See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/359131578

Oreocharis hainanensis (Gesneriaceae), a new species from karst regions in Hainan Island, South China

Article in Phytotaxa · March 2022

DOI: 10.1164	6/phytotaxa.538.4.2		
CITATIONS		READS	
0		166	
3 author	s:		
	Shao-Jun Ling		Fang Wen
AN I	Hainan University		Guangxi Academy of Sciences
	17 PUBLICATIONS 32 CITATIONS		158 PUBLICATIONS 961 CITATIONS
	SEE PROFILE		SEE PROFILE
6	Ming-Xun Ren		
	Hainan University		
	74 PUBLICATIONS 720 CITATIONS		
	SEE PROFILE		

Some of the authors of this publication are also working on these related projects:

The isolation of Changhuajiang valley on the population distribution and gene flows in two Gesneriaceae species endemic to Hainan Issland View project

Taxonomy of the species-rich genus Pilea (Urticaceae) View project

```
All content following this page was uploaded by Shao-Jun Ling on 10 March 2022
```


https://doi.org/10.11646/phytotaxa.538.4.2

Oreocharis hainanensis (Gesneriaceae), a new species from karst regions in Hainan Island, South China

SHAO-JUN LING^{1,2,5}, FANG WEN^{3,4,6} & MING-XUN REN^{1,2,7*}

¹ Ministry of Education Key Laboratory for Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Hainan University, Haikou 570228, China

² Center for Terrestrial Biodiversity of the South China Sea, Hainan University, Haikou 570228, China

³ Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China

⁴ Gesneriad Committee of China Wild Plant Conservation Association, National Gesneriaceae Germplasm Resources Bank Guangxi Institute of Botany, Gesneriad Conservation Center of China, Guilin 541006, Guangxi, China

⁵ s lingsj@hainanu.edu.cn; https://orcid.org/0000-0002-4675-8250

⁶ wenfang760608@139.com; ⁶ https://orcid.org/0000-0002-3889-8835

⁷ renmx@hainanu.edu.cn; https://orcid.org/0000-0002-4707-2656

*Corresponding author

Abstract

Oreocharis hainanensis, a new species of Gesneriaceae is described and illustrated from low-altitudual karst areas in Hainan Island, South China. The new species is easily distinguished from its closely-related *O. jasminina* by campanulate floral tube, zygomorphic corolla and exserted stamens. It also shows different habitats from the four currently-recognized *Oreocharis* taxa on the island. Molecular phylogeny analysis based on plastid *trnL-trnF* and nuclear ITS1/2 sequences supported the delimitation of the new species, which forms a monophyletic clade with all the other *Oreocharis* taxa from Hainan Island. The roles of habitat and floral isolation in the evolution of the new species and its affinities are discussed. The species was assessed as Vulnerable (VU C1 and D2) according to IUCN Red List Categories and Criteria.

Keywords: Morphology, Molecular, New taxon, Karst

Introduction

Oreocharis Bentham (1876: 1021) was recently re-delimited to include ten small or monotypic genera and the species number reach to over 160 species, based on extensive molecular phylogenetic studies (Möller *et al.* 2011, Weber *et al.* 2013), while *Bournea* Oliver (in Hooker 1893: 2254) was re-instated as an independent genus (Chen *et al.* 2020). *Oreocharis* belongs to tribe Trichosporeae Nees (1825: 143), subfamily Didymocarpoideae Arnott (1832: 121) of Gesneriaceae, and it is phylogenetic closed to *Aeschynanthus* Jack (1823: 42), *Cyrtandra* Forster & Forster (1776: t. 3) and *Agalmyla* Blume (1826: 766). *Oreocharis* is predominantly distributed in China with approximately 147 species, and some species distributed in the Indochinese Peninsula and Japan (Chen *et al.* 2018, Jin *et al.* 2021), Kong *et al.* 2021). The *Oreocharis* underwent early and rapid explosive radiation in Miocene (Kong *et al.* 2021), it can be divided into two clades. One clade is mainly distributed in Southwest China and characterized by yellow corolla with four stamens, and another clade is mainly distributed in South and Southeast China and characterized by purple corolla, some species evolved with two stamens (Jin *et al.* 2021). All species are rosette plants with spirally arranged leaves, axillary inflorescences, and showed a strikingly-high diversity in floral syndromes with limited differences in habit and fruit structure (Li & Wang 2005, Wei 2010, Jin *et al.* 2021), and the evolution from zygomorphy to actinomorphy in corolla was detected (Jin *et al.* 2021).

