplished through the use of breaklines, and this method is considered standard. Although other techniques may exist to achieve similar results, this section assumes the use of breaklines. The USGS does not require the use of any specific technique.

The Digital Elevation Model Technologies and Applications: The DEM Users Manual, $2^{\text {nd }}$ Edition (Maune et al., 2007) provides the following definitions related to the adjustment of DEM surfaces for hydrologic analyses:

1. Hydrologically-Conditioned (Hydro-Conditioned) - Processing of a DEM or TIN so that the flow of water is continuous across the entire terrain surface, including the removal of all spurious sinks or pits. The only sinks that are retained are the real ones on the landscape. Whereas "hydrologically-enforced" is relevant to drainage features that are generally mapped, "hydrologically-conditioned" is relevant to the entire land surface and is done so that water flow is continuous across the surface, whether that flow is in a stream channel or not. The purpose for continuous flow is so that relationships/links among basins/catchments can be known for large areas. This term is specifically used when describing EDNA (see Chapter 4), the dataset of NED derivatives made specifically for hydrologic modeling purposes.
2. Hydrologically-Enforced (Hydro-Enforced) - Processing of mapped water bodies so that lakes and reservoirs are level and so that streams flow downhill. For example, a DEM, TIN or topographic contour dataset with elevations removed from the tops of selected drainage structures (bridges and culverts) so as to depict the terrain under those structures. Hydro-enforcement enables hydrologic and hydraulic models to depict water flowing under these structures, rather than appearing in the computer model to be dammed by them because of road deck elevations higher than the water levels. Hydro-enforced TINs also utilize breaklines along shorelines and stream centerlines, for example, where these breaklines form the edges of TIN triangles along the alignment of drainage features. Shore breaklines for streams would be 3-D breaklines
with elevations that decrease as the stream flows downstream; however, shore breaklines for lakes or reservoirs would have the same elevation for the entire shoreline if the water surface is known or assumed to be level throughout. See figures 1.21 through 1.24. See also the definition for "hydrologically-conditioned" which has a slightly different meaning.

While these are important and useful modifications, they both result in surfaces that differ significantly from a traditional DEM. A "hydro-conditioned" surface has had its sinks filled and may have had its water bodies flattened. This is necessary for correct flow modeling within and across large drainage basins. "Hydro-enforcement" extends this conditioning by requiring water bodies be leveled and streams flattened with the appropriate downhill gradient, and also by cutting through road crossings over streams (culvert locations) to allow a continuous flow path for water within the drainage. Both treatments result in a surface on which water behaves as it physically does in the real world, and both are invaluable for specific types of hydraulic and hydrologic (H\&H) modeling activities. Neither of these treatments is typical of a traditional DEM surface.

A traditional DEM such as the NED, on the other hand, attempts to represent the ground surface more the way a bird, or person in an airplane, sees it. On this surface, natural depressions exist, and road fills create apparent sinks because the road fill and surface is depicted without regard to the culvert beneath. Bridges, it should be noted, are removed in most all types of DEMs because they are man-made, above-ground structures that have been added to the landscape.

Note: DEMs developed solely for orthophoto production may include bridges, as their presence can prevent the "smearing" of structures and reduce the amount of post-production correction of the final orthophoto. These are "special use DEMs" and are not relevant to this discussion.

For years, raster Digital Elevation Models (DEMs), have been created from a Digital Surface Model (DSM) of masspoints and breaklines, which in turn were created through photogrammetric compilation from stereo imagery. Photogrammetric DSMs inherently contain breaklines defining the edges of water bodies, coastlines, singleline streams, and double-line streams and rivers, as well as numerous other surface features.

Lidar technology, however, does not inherently collect the breaklines necessary to produce traditional DEMs. Breaklines have to be developed separately through a variety of techniques, and either used with the lidar points in the generation of the DEM, or applied as a correction to DEMs generated without breaklines.

In order to maintain the consistent character of the NED as a traditional DEM, the USGS NGP requires that all DEMs delivered have their inland water bodies flattened. This does not imply that a complete network of topologically correct hydrologic breaklines be developed for every dataset; only those breaklines necessary to ensure that the conditions defined in Section III exist in the final DEM.

APPENDIX 3
 SAMPLE METADATA TEMPLATE

[to be added]

APPENDIX 4

REFERENCES

Maune, D.F., 2007. Definitions, in Digital Elevation Model Technologies and Applications: The DEM Users Manual, $2^{\text {nd }}$ Edition (D.F. Maune, editor), American Society for Photogrammetry and Remote Sensing, Bethesda, MD pp. 550-551

National Digital Elevation Program, 2004. Guidelines for Digital Elevation DataVersion 1, 93 p., available online at:
http://www.ndep.gov/NDEP_Elevation_Guidelines_Ver1_10May2004.pdf (last date accessed: 29 September 2009)

FEMA, 2003. Guidelines and Specifications for Flood Hazard Mapping Partners, Appendix A: Guidance for Aerial Mapping and Surveying, 59 p., available online at: http://www.fema.gov/library/viewRecord.do?id=2206
(last date accessed 29 September 2009)

USGS NED Website: www.ned.usgs.gov
USGS CLICK Website: www. lidar.cr.usgs.gov
MP-Metadata Parser: http://geology.usgs.gov/tools/metadata

LAS SPECIFICATION

VERSION 1.3 - R10

Approved: JULY 14, 2009

Published by:
The American Society for Photogrammetry \& Remote Sensing
5410 Grosvenor Lane, Suite 210
Bethesda, Maryland 20814-2160
Voice: 301-493-0290
Fax: 301-493-0208
Web: www.asprs.org

Copyright © 2009 American Society for Photogrammetry and Remote Sensing (ASPRS). All rights reserved. Permission to Use: The copyright owner hereby consents to unlimited use and distribution of this document, or parts thereof, as a specification provided such use references ASPRS as the publisher. This consent does not extend to other uses such as general distribution in any form, including electronic, by any individual or organization whether for advertising or promotional purposes, for creating new collective works, or for resale. For these and all other purposes, reproduction of this publication or any part thereof (excluding short quotations for use in the preparation of reviews and technical and scientific papers) may be made only after obtaining the specific approval of the publisher.

LAS FORMAT VERSION 1.3:

1 Purpose, scope, and applicability

The LAS file is intended to contain LIDAR point data records. The data will generally be put into this format from software (e.g. provided by LIDAR hardware vendors) which combines GPS, IMU, and laser pulse range data to produce X, Y, and Z point data. The intention of the data format is to provide an open format that allows different LIDAR hardware and software tools to output data in a common format.

