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Figure 1. A schematic hillslope, from the Critical Zone Observatory.

Learning objectives:

• Learn the state of the established science in how masses move down hillslopes, along-
side some of its limitations

– Gradually (soil creep: diffusive)
– Suddenly (mass wasting: advective)

• Derive the diffusion equation, which is a near-universal partial-differential equation
that applies whenever a gradient-dependent process is combined with a conservation
equation. (In this case: steeper hillslopes transport material more quickly, and volume
of mobile material is conserved.)
• Learn why many hills have rounded tops
• Learn how to use Mohr-Coulomb failure to characterize slopes for potential landslides

Important definitions (for this class segment and beyond)

• Steady: process is constant in time (all time derivatives go to 0)
• Uniform: process is constant in space (all spatial derivatives go to 0)

1. Causes for downslope soil (or mobile-material) motion

In class, we discussed the reasons for downslope soil motion (or motion of any loose, small,
mobile material), and there were many. Some ideas that we discussed (or the 2016 class came
up with), listed here with my commentary and some additional or changed items, are:

• Rainsplash
1
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• Overland flow (“sheetwash”)

• Burrowing mammals (MINNESOTA GOPHERS!)

• Burrowing invertibrates (poofing up the soil)

• Soil type (can be connected to weathering processes and source material)

• Lithology, including bedrock type and fracture spacing

• Vegetation

– Stabilizing hillslopes (with roots)

– Tree throw (root ball displacement when trees tip over) causing erosion

– Roots lifting soil around the plant

• Freeze/thaw and the growth of ice lenses
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• Tillage

• Wind abrasion of hilltops (in arid regions – less important in humid regions)

2. Hillslope evolution by linear diffusion

2.1. Slope-dependent sediment discharge (in 1D). Almost all of the processes discussed in
Section 1 are related to slope in some way.

• Burrowing animals throw regolith downhill.
• Overland flow can move regolith downslope and produce rills (small channels)
• Trees and frost lift soil perpendicularly to the hillslope, but gravity then pulls this

material straight down, leading to a net downslope velocity vector.
• Rain splash likewise is able to transport material less far uphill (ejected material inter-

sects the hillslope sooner) and farther downhill (ejected material can fly farther before
hitting the lower slope)
• Tillage on hillslopes acts similarly: a plow that will distribute material uniformly on a

flat slope will, on a hillside send more material downslope than it will upslope. This is
being increasingly recognized as a major source of erosion in agricultural regions that
is exposing the subsoil (B horizon) and reducing agricultural productivity.

Figure 2. Use this space to sketch how a uniform distribution of grains away
from a rain impact or a plow might cause (a) uniform sediment redistribution
on a flat surface and (b) more sediment to be sent downhill on a slope.
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All of these processes move material downslope. Many can move more material downslope
if the slope is steeper. As a result, the rate of sediment transport alone is not a good indicator
of the individual processes. Because the resulting downslope sediment transport is process-
agnostic, we can write a general rule of proportionality:

(1) qm ∝ S
Where qm is volumetric discharge of mobile hillslope material (m – sometimes called “sedi-
ment”, “colluvium”, or “mobile regolith”) per unit width of the hillslope (i.e., through a hills-
lope cross-section) in units of [length2 time−1].

Geomorphologists use this basic proportionality to lump all of these hillslope-evolution pro-
cesses together into a single constant, khs. We then redefine slope in terms of a local derivative
in a coordinate system in which z is vertical and x is horizontal:

(2) qm = −khs
dz
dx

The “−” sign is because the direction of transport is doownslope. khs is, effectively, a diffusivity,
with units of [length2 time−1].

As noted above, this khs is really important! It’s a black box – an admission of defeat before
we even start. It’s geomorphologists saying, It is really incredibly difficult to decide whether this
rate of downslope sediment transport resulted from worms or gophers or frost or trees tipping over
or mineral breakdown or rainsplash or feral pigs digging (this is a real thing!) or a combination
of many of these. Because these processes move material downslope faster when the slope
becomes steeper, geomorphologists can construct this effective hillslope diffusivity term, khs,
and find out what it is locally, in different environments.

Question: what climatic, lithologic, or other factors might we expect to impact khs, and
therefore the rate of mass transport down the side of a hillslope?

2.2. Conservation of Mass. The above provides a simple relationship to describe how hills-
lope material moves. However, this does not provide immediate information about the form
of the landscape. In other words, how do our physically-based rules about material motion
through the landscape eventually build the landforms that we know?

To connect fluxes or discharges with landscape form, we must hearken back to a well-known
concept: conservation of mass. When properly accounting for material density, we can also refer
to this as conservation of volume. Here, we will derive what this means quantitatively, within a
control volume along a hillslope (Figure 3).

In the sections below, I will first discuss how the size of the box of mobile material shown
in Figure 3 changes as a function of inputs and outputs (qm). I will then solve this equation
in combination with a transport rule (Equation 2) for a hillslope that comprises only mobile
material – a scenario that is quite common with the thick till and outwash deposits that blanket
much of Minnesota and the upper Midwest.1 I will then expand this solution to incorporate
aeolian deposition or erosion, which can act as a local source or sink of material. Following
this, I will move into weathering and soil formation, and how to link the depth to bedrock
(upper right) and thickness of the mobile layer to hillslope evolution in bedrock-dominated

1This approach is also that commonly used in landscape-evolution models, even though they are meant to
simulate landscapes that include significant bedrock! As a field, we have some steps to take towards realism – and
this could be another final-project topic.
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landscapes. Finally, I will discuss how the gradient-based hillslope mass transport approach
neglects important effects of the thickness of the soil.
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Figure 3. Mass balance across an imaginary box of soil of width ∆x within a
hillslope cross section. Terms include Qm, mass discharge per unit hillslope
width; a, deposition of airborne material – or removal of material by the wind;
and w, addition of new mobile material via weathering.
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2.3. Lateral conservation of volume in a hillslope element. At location x0, material enters
the box at a rate qm(x). Likewise, at location x0+∆x, material leaves the box at a rate qm(x0+∆x).
Pretty simple so far!