As a distinctive part of the globally important Indo-Burma biodiversity hotspot (Myers *et al.* 2000), Hainan Island in South China harbors 14 genera and 25 species of Gesneriaceae, including two endemic genera and ten endemic species (Li & Wang 2005, Ling *et al.* 2017, 2020b). Currently, four taxa of *Oreocharis* were recognized in Hainan Island, i.e., *O. dasyantha* Chun (1946: 287) var. *dasyantha*, *O. dasyantha* var. *ferruginosa* Pan (1987: 283), *O. flavida*

Merrill (1922: 354) and *O. jasminina* S.J. Ling, F. Wen & M.X. Ren in Ling *et al.* (2020: 157). All of them are endemic to Hainan Island, and mostly restricted to high altitude area (> 1,000 m) (Ling *et al.* 2020a, b).

During field investigations in the past three years, we collected some specimens of an interesting *Oreocharis* species that grows at about 200 m altitude of a karst hill in Hainan Island, South China. The species showed notable differences from the known *Oreocharis* species in various morphological characters, e.g. corolla colour, corolla shape and stamens traits. Based on morphological and molecular analyses, together with literature review (Pan 1987, Li & Wang 2005, Wei 2010, Ling *et al.* 2020a), it is convinced that these specimens represent a new *Oreocharis* species described below.

FIGURE 1. Oreocharis hainanensis S.J.Ling & M.X. Ren *sp. nov.* A. Habitat; B. habit; C. adaxial leaf surface; D. abaxial leaf surface; E. lateral view of corolla, sepal and calyx; F. face view of corolla; G. opening flower showing stamens and staminode; H. pistil, stamens and staminode; I. capsule; J. fruit pods; K. seeds; L–N. Main floral visitors: L. *Braunapis* sp.; M. *Apis* sp.; N. *Amegilla* sp.; All photos by Shao-Jun Ling.

FIGURE 2. Oreocharis hainanensis S.J.Ling & M.X. Ren *sp. nov.* A. Habit; B. abaxial leaf surface; C. lateral view of corolla, sepal and calyx; D. front view of corolla; E. opening corolla showing stamens and staminode; F. pistil, stamens and staminode; G. capsule; H. seed. (Drawn by Shu-Ping Guan based on the holotype *S.J.Ling 2020091701* in HUTB).

Materials & methods

Morphological observations

Morphological observations and measurements were conducted based on the field work, and we studied *Oreocharis* collections deposited in the following herbaria: IBK, IBSC, KUN, and PE. The images of type specimens of most *Oreocharis* species were gathered from JSTOR Global Plants (http://plants.jstor.org) and Chinese Virtual Herbarium (http://www.cvh.ac.cn) to compared detailed morphological traits between the new species and the currently accepted species of *Oreocharis*. We analyzed at least 30 collections of the new species and other taxa of *Oreocharis* in Hainan Island, and pollinators of the new species were observed and photographed in the wild. Specimens were kept under cultivation in herbarium of Hainan University (HUTB) to photograph and analyze fresh flowers, fruits, and seeds under a stereomicroscope. A morphological description was made based on the terminology of Stevens (2009). A comparative table of the morphologically similar species was prepared based on the herbarium specimens and protologues of the new species and other species of *Oreocharis* in Hainan Island. The informal conservation assessment was based on the criteria proposed by the IUCN (2019). Voucher specimens of new species are deposited in HUTB, Kunming Institute of Botany, Chinese Academy of Sciences (KUN), and Guangxi Institute of Botany, Chinese Academy of Sciences (IBK).

TABLE 1. Com	parison of diagnostic characters o	f <i>Oeocharis hainanensis</i> and all	its congeners in Hainan Island.		
Characters	0. hainanensis	O. jasminina	O. dasyantha	O. dasyantha var. ferruginosa	0. flavida
Corolla colour	yellow	yellow	orange-red to yellow	orange-red to yellow	orange
Corolla tube	campanulate, 1–1.5 cm long, corolla width 1–1.7 cm, corolla mouth width 3–4.5 mm	narrowly tubular, 1.7–2.2 cm, long, corolla width 1.8–2.2 cm, corolla mouth width 3–4.5 mm	conical, 1.6–2.4 cm long, corolla width 0.9–2 cm, corolla mouth width 6–7 mm	conical, ca. 1.6 cm, tube 9–1.1 mm, corolla width 0.9–1.9 cm, corolla mouth width 6–7 mm	campanulate-tubular, 1.7–1.9 cm long, corolla width 1.6–1.8 cm, corolla mouth width 6–8 mm
Corolla symmetry	zygomorphic	actinomorphic	zygomorphic	zygomorphic	actinomorphic
Leaf blade shape	obovate, ovate to broadly ovate, rarely broadly ovate	ovate to broadly ovate, rarely elliptic or obovate	ovate-elliptic to broadly ovate	ovate-elliptic to broadly ovate	ovate-elliptic to broadly ovate, rarely broadly elliptic
Leaf base shape	cuneate, rarely subrounded	cordate to rounded	oblique, cuneate to subrounded or cordate	sometimes oblique, cuneate to subcordate	oblique, subrounded
Leaf base margin	shallowly crenate-serrate	nearly entire to shallowly crenate, apex rounded	serrulate or crenate-serrate, apex acute to rounded	crenate-serrate	shallow crenate
Stamens	exserted, didynamous, staminode 1	included, didynamous, staminode l	exserted, equivalent, staminode absent	exserted, didynamous, staminode absent	included, equivalent, staminode 1
Anthers	ovate, 2-loculed, dehiscing longitudinally	ovate, 2-loculed, dehiscing transversely	broadly oblong, 2-loculed, dehiscing longitudinally	broadly oblong, 2-loculed, dehiscing longitudinally	horseshoe-shaped, 1-loculed, dehiscing transversely
Filaments	pubescent	pubescent	pubescent	pubescent	glabrous
Pistil	ca. 16 mm long	ca. 9 mm long	ca. 22 mm long	ca. 22 mm long	ca. 9 mm long
Habitat	Karst at low altitude	Mountain top, non karst	Mountain top, non karst	Mountain top, non karst	Mountain top, non karst