This document reflects the third revision of the LAS format specification since its initial version 1.0 release.

THE ADDITIONS OF LAS 1.3 INCLUDE:

- Ability to store return pulse waveform data in the LAS file (and, optionally, in an external file) using new point record types 4 and 5
- Storage of parameters necessary to geospatially traverse waveforms
- Additional Global Encoding flag to indicate that the returns in the file are synthetically generated.

GOALS OF WAVEFORM DATA STORAGE:

- Waveform data are included in the same file as the LIDAR point data
- A return may or may not have an associated waveform packet
- Multiple returns from a single LIDAR pulse may point to the same waveform packet
- $\quad 2$ through 32 bit waveform amplitude records are supported
- Multiple waveform digitizer configurations are accommodated (number of samples, sample spacing, bits per sample, etc.)
- Compression of waveform data is supported (although particular compression schemes are not provided in this version of the specification)

WAVFORM DATA STORAGE IMPLEMENTATION:

- Sections of the waveform in the vicinity of declared returns are stored (Waveform Data Packets, WDP)
- The raw waveform data packets are stored in one large, contiguous extended variable length record (EVLR) or, optionally, in an external auxiliary file
- The descriptions of the digitizer configurations are stored in one of up to 255 variable length records called Waveform Packet Descriptors (WPD)
- Each point record has new metadata that serves as an index into an associated WDP
- Each point record has additional information associated with it that indicates which WPD describes this point's waveform packet

COMPATIBILITY WITH LAS 1.2:

One unavoidable change has been made to the Public Header Block; Start of Waveform Data Packet Record. This long, long has been added to the end of the block and thus little or no change will be needed in LAS 1.2 readers that do not need waveform data.

There are no changes to Point Data Record types 0 through 3. The waveform encoded data types have been added as Point Data Record types 4 and 5.

2 Conformance

The data types used in the LAS format definition are conformant to the 1999 ANSI C Language Specification (ANSI/ISO/IEC 9899:1999 ("C99").

3 Authority

The American Society for Photogrammetry \& Remote Sensing (ASPRS) is the owner of the LAS Specification. The standard is maintained by committees within the organization as directed by the ASPRS Board of Directors. Questions related to this standard can be directed to ASPRS at 301-493-0290, by email at asprs@asprs.org, or by mail at 5410 Grosvenor Lane, Suite 210, Bethesda, Maryland 20814-2160.

4 Requirements

LAS FORMAT DEFINITION:

The format contains binary data consisting of a header block, Variable Length Records, and point data.

Table 4.1 - LAS Format Definition

PUBLIC HEADER BLOCK
VARIABLE LENGTH RECORDS
POINT DATA RECORDS

A LAS file that contains waveform data (point record types 4 or 5) would be
Table 4.2 - LAS Format Definition Containing Waveform Data

PUBLIC HEADER BLOCK
VARIABLE LENGTH RECORDS INCLUDING
WAVEFORM PACKET DESCRIPTORS (up to 255)
POINT DATA RECORDS
EXTENDED VARIABLE LENGTH RECORD
(WAVEFORM DATA PACKETS)

All data is in little-endian format. The header block consists of a public block followed by Variable Length Records. The public block contains generic data such as point numbers and coordinate bounds. The Variable Length Records contain variable types of data including projection information, metadata, waveform packet information and user application data. Waveform Data Packets, if included, comprise the only record that can follow the Point Data Records. It is placed in this position to allow easy "stripping" or externalizing. This record is an Extended Variable Length Record (EVLR). The length of an EVLR is stored in an unsigned long long (8 byte field) allowing more storage area than a VLR.

DATA TYPES:

The following data types are used in the LAS format definition. Note that these data types are conformant to the 1999 ANSI C Language Specification (ANSI/ISO/IEC 9899:1999 ("C99").

- char (1 byte)
- unsigned char (1 byte)
- short (2 bytes)
- unsigned short (2 bytes)
- long (4 bytes)
- unsigned long (4 bytes)
- long long (8 bytes)
- unsigned long long (8 bytes)
- double (8 byte IEEE floating point format)

PUBLIC HEADER BLOCK:

Table 4.3 - Public Header Block

Item	Format	Size	Required
File Signature ("LASF")	char[4]	4 bytes	*
File Source ID	unsigned short	2 bytes	*
Global Encoding	unsigned short	2 bytes	*
Project ID - GUID data 1	unsigned long	4 bytes	
Project ID - GUID data 2	unsigned short	2 byte	
Project ID - GUID data 3	unsigned short	2 byte	
Project ID - GUID data 4	unsigned char[8]	8 bytes	
Version Major	unsigned char	1 byte	*
Version Minor	unsigned char	1 byte	*
System Identifier	char[32]	32 bytes	*
Generating Software	char[32]	32 bytes	*
File Creation Day of Year	unsigned short	2 bytes	*
File Creation Year	unsigned short	2 bytes	*
Header Size	unsigned short	2 bytes	*
Offset to point data	unsigned long	4 bytes	*
Number of Variable Length Records	unsigned long	4 bytes	*
Point Data Format ID (0-99 for spec)	unsigned char	1 byte	*
Point Data Record Length	unsigned short	2 bytes	*
Number of point records	unsigned long	4 bytes	*
Number of points by return	unsigned long[7]	28 bytes	*
X scale factor	Double	8 bytes	*
Y scale factor	Double	8 bytes	*
Z scale factor	Double	8 bytes	*
X offset	Double	8 bytes	*
Y offset	Double	8 bytes	*
Z offset	Double	8 bytes	*
Max X	Double	8 bytes	*
Min X	Double	8 bytes	*
Max Y	Double	8 bytes	*
Min Y	Double	8 bytes	*
Max Z	Double	8 bytes	*
Min Z	Double	8 bytes	*
Start of Waveform Data Packet Record	Unsigned long long	8 bytes	*

Any field in the Public Header Block that is not required and is not used must be zero filled.
File Signature: The file signature must contain the four characters "LASF", and it is required by the LAS specification. These four characters can be checked by user software as a quick look initial determination of file type.

File Source ID (Flight Line Number if this file was derived from an original flight line): This field should be set to a value between 1 and 65,535 , inclusive. A value of zero (0) is interpreted to mean that an ID has not been assigned. In this case, processing software is free to assign any valid number. Note that this scheme allows a LIDAR project to contain up to 65,535 unique sources. A source can be considered an original flight line or it can be the result of merge and/or extract operations.