Second, let’s make a couple basic points.

• If more material enters the box than exits it, and the material inside the box remains
the same density, then the box must become thicker.
• If more material leaves the box than enters it, then the box must become thinner.

Let’s call this thickness hm: thickness of mobile material.2

How much thicker or thinner will the box become? Well that depends on the width of the
box. What is this, and how will this impact the rate of change in hm?

(3)

The rate of increasing or decreasing thickness of our box of mobile hillslope material should
therefore depend on the box width and the net amount of material either entering or leaving
the box. Symbolically, this is:

(4)
∆hm
∆t

=
qm(x0)− qm(x0 +∆x)

∆x

Here, t is time.

At this point, I would like to draw your attention to the right-hand side of Equation 4. Does
it remind you of anything? Let us rewrite it below, flipping its sign first, and changing the
location-specific “x0” terms to “x”, which can then represent any point along the hillslope:

(5)
qm(x+∆x)− qm(x)

∆x

2One might argue that the box could also change its length, but this is not reasonable because each box, repre-
senting a segment of hillslope, must abut the prior and following hillslope segments. If I shorten this box, I must
lengthen others or create new boxes to ensure that the full hillslope remains represented in the solution.
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Using a particular definition that you may remember from your first calculus class (i.e., the
definition of a derivative), one may write:

(6)
dqm
dx

= lim
∆x→0

qm (x+∆x)− qm (x)
∆x

So there we have it: the definition of a derivative. Taking lim(∆t→ 0) on the left-hand side
of Equation 4 and putting the whole mess back together then gives you:

(7)
∂hm
∂t

= −
∂qm
∂x

The change in elevation of a thin imaginary box of material on the hillslope is equal to the
amount of stuff that goes into it minus the amount of stuff coming out of it, divided by the
width. Therefore, the rate of change in the elevation at this imaginary box is equal to the rate
of material entering, minus the rate of material leaving, divided by its width.

2.4. Combining a gradient-based transport rule with conservation of volume. Equation 2
states that mobile-material transport rate is linearly dependent on slope. Equation 7 states that
the change in mobile-material thickness per unit time is linearly proportional to the negative
divergence (here taken in one dimension) of material through a particular point in space.

Plugging Eq. 2 into Eq. 7 gives us an equation for hillslope evolution due to linearly-
diffusive soil creep. I’ve left you some space to work it out – this is important, as this is one of
the most common forms of differential equations, ever. It’s called the diffusion equation, and
has analogies in heat transport (thermal diffusion via Fourier’s Law), transport of chemicals
through a membrane (chemical diffusion: Fick’s Laws), and more.

(8)
∂hm
∂t

=
∂
∂x

(
khs

∂z
∂x

)
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This above equation is written with khs inside one of the spatial derivatives, meaning that the
hillslope diffusivity may changes over the course of the hillside. You might expect that to occur
because of lithology – a massive dolostone will generally have a different (and lower) diffusiv-
ity than a shale, meaning that the dolostone is more difficult to erode. Likewise, differences
in hydrologic forcings and vegetation feedbacks (e.g., on equatorial- vs. polar-facing slopes:
Figure 4) can cause differences in hillslope evolution. Changes in elevation in steep areas can
impact (local along the hillslope), and larger hills that impact orographic precipitation can
also have different diffusivities (khs) on their wet and dry sides. Animal communities may also
alter hillslope diffusivity – hooved animals can cause significant soil creep. Tilling hillsides
increases diffusivity as well, and over the past century, this has lead to significant exposure of
the less-agriculturally-productive B horizon, or “subsoil”, in the upper Midwest.

Figure 4. Differences in vegetation as a function of hillslope aspect – the az-
imuth that it faces. Poleward-facing hillslopes generally retain more mois-
ture and can support a larger vegetation community. Here, this is repre-
sented by the trees (as opposed to the grasses). Photo from southwest Idaho by
Thayne Tuason, https://commons.wikimedia.org/wiki/File:Effects_of_

aspect_on_vegetation-_SW_Idaho.JPG. (The author, A. Wickert, has taken
several similar photos in Wyoming and southeastern Minnesota, but those are
on his office computer, and he is writing this from home on a Sunday.)

On a single hill, and especially a small one with uniform land cover and lithology, it is
also possible to have a a single value for hillslope diffusivity (khs). If we can therefore assume
that khs is uniform, then it becomes a constant that can be pulled out of the derivative.3 The
resultant equation is the most common form of the linear diffusion equation.

