

Geology and Economics of Strategic and Critical Minerals

Commodities—other

Virginia T. McLemore

ASSIGNMENT

- Lemitar field trip April 9 (Thurs, 1 PM)
- Cripple Creek April 10-11
- April 13—each will lead discussion on a paper, final given out
- April 20—no class
- April 24—NMGS Spring Meeting, Macy Center
- April 27, project presentations (written and oral)
- May 7, final exam, field trip reports, and written presentation due

Midterms

- An **ore deposit** is a well-defined mineral deposit that has been tested and found to be of sufficient size, grade, and accessibility to be extracted (i.e. mined) and processed at a profit at a specific **time**.
- Be is critical to national defense

Complexities of the stock market—Au

- Price of Au in April 2012 \$1642, April 2015 \$1202 (drop of 27%)
- Mining companies on the Toronto Venture and Toronto Stock Exchange 1716 in April 2012 to 1471 Feb 2015 (drop of 13%)
- 589 junior companies have negative working capital (40%)
- 7 major gold miners were not profitable from 2003-2013 despite a gold price that escalated over 250% (Cipher Research)

- German chemist Clemens Winkler in 1886 in the silver sulfide mineral argyrodite from Freiberg, Saxony, Germany
- greyish-white, metallic in appearance, and metallic
- Atomic number 32
- Main source is sphalerite

Germanium distribu Material	Ge [ppm]	d in major rock types Reference		
	(mean)			
Earth	13.8	Dasch (1996)		
Earth's core	37	Dasch (1996)		
Primitive mantle	1.1	Dasch (1996)		
Oceanic crust	1.5	Taylor and McLennan (1985)		
Continental crust	1.6	Taylor and McLennan (1985)		
Ultramafic rocks	1.3	Faure (1998)		
Mafic rocks	1.4	Faure (1998)		
Granite	1.3	Faure (1998)		
Shale	1.6	Faure (1998)		
Sandstone	0.8	Faure (1998)		
Carbonate rocks	0.2	Faure (1998)		
Deep-sea clay	2.0	Faure (1998)		

R. Höll et al. / Ore Geology Reviews 30 (2007) 145-180

Germanium—uses

- 35%: Polymerisation catalysts (plastics)
- 25%: Infrared optics
- 20%: Fiber-optic systems
- 12%: Electronics/solar electrical applications
- 8%: Other uses (e.g., phosphors (in fluorescent lamps), metallurgy and chemotherapy (toxic effects against certain microorganisms)

Germanium—production

Salient Statistics—United States:	2010	2011	2012	2013	<u>2014</u> °
Production, refinery*	3,000	3,000	W	W	W
Total imports	44,700	38,500	48,500	45,700	45,000
Total exports ¹	8,000	5,900	15,300	12,500	11,000
Shipments from Government stockpile excesses		_	_	_	
Consumption, estimated	40,000	36,000	38,000	38,000	35,000
Price, producer, yearend, dollars per kilogram:					-
Zone refined	1,200	1,450	1,640	1,900	1,900
Dioxide, electronic grade	720	1,250	1,360	1,230	1,300
Stocks, producer, yearend	NA	NA	NA	NA	NA.
Net import reliance ² as a percentage of					
estimated consumption	90	90	85	85	95
-					

World Refinery Production and Reserves:

	Refinery	production*	Reserves
	2013	2014	
United States	W	W	Data on the recoverable content of zinc
China	110,000	120,000	ores are not available.
Russia	5,000	5,000	
Other countries	40,000	40,000	
World total	*155,000	^e 165,000	

http://minerals.usgs.gov/minerals/pubs/mcs/2015/mcs2015.pdf

Germanium—growth

- thin-film application for solar panels
- digital video discs
- SiGe chips
- Ge-based semiconductors
- other electronic devices

SUMMARY OF GERMANIUM PROCESSING FACILITIES

Facility Name	Location	Type of Operations
Atomergic Chem	Plainview, NY	Refining
Cabot	Revere, PA	Refining
Eagle-Picher	Quapaw, OK	Refining
Jersey Miniere	Clarksville, TN	Mining
Musto Exploration	St. George, UT	Mining and Refining

http://www.epa.gov/osw/nonhaz/industrial/special/mining/mine dock/id/id4-ger.pdf

Table 4

Germanium concentrations in minerals from pegmatites, greisens and skarns

R. Höll et al. / Ore
Geology Reviews
30 (2007) 145–180
30(2007)143-100

Germanium

Host mineral	Rock types	Ge [ppm]	n	Ref.
Topaz	Pegmatite, greisen	29–700	32	Oftedal (1963), Schrön (1968), Seim and Schweder (1969)
Quartz	Pegmatite, greisen	0.85-7.1	9	Bernstein (1985)
Alkali feldspar	Pegmatite, greisen	2.4-7.8	26	Novokhatskiy et al. (1967)
Orthoclase	Pegmatite	2.2 - 6.0	3	Schrön (1968)
Plagioclase	Pegmatite	7.0-9.5	2	Bernstein (1985)
Muscovite	Pegmatite	16.5-62.7	4	Bernstein (1985)
Spodumene	Pegmatite	5-28	4	Novokhatskiy et al. (1967), Higazy (1953)
Lepidolite	Pegmatite	7.7–25	11	Novokhatskiy et al. (1967)
Pollucite	Pegmatite	15-18	2	Novokhatskiy et al. (1967)
Epidote	Skarn	1.1-10	21	Bernstein (1985)
Gamet	Skarn	0.9-180	271	Bernstein (1985)
Clinopyroxene	Skarn	1.1-80	67	Novokhatskiy et al. (1967)

n = number of analyses.

Table 5

Exceptional germanium concentrations in oxide and hydroxide minerals

Host mineral	Ge [ppm]	Type of mineralization	Reference
Hydrocassiterite	10,000	Porphyry and vein- stockwork Sn-Ag	Moh (1977)
Hematite	7000	Apex mine: oxidation zone	Bernstein (1985)
Goethite	5310	Apex mine: oxidation zone	Bernstein (1985)
Cassiterite	3000	Porphyry and vein- stockwork Sn-Ag	Bernstein (1985)
Magnetite	100	BIF and Lahn–Dill- type deposits	Lange (1957), Sarykin (1977)
Mn oxides and hydroxides	10	hydrothermal veins, oxidation zone	Voskresenskaya et al. (1975)

R. Höll et al. / Ore Geology Reviews 30 (2007) 145-180

Minerals

Table 2. Selected germanium minerals[Modified from Weeks (1973)]

		Germanium content
Mineral	Composition	(weight percent)
Renierite ¹	(Cu,Fe,Ge,As,Zn)S	4.6-9.2
Germanite ²	Cu11Ge(Cu,Ge,Fe,Zn,W,Mo,As,V)46S16	6.2-10.9
Argyrodite	Ag ₈ GeS ₆	6.4
Fleischerite	Pb ₃ Ge(SO ₄) ₂ (OH) ₆ •3H ₂ O	7
Itoite	Pb,Ge(SO,),O,(OH),	7.6
Schaurteite	$Ca_3Ge(SO_4)_2(OH)_6 \cdot 3H_2O$	13.4
Briartite	Cu ₂ (Fe,Zn)GeS ₄	18.5-18.9
Stottite	FeGe(OH) ₆	31.5

¹Bernstein, 1986b, p. 213

²Palache, Berman, and Frondel, 1944, p. 386; Bernstein, 1986a, p. 1686.

R. Höll et al. / Ore Geology Reviews 30 (2007) 145-180

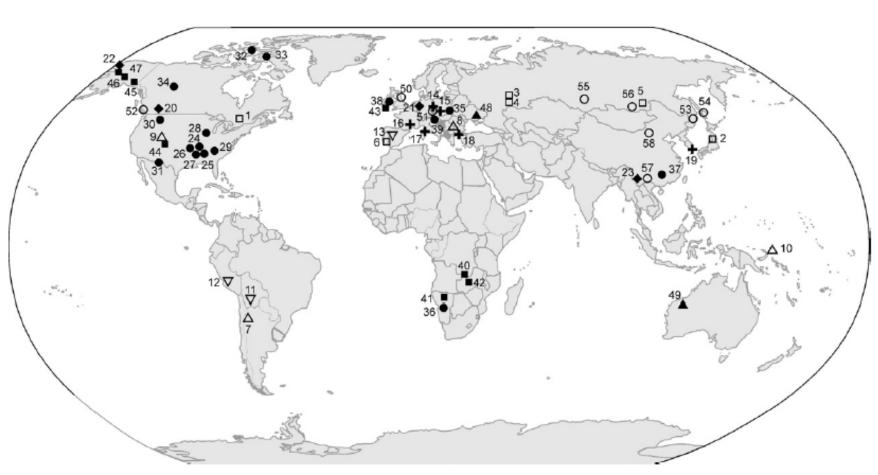


Fig. 1. Germanium-bearing ore deposits. □ Volcanic-hosted massive sulphide (VHMS) Cu–Zn(-Pb)(-Ba) deposits: 1 Abitibi–Belt: Kidd Creek, Noranda, Bousquet 2 Mine, Canada; 2 Kuroko-type (and Besshi-type) deposits, Japan; 3 Gaiskoje, Russia; 4 Bakr Tau, Russia; 5 Gorevskoe and Ozernoe. Russia: 6 Iberian Pvrite Belt: Neves Corvo. Portugal: △ Porphvrv and vein–stockwork Cu–Mo–Au deposits: 7 Capillitas. Argentina: 8 Bor.