Global Encoding: This is a bit field used to indicate certain global properties about the file. In LAS 1.2 (the version in which this field was introduced), only the low bit is defined (this is the bit, that if set, would have the unsigned integer yield a value of 1). This bit field is defined as:

Table 4.4-Global Encoding - Bit Field Encoding

Bits	Field Name	Description
0	GPS Time Type	The meaning of GPS Time in the Point Records 0 (not set) -> GPS time in the point record fields is GPS Week Time (the same as previous versions of LAS) 1 (set) -> GPS Time is standard GPS Time (satellite GPS Time) minus 1×10^{9} (Adjusted Standard GPS Time). The offset moves the time back to near zero to improve floating point resolution.
1	Waveform Data Packets Internal	If this bit is set, the waveform data packets are located within this file (note that this bit is mutually exclusive with bit 2)
2	Waveform Data Packets External	If this bit is set, the waveform data packets are located external to this file in an auxiliary file with the same base name as this file and the extension ".wdp". (note that this bit is mutually exclusive with bit 1)
3	Return numbers have been synthetically generated	If set, the point return numbers in the Point Data Records have been synthetically generated. This could be the case, for example, when a composite file is created by combining a First Return File and a Last Return File. In this case, first return data will be labeled "1 of 2 " and second return data will be labeled " 2 of 2"
4:15	Reserved	Must be set to zero

Project ID (GUID data): The four fields that comprise a complete Globally Unique Identifier (GUID) are now reserved for use as a Project Identifier (Project ID). The field remains optional. The time of assignment of the Project ID is at the discretion of processing software. The Project ID should be the same for all files that are associated with a unique project. By assigning a Project ID and using a File Source ID (defined above) every file within a project and every point within a file can be uniquely identified, globally.

Version Number: The version number consists of a major and minor field. The major and minor fields combine to form the number that indicates the format number of the current specification itself. For example, specification number 1.2 would contain 1 in the major field and 2 in the minor field.

System Identifier: The version 1.0 specification assumes that LAS files are exclusively generated as a result of collection by a hardware sensor. Subsequent versions recognize that files often result from extraction, merging or modifying existing data files. Thus System ID becomes:

Table 4.5 - System Identifier

Generating Agent	System ID
Hardware system	String identifying hardware (e.g. "ALTM
	$1210 "$ or "ALS50"
Merge of one or more files	"MERGE"
Modification of a single file	"MODIFICATION"

Generating Agent	System ID
Extraction from one or more files	"EXTRACTION"
Reprojection, rescaling, warping, etc.	"TRANSFORMATION"
Some other operation	"OTHER" or a string up to 32 characters identifying the operation

Generating Software: This information is ASCII data describing the generating software itself. This field provides a mechanism for specifying which generating software package and version was used during LAS file creation (e.g. "TerraScan V-10.8", "REALM V-4.2" and etc.). If the character data is less than 16 characters, the remaining data must be null.

File Creation Day of Year: Day, expressed as an unsigned short, on which this file was created. Day is computed as the Greenwich Mean Time (GMT) day. January 1 is considered day 1.

File Creation Year: The year, expressed as a four digit number, in which the file was created.
Header Size: The size, in bytes, of the Public Header Block itself. In the event that the header is extended by a software application through the addition of data at the end of the header, the Header Size field must be updated with the new header size. Extension of the Public Header Block is discouraged; the Variable Length Records should be used whenever possible to add custom header data. In the event a generating software package adds data to the Public Header Block, this data must be placed at the end of the structure and the Header Size must be updated to reflect the new size.

Offset to point data: The actual number of bytes from the beginning of the file to the first field of the first point record data field. This data offset must be updated if any software adds data from the Public Header Block or adds/removes data to/from the Variable Length Records.

Number of Variable Length Records preceding the Point Data Records: This field contains the current number of Variable Length Records that occur in the file preceding the Point Data Records. This number must be updated if the number of Variable Length Records changes at any time.

Point Data Format ID: The point data format ID corresponds to the point data record format type. LAS 1.3 defines types 0 through 5 .

Point Data Record Length: The size, in bytes, of the Point Data Record.
Number of point records: This field contains the total number of point records within the file.
Number of points by return: This field contains an array of the total point records per return. The first unsigned long value will be the total number of records from the first return, and the second contains the total number for return two, and so forth up to five returns.
X, Y, and Z scale factors: The scale factor fields contain a double floating point value that is used to scale the corresponding X, Y, and Z long values within the point records. The corresponding X, Y, and Z scale factor must be multiplied by the X, Y, or Z point record value to get the actual X, Y , or Z coordinate. For example, if the X, Y, and Z coordinates are intended to have two decimal point values, then each scale factor will contain the number 0.01 .

X, Y, and Z offset: The offset fields should be used to set the overall offset for the point records. In general these numbers will be zero, but for certain cases the resolution of the point data may not be large enough for a given projection system. However, it should always be assumed that these numbers are used. So to scale a given X from the point record, take the point record X multiplied by the X scale factor, and then add the X offset.
$\mathrm{X}_{\text {coordinate }}=\left(\mathrm{X}_{\text {record }} * X_{\text {scale }}\right)+\mathrm{X}_{\text {offset }}$
$Y_{\text {coordinate }}=\left(Y_{\text {record }}{ }^{*} Y_{\text {scale }}\right)+Y_{\text {offset }}$
$Z_{\text {coordinate }}=\left(Z_{\text {record }}{ }^{*} Z_{\text {scale }}\right)+Z_{\text {offset }}$
Max and Min X, Y, Z: The max and min data fields are the actual unscaled extents of the LAS point file data, specified in the coordinate system of the LAS data.

Start of Waveform Data Packet Record: This value provides the offset, in bytes, from the beginning of the LAS file to the first byte of the Waveform Data Package Record. Note that this will be the first byte of the Waveform Data Packet header.

The projection information for the point data is required for all data. The projection information will be placed in the Variable Length Records. Placing the projection information within the Variable Length Records allows for any projection to be defined including custom projections. The GeoTliff specification http://www.remotesensing.org/geotiff/geotiff.html is the model for representing the projection information, and the format is explicitly defined by this specification.

VARIABLE LENGTH RECORDS:

The Public Header Block is followed by one or more Variable Length Records (There is one mandatory Variable Length Record, GeoKeyDirectoryTag). The number of Variable Length Records is specified in the "Number of Variable Length Records" field in the Public Header Block. The Variable Length Records must be accessed sequentially since the size of each variable length record is contained in the Variable Length Record Header. Each Variable Length Record Header is 60 bytes in length.