(9)
∂hm
∂t

= khs
∂2z

∂x2

3If you need to prove this to yourself: use the chain rule. You will find that it is possible to move the term
outside the derivative because the derivative of a constant is always zero.
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2.5. Hillslopes formed entirely of mobile material with no external inputs. If a hillslope is
formed entirely of mobile material, as is common with the extensive unconsolidated Quaternary-
age sediments that blanket much of the upper Midwest, we can ignore the bedrock and any
weathering (Figure 3). We also ignore any erosion or deposition by the wind: this is com-
monly the case in the humid portions of the upper Midwest, though was not always the case in
the past (extensive wind-blown sediments blanket this region.) Therefore, any change in the
thickness of the mobile material is consequently a direct change in the elevation of the hills-
lope, with no additional equations required.4 Based on this, we can substitute the land-surface
elevation, z, for hm, and write:

(10)
∂z
∂t

= khs
∂2z

∂x2

This is the most common form used for hillslope processes in geomorphology and in landscape-
evolution models (models that simulate how rivers, slopes, and other processes change over
time).5

2.6. Adding erosion or deposition via wind. Let us return to our box and Figure 3. What if
there are local additions or subtractions of material to or from the box, for example because of
aeolian erosion or deposition (whose rate is given by a in units of [length/time])? This can act
as what is called a local source or sink term.

Before we move on, let’s brainstorm a few mechanisms for erosion and/or deposition via
wind:

4Any change in hm is also a change in hillslope elevation when bedrock and weathering are involved, but this
requires additional solutions for weathering rate and the production of mobile material.

5This is the most common even though most landscapes are underlain by bedrock! Geomorphologists who
study hillslope processes and landscape evolution often simplify or ignore weathering and soil-forming processes.
The validity of these assumptions remains unclear to me, but the diffusive model does have significant explanatory
power for the shape of hills.
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To start with what will be a very straightforward set of math (but that can be good practice),
let’s recall that we have allowed the width of the box, ∆x to shrink to an infinitesimal width,
dx. Therefore, this aeolian term – which in principle is spread across the full box, simplifies
as follows:

Areal rate of aeolian erosion or deposition =

x0+∆x∫
x0

adx(11)

= ax
∣∣∣∣x0+∆x

x0

(12)

= a∆x(13)

To determine the rate of vertical elevation change due to aeolian processes ża, we must (as
before) divide by the width of the box. In so doing, we convert this areal rate of change into a
vertical rate of change:

Rate of aeolian erosion or deposition =
a∆x
∆x

(14)

= a(15)

Therefore:

(16) ża = a

Let us rewrite Equation 10 similarly, as:

(17) żq = khs
∂2z

∂x2

where żq signifies the portion of the change in mobile-material-column thickness that is due
to downslope transport of hillslope material.

Now, by simply summing these aeolian (ża) and downslope-transport (i.e., creep) (żq) com-
ponents of hillslope mobile-material transport, we can write an equation that combines aeolian
inputs/outputs with soil-creep processes:

∂z
∂t

= żq + ża(18)

= khs
∂2z

∂x2 + a(19)

Here, a is an aeolian source/sink term that can arbitrarily and locally modify hillslope eleva-
tion. One could imagine inserting in its place a function that relates to the physics of aeolian
sediment transport (to be covered later in the semester) and/or a data-driven parameter func-
tion based on the rates of aeolian-material accumulation observed in the field (via, for example,
dated profiles of loess – wind-blown silt – deposition).

2.7. Inputs of mobile material from weathering. In the above cases, we have assumed an
infinite supply of mobile material. But what if this is not the case? We must then return to our
concept of a box in which hm is changing (Figure 3).

By analogy to Equations 16 and 17, we may write:

˙hma = a(20)

˙hmq =
∂2z

∂x2(21)
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Along the same lines as those given in the aeolian section, above, we can write an expression
for the weathering input, w:

(22) ˙hmw = w

and therefore:
∂hm
∂t

= żq + ża + żw(23)

= khs
∂2z

∂x2 + a+w(24)

This seems straightforward, right? But of course, there are complications:
• We are solving for hw. How do we convert this to solve for the elevation of the surface,
z, and therefore compute the shape of the full hillslope?
• Do we have any way of knowing what controls weathering rate, and including it in the

equation?
Hence two sub-sub-sections, below:

2.7.1. Weathering and land-surface elevation. Mobile material on hillslopes typically has a poros-
ity that ranges from a few percent to several tens of percent. Solid, unweathered rock typically
has little to no porosity, and this is often what underlies hillslopes, though a wide range of
porosities are possible (screenshot table held in Figure 5).

Figure 5. Here, n is used for porosity as a percentage. In this class, I will use
it as a value from 0 (entirely solid) to 1 (entirely void space, possibly filled
with fluids). Table “borrowed” gratuitously from the wonderful Groundwater
textbook by Freeze and Cherry (1979).

Through conservation of mass, we can evaluate whether weathering processes will cause the
thickness of the mobile-material layer, hm, to increase or decrease with respect to the rate at
which the rock itself is weathering. We have defined w as an input rate of weathered material,
meaning that any corrections that we create here will be applied to the rate of change in the
unweathered-rock-surface elevation, zr . To do so, we first define a bulk density of hillslope ma-
terial (that is, mass of solids, therefore negating fluids that fill the pores) for both the rock (ρr )
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and the mobile hillslope material (ρm). If mass is conserved within the rock–mobile-material
continuum, then:

˙hmw = w(25)

żr = −
ρm
ρr
w(26)

ż = zr + hm(27)

= w
(
1−

ρm
ρr

)
(28)

Therefore, if the density of the mobile hillslope material is less than that of the bedrock – as is
typically the case – this equation states that the elevation of the hill surface may often rise due
to weathering processes!