R. Höll et al. / Ore Geology Reviews 30 (2007) 145-180

155

Germanium—types of deposits

- Volcanic-hosted massive sulfide (VHMS) Cu–Zn(–Pb)(– Ba) deposits
- Porphyry and vein–stockwork Cu–Mo–Au deposits
- Porphyry and vein–stockwork Sn–Ag deposits
- Vein-type Ag–Pb–Zn(–Cu) deposits
- Sediment-hosted massive sulfide (SHMS) Zn–Pb–Cu(–Ba) deposits
- Carbonate-hosted base metal deposits
- Mississippi Valley-type (MVT) Zn–Pb–Fe(–Cu)(–Ba)(–F) deposits
- Coal and lignite
- Fe oxide deposits

R. Höll et al. / Ore **Geology Reviews 30** (2007) 145-180

High-grade Ge concen	trations in ores	
Type of	Ge-bearing mineral phases	Ge [ppm]
mineralization		$1 \le x \le 10$
Sulphide ores		
VHMS Cu-	Sphalerite, (bornite,	100
Zn(-Pb)(-Ba)	renierite, germanite)	
(Thereof Kuroko-	Sphalerite, bornite, renierite	300
type)		
Porphyry and	CuAs-sulphides,	x*10
vein-stockw.	bornite, sphalerite,	
Cu-Mo-	(renierite, germanite)	
Au		
Porphyry and	Argyrodite, (Sn-minerals,	x*10
vein-stockw.	sphalerite)	
Sn-Ag		
Vein-type Ag-	Argyrodite, sphalerite	x*100
Pb-Zn(-Cu)		
SHMS Zn-Pb-	Sphalerite, wurtzite	x * 10
Cu(-Ba)		
MVT, IRT, APT	Sphalerite, wurtzite	x * 100
Zn-Pb		
KPT Cu-Pb-	Ge-sulphides, CuAs-sulphides,	1000
Zn-Ge	bornite, (sphalerite)	
Oxide ores		
KPT oxidation	Iron oxides, iron hydroxides,	1000
zones	sulphates, arsenates	1000
Oxidation zones	Secondary tin hydroxide,	x*10
of Sn-sulphides	tin oxide	
Non-sulphide	Iron hydroxides;	x*10
Zn_Ph	willemite_hemimombite	

- Greek (graphein): to draw/write
- for its use in pencils
- Graphite, plumbago, black lead

Graphite—introduction

• C

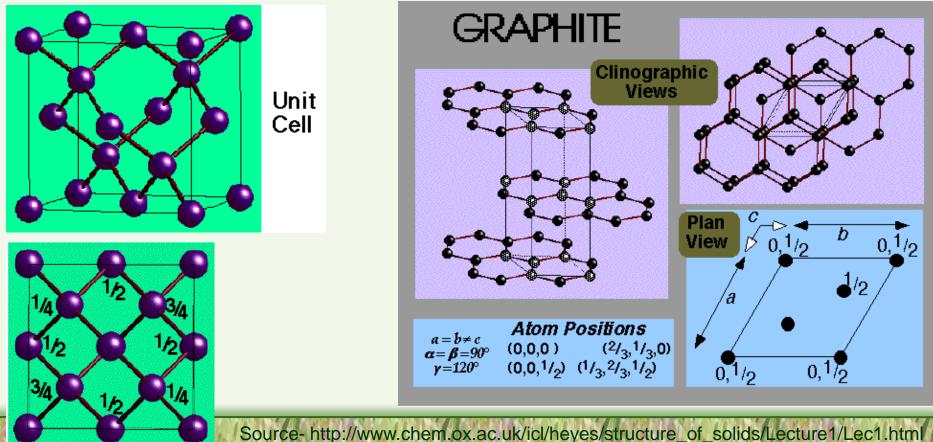
- Iron-black to steel-gray, soft (1-2 hardness)
- Confused with molybdenite, which is denser and has a silver blue streak
- Gray streak
- Luster is metallic to dull
- Cleavage is perfect in one direction

- First use of graphite: primitive man to make drawings, and by Egyptians to decorate pottery.
- Graphite processing: 1400 AD in the Haffnerzell District of Bavaria.
- Through the Middle Ages graphite was confused with galena and Molybdenite.
- First names: Plumbago (lead -silver) & black lead
- Discovered: 1565 by Gessner (recognized as a mineral), but its composition was determined in 1779 by Scheele.

Graphite—properties

- Milled, drilled and turned in a lathe to a desired shape
- Making brushes
- Conductive
- Chemically stable
- High strength
- Hardness 1-2
- Specific gravity 2.2
- Good conductor of electricity
- Lubricant

Physical Characteristics


- **Color** is dark gray, black, or black silver.
- Luster is metallic to dull.
- **Transparency** crystals are opaque
- **Crystal System** is hexagonal
- **Hardness** is 1 2
- **Specific Gravity** 2.2
- Cleavage is perfect in one direction.
- **Fracture** is flaky.
- **Streak** is black gray to brownish gray.
- Melting Point of 3,500°C.
- **Graphite** is an excellent conductor of heat and electricity.
- **Other Characteristics:** thin flakes are flexible but inelastic, mineral can leave black marks on hands and paper.

Best Field Indicators are softness, luster, density and streak.

Mineralogy

Graphite is a native element composed only of carbon. It has the same composition as diamond, however it has very different structures.

•Diamond crystallizes in the Isometric system X graphite crystallizes in the hexagonal system.

Graphite (5 cm across) from the famous Plumbago mine, Seathwaite, Borrowdale, England. John A. Jaszczak collection 15461 and photo 36-12.

http://www.phy.mtu.edu/faculty/info/jaszczak/borrowdale.html

Graphite—uses

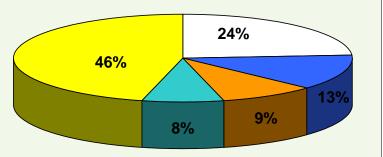
- Refractory applications 45% (brick and linings)
- Brake linings 20%
- Lubricants, 5%
- Dressings and molds in foundry operations, 5%
- Other uses 25% (batteries)

Graphite—uses

- Pebble-bed nuclear reactors
- Lithium-ion batteries
- Graphene
- Fuel cells
- Solar panels

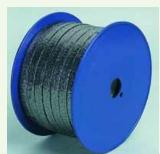
END-USES

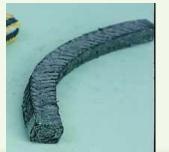
Main uses are in refractors, lubricants, brake linings, foundry molds, and electrodes (batteries). Non-traditional applications include expanded graphite and graphite foils (a thin graphite cloth).



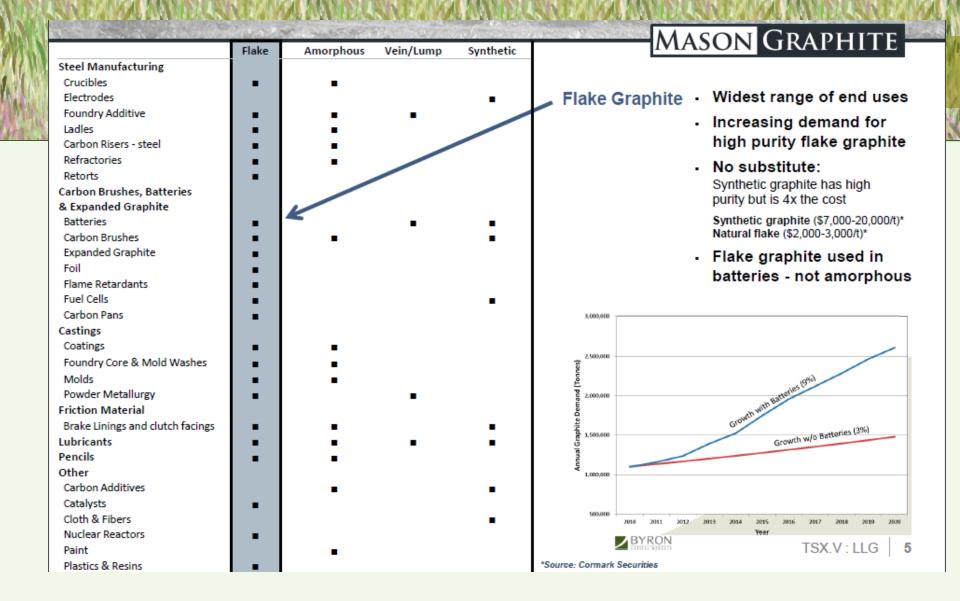
Graphite Foils

Uses of natural graphite in 2004


□ refractory applications


brake linings

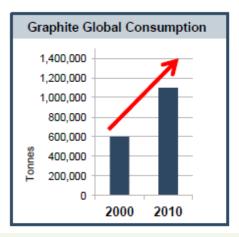
■ foundry operations


Iubricants

□ steelmaking and other uses (pencils, battery...)