Taxonomic sampling, DNA extraction, PCR and sequencing

Leaf materials for DNA extraction of *O. dasyantha* var. *dasyantha*, *O. dasyantha* var. *ferruginosa*, *O. flavida*, *O. jasminina* and the putative new species were dried in a vascular bag with silica gel in the field. Total genomic DNA extraction was carried out using standard CTAB methods (Doyle & Doyle 1987). The chloroplast DNA (cpDNA) intron-spacer region *trnL-trn*F (Taberlet *et al.* 1991) and one nuclear ribosomal DNA (nrDNA) sequence, the ITS region comprising spacer 1, the 5.8S gene and spacer 2 (White *et al.* 1990) were used in this study. PCR and sequencing procedures followed Ling *et al.* (2020a). Vouchers and sequences information are listed in Table 2.

Sequence alignment and phylogenetic analyses

To identify the systematic position of the putative new species, we followed Möller *et al.* (2011) and Ling *et al.* (2020a) and used 57 other *Oreocharis* species with available DNA sequences in the study. Finally, a total of 62 species were included in the phylogenetic analysis (Table 2). For base confirmation and contiguous sequences editing, the acquired original chromatograms from both directions of the *trn*L-F and ITS1/2 sequences were checked and evaluated using Bioedit (Hall 1999). We manually adjusted and aligned sequences, excluded ambiguous positions from alignments, where necessary, using MEGA v.6.5 (Kumar *et al.* 2008). After a congruency test, the *trn*L-*trn*F and ITS1/2 sequences were concatenated to a single matrix by PAUP* 4.0a164 (Swofford 2003). The optimal model of nucleotide substitution was inferred for two gene using MRMODELTEST v. 2.3 (Nylander 2004), based on Akaike Information Criteria (AIC, Akaike 1981). The most suitable model GTR + I + G was used in BI and ML analyses. Bayesian Inference (BI) analysis was conducted using MrBayes version 3.1.2 (Huelsenbeck & Ronquist 2001), with two independent Markov Chain Mounte Carlo (MCMC) analyses were run for 10 million generations, and sampled every 10,000 generations. The first 25% trees were discarded as burn-in, the remaining trees were summarized in a 50% majority-rule consensus tree with the posterior probabilities (PP). The maximum clade credibility tree was then visualized in FigTree v. 1.4.3 (http://tree. bio.ed.ac.uk/software/figtree/). Maximum Likelihood (ML) analyses were employed to reconstruct the phylogeny in MEGA v.6.5 (Kumar *et al.* 2008), with the optimal substitution models to carry out 1000 bootstrap (BS) replicates.

