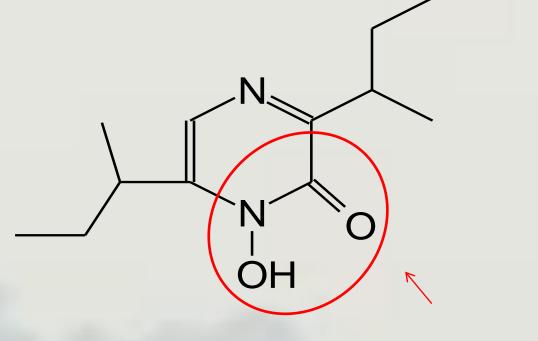
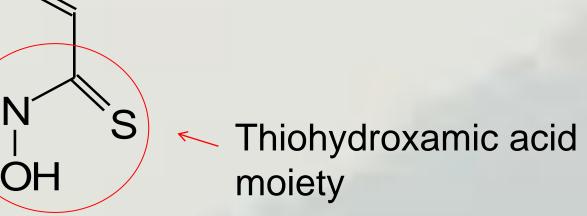
The Natural Occurrence of Pyrithione (PT) Antimicrobials World's Most Popular Anti-microbial agent

George Polson, Ph.D.^{1*}; Boon Tong Koh, Ph.D.²; Jason Zhang²; Tony Buss, Ph.D.³; Martin Everett, Ph.D.³; Sung Il Chang, Ph.D.¹; and Sungmee Choi, Ph.D.¹

¹Arch Innovation and Technology Center-Alpharetta, GA30004; ²Arch-China; ²Arch–Cheshire; ³MerLion Pharma-Singapore


Pyrithione (PT)¹ molecule was first synthesized in 1947 by OLIN-Squibb chemists as a promising anti-biotic drug candidate. To-day pyrithione compounds (sodium, zinc and copper) are used globally in preservation of fluids; as the "gold-standard" in anti-dandruff shampoos; and as the preferred TBTO replacement in marine antifouling paints; as well as mildewcides in wallboards, in-can and dry-film preservatives in architectural paints; and for odor control in textiles etc. because of their broad spectrum of efficacy and proven ability to prevent the growth of microorganisms. A recent literature search showed 6082 references (patents and publications: 671 in hair care, 162 in bio-fouling, and many other applications) for PT molecules. Industrially produced PT antimicrobials have been successfully used for over 50 years. The most well known pyrithione, ZnPT, is a safe and effective OTC anti-dandruff agent (recognized by USFDA as Category I, GRAS and GRAE). Many other unexploited applications like control of malaria parasite (*Plasmodium*)², treatment of nail fungus³, hand-sanitization etc. can only increase the potential of this molecule to protect and benefit mankind. Several scientific studies⁴ have shown that pyrithione compounds are non-persistent and degrade rapidly in the environment through biotic and abiotic pathways to non-toxic terminal metabolites. In the past decade, there have been isolated reports⁵ from China that a certain plant that grows wildly in Hainan and Guangdong province (*Polyalthia nemoralis*) and used extensively as a herbal remedy for many human afflictions contains significant amounts of pyrithione compounds. This poster presents unequivocal evidence for pyrithione compounds as active principles in the extracts from the roots of *Polyalthia nemoralis*. Pyrithione compounds have also been reported as minor constituents in extracts of other plant species such as *Allium stipitatum* Regel⁶ - an ornamental plant in EU and in a New Zealand *Basidomycete* (Mushroom) – *Cortinarius*

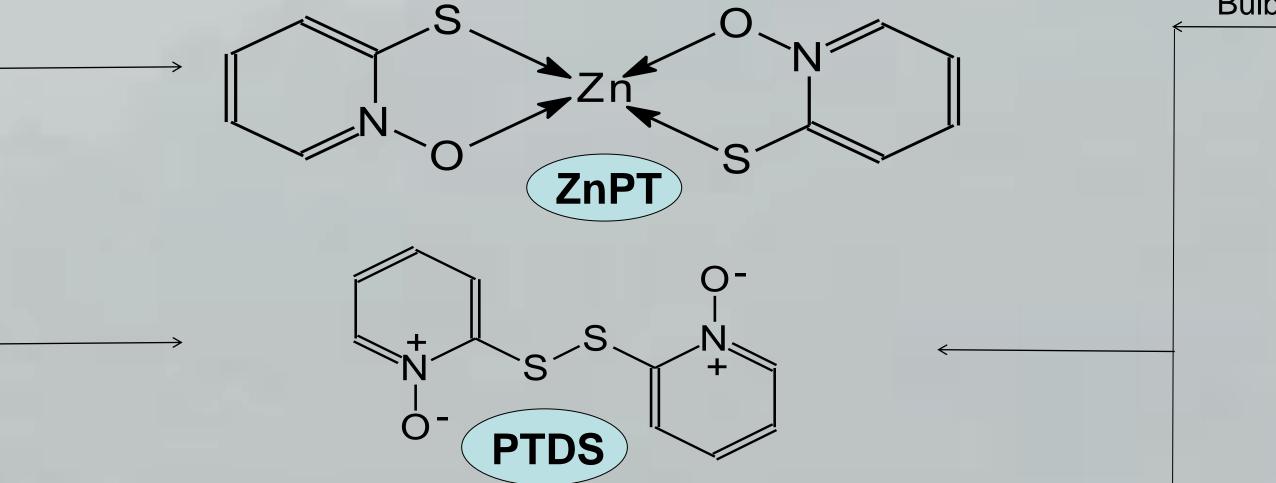
Aspergillic acid (a hydroxamic acid)