Graphite Packing Expanded Graphite

MASON GRAPHITE


Restricted and Unstable Supply in China = Opportunity

- China (+70% of world production) is losing dominance over graphite market due to export tariffs and environmental regulations that reduce supply and increase prices
- China also faced with a reduction of large and medium flake production

Flake graphite production outside of China:

- Global consumption of natural graphite has doubled from 2000 to 2010
- Urbanization of China and India is driving the demand of graphite
- For the graphite used in the battery application alone, demand is expected to increase from 125,000 tons in 2010 to 320,000-640,000 tons in 2020; a growth rate of 10-18%*
- European Union declared graphite as one of 14 critical raw materials

<section-header><section-header><text>

End-Users

Typical one-year supply contracts establishing prices, specifications, volume, timing and delivery Graphite is not an openly traded mineral

MASON GRAPHITE

- Prices are negotiated between end users and producers for annual and, sometimes, multi-year contracts
- Prices for graphite vary according to different parameters such as carbon content (purity), size, impurities and shape
- Continuous contact with customers is necessary
- There is a market for 100% of mined graphite material (from large to fine flakes)
- Market Study is underway to identify all end users in all market segments

Graphite—substitutions

- Graphite powder
- Scrap from discarded machined shapes
- Calcined petroleum coke
- Molybdenum disulfide
- Finely ground coke with olivine

Graphite—production

Salient Statistics—United States:	2010	2011	2012	2013	2014°
Production, mine	_	_	_		_
Imports for consumption	65	72	57	61	62
Exports	6	6	6	9	9
Consumption, apparent ¹	60	66	50	52	53
Price, imports (average dollars per ton at foreign ports):					
Flake	720	1,180	1.370	1,330	1.540
Lump and chip (Sri Lankan)	1,700	1.820	1,960	1,720	1,890
Amorphous	257	301	339	375	364
Net import reliance ¹ as a percentage					
of apparent consumption	100	100	100	100	100

USGS Commodities Summary

Graphite—production

World Mine Production and Reserves: The reserves data for Brazil were revised based on information reported by the Government of Brazil.

	Mine pro 2013	Reserves ²	
United States	2013	<u>2014°</u>	_
Brazil	95	80	40,000
Canada	20	30	(*)
China	750	780	55,000
India	170	170	11,000
Korea, North	30	30	(*)
Madagascar	4	5	940
Mexico	7	8	3,100
Norway	2	2	Ċ
Russia	14	14	Ö
Sri Lanka	4	4	Ö
Turkey	5	30	Ö
Ukraine	6	6	Ċ
Zimbabwe	4	6	ථ
Other countries	1	1	
World total (rounded)	1,110	1,170	110,000

USGS Commodities Summary

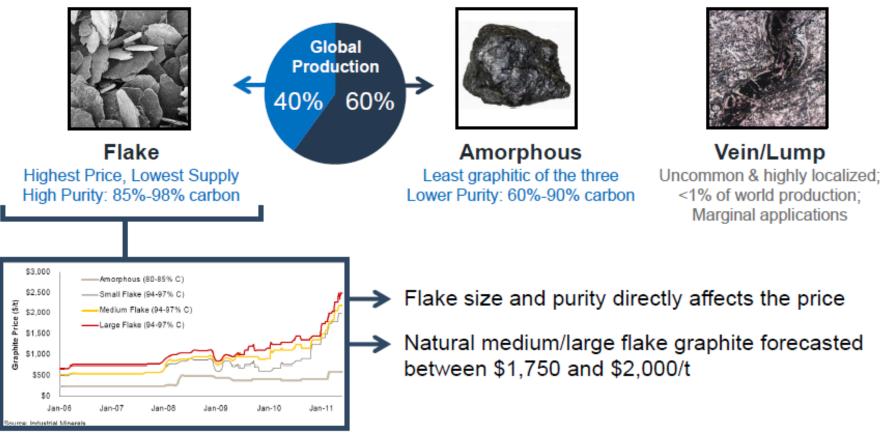
Graphite

- graphite comes in three forms: amorphous, flake and vein/lump. Amorphous graphite contains 70-75% carbon and is the most common. Flake graphite is 85-90% carbon and is used for higher value applications like batteries. Vein/lump graphite is 90-96% carbon and is most valuable because it requires the least processing.
- graphite is used in refractories used to line high-temperature equipment; pencils; lithiumion batteries – used in consumer electronics and electric vehicles; fuel cells; and Pebble Bed nuclear reactors. It is used in foundries, lubricants and brake linings. Graphite is also used to produce graphene, a tightly packed single layer of carbon atoms that can be used to make inexpensive solar panels, powerful transistors, and even a wafer-thin tablet that could be the next-generation iPad. Graphene, extremely light and strong, has been called "the world's next wonder material."
- the closure of graphite mines in China, which produces 75% of the world's graphite, has
 resulted in a fall in global graphite production to 1.3 million tonnes per annum in 2011. Like
 rare earths, China is restricting the export of graphite to protect its own domestic
 industries. The second largest producer is India, followed by Brazil, North Korea, Austria
 and Canada.
- Graphite exploration is focused in Canada, with eight companies exploring properties in Quebec and Ontario. Europe has a number of mothballed mines that could return to production.

- The United States, Europe and China have included graphite among a short list of critical metals.
- the US Geological Service estimates the graphite market to be 10 times the size of the market for rare earth elements. The graphite market is about the same size as the market for nickel. 60% of the market is amorphous graphite and 40% is flake graphite. Most of the growth is in flake graphite (see bullet point below)
- natural graphite can be processed to make synthetic graphite useful for high-value applications like lithium-ion batteries, but the process is expensive – \$10,000 to \$20,000/ton versus \$3-4,000/t for flake graphite. The result is a race to find the best flake graphite deposits.
- graphite is different from gold, silver, copper, etc because users require a specific carbon purity level. "It's security of supply that keeps you up at night," says Berry.
- 33% of the graphite market produces refractories and crucibles (used in foundries); only 5% is for batteries. But the lithium-ion battery market is expected to grow by 25% a year.
- Three of the largest lithium-ion battery makers in the world, GS Yuasa Corp, LG Chem and Liotech, a consortium between Russia and China, are building the largest lithium-ion battery plant in the world, in Russia. "Just these three heavy hitters in the battery space are making multi-million dollar bets on the future of lithium-ion technology, which cannot push forward without graphite," says Berry.
- future uses of graphite could include vanadium-redox batteries and hydrogen fuel cells.
 Graphite could also potentially replace silicon in microchips and silver used in solar panels.
- by 2020 world consumption of graphite will be 1.9m tonnes, which does not include graphite needed for batteries, fuel cells and Pebble Bed nuclear reactors.
- China will require 400,000 tonnes of large flake graphite for Pebble Bed nuclear reactors and lithium-ion batteries will require 327,000 tonnes. The current supply of large flake graphite is 400,000t, so there will be a need to double the supply of large flake graphite used in batteries and nuclear reactors in the next eight years. "The takeaway is if you buy into the electrification thesis, and I'm halfway right, demand should easily outstrip supply," says Berry.

Graphite—geology

Types of Natural Graphite :


Disseminated flake

Crystalline vein (lump or high crystalline graphite)

Amorphous

Associated Minerals include quartz, calcite, micas, iron meteorites, and tourmalines.

Graphite is not a homogenous commodity; it occurs naturally in 3 forms:

As at Aug 9, 2012 - Amorphous: \$600-800, Medium Flake: \$1,600-1,900, Large Flake: \$1,800-2,200

Graphite—geology

- Disseminated in metamorphosed, silica-rich sedimentary rocks
- Flake graphite disseminated in marble
- Metamorphic coal or carbon-rich sediments
- Veins filling fractures, fissures, and cavities
- Contact metamorphic deposits in sedimentary rocks

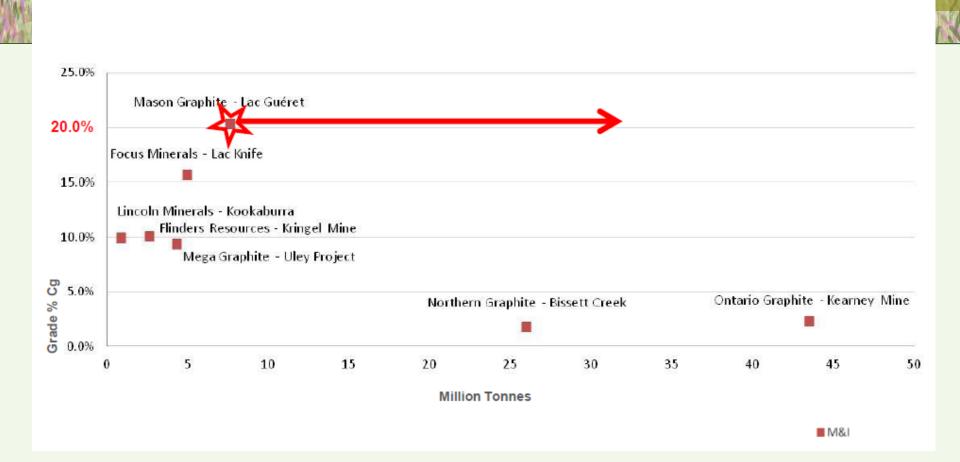
Geology

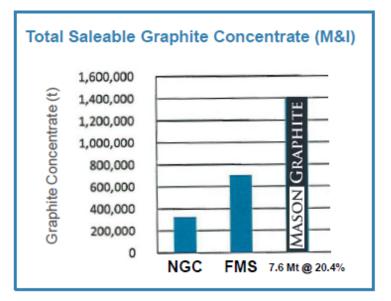
Flake graphite:

- is found in metamorphic rocks uniformly distributed through the ore body or in concentrated lens shaped pockets.
- Graphite flake occurs as a scaly or lamella form in certain metamorphic rocks such as limestone, gneisses and schists.
- Carbon concentrations vary between 5% and 40%.
- Flake graphite occurs in most parts of the world. Notable deposits are Canada, Brazil, Madagascar, Australia, USA(Texas-1980, Alabama &Pennsylvania-1960's), Germany
- Flake: marble, gneiss, and schist (most common rock types)