But not so fast! We haven’t considered another component of weathering, beloved of low-
temperature geochemists: dissolution. This results in material being removed from the hills-
lope. Here we consider the effects of dissolution on the layers of mobile material.6

The rate of dissolution is calculated across the full box, as shown in figure 3:

(29) rate of dissolution =

hm∫
0

x0+∆x∫
x0

ddxdy

Here, d (for “dissolution”) gives the volumetric rate of dissolution within the column.7 While
dissolution is really part of the weathering process, I find it convenient to break out. For now,
we will assume that d is a constant – though in reality, it depends on water residence time in
the hillslope and other factors that you may learn about in ESCI 4702: Hydrogeology.

Using the same reasoning as above, we can integrate this equation across the box and then
divide by the box width to find the vertical increase (or decrease) in elevation with time.8 This
results in an equation for the change in elevation due to dissolution, żd :

(30) żd = −hmd

The − sign indicates that all of this material is lost.
Now this is interesting! Because we are only differentiating with respect to x, the height of

the box remains in the equation. And this makes sense: the greater the length over which the

6Dissolution can also remove material from bedrock – notably in karstic landscapes – but these rates are com-
monly much slower than those in the mobile material, where high porosity and permeability coupled with a large
surface area contribute to more rapid leeching and removal of mass.

7Take care to not confused this with the non-italicized ordinary differential operator “d”!
8Of course, it might be that the elevation remains constant and the density changes, but since we prescribe the

density, this is a bit of physical reality that you can address freely in this set of equations.
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dissolution reaction can occur, the faster it will occur. Putting this together with conservative9

weathering processes (w) and other processes related to hillslope evolution results in:

∂z
∂t

= żq + ża + żw + żd(31)

= khs
∂2z

∂x2 + a+w − hmd(32)

This equation is trickier to solve because you need to know the thickness of the mobile-
material column! Of course, this very thickness may change as the hillslope evolves. If the
evolution of the mobile-material thickness is coupled to the evolution of the hillslope, this
creates the potential for a feedback in the equation that makes the a rate-controlling variable
be a function of the hillslope state and evolution. As a result, unless we decide that the mobile-
material layer stays constant through time, we now need to know how it evolves in a way that
is independent of the total evolution of the hillslope profile.

Figure 6. The “humped” and “exponential” functions for soil formation, from
Anderson and Anderson (2010) (Chapter 7, Fig. 33). Mobile regolith – mate-
rial produced in place on the hillslope – is a subset of my “mobile material”,
which also includes aeolian deposits and mobile material transported earlier
by glaciers.

2.7.2. Mobile material thickness and mobile-regolith production rates. The rate of production of
mobile material is related to weathering at the bedrock–mobile-material interface.10 Most
commonly, this is described using one of two common functions: a humped function (like a
gamma function) and an exponential function (Figure 6). Both functions indicate that mobile-
material production rates (i.e., weathering rates) increase as one approaches the surface from
great depth. This is sensible: porosity and permeability are higher near the surface, and wa-
ter residence times are lower – leading to more flushing of the system with water that is not
yet saturated in the chemical species that constitute the weathering bedrock. This means that
chemical gradients are higher, and the dissolution reaction proceeds more quickly. Near the

9no mass entering or leaving – not including dissolution
10I use the phrase “mobile material” because this has not necessarily been altered to form a soil. The term

“mobile regolith” is also used, but “regolith” is not universally defined, and so I find it to be, at present, not a very
useful piece of jargon. “Soil” is often used for all of these, but this again is defined differently in different fields,
and ambiguity causes major problems in science, so I avoid it here except when writing unambiguously about
material that has been altered by soil-forming processes. Of course, bedrock may be mobilized too, in large landslides
or rock falls, but I’m starting to run out of possible / useful terms.
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surface, bare rock cannot hold onto water and create a microenvironment capable of support-
ing much weathering. In reality, the thickness of material required to create such an environ-
ment is very small (mm? cm?) (Figure 7), and therefore the hump likely lies very near to the
surface. As a result of this – and for mathematical expediency – I will use the exponential
weathering function in these notes.

Figure 7. Data and exponential fits for rates of bedrock weathering, from An-
derson and Anderson (2010) (Chapter 7, Fig. 34). Note that it uses “mobile
regolith” and “soil” where I use “mobile material”.

Based on the above discussion, the rate of weathering, w, is a function of the thickness of
the layer of mobile material, hm. Because the function is an exponential, it is related to hm by
a particular length scale... I will call this length scale δzw, and it is often on the order of a few
tens of centimeters.

(33) w = w0e
−hm/δzw

Here, w0 is a defined surface weathering rate, and e ≈ 2.718 is Euler’s number.
This now adds a second feedback between mobile-material thickness and the rate of land-

surface-elevation change. However, solving it requires a simultaneous solution for the thick-
ness of the mobile-material layer, which we can now define. Our resultant system of differen-
tial equations is:

∂hm
∂t

= khs
∂2z

∂x2 + a+w0e
−hm/δzw − hmd(34)

∂zr
∂t

= −
ρm
ρr
w0e

−hm/δzw(35)

∂z
∂t

=
∂hm
∂t

+
∂zr
∂t

(36)

= khs
∂2z

∂x2 + a+
(
1−

ρm
ρr

)
w0e

−hm/δzw − hmd(37)

Using equation 37, we can:

(1) Prescribe an initial topography (z(x))
(2) Prescribe an initial mobile-material thickness distribution (hm(x))
(3) Allow these to evolve
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2.8. Hilltop curvature with linear-diffusive hillslopes. The above differential equations de-
fine linear-diffusive hillslopes. Although I spent a long time wading into complexities, the
core equation used in landscape-evolution modeling is Equation 10. When couched in terms
of erosion, and all of the weathering/dust/etc. portions are removed, this equation becomes

(38) ε̇ = −khs
d2z

dx2

where ε̇ is erosion rate, which will be uniform across the landscape. This erosion rate term
is going to be used througout the class, and erosion rate is always defined in the negative
direction (for convenience, because erosion removes material). Hence, a “minus” sign has
appeared on the right-hand side. An additional change from Equation 10 is that I return the ∂
symbols to simple “d”s. This is because I have defined this landscape to exist at steady state,
such that the erosion rate on the left is simply a constant.11

In differential form, it is somewhat difficult to see how one should connect the form of the
landscape to the implicit hillslope transport and transport rates involved. So let’s integrate
Equation 38 to get a spatial form of its steady-state profile.

Just from looking at this equation, we can see that the curvature should increase with
higher erosion rate and lower erodibility. In other words, if it’s harder to move material, or
if material needs to be moved more quickly, then a steeper slope is required!

Here is your space to integrate and solve:

... and the answer is:

(39) z = −1
2
ε̇
khs

x2 + z0

11This steady form of the hillslope is important, as it implies that something (river erosion? sea level? tectonics?
a combination?) is either causing the edges of the hillslope to fall or the center of the hill to rise at a rate that equals
the mean (and uniform) erosion rate. Keep this idea in your back pockets for now: later we will discuss how rivers
and hillslopes can be coupled. A quick teaser? Rivers set the boundaries of the hillslopes, but hillslopes processes
set the sediment inputs to the rivers.
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z0 is the elevation of the ridge crest. What this equation states is that hilltops are parabolic!
This parabolic form is quite common in nature; Figure 8 shows data (circles) and results from
a simple diffusional model based on a linear diffusion equation (lines), and how well they
match. This is a big take-away, and one you should test in the field – and see whether it is true
or not.

Figure 8. Data and parabolic fits for hillslope profiles, from Anderson and An-
derson (2010) (Chapter 10, Fig. 4a).

Remember that linear-diffusive assumption holds only for hilltops controlled by uniform
erosion rates all around, and typically by incising rivers at either side: it does not account for
plateau surfaces, hilltops that have large deposited piles of glacial till, etc. (unless that till
has adjusted ot the interglacial geomorphic processes, which usually it hasn’t – too little time).
It also can’t account for significant aeolian activity or time variability in boundary conditions
(e.g., erosion, uplift). Nevertheless, it fits a wide range of hillslopes, indication that Equation
38 and its in-built assumptions are broadly valid despite their simplicity.

Steady state For a steady-state hillslope, one can draw a box around the soil profile and declare
its volume to be constant. This means that the upslope colluvium delivery into the box, minus the
colluvium export out of the box, plus additional material from weathering of the bedrock, must equal
zero.

Tectonic application: For a given khs in a landscape, hilltop curvature should give you informa-
tion on relative erosion (exhumation) rates aross that landscape. If we think of a special case, which
we call a steady-state landscape, uplift equals erosion. If this can be assumed, then you can actually
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obtain a spatial estimate of relative uplift rates from the shapes of hilltops alone, provided that the
assumptions of linear diffusion are met. More-curved hilltops indicate faster uplift, smoother hilltops
indicate slower uplift. Not too bad, huh? To read more about this and how it relates to landscape
evolution, you can read about the method in Hurst et al. (2012).

2.9. Dating by landform diffusion. Rivers, the sea, and faults all create sharp scarps. These
then diffuse over time via hillslope processes. Therefore, older scarps should have smoother
and more diffuse profiles. If khs is uniform, and you have a few dates – either from the histori-
cal record or from Quaternary dating techniques (e.g., radiocarbon, luminescence, cosmogenic
radionculide), then it becomes possible to calibrate a diffusional model, using the equations
above, for the appropriate value of khs. Using this calibrated value, one can then model the
ages of other features – perhaps those that are more difficult to date using direct means. An
example below is a set of marine terraces along the Santa Cruz coastline in California (Figure
9).

Figure 9. Marine terrace and stream profiles from near Majors Creek, Santa
Cruz, California. Each terrace is a wave-cut platform recording a particu-
lar past sea-level highstand, and abandoned during the subsequent sea-level
fall. The continued uplift of the coast is fast enough to preserve these past
highstand-related terraces, creating a marine–tectonic “strip chart” recorder
of Earth’s past. These data are from hand leveling (think back to your sur-
veying lab). Here, the eroding bedrock hillslopes are mantled by increasing
amounts of colluvium – material from erosion of hillslopes – as they become
older (i.e., higher, farther from the coast), and the overall profile shape of the
older terraces becomes more rounded and diffuse. From Rosenbloom and Ander-
son (1994), Figure 4.