Species	trnL-trnF	ITS1/2	Voucher Number
Oreocharis acaulis	HQ633012	HQ632916	M.Möller MMO 09-1605
Oreocharis amabilis	KM232654	KJ475433	Carles 587
Oreocharis argyreia	HQ632919	HQ633015	M.Möller MMO 07-1131
Oreocharis aurea	KM062914	KM063154	M.Möller MMO 06-980
Oreocharis auricula	FJ501482	DQ912664	M.Möller MMO 03-304
Oreocharis begoniifolia	KM062926	KM063166	M.Möller MMO 08-1221
Oreocharis benthamii	JF697584	JF697572	M.Möller MMO 08-1317
Oreocharis brachypodus	KR476564	KR337019	Jia-Mei Li 2304
Oreocharis burttii	JF697582	JF697570	F.Wen 2010-05
Oreocharis chienii	KM062908	KM063148	JXU0008123
Oreocharis cinnamomea	KM062921	KM063161	PE-02053073
Oreocharis concava	KM062930	KM063170	PE-02053062
Oreocharis convexa	FJ501337	FJ501506	M.Möller MMO 01-176
Oreocharis cordatula	KM062922	KM063162	PE-02053432
Oreocharis cotinifolia	HQ632914	HQ633010	Q.M.Chuan 01
Oreocharis craibii	HQ632921	HQ633017	M.Möller MMO 07-1072
Oreocharis dalzielii	JF697583	JF697571	F.Wen 2010-06
Oreocharis dasyantha	MK587993	MK587954	S.Jun Ling & M.X. Ren 2015011803
Oreocharis dasyantha var. ferruginosa	MK587992	MK587956	S.Jun Ling 2015102203
Oreocharis dentata	KM062916	KM063156	GH00353683
Oreocharis dimorphosepala	KM062925	KM063165	Y. M.Shui & al. 85333
Oreocharis dinghushanensis	GU350643	GU350675	Lin Q.B. LQB06-01

TABLE 2. List of Hainan *Oreocharis* taxa and 57 *Oreocharis* species used in the phylogenetic analysis, including respective Genbank accession and voucher numbers.

.....continuned on the next page

TABLE 2. (Continuned)

Species	trnL-trnF	ITS1/2	Voucher Number
Oreocharis duyunensis	MG722858	MG722856	PE-02114626
Oreocharis elliptica	KM063155	KM062915	CDBI0130369
Oreocharis esquirolii	HQ633011	HQ632915	D.W.Zhang 723
Oreocharis eximia	KM062919	KM063159	PE-02052811
Oreocharis farreri	JF697585	JF697573	Zhou Ping ZP 2010-020
Oreocharis flavida	MK587990	MK587947	S.Jun Ling 2018112901
Oreocharis georgei	KM062917	KM063157	PE-02053075
Oreocharis hainanensis	OK040231	OK040233	S.Jun Ling 2020091701
Oreocharis hekouensis	KM062934	KM063174	KUN-1219106
Oreocharis henryana	JF697586	JF697574	CSH0017984
Oreocharis heterandra	KM232655	KJ475432	PE-02052999
Oreocharis hirsuta	KM062913	KM063153	Put 3428
Oreocharis humilis	GU350633	GU350665	Liang R.H.SC-YB
Oreocharis jasminina	MK587987	MK587948	S.Jun Ling 2018112601
Oreocharis jiangxiensis	HQ633029	HQ632933	M.Möller MMO 09-1451
Oreocharis jinpingensis	KM062923	KM063163	Y.M. Shui et al. 91309
Oreocharis lancifolia	HQ632924	HQ633020	M.Möller and P.Zhou MMO 09-1624
Oreocharis leiophylla	GU350676	GU350644	Zhou X.R. ZXR-05-01
Oreocharis longifolia	HQ632934	HQ633030	M.Möller MMO 08-1239
Oreocharis lungshengensis	HQ632917	HQ633013	M.Möller MMO 06-916
Oreocharis magnidens	HQ632930	HQ633026	PE-02052989
Oreocharis mileensis	KM063145	KM063182	KUN-1385472
Oreocharis muscicola	DQ912665	FJ501548	Kew (1995-2229)
Oreocharis nanchuanica	KM062924	KM063164	KUN-1385365
Oreocharis pankaiyuae	HQ632925	HQ633021	PE-02053064
Oreocharis primuliflora	HQ633019	HQ932923	PE-02053071
Oreocharis primuloides	FJ501546	FJ501364	PE-01270488
Oreocharis rhombifolia	GU350632	GU350664	PE-02053532
Oreocharis ronganensis	HQ633023	HQ632927	PE-00030693
Oreocharis rosthornii	KM062928	KM063168	ZY0001346
Oreocharis rotundifolia	KM062911	KM063151	PE-00030861
Oreocharis saxatilis	KM062932	KM063172	JIU05295
Oreocharis sericea	KM232656	KJ475407	CSF1059560
Oreocharis sinensis	HQ632912	HQ633008	IBSC-0548658
Oreocharis sinohenryi	HQ632913	HQ633009	M.Möller MMO 07-1150
Oreocharis speciosa	KM062909	KM063149	K000858093
Oreocharis stewardii	HQ632926	HQ633022	M.Möller MMO 06-917
Oreocharis urceolata	KM062920	KM063160	M.Möller MMO 09-1633
Oreocharis wangwentsaii	GU350658	GU350689	Liang R.H.YN-Qj
Oreocharis xiangguiensis	HQ632932	HQ633028	JIU04686

Results

The systematic position of the putative new species

Based on the incongruence length difference (ILD) test, there was no significant incongruence between the *trn*L-*trn*F and ITS1/2 (p > 0.05). So the *trn*L-*trn*F and ITS1/2 sequences were concatenated. The combined *trn*L-*trn*F and

ITS1/2 datasets were 886 and 561 bp long, of which 96 bp and 236 bp were variable, and 35 bp and 162 bp were parsimony informative, respectively. The aligned dataset was 1447 bp long, a total number of 332 polymorphic sites were measured, of which 197 bp were parsimony informative.