Pyrithione

Polyalthia nemoralis

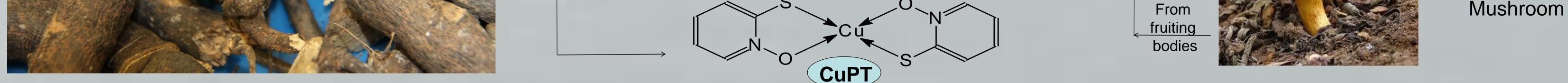
-an antibiotic substance produced by Apergillus flavus

Hydroxamic acid moiety Discovery by OLIN-Squibb, 1947¹ (a thiohydroxamic acid)

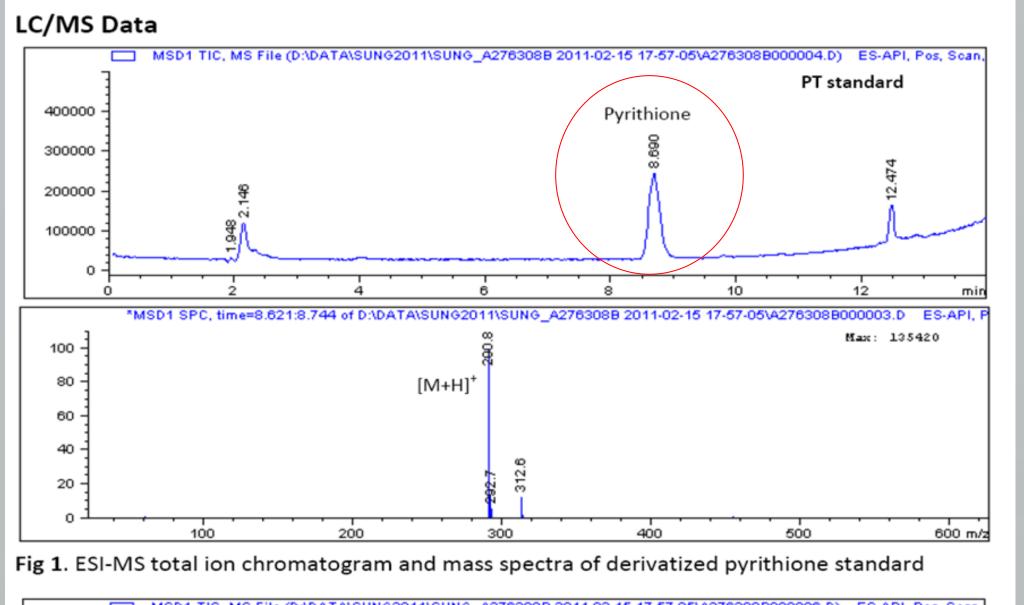

The antibiotic potential of aspergillic acid prompted the Squibb researchers to synthesize a thiohydroxamic acid compound (parent compound – Pyrithione). While it did not show enhanced anti-biotic properties, it exhibited broad spectrum anti-microbial activity vs. bacteria, fungi and yeasts

