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Human Cellular Genetics of Innate Immunity

Raghd Rostom

The type I interferon response is a key part of the innate immune system, responding to 

infection and inducing an antiviral intracellular state. While there is known to be variability 

in this signalling pathway between individuals, alongside cell-to-cell heterogeneity in a 

genetically identical cell population, the basis of this variation is not fully understood. 

In this PhD, I established large-scale single-cell RNA sequencing experiments to study 

cellular variation in the innate immune response in fibroblasts of 70 healthy human 

individuals from the HipSci initiative. Chapter 2 describes optimisation of stimulation 

conditions to induce an antiviral response, and the experimental work carried out on the 

panel of donors. 

In Chapter 3, I analyse heterogeneity in resting (unstimulated) fibroblasts. By comparing 

to ex vivo skin data containing multiple cell types, I confirm the relative homogeneity of the in 

vitro cultured fibroblasts used, mapping to one sub-population of ex vivo skin fibroblasts. 

Using matched whole exome sequencing data, somatic mutations in sub-populations of cells 

within each donor were detected, and clonal populations identified. A novel computational 

method, cardelino, was developed for inference of the clonal tree configuration and the clone 

of origin of individual cells that have been assayed using scRNA-seq. Applying cardelino to 

32 fibroblast lines identifies hundreds of differentially expressed genes between cells from 

different somatic clones, with cell cycle and proliferation pathways frequently enriched.

Returning to innate immunity, Chapters 4 and 5 centre on variability in the type I interferon 

response. I first describe work linking variability in the innate immune response and 

evolutionary divergence across mammalian species. Focusing on human variability, the large 

dataset described above is used to characterise the innate immune response at single cell 

resolution, elucidating the dynamics of the response across donors in Chapter 4. Chapter 5 

describes the application of quantitative trait loci approaches to innate immune phenotypes. 

This work characterises both inter- and intra-individual heterogeneity in innate immunity.  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Chapter 1

Introduction

1.1 Human genetic variation

Over the last century, there has been an increasing e�ort to understand and map

genetic variation between humans, and the consequent functional e�ect of this. This has

been accelerated in recent decades with the development of microarray and sequencing

technologies, and in particular of high-throughput genetic sequencing. Initiatives such

as the Human Genome Project [1], 1000 Genomes Project [2], HapMap project [3], and

most recently the 100,000 Genomes Project highlight e�orts within the field to chart

common variation and the increasing scale at which this is being achieved.

1.1.1 The basis of genetic variation

Genetic variation stems from alteration of DNA sequences, referred to as ’variants’ or

’mutations’. These events can occur as a result of endogenous processes, such as errors in

DNA replication, chromosome segregation and recombination, or as a result of damage

from endogenous or exogenous chemicals (Fig 1.1, [4]). While processes involving

chromosome and DNA function are highly regulated, they - like any cellular function
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- are not 100% e�cient. In the case of DNA replication, around 6x109 nucleotides

must be copied in each cell division. Although the major DNA polymerases involved

in this DNA synthesis have intrinsic proofreading and exonuclease capacity, allowing

the ability to detect and remove incorrectly inserted bases, this does not occur in a

very small proportion of cases and errors are maintained. This is often the case at

regions in the genome with repeat sequences. In these areas, where there are repeats

of particular nucleotide or oligonucleotide sequences, replication slippage may occur,

leading to insertion or deletion of nucleotides. On a larger scale, errors in chromosome

segregation and recombination may lead to variation in copy number of substantial

regions of DNA or entire chromosomes. In the germline, these events often lead to

embryonic lethality or developmental disorders, however they can also occur in somatic

cells - a typical occurrence in cancer development.

Alongside faults in the processes described above, chemical damage to DNA can

cause mutations, deriving from both endogenous and exogenous sources (Figure 1.1).

Given the aqueous environment within cells, hydrolytic damage is common. This

can lead to the cleavage of covalent N-glycosylic bonds between a base and its sugar,

producing an abasic site, or to the deamination of some bases to leave a carbonyl group.

Further elements of the cellular milieu produced by normal metabolic reactions can lead

to oxidative damage, in particular reactive oxygen species (ROS). The sugar-phosphate

backbone can be damaged as a result, or DNA bases can be attacked leading to

the production of derivatives, many of which are mutagenic. An alternate source of

endogenous damage is the erroneous methylation of adenosine. This causes distortion

of the double helix and disrupts DNA-protein interactions. While the majority of

chemical damage derives from these intrinsic mechanisms, exogenous agents can also

play a role. Examples are the production of ROS within cells due to ionizing radiation

from external sources, leading to oxidative damage as described above. Non-ionizing



1.1 Human genetic variation 3

ultraviolet radiation can also cause damage, resulting from the covalent bonding

between adjacent pyrimidines. Finally, environmental chemicals can covalently bond

to and distort the DNA helix, such as the large aromatic hydrocarbons found in the

smoke of cigarettes and vehicles.

Fig. 1.1 Mechanisms of DNA damage and repair, from Helena et al. [4]

If not repaired, these changes in DNA sequence may have a wide range of conse-

quences, or no discernible e�ect at all. A large proportion of variants do not have a

functional e�ect for several reasons: firstly, much of the genome is non-coding and

has no known function. Secondly, there is a high level of genetic redundancy, with

substitutions at the third base in a codon sequence often producing the same amino

acid (synonymous mutations), and also redundancy in the sequence as a whole - for

example, there are hundreds of almost identical ribosomal RNA genes. Finally, even

in situations where a variant in a coding gene results in a di�erent amino acid pro-

duced (nonsynonymous), this may be functionally unimportant within the protein

and therefore tolerated. Despite this, variants with phenotypic e�ects do arise, and

while they may occasionally have a beneficial e�ect, and may even become positively
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selected for in the population, in many cases the mutations are harmful. Variants

which have become fixed in the population have been catalogued in dbSNP [5]. Many

methods have been used over the years to study the e�ects of genetic variants, and a

brief history and description of modern methods follows.

1.1.2 Approaches for studying human genetic variation

In the early decades of genetic research, familial history was used in genetic linkage

studies. The basis of this approach is the increased frequency of co-inheritance of genetic

markers close in genomic location than would be expected by chance. Huntington’s

disease was the first for which the locus - on chromosome 4 - was identified purely

by linkage [6]. Following this, developments were made in mapping cystic fibrosis to

chromosome 7 [7–10], While this method provided a lot of novel insight in disorders

arising from a single gene and with high penetrance - the percentage of individuals with

a given genotype who exhibit the associated phenotype - these approaches were more

di�cult for complex diseases arising from the combination of many low penetrance

variants. With the evolution of technologies to assay genome sequences, however, it

has become increasingly possible to understand the role of common genetic variants

both in disease and healthy phenotypes.

Accelerated by these next-generation sequencing technologies, it has been possible

to deeply characterise genetic variation in the population as a whole. This has been

highlighted by large-scale international consortia such as the HapMap project [3] and

1000 Genomes Project [2]. The scale of these studies will continue to grow, exemplified

by the 100,000 Genomes Project currently underway. This extensive work to map

common genetic variation opened the door to genome wide association studies (GWAS).

The GWAS approach is to ask whether a particular variant appears more often

in individuals with a phenotype of interest than expected by chance (Figure 1.2). It
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is common to use a case-control set up, where two groups are compared: those with

the disease/phenotype of interest, and controls without. An odds ratio is calculated,

reflecting the odds of the variant in the two groups, with an OR > 1 signifying higher

prevalence in the case group. The power to detect significant e�ects depends on the

sample size, distribution of e�ect sizes of causal genetic variants, and the frequency

of these in the population, and the linkage disequilibrium (LD) between the observed

genotyped DNA variants and the unknown causal variants. GWAS approaches have

also been applied to quantitative phenotypes, such as height or concentration of given

biomarkers.

The first GWAS, published in 2005, focused on age-related macular degeneration

(AMD). In a comparison of 96 cases and 50 controls, Klein et al. identified a role of the

CFH gene in AMD [11]. A major breakthrough followed in 2007 with the publication of

the Wellcome Trust Case Control Consortium [12], in which 3000 shared controls were

compared with around 2000 patients for each of seven common disease phenotypes.

Not only was this the largest study of its kind at the time, but it also set the precedent

for future GWAS studies in a number of ways. Population stratification was carefully

considered, HapMap data was used for genotype imputation in a novel manner [13],

and significant attention was given to genotype calling.

Since then, the number of GWAS has increased year-on-year, and vast progress has

been made in identifying and understanding genetic variation in the human population.

However, the nature of the studies above means that the findings often do not reveal

the mechanistic basis or causative role of genetic variants, as the causal variant is

usually not directly genotyped but rather in linkage disequilibrium with the genotyped

SNPs. This necessitates methods to move closer to an understanding of the biology

underlying a process or phenotype of interest caused by observed genetic di�erences

(Figure 1.2b).
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Fig. 1.2 Genome-wide association study design, from Tam et al. [14]: a) The aim of
a genome-wide association study (GWAS) is to detect associations between allele or
genotype frequency and trait status. The first step is to identify the disease or trait to
be studied and select an appropriate study population. Genotyping can be performed
using SNP arrays combined with imputation or whole-genome sequencing. Association
tests are used to identify regions of the genome associated with the phenotype of
interest at genome-wide significance, and meta-analysis is a common step to increase
the statistical power to detect associations. b) Functional characterization of genetic
variants is often required to move from statistical association to causal variants and
genes, especially in the non-coding genome. Computational methods are used to predict
the regulatory e�ect of non-coding variants on the basis of functional annotations.
c) Target genes can be identified or confirmed using chromatin immunoprecipitation
and chromosome conformation capture methods, and experimentally validated using
cell-based systems and model organisms. d) Genetic variants exist along a spectrum of
allele frequencies and e�ect sizes. Most risk variants identified by GWAS lie within
the two diagonal lines. Rare variants with small e�ect sizes are di�cult to identify
using GWAS, and common variants with large e�ects are unusual for common complex
diseases.
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A key example is the expression quantitative trait loci (eQTL) approach, in which

SNPs driving di�erences in expression levels of particular genes are identified. These

eQTLs can be described as acting in cis, typically considered with a 1Mb window,

or in trans from a more distant genomic location, typically 5Mb or further, or on a

di�erent chromosome entirely (Figure 1.3). By studying the transcription of genes,

captured in RNA sequencing experiments, a more direct output of genetic variation

can be captured. This intermediate phenotype can explain cellular events at a level

closer to mechanism, uncovering novel biological insight into the disease or process of

interest.

Fig. 1.3 The expression quantitative trait loci (eQTL) approach, from Westra &
Franke [15]: eQTLs can be either local e�ects (cis-eQTLs), or distant, indirect e�ects
(trans-eQTLs).
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1.2 Single cell RNA sequencing

1.2.1 Evolution of single cell RNA sequencing technologies

While transcriptomic studies have, for many years, provided insight into mRNA

expression and regulation, technological advances have allowed the quantification of

transcripts at an unprecedented resolution. By sequencing the mRNA component of

individual single cells, it has now become possible to study gene expression at an entirely

new level, opening the door to novel biological questions which could not be addressed

using population-level RNA sequencing. For example, the variability in splicing [16–20]

and allelic expression [18, 21–23], between cells has been shown, along with analysis

of the stochastic gene expression and transcriptional kinetics [24, 25]. Furthermore,

single-cell RNA-sequencing (scRNA-seq) data have allowed fine-grained analysis of

developmental trajectories [26–28] and identification of rare cell types [29, 30].

In order to obtain scRNA-seq data, cells must first be isolated individually in an

accurate and rapid manner. Initially, microscopic manipulation provided a reliable

method to isolate single cells through physical separation using a capillary pipette,

and may still play an important role in systems where few cells are available. However,

the high labour and low-throughput nature of this technique has resulted in it being

surpassed by higher throughput methods. Fluorescence-activated cell sorting (FACS)

provides an e�cient way to isolate a large number of cells in a rapid manner, and also

allows the selection of cells based on fluorescent labelling. Size or marker selection is

commonly used, and through ‘index sorting’, the data for each cell can be recorded

and used in downstream analysis. Despite the prevalence of this method, the high

number of starting cells required, along with the potential damage caused by the

staining and physical stress of the process, means it may be a problematic approach.

More recently, microfluidic techniques have emerged as a key method for capturing
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single cells, allowing isolation in small volumes within a closed system, often followed

directly by amplification and downstream reactions. The small volume in which these

reactions occur increases the capture e�ciency and lowers the reagent cost. Finally,

techniques involving the isolation of single cells in microdroplets, such as DropSeq

[31] and InDrop [32], have rapidly expanded the high-throughput nature of scRNA-

seq–allowing processing of tens of thousands of cells in a short space of time. The

small volume of reactions, once again, decreases the cost per cell. Over time, these

methods will continue to increase in speed, e�ciency and reliability, further improving

throughput of single-cell isolation.

Many protocols exist for the subsequent reverse transcription (RT), amplification,

and library preparation prior to sequencing. Poly(T) priming is used to select poly-

adenylated mRNA for reverse transcription, however, only an estimated 10–20 percent of

transcripts are sampled, particularly a�ecting lowly expressed genes [33]. Methods then

di�er in their approach to second-strand synthesis, either using poly(A) tailing, leading

to a 3’ bias, or template-switching to produce full-transcript coverage. Amplification

can be achieved through two methods: linear in vitro transcription (IVT) or exponential

PCR, each with its own advantages and drawbacks. Ziegenhain et al.[34] and Svensson

et al.[35] provide a comprehensive experimental and computational comparison of most

of the protocols commonly used. Following cDNA amplification, library preparation is

most commonly carried out using the commercially available Nextera kit and sequencing

on the Illumina platform, although other methods are available.

As a relatively new field, it is key to understand the structure and complexities

of scRNA-seq data, ensuring that appropriate analytical and statistical methods are

applied [36]. Particularly challenging is the high level of noise [37, 38], which derives

primarily from the nature of single-cell experiments (called ‘technical variation’ and is

mainly due to factors such as mRNA capture e�ciency and cDNA amplification bias),
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along with the biological heterogeneity of cells (‘biological variation’). Furthermore,

unlike with conventional RNA-sequencing where experimental biases are well studied

[39, 40], there are biases which are still not fully understood in single-cell experiments,

such as ‘dropouts’ due to the low amounts of starting material, leading to false negative

expression.

Single-cell RNA-sequencing is a lossy technique, and it is not completely understood

what causes the di�erent failure modes for samples. Practically, this means the

first step after acquiring reads from a scRNA-seq experiment is to perform quality

control. Reads are processed in a similar manner to bulk RNA-seq, allowing expression

quantification. There are several methods to do this, broadly split into those that

use a genome reference for alignment, such as STAR [41], TopHat/TopHat2 [42, 43]

and HISAT/HISAT2 [44, 45], and those that perform ‘pseudoalignment’, a quicker

alternative, such as Kallisto [46] and Salmon [47].

It is important to check the quality of both the raw data (which can be performed

using tools developed for bulk RNA-seq, such as FastQC [48] or Kraken [49]), along

with the aligned output. Imperative in scRNA-seq is the cell-by-cell quality control

[50], ensuring that cells of poor quality are removed from subsequent analysis. Many

metrics can be used to measure cell quality, such as the number of reads or genes

detected, the proportion of reads mapping to mitochondrial genes (which may signify

leaking of cytoplasmic RNA or cells undergoing apoptosis), or the proportion of reads

mapping to externally spiked-in RNA molecules if used in the experiment [51].

Depending on the analysis task, appropriate normalization of the data is needed.

Several normalization methods have been developed, many of which adjust for dif-

ferences in sequencing depth and/or make use of spike-in molecules and/or unique

molecular identifiers (UMIs) when available (reviewed in detail in [52]). Once cleaned

data are obtained, there are many routes of analysis depending on the biological
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question under investigation (Figure 1.4). In the next section, I will consider these

analysis from two viewpoints: cell-level approaches, such as the grouping of cells and

trajectory ordering, along with gene-level investigations, such as gene variability and

noise, co-expression, and identification of di�erentially expressed genes.

Fig. 1.4 Overview of analysis methods for the interpretation of scRNA-seq data.
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1.2.2 Analysis of scRNA-sequencing data

Cell level analyses
Visualising and clustering cells

The cataloging and classification of cells is a long-standing biological challenge. Tradi-

tionally, cell types were determined morphologically or based on molecular cell surface

markers. However, with the availability of genome-wide expression data, the possibility

of transcriptome-based analysis of cell similarity provides an alternative indicator of

cell type.

The first step in understanding the distribution of cells is often to apply dimension-

ality reduction techniques: this represents the thousands of dimensions (genes) found

in scRNA-sequencing data with a much smaller number, attempting to maintain a

representation of some variation of interest. Furthermore, by considering only a two

or three dimensional space, visualisation provides a mean to qualitatively explore the

data. There are hundreds of dimensionality reduction methods available which the

researcher can elect to apply either to all observed genes or a selected subset of genes

of interest. The most widespread is Principal Component Analysis (PCA) [53], where

weighted sums of dimensions represent the data. The dimensions for each sample

are known as principal components. These dimensions explain decreasing amounts of

variation in the original data, with the first principal component capturing as much of

the variance as possible. Another commonly applied method is t-SNE (t-Distributed

Stochastic Neighbour Embedding) [54], a non-linear visualization technique which

considers local distances between data points (cells) by combining dimensionality reduc-

tion with random walks on the nearest-neighbour network with the goal of separating

far-apart clusters, while also ensuring all data points can be seen by eye to allow for

comparisons of cluster size. This is a variation of Multidimensional Scaling (MDS),

where PCA is applied on pairwise Euclidean distances to preserve pairwise distances
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in a low-dimensional space. A recent, and increasingly adopted method, is uniform

manifold approximation and projection (UMAP) [55], which has been shown to preserve

more of the global structure within datasets, with an improvement in run time and

reproducibility [56].

While powerful, and popular, these techniques can be heavily a�ected by the

problematic abundance of zeroes in single cell data; an issue which several methods

account for. ZIFA (zero-inflated factor analysis) [57] extends the linear factor analysis

framework, (based on correlations in the data rather than covariances), accounting for

dropout characteristics in the data. The R-package Destiny provides an alternative, non-

linear method using di�usion maps [58]: distance between cells reflects the transition

probability based on several paths of random walks between the cells. This assumes a

smooth nature of the data, and also includes imputation of drop-outs.

Unsupervised clustering techniques provide a mechanism to group cells by similarity.

While this unbiased approach has benefits, the small number of samples and absence of

a way to validate if groupings are “real” poses a problem, along with prior information

on the number or type of groups. The features of single cell data discussed above, such

as dropouts, biases and noise, also add to the di�culty of accurate clustering. Despite

these problems, several tools have been developed for use with scRNA-seq, along

with traditional methods such as hierarchical clustering [59]. SNN-Cliq [60] achieves

clustering by considering similarity calculated using a graph-based approach in which

a shared nearest neighbour (SNN) network is constructed using rankings of similarities

based on expression levels; dense clusters of nodes (cells) are then found. RaceID [29],

while also using similarity in expression between cells (based on Pearson correlation),

utilises a di�erent approach: k-means clustering. In k-means clustering each sample is

associated with a one of k prototypes, so that the total squared distance (inverse of

similarity) from samples to prototypes is minimal. After the initial step, RaceID uses
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an outlier detection algorithm and identifies cells which do not fit the model accounting

for technical and biological noise. This has been used in the detection of rare cell

populations. Another k-means-based tool, Single Cell Consensus Clustering (SC3) [61],

uses consensus clustering [62], an ensemble strategy, to average over parameter choices

in an attempt to make cluster assignments more robust. Another method, SIMLR

[63], uses multiple-kernel learning to infer similarity in a gene expression matrix with a

given number of cell populations. As multiple kernels are used, it is possible to learn a

distance measurement between cells that is specific to the statistical properties of the

scRNA-seq set under investigation. Two widely adopted strategies using a community

detection approach are Louvain [64] and Leiden [65] clustering, In the first method,

clusters are identified by moving nodes individually between groups until the quality of

clusters can no longer be improved. The network is then aggregated, with each cluster

becoming a node, and the steps of node movement and aggregation repeated. While

this leads to an e�cient approach, clusters may be badly connected - a problem which

the Leiden method tackles by improving upon the aggregation step, allowing clusters

to be split.

Cellular trajectory inference and branching analysis

Trajectory analysis is a simpler version of dimensionality reduction, where the assump-

tion is that a 1-dimensional “time” can describe the high-dimensional expression values.

The theory is that during a biological process, changes will happen gradually, so biolog-

ical observations can be ordered compared to each other in terms of pairwise similarity.

While clustering techniques have been used to define discrete population and states for

a long time, trajectory inference is younger in the field of scRNA-seq. However, many

methods have been developed in recent years, and Saelens et al. recently conducted

a comprehensive benchmarking of 45 of these methods [66]. Here, just a subset of

methods are described.
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One of the initial methods for so called pseudotime analysis of single cells was

Monocle [67], which used a minimum spanning tree (MST) strategy to order cells by

the distance to a start cell, based on a technique for putting microarray samples on

a trajectory [68]. In the updated versions of Monocle, the MST strategy has been

replaced by a more sophisticated tree embedding strategy [69, 70].

Di�usion pseudotime (dpt) [27] o�ers an alternative, in which geodesic pairwise

distances between samples on the data manifold are approximated using a di�usion

map representation. Trajectory is then defined as the distance from a start cell along

these distances. A di�erent strategy for trajectory inference is to consider a generative

model for the data, treating “time-points” as hidden (or latent). This leads to the

probabilistic interpretation of PCA, which in turn leads to factor analysis and ZIFA.

Here the expression of each gene can be described as a linear function of an unknown

“time”.

Non-linearity in the data, as described in [67] precludes PCA from being an e�ective

technique for this task. The Gaussian Process Latent Variable Model (GPLVM) allows

gene expression to follow any smooth (non-linear) function over time [71]. While more

computationally demanding than linear versions, this allows cells to be put in the most

likely ordering [71, 72]. This means that the most number of genes exhibit smooth

expression curves with as little noise as possible. Being a probabilistic model, the

benefit is that uninteresting structure in the data can be accounted for directly, such

as batch e�ects or technical factors. It is also possible to incorporate more information

about experimental design through priors [28].

The Ouija method [73] takes a di�erent approach to pseudotime in a couple of ways.

Firstly, it defines a generative model for gene expression in scRNA-seq data based on

ZIFA, to deal with the most common types of measurement noise. Secondly, it is based

on the assumption that a small number of switch-like markers for a biological process
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of interest are known. The cells are then ordered according to the most likely ordering

to confer with the switching genes.

A unique problem in single cell developmental data is that a set of progenitor cells

can develop into multiple distinct cell types. This means the cells will not follow a single

trajectory in the high-dimensional space. A couple of heuristics have been published: in

Wishbone [74], cells are clustered by the pairwise detour distance relative to a reference

cell, using geodesic distance. This method is reported to be correctly recovering the

known stages and bifurcation point of T-cell development in mouse. Another method,

that has been introduced by Haghverdi et al. [27], measures transition between cells

using a random-walk-based distance.

More principled model based approaches have been presented with SCUBA, which

considers transition of cell clusters over time [75], as well as with GPfates / OMGP [28],

where multiple smooth trajectories are explicitly modeled. After inference, each cell gets

assigned a posterior probability of having been sampled from a particular trajectory.

This method has been shown to be e�cient in reconstructing the developmental

trajectories of Th1 and Tfh cell populations during Plasmodium infection in mice.

An interesting recently developed method, partition-based graph abstraction (PAGA),

generates a graph-like map, estimating connectivity of partitions in the data [76]. This

approach provides a way to bridge the clustering type of analysis, as discussed above,

with the continuous nature of many biological processes, as modelled with conventional

pseudotime approaches.
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Gene level analyses

Unwanted factor removal

Uninteresting, largely technical variation can be observed in both bulk RNA-seq and

scRNA-seq experiments. This variation is usually correlated with some common

experimental factor, such as room temperature or stock of reagents. This form of

variation are known as batch e�ects. It is possible to handle batch e�ects by having a

careful balanced experimental design, such as uniformly distributing replicate conditions

across batches. For statistical analysis and inference, if the samples are spread over

multiple batches, this information can directly be accounted for [77]. Additionally,

several statistical methods have been developed to adjust for batch e�ects [78, 79].

One example is ComBat, which removes known batch e�ects using a linear model of

expression from batches where variance is based on an empirical Bayesian framework

[78].

Technical variation in scRNA-seq experiments could be due to mRNA capture

e�ciency, cDNA amplification bias and the rate cDNAs in a library are sequenced. To

estimate technical variation, several methods use spike-in molecules, which are added

with each cell in the same quantity. Risso et al. developed a sleuth of strategies called

RUVSeq that either performs factor analysis on a set of control genes such as ERCC

spike-ins or samples within replicate libraries to identify technical factors which can be

adjusted for [80]. Similar strategies have also been made by others [81–83].

Substantial amount of variation also results from di�erences in cell size or cell cycle

stage of each cell. To adjust for cell cycle e�ects, Buettner et al. have developed single-

cell latent variable model (scLVM), which is a two-step approach that reconstructs cell

cycle state before using this information to obtain adjusted gene expression levels by

linear regression [84]. They have also shown that removing cell cycle e�ects in T cells

reveals sub-populations associated with T-cell di�erentiation [84]. This highlights the
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importance of dissecting biological variation into interesting and uninteresting parts in

correctly characterizing sub-populations.

In recent years, many further methods have been developed for the integration

of discrete experimental batches. One example is canonical correlation analysis (im-

plemented in Seurat [85], which identifies a shared gene correlation structure across

datasets, using this structure to align the datasets. Haghverdi et al. developed a

mutual nearest neighbours (MNN) approach [86] to correct expression between batches.

This method uses ’landmark’ cells, which are representative of cell types or clusters

across all datasets to be integrated. Park et al. provide an alternative approach, using

a batch balanced k nearest neighbour graph (BBKNN) [87] to combine batches. While

these examples highlight just some of many methods available, there will undoubtedly

be further work in this area, particularly given the increasing scale of scRNA-seq data

generated and desire to integrate across experiments.

Identification of highly variable genes

Several methods have been developed to identify genes that show high biological

variability. Brennecke et al. have first estimated technical noise using spike-in molecules

and modeled mean-variance relationship to identify highly variable genes [37]. Kim et

al. have presented a statistical framework to decompose the total variance into the

technical and biological variance based on a generative model, which would help in

identifying variable genes [22]. Another method, BASiCS, uses a Bayesian model which

jointly models spike-ins and endogenous genes and provides posterior distributions for

the extent of biological variability [88].

Identification of di�erentially expressed genes and marker genes

Identification of di�erentially expressed genes and marker genes of subpopulations is a

simple yet important analysis in scRNA-seq studies. Although originally developed

for bulk RNA-seq experiments, methods such as DESeq2 [89] and EdgeR [90] are also
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widely used in scRNA-seq experiments. DESeq2 identifies di�erentially expressed genes

by fitting a generalised linear model (GLM) for each gene, uses shrinkage estimation

to stabilize variance and fold changes, and applies a Wald or likelihood ratio (LR) test

for significance testing [89]. EdgeR fits a GLM with negative binomial (NB) noise for

each gene, estimates dispersions by conditional maximum likelihood, and identifies

di�erential expression using an exact test adapted for overdispersed data [90]. Monocle

also fits a GLM, but dispersion is estimated directly from the data for each gene, since

most single cell studies have enough samples to allow this [67]. For relative abundance

data, dropouts are handled by using a tobit noise model, while using a NB noise model

with imputed dropouts for count data.

One method developed for scRNA-seq experiments, called MAST, uses two-part

generalized linear model that is adjusted for cellular detection rate (dropouts) [91].

Another method, M3Drop, applies Michaelis-Menten modelling of dropouts in scRNA-

seq, that is used to identify genes di�erentially dropped out [92]. SCDE is a Bayesian

method to compare two groups of single cells, taking into account variability in

scRNAseq data due to drop-out and amplification biases and uses a two-component

mixture for testing for di�erences in expression between conditions [93]. Another

method, SINCERA identifies di�erentially expressed genes based on simple statistical

tests such as Wilcoxon rank sum and t-tests [94]. In comparison to these methods,

scDD identifies genes where the overall distribution of values have changed between

conditions. This answers a di�erent question which might be of interest in scRNA-seq

experiments [95]. Using a Bayesian modeling framework, scDD classifies each gene into

one of the four types of changes across two biological conditions: shifts in unimodal

distribution, di�erences in the number of modes, di�erences in the proportion of cells

within modes, or both di�erences in the number of modes and shifts in unimodal

distribution [95].
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Gene-centric expression dynamics through pseudotime analysis

Using an inferred trajectory as described above, samples can be analysed using a

continuous time covariate instead of a few discrete time points. This enables the use of

more sophisticated time-series based analysis techniques for modeling gene expression

dynamics, and allows us to ask more complex questions from the data.

The popular scRNA-seq package Monocle provides a wrapper for the vector gen-

eralised additive model (VGAM) package to investigate how expression changes over

the trajectory. Splines are used to model expression dependence on pseudotime to

allow non-linear trends. The VGAM package allows for more than just expression

levels to be modelled by the splines: with appropriate link functions, allelic expression

balance or isoform usage can be modelled [18]. Splines require several parameters to be

chosen however, and the choices greatly a�ect the results. A non-parametric non-linear

alternative to spline regression is Gaussian Process regression, which can be used in a

likelihood ratio based fashion to identify genes which are dependent on pseudotime

[71, 96].

Often, we want to ask particular questions from the data, in which case parametric

models are useful. In the SwitchDE method, genes which sequentially switch on or o�

can be identified, along with a parameter letting you learn when the switch happens

[97]. Similarly, an assumption can be that genes are described as a transient pulse

over the pseudotime. The package ImpulseDE identifies such genes, while providing

parameters for when in pseudotime the pulse occurs [98].

Correlation analysis and network inference

One important application of scRNA-seq studies is the identification of co-regulated

modules of genes and gene-regulatory networks constructed using gene-to-gene expres-

sion correlations. Here, genes with highly correlated expression levels across cells are

assumed to be co-regulated. Using single-cell transcriptomic data of Th2 cells, Mahata
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et al. demonstrated how gene-gene correlations can be used to reveal novel mechanistic

insights; they have applied correlation analysis between steroidogenic enzyme Cyp11a1

and cell surface genes and identified Ly6c1/2 as a marker of the steroid-producing cell

population in mouse [99].

One method to elucidate regulatory interactions in bulk RNA-seq studies is called

the weighted gene co-expression network analysis (WGCNA) [100]. In such a network,

nodes represent genes and edges represent co-expression as defined by correlation and

relative interconnectedness. The method has also been applied in a scRNA-seq study

where the authors have identified a number of functional modules of co-expressed genes

that can describe each embryonic developmental stage in mouse [101].

Although these methods are useful, the inferred networks are undirected; that is,

they do not provide direct regulatory relationships among genes. One method, SCENIC,

aims to address this by constructing gene regulatory networks from scRNA-seq data

[102]. SCENIC defines co-regulated modules, or ’regulons’, using GENIE3 [103] to

identify the targets of transcription factors, and cis-regulatory motif analysis.
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1.3 The human innate immune system

The innate immune system is the body’s first line of defence against damage, rapidly

sensing and responding to infectious or harmful agents. Due to the diversity of potential

threats, a range of mechanisms are utilised to act against infections. These are prompted

by detection of pathogen-associated molecular patterns (PAMPs) - conserved structures

which are predominantly expressed by large groups of pathogens, rather than the host.

One major group of PAMPs is nucleic acids (Gurtler Bowie, 2013). Although there

may be complexity in detecting various RNA and DNA structures due to the similarity

with host nucleic acids, their essential role for pathogen survival means they are a useful

signal, particularly for viruses in which there may be a limited amount of alternative

distinguishing molecular features.

1.3.1 The type I interferon response

To detect these pathogenic signals, there are several classes of pattern recognition

receptors (PRRs) in various cytoplasmic or membrane-bound locations. These include

Toll-like receptors (TLRs), RIG-I-like receptors (RLRs) and NOD-like receptors (NLRs),

among others. These receptors may function in signalling - activating downstream

pathways to instigate a response - or have a direct e�ector function, blocking pathogenic

replication and propagation [104]. In the case of viral infections, distinct sensors play a

role in the recognition of viral RNA and DNA. In the case of RNA, RIG-I and MDA5

sense cytosolic non-self RNA, with specificity towards di�ering lengths of dsRNA

[105]. In contrast, the presence of viral DNA is sensed through cGAS, leading to the

production of cGAMP and consequent activation of STING [106].

Despite specific recognition pathways, activation of viral sensors converges in

downstream signalling, leading to activation of NF-ŸB, TBK1 and IRF3 to induce
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production of type I interferons (IFNs). In this thesis, the response to RNA viruses is

studied, using synthetic dsRNA to mimic the presence of viral nucleic acids in host

cells. The induction of the type I interferon response through dsRNA sensing is shown

in Figure 1.5.

Fig. 1.5 Induction of the Type I Interferon response.

Interferons are a subset of the class of immune signalling cytokines, and can be

subdivided into type I (IFN-–, IFN-—, IFN-‘, IFN-Ÿ, IFN-Ê), type II (IFN-“) and

type III (IFN-⁄), based upon receptor specificity [107]. Of the type I IFNs, which bind

the heterodimeric IFNAR1-IFNAR2 receptor, IFN-– and IFN-— are the most studied.

There are 14 IFN-– genes and only one IFN-— gene in humans. When bound to type I

IFNs, the IFNAR1-IFNAR2 heterodimer activates JAK1 and TYK2 [108], leading to

phosphorylation of STAT1-STAT2 heterodimers [109]. Consequent migration into the



24

nucleus, association with IFN regulation factor 9 (IRF9) and binding to IFN-stimulated

response elements instigates transcription of IFN-inducible genes.

Type I interferons play an important role in the response to viral infections (reviewed

in [110]), and are able to be produced at low levels by most cell types. Certain cells

have been shown to function in producing high levels of these proteins, invoking a

systemic response. Plasmacytoid dendritic cells (pDCs), for example, were identified as

’natural interferon producing cells’ [111]. However, fibroblasts mainly produce IFN-—,

considered the central cytokine responsible for stimulating cells locally. This leads to

altered gene expression, chemokine production, antigen presentation and the induction

of an adaptive immune response (Figure. 1.6).

Fig. 1.6 The role of interferons and inter-cellular communication in the immune response.
(Ivashkiv Donlin, 2014 [112])
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1.3.2 Cell-to-cell heterogeneity in innate immunity

As with many biological processes, the innate immune response is considerably het-

erogenous between cells in an individual, despite cells being genetically identical. This

derives both from the stochastic nature of biochemical reactions within cells (intrinsic)

along with communication between cells and other environmental factors (extrinsic).

Fluctuation in gene expression is one of the largest causes of variation in clonal pop-

ulations, reviewed in [113]. This is due to the low molecular abundance of some key

elements (such as transcription factors) along with the number of chemical reactions

required to turn genetic sequence to functional product. Although modelled for many

systems, a severely reduced view is often taken, with only transcription and translation

included.

Within immunology, stochastic expression of many interleukin genes has been

observed, such as IL-2 [114] and IL-10 [115]. In fibroblasts, large variation in the

induction of IFN-— in response to viral infections has been shown [116]. Furthermore,

heterogeneity in response of coarse-grained cell populations has been studied, such as

macrophages [117, 118] and monocytes [? ]. The considerable advance in single-cell

technologies in recent years, however, will allow further illumination of inter-cellular

variability in innate immunity. For example, scRNA-seq was recently used to reveal

novel dendritic cell and monocyte sub-populations [119]. However, scRNA-seq holds

exciting possibility not only for cell classification, but also in understanding the innate

immune response. One example is the discovery of bimodal transcript splicing in

bone-marrow derived dendritic cells in response to lipopolysaccharide (LPS) treatment

[16].
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1.3.3 Genetic variability in the innate immune response

The hereditary nature of some susceptibility to infectious diseases has long been known,

alongside the variation between individuals in the response to particular pathogens.

Early investigations involved twin studies, which showed a higher concordance in

identical to non-identical twins for some infections, particular those which are chronic

and have low infectivity. Examples of these findings for viral infections include polio-

myelitis and hepatitis B [120]. More recently, the development of high throughput

technologies, as described above, has enabled the identification of single nucleotide

polymorphisms (SNPs) associated with particular infections. Just two examples of

many available are Hepatitis C clearance, for which a SNP in IL28B has been identified

[121], and reduced influenza virus clearance (a SNP in IFITM3; [122]).

Unlike adaptive immunity, in which receptor sequences undergo rearrangement in

somatic cells, the innate immune system’s pattern recognition receptors are germline

encoded, along with signalling components and e�ector mechanisms. Therefore all

aspects of innate immunity, from recognition to action, are likely to be subject to

genetic variation. Genetic analysis of patients with susceptibility to particular infections

has pinpointed elements of the innate immune, and more specifically type I interferon,

response as playing a key role. For example, Zhang et al. [123] described two

children with herpes simplex encephalitis, both with a heterozygous mutation in

TLR3. In dermal fibroblasts from these individuals, treatment with a synthetic dsRNA

(polyinosinic:polycytidylic acid; also known as poly(I:C)) did not induce expression of

IFN-—, IFN-“ or IL-6. More recently, Ciancanelli et al. [124] characterised a patient

with compound heterozygous null mutations in interferon response factor 7, who

su�ered a life threatening primary influenza infection. In this case, dermal fibroblasts

and iPSC-derived epithelial cells from the patient produced reduced amounts of type I

IFN and showed increased viral replication. There have been further studies showing
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deficiency in innate immune signalling pathways in the fibroblasts of a�ected individuals,

such as those with an IRAK1 [125] or DOCK2 [126] mutation.

Moving beyond individuals with a deficient innate response or specific susceptibility,

expression quantitative trait loci (eQTL) approaches been used to characterise genetic

variability within healthy populations. Some studies have identified SNPs in particular

mechanisms, such as the TLR4 pathway [127]. In recent years, however, investigations

have expanded from studying one pathway or pathogen to eQTL mapping in broader

innate immune stimulation. Two studies in which this has been conducted are Fairfax

et al., 2014 [128], where primary CD14+ monocytes were treated with IFN-“ or LPS,

and Lee et al., 2014 [129], in which dendritic cells were stimulated with influenza virus,

LPS, or IFN-—. These studies identified treatment-specific eQTLs, highlighting the

importance of considering genetic variation within the biological context of interest.

However, in these studies changes in expression were measured only at a cell population

level and at distinct time points. Further insight is needed into the genetic e�ect on

variability of innate immune components, gained from single-cell expression studies,

along with the dynamics and regulation of the response.
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1.4 Using single-cell RNA sequencing data to

study genetic variation in the innate immune

response

While there have been significant advances in understanding the genetic basis of

variation in the innate immune response in recent years, there is still a way to go in

defining the intra- and inter-individual components of this variability, particularly in

healthy individuals. In order to do this, a dataset spanning a large number of donors,

profiled at single cell resolution, is required. To this end, this thesis outlines the

establishment of an experimental system using relatively homogenous dermal fibroblast

populations of 70 human individuals obtained from the Human Induced Pluripotent

Stem Cell Initiative (HipSci). Assaying these cells using two stimulation conditions - a

synthetic dsRNA, and Interferon-— - over time allows us to study key questions:

(1) How does the interferon response vary between human individuals and can this

variation be attributed to common genetic variants?

(2) How do di�erent cells from the same donor respond to a danger signal that

should elicit interferon, and how do they respond to a direct interferon stimulus?

Alongside this, the heterogeneity in unstimulated human fibroblasts is characterised,

to understand the variation and clonality seen in genetically identical populations of

fibroblasts. The single-cell resolution provides unprecedented insight into not only the

human genetics of the innate immune response, but also the role of cell-to-cell variation

in this response.
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2.1 Defining optimal stimulation conditions

It was first shown many years ago that synthetic dsRNA - polyinosinic:polycytidylic acid,

also known as poly(I:C) - could induce an antiviral response and interferon production

in treated cells [130, 131]. However, there are many factors in the stimulation procedure

which may a�ect the response, such as concentration of poly(I:C) used, time after

stimulation, and reagents used. Furthermore, the e�ect of these variables may di�er

between cell types[132]. It is also possible to induce interferon signalling more directly

through administration of interferons, capturing the second cascade of signalling and

removing the e�ect of upstream PAMP sensing.

In order to determine the e�ects of di�ering stimulation conditions in human

fibroblasts, and enable optimisation of large-scale experiments, bulk RNA-sequencing

data generated by Tzachi Hagai was analysed. In these experiments, primary human

fibroblasts (HipSci resource) were either stimulated directly with poly(I:C) or interferons.

Fibroblasts were seeded approximately 18 hours prior to stimulation, at a density

of 100,000 cells per well (6 well plate) or equivalent numbers on smaller plates (12

well and 24 well plate). Cells were cultured either in specialised fibroblast medium

(ATCC-PCS-201-041), or in alpha-MEM supplemented with 10% FBS, non-essential

amino acids, vitamin C and L-glutamine. In order to achieve su�cient intracellular

levels of poly(I:C), addition with lipofectamine 2000 (LF) in a transfection medium

(opti-MEM) was used, at a ratio of 1 µg poly(I:C) : 2 µg LF : 100 µg opti-MEM.

Interferon was added directly at a concentration of 1000 U/ml. At stated time points

(1, 2, 3, 4, 6, 8, 12, 18 or 24 hours) post-stimulation, cells were lysed with RLT bu�er

containing 1% —-mercaptoethanol, and collected. Library preparation was performed

according to Illumina Truseq/KAPA protocols and samples sequences using Illumina

Hi-Seq (125bp paired-end sequencing).
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The raw RNA-seq data was processed using two pipelines, either mapping with

TopHat2 and using cu�Links to quantify reads in order to identify di�erentially

expressed genes with the cu�Di� tool, or mapping with Kallisto for analysis with

Sleuth.

TopHat2 and Cu�Links

Reads were first mapped to the human reference genome (hg37) using TopHat2 [43],

before calculating a normalized count for each gene (fragments per kilobase per million,

FPKM) using cu�Links [133]. Di�erentially expressed genes were identified using

the cu�Di� command. These stages were performed by Tzachi Hagai, using default

parameters. For analysis of patterns of expression, FPKM was first converted to

TPM using the relationship derived by Lior Pachter [20, 134]. A threshold for TPM

expression of 2 was chosen, and any transcripts which had expression below this across

samples were discarded. The basis for this threshold was the finding by Wagner et

al., [135], that RNA-seq data can be modelled as a mixture of two distributions: an

exponential distribution for transcripts from inactive genes and a negative binomial

distribution for actively transcribed genes. It is shown that the probability of TPM

2 for the exponential distribution (inactive genes) is < 10≠8, while the probability

of a gene with TPM 2 belonging to the class of non-expressed genes is < 1%, for

all datasets considered. In order to compare the behaviour of genes across samples,

in response to stimulation/time, it is also important to normalise within each gene.

The normalised value for a gene in a given condition (z) was calculated using z-score

normalisation: z = (x ≠ µ)/‡ where: x = raw TPM in the sample considered, µ =

average TPM across all conditions, ‡ = standard deviation of the TPM values across

all samples for the gene.
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Kallisto and Sleuth

In order to model the time-course response to stimulants with the Sleuth program,

reads were first pseudoaligned using kallisto [46]. This software is able to accurately

quantify transcript abundances without the need for alignment. Using estimated counts

from the kallisto output, a time-based model was fitted in sleuth, using natural splines

with five degrees of freedom. Any transcripts for which a likelihood ratio test against a

null model had a q-value < 0.01 were considered significant and included in further

analysis.

2.1.1 Stimulation with Poly(I:C)

E�ects of the transfection procedure

While the primary focus was the investigation of varying poly(I:C) concentration and

duration of treatment, the e�ect of lipofecatmine transfection was first checked, as this

is thought to be able to induce up-regulation of gene expression. To identify the e�ect

of LF in fibroblasts, pairwise comparisons between poly(I:C) + LF samples and the

media used and LF alone with media were conducted, with di�erentially expressed

genes identified using the cu�Links software.

Figure 2.1a shows the total number of di�erentially expressed genes for each

sample. It is clear to see that lipofectamine alone does not cause up-regulation of

many genes at any time point, while poly(I:C) causes an increase in the expression of

hundreds/thousands of genes. Interestingly, at 12 hours there are more di�erentially

expressed genes when the transfection medium is not added, however when only genes

involved in innate immunity are considered (Figure 2.1b) this di�erence is reduced.

This trend may be a result of less e�cient transfection in the absence of the transfection

medium, leading to a delayed but similar induction of the immune response.
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To verify induction of the type 1 interferon response, expression of IFN-— across

conditions was considered, Figure 2.1c. This confirms up-regulation of IFN-— gene

expression when treated with poly(I:C) but not lipofectamine. Furthermore, there is a

sustained and slightly higher expression when transfection enhancing medium is added.