Molecular phylogeny indicated the 62 *Oreocharis* species can be divided into six clades, including two major and four minor clades (Fig. 3). The proposed new species is the sister to the Hainan-endemic *O. jasminina* and forms a monophyletic clade with all the other *Oreocharis* taxa from Hainan Island, with PP (posterior probability) = 1 and BS (bootstrap value) = 97% (Fig. 3).

FIGURE 3. Molecular phylogeny of Hainan *Oreocharis* taxa and 57 *Oreocharis* species, based on the combined chloroplast gene *trn*L*trn*F and nuclear ribosomal DNA (nrDNA) sequence ITS1/2 data matrices. Posterior probability (PP) and Bootstrap value (BS) are showed above branches (only shown if BS > 50%). Hainan *Oreocharis* taxa were showed in grey.

Taxonomic treatment

Oreocharis hainanensis S.J.Ling & M.X.Ren, sp. nov. (Figs 1, 2)

Diagnosis:—The new species is easily distinguished from *O. jasminina* by campanulate (not narrowly tubular) floral tube, zygomorphic (not actinomorphic) corolla, exserted (not included) stamens (Fig. 1, 2, Table 1).

Type:—CHINA. Hainan Island: Dongfang City, Baobaimiao Village, north to the Changhua River, 18°55'N, 109°02'E, elev. ca. 280 m a.s.l., on karst rocks, 17 September 2020, *S.J.Ling 2020091701* (holotype HUTB!; isotypes HUTB!, KUN!, IBK!).

Perennial herb, rhizomatous, acaulescent. Leaves basal, rosette; petiole 1.5-5 cm long, 2-3 mm in diameter, brown woolly; blade obovate, ovate to broadly ovate, rarely broadly ovate, $2.5-9 \times 2-7$ cm, adaxially gray pubescent, abaxially brown pubescent, densely brown villous along veins, apex subrounded, rarely rounded, margin shallowly crenateserrate, base often cuneate, rarely subrounded, lateral veins 5–7 pairs, distinct, conspicuously prominent adaxially and conspicuously elevated abaxially. Inflorescence cymose, axillary, cymes 2–7, 3–8-flowered; peduncle 5–17 cm long, brown, sparsely pale gray villous. Bracts 2, linear to narrowly triangular, $2-3 \times ca$. 1 cm, abaxially pale gray villous, apex acuminate, margin entire; pedicel to 4 cm long, sparsely pale gray villous. Calyx green, 3-4 mm long, 5-parted near to base, lobes narrowly lanceolate, $2.5-4 \times ca. 1$ mm, apex acuminate, margin entire, adaxially pale gray pubescent, abaxially glabrous. Corolla yellow, 1–1.5 cm long, adaxially pubescent; tube campanulate, 1–1.7 cm \times 3–4.5 mm; limb 2-lipped, adaxial lip shallowly 2-lobed, lobes ca. 3.5 \times 5 mm, abaxial lip 3-lobed almost to base, lobes equal, subsemiorbicular, $5.5-8 \times 5-7$ mm, apex acuminate. Stamens 4, didynamous, adnate to corolla 3-4 mm from base, exserted; filaments of adaxial pairs ca. 0.8 cm long, abaxial pairs ca. 1.4 cm long; anthers ovate, bithecous, dehiscing longitudinally, adaxial thecae $1-1.5 \times 0.7-1.1$ mm, downward, abaxial thecae $1.8-2.8 \times 1-1.5$ mm, upward; staminode 1, adnate to corolla 2–3 mm above base, ca. 2 mm long. Disc ca. 1 mm high, entire. Pistil ca. 1.6 cm long, glabrous; ovary narrowly oblong, ca. 8 mm long, glandular-puberulent; style cylindrical and glandular-puberulent, ca. 0.5 cm long; stigma 2, equal, suborbicular. Capsule linear, 2.5–4 cm long, glabrous to sparsely puberulent.

Distribution and habitat:—*Oreocharis hainanensis* is currently only known on low-altitudual karst cliffs and rocks at the edge of evergreen broad-leaved forests near Changhua River, in the southwestern Hainan Island, South China.

Phenology:—Flowering from August to October and fruiting from September to November.

Etymology:-The specific epithet refers to the type location, Hainan Island, South China.

Vernacular name:—海南马铃苣苔 (Chinese, Hãi Nán Mă Líng Jù Tái).