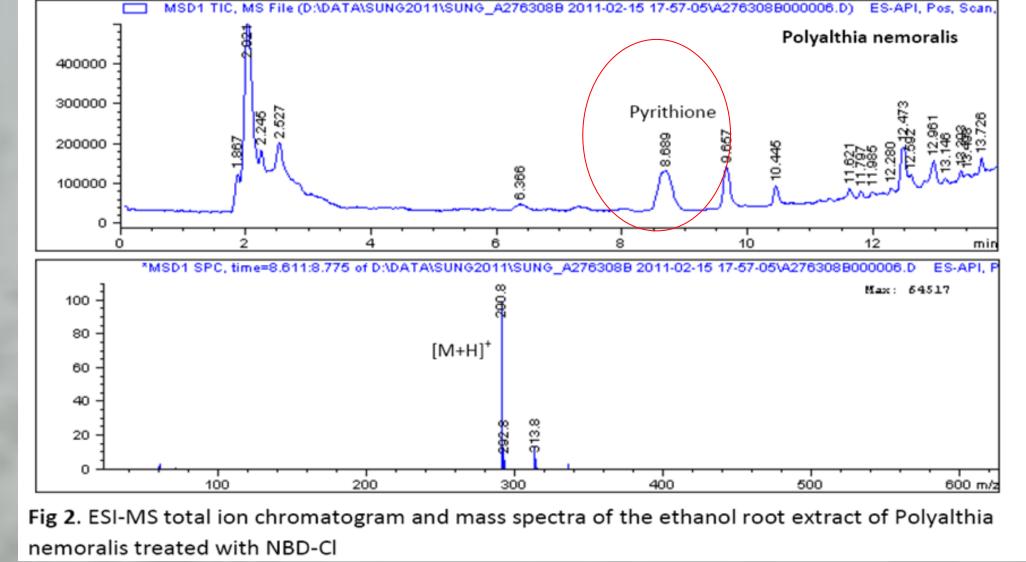
Polyalthia nemoralis - roots

Pyrithione compounds detected


 \sim \circ

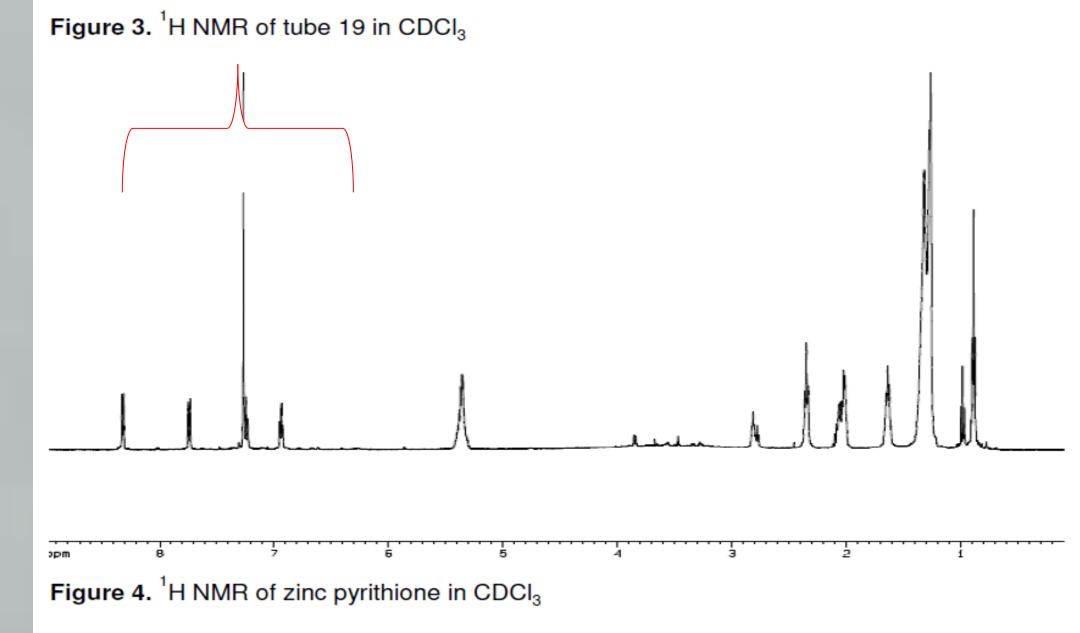
<image>

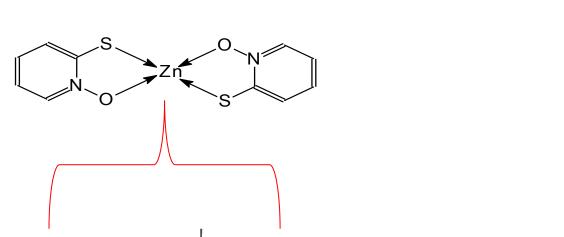

Allium stipitatum Regel



Cortinarius spp.