Concentration of poly(I:C)

As poly(I:C) may have harmful e�ects at high concentrations, the e�ect of reducing

the concentration on induction of the type I interferon response was examined. To see

whether there was increased sensitivity in the detection of response genes at higher

poly(I:C) concentration, the number of di�erentially expressed genes in the standard

concentration (1 µg/ml) over reduced concentrations (either 0.5 µg/ml or 0.1 µg/ml),

samples were compared directly using cu�Links. While there are limited di�erences

between di�erent concentrations of poly(I:C) at 4 and 12 hours, there is a clear increase

in di�erentially expressed genes at 8 hours (Figure 2.1d), particularly compared to 0.1

µg/ml.

The dynamic response to poly(I:C) in two individuals

In order to investigate the response over time after poly(I:C) stimulation, a model using

null splines to capture dynamics over the time-course was fitted as described above.

Any transcripts for which this model explained behaviour significantly better than a

null model (likelihood ratio test, q-value <0.01) were selected. This process was carried

out for experimental data from two individuals separately. Many of the most significant

genes (smallest q-value) are known to be involved in the antiviral response, such as the

IFIT genes, IRF1, CCL2 and OAS1. Plotting the expression profiles of several of these

genes (Figure 2.2a) highlights di�erent types of expression patterns and variability

between individuals. For example, some transcripts show fairly rapid up-regulation,

with a peak at around 8 hours, before a decrease in expression level (IRF1) while
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Fig. 2.1 E�ects of the poly(I:C) transfection procedure. a-b) Number of genes up-
regulated under di�erent stimulant conditions. Colour indicates stimulant: red =
lipofectamine alone (LF), blue = p(I:C) + LF (pI:C), while shade denotes transfection
medium: light = medium alone (’med’), dark = medium + opti-MEM (’opt’) a) Total
di�erentially expressed genes identified. b) Number of di�erentially expressed innate
immune genes. c) Expression of IFN-— (FPKM) across poly(I:C) and transfection
control conditions. d) Comparison of response induced by di�erent concentrations of
poly(I:C): number of di�erentially expressed genes identified between 1 µg poly(I:C)
and 0.5 or 0.1 µg.
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others show up-regulation followed by sustained expression (IFIT3). In several cases,

increase in expression is slower in individual 2 (IRF1, CCL2, OAS1) and there are large

di�erences in transcript levels across time points between the individuals (IRF1, CCL2,

OAS1). Figure 2.2b shows the behaviour of the entire set of significant transcripts

(z-score normalised across conditions for each transcript) in the two individuals. Three

groups of genes with distinct expression patterns can be seen, and similar groups are

present in both individuals. The first cluster (orange) appears to be ’slow-response’

genes, in which expression increases after 8-12 hours and reaches a maximum at 24

hours. In contrast, the cluster highlighted in purple are ’quick-response’ genes, peaking

at 8 hours. Finally, there are a group of transcripts (blue) which are expressed in the

control and earliest time point, indicating genes which are down-regulated in response

to poly(I:C). As cells show morphological changes signifying higher levels of apoptosis

in later time points, the slow-response genes may be involved in this process. The

enrichment (hypergeometric test) of genes marked as ’apoptotic’ or ’interferon response’

(GO term annotation) was investigated for each cluster, shown in Table 2.1. While

all clusters showed enrichment of apoptotic genes, which may suggest that this is a

more general feature of the transcripts selected as significant, only clusters 1 and 2

show enrichment of interferon response genes, suggesting that these specific patterns

of expression reflect dynamic antiviral responses.
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Fig. 2.2 Response to poly(I:C) stimulation over time in two individuals. a) TPM
profile of IRF1, IFIT3, CCL2 amd OAS1, respectively, at timepoints of 0-24 hours
after poly(I:C) treatment. b) Z-score normalised TPM of all transcripts for which
the spline-based model was significant (likelihood ratio test, q value < 0.01) in two
individuals.
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Table 2.1 Enrichment of apoptotic v.s. IFN response genes in response to poly(I:C).

Group Total Apoptosis
genes

Enrichment
p-value

IFN
response
genes

Enrichment
p-value

Background 37978 1988 - 122 -
Slow-response
(orange) 2035 302 0 51 0

Quick-response
(purple) 1904 285 0 36 0

Down-regulated
(blue) 3024 387 0 6 0.87

2.1.2 Stimulation with interferons

While the results above show that poly(I:C) is capable of inducing an antiviral state in

transfected cells, it is also possible to induce interferon signaling in a direct fashion

through administration of interferons. As cell types respond di�erently to distinct

interferons, an initial investigation into the response in fibroblasts was conducted,

before looking at a more comprehensive time course of interferon-induced changes.

Type I vs Type II interferons

The response to IFN-– and IFN-— (type I) and IFN-“ (type II) at 1 and 4 hours,

along with combined IFN-— and IFN-“ stimulation for 4 hours, was studied in two

individuals. The heatmaps in Figure 2.3a show two distinct sets of genes in both

individuals: one group which responds to interferons at 4 hours (blue), while another

which shows higher expression in the controls and at 1 hour after stimulation (orange).

As expected, the former group is very strongly enriched for interferon response genes

(18/230, background proportion = 122/37978, p = 0), while the latter is not (1/279, p

= 0.23). From these heatmaps, it appears that IFN-– and IFN-— elicit similar changes,

while IFN-“ shows a distinct response (although up-regulation of type 1 response genes

is seen in the sample stimulated with both IFN-— and IFN-“).
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To consider directly the similarity between response to the di�erent interferons,

Pearson correlation of gene expression (TPM) between samples was calculated, shown

in Figure 2.3b. As would be expected, there is a high level of correlation between

control and 1 hour time points, and between 4 hour time points of IFN-– and IFN-—

stimulation. As seen above, IFN-“ treatment alone yields a more distinct response.

Interferon — time course dynamics

In order to elucidate the dynamics of response to interferon —, the same modelling

approach as discussed for poly(I:C) above was utilised. Similarly, any transcripts for

which the spline-based model significantly explained the data (compared to a null model,

q-value <0.01) were selected. Again, many of these are known to function in the innate

immune response, and the expression of example transcripts after IFN-— stimulation is

shown in Figure 2.4a. The di�erence in dynamics is highlighted in these plots, in which

some transcripts are more quickly up-regulated before decreasing (TAP1) or plateauing

(DTX3L), while others steadily increase over time (ISG15, STAT1). Interestingly,

in several of the transcripts, increase in expression in the second individual begins

at later time points compared to the first individual. This may signify a broader

delay in response to type I interferons. Although there is a lack of replicates for each

individual, suggesting that further investigation may be needed in order to conclude

di�erences between the individuals, the presence of several close time points in each

time course deriving from di�erent experimental wells adds reliability to the findings.

Considering all significant transcripts (Figure 2.4b), there appear to be four main

patterns of expression displayed in both individuals. In order of the timing of peak

expression, there is first a group in which expression is highest in the control and at 1

and 2 hours of expression, but down-regulated after this (blue). Another group has

similar expression but with a later peak (3-4 hours, brown). Neither of these groups

are significantly enriched for genes involved in the interferon response (Table 2.2). The
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Fig. 2.3 Response to di�erent interferon stimulations. a) Z-score normalised TPM
across di�erent interferon treatments (IFN-–, IFN-—, and IFN-“) at 1 and 4 hours in
two individuals; b) Correlation (Pearson coe�cient) of TPM between di�erent IFN
treatments.
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remaining two groups both show up-regulation in response to IFN-—, although in the

group highlighted purple this is focused at 6-12 hours post-stimulation, while in the

final group (orange) expression is highest at the latest time points. In both cases, there

is high enrichment of genes known to play a role in the interferon response.

Table 2.2 Enrichment of apoptotic v.s. IFN response genes in response to IFN-—.

Group Total Apoptosis
genes

Enrichment
p-value

IFN
response
genes

Enrichment
p-value

Background 37978 1988 - 122 -
Early (brown) 288 44 3.1 x 10≠13 2 0.066
Down-regulated
(blue) 448 68 8.9 x 10≠16 2 0.17

Slow-response
(orange) 480 81 0 26 0

Intermediate-
response (purple) 366 68 0 27 0

2.1.3 Innate immunity vs. apoptotic genes across conditions

Thus far, the response to poly(I:C) and IFN-— stimulation has been considered sepa-

rately, and presence of genes known to be involved in the innate immune response only

seen through enrichment values. To further investigate this, alongside the presence of

genes known to be involved in apoptosis (a factor in deciding optimal experimental

conditions), the expression across control, poly(I:C) and IFN-— treated cells at many

time points were considered for the set of innate immune and apoptotic genes. As

there is overlap in these two sets of genes, only those which are annotated with one but

not the other term were considered. Figure 2.5a) shows the normalised TPM across

samples for innate immune and apoptotic genes respectively. While there are similar

expression patterns, for example genes expressed most highly in poly(I:C) treatment

(highlighted in orange), genes expressed across control and IFN-— samples (blue) and
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Fig. 2.4 Response to IFN-— stimulation over time in two individuals. a) TPM profile of
ISG15, DTX3L, TAP1 amd STAT1, respectively, at timepoints of 0-24 hours after IFN-
— treatment. e) Z-score normalised TPM of all transcripts for which the spline-based
model was significant (likelihood ratio test, q value < 0.01) in two individuals.



42

those expressed mostly in control samples and at the latest time points after poly(I:C)

stimulation (purple), there are some key di�erences between the innate immunity and

apoptosis set of genes. In the heat map on the left (innate immunity), there are more

distinct waves of expression through the poly(I:C) time-course, and there is a set of

genes in the lower part of the top cluster which are expressed in both IFN-— and

poly(I:C) stimulated cells – a feature missing from the right-hand heatmap.

In Figure 2.5b), the correlation between all samples is considered. While the

similarity between samples of the same treatment type is to be expected, a clear

di�erence in the similarity between IFN-— samples and controls can be seen – the

correlation is much lower in innate immune genes than apoptotic genes.
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Fig. 2.5 Comparison of control, poly(I:C) and IFN-— treated cells with time. a) Z-score
normalised TPM, and b) Correlation between samples, for genes with ’innate immune’
(left) and ’apoptosis’ (right) functions.
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2.2 Large-scale stimulation experiments

In order to study the e�ect of genetic variation on the innate immune response, a

large number of individuals was required. To this end, primary fibroblast cells from

the Human Induced Pluripotent Stem Cell Initiative (HipSci; http://www.hipsci.org/)

were used. These samples were collected initially for reprogramming into induced

Pluripotent Stem Cells (iPSCs), however they provided a ideal resource for stimulation

experiments, especially given the genetic profiling carried out through the intiative.

The cells derived from healthy individuals spanning a range of ages and both genders

(Appendix A).

2.2.1 Expansion of lines

As the initial sample from each line was one vial of 1 million cells, expansion of cells was

required to ensure there were enough for stimulation experiments and further studies.

Cells were cultured in supplemented DMEM (high glucose, pyruvate, GlutaMAX - Life

Technologies), with 10% FBS and 1% penicillin-streptomycin added, until they had

expanded at least three-fold. The passage numbers of fibroblasts ranged, as did the

apparent quality of the cells, leading to the introduction of a ’grading’ system. Not

all lines were graded, however this qualitative score - based upon morphology under

the microscope - was recorded for the majority of cultures, and cell viability scores

were recorded for all lines. Only lines with a grade 3 or above were used in further

experimental work; grades, where available, are shown in Appendix A.

2.2.2 Stimulation experiments

The aim of the stimulation experiments is to mimic a viral infection, inducing an

e�ective type I interferon response while minimizing apoptosis. On the basis of the data
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presented in section 2.1, it was determined that the following experimental conditions

would be used:

- 0.5 µg/ml p(I:C), at 2 and 6 hours

- 1000 U/ml IFN-—, at 2 and 6 hours

- Unstimulated, medium-only (control) cells.

The concentration of p(I:C) was chosen based upon the observation that 1 µg/ml

p(I:C) induced a similar response, and 0.1 µg/ml was significantly less e�ective (Fig-

ure 2.1d). The time points were chosen in order to capture the early induction of

response at 2 hours, followed by later response at 6 hours, while minimising observation

of the apoptotic e�ect seen at later times (Figure 2.5). To capture the secondary wave

of type I interferon signalling, IFN-— was applied directly to cells. Both IFN-– and

IFN-— induced a type I interferon response (Figure 2.3), however IFN-— was chosen

due to its physiological relevance in fibroblast cells.

A schematic of the experimental setup is shown in Figure 2.6. As can be seen, this

was carried out for fibroblasts from many individuals, with three donors being profiled

in each experiment. Using the same experimental protocol as above, fibroblasts were

stimulated directly with either rhodamine-conjugated poly(I:C) or human recombinant

IFN-—. Poly(I:C) was mixed with 1 µl lipofectamine 2000 in 50 µl optiMEM, per well

(6 well plate), for 5 minutes prior to transfection. IFN-— was diluted in the media

immediately prior to addition. After the relevant period of time, cells were trypsinised

and mixed (for example, ’unstimulated’ cells from the three donors would be pooled

together). The primary aim of this mixing step is to reduce downstream experimental

variability between donors, while simultaneously streamlining the collection stage.

However, this consequently necessitates the in silico deduction of the donor of origin

for each cell, as described below.
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Fig. 2.6 An overview of stimulation experiments on HipSci fibroblast lines. Cells were
stimulated with either 0.5 µg/ml p(I:C) or 1000 U/ml IFN-— for 2 or 6 hours, or left
unstimulated as a control. Three donors per experiment were stimulated, and pooled
together prior to FACS and consequent processing.

In a pilot study of three lines, cells were captured using both a droplet capture

method (10X Genomics) and a flow cytometry plate based method. In the droplet

capture protocol, control and stimulated cells were (separately) washed with PBS,

trypsinised, and resuspended in PBS + 4% BSA. Cells were captured in droplet

suspension on 10x Genomics’ Chromium machine, and processed to sequencing libraries

following the supplier’s protocol. Multiplexed libraries were sequenced on an Illumina

MiSeq instrument.

For the plate-based method used throughout, cells were washed with PBS, trypsinised,

and resuspended in PBS + 0.1% DAPI. Cells were sorted on a Becton Dickinson IN-

FLUX into plates containing 2 µl/well lysis bu�er. Single cells were sorted individually

(using FSC-W vs FSC-H), and apoptotic cells were excluded using DAPI. Rhodamine-

positive cells were selected in the poly(I:C) treatments. Reverse transcription and

cDNA amplification was performed according to the SmartSeq2 protocol (Picelli et al.,

2014), and library preparation was performed using an Illumina Nextera kit. Samples

were sequenced using paired-end 75bp reads on an Illumina HiSeq 2500 machine.
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2.3 Data processing

For both bulk and single cell data the reads were submitted to fastqQC (version

0.11.7), mapped using Salmon (version 0.9.1) on genome build GRCh37, quantified by

featureCounts from the Subread package (version 1.6.2). These programs were run

using the Nextflow pipeline [1]. All programs, excepting the Subread package, were

installed in the conda environment specified by the file ‘env-rnaseq1.6.yml‘ in the same

repository. The Subread package was installed separately. The index for salmon was

built on reference v29lift37.

[1] https://github.com/cellgeni/rnaseq

2.4 Additional datasets

2.4.1 Primary skin data

To study the similarity of in vitro cultured fibroblasts to ex vivo skin cells, a primary

skin tissue sample was used. This derived from a collaboration with Professor Muzlifah

Hani�a (Newcastle University), and Roser Vento, Felipe Vieira Braga and Gozde Kar.

A skin sample taken from a human female was digested overnight in RPMI, 10%

FCS, 100 U/ml penicillin, 100 µg/ml streptomycin, 1% L-Glutamine and 1.6 mg/ml

collagenase. Dead cells were removed using beads from Miltenyi Biotec, followed by

use of CD45+ beads (Miltenyi Biotec) to remove immune cells according to standard

manufacturer protocol. To profile non-immune cells, the CD45- fraction was processed

in a 10X Chromium machine (10X Genomics). Libraries were prepared according to the

manufacturer’s protocol. The resulting libraries were sequenced on two lanes of Illumina

Hiseq 2,500 (rapid run mode). Droplet-based sequencing data was aligned, filtered

and quantified using the Cell Ranger Single-Cell Software Suite, against the GRCh38
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human reference genome provided by Cell Ranger. The output of this procedure

(filtered matrix files) was used with the Seurat package. Low-quality cells (cells with

less than 500 expressed genes and above 10% mitochondrial reads) were removed prior

to further analysis.

2.4.2 Cross-mammalian data

These data were generated by Tzachi Hagai, and involved stimulation of primary dermal

fibroblasts from sexually-mature females of four di�erent species (human (European

ancestry), rhesus macaque, C57BL/6 (black 6) mouse and brown Norway rat). All

skin samples were taken from shoulders. Human cells were obtained from the Hipsci

project, as described above. Rhesus macaque cells were extracted from skin tissues that

were incubated for 2 h with 0.5% collagenase B after mechanical processing, and then

filtered through 100 µm strainers before being plated and passaged before cryo-banking.

Rodent cells were obtained from PeloBiotech where they were extracted using a similar

protocol.

Prior to stimulation, cells were thawed and grown for several days in ATCC fibroblast

growth medium with Fibroblast Growth Kit-Low serum (supplemented with Primocin

and penicillin/streptomycin) - a controlled medium that has proven to provide good

growing conditions for fibroblasts from all species, with slightly less than 24 h doubling

times. About 18 h before stimulation, cells were trypsinized, counted and seeded into

6-well plates (100,000 cells per well). Cells were stimulated as follows: (1) stimulated

with 1 µg/ml high-molecular mass poly(I:C) transfected with 2 µg/ml Lipofectamin

2,000; (2) mock transfected with Lipofectamin 2,000; (3) stimulated with 1,000 IU of

IFNB for 8 h (human IFN-— for human and macaque cells, rat IFN-— for rat cells,

mouse IFN-— for mouse cells; all IFNs were obtained from PBL, and had activity units

based on similar virological assays); or (4) left untreated.
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3.1 Introduction

Prior to characterising di�erences in the innate immune response within and between

individuals, it is important to understand heterogeneity in resting fibroblasts. Fibrob-

lasts are a diverse cell type, characterised by synthesis of structural proteins and role in

the extracellular matrix. It is known that there are a variety of subtypes across tissues,

however the breadth and molecular functions in humans are incompletely characterised.

Within the skin, there are several fibroblast classes, such as papillary, reticular, and

hair follicle fibroblasts. Fibroblast sub-types in the skin are reviewed in depth in

Lynch Watt, 2018 [136]. In this chapter, I investigate heterogeneity in cultured dermal

fibroblasts by comparing to scRNA-seq data from primary skin samples.

Even within cells classified as the same type, there can be considerable transcrip-

tional heterogeneity. This is reviewed in depth in [38], where the distinction is made

between the stochasticity in biochemical processes (termed ’noise’) and variability in

the observable molecular phenotypes. In brief, this phenotypic variability, which can

be assayed with single cell technologies, is a combination of stochastic noise along with

deterministic regulatory mechanisms. While the role of variability across biological con-

texts has yet to be fully elucidated, it is particularly important in immune-stimulation

contexts to first understand sources of transcriptional heterogeneity within the resting

state prior to activation. The second part of this chapter is focused on characterising

heterogeneity in unstimulated cultured fibroblasts.

Thus far, heterogeneity has been considered solely at a transcriptional level. How-

ever, elements such as ageing, environment and genetic factors can impact mutational

processes, thereby shaping the acquisition of somatic mutations across the life span [137–

141]. The maintenance and evolution of somatic mutations in di�erent sub-populations

of cells can result in clonal structure, both within healthy and disease tissues.



3.1 Introduction 51

Targeted, whole-genome and whole-exome DNA sequencing of bulk cell popula-

tions has been utilized to reconstruct the mutational processes that underlie somatic

mutagenesis [142–146] as well as clonal trees [147–149]. Availability of single-cell DNA

sequencing methods (scDNA-seq; [150–152] combined with new computational ap-

proaches have helped to improve the reconstruction of clonal populations [153–159].

However, the functional di�erences between clones and their molecular phenotypes

remain largely unknown. Systematic characterisation of the phenotypic properties of

clones could reveal mechanisms underpinning healthy tissue growth and the transition

from normal to malignant behaviour.

An important step towards such functional insights would be access to genome-wide

expression profiles of individual clones, yielding genotype-phenotype connections for

clonal architectures in tissues. Recent studies have explored mapping scRNA-seq

profiles to clones with distinct copy number states in cancer, thus providing a first

glimpse at clone-to-clone gene expression di�erences in disease [160–163]. Targeted

genotyping strategies linking known mutations of interest to single-cell transcriptomes

have proven useful in particular settings, but remain limited by technical challenges

and the requirement for strong prior information [164–166]. Generally-applicable

methods for inferring the clone of origin of single cells to study genotype-transcriptome

relationships are not yet established. In the final part of this chapter, I present a method

developed by Davis McCarthy and Yuanhua Huang to infer clones from scRNA-seq

data. Using cultured fibroblasts from the HipSci resource, I investigate mutational and

transcriptional heterogeneity across clones.
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3.2 A comparison of in vitro and ex vivo fibroblasts

A pilot experiment was used to investigate heterogeneity in the HipSci fibroblast

samples used. In this study, fibroblasts from three individuals were pooled together

before droplet capture (10X Genomics) and further processing, in order to minimise

confounding batch e�ects. Using a novel method - cardelino, described further below

in Section 3.2 - the donor of origin for each cell was deduced, using the scRNA-seq

data and genotype information available for these lines as part of the HipSci project.

Dimensionality reduction techniques were used to map the high dimensional tran-

scriptomic data onto a more easily interpreted low dimension space. Figure 3.1a shows

the e�ect of various cellular factors, both technical and biological, using t-Stochastic

Neighbourhood Embedding (tSNE) - a non-linear dimensionality reduction method.

Cell cycle, assigned using the Seurat package on the basis of cycle phase marker expres-

sion, and donor of origin are major factors that di�erentiate the cells (leftmost panels).

Number of unique molecular identifiers (UMIs), an indicator of transcript capture and

sequencing depth, along with mitochondrial percentage, an indicator of cell quality,

appear to have a less distinct distribution (rightmost panels), however this analysis

only contains cells which passed the quality control (greater than 500 detected genes

and less than 10% mitochondrial reads). Three variables were regressed out - cell cycle

phase, number of UMIs and mitochondrial percentage - to allow analysis of biological

di�erences of interest. This reduces the contribution of these factors (Figure 3.1b),

while retaining donor di�erences.

As the fibroblasts described within this thesis have been in culture and passaged

several times prior to use, a primary skin dataset produced by the lab of Muzlifah

Hani�a was used for comparison (Chapter 2.4). These data contain several cell types

in addition to fibroblast sub-populations (Figure 3.2a). Cluster-specific markers were
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Fig. 3.1 An overview of a pilot droplet scRNA-seq dataset. a) tSNE visualisations
coloured by cell cycle phase, donor, number of UMIs, and mitochondrial read proportion.
b) Repeat of the tSNE visualisations after regression of cell cycle, number of UMIs
and mitochondrial proportion.

identified using the Seurat v1 package [85], and are more uniquely expressed between

clusters (Figure 3.2b; list of marker genes in Table B.1; Appendix B). To compare

directly between these cells and the in vitro cultured fibroblasts mentioned above,

the datasets were combined and clustering performed again (Figure 3.2c). The two

datasets cluster separately in the combined analysis, however this is likely due to the

large experimental and technical di�erences driving distribution in the tSNE plot.

The expression of markers indicative of ex vivo fibroblasts (Figure 3.2a-b, clusters 0

and 2 - referred to as fibroblast type 1 and 2 respectively) were plotted on the combined

dataset (Figure 3.2d). From these plots, it appears that the in vitro cells are most

similar to a subset of primary fibroblasts (type 2), and that expression of these marker

genes is widespread and relatively homogenous across the in vitro cells. This not only

confirms the isolation of the in vitro fibroblasts to a particular subset, but also the

exclusion of other skin cell types from the population after extraction.
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Fig. 3.2 Comparison of in vitro and ex vivo fibroblasts. a) tSNE visualisation and
clustering of ex vivo skin cells; fibroblasts are shaded in grey. b) Top 10 di�erentially
expressed markers for each cluster; full list with gene names in Table B.1. c) tSNE of
merged ex vivo and in vitro datasets. d) Clustering of merged datasets, with ex vivo
fibroblast populations once again shaded in grey. d) Expression of selected ex vivo
fibroblast cluster markers in the merged dataset.
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3.3 Transcriptional heterogeneity in unstimulated

fibroblasts

While the fibroblasts studied appear to derive from one type, there may be other sources

of heterogeneity within the cell populations. To investigate this further, unstimulated

cells from the large stimulation experiment described in Chapter 2.2 were studied.

3.3.1 An overview of the scRNA-seq dataset

The quantified scRNA-seq data was first examined to gain an overview of the entire

dataset. Prior to applying any filtering steps, there were 32367 cells. Looking at

technical features of this dataset, it is clear that there is a large amount of variability

in the quality and coverage of cells, highlighted by considering the number of reads

mapped per cell, and the number of exogenous spike-in RNAs (ERCCs); Figure 3.3a.

Given the nature of scRNA-seq data, it is critical to perform stringent quality

control prior to downstream analysis. In the biological context presented, this is both

particularly relevant and challenging given the high levels of apoptosis induced alongside

the antiviral response, as seen in Chapter 2.3. While early timepoints were selected

to minimise apoptosis, there is a significant amount of cell death in samples treated

with poly(I:C) for six hours. This is apparent transcriptionally when considering the

number of mitochrondrial transcripts in each cell, which can be used as a transcriptional

indicator of cell death, and is highest in the final stimulation condition (Figure 3.3).

Considering these technical factors, the following thresholds for retaining cells were

applied: greater than 100,000 reads mapped, greater than 40% reads mapped, greater

than 50,000 counts from endogenous genes, greater than 2,000 features (genes), fewer

than 20% of counts from ERCCs and fewer than 20% of counts from mitochondrial

reads. This resulted in 16929 cells being retained.
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Fig. 3.3 Quality control of scRNA-seq data. a) Distribution of technical factors across
cells: number of mapped reads, counts from endogenous reads, total features, ERCC
percentage. Thresholds used for filtering cells shown in red: greater than 100,000
reads mapped, greater than 50,000 counts from endogenous genes, greater than 2,000
features (genes), fewer than 20% of counts from ERCCs and fewer than 20% of counts
from mitochondrial reads.. b) Number of reads from mitochondrial (MT) genes across
stimulation conditions.
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3.3.2 Clustering analysis of unstimulated fibroblasts

Following the quality control step, there were 3979 unstimulated cells across 61 indi-

viduals. Using UMAP (Uniform Manifold Approximation and Projection), it is clear

to see that a major driver of variation is experimental batch e�ect, although cells also

cluster by cell cycle phase (Figure 3.4a). The batch divide arises from experimental

date - it seems that samples from the first 16 experiments form one batch, while the

remainder of samples form a discrete second batch. Although every e�ort was made

to ensure reagents and protocols remained constant across all experiments, it appears

that there was some variation arising from the processing of single-cell samples (this

batch e�ect is not present in bulk RNA samples obtained in parallel). In order to

characterise the dataset as a whole, it is important to correct the expression data to

ensure it is comparable across experiments. In order to do this, the ’integrate’ function

from the Seurat v3 package was applied. This resulted in good mixing of the two

batches in UMAP space, with cell cycle phase now being the major driver of variation

in the dataset (Figure 3.4b).

To further investigate heterogeneity within unstimulated fibroblasts, the cells were

clustered using the Seurat v3 package [167]. This uses a graph-based approach, first

constructing a K-nearest neighbours (KNN) graph, using ’FindNeighbours’ function.

This uses the first 10 principal components to build the graph, refining weights between

cells considering the shared overlap in their local neighbourhood. The ’FindClusters’

function, which determines ’communities’ of cells using a modularity optimisation

approach, was then applied with a resolution of 0.2. This resulted in identification of

five clusters (Figure 3.5a).

To characterise these clusters further, the top 10 marker genes per cluster were

identified using a Wilcoxon rank sum test implemented in the ’FindMarkers’ function.

The expression of these genes across clusters is shown in Figure 3.5b. Enrichment
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Fig. 3.4 Integration of scRNA-seq batches with Seurat. a) Dimensionality reduction
using UMAP on uncorrected data: left, coloured by experimental batch, right, coloured
by cell cycle phase. The first two UMAP dimensions are shown. b) UMAP plots after
using Seurat v3’s ’integrate’ method: left, by batch, right, by cell cycle phase.
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of gene ontology (GO) terms was examined to identify biological processes that may

define these clusters; the significant GO terms are shown in Table B.2.

From this analysis, it appears that there are two major cycling clusters, both

enriched for GO terms such as "cell cycle" and "cell division". The distinction may

lie in the modules of cell cycle genes most highly expressed. Cycling cluster 1, for

example, appears to have a predominance of spindle-related genes, such as ASPM and

the centromeric proteins CENPF and CENPE.

Conversely, there are two clusters which represent non-cycling cells. Both these

clusters have marker genes involved in cell-to-cell interaction and the extracellular

matrix, such as FN1, COL3A1 and POSTN in non-cycling cluster 1, and B4GALT1,

EMP3 in cluster 2. Cluster 1 also has enriched GO terms reflecting these processes.

Again, although there are shared biological functions, cells in the two clusters may

di�er in expression level of subsets of these genes.

The final cluster, composed of a small number of cells, has GO terms related

to diverse processes. However, many of the genes appear to relate to ’regulation

of proliferation’ (UBC, S100A4, S100A6,LGALS1, TMSB4X) or myofibril assembly

(ACTC1, ACTG1, TMSB4X). This cluster comprises a mixed distribution of cell cycle

phases, and could represent proliferative cells which are at a transition between cell

cycle phases.
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Fig. 3.5 Clustering analysis of unstimulated fibroblasts a) Clusters identified using
Seurat v3’s graph-based clustering approach, applying the ’FindNeighbours’ and
’FindClusters’ functions, with a resolution of 0.2. Five clusters are identified. b) The
top 10 marker genes for each cluster are shown, with genes and cells ordered by cluster.
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3.4 Identifying common variants and somatic

mutations in scRNA-seq data

In collaboration with Davis McCarthy and Yuanhua Huang, we undertook a study to

define clones within fibroblast populations. The project aimed to harness the ability to

identify somatic mutations in transcriptomes of individual cells, mapping the cells to a

clonal tree defined on the basis of shared clonal mutations, followed by investigation

of the phenotypic di�erences between these clones. We used the scRNA-seq data of

HipSci fibroblast lines, described in Chapter 2, focusing on 32 lines for which matching

deep whole exome-sequencing data was available through the HipSci consortium. The

full manuscript, including Supplementary Material, is included in Appendix C.

3.4.1 Cardelino: a method for assigning cells to clones using

scRNA-seq data

Cardelino is a Bayesian method for integrating somatic clonal substructure and tran-

scriptional heterogeneity within a population of cells. Briefly, cardelino models the

expressed variant alleles in single cells as a clustering model, with clusters corresponding

to somatic clones with (unknown) mutation states (Figure. 3.6a). Critically, cardelino

leverages imperfect but informative clonal tree configurations obtained from complemen-

tary technologies, such as bulk or single-cell DNA sequencing data, as prior information,

thereby mitigating the sparsity of scRNA-seq variant coverage. Cardelino employs a

variant specific beta-binomial error model that accounts for stochastic dropout events

as well as systematic allelic imbalance due to mono-allelic expression or genetic factors.

Initially, we assessed the accuracy of cardelino using simulated data that mimic

typical clonal structures and properties of scRNA-seq as observed in real data (4

clones, 10 variants per branch, 25% of variants with read coverage, 200 cells, 50 repeat
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experiments). By default, we consider an input clone configuration with a 10% error

rate compared to the true simulated tree (namely, 10% of the values in the clone

configuration matrix are incorrect). Alongside cardelino, we considered two alternative

approaches: Single Cell Genotyper (SCG; [157]) and an implementation of Demuxlet,

which was designed for sample demultiplexing rather than clone assignment ([168];

see Methods and Supp. Fig. S1). In the default setting, cardelino achieves high

overall performance (Precision-Recall AUC=0.965; Figure. 3.6b), outperforming both

SCG and Demuxlet. For example, at a cell assignment confidence threshold (posterior

probability of cell assignment) of P=0.5, cardelino assigns 88% of all cells with an

overall accuracy of 88.6%.

We explored the e�ect of key dataset characteristics on cell assignment, including

the number of variants per clonal branch (Figure. 3.6c) and the expected number

of variants with non-zero scRNA-seq coverage per cell (Figure. 3.6d). As expected,

the number of variants per clonal branch and their read coverage in scRNA-seq are

positively associated with the performance of all methods, with cardelino consistently

outperforming alternatives, in particular in settings with low coverage. We further

explored the e�ects of allelic imbalance on cell assignment (Figure. 3.6e), and found

that cardelino is more robust than SCG and Demuxlet when there is a larger fraction

of variants with high allelic imbalance. We attribute cardelino’s robustness to its

approach of modelling the allelic imbalance per variant, whereas SCG and Demuxlet

both use a global parameter and hence cannot account for variability of allelic imbalance

across sites. We also varied the error rate in the guide clone configuration, either

introducing uniform errors in the configuration matrix by swapping the mutation

states of any variants in any clone (Figure. 3.6f) or by swapping variants between

branches (Figure. 3.6g). In both settings, cardelino is markedly more robust than

Demuxlet, which assumes that the defined reference clonal structure is error free.
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Notably, cardelino retains excellent performance (AUPRC>0.96) at error rates up to

25% (Figure. 3.6f-g), by modelling deviations between the observed and the true latent

tree (Appendix C; Supplementary Figure S2).

We also considered two simplified variants of cardelino, one of which does not

consider the guide clone tree and performs de novo tree reconstruction (cardelino-free),

and a second model that treats the guide tree as fixed without modelling any errors

(cardelino-fixed). These comparisons, further investigating the parameters assessed

in Figure. 3.6, confirm the benefits of the data-driven modelling of the guide clone

configuration as a prior that is adapted jointly while assigning scRNA-seq profiles to

clones (Appendix C; Supplementary Figure S3). We also explored the e�ects of the

number of clones (Appendix C; Supplementary Figure S3c), and the tree topology

(Appendix C; Supplementary Figure S4), again finding that cardelino is robust to these

parameters.

Taken together, these results demonstrate that cardelino is broadly applicable to

robustly assign individual single-cell transcriptomes to clones, thereby reconstructing

clone-specific transcriptome profiles.

3.4.2 Mutational analysis of in vitro fibroblasts

Between 30 and 107 unstimulated cells were assayed per line (median 61 cells after

QC; median coverage: 484k reads; median genes observed: 11,108; Appendix C

Supplementary Table S2). Initially, we considered high-confidence somatic single

nucleotide variants (SNVs) identified based on whole exome sequencing (WES) data

(Appendix C; Methods) to explore the mutational landscape across lines. This reveals

considerable variation in the total number of somatic SNVs, with 41–612 variants per

line (Figure. 3.7a; coverage of 20 reads, 3 observations of alternative allele, Fisher’s

exact test FDR0.1).
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Fig. 3.6 Overview and validation of the cardelino model. (a) Overview and approach.
A clonal tree is reconstructed using DNA-sequencing data to derive a guide clone
configuration. Cardelino then performs probabilistic clustering of single-cell transcrip-
tomes based on variants detected in scRNA-seq reads, assigning cells to clones in
the mutation tree. (b-g) Benchmarking of the cell assignment using simulated data
by changing one variable each time. The default values are highlighted with a star.
(b) Overall assignment performance for a dataset consisting of 200 cells, simulated
assuming a 4-clone structure with 10 variants per branch and non-zero read coverage
for 20% of the variants. An error rate of 10% on the mutation states between the
guide clone configuration and the true clonal tree was used. Shown is the fraction of
true positive cell assignments (precision) as a function of the fraction of assigned cells
(recall), when varying the threshold of the cell assignment probability. The black circle
corresponds to the posterior cell assignment threshold of P=0.5. (c-g) Area Under (AU)
precision-recall curve (i.e. area under curves such as shown in b), when varying the
numbers of variants per clonal branch (c), the fraction of informative variants covered
(i.e., non-zero scRNA-seq read coverage) (d), the precision (i.e., inverse variance) of
allelic ratio across genes; lower precision means more genes with high allelic imbalance
(e), the error rate of the mutation states in clone configuration matrix (f), and the
fraction of variants that are wrongly assigned to branches (g).
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Mutational signature exposures were estimated using the sigfit package [169],

providing the COSMIC 30 signatures as reference [144], and with a highest posterior

density (HPD) threshold of 0.9. Signatures were determined to be significant when

the HPD did not overlap zero. Two signatures (7 and 11) were significant in two or

more donors (Appendix C; Supplementary Figure S5). The majority of SNVs can be

attributed to the well-documented UV signature, COSMIC Signature 7 (primarily C

to T mutations; [144], agreeing with expected mutational patterns from UV exposure

of skin tissues (Figure. 3.7a).

To understand whether the somatic SNVs confer any selective advantage in skin

fibroblasts, we used the SubClonalSelection package to identify neutral and selective

dynamics at a per-line level [170]. Other established methods such as dN/dS [171] and

alternative methods using the SNV frequency distribution [172, 173] are not conclusive

in the context of this dataset, likely due to lack of statistical power resulting from the

low number of mutations detected in each sample. The SubClonalSelection analysis

identifies at least 10 lines with a clear fit to their selection model, suggesting positive

selection of clonal sub-populations (Figure. 3.7a). In other words, a third of the samples

from this cohort of healthy donors contain clones evolving adaptively, which we can

investigate in more detail in terms of transcriptome phenotype.

Next, we reconstructed the clonal trees in each line using WES-derived estimates

of the variant allele frequency of somatic variants that are also covered by scRNA-

seq reads (Appendix C; Methods). Canopy [149] identifies two to four clones per

line (Figure. 3.7a). Briefly, Canopy models the phylogeny of cell growth in a tissue

by depicting a bifurcating tree arising from a diploid germline cell whose daughter

cells are subject to progressive waves of somatic mutations. When a sample of a

tissue is taken, the tree is sliced horizontally, cutting the branches to form “leaves”

or “clones”. Thus each clone represents a subpopulation of cells that share (and are
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identified by) the somatic mutations in their most recent common ancestral cell. To

handle the presence of a subpopulation of cells without somatic mutations, “clone1”

is defined to represent a non-bifurcating, somatic mutation-free branch of the clonal

tree. Thus, with any somatic variants present at sub-clonal frequencies (the case for

all cell lines here), Canopy will infer the presence of at least two clones. Following

Canopy’s inference of clones, we used cardelino to confidently map scRNA-seq profiles

from 1,732 cells (out of a total of 2,044 cells) to clones from the corresponding lines.

Cardelino estimates an error rate in the guide clone configuration of less than 25%

in most lines (median 18.6%), and assigns a large fraction of cells confidently (>90%

for 23 lines; at posterior probability P>0.5). The model identifies four lines with

an error rate between 35-46% and an outlier (vils, a line with few somatic variants),

which demonstrates the utility of the adaptive phylogeny error model employed by

cardelino. We also ran the other four alternative methods on these 32 lines (Appendix

C; Supplementary Figure S12), and found that the de novo methods appear to su�er

from higher uncertainty in recontrustructing clonal trees from scRNA-seq data only

(Appendix C; Supplementary Figure S12C), while using the fixed-guide clonal tree

from bulk exome-seq data may be over-simplified and leads to reduced stability when

considering alternative high-confidence trees (Appendix C; Supplementary Figure

S12D-E).

To further assess the confidence of these cell assignments, we considered, for each

line, simulated cells drawn from a clonal structure that matches the corresponding

line, finding that cardelino gives high accuracy (AUPRC>0.9) in 29 lines, again

clearly outperforming competing methods (Appendix C; Supplementary Figure S13).

Additionally, we observed high concordance (R2 = 0.94) between the empirical cell-

assignment rates and the expected values based on the corresponding simulation for the

same line (Figure. 3.7b). Lines with clones that harbour fewer distinguishing variants
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are associated with lower assignment rates (Appendix C; Supplementary Figure S14),

at consistently high cell assignment accuracy (median 0.965, mean 0.939 - Appendix C;

Supplementary Figure SS15), indicating that the posterior probability of assignment is

calibrated across di�erent settings. We also considered the impact of technical features

of scRNA-seq data on cell assignment, finding no evidence of biased cell assignments

(Appendix C; Supplementary Figure S16-20). Finally, clone prevalences estimated from

Canopy and the fractions of cells assigned to the corresponding clones are reasonably

concordant (adjusted R2 = 0.53), providing additional confidence in the cardelino cell

assignments, while highlighting the value of cardelino’s ability to update input clone

structures using single-cell variant information (Figure. 3.7c).

3.4.3 Transcriptional analysis of in vitro fibroblasts

Initially, we focused on the fibroblast line with the largest number of somatic SNVs

(joxm; white female aged 45-49; Figure. 3.8a), with 612 somatic SNVs (112 detected

both in WES and scRNA-seq) and 79 QC-passing cells, 99% of which could be assigned

to one of three clones (Figure. 3.8a). Principal component analysis of the scRNA-seq

profiles of these cells reveals global transcriptome substructure that reflects to a degree

the somatic clonal structure in this population of cells (Figure. 3.8b). Additionally, we

observed di�erences in the fraction of cells in di�erent cell cycle stages, where clone1

has the fewest cells in G1, and the largest fraction in S and G2/M (Figure. 3.8b, inset

plot; global structure and cell cycle plots for all lines in Appendix C; Supplementary

Figures S24-33). This suggests that clone 1 is proliferating most rapidly. Next, we

considered di�erential expression analysis of individual genes between the two largest

clones (clone 1: 46 cells versus clone 2: 25 cells), which identifies 901 DE genes (edgeR

QL F-test; FDR<0.1; 549 at FDR<0.05; Figure. 3.8c). These genes are approximately

evenly split into up- and down-regulated sets. However, the down-regulated genes are
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Fig. 3.7 Characterisation of mutational and clonal structure in 32 fibroblast lines. a)
Overview and somatic mutation profiles across lines (donors), from left to right: donor
age; number of somatic SNVs; estimated exposure of COSMIC mutational signature
7; probability of selection estimated by SubClonalSelection [170], colour denotes the
selection status based on probability cut-o�s (grey lines), the grey background indicates
results with high uncertainty due to the low number of mutations detected; number of
clones inferred using Canopy [149], with colour indicating the number of informative
somatic SNVs for cell assignment to each clone (non-zero read coverage in scRNA-seq
data). (b) Assignment rate (fraction of cells assigned) using simulated single-cell
transcriptomes (x-axis) versus the empirical assignment rate (y-axis) for each line
(at assignment threshold posterior P>0.5). Colour denotes the average number of
informative variants across clonal branches per line. The line-of-best fit from a linear
model is shown in red, with 95% confidence interval shown in grey. (c) Estimated clone
prevalence from WES data (x-axis; using Canopy) versus the fraction of single-cell
transcriptomes assigned to the corresponding clone (y-axis; using cardelino). Shown
are the fractions of cells assigned to clones one to three as in a, considering the most
likely assignment for assignable cells (posterior probability P>0.5) with each point
representing a cell line. Colour denotes the total fraction of assignable cells per line
(P>0.5). A line-of-best fit from a weighted regression model is shown in red with 95%
confidence interval shown in grey.
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enriched for processes involved in the cell cycle and cell proliferation. Specifically, the

three significantly enriched gene sets are all up-regulated in clone 1 (camera; FDR<0.1;

Figure. 3.8d). All three gene sets (E2F targets, G2/M checkpoint and mitotic spindle)

are associated with the cell cycle, so these results are consistent with the cell-cycle

stage assignments suggesting increased proliferation of clone 1. Taken together, the

results suggest that somatic substructure in this cell population results in clones that

exhibit measurably di�erent expression phenotypes across the transcriptome, with

significant di�erential expression in cell cycle and growth pathways.

To quantify the overall e�ect of somatic substructure on gene expression variation

across the entire dataset, we fitted a linear mixed model to individual genes (Appendix C;

Methods), partitioning gene expression variation into a line (likely donor) component,

a clone component, technical batch (i.e. processing plate), cellular detection rate

(proportion of genes with non-zero expression per cell) and residual noise. As expected,

the line component typically explains a substantially larger fraction of the expression

variance than clone (median 5.5% for line, 0.5% for clone), but there are 194 genes

with a substantial clone component (>5% variance explained by clone; Figure. 3.9a).

Even larger clone e�ects are observed when estimating the clone component in each

line separately, which identifies between 331 and 2,162 genes with a substantial clone

component (>5% variance explained by clone; median 825 genes; Figure. 3.9b). This

indicates that there are line-specific di�erences in the set of genes that vary with clonal

structure.