Table 4.6 - Variable Length Record Header

Item	Format	Size	Required
Reserved	unsigned short	2 bytes	
User ID	char[16]	16 bytes	${ }^{*}$
Record ID	unsigned short	2 bytes	${ }^{*}$
Record Length After Header	Unsigned short	2 bytes	${ }^{*}$
Description	char[32]	32 bytes	

User ID: The User ID field is ASCII character data that identifies the user which created the variable length record. It is possible to have many Variable Length Records from different sources with different User IDs. If the character data is less than 16 characters, the remaining data must be null. The User ID must be registered with the LAS specification managing body. The management of these User IDs ensures that no two individuals accidentally use the same User ID. The specification will initially use two IDs: one for globally specified records (LASF_Spec), and another for projection types (LASF_Projection). Keys may be requested at http://www.asprs.org/lasform/keyform.html.

Record ID: The Record ID is dependent upon the User ID. There can be 0 to 65535 Record IDs for every User ID. The LAS specification manages its own Record IDs (User IDs owned by the specification), otherwise Record IDs will be managed by the owner of the given User ID. Thus each User ID is allowed to assign 0 to 65535 Record IDs in any manner they desire. Publicizing the meaning of a given Record ID is left to the owner of the given User ID. Unknown User ID/Record ID combinations should be ignored.

Record Length after Header: The record length is the number of bytes for the record after the end of the standard part of the header. Thus the entire record length is 54 bytes (the header size in version 1.3) plus the number of bytes in the variable length portion of the record.

Description: Optional, null terminated text description of the data. Any remaining characters not used must be null.

Note that the record with User ID = LASF_Spec and Record ID $=65535$ is the Waveform Packet Data Extended Variable Length Record (EVLR). Unlike all other Variable Length Records, this VLR (if present) is the only VLR that is placed after the Point Data Records. Thus, if present, it will be the last data record in the LAS file.

POINT DATA RECORD

NOTE: Point Data Start Signature was removed in LAS Version 1.1. LAS file I/O software must use the Offset to Point Data field in the Public Header Block to locate the starting position of the first Point Data Record. Note that all Point Data Records must be the same type.

POINT DATA RECORD FORMAT 0 :

Table 4.7 - Point Data Record Format 0

Item	Format	Size	Required
X	long	4 bytes	${ }^{*}$
Y	long	4 bytes	${ }^{*}$
Z	long	4 bytes	${ }^{*}$
Intensity	unsigned short	2 bytes	
Return Number	3 bits (bits 0, 1, 2)	3 bits	${ }^{*}$
Number of Returns (given pulse)	3 bits (bits 3, 4, 5)	3 bits	${ }^{*}$
Scan Direction Flag	1 bit (bit 6)	1 bit	${ }^{*}$
Edge of Flight Line	1 bit (bit 7)	1 bit	${ }^{*}$
Classification	unsigned char	1 byte	${ }^{*}$
Scan Angle Rank (-90 to +90) - Left side	char	1 byte	${ }^{*}$
User Data	unsigned char	1 byte	
Point Source ID	unsigned short	2 bytes	${ }^{*}$

X, Y, and Z : The X, Y, and Z values are stored as long integers. The X, Y, and Z values are used in conjunction with the scale values and the offset values to determine the coordinate for each point as described in the Public Header Block section.

Intensity: The intensity value is the integer representation of the pulse return magnitude. This value is optional and system specific. However, it should always be included if available.

NOTE: The following four fields (Return Number, Number of Returns, Scan Direction Flag and Edge of Flight Line) are bit fields within a single byte.

Return Number: The Return Number is the pulse return number for a given output pulse. A given output laser pulse can have many returns, and they must be marked in sequence of return. The first return will have a Return Number of one, the second a Return Number of two, and so on up to five returns.

Number of Returns (for this emitted pulse): The Number of Returns is the total number of returns for a given pulse. For example, a laser data point may be return two (Return Number) within a total number of five returns.

Scan Direction Flag: The Scan Direction Flag denotes the direction at which the scanner mirror was traveling at the time of the output pulse. A bit value of 1 is a positive scan direction, and a bit value of 0 is a negative scan direction (where positive scan direction is a scan moving from the left side of the in-track direction to the right side and negative the opposite).

Edge of Flight Line: The Edge of Flight Line data bit has a value of 1 only when the point is at the end of a scan. It is the last point on a given scan line before it changes direction.

Classification: This filed represents the "class" attributes of a point. If a point has never been classified, this byte must be set to zero. There are no user defined classes since all point formats 0 supply 8 bits per point for user defined operations.

Note that the format for classification is a bit encoded field with the lower five bits used for class and the three high bits used for flags. The bit definitions are:

Table 4.8 - Classification Bit Field Encoding

Bits	Field Name	Description
$0: 4$	Classification	Standard ASPRS classification as defined in the following classification table.
5	Synthetic	If set then this point was created by a technique other than LIDAR collection such as digitized from a photogrammetric stereo model or by traversing a waveform.
6	Key-point	If set, this point is considered to be a model key- point and thus generally should not be withheld in a thinning algorithm.
7	Withheld	If set, this point should not be included in processing (synonymous with Deleted).

Note that bits 5, 6 and 7 are treated as flags and can be set or clear in any combination. For example, a point with bits 5 and 6 both set to one and the lower five bits set to 2 (see table below) would be a ground point that had been Synthetically collected and marked as a model key-point.

Classification must adhere to the following standard:
Table 4.9 - ASPRS Standard LIDAR Point Classes

Classification Value (bits 0:4)	Meaning
0	Created, never classified
1	Unclassified
2	Ground
3	Low Vegetation
4	Medium Vegetation
5	High Vegetation
6	Building
7	Low Point (noise)
8	Model Key-point (mass point)
9	Water
10	Reserved for ASPRS Definition 11
12	Reserved for ASPRS Definition
$13-31$	Overlap Points ${ }^{2}$
	Reserved for ASPRS Definition

[^0][A note on Bit Fields - The LAS storage format is "Little Endian." This means that multi-byte data fields are stored in memory from least significant byte at the low address to most significant byte at the high address. Bit fields are always interpreted as bit 0 set to 1 equals 1 , bit 1 set to 1 equals 2 , bit 2 set to 1 equals 4 and so forth.]