Table 4. Sample assay results

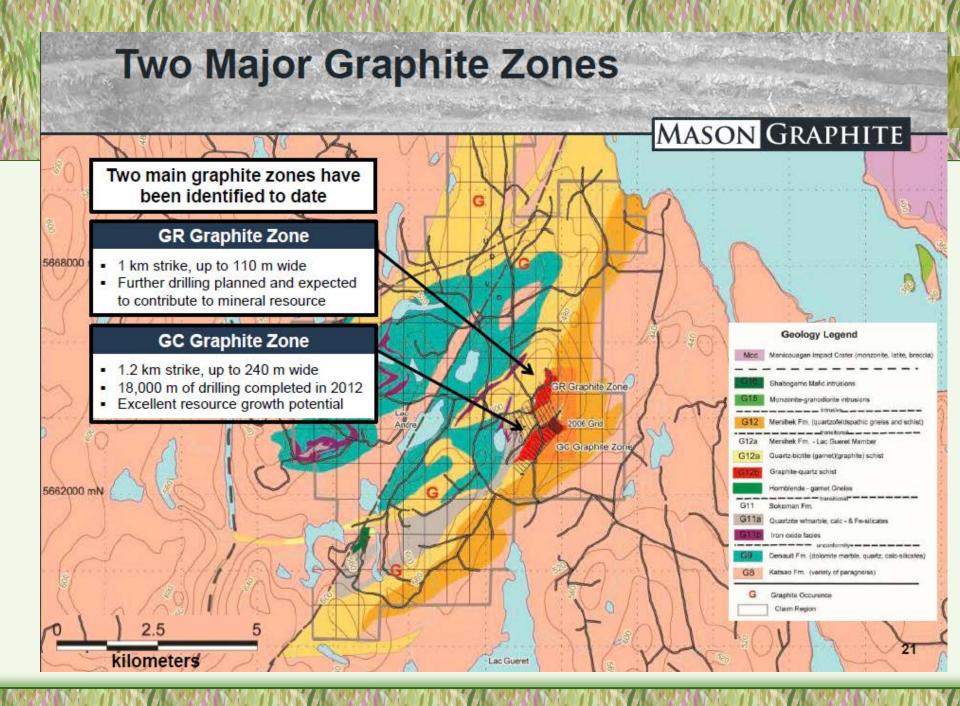
Size	Kilograms of Flake per Ton of Ore
+50 mesh	3.0-7.0
-50 +100 mesh	3.5-19.0
-100 mesh	4.0-35.0
Total flake	17.5-~65.0


Source -http://www.alibaba.com/catalog/10876290/Natural_Flake_Graphite.html



ALT ALCO Y

MASON GRAPHITE


MASON GRAPHITE

Company	Market Cap (Mar 1, 2013)	Flagship Project location	M&I (Mt)	M&I Grade (%Cg)	Inferred (Mt)	Inferred Grade (%Cg)
Northern Graphite Corp. (NGC)	\$49.8M	Ont., CA	18.97	1.81%	55.04	1.57
Focus Graphite Inc. (FMS)	\$73.7M	Qc., CA	4.94	15.76%	3.00	15.58
Flinders Resources Ltd. (FDR)	\$30.7M	Sweden	2.6	10.5%	6.93	8.82
Mason Graphite (LLG)	\$43.6M	Qc., CA	7.59	20.40%	2.8	17.29

Definition drilling on Mason Graphite's Lac Guéret Project is expected to quickly and largely surpass the quantity and quality of comparable projects

TSX.V:LLG 20

Geology

Crystalline vein graphite:

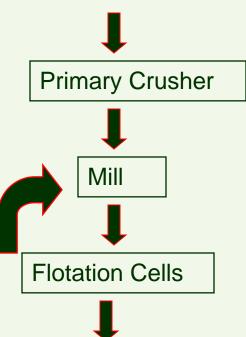
- is believed to originate from crude oil deposits that through time, temperature and pressure have converted to graphite.
- Vein graphite is found along the intrusive contacts of pegmatites with limestone.
- The vein fissures are typically between 1cm and 1 m thick, and are normally > 90% pure.
- Although this form of graphite is found all over the world, it is only commercially mined in Sri Lanka (hand cobbing).

Geology

Amorphous graphite:

- Amorphous graphite is found as minute particles in beds of mesomorphic rocks such as coal, slate or shale deposits.
- The graphite content ranges from 25% to 85% dependent on the geological conditions.
- Most of the amorphous deposits with economic importance are formed by metamorphism of coal or carbon rich sediments.
- Notable occurrences are in Mexico, North Korea, South Korea and Austria.

Source - http://kuroko.mus.akita-u.ac.jp/sampimag/11767e.htm


Artificial Graphite

- Synthetic graphite can be produced from coke and pitch.
- Synthetic Graphite consists mainly of graphitic carbon that has been obtained by graphitisation, heat treatment of non-graphitic carbon, or by chemical vapour deposition from hydrocarbons at temperatures above 2100K.
- Synthetic Graphite tends to be of higher purity though not as crystalline as natural graphite.
- On the whole, synthetic graphite tends to be of a lower density, higher porosity and higher electrical resistance.
- Its increased porosity makes it unsuitable for refractory applications.

Mining Method

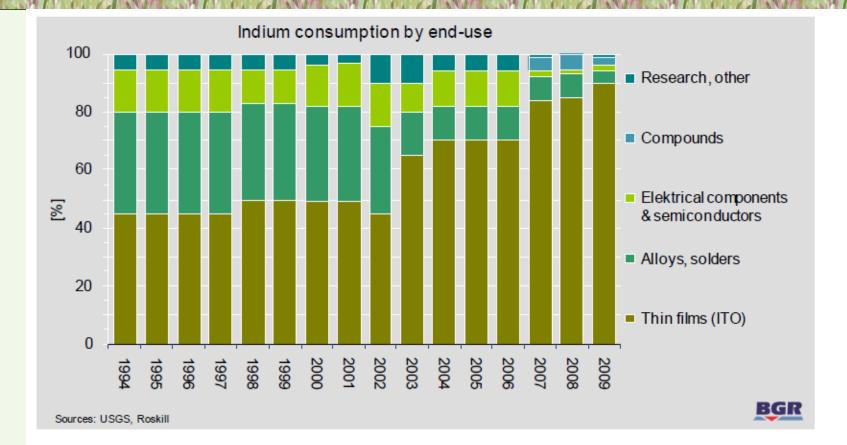
Dryers

Graphite is commonly extracted through open-pit methods. In some cases, it has been extracted through underground mining (vein deposits in Sri Lanka).

Mining - Graphite ore is extracted with the use of shovels & bulldozers that load dump trucks with the crude ore.

Mechanical concentration - The ore is crushed by a primary crusher and then submitted to a series of roll crushers and classifiers to remove the oversizes and gangue. Flotation is used for the mechanical separation of the graphite from impurities present in the ore. The cycle mill-flotation is repeated until a grade between 87 -96% of carbon is reached.

Chemical concentration - Concentration with the use of chemical agents is used to remove impurities that remain in the graphite after the mechanical concentration process. Some firms make high purity graphite (98% - 99% carbon) by leaching concentrate with strong acids or alkalis.



Indium

• In

- 0.05 ppm crust
- 0.072 ppm oceanic crust
- Silver-white, malleable, ductile metal
- High plastic properties even at freezing
- coat glass, forming a mirror surface with equally good reflective properties and more corrosion resistance than silver

Indium for photovoltaic application particularly in CIS (copper-indium-selenide) thin-film solar cells is a relatively new application with strong growth potential.

Indium

- Solar panels
- Flat screens (LCDs)
- Solders and alloys
- Semiconductors

Indium is used to make flat panel displays.

Indium in solar panels

- 50 metric tons required for enough solar panels to provide 1 gigawatt of energy
- \$500/kg in 2009
- 2008—US used 800 megawatts of energy by solar panels connected to the grid (0.1% total US energy)
- 600,000 metric tons reserves in the world in 2009
 - Zinc sulfide deposits
 - Tin-tungsten veins
 - Porphyry copper deposits

Production

Country	Mine production zinc	Mine production ore concentrate	Estimated indium content in concentrate		Share
	million t Zn content	million t Sphalerit	[ppm]	[t]	[%]
China	2.8	4.2	50	210	45.0
Peru	1.5	2.2	20	44	9.4
Canada	0.7	1.1	37	40	8.6
Australia	1.3	1.9	15	29	6.2
USA	0.7	1.0	20	21	4.5
Mexico	0.5	0.8	20	16	3.4
other	3.6	5.4	20	107	23.0
total	11.1	16.6	29	467	

Estimated indium mine production from zinc deposits in 2009 (Roskill 2010).