Next, we carried out a systematic di�erential expression (DE) analysis to assess

transcriptomic di�erences between any pair of clones for each line (considering 31 lines

with at least 15 cells for DE testing - Appendix C; Methods). This approach identifies

up to 1,199 DE genes per line (FDR<0.1, edgeR QL F test). A majority, 61%, of the

total set of 5,289 unique DE genes, are detected in two or more lines, and 39% are
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Fig. 3.8 Clone-specific transcriptome profiles reveal gene expression di�erences for joxm,
one example line. (a) Top: Clonal tree inferred using Canopy [149]. The number of
variants tagging each branch and the expected prevalence (fraction) of each clone is
shown. Bottom: cardelino cell assignment matrix, showing the assignment probability
of individual cells to three clones. Shown below each clone is the fraction of cells
assigned to each clone. (b) Principal component analysis of scRNA-seq profiles with
colour indicating the most likely clone assignment. Inset plot: Cell-cycle phase fractions
for cells assigned to each clone (using cyclone [174]). (c) Volcano plot showing negative
log10 P values versus log fold changes (FC) for di�erential expression between cells
assigned to clone 2 and clone 1. Significant di�erentially expressed genes (FDR<0.1)
are highlighted in red. (d) Enrichment of MSigDB Hallmark gene sets using camera
[175] based on log2 FC values between clone 2 and clone 1 as in c. Shown are negative
log10 P values of gene set enrichments, considering whether gene sets are up-regulated
in clone 1 or clone 2, with significant (FDR < 0.05) gene sets highlighted and labelled.
All results are based on 78 out of 79 cells that could be confidently assigned to one
clone (posterior P>0.5).



3.4 Identifying common variants and somatic mutations in scRNA-seq data 71

detected in at least three of the 31 lines. Comparison to data with permuted gene labels

demonstrates an excess of recurrently di�erentially expressed genes compared to chance

expectation (Figure. 3.9c, P<0.001; 1,000 permutations - Appendix C; Methods). We

also identify a small number of genes that contain somatic variants in a subset of clones,

resulting in di�erential expression between wild-type and mutated clones (Appendix C;

Supplementary Figure S34).

To investigate the transcriptomic changes between cells in more detail, we used

gene set enrichment analysis in each line. This approach reveals whether there is

functional convergence at a pathway level (using MSigDB Hallmark gene sets; Methods;

[176] ). Of 31 lines tested, 19 have at least one significant MSigDB Hallmark gene set

(FDR<0.05, camera; Methods), with key gene sets related to cell cycle and growth

being significantly enriched in all of those 19 lines. Directional gene expression changes

of gene sets for the E2F targets, G2M checkpoint, mitotic spindle and MYC target

pathways are highly coordinated (Figure. 3.9d), despite limited overlap of individual

genes between the gene sets (Appendix C; Supplementary Figure S35).

Similarly, directional expression changes for pathways of epithelial-mesenchymal

transition (EMT) and apical junction are correlated with each other. Interestingly, these

are anti-correlated with expression changes in cell cycle and proliferation pathways

(Figure. 3.9d). Within individual lines, the enrichment of pathways often di�ers

between pairs of clones, highlighting the variability in e�ects of somatic variants on

the phenotypic behaviour of cells (Figure. 3.9e).

These consistent pathway enrichments across a larger set of donors point to somatic

variants commonly a�ecting the cell cycle and cell growth in fibroblast cell populations.

These results indicate both deleterious and adaptive e�ects of somatic variants on

proliferation, suggesting that a significant fraction of these variants are non-neutral in

the majority of donors in our study.
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Fig. 3.9 Signatures of transcriptomic clone-to-clone variation across 31 lines. (a) Violin
and box plots show the percentage of variance explained by clone, line, experimental
plate and cellular detection rate for 4,998 highly variable genes, estimated using a
linear mixed model (Methods; Appendix C). (b) Percentage of gene expression variance
explained by clone when fitting a linear mixed model for each individual line for the
400 genes with the most variance explained by clone per line (Methods; Appendix C).
Individual lines correspond to cell lines (donors), with joxm highlighted in black and
the median across all lines in red. (c) The number of recurrently di�erentially expressed
(DE) genes between any pair of clones (FDR<0.1; edgeR QL F test), detected in
at least one to 12 lines, with box plots showing results expected by chance (using
1,000 permutations). (d) Left panel: Heatmap showing pairwise correlation coe�cients
(Spearman R, only nominal significant correlations shown (P<0.05)) between signed
P-values of gene set enrichment across lines, based on di�erentially expressed genes
between clones. Shown are the 17 most frequently enriched MSigDB Hallmark gene sets.
Right panel: number of lines in which each gene set is found to be significantly enriched
(FDR<0.05). (e) Heatmap depicting signed P-values of gene set enrichments for eight
Hallmark gene sets in 19 lines. Dots denote significant enrichments (FDR<0.05).
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3.5 Discussion

Within the fibroblast categorisation, several types of fibroblast have been defined

within the skin [136]. Studies into expression of collagen and proteoglycans with

immunohistochemistry have revealed di�erences between papillary and reticular layers

[177, 178] although di�erences in fibroblast type are confounded by other di�erences

in these layers. However, taking an explant culture allows isolation of papillary and

reticular fibroblasts. Applying this approach to human dermis has identified several

di�erences between these fibroblast types, such as rate of cell division [179, 180] and

expression of collagens and proteoglycans [181].

In this chapter, I have shown isolation of the fibroblasts used in my work to one

subtype of fibroblast. However, given the additional complexity within the skin, it is

important to consider that studying one fibroblast type alone will not illuminate the

full in vivo role of fibroblast innate immune response in the skin. Homogeneity in the

resting state provides the benefit of a standardised experimental system, particularly

key when conducting experiments across many donors. However, it is important to

place any findings within the full dermal context, taking into account both fibroblast

heterogeneity and the interaction between fibroblasts and the remaining cell types

within the local environment.

Within the in vitro fibroblasts assayed, the largest source of variation in the scRNA-

seq data derived from experimental batch. However, after integrating experimental

batches, I showed that the largest source of biological heterogeneity in the dataset

arises from cell cycle e�ect. Partitioning of cells highlighted clusters of cycling and

non-cycling cells. In the latter, clusters showed enrichment for GO terms relating to

cell-to-cell communication and involvement in the extracellular matrix, reflecting the

role of fibroblasts within the wider tissue environment.
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Considering intra-individual genetic variability within the fibroblast populations

profiled, we identified clonal structure in 32 of the fibroblast lines for which WES data

was available. Harnessing transcriptomic information for cells assigned to clones, we

identified substantial and convergent gene expression di�erences between clones across

lines. Analysis of clonal evolutionary dynamics using somatic variant allele frequency

distributions revealed evidence for positive selection of clones in ten of 32 lines. These

results support previous observations of clonal populations undergoing positive selection

in normal human eyelid epidermis assayed by targeted DNA sequencing [138, 172, 182].

We shed light on the phenotypic e�ects of this adaptive evolution, identifying

di�erential expression of gene sets implicated in proliferation and cancer such as the

E2F and MYC pathways. This surprising result in healthy tissue suggests pervasive

inter-clonal phenotypic variation with important functional consequences, although

clonal dynamics in vivo in primary tissue may di�er from what we observe in the

fibroblast cell lines. It is intriguing to speculate about potential mechanisms driving

these inter-clonal phenotypic di�erences, which might stem solely from observed somatic

variants, could involve unobserved variants, or could arise through indirect mechanisms

involving (post-)transcriptional regulation or epigenetic di�erences. Further work is

needed to identify drivers of molecular di�erences between clones.



Chapter 4

Cell-to-cell variability in the innate

immune response
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4.1 Introduction

The innate immune system acts as a first line of defence across cell types and species,

inhibiting pathogen replication and signalling pathogen presence to other cells. A key

feature of this response is the rapid evolution that many of the genes have undergone

along the vertebrate lineage, often attributed to pathogen-driven selection. As described

in Chapter 1.3, another characteristic of the response is the high level of heterogeneity

among responding cells, however the functional importance of this variability is unclear.

These two characteristics - rapid evolutionary divergence and high cell-to-cell

variability — seem to be at odds with the strong regulatory constraints imposed on the

host immune response: the need to execute a well-coordinated and carefully balanced

programme to avoid tissue damage and pathological immune conditions. How this tight

regulation is maintained despite rapid evolutionary divergence and high cell-to-cell

variability remains unclear, but it is central to our understanding of the innate immune

response and its evolution.

In this chapter, I present two angles of this question. Firstly, in a study led by

Tzachi Hagai, we studied the evolution of the innate immune programme using two

cells types — fibroblasts and mononuclear phagocytes — in di�erent mammalian

clades challenged with several immune stimuli. The results presented here focus on

the fibroblast results; the experimental methods are described in Chapter 2.4. I then

go on to use a larger human scRNA-seq dataset, described in Chapter 2.2, to define

the dynamics of the response at a single cell resolution, characterising response gene

modules.
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4.2 Innate immune variability: a cross-mammalian

study

4.2.1 Transcriptional divergence in immune response

First, we studied the transcriptional response of fibroblasts to stimulation with dsRNA

(poly(I:C)) across the four species (human, macaque, rat and mouse). Bulk RNA-

sequencing (RNA-seq) data was generated for each species after 4 h of stimulation,

along with respective controls (Figure 4.1a).

In all species, dsRNA treatment induced rapid upregulation of genes that encode

expected antiviral and inflammatory products, including IFN-—, TNF, IL1A and

CCL5 (Figure 4.1b). A similar transcriptional response between species was observed

when considering one-to-one orthologues (Spearman correlation, P < 10≠10 in all

comparisons), as reported in other immune contexts [183–185]. Furthermore, as seen

in other expression programmes [186–188], the response tended to be more strongly

correlated between closely related species than between more distantly related species

(Appendix D; Extended Data Figure 1).

Using these cross-species bulk transcriptomics data, we characterized the di�erences

in response to dsRNA between species for each gene. While some genes, such as those

encoding the NF-B subunits RELB and NFKB2, respond similarly across species,

other genes respond di�erently in the primate and rodent clades (Figure 4.1c). For

example, Ifi27 (which encodes a restriction factor against numerous viruses) is strongly

upregulated in primates but not in rodents, whereas Daxx (which encodes an antiviral

transcriptional repressor) exhibits the opposite behaviour.

To quantify transcriptional divergence in immune responses between species, we

focused on genes that were di�erentially expressed during the stimulation (see Appendix
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D; Methods) referred to as ‘responsive genes’ (Figure 4.1d). In this analysis, we study

the subset of these genes with one-to-one orthologues across the studied species, of

which there are 955 such responsive genes in dsRNA-stimulated human fibroblasts.

We define a measure of response divergence by calculating the di�erences between the

fold-change estimates while taking the phylogenetic relationship into account (Appendix

D; Methods).

For subsequent analyses, we split the 955 responsive genes into three groups on the

basis of their level of response divergence: (1) high-divergence dsRNA-responsive genes

(the top 25% of genes with the highest divergence values in response to dsRNA across

the four studied species); (2) low-divergence dsRNA-responsive genes (the bottom 25%);

and (3) genes with medium divergence across species (the middle 50%; Figure 4.1d).

4.2.2 Cell-to-cell variability in immune response

As described in Chapter 1.3, previous studies have shown that the innate immune

response displays high variability across responding cells. However, the relationship

between cell-to-cell transcriptional variability and response divergence between species

is not well understood. To study heterogeneity across individual cells, single cell

RNA-seq was performed in all species in a stimulation time course (Figure 4.1a).

Cell-to-cell variability was quantitatively measured using an established measure for

variability: distance to median (DM) [25]. We found a clear trend in which genes that

were highly divergent in response between species were also more variable in expression

across individual cells within a species (Figure 4.2); observed across the stimulation

time points and in di�erent species.

Next, we examined the relationship between the presence of promoter elements

(CpG islands - CGIs - and TATA-boxes) and a gene’s cell-to-cell variability. Genes

that are predicted to have a TATA-box in their promoter had higher transcriptional



4.2 Innate immune variability: a cross-mammalian study 79

Fig. 4.1 Response divergence across species in innate immune response. a) Study
design. Primary dermal fibroblasts from mouse, rat, human and macaque stimulated
with dsRNA or controls. Samples were collected for bulk and single cell RNA-seq and
ChIP–seq. b) Fold change of example genes (IFNB1, TNF, IL1A and CCL5) across
the four species after 4h dsRNA stimulation. c) Fold-change (FC) after 4h dsRNA
stimulation in fibroblasts for sample genes across species (edgeR exact test, based on
n = 6, 5, 3 and 3 individuals from human, macaque, rat and mouse, respectively).
False discovery rate (FDR)-corrected P values are shown (***P<0.001, **P<0.01,
*P<0.05). d) Estimating each gene’s level of cross-species divergence in transcriptional
response to dsRNA stimulation. Using di�erential expression analysis, fold-change
in dsRNA response was assessed for each gene in each species. We identified 1,358
human genes as di�erentially expressed (DE) (FDR-corrected q<0.01), of which 955
had one-to-one orthologues across the four studied species. For each gene with one-
to-one orthologues across all species, a response divergence measure was estimated
using: response divergence = log[1/4 x �i, j(log[FCprimatei] ≠ log[FCrodentj])2].
Genes were grouped into low, medium and high divergence according to their response
divergence values for subsequent analysis.
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Fig. 4.2 Cell-to-cell variability versus response divergence across species and conditions.
Cell-to-cell variability values, as measured with DM across individual cells, compared
with response divergence between species (grouped into low, medium and high diver-
gence). Variability values are based on n =29, 56, 55, 35 human cells, n = 20, 32,
29, 13 rhesus cells, n = 33, 70, 65, 40 rat cells, and n = 53, 81, 59, 30 mouse cells,
stimulated with dsRNA for 0, 2, 4 and 8 h, respectively. Rows represent di�erent time
points (0, 2, 4 and 8 h), and columns represent di�erent species. High-divergence genes
were compared with low-divergence genes using a one-sided Mann–Whitney test. Data
in boxplots represent the median, first quartile and third quartile with lines extending
to the furthest value within 1.5 of the IQR.
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variability, whereas CGI-containing genes tended to have lower variability (Figure 4.3a),

in agreement with previous findings [189]. This finding also applied to transcriptional

divergence between species (Figure 4.3b), showing that both these characteristics are

associated with the presence of specific promoter elements.

Fig. 4.3 Promoter architecture versus transcriptional divergence and variability. a)
Comparison of cell-to-cell variability of genes with and without a TATA-box and a CGI
(one-sided Mann–Whitney test). Cell-to-cell variability values are from DM estimations
of human fibroblasts stimulated with dsRNA for 4 h (n = 55 cells). b) Comparison of
divergence in response of genes with and without a TATA-box and a CGI in fibroblast
dsRNA stimulation.

4.2.3 Transcriptional divergence and variability of cytokines

We next investigated whether di�erent functional classes among responsive genes

are characterized by varying levels of transcriptional divergence. To this end, we

divided responsive genes into categories according to function (such as cytokines,

transcriptional factors and kinases) or the processes in which they are known to be

involved (such as apoptosis or inflammation). Genes related to cellular defence and

inflammation—most notably cytokines, chemokines and their receptors (hereafter

‘cytokines’)—tended to diverge in response significantly faster than genes involved in

apoptosis or immune regulation (chromatin modulators, transcription factors, kinases

and ligases) (Figure 4.4).
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Fig. 4.4 Transcriptional divergence in genes of di�erent functional categories. Distribu-
tions of divergence values of 9,753 expressed genes in fibroblasts, 955 dsRNA-responsive
genes and di�erent functional subsets of the dsRNA-responsive genes (each subset
is compared with the set of 955 genes using a one-sided Mann–Whitney test and
FDR-corrected P values are shown).

We subsequently compared the response divergence across species with the transcrip-

tional cell-to-cell variability of three groups of responsive genes with di�erent functions:

cytokines, transcription factors, and kinases and phosphatases (referred to as ‘kinases’).

In contrast to kinases and transcription factors, many cytokines display relatively high

levels of cell-to-cell variability across time points (Figure 4.5a). Furthermore, these are

expressed only in a small subset of responding cells (Figure 4.5b).This has previously

been reported for several cytokines, as described in Chapter 1.3. Here, we find that

cells show high levels of variability in expression of cytokines from several families (for

example, IFN-—, CXCL10 and CCL2).
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Fig. 4.5 Cell-to-cell variability levels in cytokines, transcription factors and kinases. a)
Violin plots showing the distribution of cell-to-cell variability values (DM) of cytokines,
transcription factors and kinases during a dsRNA stimulation time course in fibroblasts.
Number of cells used in each species (at 2, 4, 8 h dsRNA, respectively): human, 56,
55, 35; macaque, 32, 29, 13; rat, 70, 65, 40; mouse, 81, 59, 30. Purple, cytokines;
green, transcription factors; beige, kinases. Comparisons between groups of genes
were performed using one-sided Mann–Whitney tests. Violin plots show the kernel
probability density of the data. b) Histograms showing the percentage of fibroblasts
expressing cytokines (top), transcription factors (middle) and kinases (bottom) following
4 h dsRNA stimulation, in human, macaque, rat and mouse cells. The percentage of
expressing cells is divided into 13 bins (x-axis). The y-axis represents the fraction of
genes from this gene class (for example, cytokines) that are expressed in each bin.
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4.3 Characterising the Type I interferon response

in human fibroblasts

4.3.1 Single-cell RNA-sequencing data

Having characterised variability in the innate immune response from an evolutionary

perspective, the question of heterogeneity within the human population remains. In

order to address this, a comprehensive dataset comprising both bulk and single cell

RNA-sequencing data at two timepoints and with two stimulation conditions, along

with a control, was generated - as described in Chapter 2.

The single cell dataset was filtered as described in Chapter 3.2, and UMAP di-

mensionality reduction was used to gain an oversight of the full dataset (Figure 4.6).

It is clear to see that, as before, a major driver of variation is experimental batch

e�ect, although cells also cluster by experimental condition. Once again, the ’integrate’

function from the Seurat v3 package [167] was applied. This resulted in good mixing

of the two batches in UMAP space, with experimental condition now being the major

driver of variation in the dataset (Figure 4.6). The separation in unstimulated and

interferon-treated cells seen in the ’condition’ plot arises from cell cycle state, with

cycling cells forming the cluster of mixed conditions on the left side of the plot.

4.3.2 The temporal dynamics of the response

Harnessing the resolution available within the single-cell data generated, it is possible

to comprehensively study the innate immune response over time. Although both

poly(I:C) and IFN-— induce antiviral signalling within treated cells, the two elicit

di�erent responses, as can be seen in Figure 4.6.
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Fig. 4.6 Integration of scRNA-seq batches with Seurat. Dimensionality reduction
using UMAP on uncorrected data (upper panel) and corrected data using Seurat
v3’s ’integrate’ method (lower panel). Colours indicate, in order, experimental batch,
stimulation condition, and cell cycle phase. The first two UMAP dimensions are shown.
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In order to appropriately characterise the two response pathways, cells treated with

poly(I:C) were separated from those treated with IFN-—. The two time points for

each condition were considered together, along with control unstimulated cells. The

benefit of combining all treated cells is particularly apparent after poly(I:C) stimulation,

in which many cells after two hours of stimulation are transcriptionally similar to

unstimulated cells, highlighting heterogeneity in this response.

To create a pseudotime, the destiny package was used, which employs a di�usion map

approach [190]. This was applied to the 5000 most highly variable genes, calculated

with Seurat’s ’findVariableGenes’ function, to the IFN-— and poly(I:C) pathways

separately. Figure 4.7a shows Di�usion Components (DCs) 1 and 2 for each of these

responses. This demonstrates that the largest source of variability, segregating along

DC1, is stimulation condition. DC2 shows separation, particularly of unstimulated

cells, representing cell cycle e�ects. This is confirmed by GO term enrichment analysis

of the genes most highly correlated with DC2, along with visual inspection of the cell

cycle phase distribution versus DC2 - shown in the inset plots in Figure 4.7a.

Given the correlation of DC1 with stimulation response in both treatment conditions,

this is used as a ’response pseudotime’. In the case of poly(I:C) stimulation, the reverse

of DC1 is taken as unstimulated cells lie on the right hand side. The distribution

of cells in each stimulation condition across this response pseudotime highlights the

heterogeneity in response (Figure 4.7b). This is particularly true in the response to

poly(I:C) treatment, where the earlier timepoint shows a bimodality in the cells. Many

of the cells show high similarity to the unstimulated state, while a subset are shifted

to the right in response pseudotime, overlapping with the peak of the poly(I:C) 6 hour

distribution (which itself has a broad distribution). In the IFN-— response pseudotime,

the peak around the middle of DC1 corresponds to cell cycle state, however a breadth

in distribution within responding cells can be seen.
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Fig. 4.7 A pseudotime of poly(I:C) and interferon response pathways. a) Cells plotted
after dimensionality reduction with ’destiny’ [190]; di�usion components (DCs) 1
and 2 shown for the ’IFN pathway’, left, and ’poly(I:C) pathway’, right, coloured
by stimulation condition. Inset plots show the number of cells per cell cycle phase,
assigned using ’cyclone’ [174] against DC2. b) Density of cells from each stimulation
condition across response pseudotimes, for the ’IFN pathway’, left, and ’poly(I:C)
pathway’, right.
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To confirm that the calculated pseudotimes capture the innate immune response, one

can look at expression of known response genes, such as ISG15 and IFN-— (Figure 4.9a).

It is worth noting that IFN-— treatment is not expected to induce IFN-— expression

itself, and that in response to poly(I:C) treatment only a subset of cells produce IFN-—

(rightmost panel), as discussed previously. Beyond example genes, it is possible to

verify the expression of an entire innate immune response gene set. Deschamps et al.

curated a set of 1553 innate immune genes (IIGs) from GO term annotation, InnateDB

and manual addition [191]. These genes are classified into di�erent functions, and

examples of the genes and their annotated functions are shown in Figure 4.8. Looking

at expression across the pseudotimes defined above, IIGs increase in the response to

both IFN-— and poly(I:C) (Figure 4.9b), whereas the opposite is true for the remainder

of genes (referred to as ’non-IIGs’).

Fig. 4.8 Functional classification of innate immune genes. A curated list of innate
immune genes (IIGs) was obtained from Deschamps et al. [191]. Examples involved in
Type I interferon signalling, and their functional classification, are shown here.
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Fig. 4.9 Expression of innate immune genes across response pseudotime. a) The
expression of ISG15 and IFNB1 against IFN pseudotime, left, and poly(I:C) pseudotime,
right. b) Average expression of the set of innate immune genes (IIGs) [191] and non-IIGs
over IFN pseudotime, left, and poly(I:C) pseudotime, right.
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4.3.3 Defining gene modules in the innate immune response

To define the dynamics of gene expression for each gene independently, it is possible

to fit a model to the expression of each gene across response pseudotime. Using the

SwitchDE package (Appendix E; Figure E.1a) [97], parameters for the activation

time (t0), expression level (µ) and slope of activation (k) were inferred for the IFN-—

and poly(I:C) responses. Using these inferred models, it is possible to look at the

pattern of gene expression across time. Genes were categorised as ’on’ or ’o�’ for

each response pathway based upon whether they had a positive or negative k value,

respectively. The top 500 most significant genes (taking the q-value from the SwitchDE

model) in each direction were considered, and hierarchical clustering was used to define

clusters of genes with shared temporal expression patterns. The number of clusters

was determined visually based upon the dendrograms of gene similarity, for the IFN-—

and poly(I:C) pseudotimes respectively. These clusters show good concordance with

modules defined using an alternative approach: WGCNA (Weighted gene correlation

network analysis)[100]; Appendix E, Figure E.1.

Each module was tested for enrichment of the IIGs described above, and results are

shown in Tables 4.1 and 4.2 for the response to IFN-— and poly(I:C) respectively. The

distribution of functional categories for these IIGs was considered, and is shown in the

right hand plots of Figures 4.10 and 4.11. Furthermore, GO term enrichment analysis

was conducted for each cluster, and the list of significantly enriched terms (pvalue <

0.05) is shown in Tables E.1 and E.2 (Appendix E).

In both the IFN-— and poly(I:C) response, there is one major cluster which represents

the canonical Type I interferon response. In the case of IFN-— treatment, this is

cluster coloured in black (Figure 4.10). This module of genes shows low expression in

unstimulated cells (visible in the heatmap), a high enrichment of IIGs (hypergeometric

test; pvalue = 1.98e-30), and inclusion of typical genes (such as DDX58, MYD88,
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OAS3, ISG15, ISG20, IRF7, IFIT2, TRIM25, SAMHD1, IFI6, IFI35 and STAT1). The

GO terms for this cluster reflect this signalling pathway, with the two most significant

terms being "defense response to virus" and "type I interferon signaling pathway".

This cluster has a particularly high representation of IIGs in the classes ’e�ector’,

’regulator’, and ’sensor’. highlighting functions across the pathway (Figure 4.10a; right

panel). The same trend can be seen in the ’black’ cluster in poly(I:C), which shows

highest expression in later stages of the poly(I:C) response pseudotime. The most

significant GO terms include "innate immune response", "defense response to virus"

and "cytokine-mediated signaling pathway", and all of the example genes listed above

fall within the cluster (with the exception of IRF7, however IRF9 is included). Again,

IIGs are highly enriched (hypergeometric test; pvalue = 3.58e-42), and show functions

across the pathway (Figure 4.11a; right panel).

Beyond these two major clusters, modules of genes with discrete innate immune

response functions can be identified. For example, in response to IFN-—, there is a

co-expressed set of genes (pink) which show involvement in signal transduction and

regulation. This cluster includes genes such as DHX58, JAK2, STAT3 and TRADD.

The third cluster, on the other hand, shows a higher level of e�ector function, with

enrichment of GO terms relating to cytokine production, and genes such as CCl2,

CXCL11 and CXCL16.

These alternative modules are less clear in the poly(I:C) response. Here, the second

group of genes is a small cluster dominated by mitochondrial genes, which is reflected

in the enriched GO terms. The two annotated IIGs within this cluster are IFITM2

and IFITM3, both of which are classified as ’e�ector’ proteins. The third cluster, while

enriched in IIGs, shows less ubiquitous expression in responding cells than cluster 1.

There are no significant GO terms for this cluster, however members include genes
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known to be involved in the type I interferon response, such as NFKBIA + NFKBID,

SOCS3, CCL5, DDX3X and JUN, and particularly in signal transduction.

Along with categorising up-regulated gene sets, it is interesting to consider the

set of genes down-regulated in response to the mock-viral stimulations. In response

to IFN-— treatment, two major clusters of genes are down-regulated. One cluster,

expressed in unstimulated cells but switched o� in the response (Figure 4.10b; left

panel) reflects processes around chromatin organisation and nucleic acid processing.

Example genes in this cluster are HDAC2, SMARCA2, and ZNF287. The other cluster

represents the cell cycle, with strongly enriched GO terms such as ’cell cycle’ and ’DNA

metabolic process’. Genes include CDK1, CCNA2, CDCA2, CCDC18, and several

members of the CENP family.

In response to poly(I:C) stimulation, there are two major functions of down-regulated

genes. The largest cluster of genes, which show decreased expression in responding cells,

are involved in biological processes such as ’organelle organisation’ and ’establishment

of localisation in cell’. The second and third cluster are less clearly defined, however one

cluster (pink) shows enrichment of GO terms highlighting metabolic processes, while the

other centres on protein localisation and processing. Furthermore, these two modules

show di�erent temporal dynamics across the response pseudotime (Figure 4.11b; left

panel).

The definition of these modules across response pseudotimes highlights a tightly

regulated type I interferon response, with coordinated modules of genes showing discrete

innate immune functions.
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Table 4.1 Enrichment of IIGs in modules of co-expressed genes in the IFN-— response.

Gene module Total group size Number of IIGs
Enrichment
p-value

Canonical Type I IFN 81 44 1.98e-30
Regulator/signal transduction197 53 4.66e-18
E�ector 222 40 2.65e-08
Cell cycle 244 19 0.33
Chromatin organisation 256 16 0.69

Table 4.2 Enrichment of IIGs in modules of co-expressed genes in the poly(I:C) response.

Group Total group size Number of IIGs
Enrichment
p-value

Canonical Type I IFN 311 103 3.58e-42
Mitochondrial 25 2 0.27
Signal transduction 164 24 0.00032
Organelle localisation 298 26 0.15
Metabolic processes 127 21 0.00011
Protein regulation 75 10 0.018
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Fig. 4.10 Modules of co-expressed genes in the response to IFN-—. The SwitchDE
package [97] was used to infer a dynamic model of expression for each gene. Genes
with a positive ’k’ value were termed ’on’ genes and those with a negative ’k’ as ’o�’
genes, shown in panels a and b respectively. The 500 ’on’ and ’o�’ genes with the
most significant qvalue were selected. Their z-score normalised expression across the
pseudotime defined in Figure 4.7 is shown on the left; genes were clustered using
hierarchical clustering with the ward method. Right: proportion of genes from each IIG
functional category within the total cluster; the background set shows representation
in the entire set of 15363 genes tested in SwitchDE.
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Fig. 4.11 Modules of co-expressed genes in the response to poly(I:C). The SwitchDE
package [97] was used to infer a dynamic model of expression for each gene. Genes
with a positive ’k’ value were termed ’on’ genes and those with a negative ’k’ as ’o�’
genes, shown in panels a and b respectively. The 500 ’on’ and ’o�’ genes with the
most significant qvalue were selected. Their z-score normalised expression across the
pseudotime defined in Figure 4.7 is shown on the left; genes were clustered using
hierarchical clustering with the ward method. Right: proportion of genes from each IIG
functional category within the total cluster; the background set shows representation
in the entire set of 15363 genes tested in SwitchDE.
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4.4 Discussion

In this chapter, I have described work charting the evolutionary architecture of the

innate immune response. We showed that genes that diverge rapidly between species

show higher levels of variability in their expression across individual cells than genes that

diverge more slowly. Both of these characteristics are associated with a similar promoter

architecture, enriched in TATA-boxes and depleted of CGIs. Notably, such promoter

architecture is also associated with the high transcriptional range of genes during the

immune response. Thus, transcriptional changes between conditions (stimulated versus

unstimulated), species (transcriptional divergence), and individual cells (cell-to-cell

variability) may all be mechanistically related to the same promoter characteristics.

In yeast, TATA-boxes are enriched in promoters of stress-related genes, displaying

rapid transcriptional divergence between species and high variability in expression

[192, 193]. This finding suggests intriguing analogies between the mammalian immune

and yeast stress responses—two systems that have been exposed to continuous changes

in external stimuli during evolution.

We have also shown that genes involved in regulation of the immune response—such

as transcription factors and kinases—are relatively conserved in their transcriptional

responses. These genes might be under stronger functional and regulatory constraints,

owing to their roles in multiple contexts and pathways, which would limit their ability

to evolve. This limitation could represent an Achilles’ heel that is used by pathogens

to subvert the immune system. Cytokines, on the other hand, diverge rapidly between

species, owing to their promoter architecture and because they have fewer constraints

imposed by intracellular interactions or additional non-immune functions. Cytokines

may therefore represent a successful host strategy to counteract rapidly evolving

pathogens as part of the host–pathogen evolutionary arms race.
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Cytokines also display high cell-to-cell variability and tend to be co-expressed with

other cytokines and cytokine regulators in a small subset of cells, and this pattern is

conserved across species. As prolonged or increased cytokine expression can result in

tissue damage [194–196], restriction of cytokine production to only a few cells may

enable a rapid, but controlled, response across the tissue to avoid long-lasting and

potentially damaging e�ects. This cellular variability in response is also observed in the

larger human scRNA-seq dataset, where cells in each stimulation condition show a wide

distribution of positions across the IFN-— and poly(I:C) response pseudotimes. This

further strengthens the notion that the response is heterogenous but highly regulated.

One mechanism to achieve a strongly coordinated response is the regulation of gene

modules with discrete functions. By characterising genes whose expression changes

across response stimulation, I showed that it is possible identify distinct modules. In

both stimulation timepoints, a gene module representing the canonical type I interferon

pathway was observed. Further discrete gene clusters were seen, such as those involved

in signalling or e�ector functions. These modules showed di�erences in temporality

and variability of expression. For example, the ’e�ector’ module showed less ubiquitous

expression across cells in response to IFN-— treatment compared to the type I interferon

module, mirroring the cytokine heterogeneity seen in the cross-mammalian work. These

features further suggest tight regulation of expression within each gene set, and across

the response as a whole.
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Inter-individual variability in the
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5.1 Introduction

Alongside characterising the innate immune response across the scRNA-seq dataset

as a whole, as seen in the previous chapter, it is possible to consider the variability

between donors, illuminating di�erences in response to infections within the healthy

human population. One method to do so is by fitting a linear mixed model to each

gene, partitioning variation in gene expression into components. This can give insight

into the source of variation within a dataset globally, but doesn’t pinpoint any e�ects

that may derive from specific genetic di�erences.

To elucidate the e�ect of genetic variation, an alternative approach that is commonly

used is the eQTL approach, as described in Chapter 1.1. In the case of scRNA-

sequencing data, it is possible to generate a mean expression value in two ways: either

averaging across all cells to create a single ’pseudobulk’ expression level per donor, or

treating each cell from a donor as an independent replicate. While the latter approach

increases sample size, it comes at the price of increased noise and computational cost.

For this reason, the ’pseudobulk’ expression value was used in this work.

Alongside mean expression level, scRNA-seq also opens up the possibility of identi-

fying variation in the heterogeneity of expression within each donor. For the current

study, the simple metric of variance of each gene per donor per response pathway was

calculated. As discussed in Chapter 1.2, however, there are alternate methods to reflect

variability in expression, such as BASiCS [88] and DM [25].

Beyond metrics around the average and variance of expression between cells, it is

possible to define alternative phenotypes capturing the di�erence in response between

individuals (Table 5.1). One example is the proportion of cells expressing a gene,

particularly of importance for cytokines and other signalling molecules that show

stochastic expression across cells (Chapter 1.3).
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Another element of variability is not just the level of expression, but the temporality

of this. It may be the case that certain donors respond ’earlier’ than others - a phenotype

that is not captured by considering expression alone. However, this only provides one

phenotype per donor, rather than a per-gene value allowing testing against the specific

gene in question. The dynamics of expression may be inferred on a individual gene

basis, for example using the SwitchDE package [97]. This infers parameters for the

activation time (t0), expression level (µ) and slope of activation (k) (Table 5.1).

In this chapter, I describe the application of these approaches to the IFN-— and

poly(I:C) stimulation dataset previously described, using both bulk and single cell RNA

sequencing. By considering variability in gene expression within these data, I aim to

identify a genetic basis for di�erences in innate immune response between individuals.
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Table 5.1 Phenotypes derived from scRNA-seq data.

Phenotype Description Schematic representation

Mean

The mean expression level per
gene per sample. Cells from each
donor and condition are aver-
aged to produce a ’pseudobulk’.

Variance

The variance of expression per
gene per sample. As above, cells
from each donor and condition
are combined together.

Cell
proportion

The proportion of cells express-
ing a gene, per donor and condi-
tion

Average
pseudotime

For each donor, the average of all
cells for the IFN and poly(I:C)
pseudotimes

SwitchDE
parameters

Applying ’switchDE’ [97] to
each donor for the IFN and
poly(I:C) pathway, inferring pa-
rameters t0, µ and k per gene
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5.2 Variance partitioning of gene expression

To investigate variability within the scRNA-seq data, a variance partitioning approach,

as described above, was taken. This was applied to the 5000 most highly variable genes,

using the variancePartition package [197]]. The components of ’donor’, ’condition’ and

’log10(counts)’ were included in the model, along with a residual noise component.

Figure 5.1a highlights the large proportion of variance explained by residual noise in

this single cell dataset. Despite this, there are 674 genes for which the donor component

explains more than 5% of variance in gene expression, and 362 genes for which condition

explains more than 5% of variance. The latter threshold may be used to define a set of

’response’ genes - those that vary most with stimulation conditions.

While many genes show large variance explained by donor or condition independently

(Figure 5.1b), there are 139 genes for which both components explain more than 5% of

gene expression variation. This shows promise for the ability to identify genes that

vary between individuals in a stimulation-specific manner.

Fig. 5.1 Variance partitioning of gene expression across scRNA-seq data. a) A linear
mixed model was fitted for each gene, and variance in expression was partitioned into
the following components: ’donor’, ’condition’ (stimulation and time point), ’log10(total
counts)’, and a residual noise component. b) For each gene, the variance explained by
’donor’ (x-axis) and ’condition’ (y-axis) is shown. The red line indicates a 5% threshold
for variance explained by condition, used to define a set of ’response’ genes.



104

5.3 eQTL analysis on bulk RNA-seq data

In order to identify the e�ect of common variants on the innate immune response,

di�erences in the expression of response genes were examined using an eQTL approach,

described further below. Gene sets were defined for the IFN-— response and poly(I:C)

response independently.

To identify genes with a change in expression in response to the two stimuli, the

generalised linear model quasi-likelihood F test (glmQLF) in the edgeR package [90]

was applied to the bulk RNA-seq data generated in parallel to the scRNA-seq described

above. The test was conducted in a pairwise manner between each stimulation condition

(for example the IFN-— 2 hour time point) and the unstimulated sample, and genes

were labelled as ’response genes’ using an FDR threshold of 0.05. The union for the

two time points per stimulus were taken, yielding an overall set of ’IFN-— response’

and ’poly(I:C) response’ genes. These were supplemented with genes determined as

having a high condition-dependent variance in the single cell data: the 362 genes for

which the ’condition’ component explained more than 5% of variance in expression.

A consistent eQTL mapping strategy was applied to bulk RNA-seq expression and

expression traits derived from scRNA-seq. We considered common variants (minor

allele frequency > 5%) within a cis-region spanning 100kb up- and downstream of

the gene body for cis QTL analysis. Association tests were performed using a linear

mixed model (LMM), accounting for population structure and sample repeat structure

as random e�ects (using a kinship matrix estimated using PLINK [198]). All models

were fitted using LIMIX [199]. The significance was tested using a likelihood ratio

test (LRT). To adjust for global di�erences in expression across samples, we included

the first 10 principal components, calculated on the 500 mostly highly variable genes,
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as covariates. To control for multiple testing, we then applied Benjamini-Hochberg

correction [200].

The results of eQTL testing on the bulk RNA-seq data for each condition are shown

in Figure 5.2: panel a shows testing of the set of IFN-— response genes, while panel b

shows the equivalent for poly(I:C) response genes. The values refer to the number of

significant genes using a multiple testing-corrected p-value threshold of 0.1, with the

lower part of each panel showing the condition (or overlap of conditions) in which this

set was significant. The total number of significant hits in each condition is shown in

the bottom left.

For both the IFN-— and poly(I:C) response, the eQTL e�ects identified are largely

context specific, with low overlap seen between the di�erent conditions. Unfortunately

the poly(I:C) 6 hour timepoint had a lower number of samples, reducing the power to

detect QTL genes. However, the remaining conditions show detection of many response

genes. Within these sets, several identified genes are within the list of known innate

immune genes (IIGs) described in the previous chapter. These are listed in Table 5.2.

The identification of IIGs with a genetically-determined variation in the unstimu-

lated state raises the intriguing possibility of di�erences between individuals in their

ability to respond based upon expression prior to infection. This is highlighted by

QTLs in DDX1 and UNC93B1, both of which are involved in sensing the presence of

viral dsRNA. In the case of DDX1, this is in a complex with DDX21, DDx36 and TRIF

[201], while UNC93B1 is involved in direct interaction with TLRs [202]. The expression

di�erences across genotypes and conditions is shown for DDX1 as an example (Fig-

ure 5.3a). The presence of eQTLs in DDX1 has been found elsewhere; significant results

can be seen in multiple tissues of the GTEx resource [203] (Figure 5.3b), including

the SNP shown in panel a. Interestingly, this eQTL is most significant in transformed

fibroblast cells, although significant e�ects can be seen in other tissues.
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Fig. 5.2 Overlap of eQTLs across stimulation conditions in bulk RNA-seq data, for a)
IFN-— response genes, and b) poly(I:C) response genes. Values refer to the number
of significant genes (multiple testing-corrected p-value < 0.1). The total number of
significant hits in each condition is shown in the bottom left.
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Fig. 5.3 Expression of DDX1 varies with genotype and conditions. a) Expression level
(TPM) in bulk RNA-seq data of the DDX1 gene, grouped by stimulation condition and
coloured by genotype. b) Presence of eQTLs in the DDX1 gene in the GTEx project.
Upper panel shows a zoomed out view of the LD structure, while the lower panel shows
the region around the TSS. The SNP identified in panel a is highlighted in red.
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Looking at the remaining list of IIGs, several genes known to play a genetically-

causative role in disease are identified. For example, mutations in TREX1 have been

shown to play a role in both systemic lupus erythematosus and Aicardi–Goutieres

syndrome [204–206]. As described in Chapter 1, heterozygous null mutations in

IRF7 have been shown to lead to life-threatening influenza infection, and alter type I

interferon signalling capacity of dermal fibroblasts [124]. The observation of variability

in expression of these genes in healthy individuals could underpin di�erences in the

response to infections within the phenotypically normal human population.

Table 5.2 Significant eQTL hits from bulk RNA-seq - known IIGs.

Condition Innate Immune Genes

IFN-— response genes

Unstimulated AMACR DDX1 UNC93B1

IFN-— 2h DNAJA3 TRIM69 TREX1 PRKAR2A UBA7

IFN-— 6h TREX1 BTN3A2 AMACR IRF7 TRIM69 TRIM4 APOBEC3F
CALCOCO2 DUSP7 CCL2

Poly(I:C) 2h AMACR PLEC LGALS9 IFIT5 BTN3A2 FES CTSS PRDX1
DDX1 IRAK1BP1 OAS3 CASP7 DUSP7

Poly(I:C) 6h -
Poly(I:C) response genes

Unstimulated AMACR DDX1 UNC93B1

IFN-— 2h TRIM69 TREX1 PRKAR2A UBA7 PRKAR2A

IFN-— 6h TREX1 BTN3A2 AMACR IRF7 TRIM69 TRIM4 CASP12
APOBEC3F CALCOCO2 DUSP7 CCL2

Poly(I:C) 2h ABCF1 AMACR PLEC LGALS9 IFIT5 BTN3A2 ULBP3 CTSS
PRDX1 DDX1 IRAK1BP1 OAS3 CASP7 ACE

Poly(I:C) 6h -
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5.4 QTL analysis on single cell phenotypes

5.4.1 Mean expression

The results of eQTL testing on ’pseudobulk’ expression values for each condition are

shown in Figure 5.4, with panel a showing IFN-— response genes, and poly(I:C) response

genes in panel b, as before. While the overall number of genes identified is lower than

bulk RNA-seq data, likely due to a slightly smaller sample size and increased noise

within the dataset, it is still possible to detect significant QTLs at a multiple-testing

corrected p-value threshold of 0.1. Once again, these e�ects are highly context specific.

Considering the innate immune genes within these sets (Table 5.3), several of the

previously identified genes from bulk eQTL analysis appear, such as DDX1, IFIT5,

OAS3 and BTN3A2. However, novel genes are identified through this analysis, such

as ZC3HAV1, TRIM23 and TRIM25, highlighting the potential of scRNA-seq as

an orthogonal data type in eQTL discovery. An example is shown for TRIM25 in

Figure 5.5, in which expression in single cell (panel a) versus bulk (panel b) data is

shown. The expression level in bulk RNA-seq is low (values between 1-3 TPM), which

may be the cause of lack of ability to detect a significant e�ect in this dataset.

Table 5.3 Significant eQTL hits from scRNA-seq ’pseudobulk’ values - known IIGs.
The genes detected are all classified as both IFN-— and Poly(I:C) response genes.

Condition Innate Immune Genes
IFN-— and poly(I:C) response genes

Unstimulated TRIM5 ZC3HAV1 DDX1 TRIM23 IFIT5
IFN-— 2h TRIM5 ZC3HAV1
IFN-— 6h BTN3A2 OAS3 ZC3HAV1 TRIM25
Poly(I:C) 2h TRIM5
Poly(I:C) 6h TRIM5 ZC3HAV1
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Fig. 5.4 Overlap of eQTLs across stimulation conditions in scRNA-seq derived ’pseu-
dobulk’ data, for a) IFN-— response genes, and b) poly(I:C) response genes. Values
refer to the number of significant genes (multiple testing-corrected p-value < 0.1). The
total number of significant hits in each condition is shown in the bottom left.
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Fig. 5.5 Detection of a TRIM25 eQTL in scRNA-seq data. a) Expression level (Seurat-
corrected value) in scRNA-seq data of the TRIM25 gene, grouped by stimulation
condition and coloured by genotype. b) Expression level (TPM) in bulk RNA-seq data
of the TRIM25 gene, grouped by stimulation condition and coloured by genotype.
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5.4.2 Other response phenotypes

Using the IFN-— and poly(I:C) response pseudotimes described in Chapter 4, the average

position of cells for each donor was calculated, for each pseudotime independently. As

the pseudotime was inferred based upon all donors, the pseudotime average for each

donor should reflect the speed of response relative to other donors. Furthermore, the

parameters reflecting dynamics of gene expression (t0, mu and k) were inferred for each

donor across the two pseudotimes using the SwitchDE package [97]. The variance of

gene expression, along with the ’cell proportion’ (i.e. the number of cells expression

each gene), across the two responses was also calculated.