Scan Angle Rank: The Scan Angle Rank is a signed one-byte number with a valid range from 90 to +90 . The Scan Angle Rank is the angle (rounded to the nearest integer in the absolute value sense) at which the laser point was output from the laser system including the roll of the aircraft. The scan angle is within 1 degree of accuracy from +90 to -90 degrees. The scan angle is an angle based on 0 degrees being nadir, and -90 degrees to the left side of the aircraft in the direction of flight.

User Data: This field may be used at the user's discretion.
Point Source ID: This value indicates the file from which this point originated. Valid values for this field are 1 to 65,535 inclusive with zero being used for a special case discussed below. The numerical value corresponds to the File Source ID from which this point originated. Zero is reserved as a convenience to system implementers. A Point Source ID of zero implies that this point originated in this file. This implies that processing software should set the Point Source ID equal to the File Source ID of the file containing this point at some time during processing.

NOTE: The File Marker field in the LAS 1.0 structure was generally miscoded and/or not implemented by users. The entire concept was removed from LAS 1.1 and this single byte field has been renamed User Data and is available for any use. The extended records associated with this field in the original LAS 1.0 specification are removed. Please note that the field named User Bit Field has been renamed Point Source ID and is no longer available for general use.

POINT DATA RECORD FORMAT 1:

Point Data Record Format 1 is the same as Point Data Record Format 0 with the addition of GPS Time.

Table 4.10 - Point Data Record Format 1

Item	Format	Size	Required
X	long	4 bytes	${ }^{*}$
Y	long	4 bytes	${ }^{*}$
Z	long	4 bytes	${ }^{*}$
Intensity	unsigned short	2 bytes	
Return Number	3 bits (bits 0, 1, 2)	3 bits	${ }^{*}$
Number of Returns (given pulse)	3 bits (bits 3, 4, 5)	3 bits	${ }^{*}$
Scan Direction Flag	1 bit (bit 6)	1 bit	${ }^{*}$
Edge of Flight Line	1 bit (bit 7$)$	1 bit	${ }^{*}$
Classification	unsigned char	1 byte	${ }^{*}$
Scan Angle Rank (-90 to +90) - Left side	char	1 byte	${ }^{*}$
User Data	unsigned char	1 byte	
Point Source ID	unsigned short	2 bytes	${ }^{*}$
GPS Time	Double	8 bytes	${ }^{*}$

GPS Time: The GPS Time is the double floating point time tag value at which the point was acquired. It is GPS Week Time if the Global Encoding low bit is clear and Adjusted Standard GPS Time if the Global Encoding low bit is set (see Global Encoding in the Public Header Block description).

POINT DATA RECORD FORMAT 2:

Point Data Record Format 2 is the same as Point Data Record Format 0 with the addition of three color channels. These fields are used when "colorizing" a LIDAR point using ancillary data, typically from a camera.

Table 4.11 - Point Data Record Format 2

Item	Format	Size	Required
X	long	4 bytes	*
Y	long	4 bytes	*
Z	long	4 bytes	*
Intensity	unsigned short	2 bytes	
Return Number	3 bits (bits 0, 1, 2)	3 bits	*
Number of Returns (given pulse)	3 bits (bits 3, 4, 5)	3 bits	*
Scan Direction Flag	1 bit (bit 6)	1 bit	*
Edge of Flight Line	1 bit (bit 7)	1 bit	*
Classification	unsigned char	1 byte	*
Scan Angle Rank (-90 to +90) - Left side	char	1 byte	*
User Data	unsigned char	1 byte	
Point Source ID	unsigned short	2 bytes	*
Red	unsigned short	2 bytes	*
Green	unsigned short	2 bytes	*
Blue	unsigned short	2 bytes	*

Red: The Red image channel value associated with this point
Green: The Green image channel value associated with this point
Blue: The Blue image channel value associated with this point
NOTE: Red, Green, Blue values should always be normalized to 16 bit values. For example, when encoding an 8 bit per channel pixel, multiply each channel value by 256 prior to storage in these fields. This normalization allows color values from different camera bit depths to be accurately merged.

POINT DATA RECORD FORMAT 3:

Point Data Record Format 3 is the same as Point Data Record Format 2 with the addition of GPS Time.

Table 4.12 - Point Data Record Format 3

Item	Format	Size	Required
X	long	4 bytes	${ }^{*}$
Y	long	4 bytes	${ }^{*}$
Z	long	4 bytes	${ }^{*}$
Intensity	unsigned short	2 bytes	
Return Number	3 bits (bits 0, 1, 2)	3 bits	${ }^{*}$
Number of Returns (given pulse)	3 bits (bits 3, 4, 5)	3 bits	${ }^{*}$
Scan Direction Flag	1 bit (bit 6)	1 bit	${ }^{*}$
Edge of Flight Line	1 bit (bit 7)	1 bit	${ }^{*}$
Classification	unsigned char	1 byte	${ }^{*}$
Scan Angle Rank (-90 to +90) - Left side	char	1 byte	${ }^{*}$
User Data	unsigned char	1 byte	
Point Source ID	unsigned short	2 bytes	*

GPS Time	double	8 bytes	${ }^{*}$
Red	unsigned short	2 bytes	${ }^{*}$
Green	unsigned short	2 bytes	${ }^{*}$
Blue	unsigned short	2 bytes	${ }^{*}$

POINT DATA RECORD FORMAT 4:

Point Data Record Format 4 adds Wave Packets to Point Data Record Format 1.
Table 4.13 - Point Data Record Format 4

Item	Format	Size	Required
X	long	4 bytes	*
Y	long	4 bytes	*
Z	long	4 bytes	*
Intensity	unsigned short	2 bytes	
Return Number	3 bits (bits 0-2)	3 bits	*
Number of Returns (given pulse)	3 bits (bits 3-5)	3 bits	*
Scan Direction Flag	1 bit (bit 6)	1 bit	*
Edge of Flight Line	1 bit (bit 7)	1 bit	*
Classification	unsigned char	1 byte	*
Scan Angle Rank (-90 to +90) - Left side	unsigned char	1 byte	*
User Data	unsigned char	1 byte	
Point Source ID	unsigned short	2 bytes	*
GPS Time	double	8 bytes	*
Wave Packet Descriptor Index	Unsigned char	1 byte	*
Byte offset to waveform data	Unsigned long long	8 bytes	*
Waveform packet size in bytes	Unsigned long	4 bytes	*
Return Point Waveform Location	float	4 bytes	*
X(t)	float	4 bytes	*
$\mathrm{Y}(\mathrm{t})$	float	4 bytes	*
Z(t)	float	4 bytes	*

Point Data Record Format 4 is the same as Point Data Record Format 1 with the addition of the waveform packet information.