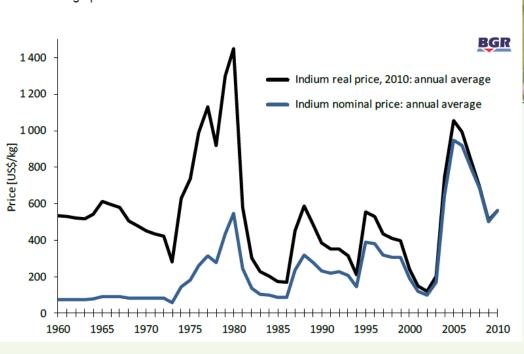
Production

Salient Statistics—United States:	2010	2011	2012	2013	2014°
Production, refinery	_		_	_	_
Imports for consumption	117	146	109	97	120
Exports	NA.	NA	NA	NA	NA
Price, annual average, dollars per kilogram:					
U.S. producer	565	720	650	615	735
New York dealer ²	552	685	540	570	695
99.99% c.i.f. Japan ³	546	680	510	575	700
Net import reliance ⁴ as a percentage of					
estimated consumption	100	100	100	100	100

World Refinery Production and Reserves:

	Refinery pro 2013	duction 2014°
United States	_	_
Belgium	30	30
Canada	65	65
China	415	420
France	33	48
Germany	10	10
Japan	72	72
Korea, Republic of	150	150
Peru	11	11
Russia	13	13
World total (rounded)	799	820

Reserves⁵


Quantitative estimates of reserves are not available.


http://minerals.usgs.gov/minerals/pubs/mcs/2015/mcs2015.pdf

Companies

Companies	Plant location	Refinery capacity [t]	Secondary capacity [t]
Nanjaing Germanium Factory	China	150	
Huludao Zinc	China	50	
Zhuzhou Smelter Group	China	?	
Dowa Metals & Mining Co.	Japan	70	150
Asahi Pretec Corp.	Japan		200
Mitsubishi Mat. Group	Japan		96
Korea Zinc	South Korea	100	100
Umicore SA	Belgium	30	
Teck Resources Ltd	Canada	~75	
Xstrata Plc.	Canada	?	
Doe Run	Peru	45	

Annual average price

Price

Mineralogy

- indit (FeIn2S4)
- roquesit (CuInS2)

Sphalerite	<5- 12,500
Chalcopyrite	<5— 9,800
Stannite	400-2100
Digenite	1100
Cassiterite	
Galena	500
Pyrite	100

http://pubs.usgs.gov/of/2005/1209/2005-1209.pdf

- Base metal deposits
 - Chalcopyrite
 - Sphalerite
 - Stannite
- Tin and tungsten vein deposits
 - Difficult to recover
- Volcanic massive sulfide deposits
- Porphyry deposits
- Skarn deposits

- Bauxite deposits
- Zinc deposits
- Black shale deposits
- Coal
- Mississippi-valley type deposits
- Pegmatites
- Sandstone-hosted base-metal deposits

Geology

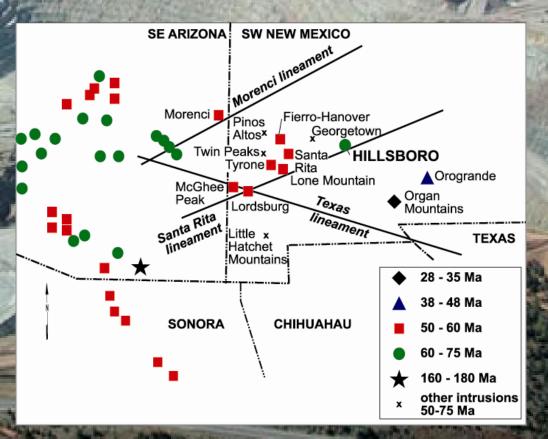
Geographic Areas Where the Highest Indium Value Equals or Exceeds 1000 ppm

Mount Pleasant, New Brunswick; Canada Bingham district, Utah; U.S.A. Central district, New Mexico; U.S.A. Central City district; Colorado; U.S.A.

Geographic Areas Where the Highest Indium Values are Between 100-1000 ppm

Cornwall; England Balmat-Edwards district, New York; U.S.A. Maine, New Hampshire, Connecticut, and Rhode Island; U.S.A. Rammelsberg mine, Germany Argentina, various areas Yugoslavia, various areas Metaline district, Washington; U.S.A. Coeur d'Alene district, Idaho; U.S.A. Pinos Alto district [incl. Cleveland mine], New Mexico; U.S.A.

http://pubs.usgs.gov/of/2005/1209/2005-1209.pdf


Porphyry copper deposits

Gold Silver Molybdenum Possible

Tellurium

Current

Conn anium

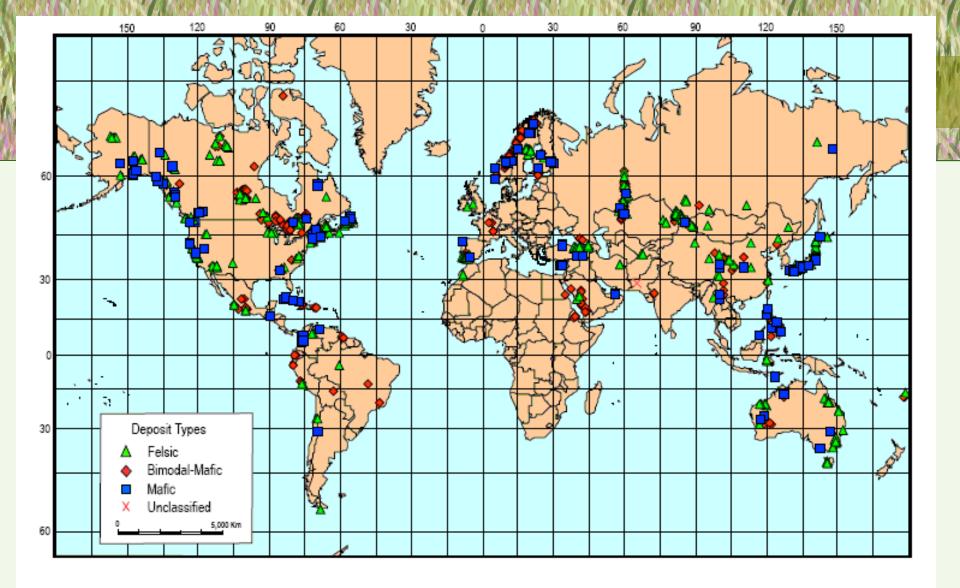


Figure 24. World map showing the distribution of volcanogenic massive sulfide deposit subtypes.

http://pubs.usgs.gov/of/2009/1034/of2009-1034_text.pdf

2006 Indium Reserve Base - Metric Tons From indium content of zinc ores

Canada	2000
China	1300
United States	600
Russia	300
Japan	150
Peru	150
Other Countries	1500
Total	6000

http://geology.com/articles/indium.shtml

Lithium—introduction

- Lightest of all metals
- lithium rich brines (lithium salt) and hard rock ore (lithium minerals)
 - mineable brines is about 0.023 to 0.15%
 - ore is about 1 4%

Lithium—properties

- silvery
- highest specific heat of any solid element, it has found use in heat transfer applications
- corrosive

Lithium—uses

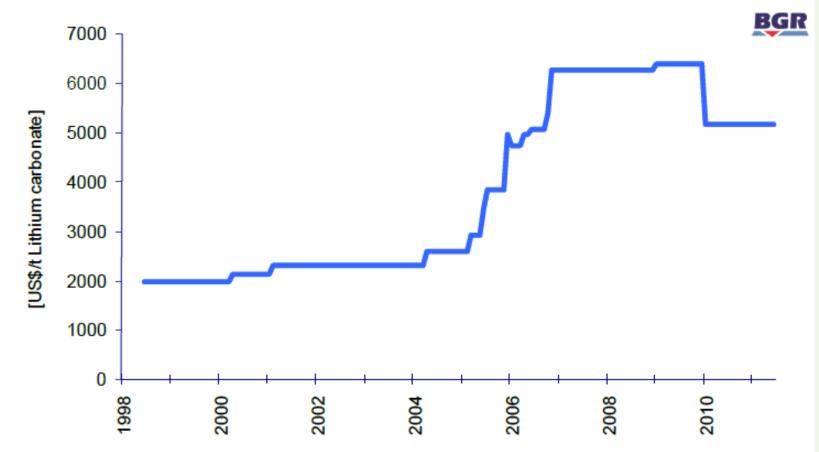
- special glasses and ceramics
- synthesis of organic compounds
- alloying agent
- battery anode material
- Lithium stearate high-temperature lubricant
- greases
- Cosmetics and skin preparations

• primary aluminum production

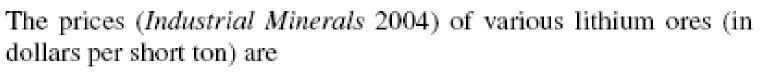
Lithium—substitutions

- sodic and potassic fluxes in ceramics and glass manufacture
- calcium and aluminum soaps as substitutes for stearates in greases
- zinc, magnesium, calcium, and mercury as anode material in primary batteries

Lithium—production

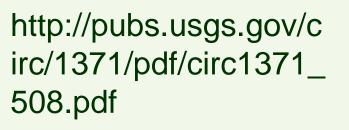

Salient Statistics—United States:	2010	2011	2012	2013 1870	<u>2014°</u>
Production	W	W	W	'870	W
Imports for consumption	1,960	2,850	2,760	2,210	2,100
Exports	1,410	1,310	1,300	1,230	1,300
Consumption:				-	
Apparent	W	W	W	w	W
Estimated	1,100	² 2,000	² 2,000	1,800	² 2,000
Price, annual average, battery-grade lithium	a	-	-	-	
carbonate, dollars per metric ton ³	5,180	5,180	6,060	6,800	6,600
Employment, mine and mill, number	70	70	70	70	70
Net import reliance ⁴ as a percentage of					
apparent consumption	>50%	>80%	>60%	>50%	>50%

World Mine Production and Reserves: The reserves estimates for Australia and Brazil have been revised based on new information from Government and industry sources.