2.10. Additional applications of linear-diffusive hillslope theory.
• Relative ages of fault scarps
• Relative ages of marine terraces
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• Relative ages of glacial moraines
• Sediment supply to rivers
• Landscape evolution modeling
• Broad inferences of geologic-time-scale continental evolution (very primitive early geo-

physical models used diffusion exclusively for rates of sediment delivery from the con-
tinents to the sea)

3. Reality check-in: Not all hills are these perfectly smooth parabolas

Yes! This is a theoretical shape that is achieved fully only in areas with incising rivers around
eroding hills made of a uniform material. It is the dominant process in a great many places,
but we must recognize that in others, there may be other processes active. And in much of
Minnesota, even if these diffusive processes are occurring, the overall form of the landscape
bears so strong a glacial imprint that the hillslope signature is not as easily visible.

3.1. Explicit consideration of soils in hillslope transport. Our idea of diffusive hillslopes is
all well and good, but we’re taking a really zoomed-out, coarse view of the landscape. First off,
let’s make one thing clear: the above equation doesn’t “care” where the material is that moves.
In reality, however, the vast majority of it is at the top. Here’s a figure from Roger Hooke’s
measurements at Bevens Creek, in the Minnesota River Valley. It shows higher rates of creep
in the top layers of soil.

Figure 10. (From Roger Hooke): Deformation profiles measured at the Bevens
Creek creep stations. Profiles were measured by inserting segmented wooden
rods in vertical holes made in the soil in 1968 and then excavating the rods
9.5 years later and recording the displacement form vertical. Bold numbers at
bottom indicate creep station where profile was obtained. Units on x-axis are
creep in total centimeters moved over the 9.5-year observation period.

So if the topsoil keeps eroding, how does the hillslope keep from losing all of its soil? Well,
it has to produce that soil as well. The mobile-material production curves (Figure 6) provide
some idea about how this works.

Even more importantly, the fact that the the above diffusion-based approach is insensitive to
the depth at which the material moves means that it can move mass even if no mobile material
is present. YIKES!

In answering this, I stray beyond most published literature, but find this to be a helpful –
and honestly, cathartic, process. My goal in this is to start to think about a bit more realism –
if we get enough time in class, or if you’re interested in your final project. For now, I will start
with two key, initial, and hopefully-obvious statements:

• If there is no mobile material, nothing moves.
• The amount of mobile material in motion increases as soil depth increases.
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The data in Figure 10 indicate that most of the displacement is typically towards the top
of the soil profile, and it diminishes with depth. The function to be used to describe it isn’t
immediately obvious, so I choose to use an exponential because of its mathematical ease-of-
use andits ability to approximately match these data. Within the zone of mobile material, the
velocity (u) of a soil parcel is a function of its elevation (z′) below the Earth surface (z):

(40) u(z) ∝ e(z′−z)/(∆zu)

Here, ∆zu is a length scale associated with a 1/e drop-off in velocity of hillslope material.
In order to compute the total amount of material moved on a hillslope, I must integrate u(z)

across the zone of mobile material:

(41) qm ∝
z∫
zr

= u(z)

z∫
zr

e(z′−z)/(∆zu)dz′

We can solve this equation using u substitution:

(42) qm ∝ ∆zu
(
1− e(zr−z)/(∆zu)

)
Based on the geometry in Figure 3, we know that zr − z = −hm. Substituting this in the above
equation gives us:

(43) qm ∝ ∆zu
(
1− ehm/(∆zu)

)
The next step is to merge this with the other terms in Equation 2. The resultant expression

relates to slope, a constant of proportionality, and the thickness of the mobile material:

(44) qm = −khs∆zu
(
1− ehm/(∆zu)

) dz
dx
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Figure 11. Use this space to draw a continuum of hillslopes with slope as an x
axis. Around 30-35 degrees, hills transition from being dominated by gradual
downslope creep to being dominated by mass-wasting events.

This equation now has the proper behavior in the limits. As hm→ 0, 1− ehm/(∆zu)→ 0 as well,
and hence, qm → 0. As hm → ∞, 1 − ehm/(∆zu) → 1, removing the exponential term from the
right-hand side of the equation, and approaching a form analogous to the standard form for
hillslope-diffusion. This, as I noted in Section 2.5, is the proper solution for a hillslope made
entirely of mobile material. All other hillslope solutions should lie between the two.12

(Important Aside.) Soils geomorphology is an important branch of geomorphology that we
are not going to discuss in detail here, beyond some simple definitions of soil horizons in the field.
Kyungsoo Yoo, professor in the department of Soil, Water, and Climate, is an expert in both soils and
geomorphology, and is an excellent resource for those of you wanting to learn more about both.

4. When hills are steep

The above sections on gradual hillslope diffusion works for most gradual slopes significantly
below the angle of repose.13 However, steeper hills tend to fail in large mass-wasting events
instead of by slow soil creep and associated processes listed at the beginning of this chapter of
notes. Here we discuss how to compute stability and form of steep hillslopes.

4.1. Nonlinear diffusion and hillslopes. Let’s start out by assuming that you’re interested
in the long-term evolution of hillslopes, and the overall shape of the landscape. We’re going
to assume this becasue (1) this is what is useful to understand landscape-forming processes
in this class, and (2) landslide science is a rich and complex field of its own that we will only
cover briefly below. So in the meantime, just wear a helmet when you’re working in steep areas
and don’t ski 38-degree slopes in avalanche conditions.

As geomorphologists, we have a basic modification of the linear-diffusion equation for hills-
lope evolution that can be applied to this steep terrain. In order to do so we set a critical slope,
Sc, that is the asymptotic maximum slope attainable by a hillside. As the slope of the hillside
increases towards the critical slope, the erosion rate increases as well to ensure that the slope
remains below Sc. This simulates the effect of mass-wasting events, like landslides.