Wave Packet Descriptor Index: LAS 1.3 supports up to 255 User Defined Records which describe the waveform packet. This value indicates the User Defined Record that is used to describe the waveform packet associated with this LIDAR point. Note: A value of zero indicates that there is no waveform data associated with this LIDAR point record.

Byte offset to Waveform Packet Data: The waveform packet data are stored in the LAS file in an Extended Variable Length Record (or, optionally, in an auxiliary file). The Byte Offset represents the location of the start of this LIDAR points' waveform packet within the waveform data variable length record (or external file) relative to the beginning of the Waveform Packet Data header.

Note that the absolute location of the beginning of this waveform packet relative to the beginning of the file is given by:

Start of Waveform Data Packet Record + Byte offset to Waveform Packet Data for waveform packets stored within the LAS file and

Byte offset to Waveform Packet Data

for data stored in an auxiliary file
Waveform packet size in bytes: The size, in bytes, of the waveform packet associated with this return. Note that each waveform can be of a different size (even those with the same Waveform Packet Descriptor index) due to packet compression. Also note that waveform packets can be located only via the Byte offset to Waveform Packet Data value since there is no requirement that records be stored sequentially.

Return Point location: The offset in picoseconds $\left(10^{-12}\right)$ from the first digitized value to the location within the waveform packet that the associated return pulse was detected.
$X(t), Y(t), Z(t)$: These parameters define a parametric line equation for extrapolating points along the associated waveform. The position along the wave is given by:

$$
\begin{aligned}
& X=X_{0}+X(t) \\
& Y=Y_{0}+Y(t) \\
& Z=Z_{0}+Z(t)
\end{aligned}
$$

where X, Y and Z are the spatial position of the derived point, X_{0}, Y_{0}, Z_{0} are the position of the "anchor" point (the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ locations from this point's data record) and t is the time, in picoseconds, relative to the anchor point (i.e. $\mathrm{t}=$ zero at the anchor point). The units of X, Y and Z are the units of the coordinate systems of the LAS data. If the coordinate system is geographic, the horizontal units are decimal degrees and the vertical units are meters.

POINT DATA RECORD FORMAT 5:

Point Data Record Format 5 adds Wave Packets to Point Data Record Format 3.
Table 4.14 - Point Data Record Format 5

Item	Format	Size	Required
X	long	4 bytes	${ }^{*}$
Y	long	4 bytes	${ }^{*}$
Z	long	4 bytes	${ }^{*}$
Intensity	unsigned short	2 bytes	${ }^{*}$
Return Number	3 bits (bit 0 - 2)	3 bits	${ }^{*}$
Number of Returns (given pulse)	3 bits (bit 3-5)	3 bits	${ }^{*}$
Scan Direction Flag	1 bit (bit 6)	1 bit	${ }^{*}$
Edge of Flight Line	1 bit (bit 7)	1 bit	${ }^{*}$
Classification	unsigned char	1 byte	${ }^{*}$
Scan Angle Rank (-90 to +90) - Left side	unsigned char	1 byte	${ }^{*}$
User Data	unsigned char	1 byte	${ }^{*}$
Point Source ID	unsigned short	2 bytes	${ }^{*}$
GPS Time	double	2 bytes	
Red	unsigned short	2 bytes	2 bytes
Green	unsigned short		
Blue			

Item	Format	Size	Required
Wave Packet Descriptor Index	Unsigned char	1 byte	${ }^{*}$
Byte offset to waveform data	Unsigned long long	8 bytes	*
Waveform packet size in bytes	Unsigned long	4 bytes	${ }^{*}$
Return Point Waveform Location	float	4 bytes	${ }^{*}$
$X(t)$	float	4 bytes	${ }^{*}$
$Y(t)$	float	4 bytes	${ }^{*}$
$Z(t)$	float	* bytes	

Point Data Record Format 5 is the same as Point Data Record Format 4 with the addition of RGB values.

DEFINED VARIABLE LENGTH RECORDS:

Georeferencing Information

Georeferencing for the LAS format will use the same robust mechanism that was developed for the GeoTIFF standard. The variable length header records section will contain the same data that would be contained in the GeoTIFF key tags of a TIFF file. With this approach, any vendor that has existing code to interpret the coordinate system information from GeoTIFF tags can simply feed the software with the information taken from the LAS file header. Since LAS is not a raster format and each point contains its own absolute location information, only 3 of the 6 GeoTIFF tags are necessary. The ModelTiePointTag (33922), ModelPixelScaleTag (33550), and ModelTransformationTag (34264) records can be excluded. The GeoKeyDirectoryTag (34735), GeoDoubleParamsTag (34736), and GeoASCIIParamsTag (34737) records are used.

Only the GeoKeyDirectoryTag record is required. The GeoDoubleParamsTag and GeoASCIIParamsTag records may or may not be present, depending on the content of the GeoKeyDirectoryTag record.

GeoKeyDirectoryTag Record: (mandatory)
User ID: LASF_Projection
Record ID: 34735
This record contains the key values that define the coordinate system. A complete description can be found in the GeoTIFF format specification. Here is a summary from a programmatic point of view for someone interested in implementation.

The GeoKeyDirectoryTag is defined as just an array of unsigned short values. But, programmatically, the data can be seen as something like this:

```
struct sGeoKeys
{
    unsigned short wKeyDirectoryVersion;
    unsigned short wKeyRevision;
    unsigned short wMinorRevision;
    unsigned short wNumberOfKeys;
    struct sKeyEntry
    {
        unsigned short wKeyID;
```

```
        unsigned short wTIFFTagLocation;
        unsigned short wCount;
        unsigned short wValue_Offset;
    } pKey[1];
};
```

Where:
wKeyDirectoryVersion = 1; // Always
wKeyRevision = 1; // Always
wMinorRevision = 0; // Always
wNumberOfKeys // Number of sets of 4 unsigned shorts to follow
Table 4.15 - GeoKey Four Unsigned Shorts
For each set of 4 unsigned shorts:

Name	Definition
wKeyID	Defined key ID for each piece of GeoTIFF data. IDs contained in the GeoTIFF specification.
wTIFFTagLocation	Indicates where the data for this key is located: 0 means data is in the wValue_Offset field as an unsigned short. 34736 means the data is located at index wValue_Offset of the GeoDoubleParamsTag record. 34737 means the data is located at index wValue_Offset of the GeoAsciiParamsTag record.
wCount	Number of characters in string for values of GeoAsciiParamsTag, otherwise is 1
wValue_Offset	Contents vary depending on value for wTIFFTagLocation above

GeoDoubleParamsTag Record: (optional)
User ID: LASF_Projection
Record ID: 34736
This record is simply an array of doubles that contain values referenced by tag sets in the GeoKeyDirectoryTag record.