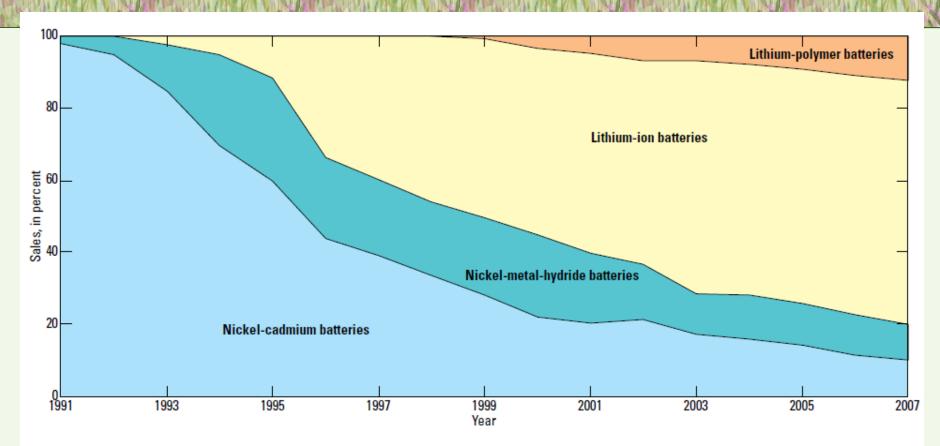

	Mine p	Reserves ⁵	
	2013	<u>2014</u> °	
United States	870	W	38,000
Argentina	2,500	2,900	850,000
Australia	12,700	13,000	1,500,000
Brazil	400	400	48,000
Chile	11,200	12,900	7,500,000
China	4,700	5,000	3,500,000
Portugal	570	570	60,000
Zimbabwe	1,000	1,000	23,000
World total (rounded)	34,000	⁶ 36,000	13,500,000

Lithium carbonate price, USA, delivered continental, large contracts

PRICES


Ceramic spodumene:	7.25% Li ₂ O	\$330 to \$350 (free on board [f.o.b.] West Virginia)
Glass-grade	5% Li ₂ O	\$195 to \$200
spodumene:		(f.o.b. Amsterdam)
Petalite:	4.2% Li ₂ O	\$165 to \$260
		(f.o.b. Durban)

Market


Table 2.World market shares for various lithium end-uses from2007 through 2009.

[World market share is expressed as a percentage (%) of the total global sales of lithium; production is in metric tons of contained lithium. Data are from Jaskula (2008–2010)]

End-use	2007	2008	2009
World market share:			
Ceramics and glass	18%	31%	30%
Batteries	25%	23%	21%
Lubricating greases	12%	10%	10%
Pharmaceuticals and polymers	7%	7%	7%
Air conditioning	6%	5%	5%
Primary aluminum (alloying)	4%	3%	3%
Other	28%	21%	24%
World production, in metric tons of contained lithium	25,400	25,400	18,000

Figure 2. Chart showing sales of rechargeable batteries worldwide from 1991 through 2007. Values are expressed as percentage of total global sales of rechargeable batteries. Data are from Wilburn (2007) and Takashita (2008).

http://pubs.usgs.gov/circ/1371/pdf/circ1371_508.pdf

Lithium—geology

- Lepidolite, spodumeme, petalite, and amblygonite
- brines of Searles Lake, California and Nevada
- pegmatites
- clay mineral hectorite (smectite), bentonite
- lacustrine/playa deposits

Table 3. World production of lithium from minerals and brine in 2008, by country.

[Values are in metric tons of contained lithium. Production data are estimated and rounded to no more than three significant digits. Table includes data available through April 1, 2009. Data are from Jaskula (2008) and Tahil (2008). LiCl, lithium chloride; Li₂CO₃, lithium carbonate; NA, not available]

Country ¹	Deposit type	Lithium product	Production
Production from minerals:			
Australia	Spodumene	Concentrate	6,280
Brazil	Various	Concentrate	160
Canada ²	Spodumene	Concentrate	690
China	Various	Li ₂ CO ₃	880
Portugal	Lepidolite	Concentrate	700
Zimbabwe	Various	Concentrate	500
Total			9,210
Production from brine:			
Argentina ³	NA	Li ₂ CO ₃	1,880
	NA	LiCl	1,290
Chile ³	NA	Li ₂ CO ₃	9,870
	NA	LiCl	720
China	NA	Li ₂ CO ₃	2,410
United States ⁴	NA	Li ₂ CO ₃	1,710
Total			17,900

¹Other countries produce small amounts of lithium but are not included here.

²Based on all Canada's spodumene concentrates (Tantalum Mining Corp. of Canada Ltd., Tanco property).

³New information was available from Argentine and Chilean sources, prompting major revisions in how lithium production was reported.

⁴The estimate for the United States is taken as the suggested production of Chemetall's Clayton Valley mine at Silver Peak, Nevada, as reported by Tahil (2008, p. 20).

Niobium and tantalum

Niobium and tantalumintroduction

- Columbium
- Nb
- found with tantalum Ta

Niobium—uses

- Carbon steels, 33%
- Superalloys, 23%
- Stainless and heat-resisting steels,18%
- High-strength low-alloy steels, 16%
- Alloy steels, 9%
- Other, 1%

Tantalum—uses

- capacitors
 - automotive electronics
 - pagers
 - personal computers
 - portable telephones
- electrical applications

TABLE 4 REPORTED CONSUMPTION, BY END USE, AND INDUSTRY STOCKS OF FERROCOLUMBIUM AND NICKEL COLUMBIUM IN THE UNITED STATES 1/

(Metric tons of contained columbium)

End use	2000	2001
Steel:		
Carbon	1,370	1,300
Stainless and heat-resisting	682	660
Full alloy	(2/)	(2/)
High-strength low-alloy	1,090	1,030
Electric	(2/)	(2/)
Tool	(2/)	(2/)
Unspecified		
Total	3,140	2,990
Superalloys	942	1,230
Alloys (excluding alloy steels and		
superalloys)	(3/)	(3/)
Miscellaneous and unspecified	10	11
Grand total	4,090	4,230
Stocks, December 31:		
Consumer	NA	NA
Producer 4/	NA	NA
Total	NA	NA

NA Not available. -- Zero.

1/ Data are rounded to no more than three significant digits; may not add to totals shown.

2/ Included with "Steel: High-strength low-alloy."

3/ Included with "Miscellaneous and unspecified."

4/ Ferrocolumbium only.

USGS Commodity Summaries

Niobium—uses (USGS OF01-348)

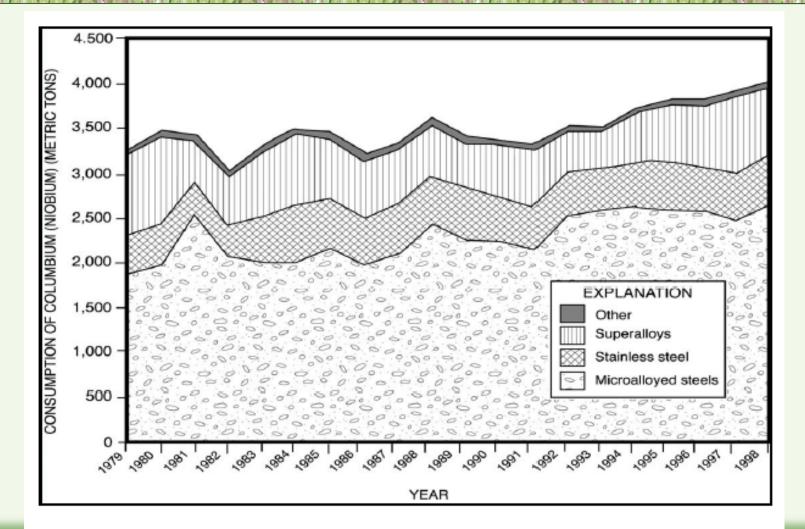


Figure 2. U.S. columbium end-use patterns, 1979-98, in metric tons contained columbium.