In preliminary attempts at using these scRNA-seq derived phenotypes, only the

variance of genes and proportion of expressing cells across the IFN-— and poly(I:C)

response pseudotimes showed significant QTL genes. While this did not result in

many innate immune genes being identified, two novel hits were TECPR1, which

had a significant cell proportion QTL in both the IFN-— and poly(I:C) response, and

SMARCE1, which has a significant cell proportion QTL in the poly(I:C) response.

Furthermore, genes identified above - ZC3HAV1 and TRIM5 - were also detected

as cell proportion QTLs. These results show the potential of scRNA-seq to identify

variation in the proportion of cells expressing innate immune genes between individuals.

ZC3HAV1 is shown as an example in Figure 5.6. For this gene, no bulk eQTL was

detected (Figure 5.6a), however there appears to be a shift in the distribution of cells

expressing the gene (and also a shift in expression level) between the genotypes.
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Fig. 5.6 Detection of a ZC3HAV1 cell proportion QTL in scRNA-seq data. a) Expression
level (TPM) in bulk RNA-seq data of the ZC3HAV1 gene, grouped by stimulation
condition and coloured by genotype. b) Expression level (Seurat-corrected value)
in SCRNA-seq data of the ZC3HAV1 gene coloured by genotype. Distribution of
expression is shown for the unstimulated cells (upper panel) and cells after 2 hours of
IFN-— treatment (lower panel).
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5.5 Characterisation of QTL innate immune genes

Taking a combination of genes identified across QTL approaches yields a total set of 391

genes. While the majority were identified through bulk eQTL analysis (Figure 5.7a),

use of the single cell data identified 89 additional genes.

In order to characterise these further, enrichment for particular functional categories

was investigated for genes within the known IIG set (Figure 5.7b). Each functional

class was compared against the background number in the entire scRNA-seq dataset.

Sensors were found to be significantly enriched (hypergeometric test, pvalue = 0.021),

which could suggest an interesting source of variability in response to infection through

di�erences in detection of pathogens.

Having identified many response genes with a genetic basis for variation between

individuals, it is interesting to consider whether these genes show co-regulated expression

at a single cell level and across pseudotime. To this end, the expression of all genes

with significant QTLs identified was plotted against the IFN-— and poly(I:C) response

pseudotimes defined in Chapter 4 (Figures 5.7c-d). From this analysis, it appears

that there are modules of co-expressed genes, particularly in response to poly(I:C)

treatment, however further work will be needed to elucidate whether there is a genetic

mechanism underpinning co-regulation of these genes.
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Fig. 5.7 Investigation of significant genes across QTL approaches. a) Overlap in genes
identified from bulk RNA-seq data and scRNA-seq (pseudobulk, variance and cell
proportion QTLs). b) Distribution of IIGs across functional categories - background
on the left, vs significant QTL genes on the right. c-d) Expression of QTL genes across
the IFN-— and poly(I:C) response pseudotimes respectively.
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5.6 Discussion

Variability in the response to viruses has long been studied, predominantly through

investigation of individuals with susceptibility to particular infections, or with a genetic

disorder in innate immune genes. In this work, I showed variability in this response

across healthy individuals, first using a variance partitioning approach to highlight

genes whose expression was explained by condition or donor.

Applying QTL approaches to bulk RNA-seq data revealed hundreds of genes with

a genetic basis for inter-individual variation. Several of these have been previously

implicated in disease, such as TREX1 [204–206] and IRF7 [124], validating the detection

of biologically interesting hits. However, the identification of other innate immune genes

in donors with a normal phenotype highlights the potential to understand variability

in the response within the population as a whole. Furthermore, characterisation of

QTL genes which are not annotated as known innate immune genes may yield novel

insight into the type I interferon response.

Using scRNA-seq data, it was possible to expand the set of QTL genes, primarily

through calculation of a ’pseudobulk’ expression metric. In the case of phenotypes

reflecting di�erences in temporal dynamics, such as average position in response

pseudotime, or SwitchDE parameters, it is likely that the number of cells and donors

in the current study is not large enough given the amount of noise within the data, and

hence the di�culty in robustly inferring dynamic parameters. For such insights, it will

be necessary to further develop the phenotypes used in such approaches. Furthermore,

an increase in sample size will be required to improve power in single cell-based QTL

studies. In a recent computational analysis, Sarker et al. estimated the sample size

that would be required to detect dispersion QTLs in scRNA seq data (QTLs that

a�ect the variability but not mean expression level) [207]. They showed that 4,015
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individuals would be the lower bound to achieve 80% power to detect the strongest

dQTLs in iPSCs. While this number will be lower for phenotypes that also a�ect mean

expression level, an increase in number of individuals profiled will broaden the range

of molecular phenotypes interrogatable with QTL approaches.

Moving forward, further analysis will shed light on the nature of the QTL hits

identified. Through combination with ChIP-seq and ATAC-seq data, it will be possible

to overlap identified genomic loci with regulatory regions. This will shed light on the

mechanism of regulation, for example through transcription factor binding sites or

enhancer regions. This will also allow detection of regions that may be ’primed’ in an

unstimulated state, as shown previously in human macrophages [208].





Chapter 6

Concluding remarks

In this PhD, I optimised and conducted large-scale single-cell RNA sequencing exper-

iments to study cellular variation in the type I interferon response in fibroblasts of

70 healthy human individuals. Using this dataset, I first studied heterogeneity in the

unstimulated state, comparing to ex vivo skin data to confirm the relative homogeneity

of the in vitro cultured fibroblasts used. Using matched whole exome sequencing data,

somatic mutations in sub-populations of cells within each donor were detected, and

clonal populations identified. Applying cardelino to 32 of the HipSci fibroblast lines

identified hundreds of di�erentially expressed genes between cells from di�erent somatic

clones, with cell cycle and proliferation pathways frequently enriched.

Returning to innate immunity, I performed analyses into the variability in the

innate immune response across mammalian species, showing a link with evolutionary

divergence. Within the human dataset I generated, I characterised the innate immune

response at single cell resolution, elucidating the dynamics of the response across

donors and defining discrete gene modules. Harnessing the scRNA-seq data, I defined

several phenotypes to capture variability in this response. Applying quantitative trait

loci approaches to study the genetic basis of this heterogeneity in innate immunity, I
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identified 391 response genes with a QTL from either bulk, pseudobulk, or single-cell

expression traits.

Moving into the future, experimental work will be required for functional validation

of genetic variants altering the innate immune response. One approach is the use

of knock down or knock out experiments (for example, through transfection with

siRNAs) prior to innate immune stimulation with poly(I:C)/IFN-—. This would allow

elucidation of the role of individual genes in the type I interferon response, and could

be applied to genes identified through temporal analysis (Chapter 4) or genetic analysis

(Chapter 5) in order to investigate regulation within the system. For the validation of

specific genetic variants, such as those described in Chapter 5, a CRISPR approach

could be used. With this, cell lines could be engineered to contain the alternative

genotype at the specific site of interest, prior to monitoring the e�ect on response.

Where variants are suspected to a�ect binding of transcription factors, this could be

confirmed by ChIP-seq experiments. Furthermore, stimulation experiments may be

extended to understand how genetic variants relate to susceptibility phenotypes in

particular individuals. In vitro infection with specific viruses, rather than poly(I:C) and

IFN-—, could allow a more focused look at the role of variation in infectious diseases.

As described in Chapter 3, fibroblasts form just one element of the skin millieu. To

place this component of the innate immune response within the tissue environment,

transcription can be measured spatially. Single-molecule fluorescence in situ hybridisa-

tion (smFISH) [209] provides a method to detect individual mRNA molecules of tissue

sections, but is limited in the number of transcripts assayable. Recent developments in

multiplexing, for example multiplex error-robust FISH (MERFISH) [210] and sequential

FISH (seqFISH) [211] have addressed this bottleneck. Applying these methods to

innate immune stimulation in the skin would deepen our understanding of the spatial
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nature of type I interferon signalling, which may shed light on the heterogeneity in

this response.

While this work has focused on variability in transcription, technologies to profile

single cells at di�erent molecular levels have vastly evolved over recent years. For

example, there are several techniques to capture epigenetic regulation, such as single

cell reduced representation bisulfite sequencing (scRRBS) [212, 213] and single-cell

methylome and transcriptome sequencing (scMT-seq) [214], which profile DNA methy-

lation. Single cell proteomic assays are developing rapidly, however they are still

limited in the number of proteins that can be studied within an experiment. Proteomic

methods, such as fluorescence-activated cell sorting (FACS) and cytometry by time of

flight (CyTOF) do allow higher throughput of cells than sequencing-based technologies.

To gain a more complete picture of the heterogeneity in innate immune response, it

will be necessary to utilise and integrate these assays.

This work has highlighted the role of scRNA-sequencing technology in understanding

variability within healthy donors, both in the unstimulated (Chapter 3) and activated

(Chapters 4 and 5) states. We are currently at the boundary of throughput for the use

of single cell sequencing in population genetics. However, the increasing scale of these

technologies will soon allow this approach to become more commonplace, allowing

application to many biological processes.

Looking further into the future, it is intriguing to speculate on the ability to use

our understanding of variability in the innate immune response in a translational

context. We are at a point of technological advance in two directions: an increasing

characterisation of genetic variability, with initiative such as the 100,000 Genomes

Project, and a rapid increase in the resolution and methodologies with which we

can profile individual cells. This will need to be accompanied by development of

sophisticated computational methods to handle such large -omics data. However, with
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increased data availability, we may be able to link molecular phenotypes to physiological

responses, incorporating information such as infection history. This will pave the way

for translating an understanding of the molecular basis and impact of variability in

innate immune response to personalised therapies.
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Appendix A

Overview of HipSci fibroblast lines

Table A.1 Overview of HipSci lines used in stimulation experiments.

Donor Grade Passage Gender Age Ethnicity

bima 3/4 12 male 40-44 White - White British
bubh 3/4 7 female 35-39 White - White British
ceik NA 8 male 50-54 White - White British
ciwj 4 6 female 35-39 White - White British
cuhk NA 7 female 45-49 White - White British
deyz 4 7 female 55-59 White - White British
diku NA 7 female 60-64 White - White British
dons 4 7 female 55-59 White - White British
eika 4 6 male 45-49 White - White British
eipl 3/4 6 female 40-44 White - White British
eiwy NA 13 female 65-69 White - White British
eofe 4 7 female 45-49 White - White British
euts NA 7 male 60-64 White - White British
fawm 4 8 female 70-74 White - White British
feec 3 male 60-64 White - White British
fiaj NA 6 male 55-59 White - White British
fikt NA 7 male 50-54 White - White British
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Donor Grade Passage Gender Age Ethnicity

garx 4 6 female 50-54 White - White British
gesg 4 7 male 60-64 White - White British
gifk 4 8 male 55-59 White - White British
hehd 3/4 7 female 60-64 White - White British
heja NA 7 male 70-74 White - White British
hiaf NA 6 male 65-69 White - White British
hipn 3 8 male 55-59 White - White British
jogf 4/5 6 male 30-34 White - White British
joxm 4 7 female 45-49 White - Other
kuco 4 6 female 65-69 White - White British
laey 4/5 7 female 70-74 White - White British
lexy NA 7 female 60-64 White - White British
lise 3 5 female 45-49 White - White British
melw 4 7 male 60-64 White - White British
miaj 4/5 7 male 50-54 White - White British
naju 4/5 6 male 60-64 White - White British
nusw NA 7 male 65-69 White - White British
oaaz NA 5 male 70-74 White - White British
oaqd 4 7 male 55-59 White - White British
oicx 4/5 7 female 65-69 White - White British
oilg 3/4 8 male 65-69 White - White British
ouvb 4 female 50-54 White - White British
pahc 4 7 female 55-59 White - White British
pamv NA 6 male 65-69 White - White British
pelm NA 12 female 40-44 White - White British
pipw 4 6 male 50-54 White - White British
puie 5 6 male 60-64 White - White British
qaqx NA 6 female 60-64 White - White British
qolg 4 7 male 35-39 White - White British
qonc NA 6 female 65-69 White - White British
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Donor Grade Passage Gender Age Ethnicity

quls 4 7 male 55-59 White - White British
rozh 3/4 8 female 65-69 White - White British
rutc 4/5 6 female 60-64 White - White British
sebz NA 6 female 55-59 White - White British
sehl 4 8 female 55-59 White - White British
sohd 4 7 female 70-74 White - White British
tixi 4 7 female 70-74 White - White British
tolg 4 6 male 70-74 White - White British
toss NA 6 male 65-69 White - White British
tuju 3/4 7 female 50-54 White - White British
ualf 3/4 9 female 55-59 White - White British
vabj 4 6 female 50-54 White - White British
vass 4 6 female 30-34 White - White British
vils 4 7 female 35-39 White - White British
vuna 4/5 11 female 65-69 White - White British
wahn 4/5 6 female 65-69 White - White British
wetu 4 10 female 55-59 White - White British
wigw 3/4 7 male 65-69 White - White British
wopl 3/4 6 male 55-59 White - White British
wuye 4/5 7 female 30-34 White - White British
xojn 4 7 female 50-54 White - White British
xugn 4 8 male 65-69 White - White British
xuja 4 6 female 45-49 White - White British
zihe 3/4 7 female 75-79 White - White British
zoxy 4 6 female 60-64 White - White British
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Table B.1 Marker genes of ex vivo skin clusters

Gene name P-value Cluster
Fibroblast Type 1

TNFAIP6 2.99E-269 0
SERPINE2 1.58E-177 0
MEDAG 1.15E-169 0
CTSL 9.59E-162 0
THBS2 9.21E-158 0
PTGES 2.56E-135 0
PDPN 3.43E-132 0
AKR1C1 9.68E-122 0
BNIP3 5.09E-110 0
NAMPT 1.55E-107 0
GLUL 2.18E-100 0
IL6 1.85E-87 0
FST 6.85E-85 0
PTX3 2.59E-74 0
MGST1 3.74E-72 0
MT1X 1.21E-68 0
ACKR3 2.83E-52 0
CXCL1 4.75E-52 0
G0S2 5.90E-21 0
COMP 2.20E-16 0

Vascular Endothelium

TM4SF1 1.21E-207 1
DSTN 2.73E-205 1
ACTB 1.44E-165 1
HLA-DRB1 1.94E-160 1
ACTG1 6.35E-158 1
UPP1 3.84E-143 1
NCOA7 1.15E-133 1
HLA-DRA 6.80E-131 1
TSC22D1 4.41E-123 1
PLS3 5.67E-121 1
GBP2 9.47E-116 1
PRSS23 2.72E-115 1
HLA-DQB1 6.10E-112 1
SAT1 1.46E-110 1
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Gene name P-value Cluster
SERPINE1 9.65E-110 1
YWHAH 4.29E-109 1
NEDD9 1.46E-102 1
CYR61 4.72E-101 1
SOX17 1.04E-99 1
EDN1 1.10E-60 1

Fibroblast Type 2

PLAC9 4.67E-104 2
SFRP2 2.72E-103 2
CXCL12 4.64E-87 2
PPIC 4.18E-79 2
S100A4 6.55E-78 2
SEPP1 1.86E-76 2
TPPP3 5.44E-76 2
OLFML3 6.50E-76 2
TSC22D3 7.26E-75 2
ARL6IP5 1.28E-74 2
CRIP1 3.10E-70 2
CTSK 6.79E-70 2
ADH1B 1.00E-68 2
PTGDS 6.25E-65 2
CRABP2 6.33E-63 2
COL1A1 8.38E-43 2
COL3A1 9.42E-42 2
SOSTDC1 2.89E-35 2
GADD45B 5.53E-34 2
APOE 1.51E-21 2

Pericytes

RGS5 2.38E-93 3
NDUFA4L2 1.40E-75 3
CALD1 1.57E-64 3
C11orf96 6.90E-53 3
LURAP1L 6.87E-52 3
MTHFD2 2.06E-49 3
CPM 4.33E-48 3
CHN1 1.19E-45 3
ID4 6.04E-43 3
EDNRB 6.38E-43 3
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Gene name P-value Cluster
TFPI 1.40E-42 3
RRAD 2.79E-42 3
KCNE4 9.81E-37 3
VEGFA 1.86E-36 3
TPM2 1.89E-34 3
CPE 5.59E-33 3
HES4 1.32E-32 3
SRGN 6.27E-30 3
ACTA2 4.86E-29 3
MT1A 1.26E-27 3

Lymphatic Endothelium

CCL21 6.47E-114 4
TFF3 3.94E-87 4
MMRN1 4.83E-84 4
CLDN5 2.03E-51 4
FABP5 9.07E-50 4
PPFIBP1 7.79E-46 4
LYVE1 4.55E-45 4
GNAS 1.78E-37 4
LAPTM5 2.06E-37 4
GNG11 1.58E-26 4
SDPR 1.90E-25 4
RAMP2 2.95E-25 4
EGLN3 9.43E-24 4
HYAL2 2.94E-22 4
SNCG 4.56E-20 4
IRF8 1.00E-18 4
ANGPT2 3.56E-18 4
FABP4 3.63E-16 4
CXCL8 2.38E-10 4
CXCL2 2.55E-08 4

Vascular Endothelium

CCL14 4.38E-45 5
GNG11 1.94E-41 5
ACKR1 1.62E-39 5
CD74 2.00E-39 5
HLA-DRA 5.77E-36 5
CYTL1 2.13E-34 5
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Gene name P-value Cluster
AQP1 1.11E-32 5
ITM2A 1.09E-30 5
HLA-DPA1 3.09E-30 5
CD34 3.43E-30 5
TXNIP 5.15E-30 5
PECAM1 9.57E-30 5
TSPAN7 6.29E-29 5
CTGF 5.58E-28 5
RND1 2.09E-25 5
SELE 1.52E-22 5
FOS 9.76E-19 5
DNAJB1 9.94E-16 5
HSPA1B 1.53E-15 5
HSPA1A 3.74E-14 5
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Table B.2 GO term enrichment in unstimulated fibroblast clusters

GO term ID GO term name Enrichment p-value
Non-cycling 1

GO:0071705 nitrogen compound transport 0.0363
GO:0007044 cell-substrate junction assembly 0.0194
GO:0050765 negative regulation of phagocytosis 0.0405
GO:2000808 negative regulation of synaptic vesicle clustering 0.0132

GO:2001202
negative regulation of transforming growth

factor-beta secretion
0.0132

GO:0030198 extracellular matrix organization 0.00337
GO:0018149 peptide cross-linking 0.00442

GO:2000761
positive regulation of N-terminal peptidyl-lysine

acetylation
0.0132

GO:0006543 glutamine catabolic process 0.0186
GO:0001666 response to hypoxia 0.0477
GO:0002902 regulation of B cell apoptotic process 0.0436

GO:0061002
negative regulation of dendritic spine morpho-

genesis
0.0301

GO:0060179 male mating behavior 0.0268
GO:0007166 cell surface receptor signaling pathway 0.00639
GO:0071257 cellular response to electrical stimulus 0.0381
GO:0048681 negative regulation of axon regeneration 0.0375
GO:0009612 response to mechanical stimulus 0.0375
GO:0098698 postsynaptic specialization assembly 0.0301

GO:0052047
interaction with other organism via secreted

substance involved in symbiotic interaction
0.0186

GO:0060070 canonical Wnt signaling pathway 0.0424
GO:1990138 neuron projection extension 0.0301
GO:0007160 cell-matrix adhesion 0.00306

GO:2000134
negative regulation of G1/S transition of mitotic

cell cycle
0.0203

GO:0071310 cellular response to organic substance 0.00306
GO:0001667 ameboidal-type cell migration 0.00337
GO:0048468 cell development 0.00852
GO:0071603 endothelial cell-cell adhesion 0.0268
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GO term ID GO term name Enrichment p-value

GO:1904209
positive regulation of chemokine (C-C motif)

ligand 2 secretion
0.0186

GO:0032286 central nervous system myelin maintenance 0.0186
GO:0051674 localization of cell 0.00337

GO:1903984
positive regulation of TRAIL-activated apop-

totic signaling pathway
0.0241

GO:0090071 negative regulation of ribosome biogenesis 0.0268
GO:0046466 membrane lipid catabolic process 0.0489
GO:0033622 integrin activation 0.0436

GO:0051090
regulation of DNA-binding transcription factor

activity
0.0186

GO:0097105 presynaptic membrane assembly 0.0351
GO:1990523 bone regeneration 0.0186
GO:0002328 pro-B cell di�erentiation 0.0371

GO:0010663
positive regulation of striated muscle cell apop-

totic process
0.0371

GO:0003174 mitral valve development 0.0371

GO:1903690
negative regulation of wound healing, spreading

of epidermal cells
0.0268

GO:0046855 inositol phosphate dephosphorylation 0.0371
GO:0060024 rhythmic synaptic transmission 0.0268
GO:0051705 multi-organism behavior 0.0124
GO:0003215 cardiac right ventricle morphogenesis 0.0405
GO:0060134 prepulse inhibition 0.0363
GO:0097267 omega-hydroxylase P450 pathway 0.0335
GO:0009888 tissue development 0.00306

GO:1904706
negative regulation of vascular smooth muscle

cell proliferation
0.047

GO:0048514 blood vessel morphogenesis 0.00306
GO:0009404 toxin metabolic process 0.0449
GO:0071702 organic substance transport 0.0427
GO:0060414 aorta smooth muscle tissue morphogenesis 0.0241
GO:0097107 postsynaptic density assembly 0.0301

GO:1990314
cellular response to insulin-like growth factor

stimulus
0.0363
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GO term ID GO term name Enrichment p-value

GO:0035025
positive regulation of Rho protein signal trans-

duction
0.0489

GO:0071307 cellular response to vitamin K 0.0186
GO:0045475 locomotor rhythm 0.0375
GO:0032228 regulation of synaptic transmission, GABAergic 0.0489
GO:0048589 developmental growth 0.00852
GO:0007270 neuron-neuron synaptic transmission 0.0351
GO:0048870 cell motility 0.00337

GO:1904668
positive regulation of ubiquitin protein ligase

activity
0.0405

GO:0008361 regulation of cell size 0.0335
GO:1901564 organonitrogen compound metabolic process 0.0407
GO:0006469 negative regulation of protein kinase activity 0.0415
GO:0042574 retinal metabolic process 0.0375
GO:0008285 negative regulation of cell proliferation 0.0363
GO:2000272 negative regulation of signaling receptor activity 0.00639
GO:0006537 glutamate biosynthetic process 0.0268
GO:0003284 septum primum development 0.0268

GO:0060044
negative regulation of cardiac muscle cell pro-

liferation
0.0392

GO:0070372 regulation of ERK1 and ERK2 cascade 0.0392
GO:0060613 fat pad development 0.0335
GO:0060736 prostate gland growth 0.0375
GO:0019373 epoxygenase P450 pathway 0.0392

GO:0014067
negative regulation of phosphatidylinositol 3-

kinase signaling
0.0381

GO:0051895 negative regulation of focal adhesion assembly 0.0424
GO:0030334 regulation of cell migration 0.00337

Cycling 1

GO:0046826
negative regulation of protein export from nu-

cleus
0.0282

GO:0007049 cell cycle 3.01e-06
GO:0051301 cell division 2.81e-06
GO:0051382 kinetochore assembly 0.00174
GO:0031441 negative regulation of mRNA 3’-end processing 0.0344
GO:0002052 positive regulation of neuroblast proliferation 0.0466
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GO term ID GO term name Enrichment p-value
GO:0051253 negative regulation of RNA metabolic process 0.00887
GO:0000280 nuclear division 0.000116

GO:0045870

positive regulation of single stranded viral RNA

replication via double stranded DNA interme-

diate

0.0106

GO:0045769 negative regulation of asymmetric cell division 0.0106

GO:0000712
resolution of meiotic recombination intermedi-

ates
0.0449

GO:0085020 protein K6-linked ubiquitination 0.0327
GO:0045786 negative regulation of cell cycle 0.00651
GO:0030263 apoptotic chromosome condensation 0.0263
GO:0031508 pericentric heterochromatin assembly 0.0152

GO:0099606
microtubule plus-end directed mitotic chromo-

some migration
0.0106

GO:0021873 forebrain neuroblast division 0.0263
GO:0042981 regulation of apoptotic process 0.0114
GO:0034508 centromere complex assembly 0.000175
GO:0007292 female gamete generation 0.0206
GO:0032501 multicellular organismal process 0.0344

GO:0045892
negative regulation of transcription, DNA-

templated
0.0241

GO:0006259 DNA metabolic process 0.0199
GO:0007051 spindle organization 0.0039
GO:0051304 chromosome separation 0.000643
GO:0061469 regulation of type B pancreatic cell proliferation 0.0366

GO:1990001
inhibition of cysteine-type endopeptidase activ-

ity involved in apoptotic process
0.0327

Non-cycling 2

No significant gene sets
Transitional

GO:0051651 maintenance of location in cell 0.0479
GO:0048145 regulation of fibroblast proliferation 0.0479
GO:0034118 regulation of erythrocyte aggregation 0.0371
GO:0002317 plasma cell di�erentiation 0.0479
GO:0030239 myofibril assembly 0.0371
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GO term ID GO term name Enrichment p-value

GO:1905273
positive regulation of proton-transporting ATP

synthase activity, rotational mechanism
0.0371

GO:0035606 peptidyl-cysteine S-trans-nitrosylation 0.0371
GO:0007249 I-kappaB kinase/NF-kappaB signaling 0.0371

Cycling 2

GO:0000226 microtubule cytoskeleton organization 0.0163
GO:0051494 negative regulation of cytoskeleton organization 0.0495
GO:0007049 cell cycle 0.00457
GO:0000281 mitotic cytokinesis 0.0315
GO:0051301 cell division 0.00457
GO:1903901 negative regulation of viral life cycle 0.0358
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Key findings  

● A novel approach for integrating DNA-seq and single-cell RNA-seq data to reconstruct            

clonal substructure for single-cell transcriptomes. 

● Evidence for non-neutral evolution of clonal populations in human fibroblasts.  

● Proliferation and cell cycle pathways are commonly distorted in mutated clonal           

populations. 

 

 

Abstract 

Decoding the clonal substructures of somatic tissues sheds light on cell growth, development and              

differentiation in health, ageing and disease. DNA-sequencing, either using bulk or using single-cell             

assays, has enabled the reconstruction of clonal trees from frequency and co-occurrence patterns of              

somatic variants. However, approaches to systematically characterize phenotypic and functional          

variations between individual clones are not established. Here we present cardelino           

(https://github.com/PMBio/cardelino), a computational method for inferring the clonal tree configuration          

and the clone of origin of individual cells that have been assayed using single-cell RNA-seq               

(scRNA-seq). Cardelino allows effective integration of information from imperfect clonal tree inferences            

based on bulk exome-seq data, and sparse variant alleles expressed in scRNA-seq data. After              

validating our model using simulations, we apply cardelino to matched scRNA-seq and exome             

sequencing data from 32 human dermal fibroblast lines, identifying hundreds of differentially            

expressed genes between cells from different somatic clones. These genes are frequently enriched             

for cell cycle and proliferation pathways, indicating a key role for cell division genes in non-neutral                

somatic evolution.  

Keywords: single cell, somatic mutations, clonality 
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Introduction 

 

Ageing, environment and genetic factors can impact mutational processes, thereby shaping the            

acquisition of somatic mutations across the life span (Burnet 1974; Martincorena and Campbell 2015;              

Stransky et al. 2011; Hodis et al. 2012; Huang et al. 2018). The maintenance and evolution of somatic                  

mutations in different sub-populations of cells can result in clonal structure, both within healthy and               

disease tissues. Targeted, whole-genome and whole-exome DNA sequencing of bulk cell populations            

has been utilized to reconstruct the mutational processes that underlie somatic mutagenesis            

(Nik-Zainal et al. 2012; Alexandrov et al. 2013; Forbes et al. 2017; Bailey et al. 2018; Ding et al. 2018)                    

as well as clonal trees (Roth et al. 2014; Deshwar et al. 2015; Jiang et al. 2016).  
 

Availability of single-cell DNA sequencing methods (scDNA-seq; (N. Navin et al. 2011; Wang et al.               

2014; N. E. Navin 2015) combined with new computational approaches have helped to improve the               

reconstruction of clonal populations (K. I. Kim and Simon 2014; N. E. Navin and Chen 2016; Jahn,                 

Kuipers, and Beerenwinkel 2016; Kuipers et al. 2017; Roth et al. 2016; Salehi et al. 2017; Malikic et al.                   

2017). However, the functional differences between clones and their molecular phenotypes remain            

largely unknown. Systematic characterisation of the phenotypic properties of clones could reveal            

mechanisms underpinning healthy tissue growth and the transition from normal to malignant            

behaviour.  

 

An important step towards such functional insights would be access to genome-wide expression             

profiles of individual clones, yielding genotype-phenotype connections for clonal architectures in           

tissues. Recent studies have explored mapping scRNA-seq profiles to clones with distinct copy             

number states in cancer, thus providing a first glimpse at clone-to-clone gene expression differences              

in disease (Müller et al. 2016; Tirosh et al. 2016; Fan et al. 2018; Campbell et al. 2019). Targeted                   

genotyping strategies linking known mutations of interest to single-cell transcriptomes have proven            

useful in particular settings, but remain limited by technical challenges and the requirement for strong               

prior information (Giustacchini et al. 2017; Cheow et al. 2016; Saikia et al. 2019). Generally-applicable               

methods for inferring the clone of origin of single cells to study genotype-transcriptome relationships              

are not yet established. 

 

To address this, we have developed cardelino: a computational method that exploits variant             

information in scRNA-seq reads to map cells to their clone of origin. We validate our model using                 

simulations and compare its performance to two alternative versions of the cardelino model,             

Single-Cell Genotyper (Roth et al. 2016), designed for clonal inference from scDNA-seq data, and              

Demuxlet (Kang et al. 2018), designed to infer sample identity for cells using scRNA-seq and               

reference genotype data. We demonstrate that cardelino allows for accurate assignment of full-length             

single-cell transcriptomes to the clonal substructure in 32 normal dermal fibroblast lines. With linked              
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somatic variants, clone and gene expression information, we investigate gene expression differences            

between clones at the level of individual genes and in pathways, which provides new insights into the                 

dynamics of clones. These findings also extend recent studies using bulk DNA-seq data,             

predominantly in epithelial cells, that have revealed oncogenic mutations and evidence of selective             

clonal dynamics in normal tissue samples (Behjati et al. 2014; Martincorena et al. 2015; Simons               

2016b; Martincorena, Jones, and Campbell 2016; Simons 2016a). Our approach can be applied to a               

broad range of somatic substructure analyses in population or disease settings to reveal previously              

inaccessible differences in molecular phenotypes between cells from the same individual. 

 

 

Results 

Mapping single-cell transcriptomes to somatic clones with cardelino 

We present cardelino, a Bayesian method for integrating somatic clonal substructure and            

transcriptional heterogeneity within a population of cells. Briefly, cardelino models the expressed            

variant alleles in single cells as a clustering model, with clusters corresponding to somatic clones with                

(unknown) mutation states (Fig. 1a ). Critically, cardelino leverages imperfect but informative clonal            

tree configurations obtained from complementary technologies, such as bulk or single-cell DNA            

sequencing data, as prior information, thereby mitigating the sparsity of scRNA-seq variant coverage.             

Cardelino employs a variant specific beta-binomial error model that accounts for stochastic dropout             

events as well as systematic allelic imbalance due to mono-allelic expression or genetic factors.  

 

Initially, we assess the accuracy of cardelino using simulated data that mimic typical clonal structures               

and properties of scRNA-seq as observed in real data (4 clones, 10 variants per branch, 25% of                 

variants with read coverage, 200 cells, 50 repeat experiments; Methods ). By default, we consider an               

input clone configuration with a 10% error rate compared to the true simulated tree (namely, 10% of                 

the values in the clone configuration matrix are incorrect). Alongside cardelino, we consider two              

alternative approaches: Single Cell Genotyper (SCG; Roth et al. 2016) and an implementation of              

Demuxlet, which was designed for sample demultiplexing rather than clone assignment (Kang et al.              

2018 ; see Methods and Supp. Fig. S1). In the default setting, cardelino achieves high overall               

performance (Precision-Recall AUC=0.965; Fig. 1b), outperforming both SCG and Demuxlet. For           

example, at a cell assignment confidence threshold (posterior probability of cell assignment) of P=0.5,              

cardelino assigns 88% of all cells with an overall accuracy of 88.6%. 

 

We explore the effect of key dataset characteristics on cell assignment, including the number of               

variants per clonal branch (Fig. 1c ) and the expected number of variants with non-zero scRNA-seq               

coverage per cell (Fig. 1d). As expected, the number of variants per clonal branch and their read                 

coverage in scRNA-seq are positively associated with the performance of all methods, with cardelino              

consistently outperforming alternatives, in particular in settings with low coverage. We further explore             
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the effects of allelic imbalance on cell assignment (Fig. 1e ), and find that cardelino is more robust than                  

SCG and Demuxlet when there is a larger fraction of variants with high allelic imbalance. We attribute                 

cardelino’s robustness to its approach of modelling the allelic imbalance per variant, whereas SCG              

and Demuxlet both use a global parameter and hence cannot account for variability of allelic               

imbalance across sites. We also vary the error rate in the guide clone configuration, either introducing                

uniform errors in the configuration matrix by swapping the mutation states of any variants in any clone                 

(Fig. 1f) or by swapping variants between branches (Fig. 1g). In both settings, cardelino is markedly                

more robust than Demuxlet, which assumes that the defined reference clonal structure is error free.               

Notably, cardelino retains excellent performance (AUPRC>0.96) at error rates up to 25% (Fig. 1f-g),              

by modelling deviations between the observed and the true latent tree (Supp. Fig. S2 ).  
 

We also consider two simplified variants of cardelino, one of which does not consider the guide clone                 

tree and performs de novo tree reconstruction (cardelino-free), and a second model that treats the               

guide tree as fixed without modelling any errors (cardelino-fixed). These comparisons, further            

investigating the parameters assessed in Fig. 1 , confirm the benefits of the data-driven modelling of               

the guide clone configuration as a prior that is adapted jointly while assigning scRNA-seq profiles to                

clones (Supp. Fig. S3 ). We also explore the effects of the number of clones (Supp. Fig. S3c ), and the                   

tree topology (Supp. Fig. S4 ), again finding that cardelino is robust to these parameters.  

 

Taken together, these results demonstrate that cardelino is broadly applicable to robustly assign             

individual single-cell transcriptomes to clones, thereby reconstructing clone-specific transcriptome         

profiles. 

 

Cardelino assigns single cell transcriptomes to clones in human dermal fibroblasts 

Next, we apply cardelino to 32 human dermal fibroblast lines derived from healthy donors that are part                 

of the UK human induced pluripotent stem cell initiative (HipSci; Kilpinen et al., 2017; Supp. Table                

S1 ). For each line, we generated deep whole exome sequencing data (WES; median read coverage:               

254), and matched Smart-seq2 scRNA-seq profiles using pools of three lines in each processing batch               

(Methods ). We assayed between 30 and 107 cells per line (median 61 cells after QC; median                

coverage: 484k reads; median genes observed: 11,108; Supp. Table S2 ). 
 

Initially, we consider high-confidence somatic single nucleotide variants (SNVs) identified based on            

WES data (Methods ) to explore the mutational landscape across lines. This reveals considerable             

variation in the total number of somatic SNVs, with 41–612 variants per line (Fig. 2a; coverage of ≥20                  

reads, ≥3 observations of alternative allele, Fisher’s exact test FDR≤0.1; see Methods ). The majority              

of SNVs can be attributed to the well-documented UV signature, COSMIC Signature 7 (primarily C to                

T mutations; (Forbes et al. 2017), agreeing with expected mutational patterns from UV exposure of               

skin tissues (Fig. 2a; Supp. Fig. S5; Methods ).  
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Figure 1 | Overview and validation of the cardelino model. (a) Overview and approach. A clonal tree is reconstructed using                    

DNA-sequencing (e.g. deep exome sequencing) data to derive a guide clone configuration. Cardelino then performs probabilistic                

clustering of single-cell transcriptomes based on variants detected in scRNA-seq reads, assigning cells to clones in the mutation                  

tree. (b-g) Benchmarking of the cell assignment using simulated data by changing one variable each time. The default values                   

are highlighted with a star. (b) Overall assignment performance for a dataset consisting of 200 cells, simulated assuming a                   

4-clone structure with 10 variants per branch and non-zero read coverage for 20% of the variants and simulating an error rate of                      

10% on the mutation states between the guide clone configuration and the true clonal tree (Methods). Shown is the fraction of                     

true positive cell assignments (precision) as a function of the fraction of assigned cells (recall), when varying the threshold of the                     

cell assignment probability. The black circle corresponds to the posterior cell assignment threshold of P=0.5. (c-g) Area Under                  

(AU) precision-recall curve (i.e. area under curves such as shown in b), when varying the numbers of variants per clonal branch                     

(c), the fraction of informative variants covered (i.e., non-zero scRNA-seq read coverage) (d), the precision (i.e., inverse                 

variance) of allelic ratio across genes; lower precision means more genes with high allelic imbalance (e), the error rate of the                     

mutation states in clone configuration matrix (f), and the fraction of variants that are wrongly assigned to branches (g). For                    

details and default parameter settings see Methods.  
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To understand whether the somatic SNVs confer any selective advantage in skin fibroblasts, we used               

SubConalSelection to identify neutral and selective dynamics at a per-line level (Williams et al. 2018).               

Other established methods such as dN/dS (Martincorena et al. 2018) and alternative methods using              

the SNV frequency distribution (Simons 2016a; Williams et al. 2016) are not conclusive in the context                

of this dataset, likely due to lack of statistical power resulting from the low number of mutations                 

detected in each sample. The SubClonalSelection analysis identifies at least 10 lines with a clear fit to                 

their selection model, suggesting positive selection of clonal sub-populations (Fig. 2a ; Supp. Fig. S6 ;              

Methods ). In other words, a third of the samples from this cohort of healthy donors contain clones                 

evolving adaptively, which we can investigate in more detail in terms of transcriptome phenotype.  

 

Next, we reconstruct the clonal trees in each line using WES-derived estimates of the variant allele                

frequency of somatic variants that are also covered by scRNA-seq reads (Methods ). Canopy (Jiang et               

al. 2016) identifies two to four clones per line (Fig. 2a ). Briefly, Canopy models the phylogeny of cell                  

growth in a tissue by depicting a bifurcating tree arising from a diploid germline cell whose daughter                 

cells are subject to progressive waves of somatic mutations. When a sample of a tissue is taken, the                  

tree is sliced horizontally, cutting the branches to form “leaves” or “clones”. Thus each clone               

represents a subpopulation of cells that share (and are identified by) the somatic mutations in their                

most recent common ancestral cell. To handle the presence of a subpopulation of cells without               

somatic mutations, “clone1” is defined to represent a non-bifurcating, somatic mutation-free branch of             

the clonal tree. Thus, with any somatic variants present at sub-clonal frequencies (the case for all cell                 

lines here), Canopy will infer the presence of at least two clones. Following Canopy’s inference of                

clones, we use cardelino to confidently map scRNA-seq profiles from 1,732 cells (out of a total of                 

2,044 cells) to clones from the corresponding lines (Methods; for Canopy input trees and output from                

cardelino for all lines see Supp. Fig. S7-10 ). Cardelino estimates an error rate in the guide clone                 

configuration of less than 25% in most lines (median 18.6%), and assigns a large fraction of cells                 

confidently (>90% for 23 lines; at posterior probability P>0.5; Supp. Fig. S11 ). The model identifies               

four lines with an error rate between 35-46% and an outlier (vils, a line with few somatic variants),                  

which demonstrates the utility of the adaptive phylogeny error model employed by cardelino. We also               

run the other four alternative methods on these 32 lines (Supp. Fig. S12 ), and find that the de novo                   

methods appear to suffer from higher uncertainty in recontrustructing clonal trees from scRNA-seq             

data only (Supp. Fig. S12C ), while using the fixed-guide clonal tree from bulk exome-seq data may be                 

over-simplified and leads to reduced stability when considering alternative high-confidence trees           

(Supp. Fig. S12D-E). 
 

To further assess the confidence of these cell assignments, we consider, for each line, simulated cells                

drawn from a clonal structure that matches the corresponding line, finding that cardelino gives high               

accuracy (AUPRC>0.9) in 29 lines, again clearly outperforming competing methods (Supp. Fig. S13 ).             

Additionally, we observe high concordance (R 2 = 0.94) between the empirical cell-assignment rates             
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and the expected values based on the corresponding simulation for the same line (Fig. 2b). Lines with                 

clones that harbour fewer distinguishing variants are associated with lower assignment rates (Supp.             

Fig. S14 ), at consistently high cell assignment accuracy (median 0.965, mean 0.939; Supp. Fig. S15 ),               

indicating that the posterior probability of assignment is calibrated across different settings. We also              

consider the impact of technical features of scRNA-seq data on cell assignment, finding no evidence               

of biased cell assignments (Supp. Fig. S16-20 ). Finally, clone prevalences estimated from Canopy             

and the fractions of cells assigned to the corresponding clones are reasonably concordant (adjusted              

R 2 = 0.53), providing additional confidence in the cardelino cell assignments, while highlighting the              

value of cardelino’s ability to update input clone structures using single-cell variant information (Fig.              

2c ).  

 
Figure 2 | Parallel deep exome sequencing and scRNA-seq profiling of 32 human dermal fibroblast lines. (a) Overview                  

and somatic mutation profiles across lines, from left to right: donor age; number of somatic SNVs; estimated exposure of                   

COSMIC mutational signature 7; probability of selection estimated by SubClonalSelection (Williams et al. 2018), colour denotes                

the selection status based on probability cut-offs (grey lines), the grey background indicates results with high uncertainty due to                   

the low number of mutations detected; number of clones inferred using Canopy (Jiang et al., 2016), with colour indicating the                    

number of informative somatic SNVs for cell assignment to each clone (non-zero read coverage in scRNA-seq data). (b)                  

Assignment rate (fraction of cells assigned) using matched simulated single-cell transcriptomes (x-axis; Methods) versus the               

empirical assignment rate (y-axis) for each line (at assignment threshold posterior P>0.5). Colour denotes the average number                 

of informative variants across clonal branches per line. The line-of-best fit from a linear model is shown in red, with 95%                     
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confidence interval shown in grey. (c) Estimated clone prevalence from WES data (x-axis; using Canopy) versus the fraction of                   

single-cell transcriptomes assigned to the corresponding clone (y-axis; using cardelino). Shown are the fractions of cells                

assigned to clones one to three as in a, considering the most likely assignment for assignable cells (posterior probability P>0.5)                    

with each point representing a cell line; see Supp. Fig. S21 for results from four donors with >3 clones). Colour denotes the total                       

fraction of assignable cells per line (P>0.5). A line-of-best fit from a weighted regression model is shown in red with 95%                     

confidence interval shown in grey. 

 

 

Differences in gene expression between clones suggest phenotypic impact of somatic variants 

Initially, we focus on the fibroblast line with the largest number of somatic SNVs (joxm; white female                 

aged 45-49; Fig. 2a ), with 612 somatic SNVs (112 detected both in WES and scRNA-seq) and 79                 

QC-passing cells, 99% of which could be assigned to one of three clones (Fig. 3a ). Principal                

component analysis of the scRNA-seq profiles of these cells reveals global transcriptome substructure             

that is aligned with the somatic clonal structure in this population of cells (Fig. 3b). Additionally, we                 

observe differences in the fraction of cells in different cell cycle stages, where clone1 has the fewest                 

cells in G1, and the largest fraction in S and G2/M (Fig. 3b, inset plot; PC1 in Supp. Fig. S22-23;                    

global structure and cell cycle plots for all lines in Supp. Figs. S24-33 ). This suggests that clone1 is                  

proliferating most rapidly. Next, we consider differential expression analysis of individual genes            

between the two largest clones (clone1: 46 cells versus clone2: 25 cells), which identifies 901 DE                

genes (edgeR QL F-test; FDR<0.1; 549 at FDR<0.05; Fig. 3c ). These genes are approximately evenly               

split into up- and down-regulated sets. However, the down-regulated genes are enriched for processes              

involved in the cell cycle and cell proliferation. Specifically, the three significantly enriched gene sets               

are all up-regulated in clone1 (camera; FDR<0.1; Fig. 3d). All three gene sets (E2F targets, G2/M                

checkpoint and mitotic spindle) are associated with the cell cycle, so these results are consistent with                

the cell-cycle stage assignments suggesting increased proliferation of clone1.  