12Author’s note: I should publish this somewhere, or check if someone else has, or perhaps you (the student)
and I should chat about somehow involving it in a class project and/or publishing it.

13The angle of repose is the angle of a critically-steep slope, which will fail if steepened further, maintained as
a function of the material’s internal friction.
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We construct the hillslope nonlinear-diffusion equation based on the work of Roering et al.
(1999), by modifying Equation 2 to include the nonlinear terms:

(45) qm =
khs

dz
dx

1−


∣∣∣ ∂z
∂x

∣∣∣
Sc


2

What happens when dz/dx→ 0 (a flat surface)? What happens when dzdx→ Sc?

Because of the nonlinearity in the slope dependence of qm, it becomes very difficult to write
an equation similar to 10. This integration typically must be completed numerically – by a
computer.

4.2. Hillslope stability and mass wasting. Soil doesn’t just gently move down hillslopes –
sometimes it fails in discrete events. Such discrete mass-wasting events (Figure 12) dramati-
cally modify hillslopes and pose a significant natural hazard.

To understand landsliding, a type of mass wasting, I turn to continuum mechanics – the
study of how continuous materials deform.14 More specifically, I consider brittle failure. This
is the same principle that is applied to understand shallow faults in the Earth, fractures in
buildings and other structures, and so on. It is based on a very simple problem that you may
have learned about in physics: a block on an inclined plane.

In this example, the location and orientation of the plane is defined. Inside a continuous
body, on the other hand, any arbitrary plane may be the slip surface!

Because we are working within a continuum, it no longer makes as much sense to discuss
discrete forces, because these require that we know the sizes of the objects that are interacting.
Rather, we can define stresses as a force per unit area:

(46) σ =
F
A

Here, σ is a stress, F is a force, and A is an area over which that force is applied.

14Continuum mechanics is an extraordinarily useful field, and was one of my favorite classes as an un-
dergraduate. I am not doing it much service here: I am jumping past all of the basics and theorems and
complexities to provide a relatively straightforward applications to landsliding. I would encourage anyone
interested in further learning about this to find a full class or to follow Brad Hager’s course, 12.005, at
MIT (https://ocw.mit.edu/courses/earth-atmospheric-and-planetary-sciences/12-005-applications-
of-continuum-mechanics-to-earth-atmospheric-and-planetary-sciences-spring-2006/)
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Figure 12. Rapid mass-wasting events – all except I – are discrete instances in
which significant material moves down hillslopes. (Figure from the internet;
original source unknown.)

σ is the symbol that is used generically for stress, and is also used for normal stress – that
stress that contributes to friction and is perpendicular to the plane. This is synonymous with
the normal force.
τ is often used for the shear stress – the stress that is parallel to the plane and drives motion.
Following Figure 13, we can set up a balance between the driving stresses for failure and the

resisting stresses that inhibit failure within a continuum. By “continuum”, I mean that rather
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Figure 13. Free-body diagram for the classic problem of a block on an inclined
plane. Figure drafted by Wikimedia user Mets501.

than a discrete block that is separate from the plane across which it moves, that the body itself
is deforming: in other words, both the “block” and the “plane” are part of the same material.

In the figure below, let’s set up a stress balance on a an arbitrary plane within a continuous
body.15 This will be analogous to the block on an inclined plane, with the mass above the plane
creating a driving stress that increases with the angle of the plane, and friction along the plane
itself – proportional to the cosine of the angle of the plane with the horizontal – generating a
resisting force. Because we are considering parcels of a continuum instead of discrete masses
and objects, we will couch our solution in terms of stresses – forces per unit area. This removes
the dependence on the size of the object, and allows us to write an analogous solution to that
shown in Figure 13.

Figure 14. Failure along a plane (thick black line) in an imaginary block of
material – let’s say it’s within a hillslope. I want you to draw arrows indicating
the direction of failure along this plane, should it occur. After this, mark the
angle from the horizontal, as well as the orientations of the normal stress (σ )
and the shear stress (τ).

15We haven’t yet defined the failure angle or plane, but for the moment, we will assume that one exists. Even if
a failure plane does not exist initially, one will form in the case of a mass failure.
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Before we continue much farther, let’s define a few variables. Some of these will be new to
you, and defined in the following paragraphs.

σd Driving stress, pushing the hillside towards failure
σr Resisting stress, pushing the hillside towards stability
σ Normal stress (normal force per unit area)
τ Shear stress (force parallel to the plane of potential failure per unit area)
Pf Pore-fluid pressure (pressure
θ Angle of the plane of potential failure

σeff The effective normal stress (σeff = σ − Pf
σc Cohesion: a stress that holds hillslope material together
ρ Density, generically. Subscripts are often added to show what material is being consid-

ered (e.g., ρw: water density; ρr : rock density).
g Acceleration due to the force of gravity
h Thickness of block that is failing; this may vary with the distance along the block, but

we will focus on a simple example in which this is constant.
σg Stress oriented parallel to the orientation of the gravitational acceleration
µ Coefficient of internal friction: analogous to the coefficient of friction between discrete

bodies, but between elements within the continuous body (e.g, parcels of sand or clay)
λp Porosity: the fraction of the volume that comprises voids (pore space between grains),

as opposed to material
fw The fraction of the pore space taken up by water

The Pf term represents a rapidly deforming fluid – in our case, water – within the pore space
between grains.16 In the same way that you feel lighter when you are underwater because of
buoyancy, water partially buoys up material on hillslopes. This reduces the effective normal
stress – often written as σeff – and therefore the friction. Because the pressure of water is equal
in all directions, it can only affect the normal stresses, and has no effect on the shear stresses.
Thus, the addition of water can make a hillslope more likely to fail.