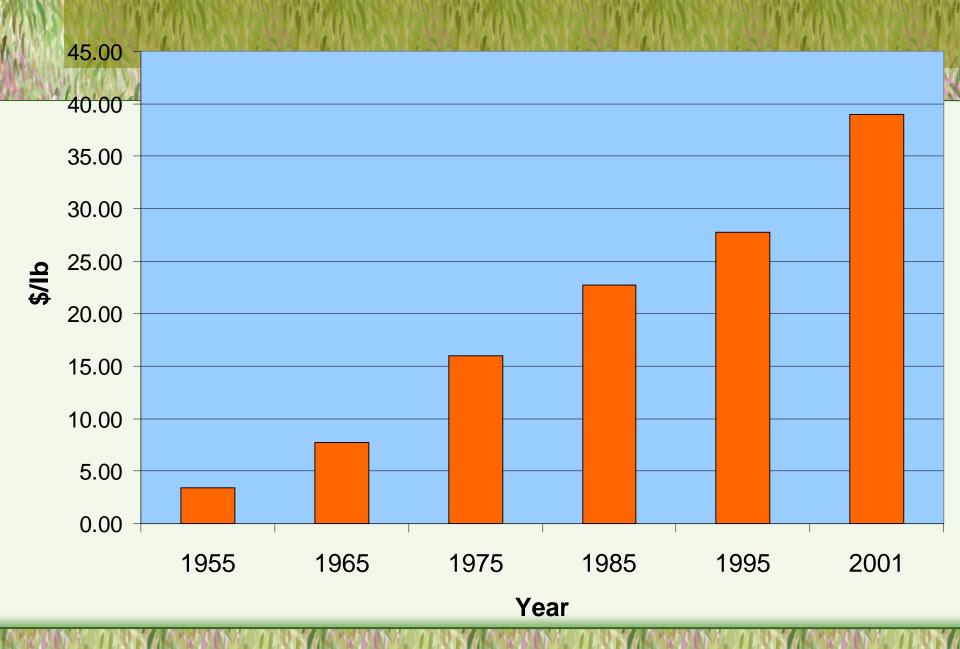
Production—niobium

Salient Statistics—United States:	2010	2011	2012	2013	2014"
Production:					
Mine					
Recycling	NA	NA	NA	NA	NA
Imports for consumption ^{®, 1} Exports ^{®, 1}	8,490	9,520	10,100	8,580	11,000
Exports ^{4,1}	281	363	385	435	1,000
Government stockpile releases ^{e, 2}				_	
Consumption:*					
Apparent_	8,210	9,160	9,730	8,140	10,000
Reported ³	5,590	9,060	7,460	7,500	8,000
Unit value, ferroniobium, dollars per metric ton ⁴	37,781	41,825	43,658	43,415	42,000
Net import reliance ^b as a percentage of		-		-	
apparent consumption	100	100	100	100	100

World Mine Production and Reserves:

	Mine pi	Mine production		
	2013	2014°		
United States	_	_	—	
Brazil	53,100	53,000	4,100,000	
Canada	5,260	5,000	200,000	
Other countries	1,000	1,000	NA	
World total (rounded)	59,400	59,000	>4,300,000	

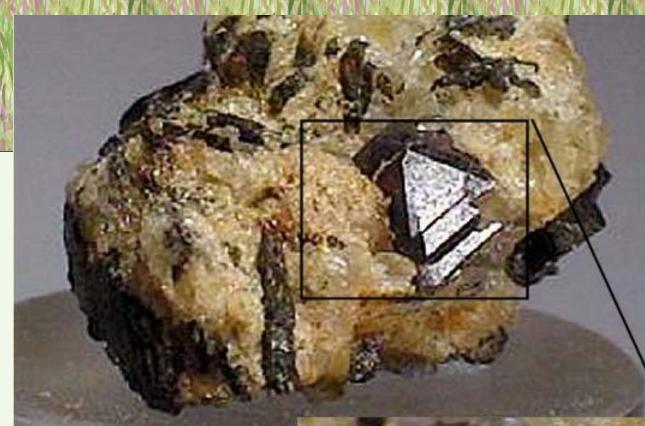
USGS Mineral Yearbooks


Production-tantalum

Salient Statistics—United States:	2010	2011	2012	2013	2014 ^e
Production:					
Mine		_	_		_
Secondary	NA.	NA	NA	NA	NA.
Imports for consumption ^{e, 1} Exports ^{e, 1}	1,600	1,850	1,010	1,100	921
	438	648	577	844	782
Government stockpile releases ^{6, 2}		_	_		_
Consumption, apparent	1,160	1,210	437	260	139
Price, tantalite, dollars per pound of Ta2O5 content ³	54	125	108	118	110
Net import reliance ⁴ as a percentage					
of apparent consumption	100	100	100	100	100

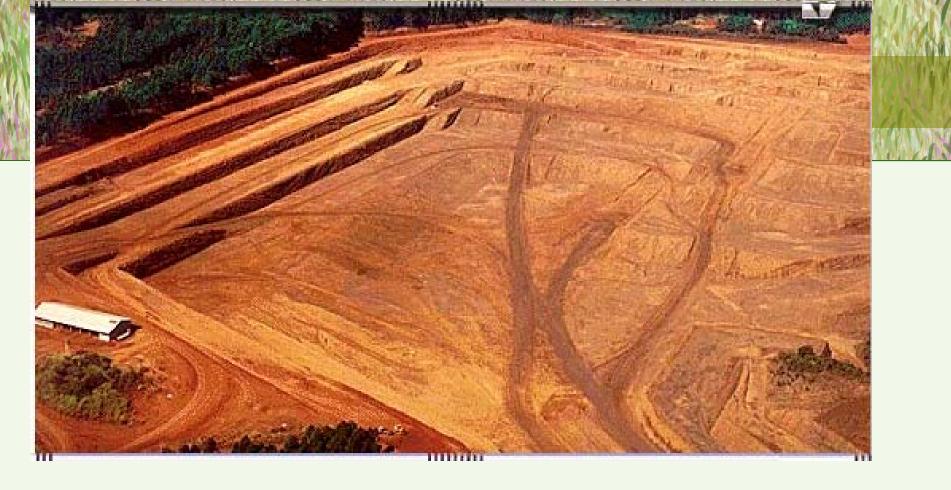
World Mine Production and Reserves:			
	Mine pro	oduction ⁷	Reserves [®]
	2013	2014	
United States	_	_	. –
Australia	_	_	² 67,000
Brazil	98	98	36,000
Burundi	20	14	NA
Canada	5	_	NA
China	60	60	NA
Congo (Kinshasa)	170	180	NA
Ethiopia	8	40	NA
Mozambique	115	85	NA
Nigeria	60	60	NA.
Rwanda	250	250	NA
World total (rounded)	786	787	>100,000

USGS Mineral Yearbooks


Tantalum Price vs. Time

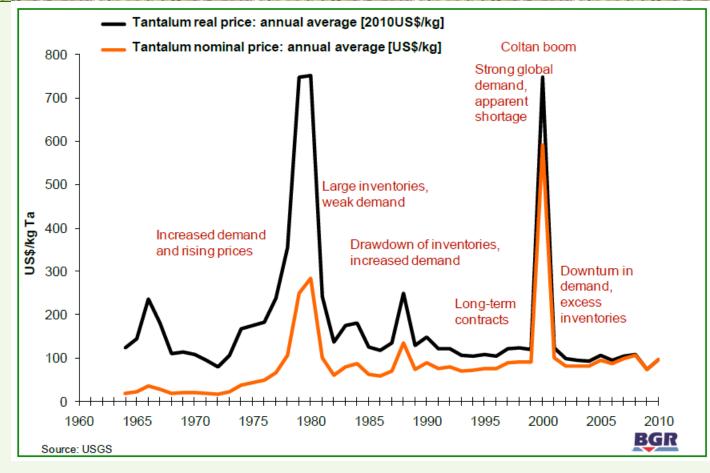
Niobium—geology

http://www.tanb.org/niobium1.html


- pyrochlore [(Ca,Na)2 Nb2(O,OH,F)⁷] in carbonatite and alkaline igneous deposits
- pegmatites (Columbite and tantalite)
- alluvial deposits
- largest deposit in Araxá, Brazil, owned by Companhia Brasileira de Metalurgia e Mineração (CBMM) (460 million tons of 3.0% Nb2O5, or 500 yrs reserves)
- Niobec mine in Quebec
- tin slags produced from the smelting of cassiterite ores

Closeup of rectangular area.

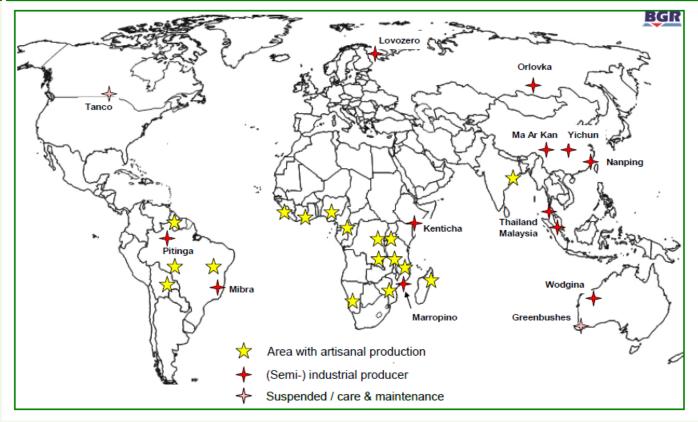
Lauzon Farm, Oka, Quebec, Canada. 3.9 x 2.9 cm. http://www.webmi neral.com/specim ens/Pyrochlore.sht ml


Companhia Brasileira de Metalurgia e Mineração (CBMM), open pit mine for Nb, Minas Gerais, Brazil

http://www.us.cbmm.com.br/english/sources/mine/operat/f_operat.htm

Tantalum

- Minerals--tantalite and columbite or niobite
- Best deposits--Granitic rare-metal pegmatites and rare-metal granites
- Grades--0.015 0.02 % Ta2O5