Conservation status:—So far, *Oreocharis hainanensis* is only known from two locations (less than 5 locations) with about 3,000–4,000 individuals. The populations are under threat due to the limited and fragmented karst habitats, with a very restricted area of occupancy (typically less than 20 km²). Therefore, we propose that *O. hainanensis* should be considered as Vulnerable (VU C1 and D2) according to the IUCN Red List Categories and Criteria (IUCN 2019).

Key to the species of Oreocharis in Hainan Island

		•
O. flavida	Anthers horseshoe-shaped, 1-loculed, dehiscing transversely	1.
2	Anthers broadly oblong, 2-loculed, dehiscing longitudinally	-
O. jasminina	Stamens included, floral tube thin tubular	2.
	Stamens exserted, floral tube conical or campanulate	-
O. hainanensis	Corolla yellow	3.
4	Corolla orange-red	-
to 14.5 cm, densely pale brown	Leaf blade adaxially grey pubescent, base oblique, subrounded to cordate, margin serrulate; petiole	4.
O. dasyantha	villous; cymes 1-3 (or 4)-flowered; corolla 1.7-2.4 cm, tube 1.1-2 cm	
cordate, margin crenate-serrate;	Leaf blade adaxially grey to brown pubescent and villous, base sometimes oblique, cuneate to subc	-
m	petiole to 6 cm, densely pale brown woolly; cymes 3-8-flowered; corolla ca. 1.6 cm, tube 9-11 mi	
O. dasyantha var. ferruginosa		

Discussion

Our Molecular phylogeny showed that *Oreocharis* could be separated into six main clades, Clade I was mainly distributed in the mountains of Southwest China, Clades II-VI were mainly distributed in South to Southeast China (Fig. 3), which is roughly congruent with Ling *et al.* (2020a), Kong *et al.* (2021) and Lv *et al.* (in press). However,

some phylogenetic relationships in our result are different from previously works, which may cause by incomplete sampling of *Oreocharis* and the unequal aligned matrix information sites among studies. This phenomenon indicates that the *Oreocharis* underwent an early and rapid evolution radiation (Möller *et al.* 2011, Kong *et al.* 2021).

The new species *Oreocharis hainanensis* forms a monophyletic group with all the other *Oreocharis* taxa from Hainan Island with high support values (Fig. 3), indicating these species from Hainan (all are Hainan-endemic) had a common origin. All species from Hainan form the sister groups with *O. sinohenryi*, which is restricted to South China, suggesting a single dispersal of *Oreocharis* from mainland China to Hainan, and *Oreocharis* in Hainan Island probably have experienced evolutionary radiation.

The DNA evidence confirmed that Hainan *Oreocharis* taxa can be divided into two groups (Fig. 3). One group includes *O. dasyantha*, *O. dasyantha* var. *ferruginosa* and *O. flavida*, which dominated by orange corolla or corolla lobes. Another group includes *O. hainanensis* and *O. jasminina*, which dominated by yellow corolla. Our new species *O. hainanensis* is closely related to *O. jasminina* with high support (Fig. 3), however, *O. hainanensis* can be easily distinguished from *O. jasminina* by the characters of campanulate floral tube, zygomorphic corolla and exserted stamens (Table 1).

Generally, floral shape played a key role in generating floral isolation (Castellanos *et al.* 2004; Muchhala 2007), which has a considerable association with the expected pollinators in Gesneriaceae (Martén-Rodríguez *et al.* 2009). *Oreocharis hainanensis* has campanulate corolla, with various floral visitors including *Braunapis* sp., *Apis* sp. and *Amegilla* sp. (Fig. 1), differing from *Oreocharis jasminina* (thin-tubular corolla), *O. dasyantha* var. *dasyantha*, *O. dasyantha* var. *ferruginosa* (both are conical corolla) and *O. flavida* (campanulate-tubular corolla). These differences in floral syndromes indicated possible pollination isolations between the new species *O. hainanensis* and other *Oreocharis* taxa in Hainan Island.

Hainan Island has ca. 400 km^2 of karst topography, with an abundance of endemic plants, including two Gesneriaceae species endemic to Hainan, i.e., *Paraboea hainanensis* (Chun 1974: 3) Burtt (1984: 41) and *P. changjiangensis* Xing & Li (1993: 15). *Oreocharis hainanensis* is the unique species from karst regions in Hainan-endemic *Oreocharis* taxa, indicating that karst habitats offered excellent environments for the speciation and adaptation of *Oreocahris* in Hainan Island. Secondly, *O. hainanensis* grows at low-altitudinal areas of about 200 m, which has the closest phylogenetic relationship with *O. jasminina* with PP = 1 and BS = 97%, while its closest congener *O. jasminina* is only found on mountain tops, above 1,200 m in Mt. Yingge and Mt. Limu (Ling *et al.* 2020a, b). Therefore, the different elevation of mountains probably facilitated species differentiation of *Oreocharis* on the island, besides the habitat heterogeneity associated with karst landscapes.