P. nemoralis extracts: LC/MS comparison vs. PT std.





P. nemoralis extract: Microbiology – MIC vs. ZnPT

Micro-organism	P. nemoralis extract	ZnPT
Staphylococcus aureus (6538)	39.1 (1.13)*	2.44
Klebsiella pneumoniae (4352)	78.1 (2.26)	2.44
Pseudomonas aeruginosa (9027)	625 (18.06)	39.1
Pseudomonas aeruginosa (15442)	1250 (36.13)	39.1
Escherichia coli (10536)	78.1 (2.26)	2.44
Enterobacter gergoviae (33028)	78.1 (2.26)	2.44
Bacillus subtilus (6633)	19.5 (0.56)	1.22
Aureobasidium pullulans (9348)	78.1 (2.26)	1.22
Gliocladium virens (9645)	313 (9.03)	19.5
Penicillium pinophilium (11797)	< 4.88 (0.14)	< 0.31
Paecilomyces sp.	156 (4.52)	9.77
Candida albicans (10231)	78.1 (2.26)	4.88
LB penecillium sp.	< 4.88 (0.14)	< 0.31
Aspergillus niger	313 (9.03)	4.88

P. nemoralis extract: ¹H–NMR

* Numbers in parenthesis represent concentration of total pyrithione(s)

21.4 mg of the enriched PT mixture can be obtained from 10 g of raw plant root material. The purity was estimated to be approximately 50%, therefore PT is present as 0.1% of the dried plant material.

References:

- 1. Shaw E., Bernstein J., Losee K., Lott W. (1950) Analogs of aspergillic acid. IV. Substituted 2-bromopyridine N-oxides and their conversion to cyclic thiohydroxamic acid. J. Am Chem Soc;72:4362-4.
- Geiger J.;, Vinopal, R., Stopka, J; (2000) Pyrithione: An Industrial Biocide that Kills Plasmodium In Vitro and In Vivo, Disrupts PMF, and Whose Use does not Result in Resistance. Abstr Intersci .Conf. Antimicrob Agents Chemother. 40: 515; Geiger et al. PHARMACEUTICAL COMPOSITIONS FOR TREATING MALARIA, WO/2000/067699 (Arch); Tegos, G.; Stermitz, F.; Lomovskaya, O.; and Lewis, K. (2002) Multidrug Pump Inhibitors Uncover Remarkable Activity of Plant Antimicrobials. Antimicrob. Agents Chemother. 46(10): 3133-3141.
- 3. Polson, G. et al. TOPICAL PYRITHIONE COMPOSITIONS AND METHODS FOR TREATMENT OF NAIL FUNGUS : US 20090298805 (Arch)
- 4. Turley, P.; Waldron, C. Smooth Sailing: A History of ZnPT The Role of co-biocides in marine Anti-fouling Paints. (2004) Paints & Coating Industry, Oct .10, 2004
- Ziming, L; Shegjun, D; Ryoyun, C; Dequan, Y. (2010) 2-Pyridinethiolate derivatives from branches and leaves of *Polyalthia nemoralis* and their cytotoxic activities. *Zhongguo Zhong Yao Za Zhi*. 2010 Jan;35 (1):53-7.; Gongyu, H.; Bingxiang, X.; Xiapeng, W.; Mingzhu, L.; Xueyu, X.; Lining, M.; Zhongliang, C.; Dayuan, Z. (1980) Study on Active constituents of Polyalthia nemorali A., Separation and Structure of zinc polyanemine (natural metal compound) *Chinese Science Bulletin* 286; Jianzhong, Y.; Huaqing, L.; Shixuan, L. (1994) Study on the Active Constituents of Polyalthia nemoralis. *Acta Pharmaceutica Sinica*, 29, 845-850
- 6. O'Donnell,G.; Poeschl, R.; Zimhony, O.; Gunaratnam, M.; Moreira, J.; Neidle, S.; Evangelopoulos,D..; Bhakta, S.; Malkinson,J.; Boshoff,H.;Lenaerts,A.;Gibbons, S.; (2009) Bioactive Pyridine-N-oxide Disulfides from Allium stipitatum. J. Nat. Prod., 72, 360–365
- 7. Nicholas, G.; Blunt, J.; Munro, M. (2001) Cortamidine Oxide, a Novel Disulfide Metabolite from the New Zealand Basidiomycete (Mushroom) Cortinarius Species. J. Nat. Prod., 64, 341-344

Acknowledgements:

The background on this poster shows the Hainan-China forest where Polyalthia nemoralis plant was harvested – picture by J. Zhang.

The authors thank Dr. J. Yongcheng, Dr. M. Wu (Arch-Cheshire) and J. Zhang (Arch-China) for translating the Chinese articles on Polyalthia nemoralis and Dr. Denise Taylor for the literature search.