 

Taken together, the results suggest that somatic substructure in this cell population results in clones               

that exhibit measurably different expression phenotypes across the transcriptome, with significant           

differential expression in cell cycle and growth pathways. 

 

8 



 

 

Figure 3 | Clone-specific transcriptome profiles reveal gene expression differences for joxm, one example line. (a) Top:                 

Clonal tree inferred using Canopy (Jiang et al., 2016). The number of variants tagging each branch and the expected prevalence                    

(fraction) of each clone is shown. Bottom: cardelino cell assignment matrix, showing the assignment probability of individual                 

cells to three clones. Shown below each clone is the fraction of cells assigned to each clone. (b) Principal component analysis of                      

scRNA-seq profiles with colour indicating the most likely clone assignment. Inset plot: Cell-cycle phase fractions for cells                 

assigned to each clone (using cyclone; Scialdone et al., 2015). (c) Volcano plot showing negative log10 P values versus log fold                     

changes (FC) for differential expression between cells assigned to clone2 and clone1. Significant differentially expressed genes                

(FDR<0.1) are highlighted in red. (d) Enrichment of MSigDB Hallmark gene sets using camera (Wu and Smyth, 2012) based on                    

log2 FC values between clone2 and clone1 as in c. Shown are negative log10 P values of gene set enrichments, considering                     

whether gene sets are up-regulated in clone1 or clone2, with significant (FDR < 0.05) gene sets highlighted and labelled. All                    

results are based on 78 out of 79 cells that could be confidently assigned to one clone (posterior P>0.5; Methods).  
 

Cell cycle and proliferation pathways frequently vary between clones  

To quantify the overall effect of somatic substructure on gene expression variation across the entire               

dataset, we fit a linear mixed model to individual genes (Methods ), partitioning gene expression              

variation into a line (likely donor) component, a clone component, technical batch (i.e . processing              

plate), cellular detection rate (proportion of genes with non-zero expression per cell) and residual              

noise. As expected, the line component typically explains a substantially larger fraction of the              
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expression variance than clone (median 5.5% for line, 0.5% for clone), but there are 194 genes with a                  

substantial clone component (>5% variance explained by clone; Fig. 4a ). Even larger clone effects are               

observed when estimating the clone component in each line separately, which identifies between 331              

and 2,162 genes with a substantial clone component (>5% variance explained by clone; median 825               

genes; Fig. 4b). This indicates that there are line-specific differences in the set of genes that vary with                  

clonal structure. 

 

Next, we carry out a systematic differential expression (DE) analysis to assess transcriptomic             

differences between any pair of clones for each line (considering 31 lines with at least 15 cells for DE                   

testing; Methods ). This approach identifies up to 1,199 DE genes per line (FDR<0.1, edgeR QL F                

test). A majority, 61%, of the total set of 5,289 unique DE genes, are detected in two or more lines,                    

and 39% are detected in at least three of the 31 lines. Comparison to data with permuted gene labels                   

demonstrates an excess of recurrently differentially expressed genes compared to chance expectation            

(Fig. 4c , P<0.001; 1,000 permutations; Methods ). We also identify a small number of genes that               

contain somatic variants in a subset of clones, resulting in differential expression between wild-type              

and mutated clones (Supp. Fig. S34 ).  
 

To investigate the transcriptomic changes between cells in more detail, we use gene set enrichment               

analysis in each line. This approach reveals whether there is functional convergence at a pathway               

level (using MSigDB Hallmark gene sets; Methods ; (Liberzon et al. 2011)). Of 31 lines tested, 19 have                 

at least one significant MSigDB Hallmark gene set (FDR<0.05, camera; Methods ), with key gene sets               

related to cell cycle and growth being significantly enriched in all of those 19 lines. Directional gene                 

expression changes of gene sets for the E2F targets, G2M checkpoint, mitotic spindle and MYC               

target pathways are highly coordinated (Fig. 4d), despite limited overlap of individual genes between              

the gene sets (Supp. Fig. S35 ).  
 

Similarly, directional expression changes for pathways of epithelial-mesenchymal transition (EMT)          

and apical junction are correlated with each other. Interestingly, these are anti-correlated with             

expression changes in cell cycle and proliferation pathways (Fig. 4d). Within individual lines, the              

enrichment of pathways often differs between pairs of clones, highlighting the variability in effects of               

somatic variants on the phenotypic behaviour of cells (Fig. 4e; all lines shown in Supp. Fig. S36 ). 
  

These consistent pathway enrichments across a larger set of donors point to somatic variants              

commonly affecting the cell cycle and cell growth in fibroblast cell populations. These results indicate               

both deleterious and adaptive effects of somatic variants on proliferation, suggesting that a significant              

fraction of these variants are non-neutral in the majority of donors in our study. 
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Figure 4 | Signatures of transcriptomic clone-to-clone variation across 31 lines. (a) Violin and box plots show the                  

percentage of variance explained by clone, line, experimental plate and cellular detection rate for 4,998 highly variable genes,                  

estimated using a linear mixed model (Methods). (b) Percentage of gene expression variance explained by clone when fitting a                   

linear mixed model for each individual line for the 400 genes with the most variance explained by clone per line (Methods).                     

Individual lines correspond to cell lines (donors), with joxm highlighted in black and the median across all lines in red. (c) The                      

number of recurrently differentially expressed (DE) genes between any pair of clones (FDR<0.1; edgeR QL F test), detected in                   

at least one to 12 lines, with box plots showing results expected by chance (using 1,000 permutations). (d) Left panel: Heatmap                     

showing pairwise correlation coefficients (Spearman R, only nominal significant correlations shown (P<0.05)) between signed              

P-values of gene set enrichment across lines, based on differentially expressed genes between clones. Shown are the 17 most                   

frequently enriched MSigDB Hallmark gene sets. Right panel: number of lines in which each gene set is found to be significantly                     

enriched (FDR<0.05). (e) Heatmap depicting signed P-values of gene set enrichments for eight Hallmark gene sets in 19 lines.                   

Dots denote significant enrichments (FDR<0.05). 
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Discussion 

 

Here, we develop and apply a computational approach for integrating somatic clonal structure with              

single-cell RNA-seq data. This allows us to identify molecular signatures that differ between clonal cell               

populations. Our approach is based on first inferring clonal structure in a population of cells using                

WES data, followed by the assignment of individual single-cell transcriptomes to clones using a              

computational approach called cardelino. Our method enables the efficient reconstruction of           

clone-specific transcriptome profiles from high-throughput assays. Our integrative analysis of bulk           

WES and scRNA-seq data from 32 human fibroblast cell lines reveals substantial phenotypic effects of               

somatic variation, including in healthy tissue.  

 

Central to our approach is cardelino, a robust model for clone inference and the probabilistic               

assignment of cells to clones based on variants contained in scRNA-seq reads. Our approach is               

conceptually related to de-multiplexing methods for single-cell transcriptomes from multiple genetically           

distinct individuals (Kang et al. 2018). However, cardelino addresses a substantially more challenging             

problem: to distinguish cells from the same individual based on the typically small number of somatic                

variants (e.g. dozens) that segregate between clones in a population of cells. Cardelino             

simultaneously infers the clonal tree configuration and the clone of origin of individual cells based on                

sparse variant alleles observed in scRNA-seq data, while leveraging imperfect clonal trees derived             

from complementary assays such as bulk exome-seq data.  

 

Inferring clonal trees from any type of data remains a hard problem and all clonal inference methods                 

produce clonal trees with substantial uncertainty, so cardelino’s flexible approach to integrating variant             

information from scRNA-seq and other data sources is a key strength of the method. Our results show                 

that cardelino outperforms methods that use an input clonal tree as fixed and error-free (Demuxlet,               

cardelino-fixed) and methods that do not use any guide tree at all (SCG, cardelino-free), confirming               

the utility of flexible, data-driven incorporation of multiple sources of information on clonal structure.              

Surprisingly, cardelino-free also performs strongly, better than SCG and almost as well as cardelino in               

some settings, demonstrating that our underlying modeling of allele counts in scRNA-seq data works              

well enough to yield excellent clone inference and cell-clone assignment results even when no              

external information about clonal structure is available. 

  

Harnessing transcriptomic phenotypic information for cells assigned to clones in fibroblast lines, we             

identify substantial and convergent gene expression differences between clones across lines, which            

are enriched for pathways related to proliferation and the cell cycle. Analysis of clonal evolutionary               

dynamics using somatic variant allele frequency distributions from WES data reveals evidence for             

positive selection of clones in ten of 32 lines. These results support previous observations of clonal                

populations undergoing positive selection in normal human eyelid epidermis assayed by targeted DNA             

sequencing (Martincorena et al. 2015; Simons 2016b; Martincorena, Jones, and Campbell 2016;            
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Simons 2016a). We shed light on the phenotypic effects of this adaptive evolution, consistently              

identifying differential expression of gene sets implicated in proliferation and cancer such as the E2F               

and MYC pathways. This surprising result in healthy tissue suggests pervasive inter-clonal phenotypic             

variation with important functional consequences, although we do note that clonal dynamics in vivo in               

primary fibroblast tissue may differ somewhat from what we observe in the fibroblast cell lines. It is                 

intriguing to speculate about potential mechanisms driving these inter-clonal phenotypic differences,           

which might stem solely from observed somatic variants, could involve unobserved variants, or could              

arise through indirect mechanisms involving (post-)transcriptional regulation or epigenetic differences.          

Further work will be needed to identify drivers of molecular differences between clones across              

biological systems. 

  
The clones studied here each represent a subpopulation of cells that share and are identified by the                 

somatic variants in their most recent common ancestral cell. Individual cells in each clone would be                

undergoing further mutation that could lead to genetic and molecular differences between cells             

grouped into the same clone, and so cells assigned to a given clone will not be completely genetically                  

or transcriptomically homogenous. Thus, within-clone heterogeneity could limit the ability of           

downstream analyses to identify differences in expression or molecular phenotypes between clones.            

Clonal inference depends heavily on the set of somatic variants supplied, so careful calling of somatic                

SNVs is a vital step before clonal inference with Canopy, cardelino and other tools. We found clonal                 

inference methods to perform better with strictly filtered somatic SNVs, so here we preferred a               

conservative somatic variant calling approach that emphasised specificity over sensitivity. Future           

studies would therefore benefit from higher-depth sequencing of DNA, either with bulk or single-cell              

approaches, to better identify somatic variants and thus enable confident inference of more complex              

clonal structures. Increasing both the number of genetically distinct individuals and the numbers of              

cells assayed per individual would further improve power to find molecular differences between clones. 

 

While we use clonal trees from bulk WES data as input to cardelino in this study, our method is                   

general and can exploit prior information on clonal substructure inferred from either bulk or single-cell               

DNA-seq data. Our cardelino-free method also works when no external information on clonal structure              

is available. The methods presented here can be applied to any system in which somatic variants tag                 

clonal populations of cells and can be accessed with scRNA-seq assays. Though not explored here,               

we also expect the cardelino model to be effective for other single-cell ‘omics assays that capture                

somatic variant information, such as those profiling chromatin accessibility (Buenrostro et al. 2015) or              

methylation (Guo et al. 2013; Smallwood et al. 2014). Assignment of cells to clones relies on coverage                 

of somatic variants in scRNA-seq reads, so cell populations with relatively fewer somatic variants may               

require full-length transcriptome sequencing at higher coverage per cell to enable confident            

assignments. Our inference methods in cardelino are computationally efficient, so will comfortably            

scale to multi-site samples and many thousands of cells. Thus, cardelino will be applicable to               

13 

https://paperpile.com/c/AK0Jda/Hd1Vo+HnYLL+ssP5H+y982U
https://paperpile.com/c/AK0Jda/wgkm
https://paperpile.com/c/AK0Jda/NWOO+rXTt


 

high-resolution studies of clonal gene expression in both healthy and malignant cell populations as              

well as in vitro models.  

 

Taken together, our results highlight the utility of cardelino to study gene expression variability in               

clonal cell populations and suggest that even in nominally healthy human fibroblast cell lines there are                

clonal populations with growth advantages, opening new avenues to study cell behaviour in clonal              

populations.  
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Methods 

 

The cardelino model 

The cardelino model jointly infers the clonal tree configuration and assigns single cells to one of the                 

clones by modelling the expressed alleles with a probabilistic clustering model (see graphical model in               

Supp. Fig. S37 ). The unobserved clonal tree configuration C is an N-by-K binary matrix for N variants                 

and K clones encoding the mutation profile for each clone. We let ci,k=1 if somatic variant i is present in                    

clone k and ci,k=0 otherwise. Cardelino allows for incorporating a guide clone configuration Ω (an               

analogous binary matrix) as prior, for which an appropriate relaxation (or error) rate ξ is inferred. The                 

probability of the entries in the latent clonal configuration matrix C are modelled as  

. (1) 

The prior clone configuration Ω is assumed to be informative but imperfect. In this study, we used the                  

clone configuration derived from bulk exome-seq data by Canopy to define the prior Ω and to estimate                 

the number of clones.  

 

Based on scRNA-seq data, we extract for each cell and variant that segregates between clones the                

number of sequencing reads that support the reference allele (reference read count) or the alternative               

allele (alternate read count) respectively. We denote the variant-by-cell matrix of alternate read counts              

by A with element ai,j denoting the number of reads supporting the alternative allele for variant i in cell j                    

and similarly the variant-by-cell matrix of total read counts (sum of reference and alternate read               

counts) by D . Entries in A and D matrices are non-negative integer values, with missing entries in the                  

matrix D  indicating zero read coverage for a given cell and variant. 

 

Fundamentally, we model the alternate read count using a binomial model, using a variant-specific              

beta distribution on the binomial rate, thereby modelling overdispersion as well as systematic errors.              

For a given site in a given cell, there are two possibilities: the variant is “absent” in the clone the cell is                      

assigned to or the variant is “present”, as encoded in the configuration matrix C. Thus, the “success                 

probability” 𝜽 for the binomial model for each variant, where success is defined as observing an                

alternate read in the scRNA-seq reads, is modelled using two (sets of) parameters: 𝜃0 for homozygous                

reference alleles (variant absent), and 𝜽1 for heterozygous variants (variant present). The likelihood for              

cell j given an assignment to clone k follows then as a product of binomial distributions, 

(3) 

 

where Ij is the identity of the specific clone cell j is assigned to, and aj and dj are the observed                     

alternate and total read count vectors, respectively, for variants 1 to N in cell j. The parameter vector 𝜽                   

is a set of the unknown binomial success parameters of binomial distributions for modelling the allelic                
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read counts as described above. Specifically, 𝜃0 denotes the binomial success rate for the alternative               

allele when ci,k=0 (variant absent), thereby accounting for sequencing errors or errors in the clonal tree                

configuration, and 𝜽1 ={𝜃1 ,𝜃2 ...,𝜃N } denotes a vector of binomial parameters, one for each variant, for              

ci,k=1. The latter binomial rates model the effect of allelic imbalance, which means the probability of                

observing alternate reads at frequencies that differ from 0.5 for true heterozygous sites (see Supp.               

Methods for details).  

 

To capture the uncertainty in the binomial success probabilities, we introduce beta prior distributions              

on 𝜃0 and 𝜃1 . To ensure sensible prior distributions, we estimate the beta parameters from the                

scRNA-seq at known germline heterozygous variants for highly expressed genes (Supp. Fig. S38 ).             

For example, in the fibroblast dataset considered here, this approach yielded prior parameters of beta               

(0.2, 99.8) for 𝜃0 and beta (0.45, 0.55) for 𝜃i, i>0. The prior probability that cell j belongs to clone k is                      

modelled using an  uniform prior such that P(Ij= k|𝝅) = 𝜋k =1/K for all k.  
 

The joint posterior probability of clonal tree configuration C , cell assignment I and the parameters 𝜃                

and ξ can be described as follows. 

(4) 

We use a Gibbs sampler to infer this posterior distribution, and the details of the algorithm can be                  

found in Supp. Methods , where we also present two alternative versions of cardelino: cardelino-free              

without any informative clone configuration prior and cardelino-fixed assuming that the clone            

configuration prior is fixed and error-free (see Supp. Methods and Supp. Fig. S3 ). Despite the full                

Bayesian approach, cardelino is computationally efficient, enabling the assignment of hundreds of            

cells within minutes using a single compute node. These methods will comfortably scale to datasets               

with many thousands of cells. 

 

Alternative methods 

Different from cardelino, two alternative methods with distinct strategies are compared: Demuxlet            

which assumes the guide clonal tree is perfect (Kang et al. 2018), and SingleCellGenotyper (SCG)               

which does not take any guide clonal tree (Roth et al. 2016). 
 

Demuxlet requires a BAM file as input to obtain an empirical sequencing error rate from the                

sequencing quality score, which is not compatible with our simulated allelic read count matrices.              

Therefore, we re-implemented the core model of Demuxlet by following the third equation in the online                

method and the Supplementary Table S3 in its original paper (Kang et al. 2018). We set the                 

sequencing error rate to 0.003 for all reads, by matching our simulation settings. We also compared                

our implementation and the original implementation on demultiplexing pooled scRNA-seq data, and            

found they are perfectly concordant (Supp. Fig. S1 ). 
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For SCG, the input is a matrix of categorical values denoting the measured genotype states for each                 

variant in each cell. Here, our raw observation is the alternative and reference allelic read counts,                

hence we need to transform the observed raw counts into genotype states. As the false positive rate is                  

mostly very low (i.e., observing an alternative allelic read from homozygous reference genotype), we              

simply take the genotype g ij for variant i in cell j as 1 (i..e, heterozygous) if there is any alternative                    

allelic read (i.e., a ij >0), otherwise we take g ij =0 (i.e., homozygous reference). In case there is no                

expression, we give a missing value g ij =3. For running SCG, we used the run_singlet_model mode               

and configured the hyper-parameters as follows: kappa_prior=1, gamma_prior=[[30, 0.3], [4, 4]], and            

state_prior=[1, 1], which match our simulation settings. Note, we ran SCG from a Python wrap function                

in order to fix the first clone as a base clone, i.e., with no mutations. 

 

Additionally, we included two variants of cardelino with similar strategies to SCG and Demuxlet:              

cardelino-fixed, similar to Demuxlet, assumes the guide clonal tree is perfect and cardelino-free,             

similar to SCG, does not use any guide clonal tree. The implementation of these two cardelino variants                 

are described in the Supp. Methods. These five methods are compared with simulations in different               

settings (Supp. Fig. S3  and S13 ). 
 

The inferred clone labels may not be best aligned to the simulated clones, especially for SCG and                 

cardelino-free that do not use any guide clone configuration, hence before evaluation we aligned the               

inferred clones to the simulated truth (or the input guide clones) by re-ordering the inferred clones to                 

reach the lowest number of conflicting mutation states between two configuration matrices. 

 

Cell culture 

Dermal fibroblasts, derived from skin-punch samples from the shoulder of 32 donors (White British,              

age range 30-75), were obtained from the HipSci project (http://hipsci.org). Following thawing,            

fibroblasts were cultured in supplemented DMEM (high glucose, pyruvate, GlutaMAX (Life           

Technologies / 10569-010), with 10% FBS (Lab Tech / FB-1001) and 1% penicillin-streptomycin (Life              

Technologies / 15140122) added. 18 hours prior to collection, cells were trypsinised (Life             

Technologies / 25300054), counted, and seeded at a density of 100,000 cells per well (6 well plate). 

 

Cell pooling, capture and full-length transcript single-cell RNA sequencing 

Cells were washed with PBS, trypsinised, and resuspended in PBS (Gibco / 14190-144) + 0.1% DAPI                

(AppliChem / A1001). Cells from three lines were pooled and consequently sorted on a Becton               

Dickinson INFLUX machine into plates containing 2uL/well lysis buffer. Single cells were sorted             

individually (using FSC-W vs FSC-H), and apoptotic cells were excluded using DAPI. Cells from each               

three-plex cell pool were sorted across four 96-well plates. Reverse transcription and cDNA             

amplification was performed according to the Smart-seq2 protocol (Picelli et al. 2014), and library              
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preparation was performed using an Illumina Nextera kit. Samples were sequenced using paired-end             

75bp reads on an Illumina HiSeq 2500 machine. 

 

Bulk whole-exome sequencing data and somatic variant calling 

We obtained bulk whole-exome sequencing data from HipSci fibroblast (median read coverage: 254)             

and derived iPS cell lines (median read coverage: 79) released by the HipSci project (Streeter et al.                 

2016; Kilpinen et al. 2017). Sequenced reads were aligned to the GRCh37 build of the human                

reference genome (Church et al. 2011) using bwa (Li 2013). To identify single-nucleotide somatic              

variant sites in the fibroblast lines, we compared variant allele frequencies for putative somatic variants               

in the fibroblast and matching iPS samples, using the iPS line as the reference “normal” sample in the                  

absence of true germline samples for these lines. As the iPS lines were derived from their matching                 

fibroblast lines, this comparison flips the usual tumour-normal comparison exploited in standard            

somatic mutation calling pipelines. As such, somatic variants present in a fibroblast sample are also               

expected to be present in the matching iPS sample, violating key assumptions of established somatic               

variant callers such as MuTect2 (Cibulskis et al. 2013) and Strelka2 (S. Kim et al. 2018). Thus, we                  

apply a variant calling approach specific to our experimental setting here.  

 

For each exome sample, we searched for sites with a non-reference base in the read pileup using                 

bcftools/mpileup (Li et al. 2009). In the initial pre-filtering we retained sites with a per-sample coverage                

of at least 20 reads, at least three alternate reads in either fibroblast or iPS samples and an allele                   

frequency less than 5% in the ExAC browser (Karczewski et al. 2017) and 1000 Genomes data (The                 

1000 Genomes Project Consortium 2015). A Fisher exact test (Fisher 1922) implemented in             

bcftools/ad-bias was then used to identify sites with significantly different variant allele frequency             

(VAF) in the exome data between fibroblast and iPS samples for a given line (Benjamini-Hochberg               

FDR < 10%). Sites were removed if any of the following conditions held: VAF < 1% or VAF > 45% in                     

high-coverage fibroblast exome data; fewer than two reads supporting the alternative allele in the              

fibroblast sample; VAF > 80% in iPS data (to filter out potential homozygous alternative mutations);               

neither the iPS VAF or fibroblast VAF was below 45% (to filter out variants with a “significant”                 

difference in VAF but are more likely to be germline than somatic variants). We further filtered sites to                  

require uniqueness of sites across donors as it is highly unlikely to observe the same point mutation in                  

more than one individual, so such sites almost certainly represent technical artefacts. Overall, this              

somatic variant calling approach aims to achieve higher specificity at the cost of lower sensitivity, so is                 

conservative and should limit the inclusion of false-positive somatic variants in our callset. 

 

We used bcftools/cnv (Danecek et al., 2016) to call copy number aberrations in fibroblasts. Calls were                

filtered to exclude CNAs with quality score <2, deletions with <10 markers and duplications with <10                

heterozygous markers. We also excluded any calls that were smaller than 200Kb. 
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Identification of mutational signatures 

Signature exposures were estimated using the sigfit package (Gori and Baez-Ortega 2018), providing             

the COSMIC 30 signatures as reference (Forbes et al. 2017), and with a highest posterior density                

(HPD) threshold of 0.9. Signatures were determined to be significant when the HPD did not overlap                

zero. Two signatures (7 and 11) were significant in two or more donors.  

 

Identification of selection dynamics 

Several methods have been developed to detect deviations from neutral growth in cell populations              

(Simons 2016a; Williams et al. 2016, 2018; Martincorena et al. 2018). Methods such as dN/dS or                

models assessing the fit of neutral models to the data need a high number of mutations to determine                  

selection/neutrality. Given the relatively low number of mutations found in the donors in this study,               

these models are not applicable. We used the package SubClonalSelection          

(https://github.com/marcjwilliams1/SubClonalSelection.jl) in Julia 0.6.2 which works with a low number          

of mutations (> 100 mutations; Williams et al. 2018). The package simulates the fit of a neutral and a                   

selection model to the allele frequency distribution, and returns a probability for the selection model to                

fit the data best. 

 

At small allele frequencies the resolution of the allele frequency distribution is limited by the               

sequencing depth. We chose a conservative lower resolution limit of (Shin et al. 2017). At          .05f min = 0      

the upper end of the allele frequency distribution we chose a cut-off at to account for ploidy             .45f max = 0      

( ). For the classification of the donors, we introduced cut-offs on the resulting selection probability= 2                

of the algorithm. Donors with a selection probability below 0.3 are classified as ‘neutral’, above 0.7 as                 

‘selected’. Donors which are neither ‘selected’ nor ‘neutral’ remain ‘undetermined’. See Fig. 2a and              

Supp. Fig. S6 for the results of the classification and fit of the models to the data. subClonalSelection                  

assumes that the total population of cells is expanding exponentially and unfortunately does not allow               

to check for alternative growth hypotheses. However, we expect the growth dynamics not to have a                

big impact on the VAF distributions (in the extreme case of a constant population the VAF decay                 

dynamics change to 1/f from 1/f^2 but still show peaks for selected clones; compare Figure 1 in                 

Williams et al. 2018 ). Hence, the comparison of the selection model versus the neutral model should                

lead to meaningful results. 

 

Single-cell gene expression quantification and quality control 

Raw scRNA-seq data in CRAM format was converted to FASTQ format with samtools (v1.5), before               

reads were adapter- and quality-trimmed with TrimGalore! (github.com/FelixKrueger/TrimGalore)        

(Martin 2011). We quantified transcript-level expression using Ensembl v75 transcripts (Flicek et al.             

2014) by supplying trimmed reads to Salmon v0.8.2 and using the “--seqBias”, “--gcBias” and “VBOpt”               

options (Patro et al. 2017). Transcript-level expression values were summarised at gene level             

(estimated counts) and quality control of scRNA-seq data was done with the scater package              
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(McCarthy et al. 2017) and normalisation with the scran package (Lun, Bach, and Marioni 2016; Lun,                

McCarthy, and Marioni 2016). Cells were retained for downstream analyses if they had at least 50,000                

counts from endogenous genes, at least 5,000 genes with non-zero expression, less than 90% of               

counts from the 100 most-expressed genes in the cell, less than 20% of counts from ERCC spike-in                 

sequences and a Salmon mapping rate of at least 40% (Supp. Table S2 ). This filtering approach                

retains 63.7% of assayed cells.  

 

Deconvolution of donors from pools 

To increase experimental throughput in processing cells from multiple distinct donor individuals (i.e.             

lines), and to ensure an experimental design robust to batch effects, we pooled cells from three lines                 

in each processing batch, as described above. As such, we do not know the donor identity of each cell                   

at the time of sequencing and cell-donor identity must be inferred computationally. Thus, for both               

donor and, later, clone identity inference it is necessary to obtain the count of reads supporting the                 

reference and alternative allele at informative germline and somatic variant sites. Trimmed FASTQ             

reads (described above) were aligned to the GRCh37 p13 genome with ERCC spike-in sequences              

with STAR in basic two-pass mode (Dobin et al. 2012) using the GENCODE v19 annotation with                

ERCC spike-in sequences (Searle et al. 2010). We further use picard (Broad Institute 2015) and               

GATK version 3.8 (McKenna et al. 2010) to mark duplicate reads (MarkDuplicates), split cigar reads               

(SplitNCigarReads), realign indels (IndelRealigner), and recalibrate base scores (BaseRecalibrator).  
 

For cell-donor assignment we used the GATK HaplotypeCaller to call variants from the processed              

single-cell BAM files at 304,405 biallelic SNP sites from dbSNP (Sherry et al. 2001) build 138 that are                  

genotyped on the Illumina HumanCoreExome-12 chip, have MAF > 0.01, Hardy-Weinberg equilibrium            

P < 1e-03 and overlap protein-coding regions of the 1,000 most highly expressed genes in HipSci iPS                 

cells (as determined from HipSci bulk RNA-seq data). We merged the per-cell VCF output from GATK                

HaplotypeCaller across all cells using bcftools version 1.7 (Danecek et al. 2011, 2016) and filtered               

variants to retain those with MAF > 0.01, quality score > 20 and read coverage in at least 3% of cells.                     

We further filtered the variants to retain only those that featured in the set of variants in the                  

high-quality, imputed, phased HipSci genotypes and filtered the HipSci donor genotype file to include              

the same set of variants.  

 

We used the donor_id function in the cardelino package to assign cells to donors. This function                

assigns cells to donors by modelling alternative allele read counts with given genotypes of input               

donors. For a single germline variant, the three base genotypes (as minor allele counts) can be 0, 1                  

and 2. For doublet genotype profiles generated by combining pairs of donor genotypes, two additional               

combinatory genotypes, 0.5 and 1.5 are allowed. We assume that each genotype has a unique               

binomial distribution whose parameters are estimated by an EM algorithm in a framework similar to               

clone assignment (described above; see Supp. Methods ). When we enable doublet detection, the             
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posterior probabilities that a cell comes from any of the donors provided, including doublet donors, are                

calculated for donor assignment. There are 490 available HipSci donors, so we run cardelino in two                

passes on each plate of scRNA-seq data separately. In the first pass, the model outputs the posterior                 

probability that each cell belongs to one of the 490 HipSci donors, ignoring the possibility of doublets.                 

In the second pass, only those donors with a posterior probability greater than 0.95 in at least one cell                   

are considered by the model as possible donors and doublet detection is enabled. After the second                

pass, if the highest posterior probability is greater than 0.95, more than 25 variants have read                

coverage, and the doublet probability is less than 5% then we provisionally assign the cell to the donor                  

with the highest posterior probability. If the provisionally assigned donor is one of the three donors                

known to have been pooled together for the specific plate, then we deem the cell to be confidently                  

assigned to that donor, otherwise we deem the cell to have “unassigned” donor. With this approach,                

97.4% of cells passing QC (see above) are confidently assigned to a donor (Supp. Fig. S39 ). Of the                  

cells that are not confidently assigned to a donor, 2.1% are identified as doublets by cardelino and                 

0.5% remain “unassigned” due to low variant coverage or low posterior probability. Thus, we have               

2,338 QC-passing, donor-assigned cells for clonal analysis.  

 

Clonal inference 

We inferred the clonal structure of the fibroblast cell population for each of the 32 lines (donors) using                  

Canopy (Jiang et al. 2016). We used read counts for the variant allele and total read counts at filtered                   

somatic variant sites from high-coverage whole-exome sequencing data from the fibroblast samples            

as input to Canopy. In addition to the variant filtering described above, input sites were further filtered                 

for tree inference to those that had non-zero read coverage in at least one cell assigned to the                  

corresponding line. We used the BIC model selection method in Canopy to choose the optimal number                

of clones per line. Here, for each of the 32 lines, we considered the highest-likelihood clonal tree                 

produced by Canopy, along with the estimated prevalence of each clone and the set of somatic                

variants tagging each clone as the given clonal tree for cell-clone assignment. 

 

Cell-clone assignment 

For cell-clone assignment we required the read counts supporting reference and alternative alleles at              

somatic variant sites. We used the bcftools version 1.7 mpileup and call methods to call variants at                 

somatic variant sites derived from bulk whole-exome data, as described above, for all confidently              

assigned cells for each given line. Variant sites were filtered to retain variants with more than three                 

reads observed across all cells for the line and quality greater than 20. We retained cells with at least                   

two somatic variants with non-zero read coverage (2,044 cells across 32 lines). From the filtered VCF                

output of bcftools we obtained the number of reads supporting the alternative allele and the total read                 

coverage for each somatic variant site with more than three reads covering the site, in total, across all                  

the line’s cells. In general, read coverage of somatic variant sites in scRNA-seq data is sparse, with                 

over 80% of sites for a given cell having no overlapping reads. We used the scRNA-seq read counts at                   
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the line’s somatic variant sites to assign QC-passing cells from the line to clones using the clone_id                 

function in the cardelino R package.  

 

Simulations to benchmark cell to clone assignment 

We simulated data to test the performance of cardelino as follows. First, given a clonal tree                

configuration C (N-by-K binary matrix), a given number of cells are generated (e.g. 200, see below),                

whose genotypes are sampled from K clones following a multinomial distribution parameterised by             

clonal fractions F. Second, given a matrix D (N-by-M matrix) of sequencing coverage for N sites in M                  

cells, we uniformly sample the coverage profiles from these M cells into a given number of cells for                  

simulation. Third, after having the genotype hij=ci,Ij and the sequencing depth dij for variant i in cell j                  

from the previous two steps, we can generate the read count aij for the alternative allele by sampling                  

from a binomial distribution with success parameter 𝜃0 if hij=0 or with an allele-specific expression               

parameter 𝜃i if hij=1. Note, both 𝜃0 and 𝜃i are randomly generated from beta prior distributions, whose                 

parameters are estimated from experimental data. 

 

Based on the above simulation workflow, two simulation experiments are performed to evaluate the              

accuracy and robustness of cardelino. One simulation was performed with synthesizing the same             

number of cells as seen for each of the 32 lines, where input parameters are from the observed                  

matrices C and D , clonal fraction F, and cardelino-learned 𝜽 from each line. To match the error rate in                   

the guide clone configuration as observed in experimental data, we swapped the same fraction of               

mutation states for non-base clones in the guide configuration matrix C when running cardelino. We               

repeat the simulation 50 times on each line, permuting the position of the errors in the tree                 

configuration. This simulation tries to mimic all settings in each line, which not only evaluates the                

accuracy of the model, but also reflects the quality of the data in each line for clonal assignment.  

 

Additionally, in a second set of simulations, we change one of these parameters each time to                

systematically assess cardelino. The clonal configuration is defined by the number of clones, K, a               

perfect phylogenetic matrix ((K-1)-by-K) including a base clone, and the number of unique variants per               

clonal branch n, which returns a configuration matrix C with a shape of n(K-1)-by-K. With setting K                 

clones, one out of all possible clonal tree structures is randomly selected to generate the clonal                

configuration matrix. Then the sequencing depth matrix D for these n(K-1) variants are sampled from a                

line with 439 variants across 151 cells (see distribution in Supp. Fig. S40 ). In order to increase or                  

decrease the missingness rate of D , zero coverages are respectively added or removed linearly              

according to the expression level of the gene corresponding to the variant. The allelic expression               

balance can be adjusted by changing the parameters of its beta prior distribution. We set uniform                

clonal prevalence in the second simulation. With each parameter setting, 200 cells are randomly              

synthesized and this procedure is repeated 50 times to vary the random selection of errors in the tree                  

configuration, the branch position of each variant, and the tree structure. When one setting parameter               
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varies, others are used at the default values: number of variants per clonal branch = 10, variant                 

coverage = 0.25, clone number = 4, precision of allelic ratio = 1 (i.e. shape1+shape2 of beta prior,                  

lower precision means more variants with high allelic imbalance), error rate of the mutation states in                

the input clone configuration = 0.1, and fraction of wrongly clustered variants = 0 (though this is                 

coupled with the error rate). These default values are representative of the 32 experimental lines               

(Supp. Fig. S11, S38, S41 ).  
 

Variance component, differential expression and pathway analysis 

Expression analyses between clones required further filtering of cells for each line. Analyses were              

conducted using cells that passed the following filtering procedure for each line: (1) clones identified in                

the line were retained if at least three cells were confidently assigned to the clone; (2) cells were                  

retained if they were confidently assigned to a retained clone. Lines were retained for DE testing if                 

they had at least 15 cells assigned to retained clones, allowing us to conduct expression analyses for                 

31 out of the 32 lines (all except vils).  
 

Expression variance across cells is decomposed into multiple components in a linear mixed model,              

including cellular detection rate (proportion of genes with non-zero expression per cell) as a fixed               

effect and plate (i.e. experimental batch), donor (i.e. line; only when combining cells across all donors)                

and clone (nested within donor for combined-donor analysis) as random effects. We fit the linear               

mixed model on a per-gene basis using the variancePartition  R package (Hoffman and Schadt 2016). 
 

Differential gene expression (DE) testing was conducted using the quasi-likelihood F-test method            

(Lund et al. 2012) in the edgeR package (Robinson, McCarthy, and Smyth 2010; McCarthy, Chen, and                

Smyth 2012) as recommended by Soneson and Robinson (Soneson and Robinson 2018). To test for               

differences in expression between cells assigned to different clones in a line, we fit a linear model for                  

single-cell gene expression with cellular detection rate (proportion of QC-filtered genes expressed in a              

cell; numeric value), plate on which the cell was processed (a factor) and assigned clone (a factor) as                  

predictor variables. The quasi-likelihood F test was used to identify genes with: (1) any difference in                

average expression level between clones (analogous to analysis of variance), and (2) differences in              

average expression between all pairs of clones (“pairwise contrasts”). We considered 10,876 genes             

that were sufficiently expressed (an average count >1 across cells in all lines) to test for differential                 

expression.  

 

To test for significance of overlap of DE genes across donors, we sampled sets of genes without                 

replacement the same size as the number of DE genes (FDR < 10%) for each line. For each                  

permutation set, we then computed the number of sampled genes shared between between donors.              

We repeated this procedure 1,000 times to obtain distributions for the number of DE genes shared by                 

multiple donors if shared genes were obtained purely by chance.  
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Gene set enrichment (pathway) analyses were conducted using the camera (Wu and Smyth 2012)              

method in the limma package (Smyth 2004; Ritchie et al. 2015). Using log 2 -fold-change test statistics               

for 10,876 genes for pairwise contrasts between clones from the edgeR models above as input, we                

applied camera to test for enrichment for the 50 Hallmark gene sets from MSigDB, the Molecular                

Signatures Database (Liberzon et al. 2011). For all differential expression and pathway analyses we              

adjusted for multiple testing by estimating the false discovery rate (FDR) using independent             

hypothesis weighting (Ignatiadis et al. 2016), as implemented in the IHW package, with average gene               

expression supplied as the independent covariate. 

 

Code availability 

The cardelino methods are implemented in an open-source, publicly available R package            

(github.com/PMBio/cardelino ). The code used to process and analyse the data is available            

(github.com/davismcc/fibroblast-clonality), with a reproducible workflow implemented in Snakemake        

(Köster and Rahmann 2012). Descriptions of how to reproduce the data processing and analysis              

workflows, with html output showing code and figures presented in this paper, are available at               

davismcc.github.io/fibroblast-clonality. Docker images providing the computing environment and        

software used for data processing (hub.docker.com/r/davismcc/fibroblast-clonality/) and data analyses         

in R (hub.docker.com/r/davismcc/r-singlecell-img/) are publicly available. 

 

Data availability 

Single-cell RNA-seq data have been deposited in the ArrayExpress database at EMBL-EBI            

(www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-7167. Whole-exome sequencing data        

is available through the HipSci portal (www.hipsci.org ). Metadata, processed data and large results             

files are available under the DOI 10.5281/zenodo.1403510 (doi.org/10.5281/zenodo.1403510). 
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Line name Gender Age 
Number of 

Variants 

Signature 7 

Mean 

Exposure 

Number 

Clones 

With Cells 

Minimum 

Hamming 

Distance Total cells 
Assigned 

Cells 

Proportion 

Assigned 

Cells 

euts male 60-64 292 0.585 3 29 79 78 0.987 

fawm female 70-74 101 0.337 3 5 53 47 0.887 

feec male 60-64 170 0.281 4 5 75 64 0.853 

fikt male 50-54 142 0.378 3 13 39 36 0.923 

garx female 50-54 592 0.670 3 57 70 69 0.986 

gesg male 60-64 157 0.372 3 23 105 101 0.962 

heja male 70-74 192 0.266 3 16 50 50 1.000 

hipn male 55-59 59 0.019 3 8 62 49 0.790 

ieki female 55-59 82 0.381 3 7 58 26 0.448 

joxm female 45-49 612 0.609 3 41 79 77 0.975 

kuco female 65-69 41 0.112 2 9 48 48 1.000 

laey female 70-74 278 0.532 3 36 55 55 1.000 

lexy female 60-64 55 0.069 3 6 63 63 1.000 

naju male 60-64 85 0.296 2 13 44 44 1.000 

nusw male 65-69 62 0.091 3 3 60 20 0.333 

oaaz male 70-74 90 0.172 3 17 38 37 0.974 

oilg male 65-69 211 0.505 3 2 90 57 0.633 

pipw male 50-54 233 0.551 3 34 107 107 1.000 

puie male 60-64 117 0.448 3 10 41 41 1.000 

qayj female 60-64 46 0.035 3 7 97 59 0.608 

qolg male 35-39 120 0.381 2 23 36 36 1.000 

qonc female 65-69 131 0.406 3 7 58 43 0.741 

rozh female 65-69 79 0.173 4 2 91 42 0.462 

sehl female 55-59 178 0.527 4 2 30 24 0.800 

ualf female 55-59 325 0.540 3 29 89 88 0.989 

vass female 30-34 412 0.647 3 35 37 37 1.000 

vils female 35-39 51 0.206 4 1 37 4 0.108 

vuna female 65-69 135 0.456 2 33 71 71 1.000 

wahn female 65-69 496 0.605 3 52 82 77 0.939 

wetu female 55-59 73 0.212 3 8 77 66 0.857 

xugn male 65-69 124 0.398 3 8 35 34 0.971 

zoxy female 60-64 61 0.117 3 8 88 82 0.932 

 
Table S1: Biological and technical metadata for each of the 32 HipSci human fibroblast lines used. 
Number of variants refers to somatic variants identified from whole-exome sequencing data 
(Methods ); Signature 7 exposure refers to Signature 7 (UV) from the COSMIC set of mutational 
signatures; Minimum Hamming distance denotes the minimum number of variants distinguishing 
between two clones in the inferred clonal tree for the line (Methods ). 
  

2 



 

 
 Metric Min.  1st Qu.  Median Mean 3rd Qu. Max. % passing 

filter 

Before 
QC 
filtering 

Total counts 
from endog. 
genes 

178 123,489 383,929 442,353 621,738 5,833,292 - 

Total genes 
expressed 

174 6,772 10,446 8,801 11,790 16,243 - 

% counts from 
ERCCs 

0 0.97 1.81 14.47 3.34 99.90 -  

% counts top 
100 expressed 
genes 

29.4 40.8 55.6 57.8 62.8 100.0 -  

% reads 
mapped 

7.69 68.71 75.59 74.80 81.67 100.0 -  

After QC  
filtering 

Total counts 
from endog. 
genes 

50,464 316,033 484,887 559,742 710,028 2,659,889 80.6 

Total genes 
expressed 

5,083 9,960 11,108 10,846 12,100 14,804 79.3 

% counts from 
ERCCs 

0.001 0.96 1.63 1.86 2.39 18.1 85.3 

% counts top 
100 expressed 
genes 

29.4 38.6 52.4 49.2 58.2 89.0 86.1 

% reads 
mapped 

44.1 70.3 76.0 74.8 79.1 92.7 99.3 

 
Table S2: Summaries of QC metrics for single-cell RNA-seq data before and after QC filtering. Cells 
were required to have more than 50,000 counts from endogenous genes, more than 5,000 genes 
expressed (i.e . with non-zero expression), less than 20% of counts from ERCC transcripts, less than 
90% of counts from the 100 most-expressed genes in the cell and at least 40% of reads mapped 
using Salmon . Metrics were computed using the scater package (Methods ). 
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Figure S1: Comparison of donor assignment results from the original Demuxlet software and our              
implementation. The confusion matrix of cells assigned to three donors by two methods, which are               
highly concordant. Note, those unmatched cells are all identified as doublets by Demuxlet. The data is                
generated by 10x genomics platform by pooling three HipSci lines. 
 

 
Figure S2: Evaluation of the inferred relax (error) rate using simulations. (A) The estimated relax rate                
as a function of the simulated error rates. Errors are simulated by uniformly swapping the mutation                
states in the guide clonal configuration matrix, except the base clone which has no mutations. (B)                
The estimated relax rate across different fractions of variants that have wrong branch configuration.              
Errors are added by swapping branches for variants. 
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Figure S3. Assessment of cell assignment to clones across a variety of simulation settings,              
considering SingleCellGenotyper (SCG), Demuxlet (our implementation to avoid the requirement of           
.bam format), cardelino and its two versions: cardelino-free without any informative clone            
configuration prior and cardelino-fixed assuming that the clone configuration prior is correct (Methods             
and Supp Methods ). All methods were applied to simulated data with known ground truth, varying (A )                
the number of informative variants per clonal branch, (B ) the fraction of informative variants covered               
(i.e., non-zero scRNA-seq read coverage), (C ) the total number of clones, (D ) the precision (i.e.,               
inverse variance) of allelic ratio across genes; lower precision means more genes with high allelic               
imbalance, (E) the rate of general errors of mutation states in the clone configuration matrix, (F) the                 
fraction of wrongly clustered variants in the input clonal tree branch. Default parameter values are               
marked with an asterisk and are retained when varything other parameters. 
 