Acknowledgments

We are grateful to Dr. Xi-Long Zheng for providing useful geographic location information, Wen-Qian Xiang and Xiao-Lan Yao for field sampling, Prof. Huan-Li Xu from China Agricultural University for identifying floral visitor, and Shu-Ping Guan for line drawings. This work was funded by Project of Comprehensive Scientific Surveys of Hainan Tropical Rainforest National Park (HD-KYH-2020008), Project of Hainan Innovation Platform with Academicians (YSPTZX20201), National Natural Science Foundation of China (41871041), the Key Science & Technology Research and Development Project of Guangxi (Guike AD20159091 & ZY21195050) and the Capacity-Building Project of Strategic Biological Resources, Chinese Academy of Sciences (KFJ-BRP-017-68).

References

- Akaike, H. (1981) Likelihood of a model and information criteria. Journal of Econometrics 16: 3–14.
 - https://doi.org/10.1016/0304-4076(81)90071-3
- Arnott, G.A.W. (1832) Botany. In: Napier, M. & Browne, J. (Eds.) Encyclopedia Britannica, ed. 7(5). Encyclopaedia Britannica Inc, Edinburgh, 121 pp.
- Bentham, G. (1876) Gesneriaceae. In: Bentham, G. & Hooker, J.D. (Eds.) Genera Plantarum 2 (2). Lovell Reeve & Co., London, pp. 990–1025.

Blume, C.L. (1826) *Bijdragen tot de flora van Nederlandsch Indie*. Ter Lands Drukkerij, Batavia, 766 pp. Burtt, B.L. (1984) Studies in the Gesneriaceae of the Old World: XLVII. Revised generic concepts for *Boea* and its allies. *Notes from the* Royal Botanic Garden, Edinburgh 41: 401–452.

- Chun, H.Y. (1946) Gesneriacearum Plantae Novae Sinicarum. Sunyatsenia 6: 299-300.
- Chun, H.Y. (1974) Flora of Hainan 3. Science Press, Beijing. 588 pp.
- Castellanos, M.C., Wilson, P. & Thomson, J.D. (2004) 'Anti-bee' and 'pro-bird' changes during the evolution of hummingbird pollination in *Penstemon* flowers. *Journal of Evolutionary Biology* 17: 876–885. https://doi.org/10.1111/j.1420-9101.2004.00729.x
- Chen, W.H., Nguyen, Q.H., Chen, R.Z., Nguyen, S.K., Nguyen, V.T., Möller, M., Middleton, D.J. & Shui, Y.M. (2018) Two new species of *Oreocharis* (Gesneriaceae) from Fan Si Pan, the highest mountain in Vietnam. *PhytoKeys* 94: 95–106. https://doi.org/10.3897/phytokeys.94.21329
- Chen, W.H., Zhang, Y.M., Guo, S.W., Zhang, Z.R., Chen, L. & Shui, Y.M. (2020) Reassessment of *Bournea* Oliver (Gesneriaceae) based on molecular and palynological evidence. *PhytoKeys* 157: 27–41. https://doi.org/10.3897/phytokeys.157.55254
- Doyle, J.J. & Doyle, J.L. (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. *Phytochemical Bulletin* 19: 11–15. https://doi.org/10.1016/0031-9422(80)85004-7

Forster, J.R. & Forster, G. (1776) Characteres Generum Plantarum. White, B., Cadell, T. & Elmsley, P., London, 150 pp.

Hall, T.A. (1999) BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic Acids Symposium Series* 41: 95–98.

https://doi.org/10.14601/Phytopathol_Mediterr-14998u1.29

- Hooker, J.D. (1893) Icones Plantarum, or figures, with brief descriptive characters and remarks, of new or rare plants, selected from the author's herbarium. Vol. 23, ser. 4, 3. Longman, Reese, Orne, Brown, Green & Longman, Kew, Bentham-Moxon Trust, London, t. 2254.
- Huelsenbeck, J.P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. *Bioinformatics* 17: 754–755. https://doi.org/10.1093/bioinformatics/17.8.754
- IUCN Standards and Petitions Subcommittee (2019) *Guidelines for using the IUCN Red List Categories and criteria, version 14.* Standards and Petitions Committee, 113 pp.
- Jack, W. (1823) On Cyrtandraceae, a new natural order of plants. Transactions of the Linnean Society of London 14: 23-44.
- Jin, X., Ling, S.J., Wen, F. & Ren, M.X. (2021) Biogeographical pattern and floral evolution of *Oreocharis* (Gesneriaceae). *Plant Science Journal* 39: 379–388.