Tantalium—price

http://www.polinares.eu/docs/d2-1/polinares_wp2_annex2_factsheet2_v1_10.pdf

Tantalium—deposits

Global Distribution of Tantalum Producers

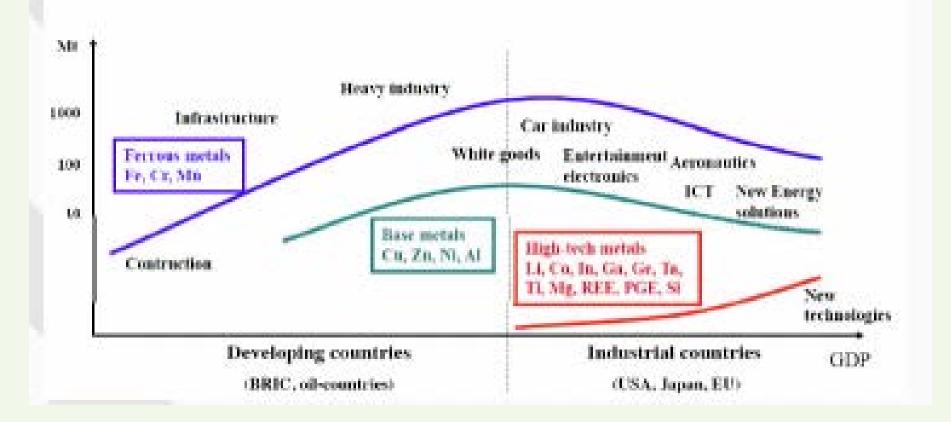
http://www.polinares.eu/docs/d2-1/polinares_wp2_annex2_factsheet2_v1_10.pdf Other critical and strategic minerals

- Chromium
- Cobalt
- Manganese
- Platinum-group metals

2014 U.S. NET IMPORT RELIANCE¹

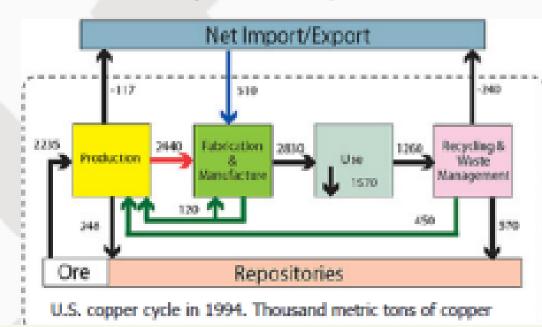
Commodity
ARSENIC
ASBESTOS
BALIXITE
CESIUM
FLUORSPAR
GRAPHITE (natural)
INDIUM
IODINE
MANGANESE
MICA, sheet (natural)
NIOBIUM (columbium)
QUARTZ CRYSTAL (industrial)
RUBIDIUM
SCANDIUM
STRONTIUM
TANTALUM
THALLIUM
THORIUM
VANADIUM
GALLIUM
GEMSTONES
GERMANIUM
BISMUTH
TITANIUM MINERAL CONCENTRATES
DIAMOND (dust grit, and powder)
PLATINUM
ANTIMONY
POTASH
GARNET (industrial)
RHENIUM
STONE (dimension)
ZINC
BARITE
SILICON CARBIDE (crude)
COBALT TIN
CHROMIUM
PALLADIUM
PEAT
SLVER
RARE EARTHS ³
NICKEL
TITANIUM (sponge)
MAGNESIUM COMPOUNDS
TUNGSTEN
SILICON
NITROGEN (fixed)-AMMONIA
ALUMINUM

Percent	Major import sources (2010-13) ²
100	Morocco, China, Belgium
100	Brazil, Canada
100	Jamaica, Brazil, Guinea, Australia
100	Canada
100	Mexico, China, South Africa, Mongola
100	China, Mexico, Canada, Brazil
100	China, Canada, Belgium, Japan
100	Chile, Japan
100	South Africa, Gabon, Australia, Georgia
100	India, China
100	Brazil, Canada
100	China, Japan, Romania, United Kingdom
100	Canada
100	China
100	Mexico, Germany, China
100	China, Germany, Kazakhstan, Russia
100	Germany, Russia
100	India, France
100	Czech Rep., Canada, Rep. of Korea, Austria
99	Germany, United Kingdom, China, Ukraine
97	Israel, India, Belgium, South Africa
95	China, Belgium, Russia, Canada
94	China, Belgium, Peru, United Kingdom
91	South Africa, Australia, Canada, Mozambique
86	China, Ireland, Rep. of Korea, Romania
85	Germany, South Africa, United Kingdom, Canada
84	China, Belgium, Mexico, Bolvia
84	Canada, Russia, Israel, Chile
83	Australia, India, China
83	Chile, Poland, United Kingdom
83	China, Brazil, Italy, Turkey
81	Canada, Mexico, Peru
79	China, India, Morocco, Mexico
77	China, South Africa, Netherlands, Romania
76	China, Norway, Russia, Finland
74	Peru, Bolivia, Indonesia, Malaysia
72	South Africa, Kazakhstan, Russia, Mexico
65	Russia, South Africa, United Kingdom, Norway Canada
64	Canada Mexico, Canada, Poland, Peru
63	China France Japan Estoria
59	China, France, Japan, Estonia Canada, Russia, Australia, Norway
54	Japan, Kazakhstan, China
51	
43	China, Brazil, Australia, Canada China, Bolivia, Canada, Germany
	Russia, Brazil, Canada, Germany
40	Trinidad and Tobago, Canada, Russia, Ukraine
36	· · · · · · · · · · · · · · · · · · ·
33	Canada, Russia, United Arab Emirates, China



U.S. Department of the Interio U.S. Geological Survey

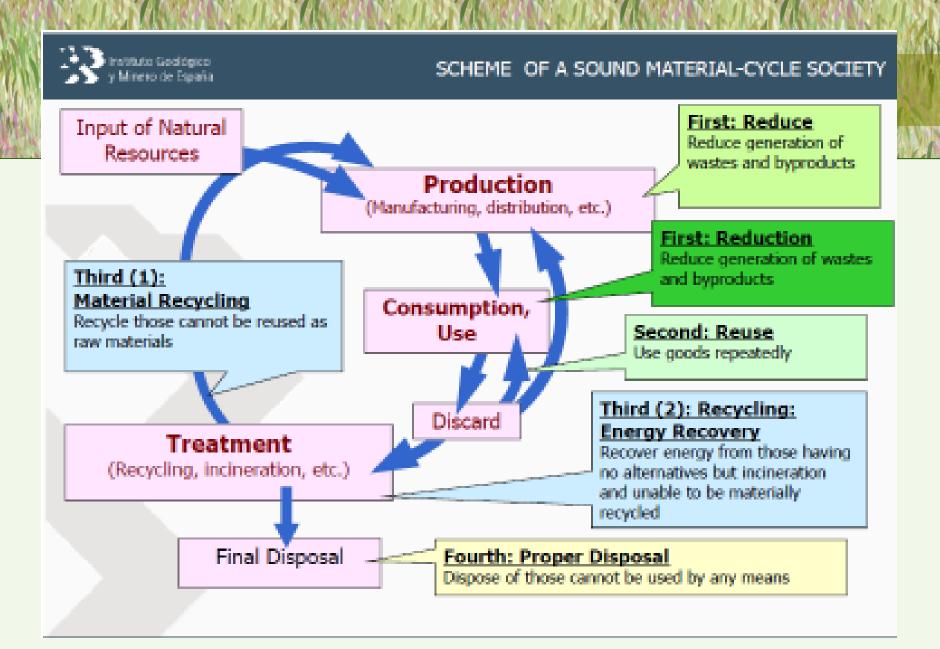
MINERAL COMMODITY SUMMARIES 2015


Ahrasives	Fluorspar	Mercury	Silver
Aluminum	Gallium	Mica	Soda Ash
Antimony	Garnet	Molybdenum	Stone
Arsenic	Gernstones	Nickel	Strontium
Asbestos	Germanium	Niobium	Sulfur
Barite	Gold	Nitrogen	Talc
Bauxite	Graphite	Peat	Tantalum
Beryllium	Gypsum	Perlite	Tellurium
Bismuth	Hafnium	Phosphate Rock	Thellium
Boron	Helium	Platinum	Thorium
Bromine	Indium	Potash	Tin
Cadmium	lodine	Pumice	Titenium
Cement	Iron and Steel	Quartz Crystal	Tungsten
Cesium	Iron Ore	Rare Earths	Vanadium
Chromium	Iron Oxide Pigments	Rhenium	Vermiculite
Clave	Kyanite	Rubidium	Wollastonite
Cobalt	Lead	Selt	Yttrium
Corper	Lime	Sand and Gravel	Zeolites
Diamond	Lithium	Scandium	Zing
Distomite	Magnesium	Selenium	Zirconium
Feldspar	Manganese	Silicon	Zircenium

Growing Demand for Earth Resources

K

- Material Flow Analysis: systematic accounting of the flows and stocks of materials within a system defined in space and time.
- Fossil fuels: consumed when burned to generate usable energy
- Nonfuel minerals: can be recycled after initial use
 - primary resources: extracted from Earth's crust
 - secondary resources: recovered from scrap



"tertiary" resources: imports of metals or metal-containing products

Red: processing of domestic copper ore Green : recycled material

Blue: imported material in semifinished or finished products 2.8 Mt used:

- 70% primary
- 16% secondary
- 13% tertiary

http://www.kotu.oulu.fi/projektit/oms/map3/Manuel_Regueiro.pdf

- Long term <u>mineral availability</u> (> 10 y) function of five factors:
 - Geologic: does the mineral resource exist
 - Technical: can we extract and process it
 - Environmental and social: can we produce it in environmentally and socially accepted ways
 - Political: how do governments influence availability through their policies and actions
 - Economic: can we produce it at a cost users are willing and able to pay
- Short- and medium-term availability (< 10 y) :
 - Significant restrictions to supply may occur: physical unavailability or higher prices.

Economics will prevail, which means metallurgists won't risk lowering major commodity (for example, Cu) recovery to improve byproduct recovery (for example, Te, In, Ge, Ga).