 

 
Figure S4. The effects of the tree topology on the cell assignment accuracy. In the simulations in Fig.                  
1 and Supp Fig. S2, there are 20 repeats for each parameter, where one of the tree topology                  
candidates are randomly selected in each repeat. For the four-clone configuration, there are four              
different tree topologies (upper panel), and their performance (area under the precision-recall curve)             
for the five different methods are splitted (bottom panel). 
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Figure S5. Estimated mutational signature exposures based upon the tri-nucleotide context of            
somatic SNVs called from whole-exome sequencing (WES) data for 32 HipSci human fibroblast lines.              
The x-axis shows 30 COSMIC mutational signatures, in order, and the y-axis shows estimated              
exposures (mutation fraction) using the sigfit package (Methods ), with significant signatures           
highlighted in blue. Across lines, the only significant signatures are Signature 7 (UV mutagenic              
process) and Signature 11. 
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Figure S6 . Variant allele frequency (VAF) distributions for somatic variants called from whole exome              
sequencing data for the 32 fibroblast lines. The grey lines indicate the cut-offs on the allele frequency                 
distribution (Methods ). The blue lines indicate the model (neutral/selected) inferred by           
SubClonalSelection (shading 95% confidence interval). 
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Figure S7. Clonal tree inferred by Canopy and then updated by cardelino (shown is output from                
cardelino) and posterior probability of assignment of each cell to each clone from cardelino for the 32                 
lines analysed in detail in the manuscript. 
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Figure S8. Clonal tree inferred by Canopy (unaltered tree output from Canopy is shown) and posterior                
probability of assignment of each cell to each clone from cardelino for the 32 lines analysed in detail in                   
the manuscript. 
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Figure S9. Comparison of the clonal tree inferred by Canopy and the updated tree after running                
cardeilno for the 32 lines analysed in detail in the manuscript. 
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Figure S10. Differences in configuration matrices (rows represent single-nucleotide variants and 
columns represent clones) between Canopy trees and updated trees from cardelino (average 
configuration matrix over 4,750 posterior samples from the cardelino model minus the configuration 
matrix for the tree inferred by Canopy). 

 

 
Figure S11. Estimated error rate in the clonal tree configuration derived from bulk exome-seq data 
(based on cardelino) for each of 32 lines versus fraction of confidently assigned cells. Even though 
some lines have high error rate in the input clonal tree configuration, cardelino can still assign a high 
fraction of cells to clones confidently. 
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Figure S12. Comparison of cell assignment between five methods across 32 lines. (A ) The fraction of                
assignable cells (i.e., highest P > thresholds) when varying the thresholds from 0.5 to 0.95. Shown are                 
box plots depicting median and the first and third quantiles of the 32 lines. (B ) The adjusted Rand                  
index of cell assignment to clones between the five considered methods. The values is averaged               
across 32 lines. (C ) Scatter plot between the uncertainty of the inferred tree from cardelino-free               
(x-axis) and the mean absolute difference of the assignment probability between cardelino-free and             
cardelino (y-axis). The output posterior clonal configuration matrix from cardelino-free consists of the             
probability of each variant being present in each clone. A completely uninformative clonal tree would               
have all entries equal to 0.5. Thus, we measure the uncertainty of the output tree from cardelino-free                 
by taking 0.5 minus the mean absolute difference of the posterior probability configuration matrix and               
the uninformative configuration probability matrix of all of entries equal to 0.5. WIth this measure, a                
value of 0.5 indicates a posterior configuration indistinguishable from the uninformative configuration            
and a value of 0 indicates very high confidence from the model in the posterior configuration. (D )                 
Pairwise comparison of clone assignments by adjusted Rand Index for high-probability Canopy tree             
solutions on one representative line: feec. Shown are pairwise comparisons for the thirty most              
probable trees derived from bulk exome-seq data with Canopy, leading to 435 tree pairs for each line.                 
(E) The adjusted Rand index of cell assignment between two different guide clonal trees across all 32                 
lines. Each dot in the boxplot denotes a line, which is the average of these 435 pairwise comparisons. 
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Figure S13. Assessment of cell assignment to clones across a variety of simulation settings,              
considering SingleCellGenotyper (SCG), Demuxlet (our implementation to avoid the requirement of           
.bam format), cardelino and its two versions: cardelino-free without any informative clone            
configuration prior and cardelino-fixed assuming that the clone configuration prior is all correct             
(Methods and Supp Methods). Considered were simulated data based on empirical characteristics            
observed in 32 fibroblast lines. For each line, the sequence coverage, clone configuration (i.e.,              
number of clones, variants on each branch), and allelic imbalance parameters were obtained to derive               
simulation parameters. 200 cells are synthesised per line and a clone configuration with 10% errors               
are used as a guide. The main Fig. 2b and Supp. Fig. S13 are both based on this simulation. 
 

 
Figure S14. Scatter plot of the fraction of cells assigned in each cell line using cardelino (at posterior                  
probability > 0.5) as a function of the minimum number of clone-specific variants for the corresponding                
line (minimum Hamming distance between clones for a given donor), for 32 fibroblast lines. Total               
number of cells that were considered for this analysis (QC passed) per line indicated by colour.  
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Figure S15 . Scatter plot of recall (assignment rate) versus precision (assignment accuracy) when             
assigning cells using cardelino (at posterior probability > 0.5). Shown are data from for 32 simulated                
lines, using parameters that match the observed data characteristics in the set of 32 real fibroblast                
lines (Methods ). The average number of variants per clonal branch (i.e., #variant / (#clone - 1)) is                 
shown by point colour (slightly different from Supp. Fig. S4 which uses the minimum number of                
variants distinguishing between pairs of clones, as shown in Fig. 3a). Lines with fewer informative               
variants per branch tend to have lower assignment rates, but the precision remains high. 
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Figure S16. Boxplots of the total number of expressed genes in each cell, grouped by the clone                 
assigned by cardelino. Twelve lines with more than 60 assignable cells are presented. Globally, clone               
assignment is not linked to the total number of expressed genes in a given cell.  
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Figure S17. Boxplots of the total number of sequenced read counts from endogenous genes in each                
cell, grouped by the clone assigned by cardelino. Twelve lines with more than 60 assignable cells are                 
presented. Globally, clone assignment is not linked to the total number of read counts in a given cell.  
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Figure S18. Boxplots of the number of variants for clone identification with read coverage in each cell,                 
grouped by the clone assigned by cardelino. Twelve lines with more than 60 assignable cells are                
presented. Globally, clone assignment is not linked to the number expressed variant loci in a given                
cell, with the exception of the “unassigned” category which is enriched for cells with low coverage.  
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Figure S19. Scatter plot of the first two principal components calculated on the read coverage of the                 
set of somatic variant sites used for clone assignment. Shown are data from twelve lines with at least                  
60 assignable cells. The first two PCs do not segregate cells from different clones, suggesting that                
read coverage of somatic variants does not associate with or bias clone assignment. 
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Figure S20. Scatter plot of the first two principal components calculated on the read coverage of the                 
set of somatic variant sites used for clone assignment. Cells are colored by the assignment probability                
of clone 1 (i.e. the “base clone” which by definition contains no unique somatic variants). Shown are                 
data from twelve lines with at least 60 assignable cells. 
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Figure S21. Clone prevalence estimates from WES data (x-axis; using Canopy) versus the fraction of               
single-cell transcriptomes assigned to the clone (y-axis; using cardelino ), for each clone across lines.              
Points are coloured by the overall fraction of single-cell transcriptomes assigned for a given line (i.e.                
cells with posterior P>0.5 for assignment). 
 
 

 
Figure S22. Principal component analysis from single-cell gene expression data (top 500            
most-variable genes) for clone-assigned cells for the example line joxm. Cells are coloured by the cell                
cycle phase inferred by the cyclone method implemented in the scran package, and shape denotes               
the assigned clone from cardelino . 
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Figure S23. Principal component analysis from single-cell gene expression data (top 500            
most-variable genes) for clone-assigned cells for the donor joxm, plotting principal component 3             
against principal component 2. Cells are coloured by the posterior probability from cardelino that the               
cell belongs to clone1 (a), clone2 (b) or clone3 (c). 
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Figure S24. Principal component analysis from single-cell gene expression data (top 500            
most-variable genes) showing PC2 plotted against PC1 for clone-assigned cells for the 31 lines              
analysed in detail in the manuscript. Cells are coloured by the assigned clone from cardelino . 
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Figure S25. Principal component analysis from single-cell gene expression data (top 500            
most-variable genes) showing PC2 plotted against PC1 for clone-assigned cells for the 31 lines              
analysed in detail in the manuscript. Cells are coloured by the G2M cell cycle phase score calculated                 
with the cyclone method implemented in the scran package, and shape denotes the assigned clone               
from cardelino .  
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Figure S26. Principal component analysis from single-cell gene expression data (top 500            
most-variable genes) showing PC3 plotted against PC2 for clone-assigned cells for the 31 lines              
analysed in detail in the manuscript. Cells are coloured by the assigned clone from cardelino . 
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Figure S27. Principal component analysis from single-cell gene expression data (top 500            
most-variable genes) showing PC2 plotted against PC1 for clone-assigned cells for the 31 lines              
analysed in detail in the manuscript. Cells are coloured by the clusters identified by SC3 (Kiselev et al,                  
Nature Methods, 2017). 
 
  

26 



 

 
Figure S28. Principal component analysis from single-cell gene expression data after regressing out             
cyclone G1, G2M and S cell cycle scores from the normalised expression values (top 500               
most-variable genes) showing PC2 plotted against PC1 for clone-assigned cells for the 31 lines              
analysed in detail in the manuscript. Cells are coloured by the assigned clone from cardelino . 
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Figure S29. Principal component analysis from single-cell gene expression data after regressing out             
cyclone G1, G2M and S cell cycle scores from the normalised expression values (top 500               
most-variable genes) showing PC2 plotted against PC1 for clone-assigned cells for the 31 lines              
analysed in detail in the manuscript. Cells are coloured by the clusters identified by SC3 . 
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Figure S30. Distributions of cyclone G2M scores for each cell line (donor) stratified (coloured) by the                
clusters identified by SC3 when (a) applying SC3 to normalised gene expression values, without              
regressing out cyclone G1, G2M and S cell-cycle phase scores, and (b) applying SC3 to gene                
expression values after regressing out cyclone cell cycle scores. 
 
 

 
Figure S31. Distributions of cyclone S scores for each cell line (donor) stratified (coloured) by the                
clusters identified by SC3 when (a) applying SC3 to normalised gene expression values, without              
regressing out cyclone G1, G2M and S cell-cycle phase scores, and (b) applying SC3 to gene                
expression values after regressing out cyclone cell cycle scores. 
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Figure S32. Adjusted Rand Index values comparing the clusters identified by SC3 when applying              
SC3 to normalised gene expression values, without regressing out cyclone G1, G2M and S cell-cycle               
phase scores, and when applying SC3 to gene expression values after regressing out cyclone cell               
cycle scores. 
 

 
Figure S33. Adjusted Rand Index values comparing the clusters identified by SC3 and the clone               
assignments from cardelino when applying SC3 to normalised gene expression values, without            
regressing out cyclone G1, G2M and S cell-cycle phase scores, and when applying SC3 to gene                
expression values after regressing out cyclone cell cycle scores.  
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Figure S34. Direct effects of somatic variants on genes overlapping the variant. Volcano plot showing 
negative log P values versus log 2 -fold change from testing differential expression for genes with a 
somatic mutation between cells with the mutation and cells without the mutation, faceted by VEP 
annotation category (Methods ). Each point represents a gene, and boxplots show the overall log 2 -fold 
change distribution for each annotation category. DE tests are conducted within each line (donor) 
separately, and results shown here are aggregated across 32 lines. Genes are categorised by 
simplified functional annotations from VEP of the somatic mutation, and genes significantly DE at an 
FDR threshold of 20% are shown in red.  
 

 

Figure S35. (left) Heatmap showing Spearman correlation between gene set enrichment results for 
the 16 most frequently enriched MSigDB Hallmark gene sets across 31 lines. Colour indicates the 
correlation between pairs of gene sets and is only shown if the correlation is significant (P < 0.05). 
(right) Heatmap showing proportion of overlap in genes between pairs of gene sets (matching those 
in left panel). 
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Figure S36. Heatmap showing the direction (first listed clone relative to second listed clone; in colour) 
and strength of enrichment (-log10(P) as degree of shading) for Hallmark gene sets tested with 
camera (Methods) for all pairwise comparisons between clones across 31 lines. Gene sets that are 
significantly enriched at an FDR threshold of 5% are indicated with dots. Gene sets are shown if 
significant in at least one line, and are ordered by number of lines in which they are significant. 
 
 

 
Figure S37. Graphical representation of the cardelino model. The clonal tree configuration matrix C is               
a random variable and follows a Bernoulli distribution encoded by an input tree configuration Ω that is                 
provided to the model (e.g. estimated from bulk or single-cell DNA-seq data using existing methods               
such as Canopy) as well as an error rate ξ, which follows a beta prior distribution with hyper                  
parameters 𝜅. The indicator matrix I defines the assignment of cells to clones, which is another                
unknown variable, and assumed to follow a multinomial prior with fixed parameter 𝜋 for each cell. The                 
clone configuration C and cell identity I together encode the genotype ci,Ij of each variant i in each cell                   
j. If ci,Ij is 1, the alternative allelic read count will follow a binomial distribution with gene specific                  
parameter 𝜃i, otherwise with error related parameter 𝜃0 . Both 𝜃i and 𝜃0 have a beta prior distribution,                 
but with different parameters. Shaded nodes represent observed variables; unshaded nodes           
represent unknown variables; yellow circled nodes represent fixed hyper parameters. 
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Figure S38. Estimated beta-binomial distribution of the “sequencing error rate” (theta0; A-C ) and the              
alternative allele count rate given a variant is present (theta1; D-F) in single cells from germline                
heterozygous variants across three expression levels in donor vass. For each germline heterozygous             
variant, we select the cell with the highest expression to represent its minor allele frequency and the                 
sequencing error rate, namely the fraction of reads from other alleles instead of either reference or                
alternative alleles. The parameters of beta-binomial distribution is obtained by a maximum likelihood             
estimate with VGAM R package. The Format of beta distribution parameters: (mean, shape1 +              
shape2).  
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Figure S39. Donor identification results from cardelino for QC-passing cells for 32 fibroblast lines (i.e.               
donors) used to demultiplex cells from plates on which cells from three lines were pooled. The y-axis                 
shows the highest posterior probability for donor assignment from cardelino (Methods ) for a little over               
2,000 cells passing QC using expression-based metrics (real Smart-seq2 data from our study; not              
simulated data). The donor ID results are emphatic, with posterior probabilities either very close to 1                
or very close to zero, meaning that the model is very confident about assigning each cell either to a                   
specific donor (i.e. line) or that the “cell” is actually doublet, or that it matches none of the plausible                   
donors. The x-axis shows the number of germline variants with read coverage in the cells that were                 
informative for donor assignment of the cell. Cells are coloured by donor assignment category: either               
“plausible donor” (i.e. a donor/line that was known to have been used on the processing plate),                
“doublet” (nominal single cells that have been inferred to be doublets) or “unassigned” (too few               
variants for assignment or posterior probability of assignment less than 0.95). NB: 21 unassigned cells               
are not visible due to overplotting by doublet cells. 
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Figure S40. Summary of sequencing depths of 340 variants across a pool of 151 cells. (A) Histogram                 
of total read counts on each variant across 151 cells, median number is shown in yellow; (B)                 
Histogram of the number of cells with non-zero read coverage for each variant; median number is                
shown in yellow. This matrix is used as a seed to generate sequencing depths for simulations in Fig.                  
1(b-g) and Supp. Fig. S2.  
 
 

 
Figure S41. Distribution of key parameters in single cells assignment to clones across 32 donors: (A )                
number of clones inferred from bulk exome-seq data. (B ) the median number of variants per clonal                
branch; (C ) the overall coverage of variants, namely the fraction of variants with at least one read; (D )                  
the scatter plot between the mean number of reads per variant per cell and the overall coverage of                  
variants in the same donor. The default simulation parameters are highlighted with the red line.  
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Jan Bonder, Tzachi Hagai, HipSci Consortium, Wenyi Wang, Daniel J. Ga↵ney, Benjamin D.

Simons, Oliver Stegle, Sarah A. Teichmann

1 The Cardelino model

As input for Cardelino, we assume that an informative clonal structure configuration is first
inferred from another data source such as deep, bulk exome-sequencing using a tool such as
Canopy [1]. This inference yields an estimate of the number of clones present, K, clonal fractions
F = (f1, .., fK), where fk denotes the relative prevalence of a given clone k (

PK
k=1 fk = 1), and

a clonal tree configuration matrix C (an N -by-K binary matrix) for N variants and K clones,
where ci,k = 1 if somatic variant i is present in clone k and ci,k = 0 otherwise. Given C and
F , Cardelino aims to assign individual cells to one of K clones based on their expressed alleles
using a probabilistic clustering model (see graphical representation in Supp. Fig. S21). From
scRNA-seq data we extract, for each cell and variant that segregates between clones, the number
of sequencing reads supporting the reference allele (reference read count) and the number of
reads supporting the alternative allele (alternate read count). We denote the variant-by-cell
matrix of alternate read counts by A and the variant-by-cell matrix of total read counts (sum
of reference and alternate read counts) by D. Entries in A and D are therefore non-negative
integers, with missing entries in the matrix D indicating zero read coverage for a given cell and
variant.

The prior probability that cell j belongs to clone k could be taken as the clonal fraction
fk, but to avoid biasing cell assignment towards highly prevalent clones for cells with little
read information (where the prior is more influential) we use a uniform prior F such that
P (Ij = k|F ) = 1/K for all k. Note, the variable F is used to denote a uniform prior for
convenience here, which can be di↵erent from the output of Canopy or another clonal inference
method. Given this prior distribution, the posterior probability of cell j belonging to clone k

can be expressed as:

P (Ij = k|aj ,dj , C, F,✓) =
P (aj |dj , Ij = k, C,✓)P (Ij = k|F )

PK
t=1 P (aj |dj , Ij = t, C,✓)P (Ij = t|F )

, (1)

where Ij is the identity of the specific clone cell j is assigned to, and aj and dj are the observed
alternate read count and total read count vectors, respectively, for variants 1 to N in cell j.
The parameter vector ✓ is a set of unknown parameters to model the allelic counts, which will
be discussed in next section.

It is typically challenging to obtain a perfect clonal configuration from bulk exome-seq data
only. Hence errors are likely to exist in the input configuration C. To account for errors in
clonal configurations, we can use the input configuration as an informative prior (we use ⌦
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for this prior configuration) rather than as fixed and true. We can then learn the posterior
configuration (we use C for consistency with other sections) and its corresponding error rate ⇠.
Therefore, we aim to have the full posterior distribution as follows,

P (✓, C, ⇠|A,D,⌦, F ). (2)

2 Modelling allelic expression

The core part of the Cardelino model is to model the alternate read count using a binomial
model. For a given site in a given cell, there are two possibilities: the variant is “absent” in the
clone a cell is assigned to (i.e. the cell is homozygous reference at that position) or the variant
is “present” in the clone the cell is assigned to (i.e. the cell is heterozygous at that position), as
encoded in the configuration matrix C. When considering the “success probability” ✓ for the
binomial model, where here a success is defined as observing an alternate read, we consider two
alternative (sets of) parameters for each of these settings: ✓0 for homozygous reference alleles
(variant absent), and ✓1 = {✓1, ..., ✓N} for the case with heterozygous variants (variant present).
Note, here we use a common parameter ✓0 for homozygous reference alleles in all variants, but
✓i, i � 1 for each variant i to account for the gene specific level of allelic imbalance that causes
the probability of observing alternate reads to di↵er from 0.5. Therefore, the allelic counts base
model for the two genotypes can be written in the following binomial distributions,

p(ai,j |di,j , hi,j ,✓) =
(
Binom(ai,j |di,j , ✓0), if hi,j = 0.

Binom(ai,j |di,j , ✓i), if hi,j = 1.
(3)

where hi,j = ci,Ij 2 {0, 1} is the genotype of variant i in cell j, which is encoded by clonal
configuration C and cell identity Ij . Furthermore, the likelihood of cell j from clone k can be
formalised as follows,

P (aj |dj , Ij = k, C,✓) =
NY

i=1

p(ai,j |di,j , hi,j ,✓)

=
NY

i=1

�
Binom(ai,j |di,j , ✓i)ci,k ⇥ Binom(ai,j |di,j , ✓0)1�ci,k

 
(4)

Then, we could have the likelihood of parameters ✓ = {✓0, ✓1, ..., ✓N} to observe a full data
set across M cells by marginalizing the mixture of cell assignments, as follows

L(✓) =
MY

j=1

KX

Ij=1

P (aj |dj , Ij , C,✓)P (Ij |F ). (5)

Furthermore, we could view the the clonal assignment in a Bayesian way, and introduce
informative prior distributions for unknown parameters ✓. By multiplying the prior probability
by the likelihood, we could have the posterior probability as follows,

P (✓|A,D,C, F,⌫) / P (✓|⌫)⇥
MY

j=1

KX

Ij=1

P (aj |dj , Ij , C,✓)P (Ij |F )

= Beta(✓0|↵0,�0)
NY

i=1

Beta(✓i|↵1,�1)⇥
MY

j=1

KX

Ij=1

P (aj |dj , Ij , C,✓)P (Ij |F ),

(6)
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where we use a beta prior distribution, a conjugate distribution to the binomial distribution,
for each ✓, and the hyperparameters ⌫ = {↵0,�0,↵1,�1} of the prior are learned from germline
heterozygous variants.

Accounting for the uncertainty of ✓, this unknown parameter can be marginalised in the
posterior probability of clonal assignment, as follows,

P (Ij = k|aj ,dj , C, F ) =

Z

✓
P (Ij = k|aj ,dj , C, F,✓)P (✓|A,D,C, F,⌫)d✓. (7)

3 Inference for the Cardelino model

In the above section, we defined the posterior probability of clonal assignment I and binomial pa-
rameters ✓, the configuration matrix C and its error rate ⇠. With conjugate prior distributions,
a Gibbs sampler can be used to generate a set of samples following the posterior distribution.

In this Gibbs sampling algorithm, we sample cell assignment I, parameters ✓, the configura-
tion matrix C and its error rate ⇠ alternately. Given that three of these four unknown variables
are fixed, the elements of the other parameter are conditionally independent. Therefore, given
✓ and C, we could sample the clonal identity Ij via a categorical distribution, taking Eq(4,3),
as follows

P (Ij = k|I�j , A,D,C, F,✓) = P (Ij = k|aj ,dj , C, F,✓)

/ P (Ij = k|F )P (aj |Ij = k,dj , C,✓).
(8)

Similarly, given the clonal identity I and configuration C in a previous step, ✓i, 0  i  N

are independent from each other, and the posterior probability in Eq(6) can be rewritten by
inserting the base model in Eq(3) as follows,

P (✓|A,D,C, I,⌫) / Beta(✓0|↵0,�0)
NY

i=1

Beta(✓i|↵1,�1)

⇥
MY

j=1

NY

i=1

Binom(ai,j |di,j , ✓0)1�ci,Ij Binom(ai,j |di,j , ✓i)ci,Ij

= Beta(✓0|↵0,�0)
MY

j=1

NY

i=1

Binom(ai,j |di,j , ✓0)1�ci,Ij

⇥
NY

i=1

8
<

:Beta(✓i|↵1,�1)
MY

j=1

Binom(ai,j |di,j , ✓i)ci,Ij

9
=

; .

(9)

Therefore, we could sample individual ✓ values via a beta distribution as follows,

✓0|I ⇠ beta(↵0 + u0,�0 + v0); ✓i|I ⇠ beta(↵1 + ui,�1 + vi), i > 0 (10)

where

u0 =
NX

i=1

MX

j=1

ai,j(1� ci,Ij ), v0 =
NX

i=1

MX

j=1

(di,j � ai,j)(1� ci,Ij ),

ui =
MX

j=1

ai,jci,Ij , i > 0, vi =
MX

j=1

(di,j � ai,j)ci,Ij , i > 0.

(11)
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Furthermore, given the cell assignment I and the binomial parameters ✓ and the error rate
⇠, we can obtain the distribution of the configuration C as follows,

P (Ci,k = 1|C�i,k, A,D, I, F,✓, ⇠)

=
|⌦i,k � ⇠|

QM
j=1 I(Ij = k)binom(ai,j |di,j , ✓i)

|⌦i,k � ⇠|
QM

j=1 I(Ij = k)binom(ai,j |di,j , ✓i) + |⌦i,k � ⇠ � 1|
QM

j=1 I(Ij = k)binom(ai,j |di,j , ✓0)
(12)

Given the configuration C, we can also have the distribution of the error rate ⇠. Here, we
introduce a conjugate prior beta distribution with hyper-parameter 0,1, hence we can write
the posterior of ⇠ as follows,

P (⇠|C,⌦,0,1) = beta(0 +
X

i,k

I(⌦i,k 6= Ci,k),1 +
X

i,k

I(⌦i,k = Ci,k)) (13)

Now, based on Eq (8-13), we could sample the full joint distribution of I, ✓, C and ⇠ with
Gibbs sampling in the following Algorithm 1.

Algorithm 1: Gibbs sampling for Cardelino model

1 Initialize ✓ = {✓0, ✓1, ..., ✓N}
2 for t = 1 to H do
3 for j = 1 to M do
4 Sample: Ij = k|I�j , A,D,C, F,✓ with Eq(8)

5 for i = 0 to N do
6 Sample: ✓i|I, A,D,C, ✓�i with Eq (10)

7 for i = 0 to N do
8 for k = 1 to K do
9 Sample: Ci,k = 1|C�i,k, A,D, I, F,✓, ⇠ with Eq (12)

10 Sample: ⇠|C,⌦,0,1 with Eq (13)

In practice, we could sample 3,000 iterations and check the convergence with Geweke’s
convergence diagnostic (Z score) by using the first 10% and the last 50% iterations of the
sampled chain. If |Z| > 2, then 100 more iterations will be added until the criterion is passed.
Usually, this algorithm converges very quickly, even with as few as 100 iterations in some cases.

4 Inference with the EM algorithm to assign cells to donors

With a couple of tweaks the Cardelino model described above is also useful for assigning cells to
the donor from which they originate in experimental settings where cells from multipled donors
are pooled together before they are assayed (“multiplexed”). For the task of assigning cells to
donors of origin rather than clone, we assume that the clonal tree configuration is fixed (here
we interpret the “clonal tree configuration” as the reference genotypes of the donors, which
we have access to), and all sites have a common parameter when variant is “present”, i.e.,
✓1 = ✓2 = ... = ✓N . For simplicity, we use ✓1 to denote this shared parameter and ignore the
conflict with the symbol in the Cardelino model. Therefore, the alternative model only has two
parameters ✓0 and ✓1, for the “success probability” for variant absent and present, respectively.

In this donor-assignment setting, an attractive alternative possibility for inference in the
Cardelino model is to use the Expectation-Maximisation (EM) algorithm. The EM algorithm
has the advantage of being much more computationally e�cient than the Gibbs sampler de-
scribed above. However, EM inference yields only point estimates of parameter values and will
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lose the uncertainty in the parameters for clonal assignment. Consequently, it can su↵er from
over-fitting if there are very few sequencing reads, especially in lowly expressed genes. There-
fore, for EM inference it is important to use a single parameter for all variants and turn o↵ the
gene specific parameters in original Eq(3) to retain su�cient reads for a robust point estimate.

This setting proves very useful in assigning cells to donors given genotypes in multiplexed
experiments, where the statistical framework is fundamentally the same but the error in the
genotypes is much lower than from a clonal tree, and the large number of variants benefits from
the high computational e�ciency of the EM algorithm. Here, we introduce the algorithm with
all ✓i, 1  i  N turned into a single shared parameter ✓1; all equations in above sections still
hold. In the real data analysis in the main text, we use this EM inference method to assign
cells to donors from our three-donor multiplexed experimental design.

In order to maximise the likelihood in Eq(5) (or log likelihood for convenience), let us first
rewrite the likelihood of assigning a single cell j to a certain clone k by extending the binomial
probability as follows,

P (aj |dj , Ij = k, C,✓) =
NY

i=1

P (ai,j |di,j , ✓, ci,k) =
NY

i=1

B(ai,j ; di,j , ✓ci,k)

= wj ⇥ ✓
S1
j,k

0 ⇥ (1� ✓0)
S2
j,k ⇥ ✓

S3
j,k

1 ⇥ (1� ✓1)
S4
j,k ,

(14)

where wj =
QN

i=1

�di,j
ai,j

�
is a product of binomial coe�cients. S

1
j,k, S

2
j,k, S

3
j,k, S

4
j,k are the sum-

marized read counts of alternative and reference alleles in genotypes without or with variant,
respectively, as follows,

S
1
j,k =

NX

i=1

ai,jI(ci,k = 0), S
2
j,k =

NX

i=1

(di,j � ai,j)I(ci,k = 0),

S
3
j,k =

NX

i=1

ai,jI(ci,k = 1), S
4
j,k =

NX

i=1

(di,j � ai,j)I(ci,k = 1).

(15)

These values can be equivalently taken from dot products of matrices S
1 = A

>(1 � C), S2 =
(D �A)>(1� C), S3 = A

>
C, and S

4 = (D �A)>C.
Now, we can estimate the clonal assignment Ij and the parameters ✓ = {✓0, ✓1} with an EM

algorithm. In the initialization, we set the parameter ✓ randomly. Then we iterate the E step
and M step in the EM algorithm. In the E-step, given the parameter in the previous step, we
calculate the posterior of the cell assignment

�j,k = P (Ij = k|aj ,dj , C, F, ✓) =
P (aj |dj , Ij = k, C,✓)P (Ij = k|F )

PK
t=1 P (aj |dj , Ij = t, C,✓)P (Ij = t|F )

, (16)

which is often called component responsibility in the EM algorithm. In the M-step, given the
posterior of cell assignment, we optimize the parameter to maximize the likelihood. By setting
the derivation of the log likelihood Eq (5) (taking Eq (14)) to 0, we could have the following
condition to satisfy,

logL(✓)
✓0

=
MX

j=1

KX

k=1

�j,k

"
S
1
j,k

✓0
�

S
2
j,k

1� ✓0

#
= 0. (17)

Therefore, we can have a closed form solution for ✓0 (and ✓1 similarly) as follows,

✓0 =

PM
j=1

PK
k=1 �j,kS

1
j,kPM

j=1

PK
k=1 �j,k(S

1
j,k + S

2
j,k)

✓1 =

PM
j=1

PK
k=1 �j,kS

3
j,kPM

j=1

PK
k=3 �j,k(S

3
j,k + S

4
j,k)

. (18)
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Here, we summarize the EM algorithm for the cell assignment and parameter estimate in
the following Algorithm 2. To end the algorithm, we could check if the improvement of the log
likelihood is lower than a threshold or set a fixed number of iterations (e.g. 100 iterations are
su�cient in many cases).

Algorithm 2: EM algorithm for cell assignments to clones

1 Initialize ✓ = {✓0, ✓1} and evaluate logL(✓)
2 while not converged do
3 E step: Calculate �j,k with current parameters

4 �j,k = P (Aj |Ij=k,Dj ,C,F,✓)P (Ij=k)PK
t=1 P (Aj |Ij=t,Dj ,C,F,✓)P (Ij=t)

5 M step: Maximizing likelihood on parameters with current responsibilities

6 ✓
new
0 =

PM
j=1

PK
k=1 �j,kS

1
j,kPM

j=1

PK
k=1 �j,k(S

1
j,k+S2

j,k)
; ✓

new
1 =

PM
j=1

PK
k=1 �j,kS

3
j,kPM

j=1

PK
k=3 �j,k(S

3
j,k+S4

j,k)

7 Update logL(✓) and check convergence

8 return ✓,�, logL(✓)

In addition, the binomial distribution can be switched into simpler Bernoulli model by
setting a threshold s (e.g. 1) as âi,j = I(ai,j � s) and d̂i,j = I(di,j � s), and all above
equations and inference methods remain applicable. The Bernoulli base model can be useful
when the sequencing coverage is highly even, e.g., in scDNA-seq [2] or when the variance of
allelic expression is extremely high.
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Gene expression variability across cells 
and species shapes innate immunity
Tzachi Hagai1,2*, Xi Chen1, Ricardo J. Miragaia1,3, Raghd Rostom1,2, Tomás Gomes1, Natalia Kunowska1, Johan Henriksson1,  
Jong-Eun Park1, Valentina Proserpio4,5, Giacomo Donati4,6, Lara Bossini-Castillo1, Felipe A. Vieira Braga1,7, Guy Naamati2,  
James Fletcher8, Emily Stephenson8, Peter Vegh8, Gosia Trynka1, Ivanela Kondova9, Mike Dennis10, Muzlifah Haniffa8,11,  
Armita Nourmohammad12,13, Michael Lässig14 & Sarah A. Teichmann1,2,15*

As the first line of defence against pathogens, cells mount an innate immune response, which varies widely from cell 
to cell. The response must be potent but carefully controlled to avoid self-damage. How these constraints have shaped 
the evolution of innate immunity remains poorly understood. Here we characterize the innate immune response’s 
transcriptional divergence between species and variability in expression among cells. Using bulk and single-cell 
transcriptomics in fibroblasts and mononuclear phagocytes from different species, challenged with immune stimuli, 
we map the architecture of the innate immune response. Transcriptionally diverging genes, including those that encode 
cytokines and chemokines, vary across cells and have distinct promoter structures. Conversely, genes that are involved 
in the regulation of this response, such as those that encode transcription factors and kinases, are conserved between 
species and display low cell-to-cell variability in expression. We suggest that this expression pattern, which is observed 
across species and conditions, has evolved as a mechanism for fine-tuned regulation to achieve an effective but balanced 
response.

The innate immune response is a cell-intrinsic defence program that is 
rapidly upregulated upon infection in most cell types. It acts to inhibit 
pathogen replication while signalling the pathogen’s presence to other 
cells. This programme involves the modulation of several cellular path-
ways, including production of antiviral and inflammatory cytokines, 
upregulation of genes that restrict pathogens, and induction of cell 
death1,2.

An important characteristic of the innate immune response is  
the rapid evolution that many of its genes have undergone along  
the vertebrate lineage3,4. This rapid evolution is often attributed to  
pathogen-driven selection5–7.

Another hallmark of this response is its high level of heterogeneity 
among responding cells: there is extensive cell-to-cell variability in 
response to pathogen infection8,9 or to pathogen-associated molecular  
patterns (PAMPs)10,11. The functional importance of this variability 
is unclear.

These two characteristics—rapid divergence in the course of  
evolution and high cell-to-cell variability—seem to be at odds with 
the strong regulatory constraints imposed on the host immune 
response: the need to execute a well-coordinated and carefully bal-
anced programme to avoid tissue damage and pathological immune 
conditions12–15. How this tight regulation is maintained despite rapid 
evolutionary divergence and high cell-to-cell variability remains 
unclear, but it is central to our understanding of the innate immune 
response and its evolution.

Here, we study the evolution of this programme using two cells 
types—fibroblasts and mononuclear phagocytes—in different mam-
malian clades challenged with several immune stimuli (Fig. 1a).

Our main experimental system uses primary dermal fibroblasts, 
which are commonly used in immunological studies8,13. We compare 
the response of fibroblasts from primates (human and macaque) and 
rodents (mouse and rat) to polyinosinic:polycytidylic acid (poly(I:C)), 
a synthetic double-stranded RNA (dsRNA; Fig. 1a, left). Poly(I:C) is 
frequently used to mimic viral infection as it rapidly elicits an antiviral 
response16.

We comprehensively characterize the transcriptional changes 
between species and among individual cells in their innate immune 
response. We use population (bulk) transcriptomics to investigate tran-
scriptional divergence between species, and single-cell transcriptomics 
to estimate cell-to-cell variability in gene expression. Using promoter 
sequence analyses along with chromatin immunoprecipitation with 
sequencing (ChIP–seq), we study how changes in the expression of 
each gene between species and across cells relate to the architecture 
of its promoter. Furthermore, we examine the relationship between 
cross-species divergence in gene coding sequence and expression and 
constraints imposed by host–pathogen interactions.

Additionally, we use a second system—bone marrow-derived mon-
onuclear phagocytes from mouse, rat, rabbit and pig challenged with 
lipopolysaccharide (LPS), a commonly used PAMP of bacterial origin 
(Fig. 1a, right).

Together, these two systems provide insights into the architecture of 
the immune response across species, cell types and immune challenges.

Transcriptional divergence in immune response
First, we studied the transcriptional response of fibroblasts to stimula-
tion with dsRNA (poly(I:C)) across the four species (human, macaque, 
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rat and mouse). We generated bulk RNA-sequencing (RNA-seq) data 
for each species after 4 h of stimulation, along with respective controls 
(see Fig. 1a and Methods).

In all species, dsRNA treatment induced rapid upregulation of genes 
that encode expected antiviral and inflammatory products, including 
IFNB, TNF, IL1A and CCL5 (see also Supplementary Table 3). Focusing 
on one-to-one orthologues, we performed correlation analysis between 
species and observed a similar transcriptional response (Spearman 
correlation, P < 10−10 in all comparisons; Extended Data Fig. 1), as 
reported in other immune contexts17–19. Furthermore, the response 
tended to be more strongly correlated between closely related species 
than between more distantly related species, as in other expression 
programmes20–24.

We characterized the differences in response to dsRNA between  
species for each gene, using these cross-species bulk transcriptomics 
data. While some genes, such as those encoding the NF-κB subunits  
RELB and NFKB2, respond similarly across species, other genes 
respond differently in the primate and rodent clades (Fig. 1b, left). For 
example, Ifi27 (which encodes a restriction factor against numerous 
viruses) is strongly upregulated in primates but not in rodents, whereas 

Daxx (which encodes an antiviral transcriptional repressor) exhibits 
the opposite behaviour.

Similarly, in our second experimental system, which consists of 
lipopolysaccharide (LPS)-stimulated mononuclear phagocytes from 
mouse, rat, rabbit, and pig (Fig. 1b, right), some genes responded sim-
ilarly across species (for example, Nfkb2), whereas others were highly 
upregulated only in specific clades (for example, Phlda1).

To quantify transcriptional divergence in immune responses between 
species, we focused on genes that were differentially expressed during 
the stimulation (see Methods). For simplicity, we refer to these genes 
as ‘responsive genes’ (Fig. 1c). In this analysis, we study the subset of 
these genes with one-to-one orthologues across the studied species. 
There are 955 such responsive genes in dsRNA-stimulated human 
fibroblasts and 2,336 in LPS-stimulated mouse phagocytes. We define a 
measure of response divergence by calculating the differences between 
the fold-change estimates while taking the phylogenetic relationship 
into account (Methods, Supplementary Figs. 1–7 and Supplementary 
Table 4).

For subsequent analyses, we split the 955 genes that were responsive 
in fibroblasts into three groups on the basis of their level of response 
divergence: (1) high-divergence dsRNA-responsive genes (the top 
25% of genes with the highest divergence values in response to dsRNA 
across the four studied species); (2) low-divergence dsRNA-responsive 
genes (the bottom 25%); and (3) genes with medium divergence across 
species (the middle 50%; Fig. 1c). We performed an analogous proce-
dure for the 2,336 LPS-responsive genes in phagocytes.

Promoter architecture of diverging genes
Next, we tested whether divergence in transcriptional responses is 
reflected in the conservation of promoter function and sequence. 
Using ChIP–seq, we profiled active histone marks in the fibroblasts of 
all species. The presence of trimethylation of lysine 4 on histone H3 
(H3K4me3) in promoter regions of high-divergence genes was sig-
nificantly less conserved between humans and rodents than was the 
presence of H3K4me3 in promoters of low-divergence genes (Extended 
Data Fig. 2).

We then used the human H3K4me3 ChIP–seq peaks to define active 
promoter regions of the responsive genes in human fibroblasts. The 
density of transcription factor binding motifs (TFBMs) was signifi-
cantly higher in the active promoter regions of high-divergence genes 
than in low-divergence genes (Fig. 2a). Notably, when comparing 
the conservation of the core promoter regions in high- versus low- 
divergence dsRNA-responsive genes, we found that genes that diverge 
highly in response to dsRNA show higher sequence conservation in 
this region (Fig. 2b).

This unexpected discordance may be related to the fact that  
promoters of high- and low-divergence genes have distinctive archi-
tectures, associated with different constraints on promoter sequence 
evolution18,25,26. Notably, promoters containing TATA-box elements 
tend to have most of their regulatory elements in regions immediately 
upstream of the transcription start site (TSS). These promoters are thus 
expected to be more conserved. The opposite is true for CpG island 
(CGI)26,27 promoters. Indeed, we found that TATA-boxes are associated 
with higher transcriptional divergence, while genes with CGIs diverge 
more slowly, both in fibroblasts and phagocytes (Fig. 2c; Extended 
Data Fig. 3). Thus, a promoter architecture enriched in TATA-boxes 
and depleted of CGIs is associated with higher transcriptional diver-
gence, while entailing higher sequence conservation upstream of these 
genes18,26,27.

Transcriptional divergence of cytokines
We next investigated whether different functional classes among 
responsive genes are characterized by varying levels of transcriptional 
divergence. To this end, we divided responsive genes into categories 
according to function (such as cytokines, transcriptional factors and 
kinases) or the processes in which they are known to be involved (such 
as apoptosis or inflammation).

Fig. 1 | Response divergence across species in innate immune response. 
a, Study design. Left, primary dermal fibroblasts from mouse, rat, human 
and macaque stimulated with dsRNA or controls. Samples were collected 
for bulk and single-cell RNA-seq and ChIP–seq. Right, primary bone 
marrow-derived mononuclear phagocytes from mouse, rat, rabbit and 
pig stimulated with LPS or controls. Samples were collected for bulk and 
single-cell RNA-seq. b, Left, fold-change (FC) in dsRNA stimulation 
in fibroblasts for sample genes across species (edgeR exact test, based 
on n = 6, 5, 3 and 3 individuals from human, macaque, rat and mouse, 
respectively). Right, fold-change in LPS stimulation in phagocytes for 
sample genes across species (Wald test implemented in DESeq2, based 
on n = 3 individuals from each species). False discovery rate (FDR)-
corrected P values are shown (***P < 0.001, **P < 0.01, *P < 0.05). c, Top, 
estimating each gene’s level of cross-species divergence in transcriptional 
response to dsRNA stimulation in fibroblasts. Using differential expression 
analysis, fold-change in dsRNA response was assessed for each gene 
in each species. We identified 1,358 human genes as differentially 
expressed (DE) (FDR-corrected q < 0.01), of which 955 had one-to-one 
orthologues across the four studied species. For each gene with one-to-
one orthologues across all species, a response divergence measure was 
estimated using: response divergence = log[1/4 × ∑i,j(log[FC primatei] 
− [logFC rodentj])2]. Genes were grouped into low, medium and high 
divergence according to their response divergence values for subsequent 
analysis. Bottom, estimating each gene’s level of cross-species divergence in 
LPS response in mononuclear phagocytes. A response divergence measure 
was estimated using: response divergence = log[1/3 × ∑j(log[FC pig] 
− log[FC glirej])2] (where glires are mouse, rat and rabbit).
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Genes related to cellular defence and inflammation—most notably 
cytokines, chemokines and their receptors (hereafter ‘cytokines’)—
tended to diverge in response significantly faster than genes involved 
in apoptosis or immune regulation (chromatin modulators, transcrip-
tion factors, kinases and ligases) (Fig. 2d, e, Extended Data Fig. 4, 
Supplementary Fig. 1).

Cytokines also had a higher transcriptional range in response to 
immune challenge (a higher fold-change). Regressing the fold-change 
from the divergence estimates resulted in reduction of the relative 

divergence of cytokines versus other responsive genes, but the differ-
ence still remained (Supplementary Fig. 2). Cytokine promoters are 
enriched in TATA-boxes (17% versus 2.5%, P = 1.1 × 10−3, Fisher’s 
exact test) and depleted of CGIs (14% versus 69%, P = 1.6 × 10−9), sug-
gesting that this promoter architecture is associated both with greater 
differences between species (response divergence) and larger changes 
between conditions (transcriptional range).

Cell-to-cell variability in immune response
Previous studies have shown that the innate immune response displays 
high variability across responding cells28,29. However, the relationship 
between cell-to-cell transcriptional variability and response divergence 
between species is not well understood.

To study heterogeneity in gene expression across individual cells, we 
performed single-cell RNA-seq in all species in a time course following 
immune stimulation. We estimated cell-to-cell variability quantitatively 
using an established measure for variability: distance to median (DM)30.

We found a clear trend in which genes that were highly divergent 
in response between species were also more variable in expression 
across individual cells within a species (Fig. 3a). The relationship 
between rapid divergence and high cell-to-cell variability held true 
in both the 955 dsRNA-responsive genes in fibroblasts and the 2,336  
LPS-responsive genes in phagocytes. This can be observed across the 
stimulation time points and in different species (Extended Data Figs. 5, 6).  
We analysed in depth the relationship between transcriptional diver-
gence and cell-to-cell variability by using additional immune stimula-
tion protocols (Supplementary Figs. 8, 9), and different experimental 
and computational approaches (Extended Data Fig. 7, Supplementary 
Figs. 10–13). Notably, the trends we observed are not a result of  
technical biases due to low expression levels in either the bulk or the 
single-cell RNA-seq data (Supplementary Figs. 14, 15).