GeoAsciiParamsTag Record: (Optional)

User ID: LASF_Projection
Record ID: 34737
This record is simply an array of ASCII data. It contains many strings separated by null terminator characters which are referenced by position from data in the GeoKeyDirectoryTag record.

Classification lookup: (optional)

$\begin{array}{ll}\text { User ID: } & \text { LASF_Spec } \\ \text { Record ID: } & 0\end{array}$
Record Length after Header: 255 recs X 16 byte struct len struct CLASSIFICATION
\{
unsigned char ClassNumber;
char Description[15];
\};

Header lookup for flight-lines:

(Removed with Version 1.1 - Point Source ID in combination with Source ID provides the new scheme for directly encoding flight line number. Thus variable Record ID 1 now becomes reserved for future use.)

```
User ID: LASF_Spec
```

Record ID: 1
Histogram: (optional)
User ID: LASF_Spec
Record ID: 2
Text area description: (optional)
User ID: LASF_Spec
Record ID: 3
Waveform Packet Descriptor: (required when using Point format 4 or 5)
User ID: LASF_Spec
Record ID: n
Where $\mathrm{n}>=100$ and $\mathrm{n}<356$
These records contain information that describes the configuration of the waveform packets. Since systems may be configured differently at different times throughout a job, the LAS file supports 255 Waveform Packet Descriptors.

Table 4.16 - Waveform Packet Descriptor User Defined Record

Item	Format	Size	Required
Bits per sample	Unsigned char	1 byte	${ }^{*}$
Waveform compression type	Unsigned char	1 byte	${ }^{*}$
Number of samples	Unsigned long	4 bytes	${ }^{*}$
Temporal Sample Spacing	Unsigned long	4 bytes	${ }^{*}$
Digitizer Gain	double	8 bits	${ }^{*}$
Digitizer Offset	double	8 bits	

Bits per sample: 2 through 32 bits are supported.
Waveform Compression type: It is expected that in the future standard compression types will be adopted by the LAS committee. This field will indicate the compression algorithm used for the waveform packets associated with this descriptor. A value of 0 indicates no compression. Zero is the only value currently supported.

Number of Samples: The number of samples associated with this waveform packet type. This value always represents the fully decompressed waveform packet.

Temporal Sample Spacing: The temporal sample spacing in picoseconds. Example values might be $500,1000,2000$ and so on, representing digitizer frequencies of $2 \mathrm{GHz}, 1 \mathrm{GHz}$ and 500 MHz respectively.

Digitizer Gain: The gain and offset are used to convert the raw digitized value to an absolute digitizer voltage using the formula: VOLTS = OFFSET + GAIN * Raw_Waveform_Amplitude

Digitizer Offset: The gain and voltage offset are used to convert the raw digitized value to a voltage using the formula: VOLTS = OFFSET + GAIN * Raw_Waveform_Amplitude

EXTENDED VARIABLE LENGTH RECORD (EVLR)

Extended Variable Length Records occur after the Point Data Records. The record header differs from a VLR in that the Record Length After Header field is 8 bytes.

Table 4.17 - Extended Variable Length Record Header

Item	Format	Size	Required
Reserved	unsigned short	2 bytes	
User ID	char[16]	16 bytes	${ }^{*}$
Record ID	unsigned short	2 bytes	${ }^{*}$
Record Length After Header	Unsigned long long	8 bytes	${ }^{*}$
Description	char[32]	32 bytes	

LAS 1.3 allows only a single EVLR; Waveform Data Packets.
Waveform Data Packets: (required when using Point format 4 or 5)

User ID:	LASF_Spec
Record ID:	65,535

The packet of Raw Waveform Amplitude values for all records immediately follow this variable length header.

This is the last Reserved Record for the LASF Specification. This extended variable length record must always be the last record in an LAS file. Unlike all other Variable Length Records, this record and its associated data follow the Point Data Records.

NOTE: When using a bit resolution that is not an even increment of 8, the last byte of each waveform packet must be padded such that the next waveform record will start on an even byte boundary.

Appendix I: Topographic Data Products

TABLE OF CONTENTS

1. Introduction
1.1 Purpose
1.2 Project Synopsis
2. Information for the next Mapping Partner
2.1 LAS processing
2.2 DEM processing
2.3 Contour processing
2.4 Quality Assurance
2.5 Deliverables

1.1 Purpose

Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards describes the digital topographic data that was used to create the elevation data representing the terrain environment of a watershed and/or floodplain. Terrain data requirements allow for flexibility in the types of information provided as sources used to produce final terrain deliverables. Once this type of data is provided, FEMA will be able to account for the origins of the flood study elevation data.

The purpose of these terrain datasets is to represent the topography of a watershed and/or floodplain environment for riverine hydraulic and hydrologic modeling in the Merrimack River Watershed in the states of Massachusetts and New Hampshire. All terrain data collected for hydrologic analysis, hydraulic analysis, floodplain boundary delineation, and/or testing of floodplain boundary standard compliance meets the requirements outlined in FEMA Procedure Memorandum 61 and Appendix A: Guidance for Aerial Mapping and Survey.

1.2 Project Synopsis

Base LiDAR point cloud data provided for this project is compliant with FEMA Guidelines and Specifications Procedure Memorandum 61. LiDAR acquisition and post processing was completed for the Merrimack River Watershed under FEMA Task Order No. HSFE01-11-J-0010 for FEMA case number 12-011080S. The LiDAR acquisition for the Merrimack River Watershed, consisting of 1302 square miles, was captured to the "Highest" vertical accuracy requirement. This collection specification is the equivalent of a 2 -foot contour accuracy with a nominal pulse spacing of 1-meter. Topographic datasets delivered to FEMA under Task Order No. HSFE01-11-J-0010 were used as the basis for topographic data development for the watershed to support riverine $\mathrm{H} \& \mathrm{H}$ analysis and floodplain boundary delineation.