https://doi.org/10.11913/PSJ.2095-0837.2021.40379

- Kong, H.H., Condamine, F.L., Yang, L.H., Harris, A.J., Feng, C., Wen, F. & Kang, M. (2021) Phylogenomic and macroevolutionary evidence for an explosive radiation of a plant genus in the miocene. *Systematic Biology* syab068. https://doi.org/10.1093/sysbio/syab068
- Kumar, S., Nei, M., Dudley, J. & Tamura, K. (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. *Briefings in Bioinformatics* 9: 299–306. https://doi.org/10.1093/bib/bbn017
- Li, Z.Y. & Wang, Y.Z. (2005) Plants of Gesneriaceae in China. Henan Science & Technology Publishing House, Zhengzhou, 721 pp.
- Ling, S.J., Meng, Q.W., Tang, L. & Ren, M.X. (2017) Pollination syndromes of Chinese Gesneriaceae: a comparative study between Hainan Island and neighboring regions. *The Botanical Review* 83: 59–73. https://doi.org/10.1007/s12229-017-9181-6
- Ling, S.J., Qin, X.T., Song, X.Q., Zhang, L.N. & Ren, M.X. (2020a) Genetic delimitation of *Oreocharis* species from Hainan Island. *PhytoKeys* 157: 59–81.

https://doi.org/10.3897/phytokeys.157.32427

- Ling, S.J., Guan, S.P., Wen, F., Shui, Y.M. & Ren, M.X. (2020b) Oreocharis jasminina (Gesneriaceae), a new species from mountain tops of Hainan Island, South China. *PhytoKeys* 157: 121–135. https://doi.org/10.3897/phytokeys.157.50246
- Lv, Z.Y., Yusupov, Z., Zhang, D.G., Zhang, Y.Z., Zhang, X.S., Lin, N., Tojibaev, K., Sun, H. & Deng, T. (in press) Oreocharis xieyongii, an unusual new species of Gesneriaceae from western Hunan, China. Plant Diversity. https://doi.org/10.1016/j.pld.2021.11.008
- Martén-Rodríguez, S., Almarales-Castro, A. & Fenster, C.B. (2009) Evaluation of pollination syndromes in Antillean Gesneriaceae: evidence for bat, hummingbird and generalized flowers. *Journal of Ecology* 97: 348–359. https://doi.org/10.1111/j.1365-2745.2008.01465.x

Merrill, E.D. (1922) Diagnoses of Hainan plants. The Philippine Journal of Science 21: 337–355.

Muchhala, N. (2007) Adaptive trade-off in floral morphology mediates specialization for flowers pollinated by bats and hummingbirds. *American Naturalist* 169: 494–504.

https://doi.org/10.1086/512047

Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A. & Kent, J. (2000) Biodiversity hotspots for conservation priorities. *Nature* 403: 853–858.

https://doi.org/10.1038/35002501

Möller, M., Middleton, D., Nishii, K., Wei, Y.G., Sontag, S. & Weber, A. (2011) A new delineation for *Oreocharis* incorporating an additional ten genera of Chinese Gesneriaceae. *Phytotaxa* 23: 1–36.

https://doi.org/10.11646/phytotaxa.23.1.1

- Nees von Essenbeck, C.G.D. (1825) Trichosporeae. Flora oder Botanische Zeitung 8: 143.
- Nylander, J.A.A. (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.
- Pan, K.Y. (1987) Taxonomy of the genus Oreocharis (Gesneriaceae). Acta Phytotaxonomica Sinica 26: 450-457.
- Swofford, D.L. (2003) *PAUP*: Phylogenetic analysis using parsimony (* and other methods) Version 4.0b10.* Sinauer Associates, Sunderland, Massachusetts, 142 pp.
- Stevens, W.D. (2009) Apocynaceae. In: Davidse, G., Sousa, M. & Chater, A.O. (Eds.) Flora Mesoamericana. Missouri Botanical Garden Press, St. Louis, pp. 703–768.
- Taberlet, P., Gielly, L., Pautou, G. & Bouvet, J. (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. *Plant Molecular Biology* 17: 1105–1109.

https://doi.org/10.1007/BF00037152

Wei, Y.G. (2010) Gesneriaceae of South China. Guangxi Science and Technology Publishing House, Nanning, 777 pp.

- Weber, A., Clark, J.L. & Möller, M. (2013) A new formal classification of Gesneriaceae. Selbyana 31: 68–94. [https://www.jstor.org/ stable/24894283]
- White, T.J., Bruns, T.D., Lee, S.B. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. *PCR Protocols* 1990: 315–322.

Xing, F.W. & Li, Z.X. (1993) A new species of Paraboea from Hainan Island. Acta Botanica Yunnanica 15: 1-3.