Next, we examined the relationship between the presence of  
promoter elements (CGIs and TATA-boxes) and a gene’s cell-to-cell var-
iability. Genes that are predicted to have a TATA-box in their promoter  
had higher transcriptional variability, whereas CGI-containing genes 
tended to have lower variability (Fig. 3b), in agreement with previous 
findings31. Thus, both transcriptional variability between cells (Fig. 3b) 
and transcriptional divergence between species (Fig. 2c) are associated 
with the presence of specific promoter elements.

Transcriptional variability of cytokines
We subsequently compared the response divergence across species with 
the transcriptional cell-to-cell variability of three groups of responsive 
genes with different functions: cytokines, transcription factors, and 
kinases and phosphatases (hereafter ‘kinases’; Fig. 3c, Extended Data 
Fig. 8). In contrast to kinases and transcription factors, many cytokines 
display relatively high levels of cell-to-cell variability (Extended Data 
Fig. 9), being expressed only in a small subset of responding cells 
(Extended Data Fig. 10). This has previously been reported for several 
cytokines29. For example, IFNB is expressed in only a small fraction 
of cells infected with viruses or challenged with various stimuli8,11,32. 
Here, we find that cells show high levels of variability in expression of 
cytokines from several families (for example, IFNB, CXCL10 and CCL2).

Cell-to-cell variability of cytokines remains relatively high in  
comparison to kinases and transcription factors during a time course 
of 2, 4 and 8 h after dsRNA stimulation of fibroblasts (Extended Data 
Fig. 9). This pattern is similar across species, and can also be observed 
in LPS-stimulated phagocytes (Extended Data Fig. 9). Thus, the high 
variability of cytokines and their expression in a small fraction of  
stimulated cells across all time points is evolutionarily conserved.

Cytokines tended to be co-expressed in the same cells, raising the 
possibility that their expression is coordinated (see Supplementary 
Information and Supplementary Fig. 16). We also identified genes 
whose expression was correlated with cytokines in human fibro-
blasts and showed that their orthologues tend to be co-expressed with 
cytokines in other species. This set is enriched with genes known to be 
involved in cytokine regulation (Supplementary Table 5).

Fig. 2 | Transcriptionally divergent genes have unique functions 
and promoter architectures. a, TFBM density in active promoters 
and response divergence. For each gene studied in fibroblast dsRNA 
stimulation, the total number of TFBM matches in its H3K4me3 histone 
mark was divided by the length of the mark (human marks were used; 
n = 879 differentially expressed genes with ChIP–seq data). High-
divergence genes have higher TFBM density than low-divergence genes 
(one-sided Mann–Whitney test). b, Promoter sequence conservation 
and response divergence in fibroblast dsRNA stimulation. Sequence 
conservation values are estimated with phyloP7 for 500 base pairs 
upstream of the transcription start site (TSS) of the human gene. Mean 
conservation values of each of the 500 base pairs upstream of the TSS are 
shown for high-, medium- and low-divergence genes (n = 840 genes). 
Genes that are highly divergent have higher sequence conservation 
(one-sided Kolmogorov–Smirnov test). The 95% confidence interval 
for predictions from a linear model computed by geom_loess function 
is shown in grey. c, Comparison of divergence in response of genes with 
and without a TATA-box and a CGI in fibroblast dsRNA stimulation and 
phagocyte LPS stimulation. TATA-box matches and CGI overlaps were 
computed with respect to the TSS of human genes in fibroblasts (n = 955 
genes), and to the TSS of mouse genes in phagocytes (n = 2,336).  
d, Distributions of divergence values of 9,753 expressed genes in fibroblasts, 
955 dsRNA-responsive genes and different functional subsets of the dsRNA-
responsive genes (each subset is compared with the set of 955 genes using a 
one-sided Mann–Whitney test and FDR-corrected P values are shown).  
e, Distributions of divergence values of 6,619 expressed genes in phagocytes, 
2,336 LPS-responsive genes and different functional subsets of the LPS-
responsive genes (each subset is compared with the set of 2,336 genes using 
a one-sided Mann–Whitney test and FDR-corrected P values are shown). 
Violin plots show the kernel probability density of the data. Boxplots 
represent the median, first quartile and third quartile with lines extending to 
the furthest value within 1.5 of the interquartile range (IQR).
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As an example, we focused on the genes whose expression is posi-
tively correlated with the chemokine CXCL10 in at least two species 
(Fig. 3d). This set includes four cytokines co-expressed with CXCL10 
(in purple), as well as known positive regulators of the innate immune 
response and cytokine production (in blue), such as the viral sensors 
IFIH1 (also known as MDA5) and RIG-I (also known as DDX58) 
This is in agreement with previous evidence that IFNB expression is 
limited to cells in which important upstream regulators are expressed 
at sufficiently high levels8,11,32. Here, we show that this phenomenon 

of co-expression with upstream regulators applies to a wider set of 
cytokines and is conserved across species. Notably, cytokines were 
co-expressed not only with their positive regulators but also with genes 
that are known to act as negative regulators of cytokine expression or 
cytokine signalling (in red), suggesting that cytokine expression and 
function is tightly controlled at the level of individual cells.

The evolutionary landscape of innate immunity
Many immune genes, including several cytokines and their receptors, 
have been shown to evolve rapidly in coding sequence3,33. However, 
it is not known how divergence in coding sequence relates to tran-
scriptional divergence in innate immune genes. Using the set of 955 
dsRNA-responsive genes in fibroblasts, we assessed coding sequence 
evolution in the three subsets of low-, medium- and high-divergence 
genes (as defined in Fig. 1c).

We compared the rate at which genes evolved in their coding 
sequences with their response divergence by considering the ratio of 
non-synonymous (dN) to synonymous (dS) nucleotide substitutions. 
Genes that evolved rapidly in transcriptional response had higher  
coding sequence divergence (higher dN/dS values) than dsRNA- 
responsive genes with low response divergence (Fig. 4a).

Rapid gene duplication and gene loss have been observed in several 
important immune genes34–39 and are thought to be a result of pathogen- 
driven pressure40,41. We therefore tested the relationship between a 
gene’s divergence in response and the rate at which the gene’s family 
has expanded and contracted in the course of vertebrate evolution. We 
found that transcriptionally divergent dsRNA-responsive genes have 
higher rates of gene gain and loss (Fig. 4b) and consequently are also 
evolutionarily younger (Fig. 4c, Supplementary Fig. 17).

Previous reports have suggested that proteins encoded by younger 
genes tend to have fewer protein–protein interactions (PPIs) within 
cells42. Indeed, we found that rapidly diverging genes tend to have fewer 
PPIs (Fig. 4d). Together, these results suggest that transcriptionally diver-
gent dsRNA-responsive genes evolve rapidly through various mecha-
nisms, including fast coding sequence evolution and higher rates of gene 
loss and duplication events, and that their products have fewer inter-
actions with other cellular proteins than those of less divergent genes.

The interaction between pathogens and the host immune system 
is thought to be an important driving force in the evolution of both 
sides. We therefore investigated the relationship between transcrip-
tional divergence and interactions with viral proteins by compiling a 
data set of known host–virus interactions in humans6,43,44. Notably, 
genes whose products had no known viral interactions showed higher 
response divergence than genes encoding proteins with viral interac-
tions (Fig. 4e). Furthermore, the transcriptional divergence of genes 
targeted by viral immunomodulators45—viral proteins that subvert 
the host immune system—was lower still (Fig. 4e). These observations  
suggest that viruses have evolved to modulate the immune system 
by interacting with immune proteins that are relatively conserved in 
their response. Presumably, these genes cannot evolve away from viral  
interactions, unlike host genes that are less constrained46.

The summary of our results in Fig. 4f highlights the differences in 
both regulatory and evolutionary characteristics between cytokines 
and other representative dsRNA-responsive genes. Cytokines evolve 
rapidly through various evolutionary mechanisms and have higher 
transcriptional variability across cells. By contrast, genes that are 
involved in immune response regulation, such as transcription factors 
and kinases, are more conserved and less heterogeneous across cells. 
These genes encode proteins that have more interactions with other 
cellular proteins, suggesting that higher constraints are imposed on 
their evolution. This group of conserved genes is more often targeted 
by viruses, revealing a relationship between host–pathogen dynamics 
and the evolutionary landscape of the innate immune response.

Discussion
Here, we have charted the evolutionary architecture of the innate 
immune response. We show that genes that diverge rapidly between 

Fig. 3 | Cell-to-cell variability in immune response corresponds to 
response divergence. a, Comparison of divergence in response across 
species with transcriptional variability between individual cells. Top, 
fibroblast dsRNA stimulation (variability measured in n = 55 human 
cells, following 4 h dsRNA stimulation). Bottom, phagocyte LPS 
stimulation (variability measured in n = 3,293 mouse cells, following 4 h 
LPS stimulation). Genes classified as high-, medium- or low-divergence 
according to level of response divergence. Cell-to-cell variability values of 
high-divergence genes were compared with those of low-divergence genes 
(one-sided Mann–Whitney test). b, Comparison of cell-to-cell variability 
of genes with and without a TATA-box and a CGI, in fibroblast dsRNA 
stimulation and phagocyte LPS stimulation (one-sided Mann–Whitney 
test). Cell-to-cell variability values are from DM estimations of human 
fibroblasts stimulated with dsRNA for 4 h (n = 55 cells) and from mouse 
phagocytes stimulated with LPS for 4 h (n = 3,293 cells). c, Scatter plot 
showing divergence in response to dsRNA in fibroblasts across species and 
transcriptional cell-to-cell variability in human cells following 4 h of dsRNA 
stimulation (n = 684 dsRNA-responsive genes). Purple, cytokines; green, 
transcription factors; beige, kinases. The distributions of divergence and 
variability values of these groups are shown above and to the right of the 
scatter plot, respectively. d, A network showing genes that correlate positively 
in expression with the chemokine gene CXCL10 across cells (Spearman 
correlation, ρ > 0.3), in at least two species (one of which is human), 
following dsRNA treatment in fibroblasts (based on n = 146, 74, 175 and 170 
human, macaque, rat and mouse cells, respectively). Purple, cytokines; red, 
positive regulators of cytokine expression; blue, negative regulators. Colours 
of lines, from light to dark grey, reflect the number of species in which this 
pair of genes was correlated. Boxplots represent the median, first quartile and 
third quartile with lines extending to the furthest value within 1.5 × IQR.
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species show higher levels of variability in their expression across indi-
vidual cells than genes that diverge more slowly. Both of these charac-
teristics are associated with a similar promoter architecture, enriched 
in TATA-boxes and depleted of CGIs. Notably, such promoter archi-
tecture is also associated with the high transcriptional range of genes 
during the immune response. Thus, transcriptional changes between 
conditions (stimulated versus unstimulated), species (transcrip-
tional divergence), and individual cells (cell-to-cell variability) may 
all be mechanistically related to the same promoter characteristics. In 
yeast, TATA-boxes are enriched in promoters of stress-related genes,  
displaying rapid transcriptional divergence between species and high 
variability in expression30,47. This finding suggests intriguing analogies  
between the mammalian immune and yeast stress responses—two  

systems that have been exposed to continuous changes in external  
stimuli during evolution.

We have also shown that genes involved in regulation of the immune 
response—such as transcription factors and kinases—are relatively con-
served in their transcriptional responses. These genes might be under 
stronger functional and regulatory constraints, owing to their roles 
in multiple contexts and pathways, which would limit their ability to 
evolve. This limitation could represent an Achilles’ heel that is used by 
pathogens to subvert the immune system. Indeed, we found that viruses 
interact preferentially with conserved proteins of the innate immune 
response. Cytokines, on the other hand, diverge rapidly between 
species, owing to their promoter architecture and because they have 
fewer constraints imposed by intracellular interactions or additional 
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Fig. 4 | Relationship of response divergence and other evolutionary 
modes. a–d, dsRNA-responsive genes in fibroblasts are divided by level of 
response divergence into three groups, as in Fig. 1c. a, Coding sequence 
divergence, as measured using dN/dS values across 29 mammals. Higher 
dN/dS values denote faster coding sequence evolution (n = 567 genes). 
b, Rate at which genes were gained and lost within the gene family across 
the vertebrate clade (plotted as –logP). Higher values denote faster gene 
gain and loss rate (n = 955 genes). c, Evolutionary age (estimated with 
Panther7 phylogeny and Wagner reconstruction algorithm). Values denote 
the branch number with respect to human (distance from human in the 
phylogenetic tree); higher values indicate greater age (n = 931 genes). 
d, Number of known physical interactions with other cellular proteins 
(n = 955 genes). e, Distribution of transcriptional response divergence 
values among dsRNA-responsive genes whose protein products do 

not interact with viral proteins, interact with at least one viral protein, 
or interact with viral immunomodulators (n = 648, 307 and 25 genes, 
respectively). a–e, One-sided Mann–Whitney tests. f, A scaled heat map 
showing values of response divergence (as in Fig. 1c), cell-to-cell 
variability (as in Fig. 3a), coding sequence divergence (dN/dS values, as 
in a), gene age (as in c; younger genes have darker colours), number of 
cellular PPIs (as in d) and number of host–virus interactions (as in e), 
for example genes from three functional groups: cytokines, transcription 
factors, and kinases. Values are shown in a normalized scale between 0 
and 100, with the gene with the highest value assigned a score of 100. 
Missing values are shown in white. Boxplots represent the median, first 
quartile and third quartile with lines extending to the furthest value within 
1.5 × IQR. Violin plots show the kernel probability density of the data.
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non-immune functions. We therefore suggest that cytokines represent 
a successful host strategy to counteract rapidly evolving pathogens as 
part of the host–pathogen evolutionary arms race.

Cytokines also display high cell-to-cell variability and tend to 
be co-expressed with other cytokines and cytokine regulators in a 
small subset of cells, and this pattern is conserved across species. As  
prolonged or increased cytokine expression can result in tissue  
damage48–50, restriction of cytokine production to only a few cells 
may enable a rapid, but controlled, response across the tissue to avoid 
long-lasting and potentially damaging effects.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, statements of data availability and associated accession codes are available at 
https://doi.org/10.1038/s41586-018-0657-2.
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METHODS
Ethical compliance. This project was approved by the Wellcome Sanger Institute 
Animal Welfare and Ethical Review Body, and complied with all relevant  
ethical regulations regarding animal research and human studies. Human cells 
were obtained from the Hipsci project51, where they were collected from volunteers 
recruited from the NIHR Cambridge BioResource (written consent was given). 
Human skin profiling was performed in accordance with protocols approved 
by the Newcastle Research Ethics Committee (REC approval 08/H0906/95+5). 
Macaque skin samples were obtained from animals assigned to unrelated non- 
infectious studies, provided by Public Health England’s National Infection Service 
in accordance with Home Office (UK) guidelines and approved by the Public 
Health England Ethical Review Committee under an appropriate UK Home Office 
project license.
Cross-species dermal fibroblast stimulation with dsRNA and IFNB. Tissue  
culture. We cultured primary dermal fibroblasts from low passage cells (below 
10) that originated from females from four different species (human (European 
ancestry), rhesus macaque, C57BL/6 (black 6) mouse and brown Norway rat). 
All skin samples were taken from shoulders. Stimulation experiments and library 
preparations were done in identical conditions across all species and for all genom-
ics techniques. Details on the numbers of individuals used in each technique are 
listed in each technique’s section and in Supplementary Table 1.

Human cells were obtained from the Hipsci project51 (http://www.hipsci.org/). 
Rhesus macaque cells were extracted from skin tissues that were incubated for 2 h 
with 0.5% collagenase B (Roche; 11088815001) after mechanical processing, and 
then filtered through 100-µm strainers before being plated and passaged before 
cryo-banking. Rodent cells were obtained from PeloBiotech where they were 
extracted using a similar protocol. In vitro cultured fibroblasts from all four spe-
cies resemble a particular in vivo cluster of dermal fibroblasts (see Supplementary 
Information). Cells were not tested for mycoplasma contamination.

Prior to stimulation, cells were thawed and grown for several days in ATCC 
fibroblast growth medium (Fibroblast Basal Medium (ATCC, ATCC-PCS-201-030) 
with Fibroblast Growth Kit-Low serum (ATCC, PCS-201-041) (supplemented with 
Primocin (Invivogen, ant-pm-1) and penicillin/streptomycin (Life Technologies, 
15140122)) - a controlled medium that has proven to provide good growing con-
ditions for fibroblasts from all species, with slightly less than 24 h doubling times. 
About 18 h before stimulation, cells were trypsinized, counted and seeded into 
6-well plates (100,000 cells per well). Cells were stimulated as follows: (1) stimu-
lated with 1 µg/ml high-molecular mass poly(I:C) (Invivogen,tlrl-pic) transfected 
with 2 µg/ml Lipofectamin 2,000 (ThermoFisher, 11668027); (2) mock transfected 
with Lipofectamin 2,000; (3) stimulated with 1,000 IU of IFNB for 8 h (human 
IFNB: 11410-2 (for human and macaque cells); rat IFNB: 13400-1; mouse IFNB: 
12401-1; all IFNs were obtained from PBL, and had activity units based on similar 
virological assays); or (4) left untreated. Interferon stimulation was used as a con-
trol, to study how genes that were upregulated in the secondary wave of the innate 
immune response diverge between species.

Additional human and mouse samples were stimulated with 1,000 IU of 
cross-mammalian IFN (CMI, or Universal Type I IFN Alpha, PBL, 11200-1). 
The latter stimulation was done to assess the effects of species-specific and batch- 
specific IFNB.

In all of the above-mentioned stimulations, we used a longer time course for 
single-cell RNA-seq than for bulk RNA-seq, for two main reasons: (1) in the bulk, 
we chose to focus on one main stimulation time point for simplicity and to obtain 
an intuitive fold-change between stimulated and unstimulated conditions; (2) in 
single cells, when studying cell-to-cell variability, we chose to profile, in addition 
to the main stimulation time point, cells in earlier and later stages of the response. 
This is important for studying how the dynamics and magnitude of the response 
affect gene expression variability between responding cells.

The poly(I:C) we used tested negative for the presence of bacterial beta-endotoxin  
using a coagulation test (PYROGENT Plus, 0.06 EU/ml sensitivity, N283-06).
Bulk RNA-seq: library preparation and sequencing. For bulk transcriptomics 
analysis, cells from individuals from different species were grown in parallel and 
stimulated with dsRNA, IFNB (and cross-mammalian IFN) and their respective 
controls. In total, samples from 6 humans, 6 macaques, 3 mice and 3 rats were used. 
Total RNA was extracted using the RNeasy Plus Mini kit (Qiagen, 74136), using 
QIAcube (Qiagen). RNA was then measured using a Bioanalyzer 2100 (Agilent 
Technologies), and samples with RIN < 9 were excluded from further analysis (one 
macaque sample stimulated with poly(I:C) and its control).

Libraries were produced using the Kapa Stranded mRNA-seq Kit (Kapa 
Biosystems, KK8421). The Kapa library construction protocol was modified 
for automated library preparation by Bravo (Agilent Technologies). cDNA was 
amplified in 13 PCR cycles, and purified using Ampure XP beads (Beckman 
Coulter, A63882) (1.8× volume) using Zephyr (Perkin Elmer). Pooled samples  
were sequenced on an Illumina HiSeq 2500 instrument, using paired-end  
125-bp reads.

ChIP–seq: library preparation and sequencing. Samples from three individuals from 
each of the four species were grown and stimulated (with poly(I:C) for 4 h or left 
untreated, as described above) in parallel to samples collected for bulk RNA-seq.  
Following stimulation, samples were crosslinked in 1% HCHO (prepared in  
1× DPBS) at room temperature for 10 min, and HCHO was quenched by the 
addition of glycine at a final concentration of 0.125 M. Cells were pelleted at 
4 °C at 2,000g, washed with ice-cold 1× DPBS twice, and snap-frozen in liquid 
nitrogen. Cell pellets were stored at –80 °C until further stages were performed. 
ChIPmentation was performed according to version 1.0 of the published proto-
col52 with a few modifications (see additional details in Supplementary Methods).

Library preparation reactions contained the following reagents: 10 µl puri-
fied DNA (from the above procedure), 2.5 µl PCR Primer Cocktails (Nextera kit, 
Illumina, FC-121-1030), 2.5 µl N5xx (Nextera index kit, Illumina FC-121-1012), 
2.5 µl N7xx (Nextera index kit, Illumina, FC-121-1012), 7.5 µl NPM PCR Master 
Mix (Nextera kit, Illumina, FC-121-1030). PCR cycles were as follows: 72 °C, 5 min; 
98 °C, 2 min; [98 °C, 10 s, 63 °C, 30 s, 72 °C, 20 s] × 12; 10 °C hold.

Amplified libraries were purified by double AmpureXP bead purification: first 
with 0.5× bead ratio, keep supernatant, second with 1.4× bead ratio, keep bound 
DNA. Elution was done in 20 µl Buffer EB (QIAGEN).

One microlitre of library was run on a Bioanalyzer (Agilent Technologies) to 
verify normal size distribution. Pooled samples were sequenced on an Illumina 
HiSeq 2000 instrument, using paired-end 75-bp reads.
Flow cytometry for single-cell RNA-seq. For scRNA-seq, we performed two biologi-
cal replicates, with each replicate having one individual from each of the four stud-
ied species. A time course of dsRNA stimulation of 0, 4, and 8 h was used in one 
replicate (divided into two technical replicates), while the second replicate included 
a time course of 0, 2, 4, and 8 h. Poly(I:C) transfection was done as described above. 
In the case of sorting with IFNLUX, we used rhodamine-labelled poly(I:C).

Cells were sorted with either Beckman Coulter MoFlo XDP (first replicate) 
or Becton Dickinson INFLUX (second replicate) into wells containing 2 µl lysis 
buffer (1:20 solution of RNase Inhibitor (Clontech, 2313A) in 0.2% v/v Triton 
X-100 (Sigma-Aldrich, T9284)), spun down and immediately frozen at –80 °C.

When sorting with MoFlo, a pressure of 15 psi was used with a 150-µm nozzle, 
using the ‘Single’ sort purity mode. Dead or late-apoptosis cells were excluded 
using propidium iodide at 1 µg/ml (Sigma, Cat Number P4170) and single 
cells were selected using FSC W versus FSC H. When sorting with INFLUX, a  
pressure of 3 psi was used with a 200-µm nozzle, with the ‘single’ sort mode. Dead 
or late-apoptosis cells were excluded using 100 ng/ml DAPI (4′,6-diamidino-2- 
phenylindole) (Sigma, D9542). DAPI was detected using the 355-nm laser  
(50 mW), using a 460/50 nm bandpass filter. Rhodamine was detected using 
the 561-nm laser (50mW), using a 585/29 nm bandpass filter. Single cells were  
collected using FSC W versus FSC H.
Library preparation from full-length RNA from single cells and sequencing. 
Sorted plates were processed according to the Smart-seq2 protocol53. Oligo-dT 
primer (IDT), dNTPs (ThermoFisher, 10319879) and ERCC RNA Spike-In Mix 
(1:25,000,000 final dilution, Ambion, 4456740) were added to each well, and 
reverse transcription (using 50 U SmartScribe, Clontech, 639538) and PCR were 
performed following the original protocol with 25 PCR cycles. cDNA libraries were 
prepared using Nextera XT DNA Sample Preparation Kit (Illumina, FC-131-1096), 
according to the protocol supplied by Fluidigm (PN 100-5950 B1). Quality Checks 
on cDNA were done using a Bioanalyser 2100 (Agilent Technologies). Libraries 
were quantified using the LightCycler 480 (Roche), pooled and purified using 
AMPure XP beads (Beckman Coulter) with Hamilton 384 head robot (Hamilton 
Robotics). Pooled samples were sequenced on an Illumina HiSeq 2500 instrument, 
using paired-end 125-bp reads.
Read mapping to annotated transcriptome. For bulk RNA-seq samples, adaptor 
sequences and low-quality score bases were first trimmed using Trim Galore 
(version 0.4.1) (with the parameters ‘–paired–quality 20–length 20 -e 0.1–adapter 
AGATCGGAAGAGC’). Trimmed reads were mapped and gene expression was 
quantified using Salmon (version 0.6.0)54 with the following command: ‘salmon 
quant -i [index_file_directory] -l ISR -p 8–biasCorrect–sensitive–extraSensitive 
-o [output_directory] -1 -g [ENSEMBL_transcript_to_gene_file]–useFSPD–
numBootstraps 100’. Each sample was mapped to its respective species’ annotated 
transcriptome (downloaded from ENSEMBL, version 84: GRCh38 for human, 
MMUL_1 for macaque, GRCm38 for mouse, Rnor_6.0 for rat). We included only 
the set of coding genes (*.cdna.all.fa files). We removed annotated secondary hap-
lotypes of human genes by removing genes with ‘CHR_HSCHR’.
Quantifying differential gene expression in response to dsRNA. To quantify differen-
tial gene expression between treatment and control for each species and for each 
treatment separately, we used edgeR (version 3.12.1)55 using the rounded estimated 
counts from Salmon. This was done only for genes that had a significant level of 
expression in at least one of the four species (TPM >3 in at least N – 1 libraries, 
where N is the number of different individuals we have for this species with libraries  
that passed quality control, and TPM is transcripts per million). Differential 
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expression analysis was performed using the edgeR exact test, and P values were 
adjusted for multiple testing by estimating the false discovery rate (FDR).
Conservation and divergence in immune response: fold-change-based analysis. We 
compared the overall change in response to treatment (dsRNA or IFNB) between 
pairs of species, by computing the Spearman correlation of the fold-change in 
response to treatment across all one-to-one orthologues that were expressed in 
at least one species (Extended Data Fig. 1a–h). Fold-change was calculated with 
edgeR, as described above. Spearman correlations of all expressed genes appear 
in grey. Correlations of the subset of differentially expressed genes (genes with 
FDR-corrected P < 0.01 in at least one of the compared species) appear in black.

In Extended Data Fig. 1a–c, we show comparisons in response to dsRNA. In 
Extended Data Fig. 1d–f, we show comparisons in response to IFNB, which we use 
here to study the similarity of the secondary immune response between species.

We constructed a tree based on a gene’s change in expression in response to 
dsRNA and to IFNB, using expressed genes that had one-to-one orthologues across 
all four species and were expressed in at least one species in at least one condition 
(Extended Data Fig. 1i). We used hierarchical clustering, with the hclust com-
mand from the stats R package, with the distance between samples computed as 
1 – ρ, where ρ is the pairwise Spearman correlation between each pair of species 
mentioned above (a greater similarity, reflected in a higher correlation, results in 
a smaller distance) and ‘average’ as the clustering method.

The above-mentioned analyses focus on one-to-one orthologues between the 
compared species. In Supplementary Table 6, we quantify the similarity in response 
between species (based on Spearman correlations) when adding genes with  
one-to-many orthologues.
Quantifying gene expression divergence in response to immune challenge. To quantify 
transcriptional divergence in immune response between species, we focus on genes 
that have annotated one-to-one orthologues across the studied species (human, 
macaque, mouse and rat). 9,753 of the expressed genes have annotated one-to-one 
orthologues in all four species, out of which 955 genes are differentially expressed 
in human in response to dsRNA treatment (genes with an FDR-corrected P < 0.01).

We define a measure of response divergence (based on a previous study56) by 
calculating the differences between the fold-change estimates across the ortho-
logues: response divergence = log[1/4 × ∑i,j(log[FC primatei] − log[FC rodentj])2]. 
This measure takes into account the structure of the phylogeny, and gives a relative 
measure of divergence in response across all genes with one-to-one orthologues.

To consider differences between species, we focus on between-clade differences 
(primates versus rodents), rather than on within-clade differences. In this way, 
we map the most significant macro-evolutionary differences along the longest 
branches of our four-species phylogeny. In addition, averaging within clades acts 
as a reduction of noise56.

We compared this divergence measure to two other measures that use models  
(and incorporate both between- and within-clade divergence) and found a 
strong correlation between the divergence estimates across the three approaches 
(Supplementary Figs. 3, 4).

In most of the subsequent analyses, we focus on the 955 dsRNA-responsive 
genes: genes that were differentially expressed in response to dsRNA (genes that 
have an FDR-corrected P < 0.01 in human, and have annotated one-to-one ortho-
logues in the other three species). For some of the analyses, we split these 955 genes 
based on quartiles, into genes with high, medium and low divergence (Fig. 1c).

We also studied how imprecisions in the fold-change estimates affected the 
response divergence estimates and subsequent analyses (Supplementary Figs. 5, 6).
Comparison of response divergence between different functional groups. To compare 
the divergence rates between sets of dsRNA-responsive genes that have different 
functions in the innate immune response, we split these 955 genes into the fol-
lowing functional groups (all groups are mutually exclusive, and any gene that 
belongs to two groups was excluded from the latter group; human gene annota-
tions were used).

We first grouped genes by annotated molecular functions: viral sensors (genes 
that belong to one of the GO categories: GO:0003725 (dsRNA binding), GO:0009597 
(detection of virus), and GO:0038187 (pattern recognition receptor activity)); 
cytokines, chemokines and their receptors (GO:0005125 (cytokine activity),  
GO:0008009 (chemokine activity), GO:0004896 (cytokine receptor activity), and 
GO:0004950 (chemokine receptor activity)); transcription factors (taken from the 
Animal Transcription Factor DataBase (version 2.0)57); chromatin modulators  
(GO:0016568 (chromatin modification), GO:0006338 (chromatin remodelling), 
GO:0003682 (chromatin binding), and GO:0042393 (histone binding)); kinases 
and phosphatases (GO:0004672 (protein kinase activity) and GO:0004721  
(phosphoprotein phosphatase activity)); ligases and deubiquitinases (GO:0016579 
(protein deubiquitination), GO:0004842 (ubiquitin-protein transferase activity) and 
GO:0016874 (ligase activity)); and other enzymes (mostly involved in metabolism  
rather than regulation: GO:0003824 (catalytic activity)). The divergence response 
values of these functional subsets were compared to the entire group of 955  
dsRNA-responsive genes (Fig. 2d, e).

Next, we grouped genes by biological processes that are known to be important 
in the innate immune response: antiviral defence (GO:0051607 (defence response 
to virus)); inflammation (GO:0006954 (inflammatory response)); apoptosis 
(GO:0006915 (apoptotic process)); and regulation (GO annotations related to 
regulation of innate immune response pathways include only few genes. We thus 
used as the group of genes related to regulation, the merged group of genes that are 
annotated as transcription factors, chromatin modulators, kinases and phosphates 
or ligases and deubiquitinases, since all these groups include many genes that are 
known to regulate the innate immune response.)

Gene lists belonging to the mentioned GO annotations were downloaded using 
QuickGo58. The distribution of response divergence values for each of the func-
tional groups was compared with the distribution of response divergence of the 
entire set of dsRNA-responsive genes. Cytokines, chemokines and their receptors 
are merged in Fig. 2d, e, 3c. Analogous comparisons of functional groups in IFNB 
response (with 841 IFNB-responsive genes) are shown in Supplementary Fig. 1. 
See additional analyses in Supplementary Information.
Alignment and peak calling of ChIP–seq reads. ChIP–seq reads were trimmed using 
trim_galore (version 0.4.1) with ‘–paired–trim1–nextera’ flags. The trimmed reads 
were aligned to the corresponding reference genome (hg38 for human, rheMac2 
for macaque, mm10 for mouse, rn6 for rat; all these genomes correspond to the 
transcriptomes used for RNA-seq mapping) from the UCSC Genome Browser59 
using bowtie2 (version 2.2.3) with default settings60. In all four species, we removed 
the Y chromosome. In the case of human, we also removed all alternative haplotype 
chromosomes. Following alignment, low-confident mapped and improperly paired 
reads were removed by samtools61 with ‘-q 30 –f 2’ flags.

Enriched regions (peaks) were called using MACS2 (v.2.1.1)62 with a corrected 
P value cutoff of 0.01 with ‘-f BAMPE -q 0.01 -B–SPMR’ flags, using input DNA 
as control. The genome sizes (the argument for ‘-g’ flag) used were ‘hs’ for human, 
‘mm’ for mouse, 3.0 × 109 for macaque and 2.5 × 109 for rat. Peaks were consid-
ered reproducible when they were identified in at least two of the three biological 
replicates and overlapped by at least 50% of their length (non-reproducible peaks 
were excluded from subsequent analyses). Reproducible peaks were then merged to 
create consensus peaks from overlapping regions of peaks from the three replicates 
by using mergeBed from the bedtools suite63.
Gene assignment and conservation of active promoters and enhancers. We subse-
quently linked human peaks with the genes they might be regulating as follows: 
H3K4me3 consensus peak was considered the promoter region of a given gene if 
its centre was between 2 kb upstream and 500 bp downstream of the annotated 
TSS of the most abundantly expressed transcript of that gene.

Similarly, H3K27ac was considered the enhancer region of a given gene if  
its centre was in a distance above 1 kb and below 1 Mb, and there was no overlap 
(of 1 bp or more) with any H3K4me3 peak.

In each case where, based on the distance criteria, more than a single peak was 
linked to a gene (or more than a single gene was linked to a peak), we took only 
the closest peak–gene pair (ensuring that each peak will have up to one gene and 
vice versa).

To compare active promoters and enhancers between species, we excluded any 
human peak that could not be uniquely mapped to the respective region in the 
other species. This was done by looking for syntenic regions of human peaks in 
the other three species by using liftOver64, and removing peaks that had either 
unmapped regions or more than one mapped region in the compared species. 
We considered syntenic regions with at least 70% sequence similarity between the 
species (minMatch = 0.7, and 0.8 in the case of human-macaque comparison), 
with a minimal length (minSizeQ and minSizeT) corresponding to the length of 
the shortest peak (128 bp in H3K4 and 142 bp in H3K27).

We defined an active human promoter or enhancer as conserved if a peak 
was identified in the corresponding region of the other species (we repeated this  
analysis by comparing human with each of the other three species separately). We 
compared the occurrence of conserved promoters and enhancers in genes that 
are highly divergent in response to dsRNA with low-divergence genes, and used 
Fisher’s exact test to determine the statistical significance of the observed differ-
ences between high- and low-divergence genes (Extended Data Fig. 2).
Promoter sequence analysis. To calculate the total number of transcription factor  
binding motifs in a gene’s active promoter region, we downloaded the non- 
redundant JASPAR core motif matrix (pfm_vertebrates.txt) from the JASPAR 2016 
server65 and searched for significant matches for these motifs using FIMO66 in 
human H3K4me3 peaks. The TFBM density of peaks was calculated by dividing 
the total number of motif matches in a peak by the peak’s length. TBFM density 
values in human H3K4me3 peaks linked with high- and low-divergence genes 
were compared (Fig. 2a).

PhyloP7 values were used to assess promoter sequence conservation67. Sequence 
conservation quantification was performed by taking the estimated nucleotide sub-
stitution rate for each nucleotide along the promoter sequence (500 bp upstream of 
the TSS of the relevant human gene). When several annotated transcripts existed, 
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the TSS of the most abundantly expressed transcript was used (based on bulk RNA 
data). The substitution rate values from all genes were aligned, based on their TSS 
position, and a mean for each of the 500 positions was calculated separately for the 
group of genes with high, medium and low response divergence. The two-sample 
Kolmogorov–Smirnov test was used to compare the paired distribution of rates 
between the means of the high-divergence and low-divergence sets of genes. To plot 
the mean values of the three sets of divergent genes, the geom_smooth function 
from the ggplot2 R package was used with default parameters (with loess as the 
smoothing method) (Fig. 2b).

Human CGI annotations were downloaded from the UCSC genome table 
browser (hg38), and CGI genes were defined as those with a CGI overlapping 
their core promoter (300 bp upstream of the TSS reference position, and 100 bp 
downstream of it, as suggested previously18). Genes were defined as having a TATA 
box if they had a significant match to the Jaspar TATA box matrix (MA0108.1) in 
the 100 bp upstream of their TSS by FIMO66 with default settings (we used a 100 bp  
window owing to possible inaccuracies in TSS annotations). We note that only 
28 out of 955 dsRNA-responsive genes had a matching TATA-box motif in this 
region. For both TATA and CGI analyses, the promoter sequences of the human 
orthologues were used.
Read mapping and quality control of scRNA-seq (full-length RNA). Gene expression 
was quantified in a manner similar to the quantification for bulk transcriptom-
ics libraries described above. Low-quality cells were filtered using quality control 
criteria (cells with at least 100,000 mapped reads, with at least 2,000 expressed 
genes with TPM > 3, with ERCC < 10% and MT < 40%, where ERCC and MT 
refer to reads mapped to synthetic RNA Spike-In genes and mitochondrial genes). 
This quality control filtering resulted in 240 cells from a first biological replicate, 
including two technical replicates (with a time course of 0, 4, 8 h). In a second larger 
biological replicate (with a dsRNA stimulation time course of 0, 2, 4, 8 h), 728 cells 
passed quality control. Results throughout the manuscript relate to the second 
cross-species biological replicate in which a higher proportion of cells passed QC, 
and the lower-quality first replicate data were not considered further.
Cell-to-cell variability analysis. To quantify the biological cell-to-cell variability 
of genes, we applied the DM (Distance to Median) approach—an established 
method, which calculates the cell-to-cell variability in gene expression while 
accounting for confounding factors such as gene expression level30. This is done 
by first filtering out genes that are expressed at low levels: for Smart-seq2 data 
we included only genes that had an average expression of at least 10 size-factor  
normalized reads (except for Extended Data Fig. 9a, in which we reduced the 
threshold to 5, to allow a larger number of genes to be included in the comparisons). 
This procedure was done to filter genes that displayed higher levels of technical  
variability between samples owing to low expression. Second, to account for gene 
expression level, the observed cell-to-cell variability of each gene was compared 
with its expected variability, based on its mean expression across all samples and 
in comparison with a group of genes with similar levels of mean expression. This 
DM value is also corrected by gene length (in the case of Smart-seq2 data), yield-
ing a value of variability that can be compared across genes regardless of their 
length and mean expression values68. As a second approach, we used BASiCS69,70 
(see Supplementary Information).

We note that the relationship observed in Fig. 3a between response diver-
gence and cell-to-cell variability is not an artefact, stemming from differences in 
expression levels: (A) With respect to cell-to-cell variability, a gene’s expression 
level is controlled for by DM calculations, where expression level is regressed by 
using a running median (Supplementary Fig. 14). (B) Similarly, we can regress 
the expression level measured in bulk RNA-seq from the quantified response 
divergence by subtracting the running median of expression from the divergence 
estimates. When repeating the analysis comparing cell-to-cell variability versus 
regressed response divergence, the relationship between the two is maintained 
(Supplementary Fig. 15).
Cytokine co-expression analysis. For the chemokine gene CXCL10, we built a 
network (using CytoScape71) of genes that correlate with CXCL10 in dsRNA- 
stimulated human fibroblasts and in at least one more species, using genes 
with a Spearman correlation value above 0.3 (see Fig. 3d and Supplementary 
Information).
Coding sequence evolution analysis. The ratio dN/dS (non-synonymous to syn-
onymous codon substitutions) of human genes across the mammalian clade was 
obtained from a previous study that used orthologous genes from 29 mammals72. 
Distributions of dN/dS values were computed for each of the three groups of genes 
with low, medium and high divergence in response to dsRNA, and are plotted in 
Fig. 4a.
Rate of gene gain and loss analysis. The significance at which a gene’s family has 
experienced a higher rate of gene gain and loss in the course of vertebrate evolu-
tion, in comparison with other gene families, was retrieved from ENSEMBL73. 
The statistics provided by ENSEMBL are calculated using the CAFE method74, 
which estimates the global birth and death rate of gene families and identifies gene 

families that have accelerated rates of gain and loss. Distributions of the P values 
from this statistic were computed for each of the three groups of genes with low, 
medium and high divergence in response to dsRNA and are plotted as the negative 
logarithm values in Fig. 4b.
Gene age analysis. Gene age estimations were obtained from ProteinHistorian75. 
To ensure that the results were not biased by a particular method of ancestral pro-
tein family reconstruction or by specific gene family assignments, we used eleven 
different estimates for mammalian genes (combining five different databases of 
protein families with two different reconstruction algorithms for age estimation, 
as well as an estimate from the phylostratigraphic approach). For each gene, age 
was defined with respect to the species tree, where a gene’s age corresponds to the 
branch in which its family is estimated to have appeared (thus, larger numbers 
indicate evolutionarily older genes).

Data for gene age in comparison with divergence in response to dsRNA are 
shown in Fig. 4c (using Panther7 phylogeny and Wagner reconstruction algorithm) 
and in Supplementary Fig. 17a (for all 11 combinations of gene family assignments 
and ancestral family reconstructions). See additional analyses in Supplementary 
Information.
Cellular protein–protein interaction analysis. Data on the number of experimen-
tally validated PPIs for human genes were obtained from STRING (version 10)76. 
Distributions of PPIs for genes with low, medium and high divergence in response 
to dsRNA are plotted in Fig. 4d.
Host–virus interaction analysis. Data on host–virus protein–protein interactions 
were downloaded from the VirusMentha database43, and combined with two addi-
tional studies that have annotated host–virus protein–protein interactions6,44. We 
split the 955 dsRNA-responsive genes into genes with known viral interactions 
(genes whose protein products were reported to interact with at least one viral 
protein), and genes with no known viral interactions: ‘viral interactors’ and ‘no 
viral interactions’, respectively, in Fig. 4e. In addition, we define a subset of genes 
within the viral interactors set: those known to interact with viral proteins that 
are immunomodulators (proteins known to target the host immune system and 
modulate its response45).

We note that the results presented in Fig. 4e are in agreement with previous 
analyses that are based on all human genes and on coding sequence evolution46. 
However, the overlap in the sets of genes between the previous analyses and the 
one presented here is small (for example, in one published study46 there were 535 
human genes with known interactions with pathogens, 57 of which overlap with 
the 955 genes that are the basis of the current analysis).
Additional experiments with human fibroblasts and human skin tissue. 
Additional experiments were performed with human dermal fibroblasts and 
with cells extracted from human skin tissues to study in greater detail the  
relationship between response divergence across species and cell-to-cell variability. 
See Supplementary Methods and Supplementary Discussion for details.
Cross-species bone marrow-derived phagocyte stimulation with LPS and 
dsRNA. Tissue culture. Primary bone marrow-derived mononuclear phagocytes 
originating from females of four different species (black 6 mouse, brown Norway 
rat, rabbit and pig) and cultured with GM-CSF, were obtained from PeloBiotech. 
Twenty-four hours before the start of the stimulation time course, cells were thawed 
and split into 12-well plates (500,000 cells per well). Cells were stimulated with: 
(1) 100 ng/ml LPS (Invivogen, tlrl-smlps), or with (2) 1 µg/ml high-molecular 
mass poly(I:C) (Invivogen, tlrl-pic) transfected with 2 µl/ml Lipofectamin 2,000 
(ThermoFisher, 11668027). LPS stimulation time courses of 0, 2, 4, 6 h were  
performed for all species. Poly(I:C) stimulations were performed for rodents for 
0, 2, 4, 6 h. We also processed cells for bulk RNA-seq for 0 and 4 h stimulation  
time points. Details on the individuals used in each technique are listed in 
Supplementary Table 2.
Library preparation for single cells using microfluidic droplet cell capture. Following 
stimulation, cells were collected using Cell Dissociation Solution Non-enzymatic 
(Sigma-Aldrich, C5914), washed and resuspended in 1 × PBS with 0.5% (w/v) 
BSA. Cells were then counted and loaded on the 10x Chromium machine aiming 
for a targeted cell recovery of 5,000 cells according to the manual. Libraries were 
prepared following the Chromium Single Cell 3′ v2 Reagent Kit Manual77. Libraries 
were sequenced on an Illumina HiSeq 4000 instrument with 26 bp for read 1 and 
98 bp for read 2.
Library preparation and sequencing for bulk RNA-seq. Total RNA was extracted and 
libraries were prepared as described in the fibroblasts section. Pooled samples were 
sequenced on an Illumina HiSeq 4000 instrument, using paired-end 75-bp reads.
Quantifying gene expression in bulk RNA-seq data. Adaptor sequences and 
low-quality score bases were trimmed using Trim Galore (version 0.4.1). Trimmed 
reads were mapped and gene expression was quantified using Salmon: (version 
0.9.1)54 with the following command: ‘salmon quant -i [index_file_directory] / 
-l ISR -p 8–seqBias–gcBias–posBias -q -o [output_directory] -1 -g [ENSEMBL_
transcript_to_gene_file]–useVBOpt–numBootstraps 100’. Mouse samples were 
mapped to mouse transcriptome (ENSEMBL, version 84). We note that we used 
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the bulk data only for TSS analysis. For differential expression analysis, we used 
an in silico bulk from the single-cell data (see below).
Quantifying gene expression in microfluidic droplet cell capture data. Microfluidic 
droplet cell capture data was first quantified using 10x Genomics’ Cell Ranger 
Single-Cell Software Suite (version 2.0, 10× Genomics Inc.)77 against the  
relevant genome (ENSEMBL, version 84). We removed cells with fewer than  
200 genes or more than 10% mitochondrial reads. To remove potential doublets, 
we excluded the top 10% of cells expressing the highest numbers of genes. Genes 
expressed in less than 0.5% of the cells were excluded from the calculations. 
We then filtered cells that expressed fewer than 10% of the total number of 
filtered genes.