Cohesion, σc is a stress that corresponds to the strength of the material: how much stress
can it experience before it starts to fail? An example of a cohesionless material is sand: it fails
and forms an angle of repose instantly. A material with cohesion, on the other hand, is clay: a
block of clay can support steep walls.

Let us consider a planar translational landslide (Figure 12B) with a constant thickness to
explain each of these terms and find what sets σd and σr

This potential landslide block will be at the point of incipient failure – that is, the point at
which the driving stresses equal the resisting stresses, when (by definition):

(47) σd = σr

Based on our free-body diagram, we can start to define the stresses involved in landsliding.
The vertical stress due to the weight of the block – and therefore aligned with the orientation
of gravitational acceleration – is:

(48) σg = ρgh

This is simply the density of the material, times acceleration due to gravity, times the thickness
of the material. We can check the units of the right-hand side to see how they compare to a
force. In SI units, and in the same order (ρ, g, h):

(49)
[

kg
m3

][m
s2

]
[m]

16We neglect air because it is not only in the pores, but is also occupies the space outside the hillslope – hence
helping to hold it up. As a result, all air-based pressure terms cancel out. Even neglecting this, the density of air is
so low compared to rock, soil, sediment, or water, that it is negligible in this problem.
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Figure 15. Draw in each of the above variables on this planar landslide.

All together, this gives us:

(50)
[

kg
m s2

]
These are the units of a force per unit area, which is defined as a stress.

What is ρ? This depends on the solid material that makes up the hillslope, plus the amount
of additional fluid (water weight) that in the hillslope.

(51) ρ = (1−λp)ρr +λpfwρw

The more water that is in the hillside, the heavier the material is.
Next, let’s split σg between the shear stress and the normal stress:

σ = σg cosθ [normal stress]τ = σg sinθ [shear stress](52)

This is precisely analogous to the normal force and the slope-parallel force for the block on
the inclined plane (Figure 13).

At this point, we have fully characterized the driving stress:

(53) σd = τ =
(
(1−λp)ρr +λpfwρw

)
ghsinθ

What remains to be done is to add modifications to the resisting forces based on friction,
pore-fluid pressure, cohesion.

In a cohesionless block of material with no water content, the resisting force is just analogous
to the frictional force from the block on the inclined plane:

(54) σr, no water, no cohesion = µ
(
(1−λp)ρr +λpfwρw

)
ghcosθ

In other words, the normal stress times the friction defines the resisting stress in this simplified
case.

Next, we add the effect of pore-fluid pressure. While a tiny amount of fluid in the pores
actually increases the cohesion between the grains, any additional fluid just decreases the re-
sisting stress by reducing the effective weight of the particles on the hillslope by buoyantly
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supporting them. Through this, we can define an effective normal stress,

σeff = σ − Pf(55)

=
(
(1−λp)ρr +λpfwρw −λpfwρw

)
gh(56)

= (1−λp)ρrgh(57)

The pore-fluid pressure term therefore exactly negates the additional weight of the block when
computing the frictional resisting forces, but not when calculating the driving forces.

The last component to add is a cohesion term, σc. This represents stresses that can hold the
material together. This can include the “stickiness” of clays, the strength of root fibers, and
the effects of interlocking clasts of rock. This term is added to the resisting forces, as it needs
to be overcome before any motion can happen.

The resulting full equation for the resisting forces is:

(58) σr = µσeff cosθ + σc

By combining this with the driving forces, we can obtain the point at which a hillslope is at
the point of incipient failure (σd = σr ):

(59) τ = µσeff cosθ + σc

5. The link between hillslopes and channels: coupled components of landscape

evolution

Hillslope processes dominate over fluvial processes where drainage areas are too small for
enough water to collect to start eroding channels. As drainage areas grow, the landscape tran-
sitions from one whose form is dominated by hillslope processes to one whose form is domi-
nated by fluvial (or river-related) processes.

Channel and hillslope processes interact closely. The bottoms of the hillslopes serve as the
upper boundary condition on river channels, which are responsible for feeding them with
water and sediment. Likewise, river channels serve as the lower boundary for the hillslopes:
if the river aggrade (increase their bed elevations), they raise the level of the bottoms of the
hillslopes, and raise the elevation of the bottom of hillslope deposition. Likewise, if they incise
(decrease their bed elevations), they create a cliff at the toe of the hillslope, which may diffuse
and/or landslide, eventually causing the rest of the hillslope to follow.

Let’s use the space below to sketch this situation for both river aggradation and incision:

This two-way coupling between channel and hillslopes will become central to our under-
standing of landscape evolution.
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Additional figures

Figure 16. Diffusive evolution of an initially-steep-crested moraine. From
Dylan Mikesell, Boise State University, SERC: https://serc.carleton.edu/
matlab_computation2016/activities/159830.html.

Figure 17. Translational landslides (like the one for which we solve above) and
rotational landslides.
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Figure 18. Byerlee’s Law: almost all rocks have a coefficient of internal fric-
tion of 0.6. Even though these experiments were performed for conditions deep
within Earth, this larger-scale relationship holds true for sand as well. Figure
from Brad Hager (12.005, lecture 6) and MIT OCW.
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