2. Information for the next Mapping Partner

The Merrimack Watershed area of interest consists of Essex, Middlesex and Worcester Counties in Massachusetts and Belknap, Hillsborough, Merrimack, Rockingham and Strafford Counties in New Hampshire. LiDAR collected under FEMA Task Order No. HSFE01-11-J-0010 was collected and processed by STARR. Compass Data, Inc. performed the ground control survey and RMSE vertical quality control. Photo Science, Inc. performed the LiDAR Acquisition and LiDAR post processing. Greenhorne and O'Mara, Inc. performed Independent Quality Assurance of the base LiDAR products and produced the LiDAR derived products. All firms performed duties under task order contract to STARR.

All LiDAR derived products for this project has been collected using the following spatial reference information:

Projection: Universal Transverse Mercator
UTM Zone: 19
Linear units: Meter
Horizontal Datum: North American Datum 1983
Vertical Datum: North American Vertical Datum of 1988
Vertical units: US Survey Foot

2.1 LAS processing

Classified LAS data for the Merrimack Watershed was used as the basis for topographic products. Due to automated processing procedures and quality reviews the LAS was selected as the base LiDAR product. LAS header files were checked to insure data consistency. By spot checking several tiles it was determined that the LAS files had a standard projection, linear units were identical, ASPRS classifications are present, and the elevation minimum and maximum values meet expectations for the project area.

Using the Point File Information tool in ArcGIS 3D Analyst, a LiDAR boundary grid was created that contains the file name, point count, point spacing, elevation minimum, and elevation maximum for each LAS file. This is compared with the header files to insure data reliability between the information in the header files and the actual spatial information. This grid is also used to determine the average point spacing by viewing the statistics of the point spacing field. The mean value is captured and compared with LAS metadata.

Once it is determined that the LAS files are ready to be used in terrain processing they are converted to a multipoint feature class and stored within a file geodatabase featuredataset. The featuredataset has the projection information matching the LiDAR collection. The ArcGIS 3D Analyst tool LAS to multipoint is used to accomplish this task. Once the dataset is created, the LAS tiles are only used as a backup in the event of errors in processing.

2.2 DEM processing

Once all of the LAS files have been converted to a multipoint feature class digital elevation modeling is accomplished. The first step in creating a DEM for the project is to determine the actual LiDAR extent. This area represents the actual area covered by
points and not the LAS boundary. LAS files may not include "full" point coverage. ArcGIS Spatial Analyst is used to accomplish this by converting the multipoint feature class to a raster. From there a series of Spatial Analyst tools are used to create the LiDAR coverage polygon. Once the extent has been created the next process is to create an ESRI terrain dataset.

The terrain is composed of the multipoint feature class as mass points, hydro flattened breaklines as hard lines, and the LiDAR collection extent as a soft clip. After the terrain has been created it is reviewed. This terrain is then converted to a floating point raster with a cell size of 1 meter. The 1 meter DEM is then loaded into ERDAS Imagine 2011 Mosaic Pro toolset. Using the LAS index shapefile, the DEM is split into 1749 individual imagine (*.img) raster files. The raster files are spot checked for consistency and stored as a deliverable to FEMA.

2.3 Contour processing

Once the DEM has been created the next step in the data processing is to generate contours. Two foot contours are created from the DEM and clipped to the USGS Hydrologic Code 12 basin boundaries located within the Merrimack HUC 8 watershed.

2.4 Quality Assurance

All products created under the "develop topographic information" task are carefully reviewed to make sure datasets meet the needs for detailed riverine analysis. Datasets are organized and stored in Appendix M data capture standards formatting for delivery to FEMA.

2.5 Deliverables

Products delivered under this task order include:

- ESRI file geodatabase that contains LAS multipoint, breaklines, LiDAR extent, LAS Index, and ESRI terrains.
- 1,749-1 meter floating point DEMs in ERDAS Imagine format
- 1 and 2 meter DEMs in Geotif format covering entire watershed.
- ESRI file geodatabase that contains 2 ft contours and index
- FEMA FGDC compliant terrain metadata record

Data will be uploaded to the MIP at this location:

[^1]Process Steps:
1-Convert LAS to Multipoint
2-Create Terrain
3-Convert Terrain to 1m Raster
4-Split 1 m Raster into 1749 imagine files
5-Contour
Convert LAS to multipoint:

1. Create file geodatabase and create a feature dataset to store terrain information with appropriate projection and spatial domain.
2. Run LAS to multipoint tool in 3D analyst for the classified LAS files and select class 2 and 8 .
3. Store results in file geodatabase feature dataset for terrain data

Create Terrain

1. Create Terrain using multipoint as masspoints and LiDAR coverage area as soft clip
2. Build Terrain and store in file geodatabase feature dataset for terrain data

Convert Terrain to $10 f t$ Raster

1. Run the Terrain to raster tool in 3D analyst
2. Float output data type, Linear as the method, CELLSIZE 10 as sampling distance, and Pyramid Level Resolution 0
3. Save results as a ESRI GRID dataset.

Create contours

1. Extract by mask from the 1 m DEM using a HUC12 area. Save this raster as HUC12 Name 1m.
2. Focal Statistics using Extracted 1m DEM as input, Intermediate Focal Raster as Output, Neighborhood should be set to weighted kernel, and the statistic should be sum.
3. Create contours using focal stats raster as input, output polyline should be based on HUC12 name, Contour Interval of $2 f t$, Set base contour to DEM minimum z value
4. Check results and store in file geodatabase under the Analysis Contours feature dataset.
5. Focal Statistics using Extracted 1m DEM as input, Intermediate Focal Raster as Output, Neighborhood should be set to circle, and the statistic should be mean.
6. Create contours using focal stats raster as input, output polyline should be based on HUC12 name, Contour Interval of $2 f t$, Set base contour to DEM minimum z value
7. Check results and store in file geodatabase under the Cartographic Contours feature dataset.

[^0]: ${ }^{1}$ We are using both 0 and 1 as Unclassified to maintain compatibility with current popular classification software such as TerraScan. We extend the idea of classification value 1 to include cases in which data have been subjected to a classification algorithm but emerged in an undefined state. For example, data with class 0 is sent through an algorithm to detect man-made structures - points that emerge without having been assigned as belonging to structures could be remapped from class 0 to class 1 .
 ${ }^{2}$ Overlap Points are those points that were immediately culled during the merging of overlapping flight lines. In general, the Withheld bit should be set since these points are not subsequently classified.

[^1]: J:\FEMA\R01\NEW_HAMPSHIRE_33\MERRIMACK_33013\MERRIMACK_ 013C\12-01-1080S\SubmissionUpload\Terrain\2152674