Since bone marrow-derived phagocytes may include secondary cell  
populations, we focused our analysis on the major cell population. We identified 
clusters within each data set, using the Seurat78 functions RunPCA, followed 
by FindClusters (using 20 dimensions from the PCA, default perplexity and a  
resolution of 0.1) and have taken the cells belonging to the largest cluster for 
further analysis, resulting in a less heterogeneous population of cells. A lower  
resolution of 0.03 was used for rabbit-LPS4, rabbit-LPS2, mouse-PIC2, mouse-PIC4;  
and 0.01 for rabbit-LPS6.
Quantifying gene expression divergence in response to immune challenge. We cre-
ated an in silico bulk table by summing up the UMIs of the post-QC single cells 
belonging to the largest cluster of cells, in each of the samples. We then used the 
three replicates in unstimulated conditions and in 4 h LPS stimulation to per-
form a differential expression analysis using DESeq279 Wald test, and P values 
were adjusted for multiple testing by estimating the FDR. A similar procedure was  
performed with mouse and rat dsRNA stimulation (with 4 h dsRNA stimulation 
versus unstimulated conditions).

To quantify transcriptional divergence in immune response between species, we 
focused on genes that have annotated one-to-one orthologues across the studied 
species.

We define a measure of response divergence by calculating the differences 
between the fold-change estimates across the orthologues: response diver-
gence = log[1/3 × ∑j(log[FC pig] − log[FC glirej])2]. For each gene, the fold-change 
in the outer group (pig), is subtracted from the fold-change in the orthologues of 
the three glires (mouse, rat and rabbit), and the average of the square values of these 
subtractions is taken as the response divergence measure. In most of the analyses, 
we focus on the 2,336 LPS-responsive genes—genes that are differentially expressed 
in response to LPS (genes that have an FDR-corrected P < 0.01 in mouse, and have 
annotated one-to-one orthologues in the other three species).
Promoter elements, gene function and cell-to-cell variability analyses. Promoter ele-
ments (TATA and CGIs), gene function and cell-to-cell variability analyses were 
performed as described in the fibroblasts section. Mouse genes were used as the 
reference for gene function and TSS annotations. For variability analysis, we used 
one representative replicate out of three.
Statistical analysis and reproducibility. Statistical analyses were done with 
R version 3.3.2 for Fisher’s exact test, two-sample Kolmogorov–Smirnov test 
and Mann–Whitney test. Data in boxplots represent the median, first quartile  
and third quartile with lines extending to the furthest value within 1.5 of the  
interquartile range (as implemented by the R function geom_boxplot). Violin plots 
show the kernel probability density of the data (as implemented by the R function 
geom_violin).

All cross-species bulk RNA-seq replicates were successful, except for one 
macaque individual in which the treated sample had a low RNA quality and was 
removed from the analysis (along with the matching control). All cross-species 
ChIP–seq replicates were successful. Cross-species scRNA-seq of fibroblasts was 
performed in two biological replicates. Results throughout the manuscript relate 
to the second cross-species biological replicate, for which a higher proportion of 
cells passed technical quality control. Three out of three replicates for each species 
and condition were successful when preparing single-cell libraries for mononu-
clear phagocytes, except for two libraries that failed at the emulsion preparation 
stage. Two out of two replicates of single-cell in situ RNA hybridization assay were 
performed and both are shown.
Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.

Code availability. Scripts for major analyses are available at https://github.com/
Teichlab/innate_evo.
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Extended Data Fig. 1 | Fibroblast response to dsRNA and IFNB across 
species. To study the similarity in response to treatment across species, 
we plotted the fold-change values of all expressed genes (with one-to-one 
orthologues) between pairs of species (human–macaque, mouse–rat and 
human–mouse) in response to dsRNA (poly(I:C)) (a–c). As a control, 
we performed the same procedure with IFNB stimulations (d–f). Fold-
changes were inferred from differential expression analyses, determined 
by the exact test in the edgeR package6 and based on n = 6, 5, 3 and 3 
individuals from human, macaque, rat and mouse, respectively. Spearman 
correlations between all expressed one-to-one orthologues are shown in 
grey, Spearman correlations between the subset of differentially expressed 

genes (FDR-corrected P < 0.01 in at least one species) appear in black. 
Number of genes shown is n = 11,035, 11,005, 11,137, 10,851, 10,826 
and 10,957 in a–f, respectively. Genes are coloured blue if they were 
differentially expressed (FDR-corrected P < 0.01) in both species, purple 
if they were differentially expressed in only one species, or red if they were 
not differentially expressed. g, h, Density plots of ratio of fold-change 
in response to dsRNA or to IFNB. g, Comparison between human and 
macaque orthologues in dsRNA response. h, Comparison between human 
and mouse orthologues in IFNB response. i, Dendrogram based on the 
fold-change in response to dsRNA or to IFNB across 9,835 one-to-one 
orthologues in human, macaque, rat and mouse.
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Extended Data Fig. 2 | Correspondence of transcriptional divergence 
and divergence of active promoters and enhancers. Comparison of 
divergence in transcriptional response to dsRNA with divergence of active 
chromatin marks in active promoters (a, profiled using H3K4me3 in 
proximity to gene’s TSS) and enhancers (b, H3K27ac without overlapping 
H3K4me3). Chromatin marks were linked to genes on the basis of their 
proximity to the gene’s TSS. Chromatin marks were obtained from n = 3 
individuals in each of the four species, from fibroblasts stimulated with 
dsRNA or left untreated. The statistics are based on n = 855, 818 and 813 
human genes that have a linked H3K4me3 mark with a syntenic region 
in macaque, rat and mouse, respectively (a); and on n = 326, 241 and 242 
human genes that have a linked H3K27ac mark with a syntenic region in 
macaque, rat and mouse, respectively (b). Each panel shows the fraction of 
conserved marks between human and macaque, rat or mouse, in genes that 

have high, medium and low divergence in their transcriptional response. 
In each column, the histone mark’s signal was compared between human 
and the syntenic region in one of the three other species. If an active mark 
was found in the corresponding syntenic region, the linked gene was 
considered to have a conserved active mark (promoter or enhancer). The 
fractions of genes with conserved promoters (or enhancers) in each pair 
of species were compared between high- and low-divergence genes using 
a one-sided Fisher’s exact test. When comparing active promoter regions 
of high- versus low-divergence genes, we observe that low-divergence 
genes have a significantly higher fraction of conserved marks in rodents. 
This suggests an agreement between divergence at the transcriptional and 
chromatin levels in active promoter regions. In active enhancer regions, we 
do not observe these patterns, suggesting that the major contribution to 
divergence comes from promoters.
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Extended Data Fig. 3 | Comparison of response divergence of genes 
containing various promoter elements. Comparison of response 
divergence between genes with and without a TATA-box and a CGI. Left, 
fibroblasts (n = 14, 14, 633 and 294 differentially expressed genes with 
only TATA-box element, with both CGI and TATA-box elements, with 
only CGI, and with neither element in their promoters, respectively); right, 
phagocytes (n = 13, 29, 1,718 and 576 differentially expressed genes with 
only a TATA-box element, with both CGI and TATA-box elements, with 

only a CGI, and with neither element in their promoters, respectively). 
Genes with a TATA-box without a CGI have higher response divergence 
than genes with both elements. Genes with a CGI but without a TATA-
box diverge more slowly than genes with both elements. Genes with both 
elements do not differ significantly in their divergence from genes lacking 
both elements (one-sided Mann–Whitney test). Data in boxplots represent 
the median, first quartile and third quartile with lines extending to the 
furthest value within 1.5 of the IQR.
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Extended Data Fig. 4 | Response divergence of molecular processes 
upregulated in immune response. Left, distributions of divergence values 
of n = 955 dsRNA-responsive genes in fibroblasts and subsets of this group 
belonging to different biological processes. For each functional subset, the 
distribution of divergence values is compared with the set of 955 dsRNA-
responsive genes using a one-sided Mann–Whitney test. FDR-corrected 
P values are shown above each group and group size is shown inside each 
box. Right, distributions of divergence values of n = 2,336 LPS-responsive 

genes in mononuclear phagocytes and subsets of this group belonging to 
different biological processes. For each functional subset, the distribution 
of divergence values is compared with the set of 2,336 LPS-responsive 
genes. FDR-corrected P values (one-sided Mann–Whitney test) are 
shown above each group and group size is shown inside each box. Data in 
boxplots represent the median, first quartile and third quartile with lines 
extending to the furthest value within 1.5 of the IQR.
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Extended Data Fig. 5 | Cell-to-cell variability versus response 
divergence across species and conditions in fibroblasts after dsRNA 
stimulation. Cell-to-cell variability values, as measured with DM across 
individual cells, compared with response divergence between species 
(grouped into low, medium and high divergence). Variability values are 
based on n = 29, 56, 55, 35 human cells, n = 20, 32, 29, 13 rhesus cells, 
n = 33, 70, 65, 40 rat cells, and n = 53, 81, 59, 30 mouse cells, stimulated 

with dsRNA for 0, 2, 4 and 8 h, respectively. Rows represent different 
dsRNA stimulation time points (0, 2, 4 and 8 h), and columns represent 
different species as shown. High-divergence genes were compared with 
low-divergence genes using a one-sided Mann–Whitney test. Data in 
boxplots represent the median, first quartile and third quartile with lines 
extending to the furthest value within 1.5 of the IQR.
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Extended Data Fig. 6 | Cell-to-cell variability versus response 
divergence across species and conditions in mononuclear phagocytes 
after LPS stimulation. Cell-to-cell variability values, as measured with 
DM across cells, compared with response divergence between species 
(grouped into low, medium and high divergence). Variability values are 
based on n = 3,519, 4,321, 3,293, 2,126 mouse cells, n = 2,266, 2,839, 1,963, 
1,607 rat cells, n = 3,275, 1,820, 1,522, 1,660 rabbit cells, and n = 1,748, 

1,614, 1,899, 1,381 pig cells, stimulated with LPS for 0, 2, 4 and 6 h, 
respectively. Rows represent different LPS stimulation time points  
(0, 2, 4 and 6 h), and columns represent different species as shown.  
High-divergence genes were compared with low-divergence genes using 
a one-sided Mann–Whitney test. Data in boxplots represent the median, 
first quartile and third quartile with lines extending to the furthest value 
within 1.5 of the IQR.
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Extended Data Fig. 7 | Cell-to-cell variability of cytokine expression 
in single cell in situ RNA hybridization assay combined with flow 
cytometry (PrimeFlow). PrimeFlow measurement of two cytokine genes 
(IFNB and CXCL10) that show high cell-to-cell variability in scRNA-
seq. As controls, two genes matched on expression levels (ATXN2L 
and ADAM32) but that show low cell-to-cell variability in scRNA-seq 
data are shown. As the expression of cytokines is at the low end of the 
distribution, we also chose two genes with middle-range expression values 
(ADAMTSL3 and BRD2) as additional controls. The experiment was 
performed in n = 2 independent replicates, originating from the same 
individual. Both replicates are shown. a, Pseudocolour contour plot for 
RNA target expression in dsRNA-stimulated human fibroblasts. The x-axis 

shows area of side scatter (SSC-A) and the y-axis shows fluorescent signal 
for target RNA probes. RNA targets detected by the same fluorescent 
channel are displayed together. Top, IFNB and control genes BRD2 and 
ATXN2L, type 1 probe, Alexa FluorTM 647. Bottom, CXCL10 and control 
genes ADAMTSL3 and ADAM32, type 10 probe, Alexa FluorTM 568. The 
cytokine genes display a broader range of fluorescence signal than the 
controls. b, Histograms comparing fluorescence of cytokine and control 
pairs (IFNB–BRD2 for type 1 probe and CXCL10–ADAM32 for type 10 
probe). The histograms show a bimodal distribution of expression signal 
for the two cytokine genes (IFNB and CXCL10, red), but not for controls 
(blue). This agrees with scRNA-seq data in which CXCL10 and IFNB 
display high levels of cell-to-cell variability.
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Extended Data Fig. 8 | Cell-to-cell variability levels and response 
divergence of cytokines, transcription factors and kinases in response 
to LPS stimulation of phagocytes. A scatter plot showing divergence in 
response to LPS across species and transcriptional cell-to-cell variability 
in mouse mononuclear phagocytes following 4 h of LPS treatment, in 
n = 2,262 LPS-responsive genes. Purple, cytokines; green, transcription 
factors; beige, kinases. The distributions of divergence values and cell-
to-cell variability values of each of the three functional groups are shown 
above and to the right of the scatter plot, respectively.
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Extended Data Fig. 9 | Cell-to-cell variability levels in cytokines, 
transcription factors and kinases across species and stimulation time 
points. Violin plots showing the distribution of cell-to-cell variability 
values (DM) of cytokines, transcription factors and kinases during 
immune stimulation. Left, fibroblast dsRNA stimulation time course. 
Number of cells used in each species (at 2, 4, 8 h dsRNA, respectively): 
human, 56, 55, 35; macaque, 32, 29, 13; rat, 70, 65, 40; mouse, 81, 59, 30. 

Right, phagocyte LPS stimulation time course. Number of cells used in 
each species (at 2, 4, 6 h LPS, respectively): mouse, 4,321, 3,293, 2,126; rat, 
2,839, 1,963, 1,607; rabbit, 1,820, 1,522, 1,660; pig, 1,614, 1,899, 1,381. For 
both panels, colours as in Fig. 3c. Comparisons between groups of genes 
were performed using one-sided Mann–Whitney tests. Violin plots show 
the kernel probability density of the data.
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Extended Data Fig. 10 | Percentage of cells expressing cytokines, 
transcription factors and kinases. Histograms showing the percentage of 
fibroblasts expressing cytokines (top), transcription factors (middle) and 
kinases (bottom) following 4 h dsRNA stimulation, in human, macaque, 
rat and mouse cells (based on n = 55, 29, 65 and 59 cells, respectively). 

The percentage of expressing cells is divided into 13 bins (x-axis). The 
y-axis represents the fraction of genes from this gene class (for example, 
cytokines) that are expressed in each bin (for example, in human, 
nearly 30% of the cytokine genes (y-axis) are expressed in the first bin, 
corresponding to expression in fewer than 8% of cells).
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Appendix E

Innate immune response modules

Table E.1 GO term enrichment in IFN-— response gene modules

GO term ID GO term name Enrichment p-value
Canonical Type I IFN

GO:0051607 defense response to virus 2.36e-44
GO:0060337 type I interferon signaling pathway 8.34e-38
GO:0032479 regulation of type I interferon production 3.18e-13

GO:0070647
protein modification by small protein conjuga-

tion or removal
2.4e-05

GO:0044248 cellular catabolic process 0.000405
GO:0006508 proteolysis 0.00116
GO:0071360 cellular response to exogenous dsRNA 0.0016
GO:0032020 ISG15-protein conjugation 0.00591
GO:0006471 protein ADP-ribosylation 0.00613

GO:0003373
dynamin family protein polymerization involved

in membrane fission
0.00769

GO:0090503
RNA phosphodiester bond hydrolysis, exonu-

cleolytic
0.0103

GO:2001034
positive regulation of double-strand break repair

via nonhomologous end joining
0.0114

GO:1904469
positive regulation of tumor necrosis factor se-

cretion
0.0114

GO:0052548 regulation of endopeptidase activity 0.0114
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GO term ID GO term name Enrichment p-value
GO:0000266 mitochondrial fission 0.0115
GO:0034058 endosomal vesicle fusion 0.0136
GO:0019985 translesion synthesis 0.0138
GO:0070206 protein trimerization 0.0185

GO:0051770
positive regulation of nitric-oxide synthase

biosynthetic process
0.0213

GO:0035563 positive regulation of chromatin binding 0.0213

GO:0034356
NAD biosynthesis via nicotinamide riboside sal-

vage pathway
0.0268

GO:0009200
deoxyribonucleoside triphosphate metabolic

process
0.0299

GO:0051248 negative regulation of protein metabolic process 0.0299
GO:0034162 toll-like receptor 9 signaling pathway 0.033
GO:0061025 membrane fusion 0.0403

GO:0002737
negative regulation of plasmacytoid dendritic

cell cytokine production
0.0411

GO:0072308
negative regulation of metanephric nephron

tubule epithelial cell di�erentiation
0.0411

GO:1905795 cellular response to puromycin 0.0411
GO:0090616 mitochondrial mRNA 3’-end processing 0.0411
GO:0031324 negative regulation of cellular metabolic process 0.0448
GO:0051100 negative regulation of binding 0.0498

GO:0048661
positive regulation of smooth muscle cell prolif-

eration
0.0498

Regulator/signal transduction

GO:0006952 defense response 8.86e-17
GO:0060333 interferon-gamma-mediated signaling pathway 1.09e-08
GO:0008219 cell death 5.81e-06
GO:0010952 positive regulation of peptidase activity 1.79e-05
GO:0001817 regulation of cytokine production 1.84e-05
GO:0032940 secretion by cell 0.000203
GO:0002274 myeloid leukocyte activation 0.00033
GO:0045055 regulated exocytosis 0.00102
GO:0043687 post-translational protein modification 0.00147



265

GO term ID GO term name Enrichment p-value

GO:0043123
positive regulation of I-kappaB kinase/NF-

kappaB signaling
0.0016

GO:0016485 protein processing 0.00245
GO:0061180 mammary gland epithelium development 0.00426

GO:1902728
positive regulation of growth factor dependent

skeletal muscle satellite cell proliferation
0.00482

GO:0048872 homeostasis of number of cells 0.00933
GO:0006775 fat-soluble vitamin metabolic process 0.0117

GO:0010957
negative regulation of vitamin D biosynthetic

process
0.0186

GO:1903903 regulation of establishment of T cell polarity 0.0186
GO:0071360 cellular response to exogenous dsRNA 0.0199

GO:1901224
positive regulation of NIK/NF-kappaB signal-

ing
0.0219

GO:0042325 regulation of phosphorylation 0.0223

GO:0046902
regulation of mitochondrial membrane perme-

ability
0.0286

GO:1903599
positive regulation of autophagy of mitochon-

drion
0.0299

GO:1902895
positive regulation of pri-miRNA transcription

by RNA polymerase II
0.0338

GO:0032020 ISG15-protein conjugation 0.0368
GO:0048050 post-embryonic eye morphogenesis 0.0368

GO:0070647
protein modification by small protein conjuga-

tion or removal
0.0374

GO:0001503 ossification 0.0405
GO:0001885 endothelial cell development 0.0463

GO:0002291

T cell activation via T cell receptor contact with

antigen bound to MHC molecule on antigen

presenting cell

0.0468

GO:0003382 epithelial cell morphogenesis 0.0497
E�ector

GO:0051707 response to other organism 0.00596
GO:0034097 response to cytokine 0.00596
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GO term ID GO term name Enrichment p-value
GO:0006955 immune response 0.00596
GO:0019079 viral genome replication 0.00596
GO:0045069 regulation of viral genome replication 0.0112
GO:0010529 negative regulation of transposition 0.0143
GO:0006952 defense response 0.0143
GO:0010528 regulation of transposition 0.0143

GO:2000113
negative regulation of cellular macromolecule

biosynthetic process
0.0188

GO:0051172
negative regulation of nitrogen compound

metabolic process
0.0315

GO:0045944
positive regulation of transcription by RNA

polymerase II
0.0317

GO:0051254 positive regulation of RNA metabolic process 0.0317

GO:0010557
positive regulation of macromolecule biosyn-

thetic process
0.0423

GO:0048705 skeletal system morphogenesis 0.0453
GO:0010463 mesenchymal cell proliferation 0.0467
GO:0043374 CD8-positive, alpha-beta T cell di�erentiation 0.0467
GO:0065007 biological regulation 0.0467
GO:0001816 cytokine production 0.0468
GO:0060324 face development 0.0471
GO:0097152 mesenchymal cell apoptotic process 0.0483
GO:0010628 positive regulation of gene expression 0.0483

Cell cycle

GO:0007049 cell cycle 1.42e-58
GO:0006259 DNA metabolic process 6.06e-26
GO:0006974 cellular response to DNA damage stimulus 7.19e-13
GO:0051310 metaphase plate congression 3.75e-08

GO:0031145
anaphase-promoting complex-dependent

catabolic process
6.72e-08

GO:0051169 nuclear transport 3.11e-06
GO:0034502 protein localization to chromosome 8.81e-06
GO:0000723 telomere maintenance 6e-05
GO:0007019 microtubule depolymerization 0.000169

GO:0006977
DNA damage response, signal transduction by

p53 class mediator resulting in cell cycle arrest
0.000367
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GO term ID GO term name Enrichment p-value
GO:0009263 deoxyribonucleotide biosynthetic process 0.000591

GO:0006890
retrograde vesicle-mediated transport, Golgi to

ER
0.000611

GO:0006403 RNA localization 0.000798

GO:0019886
antigen processing and presentation of exoge-

nous peptide antigen via MHC class II
0.00111

GO:0006606 protein import into nucleus 0.00166
GO:0016572 histone phosphorylation 0.00234
GO:0085020 protein K6-linked ubiquitination 0.0025
GO:0009411 response to UV 0.00308
GO:0006405 RNA export from nucleus 0.00342
GO:0002200 somatic diversification of immune receptors 0.004
GO:0001556 oocyte maturation 0.00416

GO:0045814
negative regulation of gene expression, epige-

netic
0.00416

GO:0051347 positive regulation of transferase activity 0.00583
GO:0031100 animal organ regeneration 0.00639
GO:0031291 Ran protein signal transduction 0.00754

GO:1905448
positive regulation of mitochondrial ATP syn-

thesis coupled electron transport
0.0139

GO:0006235 dTTP biosynthetic process 0.0139
GO:0046075 dTTP metabolic process 0.0139
GO:0009123 nucleoside monophosphate metabolic process 0.0207
GO:0035519 protein K29-linked ubiquitination 0.0215
GO:0044314 protein K27-linked ubiquitination 0.0215
GO:0006189 ’de novo’ IMP biosynthetic process 0.0294
GO:0031503 protein-containing complex localization 0.0297
GO:0009314 response to radiation 0.0322

GO:0072383
plus-end-directed vesicle transport along micro-

tubule
0.0381

GO:0000056 ribosomal small subunit export from nucleus 0.0381
GO:1904666 regulation of ubiquitin protein ligase activity 0.0423

GO:0009157
deoxyribonucleoside monophosphate biosyn-

thetic process
0.0483

GO:0055015 ventricular cardiac muscle cell development 0.0483
GO:0000055 ribosomal large subunit export from nucleus 0.0483
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GO term ID GO term name Enrichment p-value
GO:0075713 establishment of integrated proviral latency 0.0483

Chromatin organisation

GO:0051171
regulation of nitrogen compound metabolic pro-

cess
1.42e-06

GO:0016070 RNA metabolic process 2.46e-06
GO:0006325 chromatin organization 5.81e-06
GO:0018394 peptidyl-lysine acetylation 2.75e-05

GO:0010605
negative regulation of macromolecule metabolic

process
3.4e-05

GO:0006403 RNA localization 0.000411
GO:0050657 nucleic acid transport 0.000854
GO:0048511 rhythmic process 0.00139

GO:1902400
intracellular signal transduction involved in G1

DNA damage checkpoint
0.00189

GO:0072431
signal transduction involved in mitotic G1 DNA

damage checkpoint
0.00189

GO:0010604
positive regulation of macromolecule metabolic

process
0.00217

GO:0071426 ribonucleoprotein complex export from nucleus 0.00218

GO:0030330
DNA damage response, signal transduction by

p53 class mediator
0.00241

GO:0016575 histone deacetylation 0.00308
GO:0006337 nucleosome disassembly 0.00361
GO:2000773 negative regulation of cellular senescence 0.00361

GO:0000289
nuclear-transcribed mRNA poly(A) tail short-

ening
0.00412

GO:0080182 histone H3-K4 trimethylation 0.0044

GO:0016447
somatic recombination of immunoglobulin gene

segments
0.00476

GO:0032233
positive regulation of actin filament bundle as-

sembly
0.00793

GO:0006977
DNA damage response, signal transduction by

p53 class mediator resulting in cell cycle arrest
0.00842

GO:0050872 white fat cell di�erentiation 0.01
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GO term ID GO term name Enrichment p-value
GO:0045023 G0 to G1 transition 0.0167

GO:0060338
regulation of type I interferon-mediated signal-

ing pathway
0.0182

GO:0090500 endocardial cushion to mesenchymal transition 0.0194

GO:0051315
attachment of mitotic spindle microtubules to

kinetochore
0.0212

GO:0010948 negative regulation of cell cycle process 0.0346

GO:0072655
establishment of protein localization to mito-

chondrion
0.0361

GO:0031647 regulation of protein stability 0.0396

GO:1902177
positive regulation of oxidative stress-induced

intrinsic apoptotic signaling pathway
0.0469

GO:0070345 negative regulation of fat cell proliferation 0.0469

Table E.2 GO term enrichment poly(I:C) response gene modules

GO term ID GO term name Enrichment p-value
Canonical Type I IFN

GO:0045087 innate immune response 4.73e-41
GO:0051607 defense response to virus 5.82e-33
GO:0019221 cytokine-mediated signaling pathway 8.24e-27
GO:0032479 regulation of type I interferon production 6.38e-17
GO:0012501 programmed cell death 1.1e-12

GO:0051092
positive regulation of NF-kappaB transcription

factor activity
8.8e-11

GO:0042127 regulation of cell proliferation 6.1e-05
GO:1903463 regulation of mitotic cell cycle DNA replication 0.000226

GO:0042270
protection from natural killer cell mediated cy-

totoxicity
0.000226

GO:0070383 DNA cytosine deamination 0.00155

GO:0045869

negative regulation of single stranded viral RNA

replication via double stranded DNA interme-

diate

0.00274

GO:0031087
deadenylation-independent decapping of

nuclear-transcribed mRNA
0.00274
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GO term ID GO term name Enrichment p-value
GO:0001568 blood vessel development 0.0035
GO:0061180 mammary gland epithelium development 0.00398
GO:0001525 angiogenesis 0.00479
GO:0016553 base conversion or substitution editing 0.00888

GO:0070423
nucleotide-binding oligomerization domain con-

taining signaling pathway
0.00947

GO:0007569 cell aging 0.00965
GO:0030218 erythrocyte di�erentiation 0.0101
GO:0097343 ripoptosome assembly 0.0144

GO:2000045
regulation of G1/S transition of mitotic cell

cycle
0.0179

GO:0007159 leukocyte cell-cell adhesion 0.0201
GO:0010594 regulation of endothelial cell migration 0.0201
GO:0046208 spermine catabolic process 0.0243
GO:1904798 positive regulation of core promoter binding 0.0243
GO:0035282 segmentation 0.0253
GO:0010528 regulation of transposition 0.0258

GO:0032088
negative regulation of NF-kappaB transcription

factor activity
0.0294

GO:0034356
NAD biosynthesis via nicotinamide riboside sal-

vage pathway
0.03

GO:0032495 response to muramyl dipeptide 0.0349
GO:0014732 skeletal muscle atrophy 0.0349
GO:0042359 vitamin D metabolic process 0.0349

GO:0140052
cellular response to oxidised low-density lipopro-

tein particle stimulus
0.0349

GO:0002730 regulation of dendritic cell cytokine production 0.0349
GO:0048289 isotype switching to IgE isotypes 0.0349

GO:0010667
negative regulation of cardiac muscle cell apop-

totic process
0.0397

GO:0046135 pyrimidine nucleoside catabolic process 0.0397

GO:0006977
DNA damage response, signal transduction by

p53 class mediator resulting in cell cycle arrest
0.0417

GO:0022612 gland morphogenesis 0.0466
GO:0010966 regulation of phosphate transport 0.0467
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GO term ID GO term name Enrichment p-value

GO:1990668
vesicle fusion with endoplasmic reticulum-Golgi

intermediate compartment (ERGIC) membrane
0.0467

GO:0032436
positive regulation of proteasomal ubiquitin-

dependent protein catabolic process
0.0482

Mitochondrial

GO:0006119 oxidative phosphorylation 3.38e-15
GO:0022904 respiratory electron transport chain 2.84e-14

GO:0032981
mitochondrial respiratory chain complex I as-

sembly
1.06e-08

GO:1902600 proton transmembrane transport 5.77e-07
GO:0046597 negative regulation of viral entry into host cell 0.00232
GO:0006979 response to oxidative stress 0.00263
GO:0055093 response to hyperoxia 0.0029
GO:0000028 ribosomal small subunit assembly 0.00348

GO:0006614
SRP-dependent cotranslational protein target-

ing to membrane
0.00348

GO:0035455 response to interferon-alpha 0.00348
GO:0035456 response to interferon-beta 0.00494
GO:0046688 response to copper ion 0.0054
GO:0046677 response to antibiotic 0.00578

GO:0000184
nuclear-transcribed mRNA catabolic process,

nonsense-mediated decay
0.00578

GO:0042493 response to drug 0.00694
GO:0042407 cristae formation 0.00727
GO:0035094 response to nicotine 0.00761
GO:0045071 negative regulation of viral genome replication 0.0134

GO:0010729
positive regulation of hydrogen peroxide biosyn-

thetic process
0.0168

GO:0006413 translational initiation 0.0181
GO:0071357 cellular response to type I interferon 0.0261
GO:0010035 response to inorganic substance 0.0261

GO:0072513
positive regulation of secondary heart field car-

dioblast proliferation
0.0283

GO:0021549 cerebellum development 0.0306
GO:0007568 aging 0.0316
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GO term ID GO term name Enrichment p-value
GO:0002181 cytoplasmic translation 0.0377
GO:0042538 hyperosmotic salinity response 0.0388
GO:0010940 positive regulation of necrotic cell death 0.0388
GO:0048318 axial mesoderm development 0.0439
GO:0046689 response to mercury ion 0.0439

Signal transduction

No significant gene sets
Organelle localisation

GO:0006996 organelle organization 7.97e-06
GO:0051649 establishment of localization in cell 3.28e-05
GO:0090066 regulation of anatomical structure size 0.00111
GO:0007165 signal transduction 0.00111
GO:0006464 cellular protein modification process 0.00111
GO:0042060 wound healing 0.00111
GO:0036211 protein modification process 0.00111
GO:0016032 viral process 0.00123
GO:0016477 cell migration 0.00123
GO:0009057 macromolecule catabolic process 0.00615
GO:0070936 protein K48-linked ubiquitination 0.00664
GO:0006793 phosphorus metabolic process 0.0076
GO:0070534 protein K63-linked ubiquitination 0.0145
GO:1901660 calcium ion export 0.0146
GO:0044265 cellular macromolecule catabolic process 0.0146

GO:0007167
enzyme linked receptor protein signaling path-

way
0.0147

GO:0007049 cell cycle 0.0175

GO:1902309
negative regulation of peptidyl-serine dephos-

phorylation
0.0185

GO:0090435 protein localization to nuclear envelope 0.0186

GO:1990314
cellular response to insulin-like growth factor

stimulus
0.0186

GO:0031329 regulation of cellular catabolic process 0.0238

GO:0010769
regulation of cell morphogenesis involved in dif-

ferentiation
0.026

GO:0061037 negative regulation of cartilage development 0.0262
GO:0030900 forebrain development 0.0262
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GO term ID GO term name Enrichment p-value
GO:0007599 hemostasis 0.0291

GO:1903984
positive regulation of TRAIL-activated apop-

totic signaling pathway
0.0363

GO:0060978
angiogenesis involved in coronary vascular mor-

phogenesis
0.0363

GO:0097350 neutrophil clearance 0.0363
GO:0001655 urogenital system development 0.0369
GO:0051301 cell division 0.0374
GO:0043010 camera-type eye development 0.0381
GO:0044794 positive regulation by host of viral process 0.0423
GO:0048609 multicellular organismal reproductive process 0.0443
GO:0021543 pallium development 0.046
GO:0050765 negative regulation of phagocytosis 0.0488

Metabolic processes

GO:0006810 transport 9.37e-13

GO:0000184
nuclear-transcribed mRNA catabolic process,

nonsense-mediated decay
3.09e-08

GO:0006518 peptide metabolic process 2.12e-06
GO:0006735 NADH regeneration 2.87e-05
GO:0061621 canonical glycolysis 2.87e-05
GO:0021762 substantia nigra development 3e-05

GO:1901844
regulation of cell communication by electrical

coupling involved in cardiac conduction
0.000644

GO:0034976 response to endoplasmic reticulum stress 0.00124
GO:0036500 ATF6-mediated unfolded protein response 0.00124

GO:0075206
positive regulation by host of symbiont cAMP-

mediated signal transduction
0.00321

GO:0010524
positive regulation of calcium ion transport into

cytosol
0.00383

GO:0006094 gluconeogenesis 0.00473
GO:0048013 ephrin receptor signaling pathway 0.00473
GO:0006936 muscle contraction 0.00532

GO:0051343
positive regulation of cyclic-nucleotide phospho-

diesterase activity
0.00562

GO:0051186 cofactor metabolic process 0.00666
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GO term ID GO term name Enrichment p-value
GO:0097066 response to thyroid hormone 0.00852

GO:0060314
regulation of ryanodine-sensitive calcium-

release channel activity
0.00955

GO:0001568 blood vessel development 0.00965
GO:0044092 negative regulation of molecular function 0.0148
GO:0050790 regulation of catalytic activity 0.017
GO:0001893 maternal placenta development 0.018
GO:0097064 ncRNA export from nucleus 0.0183

GO:2001235
positive regulation of apoptotic signaling path-

way
0.0194

GO:0045792 negative regulation of cell size 0.0223
GO:0001765 membrane raft assembly 0.0223
GO:0038093 Fc receptor signaling pathway 0.0223

GO:0038096
Fc-gamma receptor signaling pathway involved

in phagocytosis
0.0225

GO:0002478
antigen processing and presentation of exoge-

nous peptide antigen
0.0228

GO:0033631 cell-cell adhesion mediated by integrin 0.0262
GO:0045214 sarcomere organization 0.0269
GO:0050999 regulation of nitric-oxide synthase activity 0.0269
GO:0018279 protein N-linked glycosylation via asparagine 0.0269
GO:0031623 receptor internalization 0.0274
GO:0042060 wound healing 0.0288
GO:0035304 regulation of protein dephosphorylation 0.0301
GO:0000910 cytokinesis 0.0306

GO:0022898
regulation of transmembrane transporter activ-

ity
0.0334

GO:0001667 ameboidal-type cell migration 0.036
GO:0031952 regulation of protein autophosphorylation 0.0383
GO:0019511 peptidyl-proline hydroxylation 0.0393
GO:0042744 hydrogen peroxide catabolic process 0.0433
GO:0022604 regulation of cell morphogenesis 0.0446
GO:0007596 blood coagulation 0.0463
GO:0034381 plasma lipoprotein particle clearance 0.0469
GO:0031639 plasminogen activation 0.0469



275

GO term ID GO term name Enrichment p-value

GO:0032516
positive regulation of phosphoprotein phos-

phatase activity
0.0469

GO:0007166 cell surface receptor signaling pathway 0.047

GO:0007178
transmembrane receptor protein ser-

ine/threonine kinase signaling pathway
0.0486

GO:0043687 post-translational protein modification 0.0489

GO:0044147
negative regulation of development of symbiont

involved in interaction with host
0.0491

GO:1905581
positive regulation of low-density lipoprotein

particle clearance
0.0491

GO:1903673 mitotic cleavage furrow formation 0.0491
GO:1904313 response to methamphetamine hydrochloride 0.0491

GO:1903609
negative regulation of inward rectifier potassium

channel activity
0.0491

GO:0002842
positive regulation of T cell mediated immune

response to tumor cell
0.0491

GO:1905152
positive regulation of voltage-gated sodium

channel activity
0.0491

GO:1904695
positive regulation of vascular smooth muscle

contraction
0.0491

GO:0071528 tRNA re-export from nucleus 0.0491

GO:1904401
cellular response to Thyroid stimulating hor-

mone
0.0491

GO:0050832 defense response to fungus 0.0491
GO:2000811 negative regulation of anoikis 0.0491
GO:0035606 peptidyl-cysteine S-trans-nitrosylation 0.0491

GO:0003081
regulation of systemic arterial blood pressure

by renin-angiotensin
0.0491

GO:0051621 regulation of norepinephrine uptake 0.0491
GO:0002368 B cell cytokine production 0.0491
GO:0060051 negative regulation of protein glycosylation 0.0491

GO:0010801
negative regulation of peptidyl-threonine phos-

phorylation
0.0491

GO:0034238 macrophage fusion 0.0491
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GO term ID GO term name Enrichment p-value
GO:2000147 positive regulation of cell motility 0.0491

GO:1905597
positive regulation of low-density lipoprotein

particle receptor binding
0.0491

GO:0001998
angiotensin-mediated vasoconstriction involved

in regulation of systemic arterial blood pressure
0.0491

GO:1900085
negative regulation of peptidyl-tyrosine au-

tophosphorylation
0.0491

Protein regulation

GO:0070972 protein localization to endoplasmic reticulum 5.21e-13
GO:0006413 translational initiation 4.39e-08

GO:0000184
nuclear-transcribed mRNA catabolic process,

nonsense-mediated decay
8.04e-08

GO:0044403 symbiont process 5.71e-05
GO:0070887 cellular response to chemical stimulus 0.000588
GO:0043687 post-translational protein modification 0.00139
GO:0097435 supramolecular fiber organization 0.00208
GO:0050821 protein stabilization 0.0028
GO:0002376 immune system process 0.00356
GO:0001666 response to hypoxia 0.00753
GO:0051897 positive regulation of protein kinase B signaling 0.00803
GO:0034309 primary alcohol biosynthetic process 0.0114
GO:0048251 elastic fiber assembly 0.017
GO:0043312 neutrophil degranulation 0.0193

GO:0017015
regulation of transforming growth factor beta

receptor signaling pathway
0.0196

GO:2000121 regulation of removal of superoxide radicals 0.0198
GO:0006089 lactate metabolic process 0.0303
GO:0048678 response to axon injury 0.0336
GO:0044409 entry into host 0.0346
GO:0018208 peptidyl-proline modification 0.0346

GO:0010608
posttranscriptional regulation of gene expres-

sion
0.0363

GO:0031333 negative regulation of protein complex assembly 0.0363

GO:1903206
negative regulation of hydrogen peroxide-

induced cell death
0.0477
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GO term ID GO term name Enrichment p-value
GO:0009651 response to salt stress 0.0477

GO:1901388
regulation of transforming growth factor beta

activation
0.0479

GO:1903189 glyoxal metabolic process 0.0479
GO:0048693 regulation of collateral sprouting of injured axon 0.0479

GO:1903200
positive regulation of L-dopa decarboxylase ac-

tivity
0.0479

GO:1903072
regulation of death-inducing signaling complex

assembly
0.0479

GO:0034120 positive regulation of erythrocyte aggregation 0.0479

GO:1901194
negative regulation of formation of translation

preinitiation complex
0.0479

GO:0045454 cell redox homeostasis 0.0479
GO:0036531 glutathione deglycation 0.0479
GO:1990478 response to ultrasound 0.0479
GO:1903195 regulation of L-dopa biosynthetic process 0.0479

GO:1902546
positive regulation of DNA N-glycosylase activ-

ity
0.0479

GO:0036529 protein deglycation, glyoxal removal 0.0479
GO:0140041 cellular detoxification of methylglyoxal 0.0479

GO:1903197
positive regulation of L-dopa biosynthetic pro-

cess
0.0479

GO:2001272

positive regulation of cysteine-type endopep-

tidase activity involved in execution phase of

apoptosis

0.0479

GO:0048689 formation of growth cone in injured axon 0.0479

GO:0018323
enzyme active site formation via L-cysteine

sulfinic acid
0.0479

GO:0018032 protein amidation 0.0479

GO:1903168
positive regulation of pyrroline-5-carboxylate

reductase activity
0.0479

GO:2000277
positive regulation of oxidative phosphorylation

uncoupler activity
0.0479

GO:0106046 guanine deglycation, glyoxal removal 0.0479
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GO term ID GO term name Enrichment p-value
GO:0015872 dopamine transport 0.0479
GO:2001023 regulation of response to drug 0.0479
GO:1990262 anti-Mullerian hormone signaling pathway 0.0479
GO:1905578 regulation of ERBB3 signaling pathway 0.0479

GO:1903122
negative regulation of TRAIL-activated apop-

totic signaling pathway
0.0479

GO:0032535 regulation of cellular component size 0.0479

GO:1903659
regulation of complement-dependent cytotoxic-

ity
0.0479

GO:1903176 regulation of tyrosine 3-monooxygenase activity 0.0479
GO:1905572 ganglioside GM1 transport to membrane 0.0479
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Fig. E.1 Modules of co-expressed innate immune response genes using WGCNA. a)
The SwitchDE package [97] was used to infer a dynamic model of expression for each
gene. b) WGCNA was applied to detect modules of co-expressed genes. The 500
most significant up- and down- regulated genes in each response pathway were used;
dendrogram and inferred clusters are shown. Dynamic tree cutting approach was used
to determine the optimum number of gene clusters. c) The expression of these genes
over ’IFN pathway’, left, and ’poly(I:C) pathway’, right, are shown. Expression values
are scaled within each row, and WGCNA cluster assignment is shown in the left-side
colour bar.




	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Human genetic variation
	1.1.1 The basis of genetic variation
	1.1.2 Approaches for studying human genetic variation

	1.2 Single cell RNA sequencing
	1.2.1 Evolution of single cell RNA sequencing technologies
	1.2.2 Analysis of scRNA-sequencing data

	1.3 The human innate immune system
	1.3.1 The type I interferon response
	1.3.2 Cell-to-cell heterogeneity in innate immunity
	1.3.3 Genetic variability in the innate immune response

	1.4 Using single-cell RNA sequencing data to study genetic variation in the innate immune response

	2 Establishing a system for studying innate immune responses in human fibroblasts
	2.1 Defining optimal stimulation conditions
	2.1.1 Stimulation with Poly(I:C)
	2.1.2 Stimulation with interferons
	2.1.3 Innate immunity vs. apoptotic genes across conditions

	2.2 Large-scale stimulation experiments
	2.2.1 Expansion of lines
	2.2.2 Stimulation experiments

	2.3 Data processing
	2.4 Additional datasets
	2.4.1 Primary skin data
	2.4.2 Cross-mammalian data


	3 Heterogeneity in primary human fibroblasts
	3.1 Introduction
	3.2 A comparison of in vitro and ex vivo fibroblasts
	3.3 Transcriptional heterogeneity in the unstimulated state
	3.3.1 An overview of the scRNA-seq dataset
	3.3.2 Clustering analysis of unstimulated fibroblasts

	3.4 Identifying common variants and somatic mutations in scRNA-seq data
	3.4.1 Cardelino: a method for assigning cells to clones using scRNA-seq data
	3.4.2 Mutational analysis of in vitro fibroblasts
	3.4.3 Transcriptional analysis of in vitro fibroblasts

	3.5 Discussion

	4 Cell-to-cell variability in the innate immune response
	4.1 Introduction
	4.2 Innate immune variability: a cross-mammalian study
	4.2.1 Transcriptional divergence in immune response
	4.2.2 Cell-to-cell variability in immune response
	4.2.3 Transcriptional divergence and variability of cytokines

	4.3 Characterising the Type I interferon response in human fibroblasts
	4.3.1 Single-cell RNA-sequencing data
	4.3.2 The temporal dynamics of the response
	4.3.3 Defining gene modules in the innate immune response

	4.4 Discussion

	5 Inter-individual variability in the innate immune response
	5.1 Introduction
	5.2 Variance partitioning of gene expression
	5.3 eQTL analysis on bulk RNA-seq data
	5.4 QTL analysis on single cell phenotypes
	5.4.1 Mean expression
	5.4.2 Other response phenotypes

	5.5 Characterisation of QTL innate immune genes
	5.6 Discussion

	6 Concluding remarks
	References
	Appendix A Overview of HipSci fibroblast lines
	Appendix B Heterogeneity in primary human fibroblasts
	Appendix C Manuscript: Cardelino: Integrating whole exomes and single-cell transcriptomes to reveal phenotypic impact of somatic variants
	Appendix D Manuscript: Gene expression variability across cells and species shapes innate immunity
	Appendix E Innate immune response modules

